1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26/*
27 * Copyright (c) 2014 by Delphix. All rights reserved.
28 */
29
30#ifndef	_AVL_H
31#define	_AVL_H
32
33/*
34 * This is a private header file.  Applications should not directly include
35 * this file.
36 */
37
38#ifdef	__cplusplus
39extern "C" {
40#endif
41
42#include <sys/types.h>
43#include <sys/avl_impl.h>
44
45/*
46 * This is a generic implementation of AVL trees for use in the Solaris kernel.
47 * The interfaces provide an efficient way of implementing an ordered set of
48 * data structures.
49 *
50 * AVL trees provide an alternative to using an ordered linked list. Using AVL
51 * trees will usually be faster, however they requires more storage. An ordered
52 * linked list in general requires 2 pointers in each data structure. The
53 * AVL tree implementation uses 3 pointers. The following chart gives the
54 * approximate performance of operations with the different approaches:
55 *
56 *	Operation	 Link List	AVL tree
57 *	---------	 --------	--------
58 *	lookup		   O(n)		O(log(n))
59 *
60 *	insert 1 node	 constant	constant
61 *
62 *	delete 1 node	 constant	between constant and O(log(n))
63 *
64 *	delete all nodes   O(n)		O(n)
65 *
66 *	visit the next
67 *	or prev node	 constant	between constant and O(log(n))
68 *
69 *
70 * The data structure nodes are anchored at an "avl_tree_t" (the equivalent
71 * of a list header) and the individual nodes will have a field of
72 * type "avl_node_t" (corresponding to list pointers).
73 *
74 * The type "avl_index_t" is used to indicate a position in the list for
75 * certain calls.
76 *
77 * The usage scenario is generally:
78 *
79 * 1. Create the list/tree with: avl_create()
80 *
81 * followed by any mixture of:
82 *
83 * 2a. Insert nodes with: avl_add(), or avl_find() and avl_insert()
84 *
85 * 2b. Visited elements with:
86 *	 avl_first() - returns the lowest valued node
87 *	 avl_last() - returns the highest valued node
88 *	 AVL_NEXT() - given a node go to next higher one
89 *	 AVL_PREV() - given a node go to previous lower one
90 *
91 * 2c.  Find the node with the closest value either less than or greater
92 *	than a given value with avl_nearest().
93 *
94 * 2d. Remove individual nodes from the list/tree with avl_remove().
95 *
96 * and finally when the list is being destroyed
97 *
98 * 3. Use avl_destroy_nodes() to quickly process/free up any remaining nodes.
99 *    Note that once you use avl_destroy_nodes(), you can no longer
100 *    use any routine except avl_destroy_nodes() and avl_destoy().
101 *
102 * 4. Use avl_destroy() to destroy the AVL tree itself.
103 *
104 * Any locking for multiple thread access is up to the user to provide, just
105 * as is needed for any linked list implementation.
106 */
107
108/*
109 * AVL comparator helpers
110 */
111#define	AVL_ISIGN(a)	(((a) > 0) - ((a) < 0))
112#define	AVL_CMP(a, b)	(((a) > (b)) - ((a) < (b)))
113#define	AVL_PCMP(a, b)	\
114	(((uintptr_t)(a) > (uintptr_t)(b)) - ((uintptr_t)(a) < (uintptr_t)(b)))
115
116/*
117 * AVL comparator helpers
118 */
119#define	AVL_ISIGN(a)	(((a) > 0) - ((a) < 0))
120#define	AVL_CMP(a, b)	(((a) > (b)) - ((a) < (b)))
121#define	AVL_PCMP(a, b)	\
122	(((uintptr_t)(a) > (uintptr_t)(b)) - ((uintptr_t)(a) < (uintptr_t)(b)))
123
124/*
125 * Type used for the root of the AVL tree.
126 */
127typedef struct avl_tree avl_tree_t;
128
129/*
130 * The data nodes in the AVL tree must have a field of this type.
131 */
132typedef struct avl_node avl_node_t;
133
134/*
135 * An opaque type used to locate a position in the tree where a node
136 * would be inserted.
137 */
138typedef uintptr_t avl_index_t;
139
140
141/*
142 * Direction constants used for avl_nearest().
143 */
144#define	AVL_BEFORE	(0)
145#define	AVL_AFTER	(1)
146
147
148/*
149 * Prototypes
150 *
151 * Where not otherwise mentioned, "void *" arguments are a pointer to the
152 * user data structure which must contain a field of type avl_node_t.
153 *
154 * Also assume the user data structures looks like:
155 *	stuct my_type {
156 *		...
157 *		avl_node_t	my_link;
158 *		...
159 *	};
160 */
161
162/*
163 * Initialize an AVL tree. Arguments are:
164 *
165 * tree   - the tree to be initialized
166 * compar - function to compare two nodes, it must return exactly: -1, 0, or +1
167 *          -1 for <, 0 for ==, and +1 for >
168 * size   - the value of sizeof(struct my_type)
169 * offset - the value of OFFSETOF(struct my_type, my_link)
170 */
171extern void avl_create(avl_tree_t *tree,
172	int (*compar) (const void *, const void *), size_t size, size_t offset);
173
174
175/*
176 * Find a node with a matching value in the tree. Returns the matching node
177 * found. If not found, it returns NULL and then if "where" is not NULL it sets
178 * "where" for use with avl_insert() or avl_nearest().
179 *
180 * node   - node that has the value being looked for
181 * where  - position for use with avl_nearest() or avl_insert(), may be NULL
182 */
183extern void *avl_find(avl_tree_t *tree, const void *node, avl_index_t *where);
184
185/*
186 * Insert a node into the tree.
187 *
188 * node   - the node to insert
189 * where  - position as returned from avl_find()
190 */
191extern void avl_insert(avl_tree_t *tree, void *node, avl_index_t where);
192
193/*
194 * Insert "new_data" in "tree" in the given "direction" either after
195 * or before the data "here".
196 *
197 * This might be useful for avl clients caching recently accessed
198 * data to avoid doing avl_find() again for insertion.
199 *
200 * new_data	- new data to insert
201 * here		- existing node in "tree"
202 * direction	- either AVL_AFTER or AVL_BEFORE the data "here".
203 */
204extern void avl_insert_here(avl_tree_t *tree, void *new_data, void *here,
205    int direction);
206
207
208/*
209 * Return the first or last valued node in the tree. Will return NULL
210 * if the tree is empty.
211 *
212 */
213extern void *avl_first(avl_tree_t *tree);
214extern void *avl_last(avl_tree_t *tree);
215
216
217/*
218 * Return the next or previous valued node in the tree.
219 * AVL_NEXT() will return NULL if at the last node.
220 * AVL_PREV() will return NULL if at the first node.
221 *
222 * node   - the node from which the next or previous node is found
223 */
224#define	AVL_NEXT(tree, node)	avl_walk(tree, node, AVL_AFTER)
225#define	AVL_PREV(tree, node)	avl_walk(tree, node, AVL_BEFORE)
226
227
228/*
229 * Find the node with the nearest value either greater or less than
230 * the value from a previous avl_find(). Returns the node or NULL if
231 * there isn't a matching one.
232 *
233 * where     - position as returned from avl_find()
234 * direction - either AVL_BEFORE or AVL_AFTER
235 *
236 * EXAMPLE get the greatest node that is less than a given value:
237 *
238 *	avl_tree_t *tree;
239 *	struct my_data look_for_value = {....};
240 *	struct my_data *node;
241 *	struct my_data *less;
242 *	avl_index_t where;
243 *
244 *	node = avl_find(tree, &look_for_value, &where);
245 *	if (node != NULL)
246 *		less = AVL_PREV(tree, node);
247 *	else
248 *		less = avl_nearest(tree, where, AVL_BEFORE);
249 */
250extern void *avl_nearest(avl_tree_t *tree, avl_index_t where, int direction);
251
252
253/*
254 * Add a single node to the tree.
255 * The node must not be in the tree, and it must not
256 * compare equal to any other node already in the tree.
257 *
258 * node   - the node to add
259 */
260extern void avl_add(avl_tree_t *tree, void *node);
261
262
263/*
264 * Remove a single node from the tree.  The node must be in the tree.
265 *
266 * node   - the node to remove
267 */
268extern void avl_remove(avl_tree_t *tree, void *node);
269
270/*
271 * Reinsert a node only if its order has changed relative to its nearest
272 * neighbors. To optimize performance avl_update_lt() checks only the previous
273 * node and avl_update_gt() checks only the next node. Use avl_update_lt() and
274 * avl_update_gt() only if you know the direction in which the order of the
275 * node may change.
276 */
277extern boolean_t avl_update(avl_tree_t *, void *);
278extern boolean_t avl_update_lt(avl_tree_t *, void *);
279extern boolean_t avl_update_gt(avl_tree_t *, void *);
280
281/*
282 * Swaps the contents of the two trees.
283 */
284extern void avl_swap(avl_tree_t *tree1, avl_tree_t *tree2);
285
286/*
287 * Return the number of nodes in the tree
288 */
289extern ulong_t avl_numnodes(avl_tree_t *tree);
290
291/*
292 * Return B_TRUE if there are zero nodes in the tree, B_FALSE otherwise.
293 */
294extern boolean_t avl_is_empty(avl_tree_t *tree);
295
296/*
297 * Used to destroy any remaining nodes in a tree. The cookie argument should
298 * be initialized to NULL before the first call. Returns a node that has been
299 * removed from the tree and may be free()'d. Returns NULL when the tree is
300 * empty.
301 *
302 * Once you call avl_destroy_nodes(), you can only continuing calling it and
303 * finally avl_destroy(). No other AVL routines will be valid.
304 *
305 * cookie - a "void *" used to save state between calls to avl_destroy_nodes()
306 *
307 * EXAMPLE:
308 *	avl_tree_t *tree;
309 *	struct my_data *node;
310 *	void *cookie;
311 *
312 *	cookie = NULL;
313 *	while ((node = avl_destroy_nodes(tree, &cookie)) != NULL)
314 *		free(node);
315 *	avl_destroy(tree);
316 */
317extern void *avl_destroy_nodes(avl_tree_t *tree, void **cookie);
318
319
320/*
321 * Final destroy of an AVL tree. Arguments are:
322 *
323 * tree   - the empty tree to destroy
324 */
325extern void avl_destroy(avl_tree_t *tree);
326
327
328
329#ifdef	__cplusplus
330}
331#endif
332
333#endif	/* _AVL_H */
334