1/*-
2 * Copyright (c) 2016 Jared McNeill <jmcneill@invisible.ca>
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 *    notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 *    notice, this list of conditions and the following disclaimer in the
11 *    documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
14 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
15 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
16 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
17 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
18 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
19 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
20 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
21 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23 * SUCH DAMAGE.
24 */
25
26/*
27 * Allwinner thermal sensor controller
28 */
29
30#include <sys/param.h>
31#include <sys/systm.h>
32#include <sys/eventhandler.h>
33#include <sys/bus.h>
34#include <sys/rman.h>
35#include <sys/kernel.h>
36#include <sys/sysctl.h>
37#include <sys/reboot.h>
38#include <sys/module.h>
39#include <sys/cpu.h>
40#include <sys/taskqueue.h>
41#include <machine/bus.h>
42
43#include <dev/ofw/ofw_bus.h>
44#include <dev/ofw/ofw_bus_subr.h>
45
46#include <dev/clk/clk.h>
47#include <dev/hwreset/hwreset.h>
48#include <dev/nvmem/nvmem.h>
49
50#include <arm/allwinner/aw_sid.h>
51
52#include "cpufreq_if.h"
53#include "nvmem_if.h"
54
55#define	THS_CTRL0		0x00
56#define	THS_CTRL1		0x04
57#define	 ADC_CALI_EN		(1 << 17)
58#define	THS_CTRL2		0x40
59#define	 SENSOR_ACQ1_SHIFT	16
60#define	 SENSOR2_EN		(1 << 2)
61#define	 SENSOR1_EN		(1 << 1)
62#define	 SENSOR0_EN		(1 << 0)
63#define	THS_INTC		0x44
64#define	 THS_THERMAL_PER_SHIFT	12
65#define	THS_INTS		0x48
66#define	 THS2_DATA_IRQ_STS	(1 << 10)
67#define	 THS1_DATA_IRQ_STS	(1 << 9)
68#define	 THS0_DATA_IRQ_STS	(1 << 8)
69#define	 SHUT_INT2_STS		(1 << 6)
70#define	 SHUT_INT1_STS		(1 << 5)
71#define	 SHUT_INT0_STS		(1 << 4)
72#define	 ALARM_INT2_STS		(1 << 2)
73#define	 ALARM_INT1_STS		(1 << 1)
74#define	 ALARM_INT0_STS		(1 << 0)
75#define	THS_ALARM0_CTRL		0x50
76#define	 ALARM_T_HOT_MASK	0xfff
77#define	 ALARM_T_HOT_SHIFT	16
78#define	 ALARM_T_HYST_MASK	0xfff
79#define	 ALARM_T_HYST_SHIFT	0
80#define	THS_SHUTDOWN0_CTRL	0x60
81#define	 SHUT_T_HOT_MASK	0xfff
82#define	 SHUT_T_HOT_SHIFT	16
83#define	THS_FILTER		0x70
84#define	THS_CALIB0		0x74
85#define	THS_CALIB1		0x78
86#define	THS_DATA0		0x80
87#define	THS_DATA1		0x84
88#define	THS_DATA2		0x88
89#define	 DATA_MASK		0xfff
90
91#define	A83T_CLK_RATE		24000000
92#define	A83T_ADC_ACQUIRE_TIME	23	/* 24Mhz/(23 + 1) = 1us */
93#define	A83T_THERMAL_PER	1	/* 4096 * (1 + 1) / 24Mhz = 341 us */
94#define	A83T_FILTER		0x5	/* Filter enabled, avg of 4 */
95#define	A83T_TEMP_BASE		2719000
96#define	A83T_TEMP_MUL		1000
97#define	A83T_TEMP_DIV		14186
98
99#define	A64_CLK_RATE		4000000
100#define	A64_ADC_ACQUIRE_TIME	400	/* 4Mhz/(400 + 1) = 100 us */
101#define	A64_THERMAL_PER		24	/* 4096 * (24 + 1) / 4Mhz = 25.6 ms */
102#define	A64_FILTER		0x6	/* Filter enabled, avg of 8 */
103#define	A64_TEMP_BASE		2170000
104#define	A64_TEMP_MUL		1000
105#define	A64_TEMP_DIV		8560
106
107#define	H3_CLK_RATE		4000000
108#define	H3_ADC_ACQUIRE_TIME	0x3f
109#define	H3_THERMAL_PER		401
110#define	H3_FILTER		0x6	/* Filter enabled, avg of 8 */
111#define	H3_TEMP_BASE		217
112#define	H3_TEMP_MUL		1000
113#define	H3_TEMP_DIV		8253
114#define	H3_TEMP_MINUS		1794000
115#define	H3_INIT_ALARM		90	/* degC */
116#define	H3_INIT_SHUT		105	/* degC */
117
118#define	H5_CLK_RATE		24000000
119#define	H5_ADC_ACQUIRE_TIME	479	/* 24Mhz/479 = 20us */
120#define	H5_THERMAL_PER		58	/* 4096 * (58 + 1) / 24Mhz = 10ms */
121#define	H5_FILTER		0x6	/* Filter enabled, avg of 8 */
122#define	H5_TEMP_BASE		233832448
123#define	H5_TEMP_MUL		124885
124#define	H5_TEMP_DIV		20
125#define	H5_TEMP_BASE_CPU	271581184
126#define	H5_TEMP_MUL_CPU		152253
127#define	H5_TEMP_BASE_GPU	289406976
128#define	H5_TEMP_MUL_GPU		166724
129#define	H5_INIT_CPU_ALARM	80	/* degC */
130#define	H5_INIT_CPU_SHUT	96	/* degC */
131#define	H5_INIT_GPU_ALARM	84	/* degC */
132#define	H5_INIT_GPU_SHUT	100	/* degC */
133
134#define	TEMP_C_TO_K		273
135#define	SENSOR_ENABLE_ALL	(SENSOR0_EN|SENSOR1_EN|SENSOR2_EN)
136#define	SHUT_INT_ALL		(SHUT_INT0_STS|SHUT_INT1_STS|SHUT_INT2_STS)
137#define	ALARM_INT_ALL		(ALARM_INT0_STS)
138
139#define	MAX_SENSORS	3
140#define	MAX_CF_LEVELS	64
141
142#define	THROTTLE_ENABLE_DEFAULT	1
143
144/* Enable thermal throttling */
145static int aw_thermal_throttle_enable = THROTTLE_ENABLE_DEFAULT;
146TUNABLE_INT("hw.aw_thermal.throttle_enable", &aw_thermal_throttle_enable);
147
148struct aw_thermal_sensor {
149	const char		*name;
150	const char		*desc;
151	int			init_alarm;
152	int			init_shut;
153};
154
155struct aw_thermal_config {
156	struct aw_thermal_sensor	sensors[MAX_SENSORS];
157	int				nsensors;
158	uint64_t			clk_rate;
159	uint32_t			adc_acquire_time;
160	int				adc_cali_en;
161	uint32_t			filter;
162	uint32_t			thermal_per;
163	int				(*to_temp)(uint32_t, int);
164	uint32_t			(*to_reg)(int, int);
165	int				temp_base;
166	int				temp_mul;
167	int				temp_div;
168	int				calib0, calib1;
169	uint32_t			calib0_mask, calib1_mask;
170};
171
172static int
173a83t_to_temp(uint32_t val, int sensor)
174{
175	return ((A83T_TEMP_BASE - (val * A83T_TEMP_MUL)) / A83T_TEMP_DIV);
176}
177
178static const struct aw_thermal_config a83t_config = {
179	.nsensors = 3,
180	.sensors = {
181		[0] = {
182			.name = "cluster0",
183			.desc = "CPU cluster 0 temperature",
184		},
185		[1] = {
186			.name = "cluster1",
187			.desc = "CPU cluster 1 temperature",
188		},
189		[2] = {
190			.name = "gpu",
191			.desc = "GPU temperature",
192		},
193	},
194	.clk_rate = A83T_CLK_RATE,
195	.adc_acquire_time = A83T_ADC_ACQUIRE_TIME,
196	.adc_cali_en = 1,
197	.filter = A83T_FILTER,
198	.thermal_per = A83T_THERMAL_PER,
199	.to_temp = a83t_to_temp,
200	.calib0_mask = 0xffffffff,
201	.calib1_mask = 0xffff,
202};
203
204static int
205a64_to_temp(uint32_t val, int sensor)
206{
207	return ((A64_TEMP_BASE - (val * A64_TEMP_MUL)) / A64_TEMP_DIV);
208}
209
210static const struct aw_thermal_config a64_config = {
211	.nsensors = 3,
212	.sensors = {
213		[0] = {
214			.name = "cpu",
215			.desc = "CPU temperature",
216		},
217		[1] = {
218			.name = "gpu1",
219			.desc = "GPU temperature 1",
220		},
221		[2] = {
222			.name = "gpu2",
223			.desc = "GPU temperature 2",
224		},
225	},
226	.clk_rate = A64_CLK_RATE,
227	.adc_acquire_time = A64_ADC_ACQUIRE_TIME,
228	.adc_cali_en = 1,
229	.filter = A64_FILTER,
230	.thermal_per = A64_THERMAL_PER,
231	.to_temp = a64_to_temp,
232	.calib0_mask = 0xffffffff,
233	.calib1_mask = 0xffff,
234};
235
236static int
237h3_to_temp(uint32_t val, int sensor)
238{
239	return (H3_TEMP_BASE - ((val * H3_TEMP_MUL) / H3_TEMP_DIV));
240}
241
242static uint32_t
243h3_to_reg(int val, int sensor)
244{
245	return ((H3_TEMP_MINUS - (val * H3_TEMP_DIV)) / H3_TEMP_MUL);
246}
247
248static const struct aw_thermal_config h3_config = {
249	.nsensors = 1,
250	.sensors = {
251		[0] = {
252			.name = "cpu",
253			.desc = "CPU temperature",
254			.init_alarm = H3_INIT_ALARM,
255			.init_shut = H3_INIT_SHUT,
256		},
257	},
258	.clk_rate = H3_CLK_RATE,
259	.adc_acquire_time = H3_ADC_ACQUIRE_TIME,
260	.adc_cali_en = 1,
261	.filter = H3_FILTER,
262	.thermal_per = H3_THERMAL_PER,
263	.to_temp = h3_to_temp,
264	.to_reg = h3_to_reg,
265	.calib0_mask = 0xffffffff,
266};
267
268static int
269h5_to_temp(uint32_t val, int sensor)
270{
271	int tmp;
272
273	/* Temp is lower than 70 degrees */
274	if (val > 0x500) {
275		tmp = H5_TEMP_BASE - (val * H5_TEMP_MUL);
276		tmp >>= H5_TEMP_DIV;
277		return (tmp);
278	}
279
280	if (sensor == 0)
281		tmp = H5_TEMP_BASE_CPU - (val * H5_TEMP_MUL_CPU);
282	else if (sensor == 1)
283		tmp = H5_TEMP_BASE_GPU - (val * H5_TEMP_MUL_GPU);
284	else {
285		printf("Unknown sensor %d\n", sensor);
286		return (val);
287	}
288
289	tmp >>= H5_TEMP_DIV;
290	return (tmp);
291}
292
293static uint32_t
294h5_to_reg(int val, int sensor)
295{
296	int tmp;
297
298	if (val < 70) {
299		tmp = H5_TEMP_BASE - (val << H5_TEMP_DIV);
300		tmp /= H5_TEMP_MUL;
301	} else {
302		if (sensor == 0) {
303			tmp = H5_TEMP_BASE_CPU - (val << H5_TEMP_DIV);
304			tmp /= H5_TEMP_MUL_CPU;
305		} else if (sensor == 1) {
306			tmp = H5_TEMP_BASE_GPU - (val << H5_TEMP_DIV);
307			tmp /= H5_TEMP_MUL_GPU;
308		} else {
309			printf("Unknown sensor %d\n", sensor);
310			return (val);
311		}
312	}
313
314	return ((uint32_t)tmp);
315}
316
317static const struct aw_thermal_config h5_config = {
318	.nsensors = 2,
319	.sensors = {
320		[0] = {
321			.name = "cpu",
322			.desc = "CPU temperature",
323			.init_alarm = H5_INIT_CPU_ALARM,
324			.init_shut = H5_INIT_CPU_SHUT,
325		},
326		[1] = {
327			.name = "gpu",
328			.desc = "GPU temperature",
329			.init_alarm = H5_INIT_GPU_ALARM,
330			.init_shut = H5_INIT_GPU_SHUT,
331		},
332	},
333	.clk_rate = H5_CLK_RATE,
334	.adc_acquire_time = H5_ADC_ACQUIRE_TIME,
335	.filter = H5_FILTER,
336	.thermal_per = H5_THERMAL_PER,
337	.to_temp = h5_to_temp,
338	.to_reg = h5_to_reg,
339	.calib0_mask = 0xffffffff,
340};
341
342static struct ofw_compat_data compat_data[] = {
343	{ "allwinner,sun8i-a83t-ths",	(uintptr_t)&a83t_config },
344	{ "allwinner,sun8i-h3-ths",	(uintptr_t)&h3_config },
345	{ "allwinner,sun50i-a64-ths",	(uintptr_t)&a64_config },
346	{ "allwinner,sun50i-h5-ths",	(uintptr_t)&h5_config },
347	{ NULL,				(uintptr_t)NULL }
348};
349
350#define	THS_CONF(d)		\
351	(void *)ofw_bus_search_compatible((d), compat_data)->ocd_data
352
353struct aw_thermal_softc {
354	device_t			dev;
355	struct resource			*res[2];
356	struct aw_thermal_config	*conf;
357
358	struct task			cf_task;
359	int				throttle;
360	int				min_freq;
361	struct cf_level			levels[MAX_CF_LEVELS];
362	eventhandler_tag		cf_pre_tag;
363
364	clk_t				clk_apb;
365	clk_t				clk_ths;
366};
367
368static struct resource_spec aw_thermal_spec[] = {
369	{ SYS_RES_MEMORY,	0,	RF_ACTIVE },
370	{ SYS_RES_IRQ,		0,	RF_ACTIVE },
371	{ -1, 0 }
372};
373
374#define	RD4(sc, reg)		bus_read_4((sc)->res[0], (reg))
375#define	WR4(sc, reg, val)	bus_write_4((sc)->res[0], (reg), (val))
376
377static int
378aw_thermal_init(struct aw_thermal_softc *sc)
379{
380	phandle_t node;
381	uint32_t calib[2];
382	int error;
383
384	node = ofw_bus_get_node(sc->dev);
385	if (nvmem_get_cell_len(node, "calibration") > sizeof(calib)) {
386		device_printf(sc->dev, "calibration nvmem cell is too large\n");
387		return (ENXIO);
388	}
389	error = nvmem_read_cell_by_name(node, "calibration",
390	    (void *)&calib, nvmem_get_cell_len(node, "calibration"));
391	/* Read calibration settings from EFUSE */
392	if (error != 0) {
393		device_printf(sc->dev, "Cannot read THS efuse\n");
394		return (error);
395	}
396
397	calib[0] &= sc->conf->calib0_mask;
398	calib[1] &= sc->conf->calib1_mask;
399
400	/* Write calibration settings to thermal controller */
401	if (calib[0] != 0)
402		WR4(sc, THS_CALIB0, calib[0]);
403	if (calib[1] != 0)
404		WR4(sc, THS_CALIB1, calib[1]);
405
406	/* Configure ADC acquire time (CLK_IN/(N+1)) and enable sensors */
407	WR4(sc, THS_CTRL1, ADC_CALI_EN);
408	WR4(sc, THS_CTRL0, sc->conf->adc_acquire_time);
409	WR4(sc, THS_CTRL2, sc->conf->adc_acquire_time << SENSOR_ACQ1_SHIFT);
410
411	/* Set thermal period */
412	WR4(sc, THS_INTC, sc->conf->thermal_per << THS_THERMAL_PER_SHIFT);
413
414	/* Enable average filter */
415	WR4(sc, THS_FILTER, sc->conf->filter);
416
417	/* Enable interrupts */
418	WR4(sc, THS_INTS, RD4(sc, THS_INTS));
419	WR4(sc, THS_INTC, RD4(sc, THS_INTC) | SHUT_INT_ALL | ALARM_INT_ALL);
420
421	/* Enable sensors */
422	WR4(sc, THS_CTRL2, RD4(sc, THS_CTRL2) | SENSOR_ENABLE_ALL);
423
424	return (0);
425}
426
427static int
428aw_thermal_gettemp(struct aw_thermal_softc *sc, int sensor)
429{
430	uint32_t val;
431
432	val = RD4(sc, THS_DATA0 + (sensor * 4));
433
434	return (sc->conf->to_temp(val, sensor));
435}
436
437static int
438aw_thermal_getshut(struct aw_thermal_softc *sc, int sensor)
439{
440	uint32_t val;
441
442	val = RD4(sc, THS_SHUTDOWN0_CTRL + (sensor * 4));
443	val = (val >> SHUT_T_HOT_SHIFT) & SHUT_T_HOT_MASK;
444
445	return (sc->conf->to_temp(val, sensor));
446}
447
448static void
449aw_thermal_setshut(struct aw_thermal_softc *sc, int sensor, int temp)
450{
451	uint32_t val;
452
453	val = RD4(sc, THS_SHUTDOWN0_CTRL + (sensor * 4));
454	val &= ~(SHUT_T_HOT_MASK << SHUT_T_HOT_SHIFT);
455	val |= (sc->conf->to_reg(temp, sensor) << SHUT_T_HOT_SHIFT);
456	WR4(sc, THS_SHUTDOWN0_CTRL + (sensor * 4), val);
457}
458
459static int
460aw_thermal_gethyst(struct aw_thermal_softc *sc, int sensor)
461{
462	uint32_t val;
463
464	val = RD4(sc, THS_ALARM0_CTRL + (sensor * 4));
465	val = (val >> ALARM_T_HYST_SHIFT) & ALARM_T_HYST_MASK;
466
467	return (sc->conf->to_temp(val, sensor));
468}
469
470static int
471aw_thermal_getalarm(struct aw_thermal_softc *sc, int sensor)
472{
473	uint32_t val;
474
475	val = RD4(sc, THS_ALARM0_CTRL + (sensor * 4));
476	val = (val >> ALARM_T_HOT_SHIFT) & ALARM_T_HOT_MASK;
477
478	return (sc->conf->to_temp(val, sensor));
479}
480
481static void
482aw_thermal_setalarm(struct aw_thermal_softc *sc, int sensor, int temp)
483{
484	uint32_t val;
485
486	val = RD4(sc, THS_ALARM0_CTRL + (sensor * 4));
487	val &= ~(ALARM_T_HOT_MASK << ALARM_T_HOT_SHIFT);
488	val |= (sc->conf->to_reg(temp, sensor) << ALARM_T_HOT_SHIFT);
489	WR4(sc, THS_ALARM0_CTRL + (sensor * 4), val);
490}
491
492static int
493aw_thermal_sysctl(SYSCTL_HANDLER_ARGS)
494{
495	struct aw_thermal_softc *sc;
496	int sensor, val;
497
498	sc = arg1;
499	sensor = arg2;
500
501	val = aw_thermal_gettemp(sc, sensor) + TEMP_C_TO_K;
502
503	return sysctl_handle_opaque(oidp, &val, sizeof(val), req);
504}
505
506static void
507aw_thermal_throttle(struct aw_thermal_softc *sc, int enable)
508{
509	device_t cf_dev;
510	int count, error;
511
512	if (enable == sc->throttle)
513		return;
514
515	if (enable != 0) {
516		/* Set the lowest available frequency */
517		cf_dev = devclass_get_device(devclass_find("cpufreq"), 0);
518		if (cf_dev == NULL)
519			return;
520		count = MAX_CF_LEVELS;
521		error = CPUFREQ_LEVELS(cf_dev, sc->levels, &count);
522		if (error != 0 || count == 0)
523			return;
524		sc->min_freq = sc->levels[count - 1].total_set.freq;
525		error = CPUFREQ_SET(cf_dev, &sc->levels[count - 1],
526		    CPUFREQ_PRIO_USER);
527		if (error != 0)
528			return;
529	}
530
531	sc->throttle = enable;
532}
533
534static void
535aw_thermal_cf_task(void *arg, int pending)
536{
537	struct aw_thermal_softc *sc;
538
539	sc = arg;
540
541	aw_thermal_throttle(sc, 1);
542}
543
544static void
545aw_thermal_cf_pre_change(void *arg, const struct cf_level *level, int *status)
546{
547	struct aw_thermal_softc *sc;
548	int temp_cur, temp_alarm;
549
550	sc = arg;
551
552	if (aw_thermal_throttle_enable == 0 || sc->throttle == 0 ||
553	    level->total_set.freq == sc->min_freq)
554		return;
555
556	temp_cur = aw_thermal_gettemp(sc, 0);
557	temp_alarm = aw_thermal_getalarm(sc, 0);
558
559	if (temp_cur < temp_alarm)
560		aw_thermal_throttle(sc, 0);
561	else
562		*status = ENXIO;
563}
564
565static void
566aw_thermal_intr(void *arg)
567{
568	struct aw_thermal_softc *sc;
569	device_t dev;
570	uint32_t ints;
571
572	dev = arg;
573	sc = device_get_softc(dev);
574
575	ints = RD4(sc, THS_INTS);
576	WR4(sc, THS_INTS, ints);
577
578	if ((ints & SHUT_INT_ALL) != 0) {
579		device_printf(dev,
580		    "WARNING - current temperature exceeds safe limits\n");
581		shutdown_nice(RB_POWEROFF);
582	}
583
584	if ((ints & ALARM_INT_ALL) != 0)
585		taskqueue_enqueue(taskqueue_thread, &sc->cf_task);
586}
587
588static int
589aw_thermal_probe(device_t dev)
590{
591	if (!ofw_bus_status_okay(dev))
592		return (ENXIO);
593
594	if (THS_CONF(dev) == NULL)
595		return (ENXIO);
596
597	device_set_desc(dev, "Allwinner Thermal Sensor Controller");
598	return (BUS_PROBE_DEFAULT);
599}
600
601static int
602aw_thermal_attach(device_t dev)
603{
604	struct aw_thermal_softc *sc;
605	hwreset_t rst;
606	int i, error;
607	void *ih;
608
609	sc = device_get_softc(dev);
610	sc->dev = dev;
611	rst = NULL;
612	ih = NULL;
613
614	sc->conf = THS_CONF(dev);
615	TASK_INIT(&sc->cf_task, 0, aw_thermal_cf_task, sc);
616
617	if (bus_alloc_resources(dev, aw_thermal_spec, sc->res) != 0) {
618		device_printf(dev, "cannot allocate resources for device\n");
619		return (ENXIO);
620	}
621
622	if (clk_get_by_ofw_name(dev, 0, "bus", &sc->clk_apb) == 0) {
623		error = clk_enable(sc->clk_apb);
624		if (error != 0) {
625			device_printf(dev, "cannot enable apb clock\n");
626			goto fail;
627		}
628	}
629
630	if (clk_get_by_ofw_name(dev, 0, "mod", &sc->clk_ths) == 0) {
631		error = clk_set_freq(sc->clk_ths, sc->conf->clk_rate, 0);
632		if (error != 0) {
633			device_printf(dev, "cannot set ths clock rate\n");
634			goto fail;
635		}
636		error = clk_enable(sc->clk_ths);
637		if (error != 0) {
638			device_printf(dev, "cannot enable ths clock\n");
639			goto fail;
640		}
641	}
642
643	if (hwreset_get_by_ofw_idx(dev, 0, 0, &rst) == 0) {
644		error = hwreset_deassert(rst);
645		if (error != 0) {
646			device_printf(dev, "cannot de-assert reset\n");
647			goto fail;
648		}
649	}
650
651	error = bus_setup_intr(dev, sc->res[1], INTR_TYPE_MISC | INTR_MPSAFE,
652	    NULL, aw_thermal_intr, dev, &ih);
653	if (error != 0) {
654		device_printf(dev, "cannot setup interrupt handler\n");
655		goto fail;
656	}
657
658	for (i = 0; i < sc->conf->nsensors; i++) {
659		if (sc->conf->sensors[i].init_alarm > 0)
660			aw_thermal_setalarm(sc, i,
661			    sc->conf->sensors[i].init_alarm);
662		if (sc->conf->sensors[i].init_shut > 0)
663			aw_thermal_setshut(sc, i,
664			    sc->conf->sensors[i].init_shut);
665	}
666
667	if (aw_thermal_init(sc) != 0)
668		goto fail;
669
670	for (i = 0; i < sc->conf->nsensors; i++)
671		SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
672		    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
673		    OID_AUTO, sc->conf->sensors[i].name,
674		    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
675		    sc, i, aw_thermal_sysctl, "IK0",
676		    sc->conf->sensors[i].desc);
677
678	if (bootverbose)
679		for (i = 0; i < sc->conf->nsensors; i++) {
680			device_printf(dev,
681			    "%s: alarm %dC hyst %dC shut %dC\n",
682			    sc->conf->sensors[i].name,
683			    aw_thermal_getalarm(sc, i),
684			    aw_thermal_gethyst(sc, i),
685			    aw_thermal_getshut(sc, i));
686		}
687
688	sc->cf_pre_tag = EVENTHANDLER_REGISTER(cpufreq_pre_change,
689	    aw_thermal_cf_pre_change, sc, EVENTHANDLER_PRI_FIRST);
690
691	return (0);
692
693fail:
694	if (ih != NULL)
695		bus_teardown_intr(dev, sc->res[1], ih);
696	if (rst != NULL)
697		hwreset_release(rst);
698	if (sc->clk_apb != NULL)
699		clk_release(sc->clk_apb);
700	if (sc->clk_ths != NULL)
701		clk_release(sc->clk_ths);
702	bus_release_resources(dev, aw_thermal_spec, sc->res);
703
704	return (ENXIO);
705}
706
707static device_method_t aw_thermal_methods[] = {
708	/* Device interface */
709	DEVMETHOD(device_probe,		aw_thermal_probe),
710	DEVMETHOD(device_attach,	aw_thermal_attach),
711
712	DEVMETHOD_END
713};
714
715static driver_t aw_thermal_driver = {
716	"aw_thermal",
717	aw_thermal_methods,
718	sizeof(struct aw_thermal_softc),
719};
720
721DRIVER_MODULE(aw_thermal, simplebus, aw_thermal_driver, 0, 0);
722MODULE_VERSION(aw_thermal, 1);
723MODULE_DEPEND(aw_thermal, aw_sid, 1, 1, 1);
724SIMPLEBUS_PNP_INFO(compat_data);
725