1/*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2012 Stephen Montgomery-Smith <stephen@FreeBSD.ORG>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29#include <complex.h>
30#include <float.h>
31
32#include "math.h"
33#include "math_private.h"
34
35#undef isinf
36#define isinf(x)	(fabs(x) == INFINITY)
37#undef isnan
38#define isnan(x)	((x) != (x))
39#define	raise_inexact()	do { volatile float junk __unused = 1 + tiny; } while(0)
40#undef signbit
41#define signbit(x)	(__builtin_signbit(x))
42
43/* We need that DBL_EPSILON^2/128 is larger than FOUR_SQRT_MIN. */
44static const double
45A_crossover =		10, /* Hull et al suggest 1.5, but 10 works better */
46B_crossover =		0.6417,			/* suggested by Hull et al */
47FOUR_SQRT_MIN =		0x1p-509,		/* >= 4 * sqrt(DBL_MIN) */
48QUARTER_SQRT_MAX =	0x1p509,		/* <= sqrt(DBL_MAX) / 4 */
49m_e =			2.7182818284590452e0,	/*  0x15bf0a8b145769.0p-51 */
50m_ln2 =			6.9314718055994531e-1,	/*  0x162e42fefa39ef.0p-53 */
51pio2_hi =		1.5707963267948966e0,	/*  0x1921fb54442d18.0p-52 */
52RECIP_EPSILON =		1 / DBL_EPSILON,
53SQRT_3_EPSILON =	2.5809568279517849e-8,	/*  0x1bb67ae8584caa.0p-78 */
54SQRT_6_EPSILON =	3.6500241499888571e-8,	/*  0x13988e1409212e.0p-77 */
55SQRT_MIN =		0x1p-511;		/* >= sqrt(DBL_MIN) */
56
57static const volatile double
58pio2_lo =		6.1232339957367659e-17;	/*  0x11a62633145c07.0p-106 */
59static const volatile float
60tiny =			0x1p-100;
61
62static double complex clog_for_large_values(double complex z);
63
64/*
65 * Testing indicates that all these functions are accurate up to 4 ULP.
66 * The functions casin(h) and cacos(h) are about 2.5 times slower than asinh.
67 * The functions catan(h) are a little under 2 times slower than atanh.
68 *
69 * The code for casinh, casin, cacos, and cacosh comes first.  The code is
70 * rather complicated, and the four functions are highly interdependent.
71 *
72 * The code for catanh and catan comes at the end.  It is much simpler than
73 * the other functions, and the code for these can be disconnected from the
74 * rest of the code.
75 */
76
77/*
78 *			================================
79 *			| casinh, casin, cacos, cacosh |
80 *			================================
81 */
82
83/*
84 * The algorithm is very close to that in "Implementing the complex arcsine
85 * and arccosine functions using exception handling" by T. E. Hull, Thomas F.
86 * Fairgrieve, and Ping Tak Peter Tang, published in ACM Transactions on
87 * Mathematical Software, Volume 23 Issue 3, 1997, Pages 299-335,
88 * http://dl.acm.org/citation.cfm?id=275324.
89 *
90 * Throughout we use the convention z = x + I*y.
91 *
92 * casinh(z) = sign(x)*log(A+sqrt(A*A-1)) + I*asin(B)
93 * where
94 * A = (|z+I| + |z-I|) / 2
95 * B = (|z+I| - |z-I|) / 2 = y/A
96 *
97 * These formulas become numerically unstable:
98 *   (a) for Re(casinh(z)) when z is close to the line segment [-I, I] (that
99 *       is, Re(casinh(z)) is close to 0);
100 *   (b) for Im(casinh(z)) when z is close to either of the intervals
101 *       [I, I*infinity) or (-I*infinity, -I] (that is, |Im(casinh(z))| is
102 *       close to PI/2).
103 *
104 * These numerical problems are overcome by defining
105 * f(a, b) = (hypot(a, b) - b) / 2 = a*a / (hypot(a, b) + b) / 2
106 * Then if A < A_crossover, we use
107 *   log(A + sqrt(A*A-1)) = log1p((A-1) + sqrt((A-1)*(A+1)))
108 *   A-1 = f(x, 1+y) + f(x, 1-y)
109 * and if B > B_crossover, we use
110 *   asin(B) = atan2(y, sqrt(A*A - y*y)) = atan2(y, sqrt((A+y)*(A-y)))
111 *   A-y = f(x, y+1) + f(x, y-1)
112 * where without loss of generality we have assumed that x and y are
113 * non-negative.
114 *
115 * Much of the difficulty comes because the intermediate computations may
116 * produce overflows or underflows.  This is dealt with in the paper by Hull
117 * et al by using exception handling.  We do this by detecting when
118 * computations risk underflow or overflow.  The hardest part is handling the
119 * underflows when computing f(a, b).
120 *
121 * Note that the function f(a, b) does not appear explicitly in the paper by
122 * Hull et al, but the idea may be found on pages 308 and 309.  Introducing the
123 * function f(a, b) allows us to concentrate many of the clever tricks in this
124 * paper into one function.
125 */
126
127/*
128 * Function f(a, b, hypot_a_b) = (hypot(a, b) - b) / 2.
129 * Pass hypot(a, b) as the third argument.
130 */
131static inline double
132f(double a, double b, double hypot_a_b)
133{
134	if (b < 0)
135		return ((hypot_a_b - b) / 2);
136	if (b == 0)
137		return (a / 2);
138	return (a * a / (hypot_a_b + b) / 2);
139}
140
141/*
142 * All the hard work is contained in this function.
143 * x and y are assumed positive or zero, and less than RECIP_EPSILON.
144 * Upon return:
145 * rx = Re(casinh(z)) = -Im(cacos(y + I*x)).
146 * B_is_usable is set to 1 if the value of B is usable.
147 * If B_is_usable is set to 0, sqrt_A2my2 = sqrt(A*A - y*y), and new_y = y.
148 * If returning sqrt_A2my2 has potential to result in an underflow, it is
149 * rescaled, and new_y is similarly rescaled.
150 */
151static inline void
152do_hard_work(double x, double y, double *rx, int *B_is_usable, double *B,
153    double *sqrt_A2my2, double *new_y)
154{
155	double R, S, A; /* A, B, R, and S are as in Hull et al. */
156	double Am1, Amy; /* A-1, A-y. */
157
158	R = hypot(x, y + 1);		/* |z+I| */
159	S = hypot(x, y - 1);		/* |z-I| */
160
161	/* A = (|z+I| + |z-I|) / 2 */
162	A = (R + S) / 2;
163	/*
164	 * Mathematically A >= 1.  There is a small chance that this will not
165	 * be so because of rounding errors.  So we will make certain it is
166	 * so.
167	 */
168	if (A < 1)
169		A = 1;
170
171	if (A < A_crossover) {
172		/*
173		 * Am1 = fp + fm, where fp = f(x, 1+y), and fm = f(x, 1-y).
174		 * rx = log1p(Am1 + sqrt(Am1*(A+1)))
175		 */
176		if (y == 1 && x < DBL_EPSILON * DBL_EPSILON / 128) {
177			/*
178			 * fp is of order x^2, and fm = x/2.
179			 * A = 1 (inexactly).
180			 */
181			*rx = sqrt(x);
182		} else if (x >= DBL_EPSILON * fabs(y - 1)) {
183			/*
184			 * Underflow will not occur because
185			 * x >= DBL_EPSILON^2/128 >= FOUR_SQRT_MIN
186			 */
187			Am1 = f(x, 1 + y, R) + f(x, 1 - y, S);
188			*rx = log1p(Am1 + sqrt(Am1 * (A + 1)));
189		} else if (y < 1) {
190			/*
191			 * fp = x*x/(1+y)/4, fm = x*x/(1-y)/4, and
192			 * A = 1 (inexactly).
193			 */
194			*rx = x / sqrt((1 - y) * (1 + y));
195		} else {		/* if (y > 1) */
196			/*
197			 * A-1 = y-1 (inexactly).
198			 */
199			*rx = log1p((y - 1) + sqrt((y - 1) * (y + 1)));
200		}
201	} else {
202		*rx = log(A + sqrt(A * A - 1));
203	}
204
205	*new_y = y;
206
207	if (y < FOUR_SQRT_MIN) {
208		/*
209		 * Avoid a possible underflow caused by y/A.  For casinh this
210		 * would be legitimate, but will be picked up by invoking atan2
211		 * later on.  For cacos this would not be legitimate.
212		 */
213		*B_is_usable = 0;
214		*sqrt_A2my2 = A * (2 / DBL_EPSILON);
215		*new_y = y * (2 / DBL_EPSILON);
216		return;
217	}
218
219	/* B = (|z+I| - |z-I|) / 2 = y/A */
220	*B = y / A;
221	*B_is_usable = 1;
222
223	if (*B > B_crossover) {
224		*B_is_usable = 0;
225		/*
226		 * Amy = fp + fm, where fp = f(x, y+1), and fm = f(x, y-1).
227		 * sqrt_A2my2 = sqrt(Amy*(A+y))
228		 */
229		if (y == 1 && x < DBL_EPSILON / 128) {
230			/*
231			 * fp is of order x^2, and fm = x/2.
232			 * A = 1 (inexactly).
233			 */
234			*sqrt_A2my2 = sqrt(x) * sqrt((A + y) / 2);
235		} else if (x >= DBL_EPSILON * fabs(y - 1)) {
236			/*
237			 * Underflow will not occur because
238			 * x >= DBL_EPSILON/128 >= FOUR_SQRT_MIN
239			 * and
240			 * x >= DBL_EPSILON^2 >= FOUR_SQRT_MIN
241			 */
242			Amy = f(x, y + 1, R) + f(x, y - 1, S);
243			*sqrt_A2my2 = sqrt(Amy * (A + y));
244		} else if (y > 1) {
245			/*
246			 * fp = x*x/(y+1)/4, fm = x*x/(y-1)/4, and
247			 * A = y (inexactly).
248			 *
249			 * y < RECIP_EPSILON.  So the following
250			 * scaling should avoid any underflow problems.
251			 */
252			*sqrt_A2my2 = x * (4 / DBL_EPSILON / DBL_EPSILON) * y /
253			    sqrt((y + 1) * (y - 1));
254			*new_y = y * (4 / DBL_EPSILON / DBL_EPSILON);
255		} else {		/* if (y < 1) */
256			/*
257			 * fm = 1-y >= DBL_EPSILON, fp is of order x^2, and
258			 * A = 1 (inexactly).
259			 */
260			*sqrt_A2my2 = sqrt((1 - y) * (1 + y));
261		}
262	}
263}
264
265/*
266 * casinh(z) = z + O(z^3)   as z -> 0
267 *
268 * casinh(z) = sign(x)*clog(sign(x)*z) + O(1/z^2)   as z -> infinity
269 * The above formula works for the imaginary part as well, because
270 * Im(casinh(z)) = sign(x)*atan2(sign(x)*y, fabs(x)) + O(y/z^3)
271 *    as z -> infinity, uniformly in y
272 */
273double complex
274casinh(double complex z)
275{
276	double x, y, ax, ay, rx, ry, B, sqrt_A2my2, new_y;
277	int B_is_usable;
278	double complex w;
279
280	x = creal(z);
281	y = cimag(z);
282	ax = fabs(x);
283	ay = fabs(y);
284
285	if (isnan(x) || isnan(y)) {
286		/* casinh(+-Inf + I*NaN) = +-Inf + I*NaN */
287		if (isinf(x))
288			return (CMPLX(x, y + y));
289		/* casinh(NaN + I*+-Inf) = opt(+-)Inf + I*NaN */
290		if (isinf(y))
291			return (CMPLX(y, x + x));
292		/* casinh(NaN + I*0) = NaN + I*0 */
293		if (y == 0)
294			return (CMPLX(x + x, y));
295		/*
296		 * All other cases involving NaN return NaN + I*NaN.
297		 * C99 leaves it optional whether to raise invalid if one of
298		 * the arguments is not NaN, so we opt not to raise it.
299		 */
300		return (CMPLX(nan_mix(x, y), nan_mix(x, y)));
301	}
302
303	if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) {
304		/* clog...() will raise inexact unless x or y is infinite. */
305		if (signbit(x) == 0)
306			w = clog_for_large_values(z) + m_ln2;
307		else
308			w = clog_for_large_values(-z) + m_ln2;
309		return (CMPLX(copysign(creal(w), x), copysign(cimag(w), y)));
310	}
311
312	/* Avoid spuriously raising inexact for z = 0. */
313	if (x == 0 && y == 0)
314		return (z);
315
316	/* All remaining cases are inexact. */
317	raise_inexact();
318
319	if (ax < SQRT_6_EPSILON / 4 && ay < SQRT_6_EPSILON / 4)
320		return (z);
321
322	do_hard_work(ax, ay, &rx, &B_is_usable, &B, &sqrt_A2my2, &new_y);
323	if (B_is_usable)
324		ry = asin(B);
325	else
326		ry = atan2(new_y, sqrt_A2my2);
327	return (CMPLX(copysign(rx, x), copysign(ry, y)));
328}
329
330/*
331 * casin(z) = reverse(casinh(reverse(z)))
332 * where reverse(x + I*y) = y + I*x = I*conj(z).
333 */
334double complex
335casin(double complex z)
336{
337	double complex w = casinh(CMPLX(cimag(z), creal(z)));
338
339	return (CMPLX(cimag(w), creal(w)));
340}
341
342/*
343 * cacos(z) = PI/2 - casin(z)
344 * but do the computation carefully so cacos(z) is accurate when z is
345 * close to 1.
346 *
347 * cacos(z) = PI/2 - z + O(z^3)   as z -> 0
348 *
349 * cacos(z) = -sign(y)*I*clog(z) + O(1/z^2)   as z -> infinity
350 * The above formula works for the real part as well, because
351 * Re(cacos(z)) = atan2(fabs(y), x) + O(y/z^3)
352 *    as z -> infinity, uniformly in y
353 */
354double complex
355cacos(double complex z)
356{
357	double x, y, ax, ay, rx, ry, B, sqrt_A2mx2, new_x;
358	int sx, sy;
359	int B_is_usable;
360	double complex w;
361
362	x = creal(z);
363	y = cimag(z);
364	sx = signbit(x);
365	sy = signbit(y);
366	ax = fabs(x);
367	ay = fabs(y);
368
369	if (isnan(x) || isnan(y)) {
370		/* cacos(+-Inf + I*NaN) = NaN + I*opt(-)Inf */
371		if (isinf(x))
372			return (CMPLX(y + y, -INFINITY));
373		/* cacos(NaN + I*+-Inf) = NaN + I*-+Inf */
374		if (isinf(y))
375			return (CMPLX(x + x, -y));
376		/* cacos(0 + I*NaN) = PI/2 + I*NaN with inexact */
377		if (x == 0)
378			return (CMPLX(pio2_hi + pio2_lo, y + y));
379		/*
380		 * All other cases involving NaN return NaN + I*NaN.
381		 * C99 leaves it optional whether to raise invalid if one of
382		 * the arguments is not NaN, so we opt not to raise it.
383		 */
384		return (CMPLX(nan_mix(x, y), nan_mix(x, y)));
385	}
386
387	if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) {
388		/* clog...() will raise inexact unless x or y is infinite. */
389		w = clog_for_large_values(z);
390		rx = fabs(cimag(w));
391		ry = creal(w) + m_ln2;
392		if (sy == 0)
393			ry = -ry;
394		return (CMPLX(rx, ry));
395	}
396
397	/* Avoid spuriously raising inexact for z = 1. */
398	if (x == 1 && y == 0)
399		return (CMPLX(0, -y));
400
401	/* All remaining cases are inexact. */
402	raise_inexact();
403
404	if (ax < SQRT_6_EPSILON / 4 && ay < SQRT_6_EPSILON / 4)
405		return (CMPLX(pio2_hi - (x - pio2_lo), -y));
406
407	do_hard_work(ay, ax, &ry, &B_is_usable, &B, &sqrt_A2mx2, &new_x);
408	if (B_is_usable) {
409		if (sx == 0)
410			rx = acos(B);
411		else
412			rx = acos(-B);
413	} else {
414		if (sx == 0)
415			rx = atan2(sqrt_A2mx2, new_x);
416		else
417			rx = atan2(sqrt_A2mx2, -new_x);
418	}
419	if (sy == 0)
420		ry = -ry;
421	return (CMPLX(rx, ry));
422}
423
424/*
425 * cacosh(z) = I*cacos(z) or -I*cacos(z)
426 * where the sign is chosen so Re(cacosh(z)) >= 0.
427 */
428double complex
429cacosh(double complex z)
430{
431	double complex w;
432	double rx, ry;
433
434	w = cacos(z);
435	rx = creal(w);
436	ry = cimag(w);
437	/* cacosh(NaN + I*NaN) = NaN + I*NaN */
438	if (isnan(rx) && isnan(ry))
439		return (CMPLX(ry, rx));
440	/* cacosh(NaN + I*+-Inf) = +Inf + I*NaN */
441	/* cacosh(+-Inf + I*NaN) = +Inf + I*NaN */
442	if (isnan(rx))
443		return (CMPLX(fabs(ry), rx));
444	/* cacosh(0 + I*NaN) = NaN + I*NaN */
445	if (isnan(ry))
446		return (CMPLX(ry, ry));
447	return (CMPLX(fabs(ry), copysign(rx, cimag(z))));
448}
449
450/*
451 * Optimized version of clog() for |z| finite and larger than ~RECIP_EPSILON.
452 */
453static double complex
454clog_for_large_values(double complex z)
455{
456	double x, y;
457	double ax, ay, t;
458
459	x = creal(z);
460	y = cimag(z);
461	ax = fabs(x);
462	ay = fabs(y);
463	if (ax < ay) {
464		t = ax;
465		ax = ay;
466		ay = t;
467	}
468
469	/*
470	 * Avoid overflow in hypot() when x and y are both very large.
471	 * Divide x and y by E, and then add 1 to the logarithm.  This
472	 * depends on E being larger than sqrt(2), since the return value of
473	 * hypot cannot overflow if neither argument is greater in magnitude
474	 * than 1/sqrt(2) of the maximum value of the return type.  Likewise
475	 * this determines the necessary threshold for using this method
476	 * (however, actually use 1/2 instead as it is simpler).
477	 *
478	 * Dividing by E causes an insignificant loss of accuracy; however
479	 * this method is still poor since it is uneccessarily slow.
480	 */
481	if (ax > DBL_MAX / 2)
482		return (CMPLX(log(hypot(x / m_e, y / m_e)) + 1, atan2(y, x)));
483
484	/*
485	 * Avoid overflow when x or y is large.  Avoid underflow when x or
486	 * y is small.
487	 */
488	if (ax > QUARTER_SQRT_MAX || ay < SQRT_MIN)
489		return (CMPLX(log(hypot(x, y)), atan2(y, x)));
490
491	return (CMPLX(log(ax * ax + ay * ay) / 2, atan2(y, x)));
492}
493
494/*
495 *				=================
496 *				| catanh, catan |
497 *				=================
498 */
499
500/*
501 * sum_squares(x,y) = x*x + y*y (or just x*x if y*y would underflow).
502 * Assumes x*x and y*y will not overflow.
503 * Assumes x and y are finite.
504 * Assumes y is non-negative.
505 * Assumes fabs(x) >= DBL_EPSILON.
506 */
507static inline double
508sum_squares(double x, double y)
509{
510
511	/* Avoid underflow when y is small. */
512	if (y < SQRT_MIN)
513		return (x * x);
514
515	return (x * x + y * y);
516}
517
518/*
519 * real_part_reciprocal(x, y) = Re(1/(x+I*y)) = x/(x*x + y*y).
520 * Assumes x and y are not NaN, and one of x and y is larger than
521 * RECIP_EPSILON.  We avoid unwarranted underflow.  It is important to not use
522 * the code creal(1/z), because the imaginary part may produce an unwanted
523 * underflow.
524 * This is only called in a context where inexact is always raised before
525 * the call, so no effort is made to avoid or force inexact.
526 */
527static inline double
528real_part_reciprocal(double x, double y)
529{
530	double scale;
531	uint32_t hx, hy;
532	int32_t ix, iy;
533
534	/*
535	 * This code is inspired by the C99 document n1124.pdf, Section G.5.1,
536	 * example 2.
537	 */
538	GET_HIGH_WORD(hx, x);
539	ix = hx & 0x7ff00000;
540	GET_HIGH_WORD(hy, y);
541	iy = hy & 0x7ff00000;
542#define	BIAS	(DBL_MAX_EXP - 1)
543/* XXX more guard digits are useful iff there is extra precision. */
544#define	CUTOFF	(DBL_MANT_DIG / 2 + 1)	/* just half or 1 guard digit */
545	if (ix - iy >= CUTOFF << 20 || isinf(x))
546		return (1 / x);		/* +-Inf -> +-0 is special */
547	if (iy - ix >= CUTOFF << 20)
548		return (x / y / y);	/* should avoid double div, but hard */
549	if (ix <= (BIAS + DBL_MAX_EXP / 2 - CUTOFF) << 20)
550		return (x / (x * x + y * y));
551	scale = 1;
552	SET_HIGH_WORD(scale, 0x7ff00000 - ix);	/* 2**(1-ilogb(x)) */
553	x *= scale;
554	y *= scale;
555	return (x / (x * x + y * y) * scale);
556}
557
558/*
559 * catanh(z) = log((1+z)/(1-z)) / 2
560 *           = log1p(4*x / |z-1|^2) / 4
561 *             + I * atan2(2*y, (1-x)*(1+x)-y*y) / 2
562 *
563 * catanh(z) = z + O(z^3)   as z -> 0
564 *
565 * catanh(z) = 1/z + sign(y)*I*PI/2 + O(1/z^3)   as z -> infinity
566 * The above formula works for the real part as well, because
567 * Re(catanh(z)) = x/|z|^2 + O(x/z^4)
568 *    as z -> infinity, uniformly in x
569 */
570double complex
571catanh(double complex z)
572{
573	double x, y, ax, ay, rx, ry;
574
575	x = creal(z);
576	y = cimag(z);
577	ax = fabs(x);
578	ay = fabs(y);
579
580	/* This helps handle many cases. */
581	if (y == 0 && ax <= 1)
582		return (CMPLX(atanh(x), y));
583
584	/* To ensure the same accuracy as atan(), and to filter out z = 0. */
585	if (x == 0)
586		return (CMPLX(x, atan(y)));
587
588	if (isnan(x) || isnan(y)) {
589		/* catanh(+-Inf + I*NaN) = +-0 + I*NaN */
590		if (isinf(x))
591			return (CMPLX(copysign(0, x), y + y));
592		/* catanh(NaN + I*+-Inf) = sign(NaN)0 + I*+-PI/2 */
593		if (isinf(y))
594			return (CMPLX(copysign(0, x),
595			    copysign(pio2_hi + pio2_lo, y)));
596		/*
597		 * All other cases involving NaN return NaN + I*NaN.
598		 * C99 leaves it optional whether to raise invalid if one of
599		 * the arguments is not NaN, so we opt not to raise it.
600		 */
601		return (CMPLX(nan_mix(x, y), nan_mix(x, y)));
602	}
603
604	if (ax > RECIP_EPSILON || ay > RECIP_EPSILON)
605		return (CMPLX(real_part_reciprocal(x, y),
606		    copysign(pio2_hi + pio2_lo, y)));
607
608	if (ax < SQRT_3_EPSILON / 2 && ay < SQRT_3_EPSILON / 2) {
609		/*
610		 * z = 0 was filtered out above.  All other cases must raise
611		 * inexact, but this is the only case that needs to do it
612		 * explicitly.
613		 */
614		raise_inexact();
615		return (z);
616	}
617
618	if (ax == 1 && ay < DBL_EPSILON)
619		rx = (m_ln2 - log(ay)) / 2;
620	else
621		rx = log1p(4 * ax / sum_squares(ax - 1, ay)) / 4;
622
623	if (ax == 1)
624		ry = atan2(2, -ay) / 2;
625	else if (ay < DBL_EPSILON)
626		ry = atan2(2 * ay, (1 - ax) * (1 + ax)) / 2;
627	else
628		ry = atan2(2 * ay, (1 - ax) * (1 + ax) - ay * ay) / 2;
629
630	return (CMPLX(copysign(rx, x), copysign(ry, y)));
631}
632
633/*
634 * catan(z) = reverse(catanh(reverse(z)))
635 * where reverse(x + I*y) = y + I*x = I*conj(z).
636 */
637double complex
638catan(double complex z)
639{
640	double complex w = catanh(CMPLX(cimag(z), creal(z)));
641
642	return (CMPLX(cimag(w), creal(w)));
643}
644
645#if LDBL_MANT_DIG == 53
646__weak_reference(cacosh, cacoshl);
647__weak_reference(cacos, cacosl);
648__weak_reference(casinh, casinhl);
649__weak_reference(casin, casinl);
650__weak_reference(catanh, catanhl);
651__weak_reference(catan, catanl);
652#endif
653