1/*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 1997, 1998, 2000 Justin T. Gibbs.
5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions, and the following disclaimer,
13 *    without modification, immediately at the beginning of the file.
14 * 2. The name of the author may not be used to endorse or promote products
15 *    derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30#include <sys/param.h>
31#include <sys/systm.h>
32#include <sys/kernel.h>
33#include <sys/conf.h>
34#include <sys/types.h>
35#include <sys/bio.h>
36#include <sys/bus.h>
37#include <sys/devicestat.h>
38#include <sys/errno.h>
39#include <sys/fcntl.h>
40#include <sys/malloc.h>
41#include <sys/proc.h>
42#include <sys/poll.h>
43#include <sys/selinfo.h>
44#include <sys/sdt.h>
45#include <sys/sysent.h>
46#include <sys/taskqueue.h>
47#include <vm/uma.h>
48#include <vm/vm.h>
49#include <vm/vm_extern.h>
50
51#include <machine/bus.h>
52
53#include <cam/cam.h>
54#include <cam/cam_ccb.h>
55#include <cam/cam_periph.h>
56#include <cam/cam_queue.h>
57#include <cam/cam_xpt.h>
58#include <cam/cam_xpt_periph.h>
59#include <cam/cam_debug.h>
60#include <cam/cam_compat.h>
61#include <cam/cam_xpt_periph.h>
62
63#include <cam/scsi/scsi_all.h>
64#include <cam/scsi/scsi_pass.h>
65
66typedef enum {
67	PASS_FLAG_OPEN			= 0x01,
68	PASS_FLAG_LOCKED		= 0x02,
69	PASS_FLAG_INVALID		= 0x04,
70	PASS_FLAG_INITIAL_PHYSPATH	= 0x08,
71	PASS_FLAG_ZONE_INPROG		= 0x10,
72	PASS_FLAG_ZONE_VALID		= 0x20,
73	PASS_FLAG_UNMAPPED_CAPABLE	= 0x40,
74	PASS_FLAG_ABANDONED_REF_SET	= 0x80
75} pass_flags;
76
77typedef enum {
78	PASS_STATE_NORMAL
79} pass_state;
80
81typedef enum {
82	PASS_CCB_BUFFER_IO,
83	PASS_CCB_QUEUED_IO
84} pass_ccb_types;
85
86#define ccb_type	ppriv_field0
87#define ccb_ioreq	ppriv_ptr1
88
89/*
90 * The maximum number of memory segments we preallocate.
91 */
92#define	PASS_MAX_SEGS	16
93
94typedef enum {
95	PASS_IO_NONE		= 0x00,
96	PASS_IO_USER_SEG_MALLOC	= 0x01,
97	PASS_IO_KERN_SEG_MALLOC	= 0x02,
98	PASS_IO_ABANDONED	= 0x04
99} pass_io_flags;
100
101struct pass_io_req {
102	union ccb			 ccb;
103	union ccb			*alloced_ccb;
104	union ccb			*user_ccb_ptr;
105	camq_entry			 user_periph_links;
106	ccb_ppriv_area			 user_periph_priv;
107	struct cam_periph_map_info	 mapinfo;
108	pass_io_flags			 flags;
109	ccb_flags			 data_flags;
110	int				 num_user_segs;
111	bus_dma_segment_t		 user_segs[PASS_MAX_SEGS];
112	int				 num_kern_segs;
113	bus_dma_segment_t		 kern_segs[PASS_MAX_SEGS];
114	bus_dma_segment_t		*user_segptr;
115	bus_dma_segment_t		*kern_segptr;
116	int				 num_bufs;
117	uint32_t			 dirs[CAM_PERIPH_MAXMAPS];
118	uint32_t			 lengths[CAM_PERIPH_MAXMAPS];
119	uint8_t				*user_bufs[CAM_PERIPH_MAXMAPS];
120	uint8_t				*kern_bufs[CAM_PERIPH_MAXMAPS];
121	struct bintime			 start_time;
122	TAILQ_ENTRY(pass_io_req)	 links;
123};
124
125struct pass_softc {
126	pass_state		  state;
127	pass_flags		  flags;
128	uint8_t		  pd_type;
129	int			  open_count;
130	u_int		 	  maxio;
131	struct devstat		 *device_stats;
132	struct cdev		 *dev;
133	struct cdev		 *alias_dev;
134	struct task		  add_physpath_task;
135	struct task		  shutdown_kqueue_task;
136	struct selinfo		  read_select;
137	TAILQ_HEAD(, pass_io_req) incoming_queue;
138	TAILQ_HEAD(, pass_io_req) active_queue;
139	TAILQ_HEAD(, pass_io_req) abandoned_queue;
140	TAILQ_HEAD(, pass_io_req) done_queue;
141	struct cam_periph	 *periph;
142	char			  zone_name[12];
143	char			  io_zone_name[12];
144	uma_zone_t		  pass_zone;
145	uma_zone_t		  pass_io_zone;
146	size_t			  io_zone_size;
147};
148
149static	d_open_t	passopen;
150static	d_close_t	passclose;
151static	d_ioctl_t	passioctl;
152static	d_ioctl_t	passdoioctl;
153static	d_poll_t	passpoll;
154static	d_kqfilter_t	passkqfilter;
155static	void		passreadfiltdetach(struct knote *kn);
156static	int		passreadfilt(struct knote *kn, long hint);
157
158static	periph_init_t	passinit;
159static	periph_ctor_t	passregister;
160static	periph_oninv_t	passoninvalidate;
161static	periph_dtor_t	passcleanup;
162static	periph_start_t	passstart;
163static	void		pass_shutdown_kqueue(void *context, int pending);
164static	void		pass_add_physpath(void *context, int pending);
165static	void		passasync(void *callback_arg, uint32_t code,
166				  struct cam_path *path, void *arg);
167static	void		passdone(struct cam_periph *periph,
168				 union ccb *done_ccb);
169static	int		passcreatezone(struct cam_periph *periph);
170static	void		passiocleanup(struct pass_softc *softc,
171				      struct pass_io_req *io_req);
172static	int		passcopysglist(struct cam_periph *periph,
173				       struct pass_io_req *io_req,
174				       ccb_flags direction);
175static	int		passmemsetup(struct cam_periph *periph,
176				     struct pass_io_req *io_req);
177static	int		passmemdone(struct cam_periph *periph,
178				    struct pass_io_req *io_req);
179static	int		passerror(union ccb *ccb, uint32_t cam_flags,
180				  uint32_t sense_flags);
181static 	int		passsendccb(struct cam_periph *periph, union ccb *ccb,
182				    union ccb *inccb);
183static	void		passflags(union ccb *ccb, uint32_t *cam_flags,
184				  uint32_t *sense_flags);
185
186static struct periph_driver passdriver =
187{
188	passinit, "pass",
189	TAILQ_HEAD_INITIALIZER(passdriver.units), /* generation */ 0
190};
191
192PERIPHDRIVER_DECLARE(pass, passdriver);
193
194static struct cdevsw pass_cdevsw = {
195	.d_version =	D_VERSION,
196	.d_flags =	D_TRACKCLOSE,
197	.d_open =	passopen,
198	.d_close =	passclose,
199	.d_ioctl =	passioctl,
200	.d_poll = 	passpoll,
201	.d_kqfilter = 	passkqfilter,
202	.d_name =	"pass",
203};
204
205static struct filterops passread_filtops = {
206	.f_isfd	=	1,
207	.f_detach =	passreadfiltdetach,
208	.f_event =	passreadfilt
209};
210
211static MALLOC_DEFINE(M_SCSIPASS, "scsi_pass", "scsi passthrough buffers");
212
213static void
214passinit(void)
215{
216	cam_status status;
217
218	/*
219	 * Install a global async callback.  This callback will
220	 * receive async callbacks like "new device found".
221	 */
222	status = xpt_register_async(AC_FOUND_DEVICE, passasync, NULL, NULL);
223
224	if (status != CAM_REQ_CMP) {
225		printf("pass: Failed to attach master async callback "
226		       "due to status 0x%x!\n", status);
227	}
228
229}
230
231static void
232passrejectios(struct cam_periph *periph)
233{
234	struct pass_io_req *io_req, *io_req2;
235	struct pass_softc *softc;
236
237	softc = (struct pass_softc *)periph->softc;
238
239	/*
240	 * The user can no longer get status for I/O on the done queue, so
241	 * clean up all outstanding I/O on the done queue.
242	 */
243	TAILQ_FOREACH_SAFE(io_req, &softc->done_queue, links, io_req2) {
244		TAILQ_REMOVE(&softc->done_queue, io_req, links);
245		passiocleanup(softc, io_req);
246		uma_zfree(softc->pass_zone, io_req);
247	}
248
249	/*
250	 * The underlying device is gone, so we can't issue these I/Os.
251	 * The devfs node has been shut down, so we can't return status to
252	 * the user.  Free any I/O left on the incoming queue.
253	 */
254	TAILQ_FOREACH_SAFE(io_req, &softc->incoming_queue, links, io_req2) {
255		TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
256		passiocleanup(softc, io_req);
257		uma_zfree(softc->pass_zone, io_req);
258	}
259
260	/*
261	 * Normally we would put I/Os on the abandoned queue and acquire a
262	 * reference when we saw the final close.  But, the device went
263	 * away and devfs may have moved everything off to deadfs by the
264	 * time the I/O done callback is called; as a result, we won't see
265	 * any more closes.  So, if we have any active I/Os, we need to put
266	 * them on the abandoned queue.  When the abandoned queue is empty,
267	 * we'll release the remaining reference (see below) to the peripheral.
268	 */
269	TAILQ_FOREACH_SAFE(io_req, &softc->active_queue, links, io_req2) {
270		TAILQ_REMOVE(&softc->active_queue, io_req, links);
271		io_req->flags |= PASS_IO_ABANDONED;
272		TAILQ_INSERT_TAIL(&softc->abandoned_queue, io_req, links);
273	}
274
275	/*
276	 * If we put any I/O on the abandoned queue, acquire a reference.
277	 */
278	if ((!TAILQ_EMPTY(&softc->abandoned_queue))
279	 && ((softc->flags & PASS_FLAG_ABANDONED_REF_SET) == 0)) {
280		cam_periph_doacquire(periph);
281		softc->flags |= PASS_FLAG_ABANDONED_REF_SET;
282	}
283}
284
285static void
286passdevgonecb(void *arg)
287{
288	struct cam_periph *periph;
289	struct mtx *mtx;
290	struct pass_softc *softc;
291	int i;
292
293	periph = (struct cam_periph *)arg;
294	mtx = cam_periph_mtx(periph);
295	mtx_lock(mtx);
296
297	softc = (struct pass_softc *)periph->softc;
298	KASSERT(softc->open_count >= 0, ("Negative open count %d",
299		softc->open_count));
300
301	/*
302	 * When we get this callback, we will get no more close calls from
303	 * devfs.  So if we have any dangling opens, we need to release the
304	 * reference held for that particular context.
305	 */
306	for (i = 0; i < softc->open_count; i++)
307		cam_periph_release_locked(periph);
308
309	softc->open_count = 0;
310
311	/*
312	 * Release the reference held for the device node, it is gone now.
313	 * Accordingly, inform all queued I/Os of their fate.
314	 */
315	cam_periph_release_locked(periph);
316	passrejectios(periph);
317
318	/*
319	 * We reference the SIM lock directly here, instead of using
320	 * cam_periph_unlock().  The reason is that the final call to
321	 * cam_periph_release_locked() above could result in the periph
322	 * getting freed.  If that is the case, dereferencing the periph
323	 * with a cam_periph_unlock() call would cause a page fault.
324	 */
325	mtx_unlock(mtx);
326
327	/*
328	 * We have to remove our kqueue context from a thread because it
329	 * may sleep.  It would be nice if we could get a callback from
330	 * kqueue when it is done cleaning up resources.
331	 */
332	taskqueue_enqueue(taskqueue_thread, &softc->shutdown_kqueue_task);
333}
334
335static void
336passoninvalidate(struct cam_periph *periph)
337{
338	struct pass_softc *softc;
339
340	softc = (struct pass_softc *)periph->softc;
341
342	/*
343	 * De-register any async callbacks.
344	 */
345	xpt_register_async(0, passasync, periph, periph->path);
346
347	softc->flags |= PASS_FLAG_INVALID;
348
349	/*
350	 * Tell devfs this device has gone away, and ask for a callback
351	 * when it has cleaned up its state.
352	 */
353	destroy_dev_sched_cb(softc->dev, passdevgonecb, periph);
354}
355
356static void
357passcleanup(struct cam_periph *periph)
358{
359	struct pass_softc *softc;
360
361	softc = (struct pass_softc *)periph->softc;
362
363	cam_periph_assert(periph, MA_OWNED);
364	KASSERT(TAILQ_EMPTY(&softc->active_queue),
365		("%s called when there are commands on the active queue!\n",
366		__func__));
367	KASSERT(TAILQ_EMPTY(&softc->abandoned_queue),
368		("%s called when there are commands on the abandoned queue!\n",
369		__func__));
370	KASSERT(TAILQ_EMPTY(&softc->incoming_queue),
371		("%s called when there are commands on the incoming queue!\n",
372		__func__));
373	KASSERT(TAILQ_EMPTY(&softc->done_queue),
374		("%s called when there are commands on the done queue!\n",
375		__func__));
376
377	devstat_remove_entry(softc->device_stats);
378
379	cam_periph_unlock(periph);
380
381	/*
382	 * We call taskqueue_drain() for the physpath task to make sure it
383	 * is complete.  We drop the lock because this can potentially
384	 * sleep.  XXX KDM that is bad.  Need a way to get a callback when
385	 * a taskqueue is drained.
386	 *
387 	 * Note that we don't drain the kqueue shutdown task queue.  This
388	 * is because we hold a reference on the periph for kqueue, and
389	 * release that reference from the kqueue shutdown task queue.  So
390	 * we cannot come into this routine unless we've released that
391	 * reference.  Also, because that could be the last reference, we
392	 * could be called from the cam_periph_release() call in
393	 * pass_shutdown_kqueue().  In that case, the taskqueue_drain()
394	 * would deadlock.  It would be preferable if we had a way to
395	 * get a callback when a taskqueue is done.
396	 */
397	taskqueue_drain(taskqueue_thread, &softc->add_physpath_task);
398
399	/*
400	 * It should be safe to destroy the zones from here, because all
401	 * of the references to this peripheral have been freed, and all
402	 * I/O has been terminated and freed.  We check the zones for NULL
403	 * because they may not have been allocated yet if the device went
404	 * away before any asynchronous I/O has been issued.
405	 */
406	if (softc->pass_zone != NULL)
407		uma_zdestroy(softc->pass_zone);
408	if (softc->pass_io_zone != NULL)
409		uma_zdestroy(softc->pass_io_zone);
410
411	cam_periph_lock(periph);
412
413	free(softc, M_DEVBUF);
414}
415
416static void
417pass_shutdown_kqueue(void *context, int pending)
418{
419	struct cam_periph *periph;
420	struct pass_softc *softc;
421
422	periph = context;
423	softc = periph->softc;
424
425	knlist_clear(&softc->read_select.si_note, /*is_locked*/ 0);
426	knlist_destroy(&softc->read_select.si_note);
427
428	/*
429	 * Release the reference we held for kqueue.
430	 */
431	cam_periph_release(periph);
432}
433
434static void
435pass_add_physpath(void *context, int pending)
436{
437	struct cam_periph *periph;
438	struct pass_softc *softc;
439	struct mtx *mtx;
440	char *physpath;
441
442	/*
443	 * If we have one, create a devfs alias for our
444	 * physical path.
445	 */
446	periph = context;
447	softc = periph->softc;
448	physpath = malloc(MAXPATHLEN, M_DEVBUF, M_WAITOK);
449	mtx = cam_periph_mtx(periph);
450	mtx_lock(mtx);
451
452	if (periph->flags & CAM_PERIPH_INVALID)
453		goto out;
454
455	if (xpt_getattr(physpath, MAXPATHLEN,
456			"GEOM::physpath", periph->path) == 0
457	 && strlen(physpath) != 0) {
458		mtx_unlock(mtx);
459		make_dev_physpath_alias(MAKEDEV_WAITOK | MAKEDEV_CHECKNAME,
460				&softc->alias_dev, softc->dev,
461				softc->alias_dev, physpath);
462		mtx_lock(mtx);
463	}
464
465out:
466	/*
467	 * Now that we've made our alias, we no longer have to have a
468	 * reference to the device.
469	 */
470	if ((softc->flags & PASS_FLAG_INITIAL_PHYSPATH) == 0)
471		softc->flags |= PASS_FLAG_INITIAL_PHYSPATH;
472
473	/*
474	 * We always acquire a reference to the periph before queueing this
475	 * task queue function, so it won't go away before we run.
476	 */
477	while (pending-- > 0)
478		cam_periph_release_locked(periph);
479	mtx_unlock(mtx);
480
481	free(physpath, M_DEVBUF);
482}
483
484static void
485passasync(void *callback_arg, uint32_t code,
486	  struct cam_path *path, void *arg)
487{
488	struct cam_periph *periph;
489
490	periph = (struct cam_periph *)callback_arg;
491
492	switch (code) {
493	case AC_FOUND_DEVICE:
494	{
495		struct ccb_getdev *cgd;
496		cam_status status;
497
498		cgd = (struct ccb_getdev *)arg;
499		if (cgd == NULL)
500			break;
501
502		/*
503		 * Allocate a peripheral instance for
504		 * this device and start the probe
505		 * process.
506		 */
507		status = cam_periph_alloc(passregister, passoninvalidate,
508					  passcleanup, passstart, "pass",
509					  CAM_PERIPH_BIO, path,
510					  passasync, AC_FOUND_DEVICE, cgd);
511
512		if (status != CAM_REQ_CMP
513		 && status != CAM_REQ_INPROG) {
514			const struct cam_status_entry *entry;
515
516			entry = cam_fetch_status_entry(status);
517
518			printf("passasync: Unable to attach new device "
519			       "due to status %#x: %s\n", status, entry ?
520			       entry->status_text : "Unknown");
521		}
522
523		break;
524	}
525	case AC_ADVINFO_CHANGED:
526	{
527		uintptr_t buftype;
528
529		buftype = (uintptr_t)arg;
530		if (buftype == CDAI_TYPE_PHYS_PATH) {
531			struct pass_softc *softc;
532
533			softc = (struct pass_softc *)periph->softc;
534			/*
535			 * Acquire a reference to the periph before we
536			 * start the taskqueue, so that we don't run into
537			 * a situation where the periph goes away before
538			 * the task queue has a chance to run.
539			 */
540			if (cam_periph_acquire(periph) != 0)
541				break;
542
543			taskqueue_enqueue(taskqueue_thread,
544					  &softc->add_physpath_task);
545		}
546		break;
547	}
548	default:
549		cam_periph_async(periph, code, path, arg);
550		break;
551	}
552}
553
554static cam_status
555passregister(struct cam_periph *periph, void *arg)
556{
557	struct pass_softc *softc;
558	struct ccb_getdev *cgd;
559	struct ccb_pathinq cpi;
560	struct make_dev_args args;
561	int error, no_tags;
562
563	cgd = (struct ccb_getdev *)arg;
564	if (cgd == NULL) {
565		printf("%s: no getdev CCB, can't register device\n", __func__);
566		return(CAM_REQ_CMP_ERR);
567	}
568
569	softc = (struct pass_softc *)malloc(sizeof(*softc),
570					    M_DEVBUF, M_NOWAIT);
571
572	if (softc == NULL) {
573		printf("%s: Unable to probe new device. "
574		       "Unable to allocate softc\n", __func__);
575		return(CAM_REQ_CMP_ERR);
576	}
577
578	bzero(softc, sizeof(*softc));
579	softc->state = PASS_STATE_NORMAL;
580	if (cgd->protocol == PROTO_SCSI || cgd->protocol == PROTO_ATAPI)
581		softc->pd_type = SID_TYPE(&cgd->inq_data);
582	else if (cgd->protocol == PROTO_SATAPM)
583		softc->pd_type = T_ENCLOSURE;
584	else
585		softc->pd_type = T_DIRECT;
586
587	periph->softc = softc;
588	softc->periph = periph;
589	TAILQ_INIT(&softc->incoming_queue);
590	TAILQ_INIT(&softc->active_queue);
591	TAILQ_INIT(&softc->abandoned_queue);
592	TAILQ_INIT(&softc->done_queue);
593	snprintf(softc->zone_name, sizeof(softc->zone_name), "%s%d",
594		 periph->periph_name, periph->unit_number);
595	snprintf(softc->io_zone_name, sizeof(softc->io_zone_name), "%s%dIO",
596		 periph->periph_name, periph->unit_number);
597	softc->io_zone_size = maxphys;
598	knlist_init_mtx(&softc->read_select.si_note, cam_periph_mtx(periph));
599
600	xpt_path_inq(&cpi, periph->path);
601
602	if (cpi.maxio == 0)
603		softc->maxio = DFLTPHYS;	/* traditional default */
604	else if (cpi.maxio > maxphys)
605		softc->maxio = maxphys;		/* for safety */
606	else
607		softc->maxio = cpi.maxio;	/* real value */
608
609	if (cpi.hba_misc & PIM_UNMAPPED)
610		softc->flags |= PASS_FLAG_UNMAPPED_CAPABLE;
611
612	/*
613	 * We pass in 0 for a blocksize, since we don't
614	 * know what the blocksize of this device is, if
615	 * it even has a blocksize.
616	 */
617	cam_periph_unlock(periph);
618	no_tags = (cgd->inq_data.flags & SID_CmdQue) == 0;
619	softc->device_stats = devstat_new_entry("pass",
620			  periph->unit_number, 0,
621			  DEVSTAT_NO_BLOCKSIZE
622			  | (no_tags ? DEVSTAT_NO_ORDERED_TAGS : 0),
623			  softc->pd_type |
624			  XPORT_DEVSTAT_TYPE(cpi.transport) |
625			  DEVSTAT_TYPE_PASS,
626			  DEVSTAT_PRIORITY_PASS);
627
628	/*
629	 * Initialize the taskqueue handler for shutting down kqueue.
630	 */
631	TASK_INIT(&softc->shutdown_kqueue_task, /*priority*/ 0,
632		  pass_shutdown_kqueue, periph);
633
634	/*
635	 * Acquire a reference to the periph that we can release once we've
636	 * cleaned up the kqueue.
637	 */
638	if (cam_periph_acquire(periph) != 0) {
639		xpt_print(periph->path, "%s: lost periph during "
640			  "registration!\n", __func__);
641		cam_periph_lock(periph);
642		return (CAM_REQ_CMP_ERR);
643	}
644
645	/*
646	 * Acquire a reference to the periph before we create the devfs
647	 * instance for it.  We'll release this reference once the devfs
648	 * instance has been freed.
649	 */
650	if (cam_periph_acquire(periph) != 0) {
651		xpt_print(periph->path, "%s: lost periph during "
652			  "registration!\n", __func__);
653		cam_periph_lock(periph);
654		return (CAM_REQ_CMP_ERR);
655	}
656
657	/* Register the device */
658	make_dev_args_init(&args);
659	args.mda_devsw = &pass_cdevsw;
660	args.mda_unit = periph->unit_number;
661	args.mda_uid = UID_ROOT;
662	args.mda_gid = GID_OPERATOR;
663	args.mda_mode = 0600;
664	args.mda_si_drv1 = periph;
665	args.mda_flags = MAKEDEV_NOWAIT;
666	error = make_dev_s(&args, &softc->dev, "%s%d", periph->periph_name,
667	    periph->unit_number);
668	if (error != 0) {
669		cam_periph_lock(periph);
670		cam_periph_release_locked(periph);
671		return (CAM_REQ_CMP_ERR);
672	}
673
674	/*
675	 * Hold a reference to the periph before we create the physical
676	 * path alias so it can't go away.
677	 */
678	if (cam_periph_acquire(periph) != 0) {
679		xpt_print(periph->path, "%s: lost periph during "
680			  "registration!\n", __func__);
681		cam_periph_lock(periph);
682		return (CAM_REQ_CMP_ERR);
683	}
684
685	cam_periph_lock(periph);
686
687	TASK_INIT(&softc->add_physpath_task, /*priority*/0,
688		  pass_add_physpath, periph);
689
690	/*
691	 * See if physical path information is already available.
692	 */
693	taskqueue_enqueue(taskqueue_thread, &softc->add_physpath_task);
694
695	/*
696	 * Add an async callback so that we get notified if
697	 * this device goes away or its physical path
698	 * (stored in the advanced info data of the EDT) has
699	 * changed.
700	 */
701	xpt_register_async(AC_LOST_DEVICE | AC_ADVINFO_CHANGED,
702			   passasync, periph, periph->path);
703
704	if (bootverbose)
705		xpt_announce_periph(periph, NULL);
706
707	return(CAM_REQ_CMP);
708}
709
710static int
711passopen(struct cdev *dev, int flags, int fmt, struct thread *td)
712{
713	struct cam_periph *periph;
714	struct pass_softc *softc;
715	int error;
716
717	periph = (struct cam_periph *)dev->si_drv1;
718	if (cam_periph_acquire(periph) != 0)
719		return (ENXIO);
720
721	cam_periph_lock(periph);
722
723	softc = (struct pass_softc *)periph->softc;
724
725	if (softc->flags & PASS_FLAG_INVALID) {
726		cam_periph_release_locked(periph);
727		cam_periph_unlock(periph);
728		return(ENXIO);
729	}
730
731	/*
732	 * Don't allow access when we're running at a high securelevel.
733	 */
734	error = securelevel_gt(td->td_ucred, 1);
735	if (error) {
736		cam_periph_release_locked(periph);
737		cam_periph_unlock(periph);
738		return(error);
739	}
740
741	/*
742	 * Only allow read-write access.
743	 */
744	if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) {
745		cam_periph_release_locked(periph);
746		cam_periph_unlock(periph);
747		return(EPERM);
748	}
749
750	/*
751	 * We don't allow nonblocking access.
752	 */
753	if ((flags & O_NONBLOCK) != 0) {
754		xpt_print(periph->path, "can't do nonblocking access\n");
755		cam_periph_release_locked(periph);
756		cam_periph_unlock(periph);
757		return(EINVAL);
758	}
759
760	softc->open_count++;
761
762	cam_periph_unlock(periph);
763
764	return (error);
765}
766
767static int
768passclose(struct cdev *dev, int flag, int fmt, struct thread *td)
769{
770	struct 	cam_periph *periph;
771	struct  pass_softc *softc;
772	struct mtx *mtx;
773
774	periph = (struct cam_periph *)dev->si_drv1;
775	mtx = cam_periph_mtx(periph);
776	mtx_lock(mtx);
777
778	softc = periph->softc;
779	softc->open_count--;
780
781	if (softc->open_count == 0) {
782		struct pass_io_req *io_req, *io_req2;
783
784		TAILQ_FOREACH_SAFE(io_req, &softc->done_queue, links, io_req2) {
785			TAILQ_REMOVE(&softc->done_queue, io_req, links);
786			passiocleanup(softc, io_req);
787			uma_zfree(softc->pass_zone, io_req);
788		}
789
790		TAILQ_FOREACH_SAFE(io_req, &softc->incoming_queue, links,
791				   io_req2) {
792			TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
793			passiocleanup(softc, io_req);
794			uma_zfree(softc->pass_zone, io_req);
795		}
796
797		/*
798		 * If there are any active I/Os, we need to forcibly acquire a
799		 * reference to the peripheral so that we don't go away
800		 * before they complete.  We'll release the reference when
801		 * the abandoned queue is empty.
802		 */
803		io_req = TAILQ_FIRST(&softc->active_queue);
804		if ((io_req != NULL)
805		 && (softc->flags & PASS_FLAG_ABANDONED_REF_SET) == 0) {
806			cam_periph_doacquire(periph);
807			softc->flags |= PASS_FLAG_ABANDONED_REF_SET;
808		}
809
810		/*
811		 * Since the I/O in the active queue is not under our
812		 * control, just set a flag so that we can clean it up when
813		 * it completes and put it on the abandoned queue.  This
814		 * will prevent our sending spurious completions in the
815		 * event that the device is opened again before these I/Os
816		 * complete.
817		 */
818		TAILQ_FOREACH_SAFE(io_req, &softc->active_queue, links,
819				   io_req2) {
820			TAILQ_REMOVE(&softc->active_queue, io_req, links);
821			io_req->flags |= PASS_IO_ABANDONED;
822			TAILQ_INSERT_TAIL(&softc->abandoned_queue, io_req,
823					  links);
824		}
825	}
826
827	cam_periph_release_locked(periph);
828
829	/*
830	 * We reference the lock directly here, instead of using
831	 * cam_periph_unlock().  The reason is that the call to
832	 * cam_periph_release_locked() above could result in the periph
833	 * getting freed.  If that is the case, dereferencing the periph
834	 * with a cam_periph_unlock() call would cause a page fault.
835	 *
836	 * cam_periph_release() avoids this problem using the same method,
837	 * but we're manually acquiring and dropping the lock here to
838	 * protect the open count and avoid another lock acquisition and
839	 * release.
840	 */
841	mtx_unlock(mtx);
842
843	return (0);
844}
845
846static void
847passstart(struct cam_periph *periph, union ccb *start_ccb)
848{
849	struct pass_softc *softc;
850
851	softc = (struct pass_softc *)periph->softc;
852
853	switch (softc->state) {
854	case PASS_STATE_NORMAL: {
855		struct pass_io_req *io_req;
856
857		/*
858		 * Check for any queued I/O requests that require an
859		 * allocated slot.
860		 */
861		io_req = TAILQ_FIRST(&softc->incoming_queue);
862		if (io_req == NULL) {
863			xpt_release_ccb(start_ccb);
864			break;
865		}
866		TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
867		TAILQ_INSERT_TAIL(&softc->active_queue, io_req, links);
868		/*
869		 * Merge the user's CCB into the allocated CCB.
870		 */
871		xpt_merge_ccb(start_ccb, &io_req->ccb);
872		start_ccb->ccb_h.ccb_type = PASS_CCB_QUEUED_IO;
873		start_ccb->ccb_h.ccb_ioreq = io_req;
874		start_ccb->ccb_h.cbfcnp = passdone;
875		io_req->alloced_ccb = start_ccb;
876		binuptime(&io_req->start_time);
877		devstat_start_transaction(softc->device_stats,
878					  &io_req->start_time);
879
880		xpt_action(start_ccb);
881
882		/*
883		 * If we have any more I/O waiting, schedule ourselves again.
884		 */
885		if (!TAILQ_EMPTY(&softc->incoming_queue))
886			xpt_schedule(periph, CAM_PRIORITY_NORMAL);
887		break;
888	}
889	default:
890		break;
891	}
892}
893
894static void
895passdone(struct cam_periph *periph, union ccb *done_ccb)
896{
897	struct pass_softc *softc;
898	struct ccb_scsiio *csio;
899
900	softc = (struct pass_softc *)periph->softc;
901
902	cam_periph_assert(periph, MA_OWNED);
903
904	csio = &done_ccb->csio;
905	switch (csio->ccb_h.ccb_type) {
906	case PASS_CCB_QUEUED_IO: {
907		struct pass_io_req *io_req;
908
909		io_req = done_ccb->ccb_h.ccb_ioreq;
910#if 0
911		xpt_print(periph->path, "%s: called for user CCB %p\n",
912			  __func__, io_req->user_ccb_ptr);
913#endif
914		if (((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) &&
915		    ((io_req->flags & PASS_IO_ABANDONED) == 0)) {
916			int error;
917			uint32_t cam_flags, sense_flags;
918
919			passflags(done_ccb, &cam_flags, &sense_flags);
920			error = passerror(done_ccb, cam_flags, sense_flags);
921
922			if (error == ERESTART) {
923				KASSERT(((sense_flags & SF_NO_RETRY) == 0),
924				    ("passerror returned ERESTART with no retry requested\n"));
925				return;
926			}
927		}
928
929		/*
930		 * Copy the allocated CCB contents back to the malloced CCB
931		 * so we can give status back to the user when he requests it.
932		 */
933		bcopy(done_ccb, &io_req->ccb, sizeof(*done_ccb));
934
935		/*
936		 * Log data/transaction completion with devstat(9).
937		 */
938		switch (done_ccb->ccb_h.func_code) {
939		case XPT_SCSI_IO:
940			devstat_end_transaction(softc->device_stats,
941			    done_ccb->csio.dxfer_len - done_ccb->csio.resid,
942			    done_ccb->csio.tag_action & 0x3,
943			    ((done_ccb->ccb_h.flags & CAM_DIR_MASK) ==
944			    CAM_DIR_NONE) ? DEVSTAT_NO_DATA :
945			    (done_ccb->ccb_h.flags & CAM_DIR_OUT) ?
946			    DEVSTAT_WRITE : DEVSTAT_READ, NULL,
947			    &io_req->start_time);
948			break;
949		case XPT_ATA_IO:
950			devstat_end_transaction(softc->device_stats,
951			    done_ccb->ataio.dxfer_len - done_ccb->ataio.resid,
952			    0, /* Not used in ATA */
953			    ((done_ccb->ccb_h.flags & CAM_DIR_MASK) ==
954			    CAM_DIR_NONE) ? DEVSTAT_NO_DATA :
955			    (done_ccb->ccb_h.flags & CAM_DIR_OUT) ?
956			    DEVSTAT_WRITE : DEVSTAT_READ, NULL,
957			    &io_req->start_time);
958			break;
959		case XPT_SMP_IO:
960			/*
961			 * XXX KDM this isn't quite right, but there isn't
962			 * currently an easy way to represent a bidirectional
963			 * transfer in devstat.  The only way to do it
964			 * and have the byte counts come out right would
965			 * mean that we would have to record two
966			 * transactions, one for the request and one for the
967			 * response.  For now, so that we report something,
968			 * just treat the entire thing as a read.
969			 */
970			devstat_end_transaction(softc->device_stats,
971			    done_ccb->smpio.smp_request_len +
972			    done_ccb->smpio.smp_response_len,
973			    DEVSTAT_TAG_SIMPLE, DEVSTAT_READ, NULL,
974			    &io_req->start_time);
975			break;
976		default:
977			devstat_end_transaction(softc->device_stats, 0,
978			    DEVSTAT_TAG_NONE, DEVSTAT_NO_DATA, NULL,
979			    &io_req->start_time);
980			break;
981		}
982
983		/*
984		 * In the normal case, take the completed I/O off of the
985		 * active queue and put it on the done queue.  Notitfy the
986		 * user that we have a completed I/O.
987		 */
988		if ((io_req->flags & PASS_IO_ABANDONED) == 0) {
989			TAILQ_REMOVE(&softc->active_queue, io_req, links);
990			TAILQ_INSERT_TAIL(&softc->done_queue, io_req, links);
991			selwakeuppri(&softc->read_select, PRIBIO);
992			KNOTE_LOCKED(&softc->read_select.si_note, 0);
993		} else {
994			/*
995			 * In the case of an abandoned I/O (final close
996			 * without fetching the I/O), take it off of the
997			 * abandoned queue and free it.
998			 */
999			TAILQ_REMOVE(&softc->abandoned_queue, io_req, links);
1000			passiocleanup(softc, io_req);
1001			uma_zfree(softc->pass_zone, io_req);
1002
1003			/*
1004			 * Release the done_ccb here, since we may wind up
1005			 * freeing the peripheral when we decrement the
1006			 * reference count below.
1007			 */
1008			xpt_release_ccb(done_ccb);
1009
1010			/*
1011			 * If the abandoned queue is empty, we can release
1012			 * our reference to the periph since we won't have
1013			 * any more completions coming.
1014			 */
1015			if ((TAILQ_EMPTY(&softc->abandoned_queue))
1016			 && (softc->flags & PASS_FLAG_ABANDONED_REF_SET)) {
1017				softc->flags &= ~PASS_FLAG_ABANDONED_REF_SET;
1018				cam_periph_release_locked(periph);
1019			}
1020
1021			/*
1022			 * We have already released the CCB, so we can
1023			 * return.
1024			 */
1025			return;
1026		}
1027		break;
1028	}
1029	}
1030	xpt_release_ccb(done_ccb);
1031}
1032
1033static int
1034passcreatezone(struct cam_periph *periph)
1035{
1036	struct pass_softc *softc;
1037	int error;
1038
1039	error = 0;
1040	softc = (struct pass_softc *)periph->softc;
1041
1042	cam_periph_assert(periph, MA_OWNED);
1043	KASSERT(((softc->flags & PASS_FLAG_ZONE_VALID) == 0),
1044		("%s called when the pass(4) zone is valid!\n", __func__));
1045	KASSERT((softc->pass_zone == NULL),
1046		("%s called when the pass(4) zone is allocated!\n", __func__));
1047
1048	if ((softc->flags & PASS_FLAG_ZONE_INPROG) == 0) {
1049		/*
1050		 * We're the first context through, so we need to create
1051		 * the pass(4) UMA zone for I/O requests.
1052		 */
1053		softc->flags |= PASS_FLAG_ZONE_INPROG;
1054
1055		/*
1056		 * uma_zcreate() does a blocking (M_WAITOK) allocation,
1057		 * so we cannot hold a mutex while we call it.
1058		 */
1059		cam_periph_unlock(periph);
1060
1061		softc->pass_zone = uma_zcreate(softc->zone_name,
1062		    sizeof(struct pass_io_req), NULL, NULL, NULL, NULL,
1063		    /*align*/ 0, /*flags*/ 0);
1064
1065		softc->pass_io_zone = uma_zcreate(softc->io_zone_name,
1066		    softc->io_zone_size, NULL, NULL, NULL, NULL,
1067		    /*align*/ 0, /*flags*/ 0);
1068
1069		cam_periph_lock(periph);
1070
1071		if ((softc->pass_zone == NULL)
1072		 || (softc->pass_io_zone == NULL)) {
1073			if (softc->pass_zone == NULL)
1074				xpt_print(periph->path, "unable to allocate "
1075				    "IO Req UMA zone\n");
1076			else
1077				xpt_print(periph->path, "unable to allocate "
1078				    "IO UMA zone\n");
1079			softc->flags &= ~PASS_FLAG_ZONE_INPROG;
1080			goto bailout;
1081		}
1082
1083		/*
1084		 * Set the flags appropriately and notify any other waiters.
1085		 */
1086		softc->flags &= ~PASS_FLAG_ZONE_INPROG;
1087		softc->flags |= PASS_FLAG_ZONE_VALID;
1088		wakeup(&softc->pass_zone);
1089	} else {
1090		/*
1091		 * In this case, the UMA zone has not yet been created, but
1092		 * another context is in the process of creating it.  We
1093		 * need to sleep until the creation is either done or has
1094		 * failed.
1095		 */
1096		while ((softc->flags & PASS_FLAG_ZONE_INPROG)
1097		    && ((softc->flags & PASS_FLAG_ZONE_VALID) == 0)) {
1098			error = msleep(&softc->pass_zone,
1099				       cam_periph_mtx(periph), PRIBIO,
1100				       "paszon", 0);
1101			if (error != 0)
1102				goto bailout;
1103		}
1104		/*
1105		 * If the zone creation failed, no luck for the user.
1106		 */
1107		if ((softc->flags & PASS_FLAG_ZONE_VALID) == 0){
1108			error = ENOMEM;
1109			goto bailout;
1110		}
1111	}
1112bailout:
1113	return (error);
1114}
1115
1116static void
1117passiocleanup(struct pass_softc *softc, struct pass_io_req *io_req)
1118{
1119	union ccb *ccb;
1120	uint8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
1121	int i, numbufs;
1122
1123	ccb = &io_req->ccb;
1124
1125	switch (ccb->ccb_h.func_code) {
1126	case XPT_DEV_MATCH:
1127		numbufs = min(io_req->num_bufs, 2);
1128
1129		if (numbufs == 1) {
1130			data_ptrs[0] = (uint8_t **)&ccb->cdm.matches;
1131		} else {
1132			data_ptrs[0] = (uint8_t **)&ccb->cdm.patterns;
1133			data_ptrs[1] = (uint8_t **)&ccb->cdm.matches;
1134		}
1135		break;
1136	case XPT_SCSI_IO:
1137	case XPT_CONT_TARGET_IO:
1138		data_ptrs[0] = &ccb->csio.data_ptr;
1139		numbufs = min(io_req->num_bufs, 1);
1140		break;
1141	case XPT_ATA_IO:
1142		data_ptrs[0] = &ccb->ataio.data_ptr;
1143		numbufs = min(io_req->num_bufs, 1);
1144		break;
1145	case XPT_SMP_IO:
1146		numbufs = min(io_req->num_bufs, 2);
1147		data_ptrs[0] = &ccb->smpio.smp_request;
1148		data_ptrs[1] = &ccb->smpio.smp_response;
1149		break;
1150	case XPT_DEV_ADVINFO:
1151		numbufs = min(io_req->num_bufs, 1);
1152		data_ptrs[0] = (uint8_t **)&ccb->cdai.buf;
1153		break;
1154	case XPT_NVME_IO:
1155	case XPT_NVME_ADMIN:
1156		data_ptrs[0] = &ccb->nvmeio.data_ptr;
1157		numbufs = min(io_req->num_bufs, 1);
1158		break;
1159	default:
1160		/* allow ourselves to be swapped once again */
1161		return;
1162		break; /* NOTREACHED */
1163	}
1164
1165	if (io_req->flags & PASS_IO_USER_SEG_MALLOC) {
1166		free(io_req->user_segptr, M_SCSIPASS);
1167		io_req->user_segptr = NULL;
1168	}
1169
1170	/*
1171	 * We only want to free memory we malloced.
1172	 */
1173	if (io_req->data_flags == CAM_DATA_VADDR) {
1174		for (i = 0; i < io_req->num_bufs; i++) {
1175			if (io_req->kern_bufs[i] == NULL)
1176				continue;
1177
1178			free(io_req->kern_bufs[i], M_SCSIPASS);
1179			io_req->kern_bufs[i] = NULL;
1180		}
1181	} else if (io_req->data_flags == CAM_DATA_SG) {
1182		for (i = 0; i < io_req->num_kern_segs; i++) {
1183			if ((uint8_t *)(uintptr_t)
1184			    io_req->kern_segptr[i].ds_addr == NULL)
1185				continue;
1186
1187			uma_zfree(softc->pass_io_zone, (uint8_t *)(uintptr_t)
1188			    io_req->kern_segptr[i].ds_addr);
1189			io_req->kern_segptr[i].ds_addr = 0;
1190		}
1191	}
1192
1193	if (io_req->flags & PASS_IO_KERN_SEG_MALLOC) {
1194		free(io_req->kern_segptr, M_SCSIPASS);
1195		io_req->kern_segptr = NULL;
1196	}
1197
1198	if (io_req->data_flags != CAM_DATA_PADDR) {
1199		for (i = 0; i < numbufs; i++) {
1200			/*
1201			 * Restore the user's buffer pointers to their
1202			 * previous values.
1203			 */
1204			if (io_req->user_bufs[i] != NULL)
1205				*data_ptrs[i] = io_req->user_bufs[i];
1206		}
1207	}
1208
1209}
1210
1211static int
1212passcopysglist(struct cam_periph *periph, struct pass_io_req *io_req,
1213	       ccb_flags direction)
1214{
1215	bus_size_t kern_watermark, user_watermark, len_to_copy;
1216	bus_dma_segment_t *user_sglist, *kern_sglist;
1217	int i, j, error;
1218
1219	error = 0;
1220	kern_watermark = 0;
1221	user_watermark = 0;
1222	len_to_copy = 0;
1223	user_sglist = io_req->user_segptr;
1224	kern_sglist = io_req->kern_segptr;
1225
1226	for (i = 0, j = 0; i < io_req->num_user_segs &&
1227	     j < io_req->num_kern_segs;) {
1228		uint8_t *user_ptr, *kern_ptr;
1229
1230		len_to_copy = min(user_sglist[i].ds_len -user_watermark,
1231		    kern_sglist[j].ds_len - kern_watermark);
1232
1233		user_ptr = (uint8_t *)(uintptr_t)user_sglist[i].ds_addr;
1234		user_ptr = user_ptr + user_watermark;
1235		kern_ptr = (uint8_t *)(uintptr_t)kern_sglist[j].ds_addr;
1236		kern_ptr = kern_ptr + kern_watermark;
1237
1238		user_watermark += len_to_copy;
1239		kern_watermark += len_to_copy;
1240
1241		if (direction == CAM_DIR_IN) {
1242			error = copyout(kern_ptr, user_ptr, len_to_copy);
1243			if (error != 0) {
1244				xpt_print(periph->path, "%s: copyout of %u "
1245					  "bytes from %p to %p failed with "
1246					  "error %d\n", __func__, len_to_copy,
1247					  kern_ptr, user_ptr, error);
1248				goto bailout;
1249			}
1250		} else {
1251			error = copyin(user_ptr, kern_ptr, len_to_copy);
1252			if (error != 0) {
1253				xpt_print(periph->path, "%s: copyin of %u "
1254					  "bytes from %p to %p failed with "
1255					  "error %d\n", __func__, len_to_copy,
1256					  user_ptr, kern_ptr, error);
1257				goto bailout;
1258			}
1259		}
1260
1261		if (user_sglist[i].ds_len == user_watermark) {
1262			i++;
1263			user_watermark = 0;
1264		}
1265
1266		if (kern_sglist[j].ds_len == kern_watermark) {
1267			j++;
1268			kern_watermark = 0;
1269		}
1270	}
1271
1272bailout:
1273
1274	return (error);
1275}
1276
1277static int
1278passmemsetup(struct cam_periph *periph, struct pass_io_req *io_req)
1279{
1280	union ccb *ccb;
1281	struct pass_softc *softc;
1282	int numbufs, i;
1283	uint8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
1284	uint32_t lengths[CAM_PERIPH_MAXMAPS];
1285	uint32_t dirs[CAM_PERIPH_MAXMAPS];
1286	uint32_t num_segs;
1287	uint16_t *seg_cnt_ptr;
1288	size_t maxmap;
1289	int error;
1290
1291	cam_periph_assert(periph, MA_NOTOWNED);
1292
1293	softc = periph->softc;
1294
1295	error = 0;
1296	ccb = &io_req->ccb;
1297	maxmap = 0;
1298	num_segs = 0;
1299	seg_cnt_ptr = NULL;
1300
1301	switch(ccb->ccb_h.func_code) {
1302	case XPT_DEV_MATCH:
1303		if (ccb->cdm.match_buf_len == 0) {
1304			printf("%s: invalid match buffer length 0\n", __func__);
1305			return(EINVAL);
1306		}
1307		if (ccb->cdm.pattern_buf_len > 0) {
1308			data_ptrs[0] = (uint8_t **)&ccb->cdm.patterns;
1309			lengths[0] = ccb->cdm.pattern_buf_len;
1310			dirs[0] = CAM_DIR_OUT;
1311			data_ptrs[1] = (uint8_t **)&ccb->cdm.matches;
1312			lengths[1] = ccb->cdm.match_buf_len;
1313			dirs[1] = CAM_DIR_IN;
1314			numbufs = 2;
1315		} else {
1316			data_ptrs[0] = (uint8_t **)&ccb->cdm.matches;
1317			lengths[0] = ccb->cdm.match_buf_len;
1318			dirs[0] = CAM_DIR_IN;
1319			numbufs = 1;
1320		}
1321		io_req->data_flags = CAM_DATA_VADDR;
1322		break;
1323	case XPT_SCSI_IO:
1324	case XPT_CONT_TARGET_IO:
1325		if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
1326			return(0);
1327
1328		/*
1329		 * The user shouldn't be able to supply a bio.
1330		 */
1331		if ((ccb->ccb_h.flags & CAM_DATA_MASK) == CAM_DATA_BIO)
1332			return (EINVAL);
1333
1334		io_req->data_flags = ccb->ccb_h.flags & CAM_DATA_MASK;
1335
1336		data_ptrs[0] = &ccb->csio.data_ptr;
1337		lengths[0] = ccb->csio.dxfer_len;
1338		dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
1339		num_segs = ccb->csio.sglist_cnt;
1340		seg_cnt_ptr = &ccb->csio.sglist_cnt;
1341		numbufs = 1;
1342		maxmap = softc->maxio;
1343		break;
1344	case XPT_ATA_IO:
1345		if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
1346			return(0);
1347
1348		/*
1349		 * We only support a single virtual address for ATA I/O.
1350		 */
1351		if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR)
1352			return (EINVAL);
1353
1354		io_req->data_flags = CAM_DATA_VADDR;
1355
1356		data_ptrs[0] = &ccb->ataio.data_ptr;
1357		lengths[0] = ccb->ataio.dxfer_len;
1358		dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
1359		numbufs = 1;
1360		maxmap = softc->maxio;
1361		break;
1362	case XPT_SMP_IO:
1363		io_req->data_flags = CAM_DATA_VADDR;
1364
1365		data_ptrs[0] = &ccb->smpio.smp_request;
1366		lengths[0] = ccb->smpio.smp_request_len;
1367		dirs[0] = CAM_DIR_OUT;
1368		data_ptrs[1] = &ccb->smpio.smp_response;
1369		lengths[1] = ccb->smpio.smp_response_len;
1370		dirs[1] = CAM_DIR_IN;
1371		numbufs = 2;
1372		maxmap = softc->maxio;
1373		break;
1374	case XPT_DEV_ADVINFO:
1375		if (ccb->cdai.bufsiz == 0)
1376			return (0);
1377
1378		io_req->data_flags = CAM_DATA_VADDR;
1379
1380		data_ptrs[0] = (uint8_t **)&ccb->cdai.buf;
1381		lengths[0] = ccb->cdai.bufsiz;
1382		dirs[0] = CAM_DIR_IN;
1383		numbufs = 1;
1384		break;
1385	case XPT_NVME_ADMIN:
1386	case XPT_NVME_IO:
1387		if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
1388			return (0);
1389
1390		io_req->data_flags = ccb->ccb_h.flags & CAM_DATA_MASK;
1391
1392		data_ptrs[0] = &ccb->nvmeio.data_ptr;
1393		lengths[0] = ccb->nvmeio.dxfer_len;
1394		dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
1395		num_segs = ccb->nvmeio.sglist_cnt;
1396		seg_cnt_ptr = &ccb->nvmeio.sglist_cnt;
1397		numbufs = 1;
1398		maxmap = softc->maxio;
1399		break;
1400	default:
1401		return(EINVAL);
1402		break; /* NOTREACHED */
1403	}
1404
1405	io_req->num_bufs = numbufs;
1406
1407	/*
1408	 * If there is a maximum, check to make sure that the user's
1409	 * request fits within the limit.  In general, we should only have
1410	 * a maximum length for requests that go to hardware.  Otherwise it
1411	 * is whatever we're able to malloc.
1412	 */
1413	for (i = 0; i < numbufs; i++) {
1414		io_req->user_bufs[i] = *data_ptrs[i];
1415		io_req->dirs[i] = dirs[i];
1416		io_req->lengths[i] = lengths[i];
1417
1418		if (maxmap == 0)
1419			continue;
1420
1421		if (lengths[i] <= maxmap)
1422			continue;
1423
1424		xpt_print(periph->path, "%s: data length %u > max allowed %u "
1425			  "bytes\n", __func__, lengths[i], maxmap);
1426		error = EINVAL;
1427		goto bailout;
1428	}
1429
1430	switch (io_req->data_flags) {
1431	case CAM_DATA_VADDR:
1432		/* Map or copy the buffer into kernel address space */
1433		for (i = 0; i < numbufs; i++) {
1434			uint8_t *tmp_buf;
1435
1436			/*
1437			 * If for some reason no length is specified, we
1438			 * don't need to allocate anything.
1439			 */
1440			if (io_req->lengths[i] == 0)
1441				continue;
1442
1443			tmp_buf = malloc(lengths[i], M_SCSIPASS,
1444					 M_WAITOK | M_ZERO);
1445			io_req->kern_bufs[i] = tmp_buf;
1446			*data_ptrs[i] = tmp_buf;
1447
1448#if 0
1449			xpt_print(periph->path, "%s: malloced %p len %u, user "
1450				  "buffer %p, operation: %s\n", __func__,
1451				  tmp_buf, lengths[i], io_req->user_bufs[i],
1452				  (dirs[i] == CAM_DIR_IN) ? "read" : "write");
1453#endif
1454			/*
1455			 * We only need to copy in if the user is writing.
1456			 */
1457			if (dirs[i] != CAM_DIR_OUT)
1458				continue;
1459
1460			error = copyin(io_req->user_bufs[i],
1461				       io_req->kern_bufs[i], lengths[i]);
1462			if (error != 0) {
1463				xpt_print(periph->path, "%s: copy of user "
1464					  "buffer from %p to %p failed with "
1465					  "error %d\n", __func__,
1466					  io_req->user_bufs[i],
1467					  io_req->kern_bufs[i], error);
1468				goto bailout;
1469			}
1470		}
1471		break;
1472	case CAM_DATA_PADDR:
1473		/* Pass down the pointer as-is */
1474		break;
1475	case CAM_DATA_SG: {
1476		size_t sg_length, size_to_go, alloc_size;
1477		uint32_t num_segs_needed;
1478
1479		/*
1480		 * Copy the user S/G list in, and then copy in the
1481		 * individual segments.
1482		 */
1483		/*
1484		 * We shouldn't see this, but check just in case.
1485		 */
1486		if (numbufs != 1) {
1487			xpt_print(periph->path, "%s: cannot currently handle "
1488				  "more than one S/G list per CCB\n", __func__);
1489			error = EINVAL;
1490			goto bailout;
1491		}
1492
1493		/*
1494		 * We have to have at least one segment.
1495		 */
1496		if (num_segs == 0) {
1497			xpt_print(periph->path, "%s: CAM_DATA_SG flag set, "
1498				  "but sglist_cnt=0!\n", __func__);
1499			error = EINVAL;
1500			goto bailout;
1501		}
1502
1503		/*
1504		 * Make sure the user specified the total length and didn't
1505		 * just leave it to us to decode the S/G list.
1506		 */
1507		if (lengths[0] == 0) {
1508			xpt_print(periph->path, "%s: no dxfer_len specified, "
1509				  "but CAM_DATA_SG flag is set!\n", __func__);
1510			error = EINVAL;
1511			goto bailout;
1512		}
1513
1514		/*
1515		 * We allocate buffers in io_zone_size increments for an
1516		 * S/G list.  This will generally be maxphys.
1517		 */
1518		if (lengths[0] <= softc->io_zone_size)
1519			num_segs_needed = 1;
1520		else {
1521			num_segs_needed = lengths[0] / softc->io_zone_size;
1522			if ((lengths[0] % softc->io_zone_size) != 0)
1523				num_segs_needed++;
1524		}
1525
1526		/* Figure out the size of the S/G list */
1527		sg_length = num_segs * sizeof(bus_dma_segment_t);
1528		io_req->num_user_segs = num_segs;
1529		io_req->num_kern_segs = num_segs_needed;
1530
1531		/* Save the user's S/G list pointer for later restoration */
1532		io_req->user_bufs[0] = *data_ptrs[0];
1533
1534		/*
1535		 * If we have enough segments allocated by default to handle
1536		 * the length of the user's S/G list,
1537		 */
1538		if (num_segs > PASS_MAX_SEGS) {
1539			io_req->user_segptr = malloc(sizeof(bus_dma_segment_t) *
1540			    num_segs, M_SCSIPASS, M_WAITOK | M_ZERO);
1541			io_req->flags |= PASS_IO_USER_SEG_MALLOC;
1542		} else
1543			io_req->user_segptr = io_req->user_segs;
1544
1545		error = copyin(*data_ptrs[0], io_req->user_segptr, sg_length);
1546		if (error != 0) {
1547			xpt_print(periph->path, "%s: copy of user S/G list "
1548				  "from %p to %p failed with error %d\n",
1549				  __func__, *data_ptrs[0], io_req->user_segptr,
1550				  error);
1551			goto bailout;
1552		}
1553
1554		if (num_segs_needed > PASS_MAX_SEGS) {
1555			io_req->kern_segptr = malloc(sizeof(bus_dma_segment_t) *
1556			    num_segs_needed, M_SCSIPASS, M_WAITOK | M_ZERO);
1557			io_req->flags |= PASS_IO_KERN_SEG_MALLOC;
1558		} else {
1559			io_req->kern_segptr = io_req->kern_segs;
1560		}
1561
1562		/*
1563		 * Allocate the kernel S/G list.
1564		 */
1565		for (size_to_go = lengths[0], i = 0;
1566		     size_to_go > 0 && i < num_segs_needed;
1567		     i++, size_to_go -= alloc_size) {
1568			uint8_t *kern_ptr;
1569
1570			alloc_size = min(size_to_go, softc->io_zone_size);
1571			kern_ptr = uma_zalloc(softc->pass_io_zone, M_WAITOK);
1572			io_req->kern_segptr[i].ds_addr =
1573			    (bus_addr_t)(uintptr_t)kern_ptr;
1574			io_req->kern_segptr[i].ds_len = alloc_size;
1575		}
1576		if (size_to_go > 0) {
1577			printf("%s: size_to_go = %zu, software error!\n",
1578			       __func__, size_to_go);
1579			error = EINVAL;
1580			goto bailout;
1581		}
1582
1583		*data_ptrs[0] = (uint8_t *)io_req->kern_segptr;
1584		*seg_cnt_ptr = io_req->num_kern_segs;
1585
1586		/*
1587		 * We only need to copy data here if the user is writing.
1588		 */
1589		if (dirs[0] == CAM_DIR_OUT)
1590			error = passcopysglist(periph, io_req, dirs[0]);
1591		break;
1592	}
1593	case CAM_DATA_SG_PADDR: {
1594		size_t sg_length;
1595
1596		/*
1597		 * We shouldn't see this, but check just in case.
1598		 */
1599		if (numbufs != 1) {
1600			printf("%s: cannot currently handle more than one "
1601			       "S/G list per CCB\n", __func__);
1602			error = EINVAL;
1603			goto bailout;
1604		}
1605
1606		/*
1607		 * We have to have at least one segment.
1608		 */
1609		if (num_segs == 0) {
1610			xpt_print(periph->path, "%s: CAM_DATA_SG_PADDR flag "
1611				  "set, but sglist_cnt=0!\n", __func__);
1612			error = EINVAL;
1613			goto bailout;
1614		}
1615
1616		/*
1617		 * Make sure the user specified the total length and didn't
1618		 * just leave it to us to decode the S/G list.
1619		 */
1620		if (lengths[0] == 0) {
1621			xpt_print(periph->path, "%s: no dxfer_len specified, "
1622				  "but CAM_DATA_SG flag is set!\n", __func__);
1623			error = EINVAL;
1624			goto bailout;
1625		}
1626
1627		/* Figure out the size of the S/G list */
1628		sg_length = num_segs * sizeof(bus_dma_segment_t);
1629		io_req->num_user_segs = num_segs;
1630		io_req->num_kern_segs = io_req->num_user_segs;
1631
1632		/* Save the user's S/G list pointer for later restoration */
1633		io_req->user_bufs[0] = *data_ptrs[0];
1634
1635		if (num_segs > PASS_MAX_SEGS) {
1636			io_req->user_segptr = malloc(sizeof(bus_dma_segment_t) *
1637			    num_segs, M_SCSIPASS, M_WAITOK | M_ZERO);
1638			io_req->flags |= PASS_IO_USER_SEG_MALLOC;
1639		} else
1640			io_req->user_segptr = io_req->user_segs;
1641
1642		io_req->kern_segptr = io_req->user_segptr;
1643
1644		error = copyin(*data_ptrs[0], io_req->user_segptr, sg_length);
1645		if (error != 0) {
1646			xpt_print(periph->path, "%s: copy of user S/G list "
1647				  "from %p to %p failed with error %d\n",
1648				  __func__, *data_ptrs[0], io_req->user_segptr,
1649				  error);
1650			goto bailout;
1651		}
1652		break;
1653	}
1654	default:
1655	case CAM_DATA_BIO:
1656		/*
1657		 * A user shouldn't be attaching a bio to the CCB.  It
1658		 * isn't a user-accessible structure.
1659		 */
1660		error = EINVAL;
1661		break;
1662	}
1663
1664bailout:
1665	if (error != 0)
1666		passiocleanup(softc, io_req);
1667
1668	return (error);
1669}
1670
1671static int
1672passmemdone(struct cam_periph *periph, struct pass_io_req *io_req)
1673{
1674	struct pass_softc *softc;
1675	int error;
1676	int i;
1677
1678	error = 0;
1679	softc = (struct pass_softc *)periph->softc;
1680
1681	switch (io_req->data_flags) {
1682	case CAM_DATA_VADDR:
1683		/*
1684		 * Copy back to the user buffer if this was a read.
1685		 */
1686		for (i = 0; i < io_req->num_bufs; i++) {
1687			if (io_req->dirs[i] != CAM_DIR_IN)
1688				continue;
1689
1690			error = copyout(io_req->kern_bufs[i],
1691			    io_req->user_bufs[i], io_req->lengths[i]);
1692			if (error != 0) {
1693				xpt_print(periph->path, "Unable to copy %u "
1694					  "bytes from %p to user address %p\n",
1695					  io_req->lengths[i],
1696					  io_req->kern_bufs[i],
1697					  io_req->user_bufs[i]);
1698				goto bailout;
1699			}
1700		}
1701		break;
1702	case CAM_DATA_PADDR:
1703		/* Do nothing.  The pointer is a physical address already */
1704		break;
1705	case CAM_DATA_SG:
1706		/*
1707		 * Copy back to the user buffer if this was a read.
1708		 * Restore the user's S/G list buffer pointer.
1709		 */
1710		if (io_req->dirs[0] == CAM_DIR_IN)
1711			error = passcopysglist(periph, io_req, io_req->dirs[0]);
1712		break;
1713	case CAM_DATA_SG_PADDR:
1714		/*
1715		 * Restore the user's S/G list buffer pointer.  No need to
1716		 * copy.
1717		 */
1718		break;
1719	default:
1720	case CAM_DATA_BIO:
1721		error = EINVAL;
1722		break;
1723	}
1724
1725bailout:
1726	/*
1727	 * Reset the user's pointers to their original values and free
1728	 * allocated memory.
1729	 */
1730	passiocleanup(softc, io_req);
1731
1732	return (error);
1733}
1734
1735static int
1736passioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
1737{
1738	int error;
1739
1740	if ((error = passdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) {
1741		error = cam_compat_ioctl(dev, cmd, addr, flag, td, passdoioctl);
1742	}
1743	return (error);
1744}
1745
1746static int
1747passdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
1748{
1749	struct	cam_periph *periph;
1750	struct	pass_softc *softc;
1751	int	error;
1752	uint32_t priority;
1753
1754	periph = (struct cam_periph *)dev->si_drv1;
1755	cam_periph_lock(periph);
1756	softc = (struct pass_softc *)periph->softc;
1757
1758	error = 0;
1759
1760	switch (cmd) {
1761	case CAMIOCOMMAND:
1762	{
1763		union ccb *inccb;
1764		union ccb *ccb;
1765		int ccb_malloced;
1766
1767		inccb = (union ccb *)addr;
1768#if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
1769		if (inccb->ccb_h.func_code == XPT_SCSI_IO)
1770			inccb->csio.bio = NULL;
1771#endif
1772
1773		if (inccb->ccb_h.flags & CAM_UNLOCKED) {
1774			error = EINVAL;
1775			break;
1776		}
1777
1778		/*
1779		 * Some CCB types, like scan bus and scan lun can only go
1780		 * through the transport layer device.
1781		 */
1782		if (inccb->ccb_h.func_code & XPT_FC_XPT_ONLY) {
1783			xpt_print(periph->path, "CCB function code %#x is "
1784			    "restricted to the XPT device\n",
1785			    inccb->ccb_h.func_code);
1786			error = ENODEV;
1787			break;
1788		}
1789
1790		/* Compatibility for RL/priority-unaware code. */
1791		priority = inccb->ccb_h.pinfo.priority;
1792		if (priority <= CAM_PRIORITY_OOB)
1793		    priority += CAM_PRIORITY_OOB + 1;
1794
1795		/*
1796		 * Non-immediate CCBs need a CCB from the per-device pool
1797		 * of CCBs, which is scheduled by the transport layer.
1798		 * Immediate CCBs and user-supplied CCBs should just be
1799		 * malloced.
1800		 */
1801		if ((inccb->ccb_h.func_code & XPT_FC_QUEUED)
1802		 && ((inccb->ccb_h.func_code & XPT_FC_USER_CCB) == 0)) {
1803			ccb = cam_periph_getccb(periph, priority);
1804			ccb_malloced = 0;
1805		} else {
1806			ccb = xpt_alloc_ccb_nowait();
1807
1808			if (ccb != NULL)
1809				xpt_setup_ccb(&ccb->ccb_h, periph->path,
1810					      priority);
1811			ccb_malloced = 1;
1812		}
1813
1814		if (ccb == NULL) {
1815			xpt_print(periph->path, "unable to allocate CCB\n");
1816			error = ENOMEM;
1817			break;
1818		}
1819
1820		error = passsendccb(periph, ccb, inccb);
1821
1822		if (ccb_malloced)
1823			xpt_free_ccb(ccb);
1824		else
1825			xpt_release_ccb(ccb);
1826
1827		break;
1828	}
1829	case CAMIOQUEUE:
1830	{
1831		struct pass_io_req *io_req;
1832		union ccb **user_ccb, *ccb;
1833		xpt_opcode fc;
1834
1835#ifdef COMPAT_FREEBSD32
1836		if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
1837			error = ENOTTY;
1838			goto bailout;
1839		}
1840#endif
1841		if ((softc->flags & PASS_FLAG_ZONE_VALID) == 0) {
1842			error = passcreatezone(periph);
1843			if (error != 0)
1844				goto bailout;
1845		}
1846
1847		/*
1848		 * We're going to do a blocking allocation for this I/O
1849		 * request, so we have to drop the lock.
1850		 */
1851		cam_periph_unlock(periph);
1852
1853		io_req = uma_zalloc(softc->pass_zone, M_WAITOK | M_ZERO);
1854		ccb = &io_req->ccb;
1855		user_ccb = (union ccb **)addr;
1856
1857		/*
1858		 * Unlike the CAMIOCOMMAND ioctl above, we only have a
1859		 * pointer to the user's CCB, so we have to copy the whole
1860		 * thing in to a buffer we have allocated (above) instead
1861		 * of allowing the ioctl code to malloc a buffer and copy
1862		 * it in.
1863		 *
1864		 * This is an advantage for this asynchronous interface,
1865		 * since we don't want the memory to get freed while the
1866		 * CCB is outstanding.
1867		 */
1868#if 0
1869		xpt_print(periph->path, "Copying user CCB %p to "
1870			  "kernel address %p\n", *user_ccb, ccb);
1871#endif
1872		error = copyin(*user_ccb, ccb, sizeof(*ccb));
1873		if (error != 0) {
1874			xpt_print(periph->path, "Copy of user CCB %p to "
1875				  "kernel address %p failed with error %d\n",
1876				  *user_ccb, ccb, error);
1877			goto camioqueue_error;
1878		}
1879#if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
1880		if (ccb->ccb_h.func_code == XPT_SCSI_IO)
1881			ccb->csio.bio = NULL;
1882#endif
1883
1884		if (ccb->ccb_h.flags & CAM_UNLOCKED) {
1885			error = EINVAL;
1886			goto camioqueue_error;
1887		}
1888
1889		if (ccb->ccb_h.flags & CAM_CDB_POINTER) {
1890			if (ccb->csio.cdb_len > IOCDBLEN) {
1891				error = EINVAL;
1892				goto camioqueue_error;
1893			}
1894			error = copyin(ccb->csio.cdb_io.cdb_ptr,
1895			    ccb->csio.cdb_io.cdb_bytes, ccb->csio.cdb_len);
1896			if (error != 0)
1897				goto camioqueue_error;
1898			ccb->ccb_h.flags &= ~CAM_CDB_POINTER;
1899		}
1900
1901		/*
1902		 * Some CCB types, like scan bus and scan lun can only go
1903		 * through the transport layer device.
1904		 */
1905		if (ccb->ccb_h.func_code & XPT_FC_XPT_ONLY) {
1906			xpt_print(periph->path, "CCB function code %#x is "
1907			    "restricted to the XPT device\n",
1908			    ccb->ccb_h.func_code);
1909			error = ENODEV;
1910			goto camioqueue_error;
1911		}
1912
1913		/*
1914		 * Save the user's CCB pointer as well as his linked list
1915		 * pointers and peripheral private area so that we can
1916		 * restore these later.
1917		 */
1918		io_req->user_ccb_ptr = *user_ccb;
1919		io_req->user_periph_links = ccb->ccb_h.periph_links;
1920		io_req->user_periph_priv = ccb->ccb_h.periph_priv;
1921
1922		/*
1923		 * Now that we've saved the user's values, we can set our
1924		 * own peripheral private entry.
1925		 */
1926		ccb->ccb_h.ccb_ioreq = io_req;
1927
1928		/* Compatibility for RL/priority-unaware code. */
1929		priority = ccb->ccb_h.pinfo.priority;
1930		if (priority <= CAM_PRIORITY_OOB)
1931		    priority += CAM_PRIORITY_OOB + 1;
1932
1933		/*
1934		 * Setup fields in the CCB like the path and the priority.
1935		 * The path in particular cannot be done in userland, since
1936		 * it is a pointer to a kernel data structure.
1937		 */
1938		xpt_setup_ccb_flags(&ccb->ccb_h, periph->path, priority,
1939				    ccb->ccb_h.flags);
1940
1941		/*
1942		 * Setup our done routine.  There is no way for the user to
1943		 * have a valid pointer here.
1944		 */
1945		ccb->ccb_h.cbfcnp = passdone;
1946
1947		fc = ccb->ccb_h.func_code;
1948		/*
1949		 * If this function code has memory that can be mapped in
1950		 * or out, we need to call passmemsetup().
1951		 */
1952		if ((fc == XPT_SCSI_IO) || (fc == XPT_ATA_IO)
1953		 || (fc == XPT_SMP_IO) || (fc == XPT_DEV_MATCH)
1954		 || (fc == XPT_DEV_ADVINFO)
1955		 || (fc == XPT_NVME_ADMIN) || (fc == XPT_NVME_IO)) {
1956			error = passmemsetup(periph, io_req);
1957			if (error != 0)
1958				goto camioqueue_error;
1959		} else
1960			io_req->mapinfo.num_bufs_used = 0;
1961
1962		cam_periph_lock(periph);
1963
1964		/*
1965		 * Everything goes on the incoming queue initially.
1966		 */
1967		TAILQ_INSERT_TAIL(&softc->incoming_queue, io_req, links);
1968
1969		/*
1970		 * If the CCB is queued, and is not a user CCB, then
1971		 * we need to allocate a slot for it.  Call xpt_schedule()
1972		 * so that our start routine will get called when a CCB is
1973		 * available.
1974		 */
1975		if ((fc & XPT_FC_QUEUED)
1976		 && ((fc & XPT_FC_USER_CCB) == 0)) {
1977			xpt_schedule(periph, priority);
1978			break;
1979		}
1980
1981		/*
1982		 * At this point, the CCB in question is either an
1983		 * immediate CCB (like XPT_DEV_ADVINFO) or it is a user CCB
1984		 * and therefore should be malloced, not allocated via a slot.
1985		 * Remove the CCB from the incoming queue and add it to the
1986		 * active queue.
1987		 */
1988		TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
1989		TAILQ_INSERT_TAIL(&softc->active_queue, io_req, links);
1990
1991		xpt_action(ccb);
1992
1993		/*
1994		 * If this is not a queued CCB (i.e. it is an immediate CCB),
1995		 * then it is already done.  We need to put it on the done
1996		 * queue for the user to fetch.
1997		 */
1998		if ((fc & XPT_FC_QUEUED) == 0) {
1999			TAILQ_REMOVE(&softc->active_queue, io_req, links);
2000			TAILQ_INSERT_TAIL(&softc->done_queue, io_req, links);
2001		}
2002		break;
2003
2004camioqueue_error:
2005		uma_zfree(softc->pass_zone, io_req);
2006		cam_periph_lock(periph);
2007		break;
2008	}
2009	case CAMIOGET:
2010	{
2011		union ccb **user_ccb;
2012		struct pass_io_req *io_req;
2013		int old_error;
2014
2015#ifdef COMPAT_FREEBSD32
2016		if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
2017			error = ENOTTY;
2018			goto bailout;
2019		}
2020#endif
2021		user_ccb = (union ccb **)addr;
2022		old_error = 0;
2023
2024		io_req = TAILQ_FIRST(&softc->done_queue);
2025		if (io_req == NULL) {
2026			error = ENOENT;
2027			break;
2028		}
2029
2030		/*
2031		 * Remove the I/O from the done queue.
2032		 */
2033		TAILQ_REMOVE(&softc->done_queue, io_req, links);
2034
2035		/*
2036		 * We have to drop the lock during the copyout because the
2037		 * copyout can result in VM faults that require sleeping.
2038		 */
2039		cam_periph_unlock(periph);
2040
2041		/*
2042		 * Do any needed copies (e.g. for reads) and revert the
2043		 * pointers in the CCB back to the user's pointers.
2044		 */
2045		error = passmemdone(periph, io_req);
2046
2047		old_error = error;
2048
2049		io_req->ccb.ccb_h.periph_links = io_req->user_periph_links;
2050		io_req->ccb.ccb_h.periph_priv = io_req->user_periph_priv;
2051
2052#if 0
2053		xpt_print(periph->path, "Copying to user CCB %p from "
2054			  "kernel address %p\n", *user_ccb, &io_req->ccb);
2055#endif
2056
2057		error = copyout(&io_req->ccb, *user_ccb, sizeof(union ccb));
2058		if (error != 0) {
2059			xpt_print(periph->path, "Copy to user CCB %p from "
2060				  "kernel address %p failed with error %d\n",
2061				  *user_ccb, &io_req->ccb, error);
2062		}
2063
2064		/*
2065		 * Prefer the first error we got back, and make sure we
2066		 * don't overwrite bad status with good.
2067		 */
2068		if (old_error != 0)
2069			error = old_error;
2070
2071		cam_periph_lock(periph);
2072
2073		/*
2074		 * At this point, if there was an error, we could potentially
2075		 * re-queue the I/O and try again.  But why?  The error
2076		 * would almost certainly happen again.  We might as well
2077		 * not leak memory.
2078		 */
2079		uma_zfree(softc->pass_zone, io_req);
2080		break;
2081	}
2082	default:
2083		error = cam_periph_ioctl(periph, cmd, addr, passerror);
2084		break;
2085	}
2086
2087bailout:
2088	cam_periph_unlock(periph);
2089
2090	return(error);
2091}
2092
2093static int
2094passpoll(struct cdev *dev, int poll_events, struct thread *td)
2095{
2096	struct cam_periph *periph;
2097	struct pass_softc *softc;
2098	int revents;
2099
2100	periph = (struct cam_periph *)dev->si_drv1;
2101	softc = (struct pass_softc *)periph->softc;
2102
2103	revents = poll_events & (POLLOUT | POLLWRNORM);
2104	if ((poll_events & (POLLIN | POLLRDNORM)) != 0) {
2105		cam_periph_lock(periph);
2106
2107		if (!TAILQ_EMPTY(&softc->done_queue)) {
2108			revents |= poll_events & (POLLIN | POLLRDNORM);
2109		}
2110		cam_periph_unlock(periph);
2111		if (revents == 0)
2112			selrecord(td, &softc->read_select);
2113	}
2114
2115	return (revents);
2116}
2117
2118static int
2119passkqfilter(struct cdev *dev, struct knote *kn)
2120{
2121	struct cam_periph *periph;
2122	struct pass_softc *softc;
2123
2124	periph = (struct cam_periph *)dev->si_drv1;
2125	softc = (struct pass_softc *)periph->softc;
2126
2127	kn->kn_hook = (caddr_t)periph;
2128	kn->kn_fop = &passread_filtops;
2129	knlist_add(&softc->read_select.si_note, kn, 0);
2130
2131	return (0);
2132}
2133
2134static void
2135passreadfiltdetach(struct knote *kn)
2136{
2137	struct cam_periph *periph;
2138	struct pass_softc *softc;
2139
2140	periph = (struct cam_periph *)kn->kn_hook;
2141	softc = (struct pass_softc *)periph->softc;
2142
2143	knlist_remove(&softc->read_select.si_note, kn, 0);
2144}
2145
2146static int
2147passreadfilt(struct knote *kn, long hint)
2148{
2149	struct cam_periph *periph;
2150	struct pass_softc *softc;
2151	int retval;
2152
2153	periph = (struct cam_periph *)kn->kn_hook;
2154	softc = (struct pass_softc *)periph->softc;
2155
2156	cam_periph_assert(periph, MA_OWNED);
2157
2158	if (TAILQ_EMPTY(&softc->done_queue))
2159		retval = 0;
2160	else
2161		retval = 1;
2162
2163	return (retval);
2164}
2165
2166/*
2167 * Generally, "ccb" should be the CCB supplied by the kernel.  "inccb"
2168 * should be the CCB that is copied in from the user.
2169 */
2170static int
2171passsendccb(struct cam_periph *periph, union ccb *ccb, union ccb *inccb)
2172{
2173	struct pass_softc *softc;
2174	struct cam_periph_map_info mapinfo;
2175	uint8_t *cmd;
2176	xpt_opcode fc;
2177	int error;
2178
2179	softc = (struct pass_softc *)periph->softc;
2180
2181	/*
2182	 * There are some fields in the CCB header that need to be
2183	 * preserved, the rest we get from the user.
2184	 */
2185	xpt_merge_ccb(ccb, inccb);
2186
2187	if (ccb->ccb_h.flags & CAM_CDB_POINTER) {
2188		cmd = __builtin_alloca(ccb->csio.cdb_len);
2189		error = copyin(ccb->csio.cdb_io.cdb_ptr, cmd, ccb->csio.cdb_len);
2190		if (error)
2191			return (error);
2192		ccb->csio.cdb_io.cdb_ptr = cmd;
2193	}
2194
2195	/*
2196	 * Let cam_periph_mapmem do a sanity check on the data pointer format.
2197	 * Even if no data transfer is needed, it's a cheap check and it
2198	 * simplifies the code.
2199	 */
2200	fc = ccb->ccb_h.func_code;
2201	if ((fc == XPT_SCSI_IO) || (fc == XPT_ATA_IO) || (fc == XPT_SMP_IO)
2202            || (fc == XPT_DEV_MATCH) || (fc == XPT_DEV_ADVINFO) || (fc == XPT_MMC_IO)
2203            || (fc == XPT_NVME_ADMIN) || (fc == XPT_NVME_IO)) {
2204		bzero(&mapinfo, sizeof(mapinfo));
2205
2206		/*
2207		 * cam_periph_mapmem calls into proc and vm functions that can
2208		 * sleep as well as trigger I/O, so we can't hold the lock.
2209		 * Dropping it here is reasonably safe.
2210		 */
2211		cam_periph_unlock(periph);
2212		error = cam_periph_mapmem(ccb, &mapinfo, softc->maxio);
2213		cam_periph_lock(periph);
2214
2215		/*
2216		 * cam_periph_mapmem returned an error, we can't continue.
2217		 * Return the error to the user.
2218		 */
2219		if (error)
2220			return(error);
2221	} else
2222		/* Ensure that the unmap call later on is a no-op. */
2223		mapinfo.num_bufs_used = 0;
2224
2225	/*
2226	 * If the user wants us to perform any error recovery, then honor
2227	 * that request.  Otherwise, it's up to the user to perform any
2228	 * error recovery.
2229	 */
2230	{
2231		uint32_t cam_flags, sense_flags;
2232
2233		passflags(ccb, &cam_flags, &sense_flags);
2234		cam_periph_runccb(ccb,  passerror, cam_flags,
2235		    sense_flags, softc->device_stats);
2236	}
2237
2238	cam_periph_unlock(periph);
2239	error = cam_periph_unmapmem(ccb, &mapinfo);
2240	cam_periph_lock(periph);
2241
2242	ccb->ccb_h.cbfcnp = NULL;
2243	ccb->ccb_h.periph_priv = inccb->ccb_h.periph_priv;
2244	bcopy(ccb, inccb, sizeof(union ccb));
2245
2246	return (error);
2247}
2248
2249/*
2250 * Set the cam_flags and sense_flags based on whether or not the request wants
2251 * error recovery. In order to log errors via devctl, we need to do at least
2252 * minimal recovery. We do this by not retrying unit attention (we let the
2253 * requester do it, or not, if appropriate) and specifically asking for no
2254 * recovery, like we do during device probing.
2255 */
2256static void
2257passflags(union ccb *ccb, uint32_t *cam_flags, uint32_t *sense_flags)
2258{
2259	if ((ccb->ccb_h.flags & CAM_PASS_ERR_RECOVER) != 0) {
2260		*cam_flags = CAM_RETRY_SELTO;
2261		*sense_flags = SF_RETRY_UA | SF_NO_PRINT;
2262	} else {
2263		*cam_flags = 0;
2264		*sense_flags = SF_NO_RETRY | SF_NO_RECOVERY | SF_NO_PRINT;
2265	}
2266}
2267
2268static int
2269passerror(union ccb *ccb, uint32_t cam_flags, uint32_t sense_flags)
2270{
2271
2272	return(cam_periph_error(ccb, cam_flags, sense_flags));
2273}
2274