1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25 * Copyright 2017 Nexenta Systems, Inc.
26 */
27
28#ifndef	_SYS_ZAP_H
29#define	_SYS_ZAP_H
30
31/*
32 * ZAP - ZFS Attribute Processor
33 *
34 * The ZAP is a module which sits on top of the DMU (Data Management
35 * Unit) and implements a higher-level storage primitive using DMU
36 * objects.  Its primary consumer is the ZPL (ZFS Posix Layer).
37 *
38 * A "zapobj" is a DMU object which the ZAP uses to stores attributes.
39 * Users should use only zap routines to access a zapobj - they should
40 * not access the DMU object directly using DMU routines.
41 *
42 * The attributes stored in a zapobj are name-value pairs.  The name is
43 * a zero-terminated string of up to ZAP_MAXNAMELEN bytes (including
44 * terminating NULL).  The value is an array of integers, which may be
45 * 1, 2, 4, or 8 bytes long.  The total space used by the array (number
46 * of integers * integer length) can be up to ZAP_MAXVALUELEN bytes.
47 * Note that an 8-byte integer value can be used to store the location
48 * (object number) of another dmu object (which may be itself a zapobj).
49 * Note that you can use a zero-length attribute to store a single bit
50 * of information - the attribute is present or not.
51 *
52 * The ZAP routines are thread-safe.  However, you must observe the
53 * DMU's restriction that a transaction may not be operated on
54 * concurrently.
55 *
56 * Any of the routines that return an int may return an I/O error (EIO
57 * or ECHECKSUM).
58 *
59 *
60 * Implementation / Performance Notes:
61 *
62 * The ZAP is intended to operate most efficiently on attributes with
63 * short (49 bytes or less) names and single 8-byte values, for which
64 * the microzap will be used.  The ZAP should be efficient enough so
65 * that the user does not need to cache these attributes.
66 *
67 * The ZAP's locking scheme makes its routines thread-safe.  Operations
68 * on different zapobjs will be processed concurrently.  Operations on
69 * the same zapobj which only read data will be processed concurrently.
70 * Operations on the same zapobj which modify data will be processed
71 * concurrently when there are many attributes in the zapobj (because
72 * the ZAP uses per-block locking - more than 128 * (number of cpus)
73 * small attributes will suffice).
74 */
75
76/*
77 * We're using zero-terminated byte strings (ie. ASCII or UTF-8 C
78 * strings) for the names of attributes, rather than a byte string
79 * bounded by an explicit length.  If some day we want to support names
80 * in character sets which have embedded zeros (eg. UTF-16, UTF-32),
81 * we'll have to add routines for using length-bounded strings.
82 */
83
84#include <sys/dmu.h>
85
86#ifdef	__cplusplus
87extern "C" {
88#endif
89
90/*
91 * Specifies matching criteria for ZAP lookups.
92 * MT_NORMALIZE		Use ZAP normalization flags, which can include both
93 *			unicode normalization and case-insensitivity.
94 * MT_MATCH_CASE	Do case-sensitive lookups even if MT_NORMALIZE is
95 *			specified and ZAP normalization flags include
96 *			U8_TEXTPREP_TOUPPER.
97 */
98typedef enum matchtype {
99	MT_NORMALIZE = 1 << 0,
100	MT_MATCH_CASE = 1 << 1,
101} matchtype_t;
102
103typedef enum zap_flags {
104	/* Use 64-bit hash value (serialized cursors will always use 64-bits) */
105	ZAP_FLAG_HASH64 = 1 << 0,
106	/* Key is binary, not string (zap_add_uint64() can be used) */
107	ZAP_FLAG_UINT64_KEY = 1 << 1,
108	/*
109	 * First word of key (which must be an array of uint64) is
110	 * already randomly distributed.
111	 */
112	ZAP_FLAG_PRE_HASHED_KEY = 1 << 2,
113#if defined(__linux__) && defined(_KERNEL)
114} zfs_zap_flags_t;
115#define	zap_flags_t	zfs_zap_flags_t
116#else
117} zap_flags_t;
118#endif
119
120/*
121 * Create a new zapobj with no attributes and return its object number.
122 */
123uint64_t zap_create(objset_t *ds, dmu_object_type_t ot,
124    dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
125uint64_t zap_create_dnsize(objset_t *ds, dmu_object_type_t ot,
126    dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx);
127uint64_t zap_create_norm(objset_t *ds, int normflags, dmu_object_type_t ot,
128    dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
129uint64_t zap_create_norm_dnsize(objset_t *ds, int normflags,
130    dmu_object_type_t ot, dmu_object_type_t bonustype, int bonuslen,
131    int dnodesize, dmu_tx_t *tx);
132uint64_t zap_create_flags(objset_t *os, int normflags, zap_flags_t flags,
133    dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
134    dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
135uint64_t zap_create_flags_dnsize(objset_t *os, int normflags,
136    zap_flags_t flags, dmu_object_type_t ot, int leaf_blockshift,
137    int indirect_blockshift, dmu_object_type_t bonustype, int bonuslen,
138    int dnodesize, dmu_tx_t *tx);
139uint64_t zap_create_hold(objset_t *os, int normflags, zap_flags_t flags,
140    dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
141    dmu_object_type_t bonustype, int bonuslen, int dnodesize,
142    dnode_t **allocated_dnode, const void *tag, dmu_tx_t *tx);
143
144uint64_t zap_create_link(objset_t *os, dmu_object_type_t ot,
145    uint64_t parent_obj, const char *name, dmu_tx_t *tx);
146uint64_t zap_create_link_dnsize(objset_t *os, dmu_object_type_t ot,
147    uint64_t parent_obj, const char *name, int dnodesize, dmu_tx_t *tx);
148
149/*
150 * Initialize an already-allocated object.
151 */
152void mzap_create_impl(dnode_t *dn, int normflags, zap_flags_t flags,
153    dmu_tx_t *tx);
154
155/*
156 * Create a new zapobj with no attributes from the given (unallocated)
157 * object number.
158 */
159int zap_create_claim(objset_t *ds, uint64_t obj, dmu_object_type_t ot,
160    dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
161int zap_create_claim_dnsize(objset_t *ds, uint64_t obj, dmu_object_type_t ot,
162    dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx);
163int zap_create_claim_norm(objset_t *ds, uint64_t obj,
164    int normflags, dmu_object_type_t ot,
165    dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
166int zap_create_claim_norm_dnsize(objset_t *ds, uint64_t obj,
167    int normflags, dmu_object_type_t ot,
168    dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx);
169
170/*
171 * The zapobj passed in must be a valid ZAP object for all of the
172 * following routines.
173 */
174
175/*
176 * Destroy this zapobj and all its attributes.
177 *
178 * Frees the object number using dmu_object_free.
179 */
180int zap_destroy(objset_t *ds, uint64_t zapobj, dmu_tx_t *tx);
181
182/*
183 * Manipulate attributes.
184 *
185 * 'integer_size' is in bytes, and must be 1, 2, 4, or 8.
186 */
187
188/*
189 * Retrieve the contents of the attribute with the given name.
190 *
191 * If the requested attribute does not exist, the call will fail and
192 * return ENOENT.
193 *
194 * If 'integer_size' is smaller than the attribute's integer size, the
195 * call will fail and return EINVAL.
196 *
197 * If 'integer_size' is equal to or larger than the attribute's integer
198 * size, the call will succeed and return 0.
199 *
200 * When converting to a larger integer size, the integers will be treated as
201 * unsigned (ie. no sign-extension will be performed).
202 *
203 * 'num_integers' is the length (in integers) of 'buf'.
204 *
205 * If the attribute is longer than the buffer, as many integers as will
206 * fit will be transferred to 'buf'.  If the entire attribute was not
207 * transferred, the call will return EOVERFLOW.
208 */
209int zap_lookup(objset_t *ds, uint64_t zapobj, const char *name,
210    uint64_t integer_size, uint64_t num_integers, void *buf);
211
212/*
213 * If rn_len is nonzero, realname will be set to the name of the found
214 * entry (which may be different from the requested name if matchtype is
215 * not MT_EXACT).
216 *
217 * If normalization_conflictp is not NULL, it will be set if there is
218 * another name with the same case/unicode normalized form.
219 */
220int zap_lookup_norm(objset_t *ds, uint64_t zapobj, const char *name,
221    uint64_t integer_size, uint64_t num_integers, void *buf,
222    matchtype_t mt, char *realname, int rn_len,
223    boolean_t *normalization_conflictp);
224int zap_lookup_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
225    int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf);
226int zap_contains(objset_t *ds, uint64_t zapobj, const char *name);
227int zap_prefetch(objset_t *os, uint64_t zapobj, const char *name);
228int zap_prefetch_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
229    int key_numints);
230
231int zap_lookup_by_dnode(dnode_t *dn, const char *name,
232    uint64_t integer_size, uint64_t num_integers, void *buf);
233int zap_lookup_norm_by_dnode(dnode_t *dn, const char *name,
234    uint64_t integer_size, uint64_t num_integers, void *buf,
235    matchtype_t mt, char *realname, int rn_len,
236    boolean_t *ncp);
237
238int zap_count_write_by_dnode(dnode_t *dn, const char *name,
239    int add, zfs_refcount_t *towrite, zfs_refcount_t *tooverwrite);
240
241/*
242 * Create an attribute with the given name and value.
243 *
244 * If an attribute with the given name already exists, the call will
245 * fail and return EEXIST.
246 */
247int zap_add(objset_t *ds, uint64_t zapobj, const char *key,
248    int integer_size, uint64_t num_integers,
249    const void *val, dmu_tx_t *tx);
250int zap_add_by_dnode(dnode_t *dn, const char *key,
251    int integer_size, uint64_t num_integers,
252    const void *val, dmu_tx_t *tx);
253int zap_add_uint64(objset_t *ds, uint64_t zapobj, const uint64_t *key,
254    int key_numints, int integer_size, uint64_t num_integers,
255    const void *val, dmu_tx_t *tx);
256int zap_add_uint64_by_dnode(dnode_t *dn, const uint64_t *key,
257    int key_numints, int integer_size, uint64_t num_integers,
258    const void *val, dmu_tx_t *tx);
259
260/*
261 * Set the attribute with the given name to the given value.  If an
262 * attribute with the given name does not exist, it will be created.  If
263 * an attribute with the given name already exists, the previous value
264 * will be overwritten.  The integer_size may be different from the
265 * existing attribute's integer size, in which case the attribute's
266 * integer size will be updated to the new value.
267 */
268int zap_update(objset_t *ds, uint64_t zapobj, const char *name,
269    int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx);
270int zap_update_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
271    int key_numints,
272    int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx);
273int zap_update_uint64_by_dnode(dnode_t *dn, const uint64_t *key,
274    int key_numints,
275    int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx);
276
277/*
278 * Get the length (in integers) and the integer size of the specified
279 * attribute.
280 *
281 * If the requested attribute does not exist, the call will fail and
282 * return ENOENT.
283 */
284int zap_length(objset_t *ds, uint64_t zapobj, const char *name,
285    uint64_t *integer_size, uint64_t *num_integers);
286int zap_length_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
287    int key_numints, uint64_t *integer_size, uint64_t *num_integers);
288
289/*
290 * Remove the specified attribute.
291 *
292 * If the specified attribute does not exist, the call will fail and
293 * return ENOENT.
294 */
295int zap_remove(objset_t *ds, uint64_t zapobj, const char *name, dmu_tx_t *tx);
296int zap_remove_norm(objset_t *ds, uint64_t zapobj, const char *name,
297    matchtype_t mt, dmu_tx_t *tx);
298int zap_remove_by_dnode(dnode_t *dn, const char *name, dmu_tx_t *tx);
299int zap_remove_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
300    int key_numints, dmu_tx_t *tx);
301int zap_remove_uint64_by_dnode(dnode_t *dn, const uint64_t *key,
302    int key_numints, dmu_tx_t *tx);
303
304/*
305 * Returns (in *count) the number of attributes in the specified zap
306 * object.
307 */
308int zap_count(objset_t *ds, uint64_t zapobj, uint64_t *count);
309
310/*
311 * Returns (in name) the name of the entry whose (value & mask)
312 * (za_first_integer) is value, or ENOENT if not found.  The string
313 * pointed to by name must be at least 256 bytes long.  If mask==0, the
314 * match must be exact (ie, same as mask=-1ULL).
315 */
316int zap_value_search(objset_t *os, uint64_t zapobj,
317    uint64_t value, uint64_t mask, char *name);
318
319/*
320 * Transfer all the entries from fromobj into intoobj.  Only works on
321 * int_size=8 num_integers=1 values.  Fails if there are any duplicated
322 * entries.
323 */
324int zap_join(objset_t *os, uint64_t fromobj, uint64_t intoobj, dmu_tx_t *tx);
325
326/* Same as zap_join, but set the values to 'value'. */
327int zap_join_key(objset_t *os, uint64_t fromobj, uint64_t intoobj,
328    uint64_t value, dmu_tx_t *tx);
329
330/* Same as zap_join, but add together any duplicated entries. */
331int zap_join_increment(objset_t *os, uint64_t fromobj, uint64_t intoobj,
332    dmu_tx_t *tx);
333
334/*
335 * Manipulate entries where the name + value are the "same" (the name is
336 * a stringified version of the value).
337 */
338int zap_add_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx);
339int zap_remove_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx);
340int zap_lookup_int(objset_t *os, uint64_t obj, uint64_t value);
341int zap_increment_int(objset_t *os, uint64_t obj, uint64_t key, int64_t delta,
342    dmu_tx_t *tx);
343
344/* Here the key is an int and the value is a different int. */
345int zap_add_int_key(objset_t *os, uint64_t obj,
346    uint64_t key, uint64_t value, dmu_tx_t *tx);
347int zap_update_int_key(objset_t *os, uint64_t obj,
348    uint64_t key, uint64_t value, dmu_tx_t *tx);
349int zap_lookup_int_key(objset_t *os, uint64_t obj,
350    uint64_t key, uint64_t *valuep);
351
352int zap_increment(objset_t *os, uint64_t obj, const char *name, int64_t delta,
353    dmu_tx_t *tx);
354
355struct zap;
356struct zap_leaf;
357typedef struct zap_cursor {
358	/* This structure is opaque! */
359	objset_t *zc_objset;
360	struct zap *zc_zap;
361	struct zap_leaf *zc_leaf;
362	uint64_t zc_zapobj;
363	uint64_t zc_serialized;
364	uint64_t zc_hash;
365	uint32_t zc_cd;
366	boolean_t zc_prefetch;
367} zap_cursor_t;
368
369typedef struct {
370	int za_integer_length;
371	/*
372	 * za_normalization_conflict will be set if there are additional
373	 * entries with this normalized form (eg, "foo" and "Foo").
374	 */
375	boolean_t za_normalization_conflict;
376	uint64_t za_num_integers;
377	uint64_t za_first_integer;	/* no sign extension for <8byte ints */
378	char za_name[ZAP_MAXNAMELEN];
379} zap_attribute_t;
380
381/*
382 * The interface for listing all the attributes of a zapobj can be
383 * thought of as cursor moving down a list of the attributes one by
384 * one.  The cookie returned by the zap_cursor_serialize routine is
385 * persistent across system calls (and across reboot, even).
386 */
387
388/*
389 * Initialize a zap cursor, pointing to the "first" attribute of the
390 * zapobj.  You must _fini the cursor when you are done with it.
391 */
392void zap_cursor_init(zap_cursor_t *zc, objset_t *os, uint64_t zapobj);
393void zap_cursor_init_noprefetch(zap_cursor_t *zc, objset_t *os,
394    uint64_t zapobj);
395void zap_cursor_fini(zap_cursor_t *zc);
396
397/*
398 * Get the attribute currently pointed to by the cursor.  Returns
399 * ENOENT if at the end of the attributes.
400 */
401int zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za);
402
403/*
404 * Advance the cursor to the next attribute.
405 */
406void zap_cursor_advance(zap_cursor_t *zc);
407
408/*
409 * Get a persistent cookie pointing to the current position of the zap
410 * cursor.  The low 4 bits in the cookie are always zero, and thus can
411 * be used as to differentiate a serialized cookie from a different type
412 * of value.  The cookie will be less than 2^32 as long as there are
413 * fewer than 2^22 (4.2 million) entries in the zap object.
414 */
415uint64_t zap_cursor_serialize(zap_cursor_t *zc);
416
417/*
418 * Initialize a zap cursor pointing to the position recorded by
419 * zap_cursor_serialize (in the "serialized" argument).  You can also
420 * use a "serialized" argument of 0 to start at the beginning of the
421 * zapobj (ie.  zap_cursor_init_serialized(..., 0) is equivalent to
422 * zap_cursor_init(...).)
423 */
424void zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *ds,
425    uint64_t zapobj, uint64_t serialized);
426
427
428#define	ZAP_HISTOGRAM_SIZE 10
429
430typedef struct zap_stats {
431	/*
432	 * Size of the pointer table (in number of entries).
433	 * This is always a power of 2, or zero if it's a microzap.
434	 * In general, it should be considerably greater than zs_num_leafs.
435	 */
436	uint64_t zs_ptrtbl_len;
437
438	uint64_t zs_blocksize;		/* size of zap blocks */
439
440	/*
441	 * The number of blocks used.  Note that some blocks may be
442	 * wasted because old ptrtbl's and large name/value blocks are
443	 * not reused.  (Although their space is reclaimed, we don't
444	 * reuse those offsets in the object.)
445	 */
446	uint64_t zs_num_blocks;
447
448	/*
449	 * Pointer table values from zap_ptrtbl in the zap_phys_t
450	 */
451	uint64_t zs_ptrtbl_nextblk;	  /* next (larger) copy start block */
452	uint64_t zs_ptrtbl_blks_copied;   /* number source blocks copied */
453	uint64_t zs_ptrtbl_zt_blk;	  /* starting block number */
454	uint64_t zs_ptrtbl_zt_numblks;    /* number of blocks */
455	uint64_t zs_ptrtbl_zt_shift;	  /* bits to index it */
456
457	/*
458	 * Values of the other members of the zap_phys_t
459	 */
460	uint64_t zs_block_type;		/* ZBT_HEADER */
461	uint64_t zs_magic;		/* ZAP_MAGIC */
462	uint64_t zs_num_leafs;		/* The number of leaf blocks */
463	uint64_t zs_num_entries;	/* The number of zap entries */
464	uint64_t zs_salt;		/* salt to stir into hash function */
465
466	/*
467	 * Histograms.  For all histograms, the last index
468	 * (ZAP_HISTOGRAM_SIZE-1) includes any values which are greater
469	 * than what can be represented.  For example
470	 * zs_leafs_with_n5_entries[ZAP_HISTOGRAM_SIZE-1] is the number
471	 * of leafs with more than 45 entries.
472	 */
473
474	/*
475	 * zs_leafs_with_n_pointers[n] is the number of leafs with
476	 * 2^n pointers to it.
477	 */
478	uint64_t zs_leafs_with_2n_pointers[ZAP_HISTOGRAM_SIZE];
479
480	/*
481	 * zs_leafs_with_n_entries[n] is the number of leafs with
482	 * [n*5, (n+1)*5) entries.  In the current implementation, there
483	 * can be at most 55 entries in any block, but there may be
484	 * fewer if the name or value is large, or the block is not
485	 * completely full.
486	 */
487	uint64_t zs_blocks_with_n5_entries[ZAP_HISTOGRAM_SIZE];
488
489	/*
490	 * zs_leafs_n_tenths_full[n] is the number of leafs whose
491	 * fullness is in the range [n/10, (n+1)/10).
492	 */
493	uint64_t zs_blocks_n_tenths_full[ZAP_HISTOGRAM_SIZE];
494
495	/*
496	 * zs_entries_using_n_chunks[n] is the number of entries which
497	 * consume n 24-byte chunks.  (Note, large names/values only use
498	 * one chunk, but contribute to zs_num_blocks_large.)
499	 */
500	uint64_t zs_entries_using_n_chunks[ZAP_HISTOGRAM_SIZE];
501
502	/*
503	 * zs_buckets_with_n_entries[n] is the number of buckets (each
504	 * leaf has 64 buckets) with n entries.
505	 * zs_buckets_with_n_entries[1] should be very close to
506	 * zs_num_entries.
507	 */
508	uint64_t zs_buckets_with_n_entries[ZAP_HISTOGRAM_SIZE];
509} zap_stats_t;
510
511/*
512 * Get statistics about a ZAP object.  Note: you need to be aware of the
513 * internal implementation of the ZAP to correctly interpret some of the
514 * statistics.  This interface shouldn't be relied on unless you really
515 * know what you're doing.
516 */
517int zap_get_stats(objset_t *ds, uint64_t zapobj, zap_stats_t *zs);
518
519#ifdef	__cplusplus
520}
521#endif
522
523#endif	/* _SYS_ZAP_H */
524