1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2013, 2016 by Delphix. All rights reserved.
25 * Copyright 2017 Nexenta Systems, Inc.
26 */
27
28#include <sys/types.h>
29#include <sys/param.h>
30#include <sys/time.h>
31#include <sys/sysmacros.h>
32#include <sys/vfs.h>
33#include <sys/vnode.h>
34#include <sys/file.h>
35#include <sys/kmem.h>
36#include <sys/uio.h>
37#include <sys/pathname.h>
38#include <sys/cmn_err.h>
39#include <sys/errno.h>
40#include <sys/stat.h>
41#include <sys/sunddi.h>
42#include <sys/random.h>
43#include <sys/policy.h>
44#include <sys/zfs_dir.h>
45#include <sys/zfs_acl.h>
46#include <sys/zfs_vnops.h>
47#include <sys/fs/zfs.h>
48#include <sys/zap.h>
49#include <sys/dmu.h>
50#include <sys/atomic.h>
51#include <sys/zfs_ctldir.h>
52#include <sys/zfs_fuid.h>
53#include <sys/sa.h>
54#include <sys/zfs_sa.h>
55#include <sys/dmu_objset.h>
56#include <sys/dsl_dir.h>
57
58/*
59 * zfs_match_find() is used by zfs_dirent_lock() to perform zap lookups
60 * of names after deciding which is the appropriate lookup interface.
61 */
62static int
63zfs_match_find(zfsvfs_t *zfsvfs, znode_t *dzp, const char *name,
64    matchtype_t mt, boolean_t update, int *deflags, pathname_t *rpnp,
65    uint64_t *zoid)
66{
67	boolean_t conflict = B_FALSE;
68	int error;
69
70	if (zfsvfs->z_norm) {
71		size_t bufsz = 0;
72		char *buf = NULL;
73
74		if (rpnp) {
75			buf = rpnp->pn_buf;
76			bufsz = rpnp->pn_bufsize;
77		}
78
79		/*
80		 * In the non-mixed case we only expect there would ever
81		 * be one match, but we need to use the normalizing lookup.
82		 */
83		error = zap_lookup_norm(zfsvfs->z_os, dzp->z_id, name, 8, 1,
84		    zoid, mt, buf, bufsz, &conflict);
85	} else {
86		error = zap_lookup(zfsvfs->z_os, dzp->z_id, name, 8, 1, zoid);
87	}
88
89	/*
90	 * Allow multiple entries provided the first entry is
91	 * the object id.  Non-zpl consumers may safely make
92	 * use of the additional space.
93	 *
94	 * XXX: This should be a feature flag for compatibility
95	 */
96	if (error == EOVERFLOW)
97		error = 0;
98
99	if (zfsvfs->z_norm && !error && deflags)
100		*deflags = conflict ? ED_CASE_CONFLICT : 0;
101
102	*zoid = ZFS_DIRENT_OBJ(*zoid);
103
104	return (error);
105}
106
107/*
108 * Lock a directory entry.  A dirlock on <dzp, name> protects that name
109 * in dzp's directory zap object.  As long as you hold a dirlock, you can
110 * assume two things: (1) dzp cannot be reaped, and (2) no other thread
111 * can change the zap entry for (i.e. link or unlink) this name.
112 *
113 * Input arguments:
114 *	dzp	- znode for directory
115 *	name	- name of entry to lock
116 *	flag	- ZNEW: if the entry already exists, fail with EEXIST.
117 *		  ZEXISTS: if the entry does not exist, fail with ENOENT.
118 *		  ZSHARED: allow concurrent access with other ZSHARED callers.
119 *		  ZXATTR: we want dzp's xattr directory
120 *		  ZCILOOK: On a mixed sensitivity file system,
121 *			   this lookup should be case-insensitive.
122 *		  ZCIEXACT: On a purely case-insensitive file system,
123 *			    this lookup should be case-sensitive.
124 *		  ZRENAMING: we are locking for renaming, force narrow locks
125 *		  ZHAVELOCK: Don't grab the z_name_lock for this call. The
126 *			     current thread already holds it.
127 *
128 * Output arguments:
129 *	zpp	- pointer to the znode for the entry (NULL if there isn't one)
130 *	dlpp	- pointer to the dirlock for this entry (NULL on error)
131 *      direntflags - (case-insensitive lookup only)
132 *		flags if multiple case-sensitive matches exist in directory
133 *      realpnp     - (case-insensitive lookup only)
134 *		actual name matched within the directory
135 *
136 * Return value: 0 on success or errno on failure.
137 *
138 * NOTE: Always checks for, and rejects, '.' and '..'.
139 * NOTE: For case-insensitive file systems we take wide locks (see below),
140 *	 but return znode pointers to a single match.
141 */
142int
143zfs_dirent_lock(zfs_dirlock_t **dlpp, znode_t *dzp, char *name,
144    znode_t **zpp, int flag, int *direntflags, pathname_t *realpnp)
145{
146	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
147	zfs_dirlock_t	*dl;
148	boolean_t	update;
149	matchtype_t	mt = 0;
150	uint64_t	zoid;
151	int		error = 0;
152	int		cmpflags;
153
154	*zpp = NULL;
155	*dlpp = NULL;
156
157	/*
158	 * Verify that we are not trying to lock '.', '..', or '.zfs'
159	 */
160	if ((name[0] == '.' &&
161	    (name[1] == '\0' || (name[1] == '.' && name[2] == '\0'))) ||
162	    (zfs_has_ctldir(dzp) && strcmp(name, ZFS_CTLDIR_NAME) == 0))
163		return (SET_ERROR(EEXIST));
164
165	/*
166	 * Case sensitivity and normalization preferences are set when
167	 * the file system is created.  These are stored in the
168	 * zfsvfs->z_case and zfsvfs->z_norm fields.  These choices
169	 * affect what vnodes can be cached in the DNLC, how we
170	 * perform zap lookups, and the "width" of our dirlocks.
171	 *
172	 * A normal dirlock locks a single name.  Note that with
173	 * normalization a name can be composed multiple ways, but
174	 * when normalized, these names all compare equal.  A wide
175	 * dirlock locks multiple names.  We need these when the file
176	 * system is supporting mixed-mode access.  It is sometimes
177	 * necessary to lock all case permutations of file name at
178	 * once so that simultaneous case-insensitive/case-sensitive
179	 * behaves as rationally as possible.
180	 */
181
182	/*
183	 * When matching we may need to normalize & change case according to
184	 * FS settings.
185	 *
186	 * Note that a normalized match is necessary for a case insensitive
187	 * filesystem when the lookup request is not exact because normalization
188	 * can fold case independent of normalizing code point sequences.
189	 *
190	 * See the table above zfs_dropname().
191	 */
192	if (zfsvfs->z_norm != 0) {
193		mt = MT_NORMALIZE;
194
195		/*
196		 * Determine if the match needs to honor the case specified in
197		 * lookup, and if so keep track of that so that during
198		 * normalization we don't fold case.
199		 */
200		if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE &&
201		    (flag & ZCIEXACT)) ||
202		    (zfsvfs->z_case == ZFS_CASE_MIXED && !(flag & ZCILOOK))) {
203			mt |= MT_MATCH_CASE;
204		}
205	}
206
207	/*
208	 * Only look in or update the DNLC if we are looking for the
209	 * name on a file system that does not require normalization
210	 * or case folding.  We can also look there if we happen to be
211	 * on a non-normalizing, mixed sensitivity file system IF we
212	 * are looking for the exact name.
213	 *
214	 * Maybe can add TO-UPPERed version of name to dnlc in ci-only
215	 * case for performance improvement?
216	 */
217	update = !zfsvfs->z_norm ||
218	    (zfsvfs->z_case == ZFS_CASE_MIXED &&
219	    !(zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER) && !(flag & ZCILOOK));
220
221	/*
222	 * ZRENAMING indicates we are in a situation where we should
223	 * take narrow locks regardless of the file system's
224	 * preferences for normalizing and case folding.  This will
225	 * prevent us deadlocking trying to grab the same wide lock
226	 * twice if the two names happen to be case-insensitive
227	 * matches.
228	 */
229	if (flag & ZRENAMING)
230		cmpflags = 0;
231	else
232		cmpflags = zfsvfs->z_norm;
233
234	/*
235	 * Wait until there are no locks on this name.
236	 *
237	 * Don't grab the lock if it is already held. However, cannot
238	 * have both ZSHARED and ZHAVELOCK together.
239	 */
240	ASSERT(!(flag & ZSHARED) || !(flag & ZHAVELOCK));
241	if (!(flag & ZHAVELOCK))
242		rw_enter(&dzp->z_name_lock, RW_READER);
243
244	mutex_enter(&dzp->z_lock);
245	for (;;) {
246		if (dzp->z_unlinked && !(flag & ZXATTR)) {
247			mutex_exit(&dzp->z_lock);
248			if (!(flag & ZHAVELOCK))
249				rw_exit(&dzp->z_name_lock);
250			return (SET_ERROR(ENOENT));
251		}
252		for (dl = dzp->z_dirlocks; dl != NULL; dl = dl->dl_next) {
253			if ((u8_strcmp(name, dl->dl_name, 0, cmpflags,
254			    U8_UNICODE_LATEST, &error) == 0) || error != 0)
255				break;
256		}
257		if (error != 0) {
258			mutex_exit(&dzp->z_lock);
259			if (!(flag & ZHAVELOCK))
260				rw_exit(&dzp->z_name_lock);
261			return (SET_ERROR(ENOENT));
262		}
263		if (dl == NULL)	{
264			/*
265			 * Allocate a new dirlock and add it to the list.
266			 */
267			dl = kmem_alloc(sizeof (zfs_dirlock_t), KM_SLEEP);
268			cv_init(&dl->dl_cv, NULL, CV_DEFAULT, NULL);
269			dl->dl_name = name;
270			dl->dl_sharecnt = 0;
271			dl->dl_namelock = 0;
272			dl->dl_namesize = 0;
273			dl->dl_dzp = dzp;
274			dl->dl_next = dzp->z_dirlocks;
275			dzp->z_dirlocks = dl;
276			break;
277		}
278		if ((flag & ZSHARED) && dl->dl_sharecnt != 0)
279			break;
280		cv_wait(&dl->dl_cv, &dzp->z_lock);
281	}
282
283	/*
284	 * If the z_name_lock was NOT held for this dirlock record it.
285	 */
286	if (flag & ZHAVELOCK)
287		dl->dl_namelock = 1;
288
289	if ((flag & ZSHARED) && ++dl->dl_sharecnt > 1 && dl->dl_namesize == 0) {
290		/*
291		 * We're the second shared reference to dl.  Make a copy of
292		 * dl_name in case the first thread goes away before we do.
293		 * Note that we initialize the new name before storing its
294		 * pointer into dl_name, because the first thread may load
295		 * dl->dl_name at any time.  It'll either see the old value,
296		 * which belongs to it, or the new shared copy; either is OK.
297		 */
298		dl->dl_namesize = strlen(dl->dl_name) + 1;
299		name = kmem_alloc(dl->dl_namesize, KM_SLEEP);
300		memcpy(name, dl->dl_name, dl->dl_namesize);
301		dl->dl_name = name;
302	}
303
304	mutex_exit(&dzp->z_lock);
305
306	/*
307	 * We have a dirlock on the name.  (Note that it is the dirlock,
308	 * not the dzp's z_lock, that protects the name in the zap object.)
309	 * See if there's an object by this name; if so, put a hold on it.
310	 */
311	if (flag & ZXATTR) {
312		error = sa_lookup(dzp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), &zoid,
313		    sizeof (zoid));
314		if (error == 0)
315			error = (zoid == 0 ? SET_ERROR(ENOENT) : 0);
316	} else {
317		error = zfs_match_find(zfsvfs, dzp, name, mt,
318		    update, direntflags, realpnp, &zoid);
319	}
320	if (error) {
321		if (error != ENOENT || (flag & ZEXISTS)) {
322			zfs_dirent_unlock(dl);
323			return (error);
324		}
325	} else {
326		if (flag & ZNEW) {
327			zfs_dirent_unlock(dl);
328			return (SET_ERROR(EEXIST));
329		}
330		error = zfs_zget(zfsvfs, zoid, zpp);
331		if (error) {
332			zfs_dirent_unlock(dl);
333			return (error);
334		}
335	}
336
337	*dlpp = dl;
338
339	return (0);
340}
341
342/*
343 * Unlock this directory entry and wake anyone who was waiting for it.
344 */
345void
346zfs_dirent_unlock(zfs_dirlock_t *dl)
347{
348	znode_t *dzp = dl->dl_dzp;
349	zfs_dirlock_t **prev_dl, *cur_dl;
350
351	mutex_enter(&dzp->z_lock);
352
353	if (!dl->dl_namelock)
354		rw_exit(&dzp->z_name_lock);
355
356	if (dl->dl_sharecnt > 1) {
357		dl->dl_sharecnt--;
358		mutex_exit(&dzp->z_lock);
359		return;
360	}
361	prev_dl = &dzp->z_dirlocks;
362	while ((cur_dl = *prev_dl) != dl)
363		prev_dl = &cur_dl->dl_next;
364	*prev_dl = dl->dl_next;
365	cv_broadcast(&dl->dl_cv);
366	mutex_exit(&dzp->z_lock);
367
368	if (dl->dl_namesize != 0)
369		kmem_free(dl->dl_name, dl->dl_namesize);
370	cv_destroy(&dl->dl_cv);
371	kmem_free(dl, sizeof (*dl));
372}
373
374/*
375 * Look up an entry in a directory.
376 *
377 * NOTE: '.' and '..' are handled as special cases because
378 *	no directory entries are actually stored for them.  If this is
379 *	the root of a filesystem, then '.zfs' is also treated as a
380 *	special pseudo-directory.
381 */
382int
383zfs_dirlook(znode_t *dzp, char *name, znode_t **zpp, int flags,
384    int *deflg, pathname_t *rpnp)
385{
386	zfs_dirlock_t *dl;
387	znode_t *zp;
388	struct inode *ip;
389	int error = 0;
390	uint64_t parent;
391
392	if (name[0] == 0 || (name[0] == '.' && name[1] == 0)) {
393		*zpp = dzp;
394		zhold(*zpp);
395	} else if (name[0] == '.' && name[1] == '.' && name[2] == 0) {
396		zfsvfs_t *zfsvfs = ZTOZSB(dzp);
397
398		/*
399		 * If we are a snapshot mounted under .zfs, return
400		 * the inode pointer for the snapshot directory.
401		 */
402		if ((error = sa_lookup(dzp->z_sa_hdl,
403		    SA_ZPL_PARENT(zfsvfs), &parent, sizeof (parent))) != 0)
404			return (error);
405
406		if (parent == dzp->z_id && zfsvfs->z_parent != zfsvfs) {
407			error = zfsctl_root_lookup(zfsvfs->z_parent->z_ctldir,
408			    "snapshot", &ip, 0, kcred, NULL, NULL);
409			*zpp = ITOZ(ip);
410			return (error);
411		}
412		rw_enter(&dzp->z_parent_lock, RW_READER);
413		error = zfs_zget(zfsvfs, parent, &zp);
414		if (error == 0)
415			*zpp = zp;
416		rw_exit(&dzp->z_parent_lock);
417	} else if (zfs_has_ctldir(dzp) && strcmp(name, ZFS_CTLDIR_NAME) == 0) {
418		ip = zfsctl_root(dzp);
419		*zpp = ITOZ(ip);
420	} else {
421		int zf;
422
423		zf = ZEXISTS | ZSHARED;
424		if (flags & FIGNORECASE)
425			zf |= ZCILOOK;
426
427		error = zfs_dirent_lock(&dl, dzp, name, &zp, zf, deflg, rpnp);
428		if (error == 0) {
429			*zpp = zp;
430			zfs_dirent_unlock(dl);
431			dzp->z_zn_prefetch = B_TRUE; /* enable prefetching */
432		}
433		rpnp = NULL;
434	}
435
436	if ((flags & FIGNORECASE) && rpnp && !error)
437		(void) strlcpy(rpnp->pn_buf, name, rpnp->pn_bufsize);
438
439	return (error);
440}
441
442/*
443 * unlinked Set (formerly known as the "delete queue") Error Handling
444 *
445 * When dealing with the unlinked set, we dmu_tx_hold_zap(), but we
446 * don't specify the name of the entry that we will be manipulating.  We
447 * also fib and say that we won't be adding any new entries to the
448 * unlinked set, even though we might (this is to lower the minimum file
449 * size that can be deleted in a full filesystem).  So on the small
450 * chance that the nlink list is using a fat zap (ie. has more than
451 * 2000 entries), we *may* not pre-read a block that's needed.
452 * Therefore it is remotely possible for some of the assertions
453 * regarding the unlinked set below to fail due to i/o error.  On a
454 * nondebug system, this will result in the space being leaked.
455 */
456void
457zfs_unlinked_add(znode_t *zp, dmu_tx_t *tx)
458{
459	zfsvfs_t *zfsvfs = ZTOZSB(zp);
460
461	ASSERT(zp->z_unlinked);
462	ASSERT(ZTOI(zp)->i_nlink == 0);
463
464	VERIFY3U(0, ==,
465	    zap_add_int(zfsvfs->z_os, zfsvfs->z_unlinkedobj, zp->z_id, tx));
466
467	dataset_kstats_update_nunlinks_kstat(&zfsvfs->z_kstat, 1);
468}
469
470/*
471 * Clean up any znodes that had no links when we either crashed or
472 * (force) umounted the file system.
473 */
474static void
475zfs_unlinked_drain_task(void *arg)
476{
477	zfsvfs_t *zfsvfs = arg;
478	zap_cursor_t	zc;
479	zap_attribute_t zap;
480	dmu_object_info_t doi;
481	znode_t		*zp;
482	int		error;
483
484	ASSERT3B(zfsvfs->z_draining, ==, B_TRUE);
485
486	/*
487	 * Iterate over the contents of the unlinked set.
488	 */
489	for (zap_cursor_init(&zc, zfsvfs->z_os, zfsvfs->z_unlinkedobj);
490	    zap_cursor_retrieve(&zc, &zap) == 0 && !zfsvfs->z_drain_cancel;
491	    zap_cursor_advance(&zc)) {
492
493		/*
494		 * See what kind of object we have in list
495		 */
496
497		error = dmu_object_info(zfsvfs->z_os,
498		    zap.za_first_integer, &doi);
499		if (error != 0)
500			continue;
501
502		ASSERT((doi.doi_type == DMU_OT_PLAIN_FILE_CONTENTS) ||
503		    (doi.doi_type == DMU_OT_DIRECTORY_CONTENTS));
504		/*
505		 * We need to re-mark these list entries for deletion,
506		 * so we pull them back into core and set zp->z_unlinked.
507		 */
508		error = zfs_zget(zfsvfs, zap.za_first_integer, &zp);
509
510		/*
511		 * We may pick up znodes that are already marked for deletion.
512		 * This could happen during the purge of an extended attribute
513		 * directory.  All we need to do is skip over them, since they
514		 * are already in the system marked z_unlinked.
515		 */
516		if (error != 0)
517			continue;
518
519		zp->z_unlinked = B_TRUE;
520
521		/*
522		 * zrele() decrements the znode's ref count and may cause
523		 * it to be synchronously freed. We interrupt freeing
524		 * of this znode by checking the return value of
525		 * dmu_objset_zfs_unmounting() in dmu_free_long_range()
526		 * when an unmount is requested.
527		 */
528		zrele(zp);
529		ASSERT3B(zfsvfs->z_unmounted, ==, B_FALSE);
530	}
531	zap_cursor_fini(&zc);
532
533	zfsvfs->z_draining = B_FALSE;
534	zfsvfs->z_drain_task = TASKQID_INVALID;
535}
536
537/*
538 * Sets z_draining then tries to dispatch async unlinked drain.
539 * If that fails executes synchronous unlinked drain.
540 */
541void
542zfs_unlinked_drain(zfsvfs_t *zfsvfs)
543{
544	ASSERT3B(zfsvfs->z_unmounted, ==, B_FALSE);
545	ASSERT3B(zfsvfs->z_draining, ==, B_FALSE);
546
547	zfsvfs->z_draining = B_TRUE;
548	zfsvfs->z_drain_cancel = B_FALSE;
549
550	zfsvfs->z_drain_task = taskq_dispatch(
551	    dsl_pool_unlinked_drain_taskq(dmu_objset_pool(zfsvfs->z_os)),
552	    zfs_unlinked_drain_task, zfsvfs, TQ_SLEEP);
553	if (zfsvfs->z_drain_task == TASKQID_INVALID) {
554		zfs_dbgmsg("async zfs_unlinked_drain dispatch failed");
555		zfs_unlinked_drain_task(zfsvfs);
556	}
557}
558
559/*
560 * Wait for the unlinked drain taskq task to stop. This will interrupt the
561 * unlinked set processing if it is in progress.
562 */
563void
564zfs_unlinked_drain_stop_wait(zfsvfs_t *zfsvfs)
565{
566	ASSERT3B(zfsvfs->z_unmounted, ==, B_FALSE);
567
568	if (zfsvfs->z_draining) {
569		zfsvfs->z_drain_cancel = B_TRUE;
570		taskq_cancel_id(dsl_pool_unlinked_drain_taskq(
571		    dmu_objset_pool(zfsvfs->z_os)), zfsvfs->z_drain_task);
572		zfsvfs->z_drain_task = TASKQID_INVALID;
573		zfsvfs->z_draining = B_FALSE;
574	}
575}
576
577/*
578 * Delete the entire contents of a directory.  Return a count
579 * of the number of entries that could not be deleted. If we encounter
580 * an error, return a count of at least one so that the directory stays
581 * in the unlinked set.
582 *
583 * NOTE: this function assumes that the directory is inactive,
584 *	so there is no need to lock its entries before deletion.
585 *	Also, it assumes the directory contents is *only* regular
586 *	files.
587 */
588static int
589zfs_purgedir(znode_t *dzp)
590{
591	zap_cursor_t	zc;
592	zap_attribute_t	zap;
593	znode_t		*xzp;
594	dmu_tx_t	*tx;
595	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
596	zfs_dirlock_t	dl;
597	int skipped = 0;
598	int error;
599
600	for (zap_cursor_init(&zc, zfsvfs->z_os, dzp->z_id);
601	    (error = zap_cursor_retrieve(&zc, &zap)) == 0;
602	    zap_cursor_advance(&zc)) {
603		error = zfs_zget(zfsvfs,
604		    ZFS_DIRENT_OBJ(zap.za_first_integer), &xzp);
605		if (error) {
606			skipped += 1;
607			continue;
608		}
609
610		ASSERT(S_ISREG(ZTOI(xzp)->i_mode) ||
611		    S_ISLNK(ZTOI(xzp)->i_mode));
612
613		tx = dmu_tx_create(zfsvfs->z_os);
614		dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
615		dmu_tx_hold_zap(tx, dzp->z_id, FALSE, zap.za_name);
616		dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
617		dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
618		/* Is this really needed ? */
619		zfs_sa_upgrade_txholds(tx, xzp);
620		dmu_tx_mark_netfree(tx);
621		error = dmu_tx_assign(tx, TXG_WAIT);
622		if (error) {
623			dmu_tx_abort(tx);
624			zfs_zrele_async(xzp);
625			skipped += 1;
626			continue;
627		}
628		memset(&dl, 0, sizeof (dl));
629		dl.dl_dzp = dzp;
630		dl.dl_name = zap.za_name;
631
632		error = zfs_link_destroy(&dl, xzp, tx, 0, NULL);
633		if (error)
634			skipped += 1;
635		dmu_tx_commit(tx);
636
637		zfs_zrele_async(xzp);
638	}
639	zap_cursor_fini(&zc);
640	if (error != ENOENT)
641		skipped += 1;
642	return (skipped);
643}
644
645void
646zfs_rmnode(znode_t *zp)
647{
648	zfsvfs_t	*zfsvfs = ZTOZSB(zp);
649	objset_t	*os = zfsvfs->z_os;
650	znode_t		*xzp = NULL;
651	dmu_tx_t	*tx;
652	znode_hold_t	*zh;
653	uint64_t	z_id = zp->z_id;
654	uint64_t	acl_obj;
655	uint64_t	xattr_obj;
656	uint64_t	links;
657	int		error;
658
659	ASSERT(ZTOI(zp)->i_nlink == 0);
660	ASSERT(atomic_read(&ZTOI(zp)->i_count) == 0);
661
662	/*
663	 * If this is an attribute directory, purge its contents.
664	 */
665	if (S_ISDIR(ZTOI(zp)->i_mode) && (zp->z_pflags & ZFS_XATTR)) {
666		if (zfs_purgedir(zp) != 0) {
667			/*
668			 * Not enough space to delete some xattrs.
669			 * Leave it in the unlinked set.
670			 */
671			zh = zfs_znode_hold_enter(zfsvfs, z_id);
672			zfs_znode_dmu_fini(zp);
673			zfs_znode_hold_exit(zfsvfs, zh);
674			return;
675		}
676	}
677
678	/*
679	 * Free up all the data in the file.  We don't do this for directories
680	 * because we need truncate and remove to be in the same tx, like in
681	 * zfs_znode_delete(). Otherwise, if we crash here we'll end up with
682	 * an inconsistent truncated zap object in the delete queue.  Note a
683	 * truncated file is harmless since it only contains user data.
684	 */
685	if (S_ISREG(ZTOI(zp)->i_mode)) {
686		error = dmu_free_long_range(os, zp->z_id, 0, DMU_OBJECT_END);
687		if (error) {
688			/*
689			 * Not enough space or we were interrupted by unmount.
690			 * Leave the file in the unlinked set.
691			 */
692			zh = zfs_znode_hold_enter(zfsvfs, z_id);
693			zfs_znode_dmu_fini(zp);
694			zfs_znode_hold_exit(zfsvfs, zh);
695			return;
696		}
697	}
698
699	/*
700	 * If the file has extended attributes, we're going to unlink
701	 * the xattr dir.
702	 */
703	error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
704	    &xattr_obj, sizeof (xattr_obj));
705	if (error == 0 && xattr_obj) {
706		error = zfs_zget(zfsvfs, xattr_obj, &xzp);
707		ASSERT(error == 0);
708	}
709
710	acl_obj = zfs_external_acl(zp);
711
712	/*
713	 * Set up the final transaction.
714	 */
715	tx = dmu_tx_create(os);
716	dmu_tx_hold_free(tx, zp->z_id, 0, DMU_OBJECT_END);
717	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
718	if (xzp) {
719		dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, TRUE, NULL);
720		dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
721	}
722	if (acl_obj)
723		dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
724
725	zfs_sa_upgrade_txholds(tx, zp);
726	error = dmu_tx_assign(tx, TXG_WAIT);
727	if (error) {
728		/*
729		 * Not enough space to delete the file.  Leave it in the
730		 * unlinked set, leaking it until the fs is remounted (at
731		 * which point we'll call zfs_unlinked_drain() to process it).
732		 */
733		dmu_tx_abort(tx);
734		zh = zfs_znode_hold_enter(zfsvfs, z_id);
735		zfs_znode_dmu_fini(zp);
736		zfs_znode_hold_exit(zfsvfs, zh);
737		goto out;
738	}
739
740	if (xzp) {
741		ASSERT(error == 0);
742		mutex_enter(&xzp->z_lock);
743		xzp->z_unlinked = B_TRUE;	/* mark xzp for deletion */
744		clear_nlink(ZTOI(xzp));		/* no more links to it */
745		links = 0;
746		VERIFY(0 == sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
747		    &links, sizeof (links), tx));
748		mutex_exit(&xzp->z_lock);
749		zfs_unlinked_add(xzp, tx);
750	}
751
752	mutex_enter(&os->os_dsl_dataset->ds_dir->dd_activity_lock);
753
754	/*
755	 * Remove this znode from the unlinked set.  If a has rollback has
756	 * occurred while a file is open and unlinked.  Then when the file
757	 * is closed post rollback it will not exist in the rolled back
758	 * version of the unlinked object.
759	 */
760	error = zap_remove_int(zfsvfs->z_os, zfsvfs->z_unlinkedobj,
761	    zp->z_id, tx);
762	VERIFY(error == 0 || error == ENOENT);
763
764	uint64_t count;
765	if (zap_count(os, zfsvfs->z_unlinkedobj, &count) == 0 && count == 0) {
766		cv_broadcast(&os->os_dsl_dataset->ds_dir->dd_activity_cv);
767	}
768
769	mutex_exit(&os->os_dsl_dataset->ds_dir->dd_activity_lock);
770
771	dataset_kstats_update_nunlinked_kstat(&zfsvfs->z_kstat, 1);
772
773	zfs_znode_delete(zp, tx);
774
775	dmu_tx_commit(tx);
776out:
777	if (xzp)
778		zfs_zrele_async(xzp);
779}
780
781static uint64_t
782zfs_dirent(znode_t *zp, uint64_t mode)
783{
784	uint64_t de = zp->z_id;
785
786	if (ZTOZSB(zp)->z_version >= ZPL_VERSION_DIRENT_TYPE)
787		de |= IFTODT(mode) << 60;
788	return (de);
789}
790
791/*
792 * Link zp into dl.  Can fail in the following cases :
793 * - if zp has been unlinked.
794 * - if the number of entries with the same hash (aka. colliding entries)
795 *    exceed the capacity of a leaf-block of fatzap and splitting of the
796 *    leaf-block does not help.
797 */
798int
799zfs_link_create(zfs_dirlock_t *dl, znode_t *zp, dmu_tx_t *tx, int flag)
800{
801	znode_t *dzp = dl->dl_dzp;
802	zfsvfs_t *zfsvfs = ZTOZSB(zp);
803	uint64_t value;
804	int zp_is_dir = S_ISDIR(ZTOI(zp)->i_mode);
805	sa_bulk_attr_t bulk[5];
806	uint64_t mtime[2], ctime[2];
807	uint64_t links;
808	int count = 0;
809	int error;
810
811	mutex_enter(&zp->z_lock);
812
813	if (!(flag & ZRENAMING)) {
814		if (zp->z_unlinked) {	/* no new links to unlinked zp */
815			ASSERT(!(flag & (ZNEW | ZEXISTS)));
816			mutex_exit(&zp->z_lock);
817			return (SET_ERROR(ENOENT));
818		}
819		if (!(flag & ZNEW)) {
820			/*
821			 * ZNEW nodes come from zfs_mknode() where the link
822			 * count has already been initialised
823			 */
824			inc_nlink(ZTOI(zp));
825			links = ZTOI(zp)->i_nlink;
826			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs),
827			    NULL, &links, sizeof (links));
828		}
829	}
830
831	value = zfs_dirent(zp, zp->z_mode);
832	error = zap_add(ZTOZSB(zp)->z_os, dzp->z_id, dl->dl_name, 8, 1,
833	    &value, tx);
834
835	/*
836	 * zap_add could fail to add the entry if it exceeds the capacity of the
837	 * leaf-block and zap_leaf_split() failed to help.
838	 * The caller of this routine is responsible for failing the transaction
839	 * which will rollback the SA updates done above.
840	 */
841	if (error != 0) {
842		if (!(flag & ZRENAMING) && !(flag & ZNEW))
843			drop_nlink(ZTOI(zp));
844		mutex_exit(&zp->z_lock);
845		return (error);
846	}
847
848	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PARENT(zfsvfs), NULL,
849	    &dzp->z_id, sizeof (dzp->z_id));
850	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
851	    &zp->z_pflags, sizeof (zp->z_pflags));
852
853	if (!(flag & ZNEW)) {
854		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
855		    ctime, sizeof (ctime));
856		zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime,
857		    ctime);
858	}
859	error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
860	ASSERT(error == 0);
861
862	mutex_exit(&zp->z_lock);
863
864	mutex_enter(&dzp->z_lock);
865	dzp->z_size++;
866	if (zp_is_dir)
867		inc_nlink(ZTOI(dzp));
868	links = ZTOI(dzp)->i_nlink;
869	count = 0;
870	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
871	    &dzp->z_size, sizeof (dzp->z_size));
872	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL,
873	    &links, sizeof (links));
874	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
875	    mtime, sizeof (mtime));
876	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
877	    ctime, sizeof (ctime));
878	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
879	    &dzp->z_pflags, sizeof (dzp->z_pflags));
880	zfs_tstamp_update_setup(dzp, CONTENT_MODIFIED, mtime, ctime);
881	error = sa_bulk_update(dzp->z_sa_hdl, bulk, count, tx);
882	ASSERT(error == 0);
883	mutex_exit(&dzp->z_lock);
884
885	return (0);
886}
887
888/*
889 * The match type in the code for this function should conform to:
890 *
891 * ------------------------------------------------------------------------
892 * fs type  | z_norm      | lookup type | match type
893 * ---------|-------------|-------------|----------------------------------
894 * CS !norm | 0           |           0 | 0 (exact)
895 * CS  norm | formX       |           0 | MT_NORMALIZE
896 * CI !norm | upper       |   !ZCIEXACT | MT_NORMALIZE
897 * CI !norm | upper       |    ZCIEXACT | MT_NORMALIZE | MT_MATCH_CASE
898 * CI  norm | upper|formX |   !ZCIEXACT | MT_NORMALIZE
899 * CI  norm | upper|formX |    ZCIEXACT | MT_NORMALIZE | MT_MATCH_CASE
900 * CM !norm | upper       |    !ZCILOOK | MT_NORMALIZE | MT_MATCH_CASE
901 * CM !norm | upper       |     ZCILOOK | MT_NORMALIZE
902 * CM  norm | upper|formX |    !ZCILOOK | MT_NORMALIZE | MT_MATCH_CASE
903 * CM  norm | upper|formX |     ZCILOOK | MT_NORMALIZE
904 *
905 * Abbreviations:
906 *    CS = Case Sensitive, CI = Case Insensitive, CM = Case Mixed
907 *    upper = case folding set by fs type on creation (U8_TEXTPREP_TOUPPER)
908 *    formX = unicode normalization form set on fs creation
909 */
910static int
911zfs_dropname(zfs_dirlock_t *dl, znode_t *zp, znode_t *dzp, dmu_tx_t *tx,
912    int flag)
913{
914	int error;
915
916	if (ZTOZSB(zp)->z_norm) {
917		matchtype_t mt = MT_NORMALIZE;
918
919		if ((ZTOZSB(zp)->z_case == ZFS_CASE_INSENSITIVE &&
920		    (flag & ZCIEXACT)) ||
921		    (ZTOZSB(zp)->z_case == ZFS_CASE_MIXED &&
922		    !(flag & ZCILOOK))) {
923			mt |= MT_MATCH_CASE;
924		}
925
926		error = zap_remove_norm(ZTOZSB(zp)->z_os, dzp->z_id,
927		    dl->dl_name, mt, tx);
928	} else {
929		error = zap_remove(ZTOZSB(zp)->z_os, dzp->z_id, dl->dl_name,
930		    tx);
931	}
932
933	return (error);
934}
935
936static int
937zfs_drop_nlink_locked(znode_t *zp, dmu_tx_t *tx, boolean_t *unlinkedp)
938{
939	zfsvfs_t	*zfsvfs = ZTOZSB(zp);
940	int		zp_is_dir = S_ISDIR(ZTOI(zp)->i_mode);
941	boolean_t	unlinked = B_FALSE;
942	sa_bulk_attr_t	bulk[3];
943	uint64_t	mtime[2], ctime[2];
944	uint64_t	links;
945	int		count = 0;
946	int		error;
947
948	if (zp_is_dir && !zfs_dirempty(zp))
949		return (SET_ERROR(ENOTEMPTY));
950
951	if (ZTOI(zp)->i_nlink <= zp_is_dir) {
952		zfs_panic_recover("zfs: link count on %lu is %u, "
953		    "should be at least %u", zp->z_id,
954		    (int)ZTOI(zp)->i_nlink, zp_is_dir + 1);
955		set_nlink(ZTOI(zp), zp_is_dir + 1);
956	}
957	drop_nlink(ZTOI(zp));
958	if (ZTOI(zp)->i_nlink == zp_is_dir) {
959		zp->z_unlinked = B_TRUE;
960		clear_nlink(ZTOI(zp));
961		unlinked = B_TRUE;
962	} else {
963		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs),
964		    NULL, &ctime, sizeof (ctime));
965		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs),
966		    NULL, &zp->z_pflags, sizeof (zp->z_pflags));
967		zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime,
968		    ctime);
969	}
970	links = ZTOI(zp)->i_nlink;
971	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs),
972	    NULL, &links, sizeof (links));
973	error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
974	ASSERT3U(error, ==, 0);
975
976	if (unlinkedp != NULL)
977		*unlinkedp = unlinked;
978	else if (unlinked)
979		zfs_unlinked_add(zp, tx);
980
981	return (0);
982}
983
984/*
985 * Forcefully drop an nlink reference from (zp) and mark it for deletion if it
986 * was the last link. This *must* only be done to znodes which have already
987 * been zfs_link_destroy()'d with ZRENAMING. This is explicitly only used in
988 * the error path of zfs_rename(), where we have to correct the nlink count if
989 * we failed to link the target as well as failing to re-link the original
990 * znodes.
991 */
992int
993zfs_drop_nlink(znode_t *zp, dmu_tx_t *tx, boolean_t *unlinkedp)
994{
995	int error;
996
997	mutex_enter(&zp->z_lock);
998	error = zfs_drop_nlink_locked(zp, tx, unlinkedp);
999	mutex_exit(&zp->z_lock);
1000
1001	return (error);
1002}
1003
1004/*
1005 * Unlink zp from dl, and mark zp for deletion if this was the last link. Can
1006 * fail if zp is a mount point (EBUSY) or a non-empty directory (ENOTEMPTY).
1007 * If 'unlinkedp' is NULL, we put unlinked znodes on the unlinked list.
1008 * If it's non-NULL, we use it to indicate whether the znode needs deletion,
1009 * and it's the caller's job to do it.
1010 */
1011int
1012zfs_link_destroy(zfs_dirlock_t *dl, znode_t *zp, dmu_tx_t *tx, int flag,
1013    boolean_t *unlinkedp)
1014{
1015	znode_t *dzp = dl->dl_dzp;
1016	zfsvfs_t *zfsvfs = ZTOZSB(dzp);
1017	int zp_is_dir = S_ISDIR(ZTOI(zp)->i_mode);
1018	boolean_t unlinked = B_FALSE;
1019	sa_bulk_attr_t bulk[5];
1020	uint64_t mtime[2], ctime[2];
1021	uint64_t links;
1022	int count = 0;
1023	int error;
1024
1025	if (!(flag & ZRENAMING)) {
1026		mutex_enter(&zp->z_lock);
1027
1028		if (zp_is_dir && !zfs_dirempty(zp)) {
1029			mutex_exit(&zp->z_lock);
1030			return (SET_ERROR(ENOTEMPTY));
1031		}
1032
1033		/*
1034		 * If we get here, we are going to try to remove the object.
1035		 * First try removing the name from the directory; if that
1036		 * fails, return the error.
1037		 */
1038		error = zfs_dropname(dl, zp, dzp, tx, flag);
1039		if (error != 0) {
1040			mutex_exit(&zp->z_lock);
1041			return (error);
1042		}
1043
1044		/* The only error is !zfs_dirempty() and we checked earlier. */
1045		error = zfs_drop_nlink_locked(zp, tx, &unlinked);
1046		ASSERT3U(error, ==, 0);
1047		mutex_exit(&zp->z_lock);
1048	} else {
1049		error = zfs_dropname(dl, zp, dzp, tx, flag);
1050		if (error != 0)
1051			return (error);
1052	}
1053
1054	mutex_enter(&dzp->z_lock);
1055	dzp->z_size--;		/* one dirent removed */
1056	if (zp_is_dir)
1057		drop_nlink(ZTOI(dzp));	/* ".." link from zp */
1058	links = ZTOI(dzp)->i_nlink;
1059	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs),
1060	    NULL, &links, sizeof (links));
1061	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs),
1062	    NULL, &dzp->z_size, sizeof (dzp->z_size));
1063	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs),
1064	    NULL, ctime, sizeof (ctime));
1065	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs),
1066	    NULL, mtime, sizeof (mtime));
1067	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs),
1068	    NULL, &dzp->z_pflags, sizeof (dzp->z_pflags));
1069	zfs_tstamp_update_setup(dzp, CONTENT_MODIFIED, mtime, ctime);
1070	error = sa_bulk_update(dzp->z_sa_hdl, bulk, count, tx);
1071	ASSERT(error == 0);
1072	mutex_exit(&dzp->z_lock);
1073
1074	if (unlinkedp != NULL)
1075		*unlinkedp = unlinked;
1076	else if (unlinked)
1077		zfs_unlinked_add(zp, tx);
1078
1079	return (0);
1080}
1081
1082/*
1083 * Indicate whether the directory is empty.  Works with or without z_lock
1084 * held, but can only be consider a hint in the latter case.  Returns true
1085 * if only "." and ".." remain and there's no work in progress.
1086 *
1087 * The internal ZAP size, rather than zp->z_size, needs to be checked since
1088 * some consumers (Lustre) do not strictly maintain an accurate SA_ZPL_SIZE.
1089 */
1090boolean_t
1091zfs_dirempty(znode_t *dzp)
1092{
1093	zfsvfs_t *zfsvfs = ZTOZSB(dzp);
1094	uint64_t count;
1095	int error;
1096
1097	if (dzp->z_dirlocks != NULL)
1098		return (B_FALSE);
1099
1100	error = zap_count(zfsvfs->z_os, dzp->z_id, &count);
1101	if (error != 0 || count != 0)
1102		return (B_FALSE);
1103
1104	return (B_TRUE);
1105}
1106
1107int
1108zfs_make_xattrdir(znode_t *zp, vattr_t *vap, znode_t **xzpp, cred_t *cr)
1109{
1110	zfsvfs_t *zfsvfs = ZTOZSB(zp);
1111	znode_t *xzp;
1112	dmu_tx_t *tx;
1113	int error;
1114	zfs_acl_ids_t acl_ids;
1115	boolean_t fuid_dirtied;
1116#ifdef ZFS_DEBUG
1117	uint64_t parent;
1118#endif
1119
1120	*xzpp = NULL;
1121
1122	if ((error = zfs_acl_ids_create(zp, IS_XATTR, vap, cr, NULL,
1123	    &acl_ids, zfs_init_idmap)) != 0)
1124		return (error);
1125	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, zp->z_projid)) {
1126		zfs_acl_ids_free(&acl_ids);
1127		return (SET_ERROR(EDQUOT));
1128	}
1129
1130	tx = dmu_tx_create(zfsvfs->z_os);
1131	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1132	    ZFS_SA_BASE_ATTR_SIZE);
1133	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1134	dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1135	fuid_dirtied = zfsvfs->z_fuid_dirty;
1136	if (fuid_dirtied)
1137		zfs_fuid_txhold(zfsvfs, tx);
1138	error = dmu_tx_assign(tx, TXG_WAIT);
1139	if (error) {
1140		zfs_acl_ids_free(&acl_ids);
1141		dmu_tx_abort(tx);
1142		return (error);
1143	}
1144	zfs_mknode(zp, vap, tx, cr, IS_XATTR, &xzp, &acl_ids);
1145
1146	if (fuid_dirtied)
1147		zfs_fuid_sync(zfsvfs, tx);
1148
1149#ifdef ZFS_DEBUG
1150	error = sa_lookup(xzp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
1151	    &parent, sizeof (parent));
1152	ASSERT(error == 0 && parent == zp->z_id);
1153#endif
1154
1155	VERIFY(0 == sa_update(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), &xzp->z_id,
1156	    sizeof (xzp->z_id), tx));
1157
1158	if (!zp->z_unlinked)
1159		zfs_log_create(zfsvfs->z_log, tx, TX_MKXATTR, zp, xzp, "", NULL,
1160		    acl_ids.z_fuidp, vap);
1161
1162	zfs_acl_ids_free(&acl_ids);
1163	dmu_tx_commit(tx);
1164
1165	*xzpp = xzp;
1166
1167	return (0);
1168}
1169
1170/*
1171 * Return a znode for the extended attribute directory for zp.
1172 * ** If the directory does not already exist, it is created **
1173 *
1174 *	IN:	zp	- znode to obtain attribute directory from
1175 *		cr	- credentials of caller
1176 *		flags	- flags from the VOP_LOOKUP call
1177 *
1178 *	OUT:	xipp	- pointer to extended attribute znode
1179 *
1180 *	RETURN:	0 on success
1181 *		error number on failure
1182 */
1183int
1184zfs_get_xattrdir(znode_t *zp, znode_t **xzpp, cred_t *cr, int flags)
1185{
1186	zfsvfs_t	*zfsvfs = ZTOZSB(zp);
1187	znode_t		*xzp;
1188	zfs_dirlock_t	*dl;
1189	vattr_t		va;
1190	int		error;
1191top:
1192	error = zfs_dirent_lock(&dl, zp, "", &xzp, ZXATTR, NULL, NULL);
1193	if (error)
1194		return (error);
1195
1196	if (xzp != NULL) {
1197		*xzpp = xzp;
1198		zfs_dirent_unlock(dl);
1199		return (0);
1200	}
1201
1202	if (!(flags & CREATE_XATTR_DIR)) {
1203		zfs_dirent_unlock(dl);
1204		return (SET_ERROR(ENOENT));
1205	}
1206
1207	if (zfs_is_readonly(zfsvfs)) {
1208		zfs_dirent_unlock(dl);
1209		return (SET_ERROR(EROFS));
1210	}
1211
1212	/*
1213	 * The ability to 'create' files in an attribute
1214	 * directory comes from the write_xattr permission on the base file.
1215	 *
1216	 * The ability to 'search' an attribute directory requires
1217	 * read_xattr permission on the base file.
1218	 *
1219	 * Once in a directory the ability to read/write attributes
1220	 * is controlled by the permissions on the attribute file.
1221	 */
1222	va.va_mask = ATTR_MODE | ATTR_UID | ATTR_GID;
1223	va.va_mode = S_IFDIR | S_ISVTX | 0777;
1224	zfs_fuid_map_ids(zp, cr, &va.va_uid, &va.va_gid);
1225
1226	va.va_dentry = NULL;
1227	error = zfs_make_xattrdir(zp, &va, xzpp, cr);
1228	zfs_dirent_unlock(dl);
1229
1230	if (error == ERESTART) {
1231		/* NB: we already did dmu_tx_wait() if necessary */
1232		goto top;
1233	}
1234
1235	return (error);
1236}
1237
1238/*
1239 * Decide whether it is okay to remove within a sticky directory.
1240 *
1241 * In sticky directories, write access is not sufficient;
1242 * you can remove entries from a directory only if:
1243 *
1244 *	you own the directory,
1245 *	you own the entry,
1246 *	you have write access to the entry,
1247 *	or you are privileged (checked in secpolicy...).
1248 *
1249 * The function returns 0 if remove access is granted.
1250 */
1251int
1252zfs_sticky_remove_access(znode_t *zdp, znode_t *zp, cred_t *cr)
1253{
1254	uid_t		uid;
1255	uid_t		downer;
1256	uid_t		fowner;
1257	zfsvfs_t	*zfsvfs = ZTOZSB(zdp);
1258
1259	if (zfsvfs->z_replay)
1260		return (0);
1261
1262	if ((zdp->z_mode & S_ISVTX) == 0)
1263		return (0);
1264
1265	downer = zfs_fuid_map_id(zfsvfs, KUID_TO_SUID(ZTOI(zdp)->i_uid),
1266	    cr, ZFS_OWNER);
1267	fowner = zfs_fuid_map_id(zfsvfs, KUID_TO_SUID(ZTOI(zp)->i_uid),
1268	    cr, ZFS_OWNER);
1269
1270	if ((uid = crgetuid(cr)) == downer || uid == fowner ||
1271	    zfs_zaccess(zp, ACE_WRITE_DATA, 0, B_FALSE, cr,
1272	    zfs_init_idmap) == 0)
1273		return (0);
1274	else
1275		return (secpolicy_vnode_remove(cr));
1276}
1277