1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25 * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
26 * Copyright 2017 Nexenta Systems, Inc.
27 */
28
29/* Portions Copyright 2007 Jeremy Teo */
30/* Portions Copyright 2010 Robert Milkowski */
31
32
33#include <sys/types.h>
34#include <sys/param.h>
35#include <sys/time.h>
36#include <sys/sysmacros.h>
37#include <sys/vfs.h>
38#include <sys/file.h>
39#include <sys/stat.h>
40#include <sys/kmem.h>
41#include <sys/taskq.h>
42#include <sys/uio.h>
43#include <sys/vmsystm.h>
44#include <sys/atomic.h>
45#include <sys/pathname.h>
46#include <sys/cmn_err.h>
47#include <sys/errno.h>
48#include <sys/zfs_dir.h>
49#include <sys/zfs_acl.h>
50#include <sys/zfs_ioctl.h>
51#include <sys/fs/zfs.h>
52#include <sys/dmu.h>
53#include <sys/dmu_objset.h>
54#include <sys/spa.h>
55#include <sys/txg.h>
56#include <sys/dbuf.h>
57#include <sys/zap.h>
58#include <sys/sa.h>
59#include <sys/policy.h>
60#include <sys/sunddi.h>
61#include <sys/sid.h>
62#include <sys/zfs_ctldir.h>
63#include <sys/zfs_fuid.h>
64#include <sys/zfs_quota.h>
65#include <sys/zfs_sa.h>
66#include <sys/zfs_vnops.h>
67#include <sys/zfs_rlock.h>
68#include <sys/cred.h>
69#include <sys/zpl.h>
70#include <sys/zil.h>
71#include <sys/sa_impl.h>
72
73/*
74 * Programming rules.
75 *
76 * Each vnode op performs some logical unit of work.  To do this, the ZPL must
77 * properly lock its in-core state, create a DMU transaction, do the work,
78 * record this work in the intent log (ZIL), commit the DMU transaction,
79 * and wait for the intent log to commit if it is a synchronous operation.
80 * Moreover, the vnode ops must work in both normal and log replay context.
81 * The ordering of events is important to avoid deadlocks and references
82 * to freed memory.  The example below illustrates the following Big Rules:
83 *
84 *  (1) A check must be made in each zfs thread for a mounted file system.
85 *	This is done avoiding races using zfs_enter(zfsvfs).
86 *      A zfs_exit(zfsvfs) is needed before all returns.  Any znodes
87 *      must be checked with zfs_verify_zp(zp).  Both of these macros
88 *      can return EIO from the calling function.
89 *
90 *  (2) zrele() should always be the last thing except for zil_commit() (if
91 *	necessary) and zfs_exit(). This is for 3 reasons: First, if it's the
92 *	last reference, the vnode/znode can be freed, so the zp may point to
93 *	freed memory.  Second, the last reference will call zfs_zinactive(),
94 *	which may induce a lot of work -- pushing cached pages (which acquires
95 *	range locks) and syncing out cached atime changes.  Third,
96 *	zfs_zinactive() may require a new tx, which could deadlock the system
97 *	if you were already holding one. This deadlock occurs because the tx
98 *	currently being operated on prevents a txg from syncing, which
99 *	prevents the new tx from progressing, resulting in a deadlock.  If you
100 *	must call zrele() within a tx, use zfs_zrele_async(). Note that iput()
101 *	is a synonym for zrele().
102 *
103 *  (3)	All range locks must be grabbed before calling dmu_tx_assign(),
104 *	as they can span dmu_tx_assign() calls.
105 *
106 *  (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to
107 *      dmu_tx_assign().  This is critical because we don't want to block
108 *      while holding locks.
109 *
110 *	If no ZPL locks are held (aside from zfs_enter()), use TXG_WAIT.  This
111 *	reduces lock contention and CPU usage when we must wait (note that if
112 *	throughput is constrained by the storage, nearly every transaction
113 *	must wait).
114 *
115 *      Note, in particular, that if a lock is sometimes acquired before
116 *      the tx assigns, and sometimes after (e.g. z_lock), then failing
117 *      to use a non-blocking assign can deadlock the system.  The scenario:
118 *
119 *	Thread A has grabbed a lock before calling dmu_tx_assign().
120 *	Thread B is in an already-assigned tx, and blocks for this lock.
121 *	Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
122 *	forever, because the previous txg can't quiesce until B's tx commits.
123 *
124 *	If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
125 *	then drop all locks, call dmu_tx_wait(), and try again.  On subsequent
126 *	calls to dmu_tx_assign(), pass TXG_NOTHROTTLE in addition to TXG_NOWAIT,
127 *	to indicate that this operation has already called dmu_tx_wait().
128 *	This will ensure that we don't retry forever, waiting a short bit
129 *	each time.
130 *
131 *  (5)	If the operation succeeded, generate the intent log entry for it
132 *	before dropping locks.  This ensures that the ordering of events
133 *	in the intent log matches the order in which they actually occurred.
134 *	During ZIL replay the zfs_log_* functions will update the sequence
135 *	number to indicate the zil transaction has replayed.
136 *
137 *  (6)	At the end of each vnode op, the DMU tx must always commit,
138 *	regardless of whether there were any errors.
139 *
140 *  (7)	After dropping all locks, invoke zil_commit(zilog, foid)
141 *	to ensure that synchronous semantics are provided when necessary.
142 *
143 * In general, this is how things should be ordered in each vnode op:
144 *
145 *	zfs_enter(zfsvfs);		// exit if unmounted
146 * top:
147 *	zfs_dirent_lock(&dl, ...)	// lock directory entry (may igrab())
148 *	rw_enter(...);			// grab any other locks you need
149 *	tx = dmu_tx_create(...);	// get DMU tx
150 *	dmu_tx_hold_*();		// hold each object you might modify
151 *	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
152 *	if (error) {
153 *		rw_exit(...);		// drop locks
154 *		zfs_dirent_unlock(dl);	// unlock directory entry
155 *		zrele(...);		// release held znodes
156 *		if (error == ERESTART) {
157 *			waited = B_TRUE;
158 *			dmu_tx_wait(tx);
159 *			dmu_tx_abort(tx);
160 *			goto top;
161 *		}
162 *		dmu_tx_abort(tx);	// abort DMU tx
163 *		zfs_exit(zfsvfs);	// finished in zfs
164 *		return (error);		// really out of space
165 *	}
166 *	error = do_real_work();		// do whatever this VOP does
167 *	if (error == 0)
168 *		zfs_log_*(...);		// on success, make ZIL entry
169 *	dmu_tx_commit(tx);		// commit DMU tx -- error or not
170 *	rw_exit(...);			// drop locks
171 *	zfs_dirent_unlock(dl);		// unlock directory entry
172 *	zrele(...);			// release held znodes
173 *	zil_commit(zilog, foid);	// synchronous when necessary
174 *	zfs_exit(zfsvfs);		// finished in zfs
175 *	return (error);			// done, report error
176 */
177int
178zfs_open(struct inode *ip, int mode, int flag, cred_t *cr)
179{
180	(void) cr;
181	znode_t	*zp = ITOZ(ip);
182	zfsvfs_t *zfsvfs = ITOZSB(ip);
183	int error;
184
185	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
186		return (error);
187
188	/* Honor ZFS_APPENDONLY file attribute */
189	if (blk_mode_is_open_write(mode) && (zp->z_pflags & ZFS_APPENDONLY) &&
190	    ((flag & O_APPEND) == 0)) {
191		zfs_exit(zfsvfs, FTAG);
192		return (SET_ERROR(EPERM));
193	}
194
195	/*
196	 * Keep a count of the synchronous opens in the znode.  On first
197	 * synchronous open we must convert all previous async transactions
198	 * into sync to keep correct ordering.
199	 */
200	if (flag & O_SYNC) {
201		if (atomic_inc_32_nv(&zp->z_sync_cnt) == 1)
202			zil_async_to_sync(zfsvfs->z_log, zp->z_id);
203	}
204
205	zfs_exit(zfsvfs, FTAG);
206	return (0);
207}
208
209int
210zfs_close(struct inode *ip, int flag, cred_t *cr)
211{
212	(void) cr;
213	znode_t	*zp = ITOZ(ip);
214	zfsvfs_t *zfsvfs = ITOZSB(ip);
215	int error;
216
217	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
218		return (error);
219
220	/* Decrement the synchronous opens in the znode */
221	if (flag & O_SYNC)
222		atomic_dec_32(&zp->z_sync_cnt);
223
224	zfs_exit(zfsvfs, FTAG);
225	return (0);
226}
227
228#if defined(_KERNEL)
229
230static int zfs_fillpage(struct inode *ip, struct page *pp);
231
232/*
233 * When a file is memory mapped, we must keep the IO data synchronized
234 * between the DMU cache and the memory mapped pages.  Update all mapped
235 * pages with the contents of the coresponding dmu buffer.
236 */
237void
238update_pages(znode_t *zp, int64_t start, int len, objset_t *os)
239{
240	struct address_space *mp = ZTOI(zp)->i_mapping;
241	int64_t off = start & (PAGE_SIZE - 1);
242
243	for (start &= PAGE_MASK; len > 0; start += PAGE_SIZE) {
244		uint64_t nbytes = MIN(PAGE_SIZE - off, len);
245
246		struct page *pp = find_lock_page(mp, start >> PAGE_SHIFT);
247		if (pp) {
248			if (mapping_writably_mapped(mp))
249				flush_dcache_page(pp);
250
251			void *pb = kmap(pp);
252			int error = dmu_read(os, zp->z_id, start + off,
253			    nbytes, pb + off, DMU_READ_PREFETCH);
254			kunmap(pp);
255
256			if (error) {
257				SetPageError(pp);
258				ClearPageUptodate(pp);
259			} else {
260				ClearPageError(pp);
261				SetPageUptodate(pp);
262
263				if (mapping_writably_mapped(mp))
264					flush_dcache_page(pp);
265
266				mark_page_accessed(pp);
267			}
268
269			unlock_page(pp);
270			put_page(pp);
271		}
272
273		len -= nbytes;
274		off = 0;
275	}
276}
277
278/*
279 * When a file is memory mapped, we must keep the I/O data synchronized
280 * between the DMU cache and the memory mapped pages.  Preferentially read
281 * from memory mapped pages, otherwise fallback to reading through the dmu.
282 */
283int
284mappedread(znode_t *zp, int nbytes, zfs_uio_t *uio)
285{
286	struct inode *ip = ZTOI(zp);
287	struct address_space *mp = ip->i_mapping;
288	int64_t start = uio->uio_loffset;
289	int64_t off = start & (PAGE_SIZE - 1);
290	int len = nbytes;
291	int error = 0;
292
293	for (start &= PAGE_MASK; len > 0; start += PAGE_SIZE) {
294		uint64_t bytes = MIN(PAGE_SIZE - off, len);
295
296		struct page *pp = find_lock_page(mp, start >> PAGE_SHIFT);
297		if (pp) {
298			/*
299			 * If filemap_fault() retries there exists a window
300			 * where the page will be unlocked and not up to date.
301			 * In this case we must try and fill the page.
302			 */
303			if (unlikely(!PageUptodate(pp))) {
304				error = zfs_fillpage(ip, pp);
305				if (error) {
306					unlock_page(pp);
307					put_page(pp);
308					return (error);
309				}
310			}
311
312			ASSERT(PageUptodate(pp) || PageDirty(pp));
313
314			unlock_page(pp);
315
316			void *pb = kmap(pp);
317			error = zfs_uiomove(pb + off, bytes, UIO_READ, uio);
318			kunmap(pp);
319
320			if (mapping_writably_mapped(mp))
321				flush_dcache_page(pp);
322
323			mark_page_accessed(pp);
324			put_page(pp);
325		} else {
326			error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
327			    uio, bytes);
328		}
329
330		len -= bytes;
331		off = 0;
332
333		if (error)
334			break;
335	}
336
337	return (error);
338}
339#endif /* _KERNEL */
340
341static unsigned long zfs_delete_blocks = DMU_MAX_DELETEBLKCNT;
342
343/*
344 * Write the bytes to a file.
345 *
346 *	IN:	zp	- znode of file to be written to
347 *		data	- bytes to write
348 *		len	- number of bytes to write
349 *		pos	- offset to start writing at
350 *
351 *	OUT:	resid	- remaining bytes to write
352 *
353 *	RETURN:	0 if success
354 *		positive error code if failure.  EIO is	returned
355 *		for a short write when residp isn't provided.
356 *
357 * Timestamps:
358 *	zp - ctime|mtime updated if byte count > 0
359 */
360int
361zfs_write_simple(znode_t *zp, const void *data, size_t len,
362    loff_t pos, size_t *residp)
363{
364	fstrans_cookie_t cookie;
365	int error;
366
367	struct iovec iov;
368	iov.iov_base = (void *)data;
369	iov.iov_len = len;
370
371	zfs_uio_t uio;
372	zfs_uio_iovec_init(&uio, &iov, 1, pos, UIO_SYSSPACE, len, 0);
373
374	cookie = spl_fstrans_mark();
375	error = zfs_write(zp, &uio, 0, kcred);
376	spl_fstrans_unmark(cookie);
377
378	if (error == 0) {
379		if (residp != NULL)
380			*residp = zfs_uio_resid(&uio);
381		else if (zfs_uio_resid(&uio) != 0)
382			error = SET_ERROR(EIO);
383	}
384
385	return (error);
386}
387
388static void
389zfs_rele_async_task(void *arg)
390{
391	iput(arg);
392}
393
394void
395zfs_zrele_async(znode_t *zp)
396{
397	struct inode *ip = ZTOI(zp);
398	objset_t *os = ITOZSB(ip)->z_os;
399
400	ASSERT(atomic_read(&ip->i_count) > 0);
401	ASSERT(os != NULL);
402
403	/*
404	 * If decrementing the count would put us at 0, we can't do it inline
405	 * here, because that would be synchronous. Instead, dispatch an iput
406	 * to run later.
407	 *
408	 * For more information on the dangers of a synchronous iput, see the
409	 * header comment of this file.
410	 */
411	if (!atomic_add_unless(&ip->i_count, -1, 1)) {
412		VERIFY(taskq_dispatch(dsl_pool_zrele_taskq(dmu_objset_pool(os)),
413		    zfs_rele_async_task, ip, TQ_SLEEP) != TASKQID_INVALID);
414	}
415}
416
417
418/*
419 * Lookup an entry in a directory, or an extended attribute directory.
420 * If it exists, return a held inode reference for it.
421 *
422 *	IN:	zdp	- znode of directory to search.
423 *		nm	- name of entry to lookup.
424 *		flags	- LOOKUP_XATTR set if looking for an attribute.
425 *		cr	- credentials of caller.
426 *		direntflags - directory lookup flags
427 *		realpnp - returned pathname.
428 *
429 *	OUT:	zpp	- znode of located entry, NULL if not found.
430 *
431 *	RETURN:	0 on success, error code on failure.
432 *
433 * Timestamps:
434 *	NA
435 */
436int
437zfs_lookup(znode_t *zdp, char *nm, znode_t **zpp, int flags, cred_t *cr,
438    int *direntflags, pathname_t *realpnp)
439{
440	zfsvfs_t *zfsvfs = ZTOZSB(zdp);
441	int error = 0;
442
443	/*
444	 * Fast path lookup, however we must skip DNLC lookup
445	 * for case folding or normalizing lookups because the
446	 * DNLC code only stores the passed in name.  This means
447	 * creating 'a' and removing 'A' on a case insensitive
448	 * file system would work, but DNLC still thinks 'a'
449	 * exists and won't let you create it again on the next
450	 * pass through fast path.
451	 */
452	if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
453
454		if (!S_ISDIR(ZTOI(zdp)->i_mode)) {
455			return (SET_ERROR(ENOTDIR));
456		} else if (zdp->z_sa_hdl == NULL) {
457			return (SET_ERROR(EIO));
458		}
459
460		if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
461			error = zfs_fastaccesschk_execute(zdp, cr);
462			if (!error) {
463				*zpp = zdp;
464				zhold(*zpp);
465				return (0);
466			}
467			return (error);
468		}
469	}
470
471	if ((error = zfs_enter_verify_zp(zfsvfs, zdp, FTAG)) != 0)
472		return (error);
473
474	*zpp = NULL;
475
476	if (flags & LOOKUP_XATTR) {
477		/*
478		 * We don't allow recursive attributes..
479		 * Maybe someday we will.
480		 */
481		if (zdp->z_pflags & ZFS_XATTR) {
482			zfs_exit(zfsvfs, FTAG);
483			return (SET_ERROR(EINVAL));
484		}
485
486		if ((error = zfs_get_xattrdir(zdp, zpp, cr, flags))) {
487			zfs_exit(zfsvfs, FTAG);
488			return (error);
489		}
490
491		/*
492		 * Do we have permission to get into attribute directory?
493		 */
494
495		if ((error = zfs_zaccess(*zpp, ACE_EXECUTE, 0,
496		    B_TRUE, cr, zfs_init_idmap))) {
497			zrele(*zpp);
498			*zpp = NULL;
499		}
500
501		zfs_exit(zfsvfs, FTAG);
502		return (error);
503	}
504
505	if (!S_ISDIR(ZTOI(zdp)->i_mode)) {
506		zfs_exit(zfsvfs, FTAG);
507		return (SET_ERROR(ENOTDIR));
508	}
509
510	/*
511	 * Check accessibility of directory.
512	 */
513
514	if ((error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr,
515	    zfs_init_idmap))) {
516		zfs_exit(zfsvfs, FTAG);
517		return (error);
518	}
519
520	if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
521	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
522		zfs_exit(zfsvfs, FTAG);
523		return (SET_ERROR(EILSEQ));
524	}
525
526	error = zfs_dirlook(zdp, nm, zpp, flags, direntflags, realpnp);
527	if ((error == 0) && (*zpp))
528		zfs_znode_update_vfs(*zpp);
529
530	zfs_exit(zfsvfs, FTAG);
531	return (error);
532}
533
534/*
535 * Attempt to create a new entry in a directory.  If the entry
536 * already exists, truncate the file if permissible, else return
537 * an error.  Return the ip of the created or trunc'd file.
538 *
539 *	IN:	dzp	- znode of directory to put new file entry in.
540 *		name	- name of new file entry.
541 *		vap	- attributes of new file.
542 *		excl	- flag indicating exclusive or non-exclusive mode.
543 *		mode	- mode to open file with.
544 *		cr	- credentials of caller.
545 *		flag	- file flag.
546 *		vsecp	- ACL to be set
547 *		mnt_ns	- user namespace of the mount
548 *
549 *	OUT:	zpp	- znode of created or trunc'd entry.
550 *
551 *	RETURN:	0 on success, error code on failure.
552 *
553 * Timestamps:
554 *	dzp - ctime|mtime updated if new entry created
555 *	 zp - ctime|mtime always, atime if new
556 */
557int
558zfs_create(znode_t *dzp, char *name, vattr_t *vap, int excl,
559    int mode, znode_t **zpp, cred_t *cr, int flag, vsecattr_t *vsecp,
560    zidmap_t *mnt_ns)
561{
562	znode_t		*zp;
563	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
564	zilog_t		*zilog;
565	objset_t	*os;
566	zfs_dirlock_t	*dl;
567	dmu_tx_t	*tx;
568	int		error;
569	uid_t		uid;
570	gid_t		gid;
571	zfs_acl_ids_t   acl_ids;
572	boolean_t	fuid_dirtied;
573	boolean_t	have_acl = B_FALSE;
574	boolean_t	waited = B_FALSE;
575	boolean_t	skip_acl = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
576
577	/*
578	 * If we have an ephemeral id, ACL, or XVATTR then
579	 * make sure file system is at proper version
580	 */
581
582	gid = crgetgid(cr);
583	uid = crgetuid(cr);
584
585	if (zfsvfs->z_use_fuids == B_FALSE &&
586	    (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
587		return (SET_ERROR(EINVAL));
588
589	if (name == NULL)
590		return (SET_ERROR(EINVAL));
591
592	if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
593		return (error);
594	os = zfsvfs->z_os;
595	zilog = zfsvfs->z_log;
596
597	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
598	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
599		zfs_exit(zfsvfs, FTAG);
600		return (SET_ERROR(EILSEQ));
601	}
602
603	if (vap->va_mask & ATTR_XVATTR) {
604		if ((error = secpolicy_xvattr((xvattr_t *)vap,
605		    crgetuid(cr), cr, vap->va_mode)) != 0) {
606			zfs_exit(zfsvfs, FTAG);
607			return (error);
608		}
609	}
610
611top:
612	*zpp = NULL;
613	if (*name == '\0') {
614		/*
615		 * Null component name refers to the directory itself.
616		 */
617		zhold(dzp);
618		zp = dzp;
619		dl = NULL;
620		error = 0;
621	} else {
622		/* possible igrab(zp) */
623		int zflg = 0;
624
625		if (flag & FIGNORECASE)
626			zflg |= ZCILOOK;
627
628		error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
629		    NULL, NULL);
630		if (error) {
631			if (have_acl)
632				zfs_acl_ids_free(&acl_ids);
633			if (strcmp(name, "..") == 0)
634				error = SET_ERROR(EISDIR);
635			zfs_exit(zfsvfs, FTAG);
636			return (error);
637		}
638	}
639
640	if (zp == NULL) {
641		uint64_t txtype;
642		uint64_t projid = ZFS_DEFAULT_PROJID;
643
644		/*
645		 * Create a new file object and update the directory
646		 * to reference it.
647		 */
648		if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, skip_acl, cr,
649		    mnt_ns))) {
650			if (have_acl)
651				zfs_acl_ids_free(&acl_ids);
652			goto out;
653		}
654
655		/*
656		 * We only support the creation of regular files in
657		 * extended attribute directories.
658		 */
659
660		if ((dzp->z_pflags & ZFS_XATTR) && !S_ISREG(vap->va_mode)) {
661			if (have_acl)
662				zfs_acl_ids_free(&acl_ids);
663			error = SET_ERROR(EINVAL);
664			goto out;
665		}
666
667		if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
668		    cr, vsecp, &acl_ids, mnt_ns)) != 0)
669			goto out;
670		have_acl = B_TRUE;
671
672		if (S_ISREG(vap->va_mode) || S_ISDIR(vap->va_mode))
673			projid = zfs_inherit_projid(dzp);
674		if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, projid)) {
675			zfs_acl_ids_free(&acl_ids);
676			error = SET_ERROR(EDQUOT);
677			goto out;
678		}
679
680		tx = dmu_tx_create(os);
681
682		dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
683		    ZFS_SA_BASE_ATTR_SIZE);
684
685		fuid_dirtied = zfsvfs->z_fuid_dirty;
686		if (fuid_dirtied)
687			zfs_fuid_txhold(zfsvfs, tx);
688		dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
689		dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
690		if (!zfsvfs->z_use_sa &&
691		    acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
692			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
693			    0, acl_ids.z_aclp->z_acl_bytes);
694		}
695
696		error = dmu_tx_assign(tx,
697		    (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
698		if (error) {
699			zfs_dirent_unlock(dl);
700			if (error == ERESTART) {
701				waited = B_TRUE;
702				dmu_tx_wait(tx);
703				dmu_tx_abort(tx);
704				goto top;
705			}
706			zfs_acl_ids_free(&acl_ids);
707			dmu_tx_abort(tx);
708			zfs_exit(zfsvfs, FTAG);
709			return (error);
710		}
711		zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
712
713		error = zfs_link_create(dl, zp, tx, ZNEW);
714		if (error != 0) {
715			/*
716			 * Since, we failed to add the directory entry for it,
717			 * delete the newly created dnode.
718			 */
719			zfs_znode_delete(zp, tx);
720			remove_inode_hash(ZTOI(zp));
721			zfs_acl_ids_free(&acl_ids);
722			dmu_tx_commit(tx);
723			goto out;
724		}
725
726		if (fuid_dirtied)
727			zfs_fuid_sync(zfsvfs, tx);
728
729		txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
730		if (flag & FIGNORECASE)
731			txtype |= TX_CI;
732		zfs_log_create(zilog, tx, txtype, dzp, zp, name,
733		    vsecp, acl_ids.z_fuidp, vap);
734		zfs_acl_ids_free(&acl_ids);
735		dmu_tx_commit(tx);
736	} else {
737		int aflags = (flag & O_APPEND) ? V_APPEND : 0;
738
739		if (have_acl)
740			zfs_acl_ids_free(&acl_ids);
741
742		/*
743		 * A directory entry already exists for this name.
744		 */
745		/*
746		 * Can't truncate an existing file if in exclusive mode.
747		 */
748		if (excl) {
749			error = SET_ERROR(EEXIST);
750			goto out;
751		}
752		/*
753		 * Can't open a directory for writing.
754		 */
755		if (S_ISDIR(ZTOI(zp)->i_mode)) {
756			error = SET_ERROR(EISDIR);
757			goto out;
758		}
759		/*
760		 * Verify requested access to file.
761		 */
762		if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr,
763		    mnt_ns))) {
764			goto out;
765		}
766
767		mutex_enter(&dzp->z_lock);
768		dzp->z_seq++;
769		mutex_exit(&dzp->z_lock);
770
771		/*
772		 * Truncate regular files if requested.
773		 */
774		if (S_ISREG(ZTOI(zp)->i_mode) &&
775		    (vap->va_mask & ATTR_SIZE) && (vap->va_size == 0)) {
776			/* we can't hold any locks when calling zfs_freesp() */
777			if (dl) {
778				zfs_dirent_unlock(dl);
779				dl = NULL;
780			}
781			error = zfs_freesp(zp, 0, 0, mode, TRUE);
782		}
783	}
784out:
785
786	if (dl)
787		zfs_dirent_unlock(dl);
788
789	if (error) {
790		if (zp)
791			zrele(zp);
792	} else {
793		zfs_znode_update_vfs(dzp);
794		zfs_znode_update_vfs(zp);
795		*zpp = zp;
796	}
797
798	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
799		zil_commit(zilog, 0);
800
801	zfs_exit(zfsvfs, FTAG);
802	return (error);
803}
804
805int
806zfs_tmpfile(struct inode *dip, vattr_t *vap, int excl,
807    int mode, struct inode **ipp, cred_t *cr, int flag, vsecattr_t *vsecp,
808    zidmap_t *mnt_ns)
809{
810	(void) excl, (void) mode, (void) flag;
811	znode_t		*zp = NULL, *dzp = ITOZ(dip);
812	zfsvfs_t	*zfsvfs = ITOZSB(dip);
813	objset_t	*os;
814	dmu_tx_t	*tx;
815	int		error;
816	uid_t		uid;
817	gid_t		gid;
818	zfs_acl_ids_t   acl_ids;
819	uint64_t	projid = ZFS_DEFAULT_PROJID;
820	boolean_t	fuid_dirtied;
821	boolean_t	have_acl = B_FALSE;
822	boolean_t	waited = B_FALSE;
823
824	/*
825	 * If we have an ephemeral id, ACL, or XVATTR then
826	 * make sure file system is at proper version
827	 */
828
829	gid = crgetgid(cr);
830	uid = crgetuid(cr);
831
832	if (zfsvfs->z_use_fuids == B_FALSE &&
833	    (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
834		return (SET_ERROR(EINVAL));
835
836	if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
837		return (error);
838	os = zfsvfs->z_os;
839
840	if (vap->va_mask & ATTR_XVATTR) {
841		if ((error = secpolicy_xvattr((xvattr_t *)vap,
842		    crgetuid(cr), cr, vap->va_mode)) != 0) {
843			zfs_exit(zfsvfs, FTAG);
844			return (error);
845		}
846	}
847
848top:
849	*ipp = NULL;
850
851	/*
852	 * Create a new file object and update the directory
853	 * to reference it.
854	 */
855	if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr, mnt_ns))) {
856		if (have_acl)
857			zfs_acl_ids_free(&acl_ids);
858		goto out;
859	}
860
861	if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
862	    cr, vsecp, &acl_ids, mnt_ns)) != 0)
863		goto out;
864	have_acl = B_TRUE;
865
866	if (S_ISREG(vap->va_mode) || S_ISDIR(vap->va_mode))
867		projid = zfs_inherit_projid(dzp);
868	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, projid)) {
869		zfs_acl_ids_free(&acl_ids);
870		error = SET_ERROR(EDQUOT);
871		goto out;
872	}
873
874	tx = dmu_tx_create(os);
875
876	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
877	    ZFS_SA_BASE_ATTR_SIZE);
878	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
879
880	fuid_dirtied = zfsvfs->z_fuid_dirty;
881	if (fuid_dirtied)
882		zfs_fuid_txhold(zfsvfs, tx);
883	if (!zfsvfs->z_use_sa &&
884	    acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
885		dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
886		    0, acl_ids.z_aclp->z_acl_bytes);
887	}
888	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
889	if (error) {
890		if (error == ERESTART) {
891			waited = B_TRUE;
892			dmu_tx_wait(tx);
893			dmu_tx_abort(tx);
894			goto top;
895		}
896		zfs_acl_ids_free(&acl_ids);
897		dmu_tx_abort(tx);
898		zfs_exit(zfsvfs, FTAG);
899		return (error);
900	}
901	zfs_mknode(dzp, vap, tx, cr, IS_TMPFILE, &zp, &acl_ids);
902
903	if (fuid_dirtied)
904		zfs_fuid_sync(zfsvfs, tx);
905
906	/* Add to unlinked set */
907	zp->z_unlinked = B_TRUE;
908	zfs_unlinked_add(zp, tx);
909	zfs_acl_ids_free(&acl_ids);
910	dmu_tx_commit(tx);
911out:
912
913	if (error) {
914		if (zp)
915			zrele(zp);
916	} else {
917		zfs_znode_update_vfs(dzp);
918		zfs_znode_update_vfs(zp);
919		*ipp = ZTOI(zp);
920	}
921
922	zfs_exit(zfsvfs, FTAG);
923	return (error);
924}
925
926/*
927 * Remove an entry from a directory.
928 *
929 *	IN:	dzp	- znode of directory to remove entry from.
930 *		name	- name of entry to remove.
931 *		cr	- credentials of caller.
932 *		flags	- case flags.
933 *
934 *	RETURN:	0 if success
935 *		error code if failure
936 *
937 * Timestamps:
938 *	dzp - ctime|mtime
939 *	 ip - ctime (if nlink > 0)
940 */
941
942static uint64_t null_xattr = 0;
943
944int
945zfs_remove(znode_t *dzp, char *name, cred_t *cr, int flags)
946{
947	znode_t		*zp;
948	znode_t		*xzp;
949	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
950	zilog_t		*zilog;
951	uint64_t	acl_obj, xattr_obj;
952	uint64_t	xattr_obj_unlinked = 0;
953	uint64_t	obj = 0;
954	uint64_t	links;
955	zfs_dirlock_t	*dl;
956	dmu_tx_t	*tx;
957	boolean_t	may_delete_now, delete_now = FALSE;
958	boolean_t	unlinked, toobig = FALSE;
959	uint64_t	txtype;
960	pathname_t	*realnmp = NULL;
961	pathname_t	realnm;
962	int		error;
963	int		zflg = ZEXISTS;
964	boolean_t	waited = B_FALSE;
965
966	if (name == NULL)
967		return (SET_ERROR(EINVAL));
968
969	if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
970		return (error);
971	zilog = zfsvfs->z_log;
972
973	if (flags & FIGNORECASE) {
974		zflg |= ZCILOOK;
975		pn_alloc(&realnm);
976		realnmp = &realnm;
977	}
978
979top:
980	xattr_obj = 0;
981	xzp = NULL;
982	/*
983	 * Attempt to lock directory; fail if entry doesn't exist.
984	 */
985	if ((error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
986	    NULL, realnmp))) {
987		if (realnmp)
988			pn_free(realnmp);
989		zfs_exit(zfsvfs, FTAG);
990		return (error);
991	}
992
993	if ((error = zfs_zaccess_delete(dzp, zp, cr, zfs_init_idmap))) {
994		goto out;
995	}
996
997	/*
998	 * Need to use rmdir for removing directories.
999	 */
1000	if (S_ISDIR(ZTOI(zp)->i_mode)) {
1001		error = SET_ERROR(EPERM);
1002		goto out;
1003	}
1004
1005	mutex_enter(&zp->z_lock);
1006	may_delete_now = atomic_read(&ZTOI(zp)->i_count) == 1 &&
1007	    !zn_has_cached_data(zp, 0, LLONG_MAX);
1008	mutex_exit(&zp->z_lock);
1009
1010	/*
1011	 * We may delete the znode now, or we may put it in the unlinked set;
1012	 * it depends on whether we're the last link, and on whether there are
1013	 * other holds on the inode.  So we dmu_tx_hold() the right things to
1014	 * allow for either case.
1015	 */
1016	obj = zp->z_id;
1017	tx = dmu_tx_create(zfsvfs->z_os);
1018	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1019	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1020	zfs_sa_upgrade_txholds(tx, zp);
1021	zfs_sa_upgrade_txholds(tx, dzp);
1022	if (may_delete_now) {
1023		toobig = zp->z_size > zp->z_blksz * zfs_delete_blocks;
1024		/* if the file is too big, only hold_free a token amount */
1025		dmu_tx_hold_free(tx, zp->z_id, 0,
1026		    (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1027	}
1028
1029	/* are there any extended attributes? */
1030	error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1031	    &xattr_obj, sizeof (xattr_obj));
1032	if (error == 0 && xattr_obj) {
1033		error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1034		ASSERT0(error);
1035		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1036		dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1037	}
1038
1039	mutex_enter(&zp->z_lock);
1040	if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1041		dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1042	mutex_exit(&zp->z_lock);
1043
1044	/* charge as an update -- would be nice not to charge at all */
1045	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1046
1047	/*
1048	 * Mark this transaction as typically resulting in a net free of space
1049	 */
1050	dmu_tx_mark_netfree(tx);
1051
1052	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
1053	if (error) {
1054		zfs_dirent_unlock(dl);
1055		if (error == ERESTART) {
1056			waited = B_TRUE;
1057			dmu_tx_wait(tx);
1058			dmu_tx_abort(tx);
1059			zrele(zp);
1060			if (xzp)
1061				zrele(xzp);
1062			goto top;
1063		}
1064		if (realnmp)
1065			pn_free(realnmp);
1066		dmu_tx_abort(tx);
1067		zrele(zp);
1068		if (xzp)
1069			zrele(xzp);
1070		zfs_exit(zfsvfs, FTAG);
1071		return (error);
1072	}
1073
1074	/*
1075	 * Remove the directory entry.
1076	 */
1077	error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1078
1079	if (error) {
1080		dmu_tx_commit(tx);
1081		goto out;
1082	}
1083
1084	if (unlinked) {
1085		/*
1086		 * Hold z_lock so that we can make sure that the ACL obj
1087		 * hasn't changed.  Could have been deleted due to
1088		 * zfs_sa_upgrade().
1089		 */
1090		mutex_enter(&zp->z_lock);
1091		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1092		    &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1093		delete_now = may_delete_now && !toobig &&
1094		    atomic_read(&ZTOI(zp)->i_count) == 1 &&
1095		    !zn_has_cached_data(zp, 0, LLONG_MAX) &&
1096		    xattr_obj == xattr_obj_unlinked &&
1097		    zfs_external_acl(zp) == acl_obj;
1098		VERIFY_IMPLY(xattr_obj_unlinked, xzp);
1099	}
1100
1101	if (delete_now) {
1102		if (xattr_obj_unlinked) {
1103			ASSERT3U(ZTOI(xzp)->i_nlink, ==, 2);
1104			mutex_enter(&xzp->z_lock);
1105			xzp->z_unlinked = B_TRUE;
1106			clear_nlink(ZTOI(xzp));
1107			links = 0;
1108			error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
1109			    &links, sizeof (links), tx);
1110			ASSERT3U(error,  ==,  0);
1111			mutex_exit(&xzp->z_lock);
1112			zfs_unlinked_add(xzp, tx);
1113
1114			if (zp->z_is_sa)
1115				error = sa_remove(zp->z_sa_hdl,
1116				    SA_ZPL_XATTR(zfsvfs), tx);
1117			else
1118				error = sa_update(zp->z_sa_hdl,
1119				    SA_ZPL_XATTR(zfsvfs), &null_xattr,
1120				    sizeof (uint64_t), tx);
1121			ASSERT0(error);
1122		}
1123		/*
1124		 * Add to the unlinked set because a new reference could be
1125		 * taken concurrently resulting in a deferred destruction.
1126		 */
1127		zfs_unlinked_add(zp, tx);
1128		mutex_exit(&zp->z_lock);
1129	} else if (unlinked) {
1130		mutex_exit(&zp->z_lock);
1131		zfs_unlinked_add(zp, tx);
1132	}
1133
1134	txtype = TX_REMOVE;
1135	if (flags & FIGNORECASE)
1136		txtype |= TX_CI;
1137	zfs_log_remove(zilog, tx, txtype, dzp, name, obj, unlinked);
1138
1139	dmu_tx_commit(tx);
1140out:
1141	if (realnmp)
1142		pn_free(realnmp);
1143
1144	zfs_dirent_unlock(dl);
1145	zfs_znode_update_vfs(dzp);
1146	zfs_znode_update_vfs(zp);
1147
1148	if (delete_now)
1149		zrele(zp);
1150	else
1151		zfs_zrele_async(zp);
1152
1153	if (xzp) {
1154		zfs_znode_update_vfs(xzp);
1155		zfs_zrele_async(xzp);
1156	}
1157
1158	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1159		zil_commit(zilog, 0);
1160
1161	zfs_exit(zfsvfs, FTAG);
1162	return (error);
1163}
1164
1165/*
1166 * Create a new directory and insert it into dzp using the name
1167 * provided.  Return a pointer to the inserted directory.
1168 *
1169 *	IN:	dzp	- znode of directory to add subdir to.
1170 *		dirname	- name of new directory.
1171 *		vap	- attributes of new directory.
1172 *		cr	- credentials of caller.
1173 *		flags	- case flags.
1174 *		vsecp	- ACL to be set
1175 *		mnt_ns	- user namespace of the mount
1176 *
1177 *	OUT:	zpp	- znode of created directory.
1178 *
1179 *	RETURN:	0 if success
1180 *		error code if failure
1181 *
1182 * Timestamps:
1183 *	dzp - ctime|mtime updated
1184 *	zpp - ctime|mtime|atime updated
1185 */
1186int
1187zfs_mkdir(znode_t *dzp, char *dirname, vattr_t *vap, znode_t **zpp,
1188    cred_t *cr, int flags, vsecattr_t *vsecp, zidmap_t *mnt_ns)
1189{
1190	znode_t		*zp;
1191	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
1192	zilog_t		*zilog;
1193	zfs_dirlock_t	*dl;
1194	uint64_t	txtype;
1195	dmu_tx_t	*tx;
1196	int		error;
1197	int		zf = ZNEW;
1198	uid_t		uid;
1199	gid_t		gid = crgetgid(cr);
1200	zfs_acl_ids_t   acl_ids;
1201	boolean_t	fuid_dirtied;
1202	boolean_t	waited = B_FALSE;
1203
1204	ASSERT(S_ISDIR(vap->va_mode));
1205
1206	/*
1207	 * If we have an ephemeral id, ACL, or XVATTR then
1208	 * make sure file system is at proper version
1209	 */
1210
1211	uid = crgetuid(cr);
1212	if (zfsvfs->z_use_fuids == B_FALSE &&
1213	    (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1214		return (SET_ERROR(EINVAL));
1215
1216	if (dirname == NULL)
1217		return (SET_ERROR(EINVAL));
1218
1219	if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
1220		return (error);
1221	zilog = zfsvfs->z_log;
1222
1223	if (dzp->z_pflags & ZFS_XATTR) {
1224		zfs_exit(zfsvfs, FTAG);
1225		return (SET_ERROR(EINVAL));
1226	}
1227
1228	if (zfsvfs->z_utf8 && u8_validate(dirname,
1229	    strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1230		zfs_exit(zfsvfs, FTAG);
1231		return (SET_ERROR(EILSEQ));
1232	}
1233	if (flags & FIGNORECASE)
1234		zf |= ZCILOOK;
1235
1236	if (vap->va_mask & ATTR_XVATTR) {
1237		if ((error = secpolicy_xvattr((xvattr_t *)vap,
1238		    crgetuid(cr), cr, vap->va_mode)) != 0) {
1239			zfs_exit(zfsvfs, FTAG);
1240			return (error);
1241		}
1242	}
1243
1244	if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
1245	    vsecp, &acl_ids, mnt_ns)) != 0) {
1246		zfs_exit(zfsvfs, FTAG);
1247		return (error);
1248	}
1249	/*
1250	 * First make sure the new directory doesn't exist.
1251	 *
1252	 * Existence is checked first to make sure we don't return
1253	 * EACCES instead of EEXIST which can cause some applications
1254	 * to fail.
1255	 */
1256top:
1257	*zpp = NULL;
1258
1259	if ((error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1260	    NULL, NULL))) {
1261		zfs_acl_ids_free(&acl_ids);
1262		zfs_exit(zfsvfs, FTAG);
1263		return (error);
1264	}
1265
1266	if ((error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr,
1267	    mnt_ns))) {
1268		zfs_acl_ids_free(&acl_ids);
1269		zfs_dirent_unlock(dl);
1270		zfs_exit(zfsvfs, FTAG);
1271		return (error);
1272	}
1273
1274	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, zfs_inherit_projid(dzp))) {
1275		zfs_acl_ids_free(&acl_ids);
1276		zfs_dirent_unlock(dl);
1277		zfs_exit(zfsvfs, FTAG);
1278		return (SET_ERROR(EDQUOT));
1279	}
1280
1281	/*
1282	 * Add a new entry to the directory.
1283	 */
1284	tx = dmu_tx_create(zfsvfs->z_os);
1285	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
1286	dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1287	fuid_dirtied = zfsvfs->z_fuid_dirty;
1288	if (fuid_dirtied)
1289		zfs_fuid_txhold(zfsvfs, tx);
1290	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1291		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1292		    acl_ids.z_aclp->z_acl_bytes);
1293	}
1294
1295	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1296	    ZFS_SA_BASE_ATTR_SIZE);
1297
1298	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
1299	if (error) {
1300		zfs_dirent_unlock(dl);
1301		if (error == ERESTART) {
1302			waited = B_TRUE;
1303			dmu_tx_wait(tx);
1304			dmu_tx_abort(tx);
1305			goto top;
1306		}
1307		zfs_acl_ids_free(&acl_ids);
1308		dmu_tx_abort(tx);
1309		zfs_exit(zfsvfs, FTAG);
1310		return (error);
1311	}
1312
1313	/*
1314	 * Create new node.
1315	 */
1316	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1317
1318	/*
1319	 * Now put new name in parent dir.
1320	 */
1321	error = zfs_link_create(dl, zp, tx, ZNEW);
1322	if (error != 0) {
1323		zfs_znode_delete(zp, tx);
1324		remove_inode_hash(ZTOI(zp));
1325		goto out;
1326	}
1327
1328	if (fuid_dirtied)
1329		zfs_fuid_sync(zfsvfs, tx);
1330
1331	*zpp = zp;
1332
1333	txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
1334	if (flags & FIGNORECASE)
1335		txtype |= TX_CI;
1336	zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
1337	    acl_ids.z_fuidp, vap);
1338
1339out:
1340	zfs_acl_ids_free(&acl_ids);
1341
1342	dmu_tx_commit(tx);
1343
1344	zfs_dirent_unlock(dl);
1345
1346	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1347		zil_commit(zilog, 0);
1348
1349	if (error != 0) {
1350		zrele(zp);
1351	} else {
1352		zfs_znode_update_vfs(dzp);
1353		zfs_znode_update_vfs(zp);
1354	}
1355	zfs_exit(zfsvfs, FTAG);
1356	return (error);
1357}
1358
1359/*
1360 * Remove a directory subdir entry.  If the current working
1361 * directory is the same as the subdir to be removed, the
1362 * remove will fail.
1363 *
1364 *	IN:	dzp	- znode of directory to remove from.
1365 *		name	- name of directory to be removed.
1366 *		cwd	- inode of current working directory.
1367 *		cr	- credentials of caller.
1368 *		flags	- case flags
1369 *
1370 *	RETURN:	0 on success, error code on failure.
1371 *
1372 * Timestamps:
1373 *	dzp - ctime|mtime updated
1374 */
1375int
1376zfs_rmdir(znode_t *dzp, char *name, znode_t *cwd, cred_t *cr,
1377    int flags)
1378{
1379	znode_t		*zp;
1380	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
1381	zilog_t		*zilog;
1382	zfs_dirlock_t	*dl;
1383	dmu_tx_t	*tx;
1384	int		error;
1385	int		zflg = ZEXISTS;
1386	boolean_t	waited = B_FALSE;
1387
1388	if (name == NULL)
1389		return (SET_ERROR(EINVAL));
1390
1391	if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
1392		return (error);
1393	zilog = zfsvfs->z_log;
1394
1395	if (flags & FIGNORECASE)
1396		zflg |= ZCILOOK;
1397top:
1398	zp = NULL;
1399
1400	/*
1401	 * Attempt to lock directory; fail if entry doesn't exist.
1402	 */
1403	if ((error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1404	    NULL, NULL))) {
1405		zfs_exit(zfsvfs, FTAG);
1406		return (error);
1407	}
1408
1409	if ((error = zfs_zaccess_delete(dzp, zp, cr, zfs_init_idmap))) {
1410		goto out;
1411	}
1412
1413	if (!S_ISDIR(ZTOI(zp)->i_mode)) {
1414		error = SET_ERROR(ENOTDIR);
1415		goto out;
1416	}
1417
1418	if (zp == cwd) {
1419		error = SET_ERROR(EINVAL);
1420		goto out;
1421	}
1422
1423	/*
1424	 * Grab a lock on the directory to make sure that no one is
1425	 * trying to add (or lookup) entries while we are removing it.
1426	 */
1427	rw_enter(&zp->z_name_lock, RW_WRITER);
1428
1429	/*
1430	 * Grab a lock on the parent pointer to make sure we play well
1431	 * with the treewalk and directory rename code.
1432	 */
1433	rw_enter(&zp->z_parent_lock, RW_WRITER);
1434
1435	tx = dmu_tx_create(zfsvfs->z_os);
1436	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1437	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1438	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1439	zfs_sa_upgrade_txholds(tx, zp);
1440	zfs_sa_upgrade_txholds(tx, dzp);
1441	dmu_tx_mark_netfree(tx);
1442	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
1443	if (error) {
1444		rw_exit(&zp->z_parent_lock);
1445		rw_exit(&zp->z_name_lock);
1446		zfs_dirent_unlock(dl);
1447		if (error == ERESTART) {
1448			waited = B_TRUE;
1449			dmu_tx_wait(tx);
1450			dmu_tx_abort(tx);
1451			zrele(zp);
1452			goto top;
1453		}
1454		dmu_tx_abort(tx);
1455		zrele(zp);
1456		zfs_exit(zfsvfs, FTAG);
1457		return (error);
1458	}
1459
1460	error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
1461
1462	if (error == 0) {
1463		uint64_t txtype = TX_RMDIR;
1464		if (flags & FIGNORECASE)
1465			txtype |= TX_CI;
1466		zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT,
1467		    B_FALSE);
1468	}
1469
1470	dmu_tx_commit(tx);
1471
1472	rw_exit(&zp->z_parent_lock);
1473	rw_exit(&zp->z_name_lock);
1474out:
1475	zfs_dirent_unlock(dl);
1476
1477	zfs_znode_update_vfs(dzp);
1478	zfs_znode_update_vfs(zp);
1479	zrele(zp);
1480
1481	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1482		zil_commit(zilog, 0);
1483
1484	zfs_exit(zfsvfs, FTAG);
1485	return (error);
1486}
1487
1488/*
1489 * Read directory entries from the given directory cursor position and emit
1490 * name and position for each entry.
1491 *
1492 *	IN:	ip	- inode of directory to read.
1493 *		ctx	- directory entry context.
1494 *		cr	- credentials of caller.
1495 *
1496 *	RETURN:	0 if success
1497 *		error code if failure
1498 *
1499 * Timestamps:
1500 *	ip - atime updated
1501 *
1502 * Note that the low 4 bits of the cookie returned by zap is always zero.
1503 * This allows us to use the low range for "special" directory entries:
1504 * We use 0 for '.', and 1 for '..'.  If this is the root of the filesystem,
1505 * we use the offset 2 for the '.zfs' directory.
1506 */
1507int
1508zfs_readdir(struct inode *ip, zpl_dir_context_t *ctx, cred_t *cr)
1509{
1510	(void) cr;
1511	znode_t		*zp = ITOZ(ip);
1512	zfsvfs_t	*zfsvfs = ITOZSB(ip);
1513	objset_t	*os;
1514	zap_cursor_t	zc;
1515	zap_attribute_t	zap;
1516	int		error;
1517	uint8_t		prefetch;
1518	uint8_t		type;
1519	int		done = 0;
1520	uint64_t	parent;
1521	uint64_t	offset; /* must be unsigned; checks for < 1 */
1522
1523	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
1524		return (error);
1525
1526	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
1527	    &parent, sizeof (parent))) != 0)
1528		goto out;
1529
1530	/*
1531	 * Quit if directory has been removed (posix)
1532	 */
1533	if (zp->z_unlinked)
1534		goto out;
1535
1536	error = 0;
1537	os = zfsvfs->z_os;
1538	offset = ctx->pos;
1539	prefetch = zp->z_zn_prefetch;
1540
1541	/*
1542	 * Initialize the iterator cursor.
1543	 */
1544	if (offset <= 3) {
1545		/*
1546		 * Start iteration from the beginning of the directory.
1547		 */
1548		zap_cursor_init(&zc, os, zp->z_id);
1549	} else {
1550		/*
1551		 * The offset is a serialized cursor.
1552		 */
1553		zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
1554	}
1555
1556	/*
1557	 * Transform to file-system independent format
1558	 */
1559	while (!done) {
1560		uint64_t objnum;
1561		/*
1562		 * Special case `.', `..', and `.zfs'.
1563		 */
1564		if (offset == 0) {
1565			(void) strcpy(zap.za_name, ".");
1566			zap.za_normalization_conflict = 0;
1567			objnum = zp->z_id;
1568			type = DT_DIR;
1569		} else if (offset == 1) {
1570			(void) strcpy(zap.za_name, "..");
1571			zap.za_normalization_conflict = 0;
1572			objnum = parent;
1573			type = DT_DIR;
1574		} else if (offset == 2 && zfs_show_ctldir(zp)) {
1575			(void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
1576			zap.za_normalization_conflict = 0;
1577			objnum = ZFSCTL_INO_ROOT;
1578			type = DT_DIR;
1579		} else {
1580			/*
1581			 * Grab next entry.
1582			 */
1583			if ((error = zap_cursor_retrieve(&zc, &zap))) {
1584				if (error == ENOENT)
1585					break;
1586				else
1587					goto update;
1588			}
1589
1590			/*
1591			 * Allow multiple entries provided the first entry is
1592			 * the object id.  Non-zpl consumers may safely make
1593			 * use of the additional space.
1594			 *
1595			 * XXX: This should be a feature flag for compatibility
1596			 */
1597			if (zap.za_integer_length != 8 ||
1598			    zap.za_num_integers == 0) {
1599				cmn_err(CE_WARN, "zap_readdir: bad directory "
1600				    "entry, obj = %lld, offset = %lld, "
1601				    "length = %d, num = %lld\n",
1602				    (u_longlong_t)zp->z_id,
1603				    (u_longlong_t)offset,
1604				    zap.za_integer_length,
1605				    (u_longlong_t)zap.za_num_integers);
1606				error = SET_ERROR(ENXIO);
1607				goto update;
1608			}
1609
1610			objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
1611			type = ZFS_DIRENT_TYPE(zap.za_first_integer);
1612		}
1613
1614		done = !zpl_dir_emit(ctx, zap.za_name, strlen(zap.za_name),
1615		    objnum, type);
1616		if (done)
1617			break;
1618
1619		if (prefetch)
1620			dmu_prefetch_dnode(os, objnum, ZIO_PRIORITY_SYNC_READ);
1621
1622		/*
1623		 * Move to the next entry, fill in the previous offset.
1624		 */
1625		if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
1626			zap_cursor_advance(&zc);
1627			offset = zap_cursor_serialize(&zc);
1628		} else {
1629			offset += 1;
1630		}
1631		ctx->pos = offset;
1632	}
1633	zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
1634
1635update:
1636	zap_cursor_fini(&zc);
1637	if (error == ENOENT)
1638		error = 0;
1639out:
1640	zfs_exit(zfsvfs, FTAG);
1641
1642	return (error);
1643}
1644
1645/*
1646 * Get the basic file attributes and place them in the provided kstat
1647 * structure.  The inode is assumed to be the authoritative source
1648 * for most of the attributes.  However, the znode currently has the
1649 * authoritative atime, blksize, and block count.
1650 *
1651 *	IN:	ip	- inode of file.
1652 *
1653 *	OUT:	sp	- kstat values.
1654 *
1655 *	RETURN:	0 (always succeeds)
1656 */
1657int
1658#ifdef HAVE_GENERIC_FILLATTR_IDMAP_REQMASK
1659zfs_getattr_fast(zidmap_t *user_ns, u32 request_mask, struct inode *ip,
1660    struct kstat *sp)
1661#else
1662zfs_getattr_fast(zidmap_t *user_ns, struct inode *ip, struct kstat *sp)
1663#endif
1664{
1665	znode_t *zp = ITOZ(ip);
1666	zfsvfs_t *zfsvfs = ITOZSB(ip);
1667	uint32_t blksize;
1668	u_longlong_t nblocks;
1669	int error;
1670
1671	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
1672		return (error);
1673
1674	mutex_enter(&zp->z_lock);
1675
1676#ifdef HAVE_GENERIC_FILLATTR_IDMAP_REQMASK
1677	zpl_generic_fillattr(user_ns, request_mask, ip, sp);
1678#else
1679	zpl_generic_fillattr(user_ns, ip, sp);
1680#endif
1681	/*
1682	 * +1 link count for root inode with visible '.zfs' directory.
1683	 */
1684	if ((zp->z_id == zfsvfs->z_root) && zfs_show_ctldir(zp))
1685		if (sp->nlink < ZFS_LINK_MAX)
1686			sp->nlink++;
1687
1688	sa_object_size(zp->z_sa_hdl, &blksize, &nblocks);
1689	sp->blksize = blksize;
1690	sp->blocks = nblocks;
1691
1692	if (unlikely(zp->z_blksz == 0)) {
1693		/*
1694		 * Block size hasn't been set; suggest maximal I/O transfers.
1695		 */
1696		sp->blksize = zfsvfs->z_max_blksz;
1697	}
1698
1699	mutex_exit(&zp->z_lock);
1700
1701	/*
1702	 * Required to prevent NFS client from detecting different inode
1703	 * numbers of snapshot root dentry before and after snapshot mount.
1704	 */
1705	if (zfsvfs->z_issnap) {
1706		if (ip->i_sb->s_root->d_inode == ip)
1707			sp->ino = ZFSCTL_INO_SNAPDIRS -
1708			    dmu_objset_id(zfsvfs->z_os);
1709	}
1710
1711	zfs_exit(zfsvfs, FTAG);
1712
1713	return (0);
1714}
1715
1716/*
1717 * For the operation of changing file's user/group/project, we need to
1718 * handle not only the main object that is assigned to the file directly,
1719 * but also the ones that are used by the file via hidden xattr directory.
1720 *
1721 * Because the xattr directory may contains many EA entries, as to it may
1722 * be impossible to change all of them via the transaction of changing the
1723 * main object's user/group/project attributes. Then we have to change them
1724 * via other multiple independent transactions one by one. It may be not good
1725 * solution, but we have no better idea yet.
1726 */
1727static int
1728zfs_setattr_dir(znode_t *dzp)
1729{
1730	struct inode	*dxip = ZTOI(dzp);
1731	struct inode	*xip = NULL;
1732	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
1733	objset_t	*os = zfsvfs->z_os;
1734	zap_cursor_t	zc;
1735	zap_attribute_t	zap;
1736	zfs_dirlock_t	*dl;
1737	znode_t		*zp = NULL;
1738	dmu_tx_t	*tx = NULL;
1739	uint64_t	uid, gid;
1740	sa_bulk_attr_t	bulk[4];
1741	int		count;
1742	int		err;
1743
1744	zap_cursor_init(&zc, os, dzp->z_id);
1745	while ((err = zap_cursor_retrieve(&zc, &zap)) == 0) {
1746		count = 0;
1747		if (zap.za_integer_length != 8 || zap.za_num_integers != 1) {
1748			err = ENXIO;
1749			break;
1750		}
1751
1752		err = zfs_dirent_lock(&dl, dzp, (char *)zap.za_name, &zp,
1753		    ZEXISTS, NULL, NULL);
1754		if (err == ENOENT)
1755			goto next;
1756		if (err)
1757			break;
1758
1759		xip = ZTOI(zp);
1760		if (KUID_TO_SUID(xip->i_uid) == KUID_TO_SUID(dxip->i_uid) &&
1761		    KGID_TO_SGID(xip->i_gid) == KGID_TO_SGID(dxip->i_gid) &&
1762		    zp->z_projid == dzp->z_projid)
1763			goto next;
1764
1765		tx = dmu_tx_create(os);
1766		if (!(zp->z_pflags & ZFS_PROJID))
1767			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1768		else
1769			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1770
1771		err = dmu_tx_assign(tx, TXG_WAIT);
1772		if (err)
1773			break;
1774
1775		mutex_enter(&dzp->z_lock);
1776
1777		if (KUID_TO_SUID(xip->i_uid) != KUID_TO_SUID(dxip->i_uid)) {
1778			xip->i_uid = dxip->i_uid;
1779			uid = zfs_uid_read(dxip);
1780			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
1781			    &uid, sizeof (uid));
1782		}
1783
1784		if (KGID_TO_SGID(xip->i_gid) != KGID_TO_SGID(dxip->i_gid)) {
1785			xip->i_gid = dxip->i_gid;
1786			gid = zfs_gid_read(dxip);
1787			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL,
1788			    &gid, sizeof (gid));
1789		}
1790
1791		if (zp->z_projid != dzp->z_projid) {
1792			if (!(zp->z_pflags & ZFS_PROJID)) {
1793				zp->z_pflags |= ZFS_PROJID;
1794				SA_ADD_BULK_ATTR(bulk, count,
1795				    SA_ZPL_FLAGS(zfsvfs), NULL, &zp->z_pflags,
1796				    sizeof (zp->z_pflags));
1797			}
1798
1799			zp->z_projid = dzp->z_projid;
1800			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PROJID(zfsvfs),
1801			    NULL, &zp->z_projid, sizeof (zp->z_projid));
1802		}
1803
1804		mutex_exit(&dzp->z_lock);
1805
1806		if (likely(count > 0)) {
1807			err = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
1808			dmu_tx_commit(tx);
1809		} else {
1810			dmu_tx_abort(tx);
1811		}
1812		tx = NULL;
1813		if (err != 0 && err != ENOENT)
1814			break;
1815
1816next:
1817		if (zp) {
1818			zrele(zp);
1819			zp = NULL;
1820			zfs_dirent_unlock(dl);
1821		}
1822		zap_cursor_advance(&zc);
1823	}
1824
1825	if (tx)
1826		dmu_tx_abort(tx);
1827	if (zp) {
1828		zrele(zp);
1829		zfs_dirent_unlock(dl);
1830	}
1831	zap_cursor_fini(&zc);
1832
1833	return (err == ENOENT ? 0 : err);
1834}
1835
1836/*
1837 * Set the file attributes to the values contained in the
1838 * vattr structure.
1839 *
1840 *	IN:	zp	- znode of file to be modified.
1841 *		vap	- new attribute values.
1842 *			  If ATTR_XVATTR set, then optional attrs are being set
1843 *		flags	- ATTR_UTIME set if non-default time values provided.
1844 *			- ATTR_NOACLCHECK (CIFS context only).
1845 *		cr	- credentials of caller.
1846 *		mnt_ns	- user namespace of the mount
1847 *
1848 *	RETURN:	0 if success
1849 *		error code if failure
1850 *
1851 * Timestamps:
1852 *	ip - ctime updated, mtime updated if size changed.
1853 */
1854int
1855zfs_setattr(znode_t *zp, vattr_t *vap, int flags, cred_t *cr, zidmap_t *mnt_ns)
1856{
1857	struct inode	*ip;
1858	zfsvfs_t	*zfsvfs = ZTOZSB(zp);
1859	objset_t	*os;
1860	zilog_t		*zilog;
1861	dmu_tx_t	*tx;
1862	vattr_t		oldva;
1863	xvattr_t	*tmpxvattr;
1864	uint_t		mask = vap->va_mask;
1865	uint_t		saved_mask = 0;
1866	int		trim_mask = 0;
1867	uint64_t	new_mode;
1868	uint64_t	new_kuid = 0, new_kgid = 0, new_uid, new_gid;
1869	uint64_t	xattr_obj;
1870	uint64_t	mtime[2], ctime[2], atime[2];
1871	uint64_t	projid = ZFS_INVALID_PROJID;
1872	znode_t		*attrzp;
1873	int		need_policy = FALSE;
1874	int		err, err2 = 0;
1875	zfs_fuid_info_t *fuidp = NULL;
1876	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
1877	xoptattr_t	*xoap;
1878	zfs_acl_t	*aclp;
1879	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
1880	boolean_t	fuid_dirtied = B_FALSE;
1881	boolean_t	handle_eadir = B_FALSE;
1882	sa_bulk_attr_t	*bulk, *xattr_bulk;
1883	int		count = 0, xattr_count = 0, bulks = 8;
1884
1885	if (mask == 0)
1886		return (0);
1887
1888	if ((err = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
1889		return (err);
1890	ip = ZTOI(zp);
1891	os = zfsvfs->z_os;
1892
1893	/*
1894	 * If this is a xvattr_t, then get a pointer to the structure of
1895	 * optional attributes.  If this is NULL, then we have a vattr_t.
1896	 */
1897	xoap = xva_getxoptattr(xvap);
1898	if (xoap != NULL && (mask & ATTR_XVATTR)) {
1899		if (XVA_ISSET_REQ(xvap, XAT_PROJID)) {
1900			if (!dmu_objset_projectquota_enabled(os) ||
1901			    (!S_ISREG(ip->i_mode) && !S_ISDIR(ip->i_mode))) {
1902				zfs_exit(zfsvfs, FTAG);
1903				return (SET_ERROR(ENOTSUP));
1904			}
1905
1906			projid = xoap->xoa_projid;
1907			if (unlikely(projid == ZFS_INVALID_PROJID)) {
1908				zfs_exit(zfsvfs, FTAG);
1909				return (SET_ERROR(EINVAL));
1910			}
1911
1912			if (projid == zp->z_projid && zp->z_pflags & ZFS_PROJID)
1913				projid = ZFS_INVALID_PROJID;
1914			else
1915				need_policy = TRUE;
1916		}
1917
1918		if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT) &&
1919		    (xoap->xoa_projinherit !=
1920		    ((zp->z_pflags & ZFS_PROJINHERIT) != 0)) &&
1921		    (!dmu_objset_projectquota_enabled(os) ||
1922		    (!S_ISREG(ip->i_mode) && !S_ISDIR(ip->i_mode)))) {
1923			zfs_exit(zfsvfs, FTAG);
1924			return (SET_ERROR(ENOTSUP));
1925		}
1926	}
1927
1928	zilog = zfsvfs->z_log;
1929
1930	/*
1931	 * Make sure that if we have ephemeral uid/gid or xvattr specified
1932	 * that file system is at proper version level
1933	 */
1934
1935	if (zfsvfs->z_use_fuids == B_FALSE &&
1936	    (((mask & ATTR_UID) && IS_EPHEMERAL(vap->va_uid)) ||
1937	    ((mask & ATTR_GID) && IS_EPHEMERAL(vap->va_gid)) ||
1938	    (mask & ATTR_XVATTR))) {
1939		zfs_exit(zfsvfs, FTAG);
1940		return (SET_ERROR(EINVAL));
1941	}
1942
1943	if (mask & ATTR_SIZE && S_ISDIR(ip->i_mode)) {
1944		zfs_exit(zfsvfs, FTAG);
1945		return (SET_ERROR(EISDIR));
1946	}
1947
1948	if (mask & ATTR_SIZE && !S_ISREG(ip->i_mode) && !S_ISFIFO(ip->i_mode)) {
1949		zfs_exit(zfsvfs, FTAG);
1950		return (SET_ERROR(EINVAL));
1951	}
1952
1953	tmpxvattr = kmem_alloc(sizeof (xvattr_t), KM_SLEEP);
1954	xva_init(tmpxvattr);
1955
1956	bulk = kmem_alloc(sizeof (sa_bulk_attr_t) * bulks, KM_SLEEP);
1957	xattr_bulk = kmem_alloc(sizeof (sa_bulk_attr_t) * bulks, KM_SLEEP);
1958
1959	/*
1960	 * Immutable files can only alter immutable bit and atime
1961	 */
1962	if ((zp->z_pflags & ZFS_IMMUTABLE) &&
1963	    ((mask & (ATTR_SIZE|ATTR_UID|ATTR_GID|ATTR_MTIME|ATTR_MODE)) ||
1964	    ((mask & ATTR_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
1965		err = SET_ERROR(EPERM);
1966		goto out3;
1967	}
1968
1969	if ((mask & ATTR_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
1970		err = SET_ERROR(EPERM);
1971		goto out3;
1972	}
1973
1974	/*
1975	 * Verify timestamps doesn't overflow 32 bits.
1976	 * ZFS can handle large timestamps, but 32bit syscalls can't
1977	 * handle times greater than 2039.  This check should be removed
1978	 * once large timestamps are fully supported.
1979	 */
1980	if (mask & (ATTR_ATIME | ATTR_MTIME)) {
1981		if (((mask & ATTR_ATIME) &&
1982		    TIMESPEC_OVERFLOW(&vap->va_atime)) ||
1983		    ((mask & ATTR_MTIME) &&
1984		    TIMESPEC_OVERFLOW(&vap->va_mtime))) {
1985			err = SET_ERROR(EOVERFLOW);
1986			goto out3;
1987		}
1988	}
1989
1990top:
1991	attrzp = NULL;
1992	aclp = NULL;
1993
1994	/* Can this be moved to before the top label? */
1995	if (zfs_is_readonly(zfsvfs)) {
1996		err = SET_ERROR(EROFS);
1997		goto out3;
1998	}
1999
2000	/*
2001	 * First validate permissions
2002	 */
2003
2004	if (mask & ATTR_SIZE) {
2005		err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr,
2006		    mnt_ns);
2007		if (err)
2008			goto out3;
2009
2010		/*
2011		 * XXX - Note, we are not providing any open
2012		 * mode flags here (like FNDELAY), so we may
2013		 * block if there are locks present... this
2014		 * should be addressed in openat().
2015		 */
2016		/* XXX - would it be OK to generate a log record here? */
2017		err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2018		if (err)
2019			goto out3;
2020	}
2021
2022	if (mask & (ATTR_ATIME|ATTR_MTIME) ||
2023	    ((mask & ATTR_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2024	    XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2025	    XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2026	    XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
2027	    XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
2028	    XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2029	    XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
2030		need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2031		    skipaclchk, cr, mnt_ns);
2032	}
2033
2034	if (mask & (ATTR_UID|ATTR_GID)) {
2035		int	idmask = (mask & (ATTR_UID|ATTR_GID));
2036		int	take_owner;
2037		int	take_group;
2038		uid_t	uid;
2039		gid_t	gid;
2040
2041		/*
2042		 * NOTE: even if a new mode is being set,
2043		 * we may clear S_ISUID/S_ISGID bits.
2044		 */
2045
2046		if (!(mask & ATTR_MODE))
2047			vap->va_mode = zp->z_mode;
2048
2049		/*
2050		 * Take ownership or chgrp to group we are a member of
2051		 */
2052
2053		uid = zfs_uid_to_vfsuid(mnt_ns, zfs_i_user_ns(ip),
2054		    vap->va_uid);
2055		gid = zfs_gid_to_vfsgid(mnt_ns, zfs_i_user_ns(ip),
2056		    vap->va_gid);
2057		take_owner = (mask & ATTR_UID) && (uid == crgetuid(cr));
2058		take_group = (mask & ATTR_GID) &&
2059		    zfs_groupmember(zfsvfs, gid, cr);
2060
2061		/*
2062		 * If both ATTR_UID and ATTR_GID are set then take_owner and
2063		 * take_group must both be set in order to allow taking
2064		 * ownership.
2065		 *
2066		 * Otherwise, send the check through secpolicy_vnode_setattr()
2067		 *
2068		 */
2069
2070		if (((idmask == (ATTR_UID|ATTR_GID)) &&
2071		    take_owner && take_group) ||
2072		    ((idmask == ATTR_UID) && take_owner) ||
2073		    ((idmask == ATTR_GID) && take_group)) {
2074			if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2075			    skipaclchk, cr, mnt_ns) == 0) {
2076				/*
2077				 * Remove setuid/setgid for non-privileged users
2078				 */
2079				(void) secpolicy_setid_clear(vap, cr);
2080				trim_mask = (mask & (ATTR_UID|ATTR_GID));
2081			} else {
2082				need_policy =  TRUE;
2083			}
2084		} else {
2085			need_policy =  TRUE;
2086		}
2087	}
2088
2089	mutex_enter(&zp->z_lock);
2090	oldva.va_mode = zp->z_mode;
2091	zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
2092	if (mask & ATTR_XVATTR) {
2093		/*
2094		 * Update xvattr mask to include only those attributes
2095		 * that are actually changing.
2096		 *
2097		 * the bits will be restored prior to actually setting
2098		 * the attributes so the caller thinks they were set.
2099		 */
2100		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2101			if (xoap->xoa_appendonly !=
2102			    ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
2103				need_policy = TRUE;
2104			} else {
2105				XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2106				XVA_SET_REQ(tmpxvattr, XAT_APPENDONLY);
2107			}
2108		}
2109
2110		if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT)) {
2111			if (xoap->xoa_projinherit !=
2112			    ((zp->z_pflags & ZFS_PROJINHERIT) != 0)) {
2113				need_policy = TRUE;
2114			} else {
2115				XVA_CLR_REQ(xvap, XAT_PROJINHERIT);
2116				XVA_SET_REQ(tmpxvattr, XAT_PROJINHERIT);
2117			}
2118		}
2119
2120		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2121			if (xoap->xoa_nounlink !=
2122			    ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
2123				need_policy = TRUE;
2124			} else {
2125				XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2126				XVA_SET_REQ(tmpxvattr, XAT_NOUNLINK);
2127			}
2128		}
2129
2130		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2131			if (xoap->xoa_immutable !=
2132			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
2133				need_policy = TRUE;
2134			} else {
2135				XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2136				XVA_SET_REQ(tmpxvattr, XAT_IMMUTABLE);
2137			}
2138		}
2139
2140		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2141			if (xoap->xoa_nodump !=
2142			    ((zp->z_pflags & ZFS_NODUMP) != 0)) {
2143				need_policy = TRUE;
2144			} else {
2145				XVA_CLR_REQ(xvap, XAT_NODUMP);
2146				XVA_SET_REQ(tmpxvattr, XAT_NODUMP);
2147			}
2148		}
2149
2150		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2151			if (xoap->xoa_av_modified !=
2152			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
2153				need_policy = TRUE;
2154			} else {
2155				XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2156				XVA_SET_REQ(tmpxvattr, XAT_AV_MODIFIED);
2157			}
2158		}
2159
2160		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2161			if ((!S_ISREG(ip->i_mode) &&
2162			    xoap->xoa_av_quarantined) ||
2163			    xoap->xoa_av_quarantined !=
2164			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
2165				need_policy = TRUE;
2166			} else {
2167				XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
2168				XVA_SET_REQ(tmpxvattr, XAT_AV_QUARANTINED);
2169			}
2170		}
2171
2172		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2173			mutex_exit(&zp->z_lock);
2174			err = SET_ERROR(EPERM);
2175			goto out3;
2176		}
2177
2178		if (need_policy == FALSE &&
2179		    (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
2180		    XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
2181			need_policy = TRUE;
2182		}
2183	}
2184
2185	mutex_exit(&zp->z_lock);
2186
2187	if (mask & ATTR_MODE) {
2188		if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr,
2189		    mnt_ns) == 0) {
2190			err = secpolicy_setid_setsticky_clear(ip, vap,
2191			    &oldva, cr, mnt_ns, zfs_i_user_ns(ip));
2192			if (err)
2193				goto out3;
2194			trim_mask |= ATTR_MODE;
2195		} else {
2196			need_policy = TRUE;
2197		}
2198	}
2199
2200	if (need_policy) {
2201		/*
2202		 * If trim_mask is set then take ownership
2203		 * has been granted or write_acl is present and user
2204		 * has the ability to modify mode.  In that case remove
2205		 * UID|GID and or MODE from mask so that
2206		 * secpolicy_vnode_setattr() doesn't revoke it.
2207		 */
2208
2209		if (trim_mask) {
2210			saved_mask = vap->va_mask;
2211			vap->va_mask &= ~trim_mask;
2212		}
2213		err = secpolicy_vnode_setattr(cr, ip, vap, &oldva, flags,
2214		    zfs_zaccess_unix, zp);
2215		if (err)
2216			goto out3;
2217
2218		if (trim_mask)
2219			vap->va_mask |= saved_mask;
2220	}
2221
2222	/*
2223	 * secpolicy_vnode_setattr, or take ownership may have
2224	 * changed va_mask
2225	 */
2226	mask = vap->va_mask;
2227
2228	if ((mask & (ATTR_UID | ATTR_GID)) || projid != ZFS_INVALID_PROJID) {
2229		handle_eadir = B_TRUE;
2230		err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
2231		    &xattr_obj, sizeof (xattr_obj));
2232
2233		if (err == 0 && xattr_obj) {
2234			err = zfs_zget(ZTOZSB(zp), xattr_obj, &attrzp);
2235			if (err)
2236				goto out2;
2237		}
2238		if (mask & ATTR_UID) {
2239			new_kuid = zfs_fuid_create(zfsvfs,
2240			    (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
2241			if (new_kuid != KUID_TO_SUID(ZTOI(zp)->i_uid) &&
2242			    zfs_id_overquota(zfsvfs, DMU_USERUSED_OBJECT,
2243			    new_kuid)) {
2244				if (attrzp)
2245					zrele(attrzp);
2246				err = SET_ERROR(EDQUOT);
2247				goto out2;
2248			}
2249		}
2250
2251		if (mask & ATTR_GID) {
2252			new_kgid = zfs_fuid_create(zfsvfs,
2253			    (uint64_t)vap->va_gid, cr, ZFS_GROUP, &fuidp);
2254			if (new_kgid != KGID_TO_SGID(ZTOI(zp)->i_gid) &&
2255			    zfs_id_overquota(zfsvfs, DMU_GROUPUSED_OBJECT,
2256			    new_kgid)) {
2257				if (attrzp)
2258					zrele(attrzp);
2259				err = SET_ERROR(EDQUOT);
2260				goto out2;
2261			}
2262		}
2263
2264		if (projid != ZFS_INVALID_PROJID &&
2265		    zfs_id_overquota(zfsvfs, DMU_PROJECTUSED_OBJECT, projid)) {
2266			if (attrzp)
2267				zrele(attrzp);
2268			err = EDQUOT;
2269			goto out2;
2270		}
2271	}
2272	tx = dmu_tx_create(os);
2273
2274	if (mask & ATTR_MODE) {
2275		uint64_t pmode = zp->z_mode;
2276		uint64_t acl_obj;
2277		new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
2278
2279		if (ZTOZSB(zp)->z_acl_mode == ZFS_ACL_RESTRICTED &&
2280		    !(zp->z_pflags & ZFS_ACL_TRIVIAL)) {
2281			err = EPERM;
2282			goto out;
2283		}
2284
2285		if ((err = zfs_acl_chmod_setattr(zp, &aclp, new_mode)))
2286			goto out;
2287
2288		mutex_enter(&zp->z_lock);
2289		if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
2290			/*
2291			 * Are we upgrading ACL from old V0 format
2292			 * to V1 format?
2293			 */
2294			if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
2295			    zfs_znode_acl_version(zp) ==
2296			    ZFS_ACL_VERSION_INITIAL) {
2297				dmu_tx_hold_free(tx, acl_obj, 0,
2298				    DMU_OBJECT_END);
2299				dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2300				    0, aclp->z_acl_bytes);
2301			} else {
2302				dmu_tx_hold_write(tx, acl_obj, 0,
2303				    aclp->z_acl_bytes);
2304			}
2305		} else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
2306			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2307			    0, aclp->z_acl_bytes);
2308		}
2309		mutex_exit(&zp->z_lock);
2310		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
2311	} else {
2312		if (((mask & ATTR_XVATTR) &&
2313		    XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) ||
2314		    (projid != ZFS_INVALID_PROJID &&
2315		    !(zp->z_pflags & ZFS_PROJID)))
2316			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
2317		else
2318			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2319	}
2320
2321	if (attrzp) {
2322		dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
2323	}
2324
2325	fuid_dirtied = zfsvfs->z_fuid_dirty;
2326	if (fuid_dirtied)
2327		zfs_fuid_txhold(zfsvfs, tx);
2328
2329	zfs_sa_upgrade_txholds(tx, zp);
2330
2331	err = dmu_tx_assign(tx, TXG_WAIT);
2332	if (err)
2333		goto out;
2334
2335	count = 0;
2336	/*
2337	 * Set each attribute requested.
2338	 * We group settings according to the locks they need to acquire.
2339	 *
2340	 * Note: you cannot set ctime directly, although it will be
2341	 * updated as a side-effect of calling this function.
2342	 */
2343
2344	if (projid != ZFS_INVALID_PROJID && !(zp->z_pflags & ZFS_PROJID)) {
2345		/*
2346		 * For the existed object that is upgraded from old system,
2347		 * its on-disk layout has no slot for the project ID attribute.
2348		 * But quota accounting logic needs to access related slots by
2349		 * offset directly. So we need to adjust old objects' layout
2350		 * to make the project ID to some unified and fixed offset.
2351		 */
2352		if (attrzp)
2353			err = sa_add_projid(attrzp->z_sa_hdl, tx, projid);
2354		if (err == 0)
2355			err = sa_add_projid(zp->z_sa_hdl, tx, projid);
2356
2357		if (unlikely(err == EEXIST))
2358			err = 0;
2359		else if (err != 0)
2360			goto out;
2361		else
2362			projid = ZFS_INVALID_PROJID;
2363	}
2364
2365	if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2366		mutex_enter(&zp->z_acl_lock);
2367	mutex_enter(&zp->z_lock);
2368
2369	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
2370	    &zp->z_pflags, sizeof (zp->z_pflags));
2371
2372	if (attrzp) {
2373		if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2374			mutex_enter(&attrzp->z_acl_lock);
2375		mutex_enter(&attrzp->z_lock);
2376		SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2377		    SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
2378		    sizeof (attrzp->z_pflags));
2379		if (projid != ZFS_INVALID_PROJID) {
2380			attrzp->z_projid = projid;
2381			SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2382			    SA_ZPL_PROJID(zfsvfs), NULL, &attrzp->z_projid,
2383			    sizeof (attrzp->z_projid));
2384		}
2385	}
2386
2387	if (mask & (ATTR_UID|ATTR_GID)) {
2388
2389		if (mask & ATTR_UID) {
2390			ZTOI(zp)->i_uid = SUID_TO_KUID(new_kuid);
2391			new_uid = zfs_uid_read(ZTOI(zp));
2392			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
2393			    &new_uid, sizeof (new_uid));
2394			if (attrzp) {
2395				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2396				    SA_ZPL_UID(zfsvfs), NULL, &new_uid,
2397				    sizeof (new_uid));
2398				ZTOI(attrzp)->i_uid = SUID_TO_KUID(new_uid);
2399			}
2400		}
2401
2402		if (mask & ATTR_GID) {
2403			ZTOI(zp)->i_gid = SGID_TO_KGID(new_kgid);
2404			new_gid = zfs_gid_read(ZTOI(zp));
2405			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
2406			    NULL, &new_gid, sizeof (new_gid));
2407			if (attrzp) {
2408				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2409				    SA_ZPL_GID(zfsvfs), NULL, &new_gid,
2410				    sizeof (new_gid));
2411				ZTOI(attrzp)->i_gid = SGID_TO_KGID(new_kgid);
2412			}
2413		}
2414		if (!(mask & ATTR_MODE)) {
2415			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
2416			    NULL, &new_mode, sizeof (new_mode));
2417			new_mode = zp->z_mode;
2418		}
2419		err = zfs_acl_chown_setattr(zp);
2420		ASSERT(err == 0);
2421		if (attrzp) {
2422			err = zfs_acl_chown_setattr(attrzp);
2423			ASSERT(err == 0);
2424		}
2425	}
2426
2427	if (mask & ATTR_MODE) {
2428		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
2429		    &new_mode, sizeof (new_mode));
2430		zp->z_mode = ZTOI(zp)->i_mode = new_mode;
2431		ASSERT3P(aclp, !=, NULL);
2432		err = zfs_aclset_common(zp, aclp, cr, tx);
2433		ASSERT0(err);
2434		if (zp->z_acl_cached)
2435			zfs_acl_free(zp->z_acl_cached);
2436		zp->z_acl_cached = aclp;
2437		aclp = NULL;
2438	}
2439
2440	if ((mask & ATTR_ATIME) || zp->z_atime_dirty) {
2441		zp->z_atime_dirty = B_FALSE;
2442		inode_timespec_t tmp_atime = zpl_inode_get_atime(ip);
2443		ZFS_TIME_ENCODE(&tmp_atime, atime);
2444		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
2445		    &atime, sizeof (atime));
2446	}
2447
2448	if (mask & (ATTR_MTIME | ATTR_SIZE)) {
2449		ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
2450		zpl_inode_set_mtime_to_ts(ZTOI(zp),
2451		    zpl_inode_timestamp_truncate(vap->va_mtime, ZTOI(zp)));
2452
2453		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
2454		    mtime, sizeof (mtime));
2455	}
2456
2457	if (mask & (ATTR_CTIME | ATTR_SIZE)) {
2458		ZFS_TIME_ENCODE(&vap->va_ctime, ctime);
2459		zpl_inode_set_ctime_to_ts(ZTOI(zp),
2460		    zpl_inode_timestamp_truncate(vap->va_ctime, ZTOI(zp)));
2461		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
2462		    ctime, sizeof (ctime));
2463	}
2464
2465	if (projid != ZFS_INVALID_PROJID) {
2466		zp->z_projid = projid;
2467		SA_ADD_BULK_ATTR(bulk, count,
2468		    SA_ZPL_PROJID(zfsvfs), NULL, &zp->z_projid,
2469		    sizeof (zp->z_projid));
2470	}
2471
2472	if (attrzp && mask) {
2473		SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2474		    SA_ZPL_CTIME(zfsvfs), NULL, &ctime,
2475		    sizeof (ctime));
2476	}
2477
2478	/*
2479	 * Do this after setting timestamps to prevent timestamp
2480	 * update from toggling bit
2481	 */
2482
2483	if (xoap && (mask & ATTR_XVATTR)) {
2484
2485		/*
2486		 * restore trimmed off masks
2487		 * so that return masks can be set for caller.
2488		 */
2489
2490		if (XVA_ISSET_REQ(tmpxvattr, XAT_APPENDONLY)) {
2491			XVA_SET_REQ(xvap, XAT_APPENDONLY);
2492		}
2493		if (XVA_ISSET_REQ(tmpxvattr, XAT_NOUNLINK)) {
2494			XVA_SET_REQ(xvap, XAT_NOUNLINK);
2495		}
2496		if (XVA_ISSET_REQ(tmpxvattr, XAT_IMMUTABLE)) {
2497			XVA_SET_REQ(xvap, XAT_IMMUTABLE);
2498		}
2499		if (XVA_ISSET_REQ(tmpxvattr, XAT_NODUMP)) {
2500			XVA_SET_REQ(xvap, XAT_NODUMP);
2501		}
2502		if (XVA_ISSET_REQ(tmpxvattr, XAT_AV_MODIFIED)) {
2503			XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
2504		}
2505		if (XVA_ISSET_REQ(tmpxvattr, XAT_AV_QUARANTINED)) {
2506			XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
2507		}
2508		if (XVA_ISSET_REQ(tmpxvattr, XAT_PROJINHERIT)) {
2509			XVA_SET_REQ(xvap, XAT_PROJINHERIT);
2510		}
2511
2512		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
2513			ASSERT(S_ISREG(ip->i_mode));
2514
2515		zfs_xvattr_set(zp, xvap, tx);
2516	}
2517
2518	if (fuid_dirtied)
2519		zfs_fuid_sync(zfsvfs, tx);
2520
2521	if (mask != 0)
2522		zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
2523
2524	mutex_exit(&zp->z_lock);
2525	if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2526		mutex_exit(&zp->z_acl_lock);
2527
2528	if (attrzp) {
2529		if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2530			mutex_exit(&attrzp->z_acl_lock);
2531		mutex_exit(&attrzp->z_lock);
2532	}
2533out:
2534	if (err == 0 && xattr_count > 0) {
2535		err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
2536		    xattr_count, tx);
2537		ASSERT(err2 == 0);
2538	}
2539
2540	if (aclp)
2541		zfs_acl_free(aclp);
2542
2543	if (fuidp) {
2544		zfs_fuid_info_free(fuidp);
2545		fuidp = NULL;
2546	}
2547
2548	if (err) {
2549		dmu_tx_abort(tx);
2550		if (attrzp)
2551			zrele(attrzp);
2552		if (err == ERESTART)
2553			goto top;
2554	} else {
2555		if (count > 0)
2556			err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
2557		dmu_tx_commit(tx);
2558		if (attrzp) {
2559			if (err2 == 0 && handle_eadir)
2560				err = zfs_setattr_dir(attrzp);
2561			zrele(attrzp);
2562		}
2563		zfs_znode_update_vfs(zp);
2564	}
2565
2566out2:
2567	if (os->os_sync == ZFS_SYNC_ALWAYS)
2568		zil_commit(zilog, 0);
2569
2570out3:
2571	kmem_free(xattr_bulk, sizeof (sa_bulk_attr_t) * bulks);
2572	kmem_free(bulk, sizeof (sa_bulk_attr_t) * bulks);
2573	kmem_free(tmpxvattr, sizeof (xvattr_t));
2574	zfs_exit(zfsvfs, FTAG);
2575	return (err);
2576}
2577
2578typedef struct zfs_zlock {
2579	krwlock_t	*zl_rwlock;	/* lock we acquired */
2580	znode_t		*zl_znode;	/* znode we held */
2581	struct zfs_zlock *zl_next;	/* next in list */
2582} zfs_zlock_t;
2583
2584/*
2585 * Drop locks and release vnodes that were held by zfs_rename_lock().
2586 */
2587static void
2588zfs_rename_unlock(zfs_zlock_t **zlpp)
2589{
2590	zfs_zlock_t *zl;
2591
2592	while ((zl = *zlpp) != NULL) {
2593		if (zl->zl_znode != NULL)
2594			zfs_zrele_async(zl->zl_znode);
2595		rw_exit(zl->zl_rwlock);
2596		*zlpp = zl->zl_next;
2597		kmem_free(zl, sizeof (*zl));
2598	}
2599}
2600
2601/*
2602 * Search back through the directory tree, using the ".." entries.
2603 * Lock each directory in the chain to prevent concurrent renames.
2604 * Fail any attempt to move a directory into one of its own descendants.
2605 * XXX - z_parent_lock can overlap with map or grow locks
2606 */
2607static int
2608zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
2609{
2610	zfs_zlock_t	*zl;
2611	znode_t		*zp = tdzp;
2612	uint64_t	rootid = ZTOZSB(zp)->z_root;
2613	uint64_t	oidp = zp->z_id;
2614	krwlock_t	*rwlp = &szp->z_parent_lock;
2615	krw_t		rw = RW_WRITER;
2616
2617	/*
2618	 * First pass write-locks szp and compares to zp->z_id.
2619	 * Later passes read-lock zp and compare to zp->z_parent.
2620	 */
2621	do {
2622		if (!rw_tryenter(rwlp, rw)) {
2623			/*
2624			 * Another thread is renaming in this path.
2625			 * Note that if we are a WRITER, we don't have any
2626			 * parent_locks held yet.
2627			 */
2628			if (rw == RW_READER && zp->z_id > szp->z_id) {
2629				/*
2630				 * Drop our locks and restart
2631				 */
2632				zfs_rename_unlock(&zl);
2633				*zlpp = NULL;
2634				zp = tdzp;
2635				oidp = zp->z_id;
2636				rwlp = &szp->z_parent_lock;
2637				rw = RW_WRITER;
2638				continue;
2639			} else {
2640				/*
2641				 * Wait for other thread to drop its locks
2642				 */
2643				rw_enter(rwlp, rw);
2644			}
2645		}
2646
2647		zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
2648		zl->zl_rwlock = rwlp;
2649		zl->zl_znode = NULL;
2650		zl->zl_next = *zlpp;
2651		*zlpp = zl;
2652
2653		if (oidp == szp->z_id)		/* We're a descendant of szp */
2654			return (SET_ERROR(EINVAL));
2655
2656		if (oidp == rootid)		/* We've hit the top */
2657			return (0);
2658
2659		if (rw == RW_READER) {		/* i.e. not the first pass */
2660			int error = zfs_zget(ZTOZSB(zp), oidp, &zp);
2661			if (error)
2662				return (error);
2663			zl->zl_znode = zp;
2664		}
2665		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(ZTOZSB(zp)),
2666		    &oidp, sizeof (oidp));
2667		rwlp = &zp->z_parent_lock;
2668		rw = RW_READER;
2669
2670	} while (zp->z_id != sdzp->z_id);
2671
2672	return (0);
2673}
2674
2675/*
2676 * Move an entry from the provided source directory to the target
2677 * directory.  Change the entry name as indicated.
2678 *
2679 *	IN:	sdzp	- Source directory containing the "old entry".
2680 *		snm	- Old entry name.
2681 *		tdzp	- Target directory to contain the "new entry".
2682 *		tnm	- New entry name.
2683 *		cr	- credentials of caller.
2684 *		flags	- case flags
2685 *		rflags  - RENAME_* flags
2686 *		wa_vap  - attributes for RENAME_WHITEOUT (must be a char 0:0).
2687 *		mnt_ns	- user namespace of the mount
2688 *
2689 *	RETURN:	0 on success, error code on failure.
2690 *
2691 * Timestamps:
2692 *	sdzp,tdzp - ctime|mtime updated
2693 */
2694int
2695zfs_rename(znode_t *sdzp, char *snm, znode_t *tdzp, char *tnm,
2696    cred_t *cr, int flags, uint64_t rflags, vattr_t *wo_vap, zidmap_t *mnt_ns)
2697{
2698	znode_t		*szp, *tzp;
2699	zfsvfs_t	*zfsvfs = ZTOZSB(sdzp);
2700	zilog_t		*zilog;
2701	zfs_dirlock_t	*sdl, *tdl;
2702	dmu_tx_t	*tx;
2703	zfs_zlock_t	*zl;
2704	int		cmp, serr, terr;
2705	int		error = 0;
2706	int		zflg = 0;
2707	boolean_t	waited = B_FALSE;
2708	/* Needed for whiteout inode creation. */
2709	boolean_t	fuid_dirtied;
2710	zfs_acl_ids_t	acl_ids;
2711	boolean_t	have_acl = B_FALSE;
2712	znode_t		*wzp = NULL;
2713
2714
2715	if (snm == NULL || tnm == NULL)
2716		return (SET_ERROR(EINVAL));
2717
2718	if (rflags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2719		return (SET_ERROR(EINVAL));
2720
2721	/* Already checked by Linux VFS, but just to make sure. */
2722	if (rflags & RENAME_EXCHANGE &&
2723	    (rflags & (RENAME_NOREPLACE | RENAME_WHITEOUT)))
2724		return (SET_ERROR(EINVAL));
2725
2726	/*
2727	 * Make sure we only get wo_vap iff. RENAME_WHITEOUT and that it's the
2728	 * right kind of vattr_t for the whiteout file. These are set
2729	 * internally by ZFS so should never be incorrect.
2730	 */
2731	VERIFY_EQUIV(rflags & RENAME_WHITEOUT, wo_vap != NULL);
2732	VERIFY_IMPLY(wo_vap, wo_vap->va_mode == S_IFCHR);
2733	VERIFY_IMPLY(wo_vap, wo_vap->va_rdev == makedevice(0, 0));
2734
2735	if ((error = zfs_enter_verify_zp(zfsvfs, sdzp, FTAG)) != 0)
2736		return (error);
2737	zilog = zfsvfs->z_log;
2738
2739	if ((error = zfs_verify_zp(tdzp)) != 0) {
2740		zfs_exit(zfsvfs, FTAG);
2741		return (error);
2742	}
2743
2744	/*
2745	 * We check i_sb because snapshots and the ctldir must have different
2746	 * super blocks.
2747	 */
2748	if (ZTOI(tdzp)->i_sb != ZTOI(sdzp)->i_sb ||
2749	    zfsctl_is_node(ZTOI(tdzp))) {
2750		zfs_exit(zfsvfs, FTAG);
2751		return (SET_ERROR(EXDEV));
2752	}
2753
2754	if (zfsvfs->z_utf8 && u8_validate(tnm,
2755	    strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
2756		zfs_exit(zfsvfs, FTAG);
2757		return (SET_ERROR(EILSEQ));
2758	}
2759
2760	if (flags & FIGNORECASE)
2761		zflg |= ZCILOOK;
2762
2763top:
2764	szp = NULL;
2765	tzp = NULL;
2766	zl = NULL;
2767
2768	/*
2769	 * This is to prevent the creation of links into attribute space
2770	 * by renaming a linked file into/outof an attribute directory.
2771	 * See the comment in zfs_link() for why this is considered bad.
2772	 */
2773	if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
2774		zfs_exit(zfsvfs, FTAG);
2775		return (SET_ERROR(EINVAL));
2776	}
2777
2778	/*
2779	 * Lock source and target directory entries.  To prevent deadlock,
2780	 * a lock ordering must be defined.  We lock the directory with
2781	 * the smallest object id first, or if it's a tie, the one with
2782	 * the lexically first name.
2783	 */
2784	if (sdzp->z_id < tdzp->z_id) {
2785		cmp = -1;
2786	} else if (sdzp->z_id > tdzp->z_id) {
2787		cmp = 1;
2788	} else {
2789		/*
2790		 * First compare the two name arguments without
2791		 * considering any case folding.
2792		 */
2793		int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
2794
2795		cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
2796		ASSERT(error == 0 || !zfsvfs->z_utf8);
2797		if (cmp == 0) {
2798			/*
2799			 * POSIX: "If the old argument and the new argument
2800			 * both refer to links to the same existing file,
2801			 * the rename() function shall return successfully
2802			 * and perform no other action."
2803			 */
2804			zfs_exit(zfsvfs, FTAG);
2805			return (0);
2806		}
2807		/*
2808		 * If the file system is case-folding, then we may
2809		 * have some more checking to do.  A case-folding file
2810		 * system is either supporting mixed case sensitivity
2811		 * access or is completely case-insensitive.  Note
2812		 * that the file system is always case preserving.
2813		 *
2814		 * In mixed sensitivity mode case sensitive behavior
2815		 * is the default.  FIGNORECASE must be used to
2816		 * explicitly request case insensitive behavior.
2817		 *
2818		 * If the source and target names provided differ only
2819		 * by case (e.g., a request to rename 'tim' to 'Tim'),
2820		 * we will treat this as a special case in the
2821		 * case-insensitive mode: as long as the source name
2822		 * is an exact match, we will allow this to proceed as
2823		 * a name-change request.
2824		 */
2825		if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
2826		    (zfsvfs->z_case == ZFS_CASE_MIXED &&
2827		    flags & FIGNORECASE)) &&
2828		    u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
2829		    &error) == 0) {
2830			/*
2831			 * case preserving rename request, require exact
2832			 * name matches
2833			 */
2834			zflg |= ZCIEXACT;
2835			zflg &= ~ZCILOOK;
2836		}
2837	}
2838
2839	/*
2840	 * If the source and destination directories are the same, we should
2841	 * grab the z_name_lock of that directory only once.
2842	 */
2843	if (sdzp == tdzp) {
2844		zflg |= ZHAVELOCK;
2845		rw_enter(&sdzp->z_name_lock, RW_READER);
2846	}
2847
2848	if (cmp < 0) {
2849		serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
2850		    ZEXISTS | zflg, NULL, NULL);
2851		terr = zfs_dirent_lock(&tdl,
2852		    tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
2853	} else {
2854		terr = zfs_dirent_lock(&tdl,
2855		    tdzp, tnm, &tzp, zflg, NULL, NULL);
2856		serr = zfs_dirent_lock(&sdl,
2857		    sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
2858		    NULL, NULL);
2859	}
2860
2861	if (serr) {
2862		/*
2863		 * Source entry invalid or not there.
2864		 */
2865		if (!terr) {
2866			zfs_dirent_unlock(tdl);
2867			if (tzp)
2868				zrele(tzp);
2869		}
2870
2871		if (sdzp == tdzp)
2872			rw_exit(&sdzp->z_name_lock);
2873
2874		if (strcmp(snm, "..") == 0)
2875			serr = EINVAL;
2876		zfs_exit(zfsvfs, FTAG);
2877		return (serr);
2878	}
2879	if (terr) {
2880		zfs_dirent_unlock(sdl);
2881		zrele(szp);
2882
2883		if (sdzp == tdzp)
2884			rw_exit(&sdzp->z_name_lock);
2885
2886		if (strcmp(tnm, "..") == 0)
2887			terr = EINVAL;
2888		zfs_exit(zfsvfs, FTAG);
2889		return (terr);
2890	}
2891
2892	/*
2893	 * If we are using project inheritance, means if the directory has
2894	 * ZFS_PROJINHERIT set, then its descendant directories will inherit
2895	 * not only the project ID, but also the ZFS_PROJINHERIT flag. Under
2896	 * such case, we only allow renames into our tree when the project
2897	 * IDs are the same.
2898	 */
2899	if (tdzp->z_pflags & ZFS_PROJINHERIT &&
2900	    tdzp->z_projid != szp->z_projid) {
2901		error = SET_ERROR(EXDEV);
2902		goto out;
2903	}
2904
2905	/*
2906	 * Must have write access at the source to remove the old entry
2907	 * and write access at the target to create the new entry.
2908	 * Note that if target and source are the same, this can be
2909	 * done in a single check.
2910	 */
2911	if ((error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr, mnt_ns)))
2912		goto out;
2913
2914	if (S_ISDIR(ZTOI(szp)->i_mode)) {
2915		/*
2916		 * Check to make sure rename is valid.
2917		 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
2918		 */
2919		if ((error = zfs_rename_lock(szp, tdzp, sdzp, &zl)))
2920			goto out;
2921	}
2922
2923	/*
2924	 * Does target exist?
2925	 */
2926	if (tzp) {
2927		if (rflags & RENAME_NOREPLACE) {
2928			error = SET_ERROR(EEXIST);
2929			goto out;
2930		}
2931		/*
2932		 * Source and target must be the same type (unless exchanging).
2933		 */
2934		if (!(rflags & RENAME_EXCHANGE)) {
2935			boolean_t s_is_dir = S_ISDIR(ZTOI(szp)->i_mode) != 0;
2936			boolean_t t_is_dir = S_ISDIR(ZTOI(tzp)->i_mode) != 0;
2937
2938			if (s_is_dir != t_is_dir) {
2939				error = SET_ERROR(s_is_dir ? ENOTDIR : EISDIR);
2940				goto out;
2941			}
2942		}
2943		/*
2944		 * POSIX dictates that when the source and target
2945		 * entries refer to the same file object, rename
2946		 * must do nothing and exit without error.
2947		 */
2948		if (szp->z_id == tzp->z_id) {
2949			error = 0;
2950			goto out;
2951		}
2952	} else if (rflags & RENAME_EXCHANGE) {
2953		/* Target must exist for RENAME_EXCHANGE. */
2954		error = SET_ERROR(ENOENT);
2955		goto out;
2956	}
2957
2958	/* Set up inode creation for RENAME_WHITEOUT. */
2959	if (rflags & RENAME_WHITEOUT) {
2960		/*
2961		 * Whiteout files are not regular files or directories, so to
2962		 * match zfs_create() we do not inherit the project id.
2963		 */
2964		uint64_t wo_projid = ZFS_DEFAULT_PROJID;
2965
2966		error = zfs_zaccess(sdzp, ACE_ADD_FILE, 0, B_FALSE, cr, mnt_ns);
2967		if (error)
2968			goto out;
2969
2970		if (!have_acl) {
2971			error = zfs_acl_ids_create(sdzp, 0, wo_vap, cr, NULL,
2972			    &acl_ids, mnt_ns);
2973			if (error)
2974				goto out;
2975			have_acl = B_TRUE;
2976		}
2977
2978		if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, wo_projid)) {
2979			error = SET_ERROR(EDQUOT);
2980			goto out;
2981		}
2982	}
2983
2984	tx = dmu_tx_create(zfsvfs->z_os);
2985	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
2986	dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
2987	dmu_tx_hold_zap(tx, sdzp->z_id,
2988	    (rflags & RENAME_EXCHANGE) ? TRUE : FALSE, snm);
2989	dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
2990	if (sdzp != tdzp) {
2991		dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
2992		zfs_sa_upgrade_txholds(tx, tdzp);
2993	}
2994	if (tzp) {
2995		dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
2996		zfs_sa_upgrade_txholds(tx, tzp);
2997	}
2998	if (rflags & RENAME_WHITEOUT) {
2999		dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3000		    ZFS_SA_BASE_ATTR_SIZE);
3001
3002		dmu_tx_hold_zap(tx, sdzp->z_id, TRUE, snm);
3003		dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3004		if (!zfsvfs->z_use_sa &&
3005		    acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3006			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3007			    0, acl_ids.z_aclp->z_acl_bytes);
3008		}
3009	}
3010	fuid_dirtied = zfsvfs->z_fuid_dirty;
3011	if (fuid_dirtied)
3012		zfs_fuid_txhold(zfsvfs, tx);
3013	zfs_sa_upgrade_txholds(tx, szp);
3014	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3015	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
3016	if (error) {
3017		if (zl != NULL)
3018			zfs_rename_unlock(&zl);
3019		zfs_dirent_unlock(sdl);
3020		zfs_dirent_unlock(tdl);
3021
3022		if (sdzp == tdzp)
3023			rw_exit(&sdzp->z_name_lock);
3024
3025		if (error == ERESTART) {
3026			waited = B_TRUE;
3027			dmu_tx_wait(tx);
3028			dmu_tx_abort(tx);
3029			zrele(szp);
3030			if (tzp)
3031				zrele(tzp);
3032			goto top;
3033		}
3034		dmu_tx_abort(tx);
3035		zrele(szp);
3036		if (tzp)
3037			zrele(tzp);
3038		zfs_exit(zfsvfs, FTAG);
3039		return (error);
3040	}
3041
3042	/*
3043	 * Unlink the source.
3044	 */
3045	szp->z_pflags |= ZFS_AV_MODIFIED;
3046	if (tdzp->z_pflags & ZFS_PROJINHERIT)
3047		szp->z_pflags |= ZFS_PROJINHERIT;
3048
3049	error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3050	    (void *)&szp->z_pflags, sizeof (uint64_t), tx);
3051	VERIFY0(error);
3052
3053	error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3054	if (error)
3055		goto commit;
3056
3057	/*
3058	 * Unlink the target.
3059	 */
3060	if (tzp) {
3061		int tzflg = zflg;
3062
3063		if (rflags & RENAME_EXCHANGE) {
3064			/* This inode will be re-linked soon. */
3065			tzflg |= ZRENAMING;
3066
3067			tzp->z_pflags |= ZFS_AV_MODIFIED;
3068			if (sdzp->z_pflags & ZFS_PROJINHERIT)
3069				tzp->z_pflags |= ZFS_PROJINHERIT;
3070
3071			error = sa_update(tzp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3072			    (void *)&tzp->z_pflags, sizeof (uint64_t), tx);
3073			ASSERT0(error);
3074		}
3075		error = zfs_link_destroy(tdl, tzp, tx, tzflg, NULL);
3076		if (error)
3077			goto commit_link_szp;
3078	}
3079
3080	/*
3081	 * Create the new target links:
3082	 *   * We always link the target.
3083	 *   * RENAME_EXCHANGE: Link the old target to the source.
3084	 *   * RENAME_WHITEOUT: Create a whiteout inode in-place of the source.
3085	 */
3086	error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3087	if (error) {
3088		/*
3089		 * If we have removed the existing target, a subsequent call to
3090		 * zfs_link_create() to add back the same entry, but with a new
3091		 * dnode (szp), should not fail.
3092		 */
3093		ASSERT3P(tzp, ==, NULL);
3094		goto commit_link_tzp;
3095	}
3096
3097	switch (rflags & (RENAME_EXCHANGE | RENAME_WHITEOUT)) {
3098	case RENAME_EXCHANGE:
3099		error = zfs_link_create(sdl, tzp, tx, ZRENAMING);
3100		/*
3101		 * The same argument as zfs_link_create() failing for
3102		 * szp applies here, since the source directory must
3103		 * have had an entry we are replacing.
3104		 */
3105		ASSERT0(error);
3106		if (error)
3107			goto commit_unlink_td_szp;
3108		break;
3109	case RENAME_WHITEOUT:
3110		zfs_mknode(sdzp, wo_vap, tx, cr, 0, &wzp, &acl_ids);
3111		error = zfs_link_create(sdl, wzp, tx, ZNEW);
3112		if (error) {
3113			zfs_znode_delete(wzp, tx);
3114			remove_inode_hash(ZTOI(wzp));
3115			goto commit_unlink_td_szp;
3116		}
3117		break;
3118	}
3119
3120	if (fuid_dirtied)
3121		zfs_fuid_sync(zfsvfs, tx);
3122
3123	switch (rflags & (RENAME_EXCHANGE | RENAME_WHITEOUT)) {
3124	case RENAME_EXCHANGE:
3125		zfs_log_rename_exchange(zilog, tx,
3126		    (flags & FIGNORECASE ? TX_CI : 0), sdzp, sdl->dl_name,
3127		    tdzp, tdl->dl_name, szp);
3128		break;
3129	case RENAME_WHITEOUT:
3130		zfs_log_rename_whiteout(zilog, tx,
3131		    (flags & FIGNORECASE ? TX_CI : 0), sdzp, sdl->dl_name,
3132		    tdzp, tdl->dl_name, szp, wzp);
3133		break;
3134	default:
3135		ASSERT0(rflags & ~RENAME_NOREPLACE);
3136		zfs_log_rename(zilog, tx, (flags & FIGNORECASE ? TX_CI : 0),
3137		    sdzp, sdl->dl_name, tdzp, tdl->dl_name, szp);
3138		break;
3139	}
3140
3141commit:
3142	dmu_tx_commit(tx);
3143out:
3144	if (have_acl)
3145		zfs_acl_ids_free(&acl_ids);
3146
3147	zfs_znode_update_vfs(sdzp);
3148	if (sdzp == tdzp)
3149		rw_exit(&sdzp->z_name_lock);
3150
3151	if (sdzp != tdzp)
3152		zfs_znode_update_vfs(tdzp);
3153
3154	zfs_znode_update_vfs(szp);
3155	zrele(szp);
3156	if (wzp) {
3157		zfs_znode_update_vfs(wzp);
3158		zrele(wzp);
3159	}
3160	if (tzp) {
3161		zfs_znode_update_vfs(tzp);
3162		zrele(tzp);
3163	}
3164
3165	if (zl != NULL)
3166		zfs_rename_unlock(&zl);
3167
3168	zfs_dirent_unlock(sdl);
3169	zfs_dirent_unlock(tdl);
3170
3171	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3172		zil_commit(zilog, 0);
3173
3174	zfs_exit(zfsvfs, FTAG);
3175	return (error);
3176
3177	/*
3178	 * Clean-up path for broken link state.
3179	 *
3180	 * At this point we are in a (very) bad state, so we need to do our
3181	 * best to correct the state. In particular, all of the nlinks are
3182	 * wrong because we were destroying and creating links with ZRENAMING.
3183	 *
3184	 * In some form, all of these operations have to resolve the state:
3185	 *
3186	 *  * link_destroy() *must* succeed. Fortunately, this is very likely
3187	 *    since we only just created it.
3188	 *
3189	 *  * link_create()s are allowed to fail (though they shouldn't because
3190	 *    we only just unlinked them and are putting the entries back
3191	 *    during clean-up). But if they fail, we can just forcefully drop
3192	 *    the nlink value to (at the very least) avoid broken nlink values
3193	 *    -- though in the case of non-empty directories we will have to
3194	 *    panic (otherwise we'd have a leaked directory with a broken ..).
3195	 */
3196commit_unlink_td_szp:
3197	VERIFY0(zfs_link_destroy(tdl, szp, tx, ZRENAMING, NULL));
3198commit_link_tzp:
3199	if (tzp) {
3200		if (zfs_link_create(tdl, tzp, tx, ZRENAMING))
3201			VERIFY0(zfs_drop_nlink(tzp, tx, NULL));
3202	}
3203commit_link_szp:
3204	if (zfs_link_create(sdl, szp, tx, ZRENAMING))
3205		VERIFY0(zfs_drop_nlink(szp, tx, NULL));
3206	goto commit;
3207}
3208
3209/*
3210 * Insert the indicated symbolic reference entry into the directory.
3211 *
3212 *	IN:	dzp	- Directory to contain new symbolic link.
3213 *		name	- Name of directory entry in dip.
3214 *		vap	- Attributes of new entry.
3215 *		link	- Name for new symlink entry.
3216 *		cr	- credentials of caller.
3217 *		flags	- case flags
3218 *		mnt_ns	- user namespace of the mount
3219 *
3220 *	OUT:	zpp	- Znode for new symbolic link.
3221 *
3222 *	RETURN:	0 on success, error code on failure.
3223 *
3224 * Timestamps:
3225 *	dip - ctime|mtime updated
3226 */
3227int
3228zfs_symlink(znode_t *dzp, char *name, vattr_t *vap, char *link,
3229    znode_t **zpp, cred_t *cr, int flags, zidmap_t *mnt_ns)
3230{
3231	znode_t		*zp;
3232	zfs_dirlock_t	*dl;
3233	dmu_tx_t	*tx;
3234	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
3235	zilog_t		*zilog;
3236	uint64_t	len = strlen(link);
3237	int		error;
3238	int		zflg = ZNEW;
3239	zfs_acl_ids_t	acl_ids;
3240	boolean_t	fuid_dirtied;
3241	uint64_t	txtype = TX_SYMLINK;
3242	boolean_t	waited = B_FALSE;
3243
3244	ASSERT(S_ISLNK(vap->va_mode));
3245
3246	if (name == NULL)
3247		return (SET_ERROR(EINVAL));
3248
3249	if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
3250		return (error);
3251	zilog = zfsvfs->z_log;
3252
3253	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
3254	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3255		zfs_exit(zfsvfs, FTAG);
3256		return (SET_ERROR(EILSEQ));
3257	}
3258	if (flags & FIGNORECASE)
3259		zflg |= ZCILOOK;
3260
3261	if (len > MAXPATHLEN) {
3262		zfs_exit(zfsvfs, FTAG);
3263		return (SET_ERROR(ENAMETOOLONG));
3264	}
3265
3266	if ((error = zfs_acl_ids_create(dzp, 0,
3267	    vap, cr, NULL, &acl_ids, mnt_ns)) != 0) {
3268		zfs_exit(zfsvfs, FTAG);
3269		return (error);
3270	}
3271top:
3272	*zpp = NULL;
3273
3274	/*
3275	 * Attempt to lock directory; fail if entry already exists.
3276	 */
3277	error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3278	if (error) {
3279		zfs_acl_ids_free(&acl_ids);
3280		zfs_exit(zfsvfs, FTAG);
3281		return (error);
3282	}
3283
3284	if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr, mnt_ns))) {
3285		zfs_acl_ids_free(&acl_ids);
3286		zfs_dirent_unlock(dl);
3287		zfs_exit(zfsvfs, FTAG);
3288		return (error);
3289	}
3290
3291	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, ZFS_DEFAULT_PROJID)) {
3292		zfs_acl_ids_free(&acl_ids);
3293		zfs_dirent_unlock(dl);
3294		zfs_exit(zfsvfs, FTAG);
3295		return (SET_ERROR(EDQUOT));
3296	}
3297	tx = dmu_tx_create(zfsvfs->z_os);
3298	fuid_dirtied = zfsvfs->z_fuid_dirty;
3299	dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3300	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3301	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3302	    ZFS_SA_BASE_ATTR_SIZE + len);
3303	dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
3304	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3305		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3306		    acl_ids.z_aclp->z_acl_bytes);
3307	}
3308	if (fuid_dirtied)
3309		zfs_fuid_txhold(zfsvfs, tx);
3310	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
3311	if (error) {
3312		zfs_dirent_unlock(dl);
3313		if (error == ERESTART) {
3314			waited = B_TRUE;
3315			dmu_tx_wait(tx);
3316			dmu_tx_abort(tx);
3317			goto top;
3318		}
3319		zfs_acl_ids_free(&acl_ids);
3320		dmu_tx_abort(tx);
3321		zfs_exit(zfsvfs, FTAG);
3322		return (error);
3323	}
3324
3325	/*
3326	 * Create a new object for the symlink.
3327	 * for version 4 ZPL datasets the symlink will be an SA attribute
3328	 */
3329	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
3330
3331	if (fuid_dirtied)
3332		zfs_fuid_sync(zfsvfs, tx);
3333
3334	mutex_enter(&zp->z_lock);
3335	if (zp->z_is_sa)
3336		error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
3337		    link, len, tx);
3338	else
3339		zfs_sa_symlink(zp, link, len, tx);
3340	mutex_exit(&zp->z_lock);
3341
3342	zp->z_size = len;
3343	(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
3344	    &zp->z_size, sizeof (zp->z_size), tx);
3345	/*
3346	 * Insert the new object into the directory.
3347	 */
3348	error = zfs_link_create(dl, zp, tx, ZNEW);
3349	if (error != 0) {
3350		zfs_znode_delete(zp, tx);
3351		remove_inode_hash(ZTOI(zp));
3352	} else {
3353		if (flags & FIGNORECASE)
3354			txtype |= TX_CI;
3355		zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3356
3357		zfs_znode_update_vfs(dzp);
3358		zfs_znode_update_vfs(zp);
3359	}
3360
3361	zfs_acl_ids_free(&acl_ids);
3362
3363	dmu_tx_commit(tx);
3364
3365	zfs_dirent_unlock(dl);
3366
3367	if (error == 0) {
3368		*zpp = zp;
3369
3370		if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3371			zil_commit(zilog, 0);
3372	} else {
3373		zrele(zp);
3374	}
3375
3376	zfs_exit(zfsvfs, FTAG);
3377	return (error);
3378}
3379
3380/*
3381 * Return, in the buffer contained in the provided uio structure,
3382 * the symbolic path referred to by ip.
3383 *
3384 *	IN:	ip	- inode of symbolic link
3385 *		uio	- structure to contain the link path.
3386 *		cr	- credentials of caller.
3387 *
3388 *	RETURN:	0 if success
3389 *		error code if failure
3390 *
3391 * Timestamps:
3392 *	ip - atime updated
3393 */
3394int
3395zfs_readlink(struct inode *ip, zfs_uio_t *uio, cred_t *cr)
3396{
3397	(void) cr;
3398	znode_t		*zp = ITOZ(ip);
3399	zfsvfs_t	*zfsvfs = ITOZSB(ip);
3400	int		error;
3401
3402	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
3403		return (error);
3404
3405	mutex_enter(&zp->z_lock);
3406	if (zp->z_is_sa)
3407		error = sa_lookup_uio(zp->z_sa_hdl,
3408		    SA_ZPL_SYMLINK(zfsvfs), uio);
3409	else
3410		error = zfs_sa_readlink(zp, uio);
3411	mutex_exit(&zp->z_lock);
3412
3413	zfs_exit(zfsvfs, FTAG);
3414	return (error);
3415}
3416
3417/*
3418 * Insert a new entry into directory tdzp referencing szp.
3419 *
3420 *	IN:	tdzp	- Directory to contain new entry.
3421 *		szp	- znode of new entry.
3422 *		name	- name of new entry.
3423 *		cr	- credentials of caller.
3424 *		flags	- case flags.
3425 *
3426 *	RETURN:	0 if success
3427 *		error code if failure
3428 *
3429 * Timestamps:
3430 *	tdzp - ctime|mtime updated
3431 *	 szp - ctime updated
3432 */
3433int
3434zfs_link(znode_t *tdzp, znode_t *szp, char *name, cred_t *cr,
3435    int flags)
3436{
3437	struct inode *sip = ZTOI(szp);
3438	znode_t		*tzp;
3439	zfsvfs_t	*zfsvfs = ZTOZSB(tdzp);
3440	zilog_t		*zilog;
3441	zfs_dirlock_t	*dl;
3442	dmu_tx_t	*tx;
3443	int		error;
3444	int		zf = ZNEW;
3445	uint64_t	parent;
3446	uid_t		owner;
3447	boolean_t	waited = B_FALSE;
3448	boolean_t	is_tmpfile = 0;
3449	uint64_t	txg;
3450#ifdef HAVE_TMPFILE
3451	is_tmpfile = (sip->i_nlink == 0 && (sip->i_state & I_LINKABLE));
3452#endif
3453	ASSERT(S_ISDIR(ZTOI(tdzp)->i_mode));
3454
3455	if (name == NULL)
3456		return (SET_ERROR(EINVAL));
3457
3458	if ((error = zfs_enter_verify_zp(zfsvfs, tdzp, FTAG)) != 0)
3459		return (error);
3460	zilog = zfsvfs->z_log;
3461
3462	/*
3463	 * POSIX dictates that we return EPERM here.
3464	 * Better choices include ENOTSUP or EISDIR.
3465	 */
3466	if (S_ISDIR(sip->i_mode)) {
3467		zfs_exit(zfsvfs, FTAG);
3468		return (SET_ERROR(EPERM));
3469	}
3470
3471	if ((error = zfs_verify_zp(szp)) != 0) {
3472		zfs_exit(zfsvfs, FTAG);
3473		return (error);
3474	}
3475
3476	/*
3477	 * If we are using project inheritance, means if the directory has
3478	 * ZFS_PROJINHERIT set, then its descendant directories will inherit
3479	 * not only the project ID, but also the ZFS_PROJINHERIT flag. Under
3480	 * such case, we only allow hard link creation in our tree when the
3481	 * project IDs are the same.
3482	 */
3483	if (tdzp->z_pflags & ZFS_PROJINHERIT &&
3484	    tdzp->z_projid != szp->z_projid) {
3485		zfs_exit(zfsvfs, FTAG);
3486		return (SET_ERROR(EXDEV));
3487	}
3488
3489	/*
3490	 * We check i_sb because snapshots and the ctldir must have different
3491	 * super blocks.
3492	 */
3493	if (sip->i_sb != ZTOI(tdzp)->i_sb || zfsctl_is_node(sip)) {
3494		zfs_exit(zfsvfs, FTAG);
3495		return (SET_ERROR(EXDEV));
3496	}
3497
3498	/* Prevent links to .zfs/shares files */
3499
3500	if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
3501	    &parent, sizeof (uint64_t))) != 0) {
3502		zfs_exit(zfsvfs, FTAG);
3503		return (error);
3504	}
3505	if (parent == zfsvfs->z_shares_dir) {
3506		zfs_exit(zfsvfs, FTAG);
3507		return (SET_ERROR(EPERM));
3508	}
3509
3510	if (zfsvfs->z_utf8 && u8_validate(name,
3511	    strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3512		zfs_exit(zfsvfs, FTAG);
3513		return (SET_ERROR(EILSEQ));
3514	}
3515	if (flags & FIGNORECASE)
3516		zf |= ZCILOOK;
3517
3518	/*
3519	 * We do not support links between attributes and non-attributes
3520	 * because of the potential security risk of creating links
3521	 * into "normal" file space in order to circumvent restrictions
3522	 * imposed in attribute space.
3523	 */
3524	if ((szp->z_pflags & ZFS_XATTR) != (tdzp->z_pflags & ZFS_XATTR)) {
3525		zfs_exit(zfsvfs, FTAG);
3526		return (SET_ERROR(EINVAL));
3527	}
3528
3529	owner = zfs_fuid_map_id(zfsvfs, KUID_TO_SUID(sip->i_uid),
3530	    cr, ZFS_OWNER);
3531	if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
3532		zfs_exit(zfsvfs, FTAG);
3533		return (SET_ERROR(EPERM));
3534	}
3535
3536	if ((error = zfs_zaccess(tdzp, ACE_ADD_FILE, 0, B_FALSE, cr,
3537	    zfs_init_idmap))) {
3538		zfs_exit(zfsvfs, FTAG);
3539		return (error);
3540	}
3541
3542top:
3543	/*
3544	 * Attempt to lock directory; fail if entry already exists.
3545	 */
3546	error = zfs_dirent_lock(&dl, tdzp, name, &tzp, zf, NULL, NULL);
3547	if (error) {
3548		zfs_exit(zfsvfs, FTAG);
3549		return (error);
3550	}
3551
3552	tx = dmu_tx_create(zfsvfs->z_os);
3553	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3554	dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, name);
3555	if (is_tmpfile)
3556		dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3557
3558	zfs_sa_upgrade_txholds(tx, szp);
3559	zfs_sa_upgrade_txholds(tx, tdzp);
3560	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
3561	if (error) {
3562		zfs_dirent_unlock(dl);
3563		if (error == ERESTART) {
3564			waited = B_TRUE;
3565			dmu_tx_wait(tx);
3566			dmu_tx_abort(tx);
3567			goto top;
3568		}
3569		dmu_tx_abort(tx);
3570		zfs_exit(zfsvfs, FTAG);
3571		return (error);
3572	}
3573	/* unmark z_unlinked so zfs_link_create will not reject */
3574	if (is_tmpfile)
3575		szp->z_unlinked = B_FALSE;
3576	error = zfs_link_create(dl, szp, tx, 0);
3577
3578	if (error == 0) {
3579		uint64_t txtype = TX_LINK;
3580		/*
3581		 * tmpfile is created to be in z_unlinkedobj, so remove it.
3582		 * Also, we don't log in ZIL, because all previous file
3583		 * operation on the tmpfile are ignored by ZIL. Instead we
3584		 * always wait for txg to sync to make sure all previous
3585		 * operation are sync safe.
3586		 */
3587		if (is_tmpfile) {
3588			VERIFY(zap_remove_int(zfsvfs->z_os,
3589			    zfsvfs->z_unlinkedobj, szp->z_id, tx) == 0);
3590		} else {
3591			if (flags & FIGNORECASE)
3592				txtype |= TX_CI;
3593			zfs_log_link(zilog, tx, txtype, tdzp, szp, name);
3594		}
3595	} else if (is_tmpfile) {
3596		/* restore z_unlinked since when linking failed */
3597		szp->z_unlinked = B_TRUE;
3598	}
3599	txg = dmu_tx_get_txg(tx);
3600	dmu_tx_commit(tx);
3601
3602	zfs_dirent_unlock(dl);
3603
3604	if (!is_tmpfile && zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3605		zil_commit(zilog, 0);
3606
3607	if (is_tmpfile && zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED)
3608		txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), txg);
3609
3610	zfs_znode_update_vfs(tdzp);
3611	zfs_znode_update_vfs(szp);
3612	zfs_exit(zfsvfs, FTAG);
3613	return (error);
3614}
3615
3616static void
3617zfs_putpage_sync_commit_cb(void *arg)
3618{
3619	struct page *pp = arg;
3620
3621	ClearPageError(pp);
3622	end_page_writeback(pp);
3623}
3624
3625static void
3626zfs_putpage_async_commit_cb(void *arg)
3627{
3628	struct page *pp = arg;
3629	znode_t *zp = ITOZ(pp->mapping->host);
3630
3631	ClearPageError(pp);
3632	end_page_writeback(pp);
3633	atomic_dec_32(&zp->z_async_writes_cnt);
3634}
3635
3636/*
3637 * Push a page out to disk, once the page is on stable storage the
3638 * registered commit callback will be run as notification of completion.
3639 *
3640 *	IN:	ip	 - page mapped for inode.
3641 *		pp	 - page to push (page is locked)
3642 *		wbc	 - writeback control data
3643 *		for_sync - does the caller intend to wait synchronously for the
3644 *			   page writeback to complete?
3645 *
3646 *	RETURN:	0 if success
3647 *		error code if failure
3648 *
3649 * Timestamps:
3650 *	ip - ctime|mtime updated
3651 */
3652int
3653zfs_putpage(struct inode *ip, struct page *pp, struct writeback_control *wbc,
3654    boolean_t for_sync)
3655{
3656	znode_t		*zp = ITOZ(ip);
3657	zfsvfs_t	*zfsvfs = ITOZSB(ip);
3658	loff_t		offset;
3659	loff_t		pgoff;
3660	unsigned int	pglen;
3661	dmu_tx_t	*tx;
3662	caddr_t		va;
3663	int		err = 0;
3664	uint64_t	mtime[2], ctime[2];
3665	inode_timespec_t tmp_ts;
3666	sa_bulk_attr_t	bulk[3];
3667	int		cnt = 0;
3668	struct address_space *mapping;
3669
3670	if ((err = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
3671		return (err);
3672
3673	ASSERT(PageLocked(pp));
3674
3675	pgoff = page_offset(pp);	/* Page byte-offset in file */
3676	offset = i_size_read(ip);	/* File length in bytes */
3677	pglen = MIN(PAGE_SIZE,		/* Page length in bytes */
3678	    P2ROUNDUP(offset, PAGE_SIZE)-pgoff);
3679
3680	/* Page is beyond end of file */
3681	if (pgoff >= offset) {
3682		unlock_page(pp);
3683		zfs_exit(zfsvfs, FTAG);
3684		return (0);
3685	}
3686
3687	/* Truncate page length to end of file */
3688	if (pgoff + pglen > offset)
3689		pglen = offset - pgoff;
3690
3691#if 0
3692	/*
3693	 * FIXME: Allow mmap writes past its quota.  The correct fix
3694	 * is to register a page_mkwrite() handler to count the page
3695	 * against its quota when it is about to be dirtied.
3696	 */
3697	if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT,
3698	    KUID_TO_SUID(ip->i_uid)) ||
3699	    zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT,
3700	    KGID_TO_SGID(ip->i_gid)) ||
3701	    (zp->z_projid != ZFS_DEFAULT_PROJID &&
3702	    zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT,
3703	    zp->z_projid))) {
3704		err = EDQUOT;
3705	}
3706#endif
3707
3708	/*
3709	 * The ordering here is critical and must adhere to the following
3710	 * rules in order to avoid deadlocking in either zfs_read() or
3711	 * zfs_free_range() due to a lock inversion.
3712	 *
3713	 * 1) The page must be unlocked prior to acquiring the range lock.
3714	 *    This is critical because zfs_read() calls find_lock_page()
3715	 *    which may block on the page lock while holding the range lock.
3716	 *
3717	 * 2) Before setting or clearing write back on a page the range lock
3718	 *    must be held in order to prevent a lock inversion with the
3719	 *    zfs_free_range() function.
3720	 *
3721	 * This presents a problem because upon entering this function the
3722	 * page lock is already held.  To safely acquire the range lock the
3723	 * page lock must be dropped.  This creates a window where another
3724	 * process could truncate, invalidate, dirty, or write out the page.
3725	 *
3726	 * Therefore, after successfully reacquiring the range and page locks
3727	 * the current page state is checked.  In the common case everything
3728	 * will be as is expected and it can be written out.  However, if
3729	 * the page state has changed it must be handled accordingly.
3730	 */
3731	mapping = pp->mapping;
3732	redirty_page_for_writepage(wbc, pp);
3733	unlock_page(pp);
3734
3735	zfs_locked_range_t *lr = zfs_rangelock_enter(&zp->z_rangelock,
3736	    pgoff, pglen, RL_WRITER);
3737	lock_page(pp);
3738
3739	/* Page mapping changed or it was no longer dirty, we're done */
3740	if (unlikely((mapping != pp->mapping) || !PageDirty(pp))) {
3741		unlock_page(pp);
3742		zfs_rangelock_exit(lr);
3743		zfs_exit(zfsvfs, FTAG);
3744		return (0);
3745	}
3746
3747	/* Another process started write block if required */
3748	if (PageWriteback(pp)) {
3749		unlock_page(pp);
3750		zfs_rangelock_exit(lr);
3751
3752		if (wbc->sync_mode != WB_SYNC_NONE) {
3753			/*
3754			 * Speed up any non-sync page writebacks since
3755			 * they may take several seconds to complete.
3756			 * Refer to the comment in zpl_fsync() (when
3757			 * HAVE_FSYNC_RANGE is defined) for details.
3758			 */
3759			if (atomic_load_32(&zp->z_async_writes_cnt) > 0) {
3760				zil_commit(zfsvfs->z_log, zp->z_id);
3761			}
3762
3763			if (PageWriteback(pp))
3764#ifdef HAVE_PAGEMAP_FOLIO_WAIT_BIT
3765				folio_wait_bit(page_folio(pp), PG_writeback);
3766#else
3767				wait_on_page_bit(pp, PG_writeback);
3768#endif
3769		}
3770
3771		zfs_exit(zfsvfs, FTAG);
3772		return (0);
3773	}
3774
3775	/* Clear the dirty flag the required locks are held */
3776	if (!clear_page_dirty_for_io(pp)) {
3777		unlock_page(pp);
3778		zfs_rangelock_exit(lr);
3779		zfs_exit(zfsvfs, FTAG);
3780		return (0);
3781	}
3782
3783	/*
3784	 * Counterpart for redirty_page_for_writepage() above.  This page
3785	 * was in fact not skipped and should not be counted as if it were.
3786	 */
3787	wbc->pages_skipped--;
3788	if (!for_sync)
3789		atomic_inc_32(&zp->z_async_writes_cnt);
3790	set_page_writeback(pp);
3791	unlock_page(pp);
3792
3793	tx = dmu_tx_create(zfsvfs->z_os);
3794	dmu_tx_hold_write(tx, zp->z_id, pgoff, pglen);
3795	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3796	zfs_sa_upgrade_txholds(tx, zp);
3797
3798	err = dmu_tx_assign(tx, TXG_WAIT);
3799	if (err != 0) {
3800		dmu_tx_abort(tx);
3801#ifdef HAVE_VFS_FILEMAP_DIRTY_FOLIO
3802		filemap_dirty_folio(page_mapping(pp), page_folio(pp));
3803#else
3804		__set_page_dirty_nobuffers(pp);
3805#endif
3806		ClearPageError(pp);
3807		end_page_writeback(pp);
3808		if (!for_sync)
3809			atomic_dec_32(&zp->z_async_writes_cnt);
3810		zfs_rangelock_exit(lr);
3811		zfs_exit(zfsvfs, FTAG);
3812		return (err);
3813	}
3814
3815	va = kmap(pp);
3816	ASSERT3U(pglen, <=, PAGE_SIZE);
3817	dmu_write(zfsvfs->z_os, zp->z_id, pgoff, pglen, va, tx);
3818	kunmap(pp);
3819
3820	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
3821	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
3822	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_FLAGS(zfsvfs), NULL,
3823	    &zp->z_pflags, 8);
3824
3825	/* Preserve the mtime and ctime provided by the inode */
3826	tmp_ts = zpl_inode_get_mtime(ip);
3827	ZFS_TIME_ENCODE(&tmp_ts, mtime);
3828	tmp_ts = zpl_inode_get_ctime(ip);
3829	ZFS_TIME_ENCODE(&tmp_ts, ctime);
3830	zp->z_atime_dirty = B_FALSE;
3831	zp->z_seq++;
3832
3833	err = sa_bulk_update(zp->z_sa_hdl, bulk, cnt, tx);
3834
3835	boolean_t commit = B_FALSE;
3836	if (wbc->sync_mode != WB_SYNC_NONE) {
3837		/*
3838		 * Note that this is rarely called under writepages(), because
3839		 * writepages() normally handles the entire commit for
3840		 * performance reasons.
3841		 */
3842		commit = B_TRUE;
3843	} else if (!for_sync && atomic_load_32(&zp->z_sync_writes_cnt) > 0) {
3844		/*
3845		 * If the caller does not intend to wait synchronously
3846		 * for this page writeback to complete and there are active
3847		 * synchronous calls on this file, do a commit so that
3848		 * the latter don't accidentally end up waiting for
3849		 * our writeback to complete. Refer to the comment in
3850		 * zpl_fsync() (when HAVE_FSYNC_RANGE is defined) for details.
3851		 */
3852		commit = B_TRUE;
3853	}
3854
3855	zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, pgoff, pglen, commit,
3856	    for_sync ? zfs_putpage_sync_commit_cb :
3857	    zfs_putpage_async_commit_cb, pp);
3858
3859	dmu_tx_commit(tx);
3860
3861	zfs_rangelock_exit(lr);
3862
3863	if (commit)
3864		zil_commit(zfsvfs->z_log, zp->z_id);
3865
3866	dataset_kstats_update_write_kstats(&zfsvfs->z_kstat, pglen);
3867
3868	zfs_exit(zfsvfs, FTAG);
3869	return (err);
3870}
3871
3872/*
3873 * Update the system attributes when the inode has been dirtied.  For the
3874 * moment we only update the mode, atime, mtime, and ctime.
3875 */
3876int
3877zfs_dirty_inode(struct inode *ip, int flags)
3878{
3879	znode_t		*zp = ITOZ(ip);
3880	zfsvfs_t	*zfsvfs = ITOZSB(ip);
3881	dmu_tx_t	*tx;
3882	uint64_t	mode, atime[2], mtime[2], ctime[2];
3883	inode_timespec_t tmp_ts;
3884	sa_bulk_attr_t	bulk[4];
3885	int		error = 0;
3886	int		cnt = 0;
3887
3888	if (zfs_is_readonly(zfsvfs) || dmu_objset_is_snapshot(zfsvfs->z_os))
3889		return (0);
3890
3891	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
3892		return (error);
3893
3894#ifdef I_DIRTY_TIME
3895	/*
3896	 * This is the lazytime semantic introduced in Linux 4.0
3897	 * This flag will only be called from update_time when lazytime is set.
3898	 * (Note, I_DIRTY_SYNC will also set if not lazytime)
3899	 * Fortunately mtime and ctime are managed within ZFS itself, so we
3900	 * only need to dirty atime.
3901	 */
3902	if (flags == I_DIRTY_TIME) {
3903		zp->z_atime_dirty = B_TRUE;
3904		goto out;
3905	}
3906#endif
3907
3908	tx = dmu_tx_create(zfsvfs->z_os);
3909
3910	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3911	zfs_sa_upgrade_txholds(tx, zp);
3912
3913	error = dmu_tx_assign(tx, TXG_WAIT);
3914	if (error) {
3915		dmu_tx_abort(tx);
3916		goto out;
3917	}
3918
3919	mutex_enter(&zp->z_lock);
3920	zp->z_atime_dirty = B_FALSE;
3921
3922	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8);
3923	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_ATIME(zfsvfs), NULL, &atime, 16);
3924	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
3925	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
3926
3927	/* Preserve the mode, mtime and ctime provided by the inode */
3928	tmp_ts = zpl_inode_get_atime(ip);
3929	ZFS_TIME_ENCODE(&tmp_ts, atime);
3930	tmp_ts = zpl_inode_get_mtime(ip);
3931	ZFS_TIME_ENCODE(&tmp_ts, mtime);
3932	tmp_ts = zpl_inode_get_ctime(ip);
3933	ZFS_TIME_ENCODE(&tmp_ts, ctime);
3934	mode = ip->i_mode;
3935
3936	zp->z_mode = mode;
3937
3938	error = sa_bulk_update(zp->z_sa_hdl, bulk, cnt, tx);
3939	mutex_exit(&zp->z_lock);
3940
3941	dmu_tx_commit(tx);
3942out:
3943	zfs_exit(zfsvfs, FTAG);
3944	return (error);
3945}
3946
3947void
3948zfs_inactive(struct inode *ip)
3949{
3950	znode_t	*zp = ITOZ(ip);
3951	zfsvfs_t *zfsvfs = ITOZSB(ip);
3952	uint64_t atime[2];
3953	int error;
3954	int need_unlock = 0;
3955
3956	/* Only read lock if we haven't already write locked, e.g. rollback */
3957	if (!RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)) {
3958		need_unlock = 1;
3959		rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
3960	}
3961	if (zp->z_sa_hdl == NULL) {
3962		if (need_unlock)
3963			rw_exit(&zfsvfs->z_teardown_inactive_lock);
3964		return;
3965	}
3966
3967	if (zp->z_atime_dirty && zp->z_unlinked == B_FALSE) {
3968		dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
3969
3970		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3971		zfs_sa_upgrade_txholds(tx, zp);
3972		error = dmu_tx_assign(tx, TXG_WAIT);
3973		if (error) {
3974			dmu_tx_abort(tx);
3975		} else {
3976			inode_timespec_t tmp_atime;
3977			tmp_atime = zpl_inode_get_atime(ip);
3978			ZFS_TIME_ENCODE(&tmp_atime, atime);
3979			mutex_enter(&zp->z_lock);
3980			(void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
3981			    (void *)&atime, sizeof (atime), tx);
3982			zp->z_atime_dirty = B_FALSE;
3983			mutex_exit(&zp->z_lock);
3984			dmu_tx_commit(tx);
3985		}
3986	}
3987
3988	zfs_zinactive(zp);
3989	if (need_unlock)
3990		rw_exit(&zfsvfs->z_teardown_inactive_lock);
3991}
3992
3993/*
3994 * Fill pages with data from the disk.
3995 */
3996static int
3997zfs_fillpage(struct inode *ip, struct page *pp)
3998{
3999	zfsvfs_t *zfsvfs = ITOZSB(ip);
4000	loff_t i_size = i_size_read(ip);
4001	u_offset_t io_off = page_offset(pp);
4002	size_t io_len = PAGE_SIZE;
4003
4004	ASSERT3U(io_off, <, i_size);
4005
4006	if (io_off + io_len > i_size)
4007		io_len = i_size - io_off;
4008
4009	void *va = kmap(pp);
4010	int error = dmu_read(zfsvfs->z_os, ITOZ(ip)->z_id, io_off,
4011	    io_len, va, DMU_READ_PREFETCH);
4012	if (io_len != PAGE_SIZE)
4013		memset((char *)va + io_len, 0, PAGE_SIZE - io_len);
4014	kunmap(pp);
4015
4016	if (error) {
4017		/* convert checksum errors into IO errors */
4018		if (error == ECKSUM)
4019			error = SET_ERROR(EIO);
4020
4021		SetPageError(pp);
4022		ClearPageUptodate(pp);
4023	} else {
4024		ClearPageError(pp);
4025		SetPageUptodate(pp);
4026	}
4027
4028	return (error);
4029}
4030
4031/*
4032 * Uses zfs_fillpage to read data from the file and fill the page.
4033 *
4034 *	IN:	ip	 - inode of file to get data from.
4035 *		pp	 - page to read
4036 *
4037 *	RETURN:	0 on success, error code on failure.
4038 *
4039 * Timestamps:
4040 *	vp - atime updated
4041 */
4042int
4043zfs_getpage(struct inode *ip, struct page *pp)
4044{
4045	zfsvfs_t *zfsvfs = ITOZSB(ip);
4046	znode_t *zp = ITOZ(ip);
4047	int error;
4048
4049	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
4050		return (error);
4051
4052	error = zfs_fillpage(ip, pp);
4053	if (error == 0)
4054		dataset_kstats_update_read_kstats(&zfsvfs->z_kstat, PAGE_SIZE);
4055
4056	zfs_exit(zfsvfs, FTAG);
4057
4058	return (error);
4059}
4060
4061/*
4062 * Check ZFS specific permissions to memory map a section of a file.
4063 *
4064 *	IN:	ip	- inode of the file to mmap
4065 *		off	- file offset
4066 *		addrp	- start address in memory region
4067 *		len	- length of memory region
4068 *		vm_flags- address flags
4069 *
4070 *	RETURN:	0 if success
4071 *		error code if failure
4072 */
4073int
4074zfs_map(struct inode *ip, offset_t off, caddr_t *addrp, size_t len,
4075    unsigned long vm_flags)
4076{
4077	(void) addrp;
4078	znode_t  *zp = ITOZ(ip);
4079	zfsvfs_t *zfsvfs = ITOZSB(ip);
4080	int error;
4081
4082	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
4083		return (error);
4084
4085	if ((vm_flags & VM_WRITE) && (vm_flags & VM_SHARED) &&
4086	    (zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
4087		zfs_exit(zfsvfs, FTAG);
4088		return (SET_ERROR(EPERM));
4089	}
4090
4091	if ((vm_flags & (VM_READ | VM_EXEC)) &&
4092	    (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4093		zfs_exit(zfsvfs, FTAG);
4094		return (SET_ERROR(EACCES));
4095	}
4096
4097	if (off < 0 || len > MAXOFFSET_T - off) {
4098		zfs_exit(zfsvfs, FTAG);
4099		return (SET_ERROR(ENXIO));
4100	}
4101
4102	zfs_exit(zfsvfs, FTAG);
4103	return (0);
4104}
4105
4106/*
4107 * Free or allocate space in a file.  Currently, this function only
4108 * supports the `F_FREESP' command.  However, this command is somewhat
4109 * misnamed, as its functionality includes the ability to allocate as
4110 * well as free space.
4111 *
4112 *	IN:	zp	- znode of file to free data in.
4113 *		cmd	- action to take (only F_FREESP supported).
4114 *		bfp	- section of file to free/alloc.
4115 *		flag	- current file open mode flags.
4116 *		offset	- current file offset.
4117 *		cr	- credentials of caller.
4118 *
4119 *	RETURN:	0 on success, error code on failure.
4120 *
4121 * Timestamps:
4122 *	zp - ctime|mtime updated
4123 */
4124int
4125zfs_space(znode_t *zp, int cmd, flock64_t *bfp, int flag,
4126    offset_t offset, cred_t *cr)
4127{
4128	(void) offset;
4129	zfsvfs_t	*zfsvfs = ZTOZSB(zp);
4130	uint64_t	off, len;
4131	int		error;
4132
4133	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
4134		return (error);
4135
4136	if (cmd != F_FREESP) {
4137		zfs_exit(zfsvfs, FTAG);
4138		return (SET_ERROR(EINVAL));
4139	}
4140
4141	/*
4142	 * Callers might not be able to detect properly that we are read-only,
4143	 * so check it explicitly here.
4144	 */
4145	if (zfs_is_readonly(zfsvfs)) {
4146		zfs_exit(zfsvfs, FTAG);
4147		return (SET_ERROR(EROFS));
4148	}
4149
4150	if (bfp->l_len < 0) {
4151		zfs_exit(zfsvfs, FTAG);
4152		return (SET_ERROR(EINVAL));
4153	}
4154
4155	/*
4156	 * Permissions aren't checked on Solaris because on this OS
4157	 * zfs_space() can only be called with an opened file handle.
4158	 * On Linux we can get here through truncate_range() which
4159	 * operates directly on inodes, so we need to check access rights.
4160	 */
4161	if ((error = zfs_zaccess(zp, ACE_WRITE_DATA, 0, B_FALSE, cr,
4162	    zfs_init_idmap))) {
4163		zfs_exit(zfsvfs, FTAG);
4164		return (error);
4165	}
4166
4167	off = bfp->l_start;
4168	len = bfp->l_len; /* 0 means from off to end of file */
4169
4170	error = zfs_freesp(zp, off, len, flag, TRUE);
4171
4172	zfs_exit(zfsvfs, FTAG);
4173	return (error);
4174}
4175
4176int
4177zfs_fid(struct inode *ip, fid_t *fidp)
4178{
4179	znode_t		*zp = ITOZ(ip);
4180	zfsvfs_t	*zfsvfs = ITOZSB(ip);
4181	uint32_t	gen;
4182	uint64_t	gen64;
4183	uint64_t	object = zp->z_id;
4184	zfid_short_t	*zfid;
4185	int		size, i, error;
4186
4187	if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
4188		return (error);
4189
4190	if (fidp->fid_len < SHORT_FID_LEN) {
4191		fidp->fid_len = SHORT_FID_LEN;
4192		zfs_exit(zfsvfs, FTAG);
4193		return (SET_ERROR(ENOSPC));
4194	}
4195
4196	if ((error = zfs_verify_zp(zp)) != 0) {
4197		zfs_exit(zfsvfs, FTAG);
4198		return (error);
4199	}
4200
4201	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
4202	    &gen64, sizeof (uint64_t))) != 0) {
4203		zfs_exit(zfsvfs, FTAG);
4204		return (error);
4205	}
4206
4207	gen = (uint32_t)gen64;
4208
4209	size = SHORT_FID_LEN;
4210
4211	zfid = (zfid_short_t *)fidp;
4212
4213	zfid->zf_len = size;
4214
4215	for (i = 0; i < sizeof (zfid->zf_object); i++)
4216		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
4217
4218	/* Must have a non-zero generation number to distinguish from .zfs */
4219	if (gen == 0)
4220		gen = 1;
4221	for (i = 0; i < sizeof (zfid->zf_gen); i++)
4222		zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
4223
4224	zfs_exit(zfsvfs, FTAG);
4225	return (0);
4226}
4227
4228#if defined(_KERNEL)
4229EXPORT_SYMBOL(zfs_open);
4230EXPORT_SYMBOL(zfs_close);
4231EXPORT_SYMBOL(zfs_lookup);
4232EXPORT_SYMBOL(zfs_create);
4233EXPORT_SYMBOL(zfs_tmpfile);
4234EXPORT_SYMBOL(zfs_remove);
4235EXPORT_SYMBOL(zfs_mkdir);
4236EXPORT_SYMBOL(zfs_rmdir);
4237EXPORT_SYMBOL(zfs_readdir);
4238EXPORT_SYMBOL(zfs_getattr_fast);
4239EXPORT_SYMBOL(zfs_setattr);
4240EXPORT_SYMBOL(zfs_rename);
4241EXPORT_SYMBOL(zfs_symlink);
4242EXPORT_SYMBOL(zfs_readlink);
4243EXPORT_SYMBOL(zfs_link);
4244EXPORT_SYMBOL(zfs_inactive);
4245EXPORT_SYMBOL(zfs_space);
4246EXPORT_SYMBOL(zfs_fid);
4247EXPORT_SYMBOL(zfs_getpage);
4248EXPORT_SYMBOL(zfs_putpage);
4249EXPORT_SYMBOL(zfs_dirty_inode);
4250EXPORT_SYMBOL(zfs_map);
4251
4252/* CSTYLED */
4253module_param(zfs_delete_blocks, ulong, 0644);
4254MODULE_PARM_DESC(zfs_delete_blocks, "Delete files larger than N blocks async");
4255#endif
4256