1/*
2 * ---------------------------------------------------------------------------
3 * Copyright (c) 1998-2007, Brian Gladman, Worcester, UK. All rights reserved.
4 *
5 * LICENSE TERMS
6 *
7 * The free distribution and use of this software is allowed (with or without
8 * changes) provided that:
9 *
10 *  1. source code distributions include the above copyright notice, this
11 *	list of conditions and the following disclaimer;
12 *
13 *  2. binary distributions include the above copyright notice, this list
14 *	of conditions and the following disclaimer in their documentation;
15 *
16 *  3. the name of the copyright holder is not used to endorse products
17 *	built using this software without specific written permission.
18 *
19 * DISCLAIMER
20 *
21 * This software is provided 'as is' with no explicit or implied warranties
22 * in respect of its properties, including, but not limited to, correctness
23 * and/or fitness for purpose.
24 * ---------------------------------------------------------------------------
25 * Issue Date: 20/12/2007
26 *
27 * This file contains the compilation options for AES (Rijndael) and code
28 * that is common across encryption, key scheduling and table generation.
29 *
30 * OPERATION
31 *
32 * These source code files implement the AES algorithm Rijndael designed by
33 * Joan Daemen and Vincent Rijmen. This version is designed for the standard
34 * block size of 16 bytes and for key sizes of 128, 192 and 256 bits (16, 24
35 * and 32 bytes).
36 *
37 * This version is designed for flexibility and speed using operations on
38 * 32-bit words rather than operations on bytes.  It can be compiled with
39 * either big or little endian internal byte order but is faster when the
40 * native byte order for the processor is used.
41 *
42 * THE CIPHER INTERFACE
43 *
44 * The cipher interface is implemented as an array of bytes in which lower
45 * AES bit sequence indexes map to higher numeric significance within bytes.
46 */
47
48/*
49 * OpenSolaris changes
50 * 1. Added __cplusplus and _AESTAB_H header guards
51 * 2. Added header files sys/types.h and aes_impl.h
52 * 3. Added defines for AES_ENCRYPT, AES_DECRYPT, AES_REV_DKS, and ASM_AMD64_C
53 * 4. Moved defines for IS_BIG_ENDIAN, IS_LITTLE_ENDIAN, PLATFORM_BYTE_ORDER
54 *    from brg_endian.h
55 * 5. Undefined VIA_ACE_POSSIBLE and ASSUME_VIA_ACE_PRESENT
56 * 6. Changed uint_8t and uint_32t to uint8_t and uint32_t
57 * 7. Defined aes_sw32 as htonl() for byte swapping
58 * 8. Cstyled and hdrchk code
59 *
60 */
61
62#ifndef _AESOPT_H
63#define	_AESOPT_H
64
65#ifdef	__cplusplus
66extern "C" {
67#endif
68
69#include <sys/zfs_context.h>
70#include <aes/aes_impl.h>
71
72/*  SUPPORT FEATURES */
73#define	AES_ENCRYPT /* if support for encryption is needed */
74#define	AES_DECRYPT /* if support for decryption is needed */
75
76/*  PLATFORM-SPECIFIC FEATURES */
77#define	IS_BIG_ENDIAN		4321 /* byte 0 is most significant (mc68k) */
78#define	IS_LITTLE_ENDIAN	1234 /* byte 0 is least significant (i386) */
79#define	PLATFORM_BYTE_ORDER	IS_LITTLE_ENDIAN
80#define	AES_REV_DKS /* define to reverse decryption key schedule */
81
82
83/*
84 *  CONFIGURATION - THE USE OF DEFINES
85 *	Later in this section there are a number of defines that control the
86 *	operation of the code.  In each section, the purpose of each define is
87 *	explained so that the relevant form can be included or excluded by
88 *	setting either 1's or 0's respectively on the branches of the related
89 *	#if clauses.  The following local defines should not be changed.
90 */
91
92#define	ENCRYPTION_IN_C	1
93#define	DECRYPTION_IN_C	2
94#define	ENC_KEYING_IN_C	4
95#define	DEC_KEYING_IN_C	8
96
97#define	NO_TABLES	0
98#define	ONE_TABLE	1
99#define	FOUR_TABLES	4
100#define	NONE		0
101#define	PARTIAL		1
102#define	FULL		2
103
104/*  --- START OF USER CONFIGURED OPTIONS --- */
105
106/*
107 *  1. BYTE ORDER WITHIN 32 BIT WORDS
108 *
109 *	The fundamental data processing units in Rijndael are 8-bit bytes. The
110 *	input, output and key input are all enumerated arrays of bytes in which
111 *	bytes are numbered starting at zero and increasing to one less than the
112 *	number of bytes in the array in question. This enumeration is only used
113 *	for naming bytes and does not imply any adjacency or order relationship
114 *	from one byte to another. When these inputs and outputs are considered
115 *	as bit sequences, bits 8*n to 8*n+7 of the bit sequence are mapped to
116 *	byte[n] with bit 8n+i in the sequence mapped to bit 7-i within the byte.
117 *	In this implementation bits are numbered from 0 to 7 starting at the
118 *	numerically least significant end of each byte.  Bit n represents 2^n.
119 *
120 *	However, Rijndael can be implemented more efficiently using 32-bit
121 *	words by packing bytes into words so that bytes 4*n to 4*n+3 are placed
122 *	into word[n]. While in principle these bytes can be assembled into words
123 *	in any positions, this implementation only supports the two formats in
124 *	which bytes in adjacent positions within words also have adjacent byte
125 *	numbers. This order is called big-endian if the lowest numbered bytes
126 *	in words have the highest numeric significance and little-endian if the
127 *	opposite applies.
128 *
129 *	This code can work in either order irrespective of the order used by the
130 *	machine on which it runs. Normally the internal byte order will be set
131 *	to the order of the processor on which the code is to be run but this
132 *	define	can be used to reverse this in special situations
133 *
134 *	WARNING: Assembler code versions rely on PLATFORM_BYTE_ORDER being set.
135 *	This define will hence be redefined later (in section 4) if necessary
136 */
137
138#if 1
139#define	ALGORITHM_BYTE_ORDER PLATFORM_BYTE_ORDER
140#elif 0
141#define	ALGORITHM_BYTE_ORDER IS_LITTLE_ENDIAN
142#elif 0
143#define	ALGORITHM_BYTE_ORDER IS_BIG_ENDIAN
144#else
145#error The algorithm byte order is not defined
146#endif
147
148/*  2. VIA ACE SUPPORT */
149
150#if defined(__GNUC__) && defined(__i386__) || \
151	defined(_WIN32) && defined(_M_IX86) && \
152	!(defined(_WIN64) || defined(_WIN32_WCE) || \
153	defined(_MSC_VER) && (_MSC_VER <= 800))
154#define	VIA_ACE_POSSIBLE
155#endif
156
157/*
158 *  Define this option if support for the VIA ACE is required. This uses
159 *  inline assembler instructions and is only implemented for the Microsoft,
160 *  Intel and GCC compilers.  If VIA ACE is known to be present, then defining
161 *  ASSUME_VIA_ACE_PRESENT will remove the ordinary encryption/decryption
162 *  code.  If USE_VIA_ACE_IF_PRESENT is defined then VIA ACE will be used if
163 *  it is detected (both present and enabled) but the normal AES code will
164 *  also be present.
165 *
166 *  When VIA ACE is to be used, all AES encryption contexts MUST be 16 byte
167 *  aligned; other input/output buffers do not need to be 16 byte aligned
168 *  but there are very large performance gains if this can be arranged.
169 *  VIA ACE also requires the decryption key schedule to be in reverse
170 *  order (which later checks below ensure).
171 */
172
173/*  VIA ACE is not used here for OpenSolaris: */
174#undef	VIA_ACE_POSSIBLE
175#undef	ASSUME_VIA_ACE_PRESENT
176
177#if 0 && defined(VIA_ACE_POSSIBLE) && !defined(USE_VIA_ACE_IF_PRESENT)
178#define	USE_VIA_ACE_IF_PRESENT
179#endif
180
181#if 0 && defined(VIA_ACE_POSSIBLE) && !defined(ASSUME_VIA_ACE_PRESENT)
182#define	ASSUME_VIA_ACE_PRESENT
183#endif
184
185
186/*
187 *  3. ASSEMBLER SUPPORT
188 *
189 *	This define (which can be on the command line) enables the use of the
190 *	assembler code routines for encryption, decryption and key scheduling
191 *	as follows:
192 *
193 *	ASM_X86_V1C uses the assembler (aes_x86_v1.asm) with large tables for
194 *		encryption and decryption and but with key scheduling in C
195 *	ASM_X86_V2  uses assembler (aes_x86_v2.asm) with compressed tables for
196 *		encryption, decryption and key scheduling
197 *	ASM_X86_V2C uses assembler (aes_x86_v2.asm) with compressed tables for
198 *		encryption and decryption and but with key scheduling in C
199 *	ASM_AMD64_C uses assembler (aes_amd64.asm) with compressed tables for
200 *		encryption and decryption and but with key scheduling in C
201 *
202 *	Change one 'if 0' below to 'if 1' to select the version or define
203 *	as a compilation option.
204 */
205
206#if 0 && !defined(ASM_X86_V1C)
207#define	ASM_X86_V1C
208#elif 0 && !defined(ASM_X86_V2)
209#define	ASM_X86_V2
210#elif 0 && !defined(ASM_X86_V2C)
211#define	ASM_X86_V2C
212#elif 1 && !defined(ASM_AMD64_C)
213#define	ASM_AMD64_C
214#endif
215
216#if (defined(ASM_X86_V1C) || defined(ASM_X86_V2) || defined(ASM_X86_V2C)) && \
217	!defined(_M_IX86) || defined(ASM_AMD64_C) && !defined(_M_X64) && \
218	!defined(__amd64)
219#error Assembler code is only available for x86 and AMD64 systems
220#endif
221
222/*
223 *  4. FAST INPUT/OUTPUT OPERATIONS.
224 *
225 *	On some machines it is possible to improve speed by transferring the
226 *	bytes in the input and output arrays to and from the internal 32-bit
227 *	variables by addressing these arrays as if they are arrays of 32-bit
228 *	words.  On some machines this will always be possible but there may
229 *	be a large performance penalty if the byte arrays are not aligned on
230 *	the normal word boundaries. On other machines this technique will
231 *	lead to memory access errors when such 32-bit word accesses are not
232 *	properly aligned. The option SAFE_IO avoids such problems but will
233 *	often be slower on those machines that support misaligned access
234 *	(especially so if care is taken to align the input  and output byte
235 *	arrays on 32-bit word boundaries). If SAFE_IO is not defined it is
236 *	assumed that access to byte arrays as if they are arrays of 32-bit
237 *	words will not cause problems when such accesses are misaligned.
238 */
239#if 1 && !defined(_MSC_VER)
240#define	SAFE_IO
241#endif
242
243/*
244 *  5. LOOP UNROLLING
245 *
246 *	The code for encryption and decryption cycles through a number of rounds
247 *	that can be implemented either in a loop or by expanding the code into a
248 *	long sequence of instructions, the latter producing a larger program but
249 *	one that will often be much faster. The latter is called loop unrolling.
250 *	There are also potential speed advantages in expanding two iterations in
251 *	a loop with half the number of iterations, which is called partial loop
252 *	unrolling.  The following options allow partial or full loop unrolling
253 *	to be set independently for encryption and decryption
254 */
255#if 1
256#define	ENC_UNROLL  FULL
257#elif 0
258#define	ENC_UNROLL  PARTIAL
259#else
260#define	ENC_UNROLL  NONE
261#endif
262
263#if 1
264#define	DEC_UNROLL  FULL
265#elif 0
266#define	DEC_UNROLL  PARTIAL
267#else
268#define	DEC_UNROLL  NONE
269#endif
270
271#if 1
272#define	ENC_KS_UNROLL
273#endif
274
275#if 1
276#define	DEC_KS_UNROLL
277#endif
278
279/*
280 *  6. FAST FINITE FIELD OPERATIONS
281 *
282 *	If this section is included, tables are used to provide faster finite
283 *	field arithmetic.  This has no effect if FIXED_TABLES is defined.
284 */
285#if 1
286#define	FF_TABLES
287#endif
288
289/*
290 *  7. INTERNAL STATE VARIABLE FORMAT
291 *
292 *	The internal state of Rijndael is stored in a number of local 32-bit
293 *	word variables which can be defined either as an array or as individual
294 *	names variables. Include this section if you want to store these local
295 *	variables in arrays. Otherwise individual local variables will be used.
296 */
297#if 1
298#define	ARRAYS
299#endif
300
301/*
302 *  8. FIXED OR DYNAMIC TABLES
303 *
304 *	When this section is included the tables used by the code are compiled
305 *	statically into the binary file.  Otherwise the subroutine aes_init()
306 *	must be called to compute them before the code is first used.
307 */
308#if 1 && !(defined(_MSC_VER) && (_MSC_VER <= 800))
309#define	FIXED_TABLES
310#endif
311
312/*
313 *  9. MASKING OR CASTING FROM LONGER VALUES TO BYTES
314 *
315 *	In some systems it is better to mask longer values to extract bytes
316 *	rather than using a cast. This option allows this choice.
317 */
318#if 0
319#define	to_byte(x)  ((uint8_t)(x))
320#else
321#define	to_byte(x)  ((x) & 0xff)
322#endif
323
324/*
325 *  10. TABLE ALIGNMENT
326 *
327 *	On some systems speed will be improved by aligning the AES large lookup
328 *	tables on particular boundaries. This define should be set to a power of
329 *	two giving the desired alignment. It can be left undefined if alignment
330 *	is not needed.  This option is specific to the Microsoft VC++ compiler -
331 *	it seems to sometimes cause trouble for the VC++ version 6 compiler.
332 */
333
334#if 1 && defined(_MSC_VER) && (_MSC_VER >= 1300)
335#define	TABLE_ALIGN 32
336#endif
337
338/*
339 *  11.  REDUCE CODE AND TABLE SIZE
340 *
341 *	This replaces some expanded macros with function calls if AES_ASM_V2 or
342 *	AES_ASM_V2C are defined
343 */
344
345#if 1 && (defined(ASM_X86_V2) || defined(ASM_X86_V2C))
346#define	REDUCE_CODE_SIZE
347#endif
348
349/*
350 *  12. TABLE OPTIONS
351 *
352 *	This cipher proceeds by repeating in a number of cycles known as rounds
353 *	which are implemented by a round function which is optionally be speeded
354 *	up using tables.  The basic tables are 256 32-bit words, with either
355 *	one or four tables being required for each round function depending on
356 *	how much speed is required. Encryption and decryption round functions
357 *	are different and the last encryption and decryption round functions are
358 *	different again making four different round functions in all.
359 *
360 *	This means that:
361 *	1. Normal encryption and decryption rounds can each use either 0, 1
362 *		or 4 tables and table spaces of 0, 1024 or 4096 bytes each.
363 *	2. The last encryption and decryption rounds can also use either 0, 1
364 *		or 4 tables and table spaces of 0, 1024 or 4096 bytes each.
365 *
366 *	Include or exclude the appropriate definitions below to set the number
367 *	of tables used by this implementation.
368 */
369
370#if 1   /* set tables for the normal encryption round */
371#define	ENC_ROUND   FOUR_TABLES
372#elif 0
373#define	ENC_ROUND   ONE_TABLE
374#else
375#define	ENC_ROUND   NO_TABLES
376#endif
377
378#if 1   /* set tables for the last encryption round */
379#define	LAST_ENC_ROUND  FOUR_TABLES
380#elif 0
381#define	LAST_ENC_ROUND  ONE_TABLE
382#else
383#define	LAST_ENC_ROUND  NO_TABLES
384#endif
385
386#if 1   /* set tables for the normal decryption round */
387#define	DEC_ROUND   FOUR_TABLES
388#elif 0
389#define	DEC_ROUND   ONE_TABLE
390#else
391#define	DEC_ROUND   NO_TABLES
392#endif
393
394#if 1   /* set tables for the last decryption round */
395#define	LAST_DEC_ROUND  FOUR_TABLES
396#elif 0
397#define	LAST_DEC_ROUND  ONE_TABLE
398#else
399#define	LAST_DEC_ROUND  NO_TABLES
400#endif
401
402/*
403 *  The decryption key schedule can be speeded up with tables in the same
404 *	way that the round functions can.  Include or exclude the following
405 *	defines to set this requirement.
406 */
407#if 1
408#define	KEY_SCHED   FOUR_TABLES
409#elif 0
410#define	KEY_SCHED   ONE_TABLE
411#else
412#define	KEY_SCHED   NO_TABLES
413#endif
414
415/*  ---- END OF USER CONFIGURED OPTIONS ---- */
416
417/* VIA ACE support is only available for VC++ and GCC */
418
419#if !defined(_MSC_VER) && !defined(__GNUC__)
420#if defined(ASSUME_VIA_ACE_PRESENT)
421#undef ASSUME_VIA_ACE_PRESENT
422#endif
423#if defined(USE_VIA_ACE_IF_PRESENT)
424#undef USE_VIA_ACE_IF_PRESENT
425#endif
426#endif
427
428#if defined(ASSUME_VIA_ACE_PRESENT) && !defined(USE_VIA_ACE_IF_PRESENT)
429#define	USE_VIA_ACE_IF_PRESENT
430#endif
431
432#if defined(USE_VIA_ACE_IF_PRESENT) && !defined(AES_REV_DKS)
433#define	AES_REV_DKS
434#endif
435
436/* Assembler support requires the use of platform byte order */
437
438#if (defined(ASM_X86_V1C) || defined(ASM_X86_V2C) || defined(ASM_AMD64_C)) && \
439	(ALGORITHM_BYTE_ORDER != PLATFORM_BYTE_ORDER)
440#undef  ALGORITHM_BYTE_ORDER
441#define	ALGORITHM_BYTE_ORDER PLATFORM_BYTE_ORDER
442#endif
443
444/*
445 * In this implementation the columns of the state array are each held in
446 *	32-bit words. The state array can be held in various ways: in an array
447 *	of words, in a number of individual word variables or in a number of
448 *	processor registers. The following define maps a variable name x and
449 *	a column number c to the way the state array variable is to be held.
450 *	The first define below maps the state into an array x[c] whereas the
451 *	second form maps the state into a number of individual variables x0,
452 *	x1, etc.  Another form could map individual state columns to machine
453 *	register names.
454 */
455
456#if defined(ARRAYS)
457#define	s(x, c) x[c]
458#else
459#define	s(x, c) x##c
460#endif
461
462/*
463 *  This implementation provides subroutines for encryption, decryption
464 *	and for setting the three key lengths (separately) for encryption
465 *	and decryption. Since not all functions are needed, masks are set
466 *	up here to determine which will be implemented in C
467 */
468
469#if !defined(AES_ENCRYPT)
470#define	EFUNCS_IN_C   0
471#elif defined(ASSUME_VIA_ACE_PRESENT) || defined(ASM_X86_V1C) || \
472	defined(ASM_X86_V2C) || defined(ASM_AMD64_C)
473#define	EFUNCS_IN_C   ENC_KEYING_IN_C
474#elif !defined(ASM_X86_V2)
475#define	EFUNCS_IN_C   (ENCRYPTION_IN_C | ENC_KEYING_IN_C)
476#else
477#define	EFUNCS_IN_C   0
478#endif
479
480#if !defined(AES_DECRYPT)
481#define	DFUNCS_IN_C   0
482#elif defined(ASSUME_VIA_ACE_PRESENT) || defined(ASM_X86_V1C) || \
483	defined(ASM_X86_V2C) || defined(ASM_AMD64_C)
484#define	DFUNCS_IN_C   DEC_KEYING_IN_C
485#elif !defined(ASM_X86_V2)
486#define	DFUNCS_IN_C   (DECRYPTION_IN_C | DEC_KEYING_IN_C)
487#else
488#define	DFUNCS_IN_C   0
489#endif
490
491#define	FUNCS_IN_C  (EFUNCS_IN_C | DFUNCS_IN_C)
492
493/* END OF CONFIGURATION OPTIONS */
494
495/* Disable or report errors on some combinations of options */
496
497#if ENC_ROUND == NO_TABLES && LAST_ENC_ROUND != NO_TABLES
498#undef  LAST_ENC_ROUND
499#define	LAST_ENC_ROUND  NO_TABLES
500#elif ENC_ROUND == ONE_TABLE && LAST_ENC_ROUND == FOUR_TABLES
501#undef  LAST_ENC_ROUND
502#define	LAST_ENC_ROUND  ONE_TABLE
503#endif
504
505#if ENC_ROUND == NO_TABLES && ENC_UNROLL != NONE
506#undef  ENC_UNROLL
507#define	ENC_UNROLL  NONE
508#endif
509
510#if DEC_ROUND == NO_TABLES && LAST_DEC_ROUND != NO_TABLES
511#undef  LAST_DEC_ROUND
512#define	LAST_DEC_ROUND  NO_TABLES
513#elif DEC_ROUND == ONE_TABLE && LAST_DEC_ROUND == FOUR_TABLES
514#undef  LAST_DEC_ROUND
515#define	LAST_DEC_ROUND  ONE_TABLE
516#endif
517
518#if DEC_ROUND == NO_TABLES && DEC_UNROLL != NONE
519#undef  DEC_UNROLL
520#define	DEC_UNROLL  NONE
521#endif
522
523#if (ALGORITHM_BYTE_ORDER == IS_LITTLE_ENDIAN)
524#define	aes_sw32	htonl
525#elif defined(bswap32)
526#define	aes_sw32	bswap32
527#elif defined(bswap_32)
528#define	aes_sw32	bswap_32
529#else
530#define	brot(x, n)  (((uint32_t)(x) << (n)) | ((uint32_t)(x) >> (32 - (n))))
531#define	aes_sw32(x) ((brot((x), 8) & 0x00ff00ff) | (brot((x), 24) & 0xff00ff00))
532#endif
533
534
535/*
536 *	upr(x, n):  rotates bytes within words by n positions, moving bytes to
537 *		higher index positions with wrap around into low positions
538 *	ups(x, n):  moves bytes by n positions to higher index positions in
539 *		words but without wrap around
540 *	bval(x, n): extracts a byte from a word
541 *
542 *	WARNING:   The definitions given here are intended only for use with
543 *		unsigned variables and with shift counts that are compile
544 *		time constants
545 */
546
547#if (ALGORITHM_BYTE_ORDER == IS_LITTLE_ENDIAN)
548#define	upr(x, n)	(((uint32_t)(x) << (8 * (n))) | \
549			((uint32_t)(x) >> (32 - 8 * (n))))
550#define	ups(x, n)	((uint32_t)(x) << (8 * (n)))
551#define	bval(x, n)	to_byte((x) >> (8 * (n)))
552#define	bytes2word(b0, b1, b2, b3)  \
553		(((uint32_t)(b3) << 24) | ((uint32_t)(b2) << 16) | \
554		((uint32_t)(b1) << 8) | (b0))
555#endif
556
557#if (ALGORITHM_BYTE_ORDER == IS_BIG_ENDIAN)
558#define	upr(x, n)	(((uint32_t)(x) >> (8 * (n))) | \
559			((uint32_t)(x) << (32 - 8 * (n))))
560#define	ups(x, n)	((uint32_t)(x) >> (8 * (n)))
561#define	bval(x, n)	to_byte((x) >> (24 - 8 * (n)))
562#define	bytes2word(b0, b1, b2, b3)  \
563		(((uint32_t)(b0) << 24) | ((uint32_t)(b1) << 16) | \
564		((uint32_t)(b2) << 8) | (b3))
565#endif
566
567#if defined(SAFE_IO)
568#define	word_in(x, c)	bytes2word(((const uint8_t *)(x) + 4 * c)[0], \
569				((const uint8_t *)(x) + 4 * c)[1], \
570				((const uint8_t *)(x) + 4 * c)[2], \
571				((const uint8_t *)(x) + 4 * c)[3])
572#define	word_out(x, c, v) { ((uint8_t *)(x) + 4 * c)[0] = bval(v, 0); \
573			((uint8_t *)(x) + 4 * c)[1] = bval(v, 1); \
574			((uint8_t *)(x) + 4 * c)[2] = bval(v, 2); \
575			((uint8_t *)(x) + 4 * c)[3] = bval(v, 3); }
576#elif (ALGORITHM_BYTE_ORDER == PLATFORM_BYTE_ORDER)
577#define	word_in(x, c)	(*((uint32_t *)(x) + (c)))
578#define	word_out(x, c, v) (*((uint32_t *)(x) + (c)) = (v))
579#else
580#define	word_in(x, c)	aes_sw32(*((uint32_t *)(x) + (c)))
581#define	word_out(x, c, v) (*((uint32_t *)(x) + (c)) = aes_sw32(v))
582#endif
583
584/* the finite field modular polynomial and elements */
585
586#define	WPOLY   0x011b
587#define	BPOLY	0x1b
588
589/* multiply four bytes in GF(2^8) by 'x' {02} in parallel */
590
591#define	m1  0x80808080
592#define	m2  0x7f7f7f7f
593#define	gf_mulx(x)  ((((x) & m2) << 1) ^ ((((x) & m1) >> 7) * BPOLY))
594
595/*
596 * The following defines provide alternative definitions of gf_mulx that might
597 * give improved performance if a fast 32-bit multiply is not available. Note
598 * that a temporary variable u needs to be defined where gf_mulx is used.
599 *
600 * #define	gf_mulx(x) (u = (x) & m1, u |= (u >> 1), ((x) & m2) << 1) ^ \
601 *			((u >> 3) | (u >> 6))
602 * #define	m4  (0x01010101 * BPOLY)
603 * #define	gf_mulx(x) (u = (x) & m1, ((x) & m2) << 1) ^ ((u - (u >> 7)) \
604 *			& m4)
605 */
606
607/* Work out which tables are needed for the different options   */
608
609#if defined(ASM_X86_V1C)
610#if defined(ENC_ROUND)
611#undef  ENC_ROUND
612#endif
613#define	ENC_ROUND   FOUR_TABLES
614#if defined(LAST_ENC_ROUND)
615#undef  LAST_ENC_ROUND
616#endif
617#define	LAST_ENC_ROUND  FOUR_TABLES
618#if defined(DEC_ROUND)
619#undef  DEC_ROUND
620#endif
621#define	DEC_ROUND   FOUR_TABLES
622#if defined(LAST_DEC_ROUND)
623#undef  LAST_DEC_ROUND
624#endif
625#define	LAST_DEC_ROUND  FOUR_TABLES
626#if defined(KEY_SCHED)
627#undef  KEY_SCHED
628#define	KEY_SCHED   FOUR_TABLES
629#endif
630#endif
631
632#if (FUNCS_IN_C & ENCRYPTION_IN_C) || defined(ASM_X86_V1C)
633#if ENC_ROUND == ONE_TABLE
634#define	FT1_SET
635#elif ENC_ROUND == FOUR_TABLES
636#define	FT4_SET
637#else
638#define	SBX_SET
639#endif
640#if LAST_ENC_ROUND == ONE_TABLE
641#define	FL1_SET
642#elif LAST_ENC_ROUND == FOUR_TABLES
643#define	FL4_SET
644#elif !defined(SBX_SET)
645#define	SBX_SET
646#endif
647#endif
648
649#if (FUNCS_IN_C & DECRYPTION_IN_C) || defined(ASM_X86_V1C)
650#if DEC_ROUND == ONE_TABLE
651#define	IT1_SET
652#elif DEC_ROUND == FOUR_TABLES
653#define	IT4_SET
654#else
655#define	ISB_SET
656#endif
657#if LAST_DEC_ROUND == ONE_TABLE
658#define	IL1_SET
659#elif LAST_DEC_ROUND == FOUR_TABLES
660#define	IL4_SET
661#elif !defined(ISB_SET)
662#define	ISB_SET
663#endif
664#endif
665
666
667#if !(defined(REDUCE_CODE_SIZE) && (defined(ASM_X86_V2) || \
668	defined(ASM_X86_V2C)))
669#if ((FUNCS_IN_C & ENC_KEYING_IN_C) || (FUNCS_IN_C & DEC_KEYING_IN_C))
670#if KEY_SCHED == ONE_TABLE
671#if !defined(FL1_SET) && !defined(FL4_SET)
672#define	LS1_SET
673#endif
674#elif KEY_SCHED == FOUR_TABLES
675#if !defined(FL4_SET)
676#define	LS4_SET
677#endif
678#elif !defined(SBX_SET)
679#define	SBX_SET
680#endif
681#endif
682#if (FUNCS_IN_C & DEC_KEYING_IN_C)
683#if KEY_SCHED == ONE_TABLE
684#define	IM1_SET
685#elif KEY_SCHED == FOUR_TABLES
686#define	IM4_SET
687#elif !defined(SBX_SET)
688#define	SBX_SET
689#endif
690#endif
691#endif
692
693/* generic definitions of Rijndael macros that use tables */
694
695#define	no_table(x, box, vf, rf, c) bytes2word(\
696	box[bval(vf(x, 0, c), rf(0, c))], \
697	box[bval(vf(x, 1, c), rf(1, c))], \
698	box[bval(vf(x, 2, c), rf(2, c))], \
699	box[bval(vf(x, 3, c), rf(3, c))])
700
701#define	one_table(x, op, tab, vf, rf, c) \
702	(tab[bval(vf(x, 0, c), rf(0, c))] \
703	^ op(tab[bval(vf(x, 1, c), rf(1, c))], 1) \
704	^ op(tab[bval(vf(x, 2, c), rf(2, c))], 2) \
705	^ op(tab[bval(vf(x, 3, c), rf(3, c))], 3))
706
707#define	four_tables(x, tab, vf, rf, c) \
708	(tab[0][bval(vf(x, 0, c), rf(0, c))] \
709	^ tab[1][bval(vf(x, 1, c), rf(1, c))] \
710	^ tab[2][bval(vf(x, 2, c), rf(2, c))] \
711	^ tab[3][bval(vf(x, 3, c), rf(3, c))])
712
713#define	vf1(x, r, c)	(x)
714#define	rf1(r, c)	(r)
715#define	rf2(r, c)	((8+r-c)&3)
716
717/*
718 * Perform forward and inverse column mix operation on four bytes in long word
719 * x in parallel. NOTE: x must be a simple variable, NOT an expression in
720 * these macros.
721 */
722
723#if !(defined(REDUCE_CODE_SIZE) && (defined(ASM_X86_V2) || \
724	defined(ASM_X86_V2C)))
725
726#if defined(FM4_SET)	/* not currently used */
727#define	fwd_mcol(x)	four_tables(x, t_use(f, m), vf1, rf1, 0)
728#elif defined(FM1_SET)	/* not currently used */
729#define	fwd_mcol(x)	one_table(x, upr, t_use(f, m), vf1, rf1, 0)
730#else
731#define	dec_fmvars	uint32_t g2
732#define	fwd_mcol(x)	(g2 = gf_mulx(x), g2 ^ upr((x) ^ g2, 3) ^ \
733				upr((x), 2) ^ upr((x), 1))
734#endif
735
736#if defined(IM4_SET)
737#define	inv_mcol(x)	four_tables(x, t_use(i, m), vf1, rf1, 0)
738#elif defined(IM1_SET)
739#define	inv_mcol(x)	one_table(x, upr, t_use(i, m), vf1, rf1, 0)
740#else
741#define	dec_imvars	uint32_t g2, g4, g9
742#define	inv_mcol(x)	(g2 = gf_mulx(x), g4 = gf_mulx(g2), g9 = \
743				(x) ^ gf_mulx(g4), g4 ^= g9, \
744				(x) ^ g2 ^ g4 ^ upr(g2 ^ g9, 3) ^ \
745				upr(g4, 2) ^ upr(g9, 1))
746#endif
747
748#if defined(FL4_SET)
749#define	ls_box(x, c)	four_tables(x, t_use(f, l), vf1, rf2, c)
750#elif defined(LS4_SET)
751#define	ls_box(x, c)	four_tables(x, t_use(l, s), vf1, rf2, c)
752#elif defined(FL1_SET)
753#define	ls_box(x, c)	one_table(x, upr, t_use(f, l), vf1, rf2, c)
754#elif defined(LS1_SET)
755#define	ls_box(x, c)	one_table(x, upr, t_use(l, s), vf1, rf2, c)
756#else
757#define	ls_box(x, c)	no_table(x, t_use(s, box), vf1, rf2, c)
758#endif
759
760#endif
761
762#if defined(ASM_X86_V1C) && defined(AES_DECRYPT) && !defined(ISB_SET)
763#define	ISB_SET
764#endif
765
766#ifdef	__cplusplus
767}
768#endif
769
770#endif	/* _AESOPT_H */
771