1/*	$NetBSD: svc_dg.c,v 1.4 2000/07/06 03:10:35 christos Exp $	*/
2
3/*-
4 * SPDX-License-Identifier: BSD-3-Clause
5 *
6 * Copyright (c) 2009, Sun Microsystems, Inc.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions are met:
11 * - Redistributions of source code must retain the above copyright notice,
12 *   this list of conditions and the following disclaimer.
13 * - Redistributions in binary form must reproduce the above copyright notice,
14 *   this list of conditions and the following disclaimer in the documentation
15 *   and/or other materials provided with the distribution.
16 * - Neither the name of Sun Microsystems, Inc. nor the names of its
17 *   contributors may be used to endorse or promote products derived
18 *   from this software without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
24 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33/*
34 * Copyright (c) 1986-1991 by Sun Microsystems Inc.
35 */
36
37/*
38 * svc_dg.c, Server side for connectionless RPC.
39 *
40 * Does some caching in the hopes of achieving execute-at-most-once semantics.
41 */
42
43#include "namespace.h"
44#include "reentrant.h"
45#include <sys/types.h>
46#include <sys/socket.h>
47#include <rpc/rpc.h>
48#include <rpc/svc_dg.h>
49#include <assert.h>
50#include <errno.h>
51#include <unistd.h>
52#include <stdio.h>
53#include <stdlib.h>
54#include <string.h>
55#ifdef RPC_CACHE_DEBUG
56#include <netconfig.h>
57#include <netdir.h>
58#endif
59#include <err.h>
60#include "un-namespace.h"
61
62#include "rpc_com.h"
63#include "mt_misc.h"
64
65#define	su_data(xprt)	((struct svc_dg_data *)((xprt)->xp_p2))
66#define	rpc_buffer(xprt) ((xprt)->xp_p1)
67
68#ifndef MAX
69#define	MAX(a, b)	(((a) > (b)) ? (a) : (b))
70#endif
71
72static void svc_dg_ops(SVCXPRT *);
73static enum xprt_stat svc_dg_stat(SVCXPRT *);
74static bool_t svc_dg_recv(SVCXPRT *, struct rpc_msg *);
75static bool_t svc_dg_reply(SVCXPRT *, struct rpc_msg *);
76static bool_t svc_dg_getargs(SVCXPRT *, xdrproc_t, void *);
77static bool_t svc_dg_freeargs(SVCXPRT *, xdrproc_t, void *);
78static void svc_dg_destroy(SVCXPRT *);
79static bool_t svc_dg_control(SVCXPRT *, const u_int, void *);
80static int cache_get(SVCXPRT *, struct rpc_msg *, char **, size_t *);
81static void cache_set(SVCXPRT *, size_t);
82int svc_dg_enablecache(SVCXPRT *, u_int);
83
84/*
85 * Usage:
86 *	xprt = svc_dg_create(sock, sendsize, recvsize);
87 * Does other connectionless specific initializations.
88 * Once *xprt is initialized, it is registered.
89 * see (svc.h, xprt_register). If recvsize or sendsize are 0 suitable
90 * system defaults are chosen.
91 * The routines returns NULL if a problem occurred.
92 */
93static const char svc_dg_str[] = "svc_dg_create: %s";
94static const char svc_dg_err1[] = "could not get transport information";
95static const char svc_dg_err2[] = "transport does not support data transfer";
96static const char svc_dg_err3[] = "getsockname failed";
97static const char svc_dg_err4[] = "cannot set IP_RECVDSTADDR";
98static const char __no_mem_str[] = "out of memory";
99
100SVCXPRT *
101svc_dg_create(int fd, u_int sendsize, u_int recvsize)
102{
103	SVCXPRT *xprt;
104	struct svc_dg_data *su = NULL;
105	struct __rpc_sockinfo si;
106	struct sockaddr_storage ss;
107	socklen_t slen;
108
109	if (!__rpc_fd2sockinfo(fd, &si)) {
110		warnx(svc_dg_str, svc_dg_err1);
111		return (NULL);
112	}
113	/*
114	 * Find the receive and the send size
115	 */
116	sendsize = __rpc_get_t_size(si.si_af, si.si_proto, (int)sendsize);
117	recvsize = __rpc_get_t_size(si.si_af, si.si_proto, (int)recvsize);
118	if ((sendsize == 0) || (recvsize == 0)) {
119		warnx(svc_dg_str, svc_dg_err2);
120		return (NULL);
121	}
122
123	xprt = svc_xprt_alloc();
124	if (xprt == NULL)
125		goto freedata;
126
127	su = mem_alloc(sizeof (*su));
128	if (su == NULL)
129		goto freedata;
130	su->su_iosz = ((MAX(sendsize, recvsize) + 3) / 4) * 4;
131	if ((rpc_buffer(xprt) = mem_alloc(su->su_iosz)) == NULL)
132		goto freedata;
133	xdrmem_create(&(su->su_xdrs), rpc_buffer(xprt), su->su_iosz,
134		XDR_DECODE);
135	su->su_cache = NULL;
136	xprt->xp_fd = fd;
137	xprt->xp_p2 = su;
138	xprt->xp_verf.oa_base = su->su_verfbody;
139	svc_dg_ops(xprt);
140	xprt->xp_rtaddr.maxlen = sizeof (struct sockaddr_storage);
141
142	slen = sizeof ss;
143	if (_getsockname(fd, (struct sockaddr *)(void *)&ss, &slen) < 0) {
144		warnx(svc_dg_str, svc_dg_err3);
145		goto freedata_nowarn;
146	}
147	xprt->xp_ltaddr.buf = mem_alloc(sizeof (struct sockaddr_storage));
148	xprt->xp_ltaddr.maxlen = sizeof (struct sockaddr_storage);
149	xprt->xp_ltaddr.len = slen;
150	memcpy(xprt->xp_ltaddr.buf, &ss, slen);
151
152	if (ss.ss_family == AF_INET) {
153		struct sockaddr_in *sin;
154		static const int true_value = 1;
155
156		sin = (struct sockaddr_in *)(void *)&ss;
157		if (sin->sin_addr.s_addr == INADDR_ANY) {
158		    su->su_srcaddr.buf = mem_alloc(sizeof (ss));
159		    su->su_srcaddr.maxlen = sizeof (ss);
160
161		    if (_setsockopt(fd, IPPROTO_IP, IP_RECVDSTADDR,
162				    &true_value, sizeof(true_value))) {
163			    warnx(svc_dg_str,  svc_dg_err4);
164			    goto freedata_nowarn;
165		    }
166		}
167	}
168
169	xprt_register(xprt);
170	return (xprt);
171freedata:
172	(void) warnx(svc_dg_str, __no_mem_str);
173freedata_nowarn:
174	if (xprt) {
175		if (su)
176			(void) mem_free(su, sizeof (*su));
177		svc_xprt_free(xprt);
178	}
179	return (NULL);
180}
181
182/*ARGSUSED*/
183static enum xprt_stat
184svc_dg_stat(SVCXPRT *xprt)
185{
186	return (XPRT_IDLE);
187}
188
189static int
190svc_dg_recvfrom(int fd, char *buf, int buflen,
191    struct sockaddr *raddr, socklen_t *raddrlen,
192    struct sockaddr *laddr, socklen_t *laddrlen)
193{
194	struct msghdr msg;
195	struct iovec msg_iov[1];
196	struct sockaddr_in *lin = (struct sockaddr_in *)laddr;
197	int rlen;
198	bool_t have_lin = FALSE;
199	char tmp[CMSG_LEN(sizeof(*lin))];
200	struct cmsghdr *cmsg;
201
202	memset((char *)&msg, 0, sizeof(msg));
203	msg_iov[0].iov_base = buf;
204	msg_iov[0].iov_len = buflen;
205	msg.msg_iov = msg_iov;
206	msg.msg_iovlen = 1;
207	msg.msg_namelen = *raddrlen;
208	msg.msg_name = (char *)raddr;
209	if (laddr != NULL) {
210	    msg.msg_control = (caddr_t)tmp;
211	    msg.msg_controllen = CMSG_LEN(sizeof(*lin));
212	}
213	rlen = _recvmsg(fd, &msg, 0);
214	if (rlen >= 0)
215		*raddrlen = msg.msg_namelen;
216
217	if (rlen == -1 || laddr == NULL ||
218	    msg.msg_controllen < sizeof(struct cmsghdr) ||
219	    msg.msg_flags & MSG_CTRUNC)
220		return rlen;
221
222	for (cmsg = CMSG_FIRSTHDR(&msg); cmsg != NULL;
223	     cmsg = CMSG_NXTHDR(&msg, cmsg)) {
224		if (cmsg->cmsg_level == IPPROTO_IP &&
225		    cmsg->cmsg_type == IP_RECVDSTADDR) {
226			have_lin = TRUE;
227			memcpy(&lin->sin_addr,
228			    (struct in_addr *)CMSG_DATA(cmsg),
229			    sizeof(struct in_addr));
230			break;
231		}
232	}
233
234	lin->sin_family = AF_INET;
235	lin->sin_port = 0;
236	*laddrlen = sizeof(struct sockaddr_in);
237
238	if (!have_lin)
239		lin->sin_addr.s_addr = INADDR_ANY;
240
241	return rlen;
242}
243
244static bool_t
245svc_dg_recv(SVCXPRT *xprt, struct rpc_msg *msg)
246{
247	struct svc_dg_data *su = su_data(xprt);
248	XDR *xdrs = &(su->su_xdrs);
249	char *reply;
250	struct sockaddr_storage ss;
251	socklen_t alen;
252	size_t replylen;
253	ssize_t rlen;
254
255again:
256	alen = sizeof (struct sockaddr_storage);
257	rlen = svc_dg_recvfrom(xprt->xp_fd, rpc_buffer(xprt), su->su_iosz,
258	    (struct sockaddr *)(void *)&ss, &alen,
259	    (struct sockaddr *)su->su_srcaddr.buf, &su->su_srcaddr.len);
260	if (rlen == -1 && errno == EINTR)
261		goto again;
262	if (rlen == -1 || (rlen < (ssize_t)(4 * sizeof (u_int32_t))))
263		return (FALSE);
264	if (xprt->xp_rtaddr.len < alen) {
265		if (xprt->xp_rtaddr.len != 0)
266			mem_free(xprt->xp_rtaddr.buf, xprt->xp_rtaddr.len);
267		xprt->xp_rtaddr.buf = mem_alloc(alen);
268		xprt->xp_rtaddr.len = alen;
269	}
270	memcpy(xprt->xp_rtaddr.buf, &ss, alen);
271#ifdef PORTMAP
272	if (ss.ss_family == AF_INET) {
273		xprt->xp_raddr = *(struct sockaddr_in *)xprt->xp_rtaddr.buf;
274		xprt->xp_addrlen = sizeof (struct sockaddr_in);
275	}
276#endif				/* PORTMAP */
277	xdrs->x_op = XDR_DECODE;
278	XDR_SETPOS(xdrs, 0);
279	if (! xdr_callmsg(xdrs, msg)) {
280		return (FALSE);
281	}
282	su->su_xid = msg->rm_xid;
283	if (su->su_cache != NULL) {
284		if (cache_get(xprt, msg, &reply, &replylen)) {
285			(void)_sendto(xprt->xp_fd, reply, replylen, 0,
286			    (struct sockaddr *)(void *)&ss, alen);
287			return (FALSE);
288		}
289	}
290	return (TRUE);
291}
292
293static int
294svc_dg_sendto(int fd, char *buf, int buflen,
295    const struct sockaddr *raddr, socklen_t raddrlen,
296    const struct sockaddr *laddr, socklen_t laddrlen)
297{
298	struct msghdr msg;
299	struct iovec msg_iov[1];
300	struct sockaddr_in *laddr_in = (struct sockaddr_in *)laddr;
301	struct in_addr *lin = &laddr_in->sin_addr;
302	char tmp[CMSG_SPACE(sizeof(*lin))];
303	struct cmsghdr *cmsg;
304
305	memset((char *)&msg, 0, sizeof(msg));
306	msg_iov[0].iov_base = buf;
307	msg_iov[0].iov_len = buflen;
308	msg.msg_iov = msg_iov;
309	msg.msg_iovlen = 1;
310	msg.msg_namelen = raddrlen;
311	msg.msg_name = (char *)raddr;
312
313	if (laddr != NULL && laddr->sa_family == AF_INET &&
314	    lin->s_addr != INADDR_ANY) {
315		msg.msg_control = (caddr_t)tmp;
316		msg.msg_controllen = CMSG_LEN(sizeof(*lin));
317		cmsg = CMSG_FIRSTHDR(&msg);
318		cmsg->cmsg_len = CMSG_LEN(sizeof(*lin));
319		cmsg->cmsg_level = IPPROTO_IP;
320		cmsg->cmsg_type = IP_SENDSRCADDR;
321		memcpy(CMSG_DATA(cmsg), lin, sizeof(*lin));
322	}
323
324	return _sendmsg(fd, &msg, 0);
325}
326
327static bool_t
328svc_dg_reply(SVCXPRT *xprt, struct rpc_msg *msg)
329{
330	struct svc_dg_data *su = su_data(xprt);
331	XDR *xdrs = &(su->su_xdrs);
332	bool_t stat = TRUE;
333	size_t slen;
334	xdrproc_t xdr_proc;
335	caddr_t xdr_where;
336
337	xdrs->x_op = XDR_ENCODE;
338	XDR_SETPOS(xdrs, 0);
339	msg->rm_xid = su->su_xid;
340	if (msg->rm_reply.rp_stat == MSG_ACCEPTED &&
341	    msg->rm_reply.rp_acpt.ar_stat == SUCCESS) {
342		xdr_proc = msg->acpted_rply.ar_results.proc;
343		xdr_where = msg->acpted_rply.ar_results.where;
344		msg->acpted_rply.ar_results.proc = (xdrproc_t) xdr_void;
345		msg->acpted_rply.ar_results.where = NULL;
346
347		if (!xdr_replymsg(xdrs, msg) ||
348		    !SVCAUTH_WRAP(&SVC_AUTH(xprt), xdrs, xdr_proc, xdr_where))
349			stat = FALSE;
350	} else {
351		stat = xdr_replymsg(xdrs, msg);
352	}
353	if (stat) {
354		slen = XDR_GETPOS(xdrs);
355		if (svc_dg_sendto(xprt->xp_fd, rpc_buffer(xprt), slen,
356		    (struct sockaddr *)xprt->xp_rtaddr.buf,
357		    (socklen_t)xprt->xp_rtaddr.len,
358		    (struct sockaddr *)su->su_srcaddr.buf,
359		    (socklen_t)su->su_srcaddr.len) == (ssize_t) slen) {
360			stat = TRUE;
361			if (su->su_cache)
362				cache_set(xprt, slen);
363		}
364	}
365	return (stat);
366}
367
368static bool_t
369svc_dg_getargs(SVCXPRT *xprt, xdrproc_t xdr_args, void *args_ptr)
370{
371	struct svc_dg_data *su;
372
373	assert(xprt != NULL);
374	su = su_data(xprt);
375	return (SVCAUTH_UNWRAP(&SVC_AUTH(xprt),
376		&su->su_xdrs, xdr_args, args_ptr));
377}
378
379static bool_t
380svc_dg_freeargs(SVCXPRT *xprt, xdrproc_t xdr_args, void *args_ptr)
381{
382	XDR *xdrs = &(su_data(xprt)->su_xdrs);
383
384	xdrs->x_op = XDR_FREE;
385	return (*xdr_args)(xdrs, args_ptr);
386}
387
388static void
389svc_dg_destroy(SVCXPRT *xprt)
390{
391	struct svc_dg_data *su = su_data(xprt);
392
393	xprt_unregister(xprt);
394	if (xprt->xp_fd != -1)
395		(void)_close(xprt->xp_fd);
396	XDR_DESTROY(&(su->su_xdrs));
397	(void) mem_free(rpc_buffer(xprt), su->su_iosz);
398	if (su->su_srcaddr.buf)
399		(void) mem_free(su->su_srcaddr.buf, su->su_srcaddr.maxlen);
400	(void) mem_free(su, sizeof (*su));
401	if (xprt->xp_rtaddr.buf)
402		(void) mem_free(xprt->xp_rtaddr.buf, xprt->xp_rtaddr.maxlen);
403	if (xprt->xp_ltaddr.buf)
404		(void) mem_free(xprt->xp_ltaddr.buf, xprt->xp_ltaddr.maxlen);
405	free(xprt->xp_tp);
406	svc_xprt_free(xprt);
407}
408
409static bool_t
410/*ARGSUSED*/
411svc_dg_control(SVCXPRT *xprt, const u_int rq, void *in)
412{
413	return (FALSE);
414}
415
416static void
417svc_dg_ops(SVCXPRT *xprt)
418{
419	static struct xp_ops ops;
420	static struct xp_ops2 ops2;
421
422/* VARIABLES PROTECTED BY ops_lock: ops */
423
424	mutex_lock(&ops_lock);
425	if (ops.xp_recv == NULL) {
426		ops.xp_recv = svc_dg_recv;
427		ops.xp_stat = svc_dg_stat;
428		ops.xp_getargs = svc_dg_getargs;
429		ops.xp_reply = svc_dg_reply;
430		ops.xp_freeargs = svc_dg_freeargs;
431		ops.xp_destroy = svc_dg_destroy;
432		ops2.xp_control = svc_dg_control;
433	}
434	xprt->xp_ops = &ops;
435	xprt->xp_ops2 = &ops2;
436	mutex_unlock(&ops_lock);
437}
438
439/*  The CACHING COMPONENT */
440
441/*
442 * Could have been a separate file, but some part of it depends upon the
443 * private structure of the client handle.
444 *
445 * Fifo cache for cl server
446 * Copies pointers to reply buffers into fifo cache
447 * Buffers are sent again if retransmissions are detected.
448 */
449
450#define	SPARSENESS 4	/* 75% sparse */
451
452#define	ALLOC(type, size)	\
453	(type *) mem_alloc((sizeof (type) * (size)))
454
455#define	MEMZERO(addr, type, size)	 \
456	(void) memset((void *) (addr), 0, sizeof (type) * (int) (size))
457
458#define	FREE(addr, type, size)	\
459	mem_free((addr), (sizeof (type) * (size)))
460
461/*
462 * An entry in the cache
463 */
464typedef struct cache_node *cache_ptr;
465struct cache_node {
466	/*
467	 * Index into cache is xid, proc, vers, prog and address
468	 */
469	u_int32_t cache_xid;
470	rpcproc_t cache_proc;
471	rpcvers_t cache_vers;
472	rpcprog_t cache_prog;
473	struct netbuf cache_addr;
474	/*
475	 * The cached reply and length
476	 */
477	char *cache_reply;
478	size_t cache_replylen;
479	/*
480	 * Next node on the list, if there is a collision
481	 */
482	cache_ptr cache_next;
483};
484
485/*
486 * The entire cache
487 */
488struct cl_cache {
489	u_int uc_size;		/* size of cache */
490	cache_ptr *uc_entries;	/* hash table of entries in cache */
491	cache_ptr *uc_fifo;	/* fifo list of entries in cache */
492	u_int uc_nextvictim;	/* points to next victim in fifo list */
493	rpcprog_t uc_prog;	/* saved program number */
494	rpcvers_t uc_vers;	/* saved version number */
495	rpcproc_t uc_proc;	/* saved procedure number */
496};
497
498
499/*
500 * the hashing function
501 */
502#define	CACHE_LOC(transp, xid)	\
503	(xid % (SPARSENESS * ((struct cl_cache *) \
504		su_data(transp)->su_cache)->uc_size))
505
506/*
507 * Enable use of the cache. Returns 1 on success, 0 on failure.
508 * Note: there is no disable.
509 */
510static const char cache_enable_str[] = "svc_enablecache: %s %s";
511static const char alloc_err[] = "could not allocate cache ";
512static const char enable_err[] = "cache already enabled";
513
514int
515svc_dg_enablecache(SVCXPRT *transp, u_int size)
516{
517	struct svc_dg_data *su = su_data(transp);
518	struct cl_cache *uc;
519
520	mutex_lock(&dupreq_lock);
521	if (su->su_cache != NULL) {
522		(void) warnx(cache_enable_str, enable_err, " ");
523		mutex_unlock(&dupreq_lock);
524		return (0);
525	}
526	uc = ALLOC(struct cl_cache, 1);
527	if (uc == NULL) {
528		warnx(cache_enable_str, alloc_err, " ");
529		mutex_unlock(&dupreq_lock);
530		return (0);
531	}
532	uc->uc_size = size;
533	uc->uc_nextvictim = 0;
534	uc->uc_entries = ALLOC(cache_ptr, size * SPARSENESS);
535	if (uc->uc_entries == NULL) {
536		warnx(cache_enable_str, alloc_err, "data");
537		FREE(uc, struct cl_cache, 1);
538		mutex_unlock(&dupreq_lock);
539		return (0);
540	}
541	MEMZERO(uc->uc_entries, cache_ptr, size * SPARSENESS);
542	uc->uc_fifo = ALLOC(cache_ptr, size);
543	if (uc->uc_fifo == NULL) {
544		warnx(cache_enable_str, alloc_err, "fifo");
545		FREE(uc->uc_entries, cache_ptr, size * SPARSENESS);
546		FREE(uc, struct cl_cache, 1);
547		mutex_unlock(&dupreq_lock);
548		return (0);
549	}
550	MEMZERO(uc->uc_fifo, cache_ptr, size);
551	su->su_cache = (char *)(void *)uc;
552	mutex_unlock(&dupreq_lock);
553	return (1);
554}
555
556/*
557 * Set an entry in the cache.  It assumes that the uc entry is set from
558 * the earlier call to cache_get() for the same procedure.  This will always
559 * happen because cache_get() is calle by svc_dg_recv and cache_set() is called
560 * by svc_dg_reply().  All this hoopla because the right RPC parameters are
561 * not available at svc_dg_reply time.
562 */
563
564static const char cache_set_str[] = "cache_set: %s";
565static const char cache_set_err1[] = "victim not found";
566static const char cache_set_err2[] = "victim alloc failed";
567static const char cache_set_err3[] = "could not allocate new rpc buffer";
568
569static void
570cache_set(SVCXPRT *xprt, size_t replylen)
571{
572	cache_ptr victim;
573	cache_ptr *vicp;
574	struct svc_dg_data *su = su_data(xprt);
575	struct cl_cache *uc = (struct cl_cache *) su->su_cache;
576	u_int loc;
577	char *newbuf;
578#ifdef RPC_CACHE_DEBUG
579	struct netconfig *nconf;
580	char *uaddr;
581#endif
582
583	mutex_lock(&dupreq_lock);
584	/*
585	 * Find space for the new entry, either by
586	 * reusing an old entry, or by mallocing a new one
587	 */
588	victim = uc->uc_fifo[uc->uc_nextvictim];
589	if (victim != NULL) {
590		loc = CACHE_LOC(xprt, victim->cache_xid);
591		for (vicp = &uc->uc_entries[loc];
592			*vicp != NULL && *vicp != victim;
593			vicp = &(*vicp)->cache_next)
594			;
595		if (*vicp == NULL) {
596			warnx(cache_set_str, cache_set_err1);
597			mutex_unlock(&dupreq_lock);
598			return;
599		}
600		*vicp = victim->cache_next;	/* remove from cache */
601		newbuf = victim->cache_reply;
602	} else {
603		victim = ALLOC(struct cache_node, 1);
604		if (victim == NULL) {
605			warnx(cache_set_str, cache_set_err2);
606			mutex_unlock(&dupreq_lock);
607			return;
608		}
609		newbuf = mem_alloc(su->su_iosz);
610		if (newbuf == NULL) {
611			warnx(cache_set_str, cache_set_err3);
612			FREE(victim, struct cache_node, 1);
613			mutex_unlock(&dupreq_lock);
614			return;
615		}
616	}
617
618	/*
619	 * Store it away
620	 */
621#ifdef RPC_CACHE_DEBUG
622	if (nconf = getnetconfigent(xprt->xp_netid)) {
623		uaddr = taddr2uaddr(nconf, &xprt->xp_rtaddr);
624		freenetconfigent(nconf);
625		printf(
626	"cache set for xid= %x prog=%d vers=%d proc=%d for rmtaddr=%s\n",
627			su->su_xid, uc->uc_prog, uc->uc_vers,
628			uc->uc_proc, uaddr);
629		free(uaddr);
630	}
631#endif
632	victim->cache_replylen = replylen;
633	victim->cache_reply = rpc_buffer(xprt);
634	rpc_buffer(xprt) = newbuf;
635	xdrmem_create(&(su->su_xdrs), rpc_buffer(xprt),
636			su->su_iosz, XDR_ENCODE);
637	victim->cache_xid = su->su_xid;
638	victim->cache_proc = uc->uc_proc;
639	victim->cache_vers = uc->uc_vers;
640	victim->cache_prog = uc->uc_prog;
641	victim->cache_addr = xprt->xp_rtaddr;
642	victim->cache_addr.buf = ALLOC(char, xprt->xp_rtaddr.len);
643	(void) memcpy(victim->cache_addr.buf, xprt->xp_rtaddr.buf,
644	    (size_t)xprt->xp_rtaddr.len);
645	loc = CACHE_LOC(xprt, victim->cache_xid);
646	victim->cache_next = uc->uc_entries[loc];
647	uc->uc_entries[loc] = victim;
648	uc->uc_fifo[uc->uc_nextvictim++] = victim;
649	uc->uc_nextvictim %= uc->uc_size;
650	mutex_unlock(&dupreq_lock);
651}
652
653/*
654 * Try to get an entry from the cache
655 * return 1 if found, 0 if not found and set the stage for cache_set()
656 */
657static int
658cache_get(SVCXPRT *xprt, struct rpc_msg *msg, char **replyp, size_t *replylenp)
659{
660	u_int loc;
661	cache_ptr ent;
662	struct svc_dg_data *su = su_data(xprt);
663	struct cl_cache *uc = (struct cl_cache *) su->su_cache;
664#ifdef RPC_CACHE_DEBUG
665	struct netconfig *nconf;
666	char *uaddr;
667#endif
668
669	mutex_lock(&dupreq_lock);
670	loc = CACHE_LOC(xprt, su->su_xid);
671	for (ent = uc->uc_entries[loc]; ent != NULL; ent = ent->cache_next) {
672		if (ent->cache_xid == su->su_xid &&
673			ent->cache_proc == msg->rm_call.cb_proc &&
674			ent->cache_vers == msg->rm_call.cb_vers &&
675			ent->cache_prog == msg->rm_call.cb_prog &&
676			ent->cache_addr.len == xprt->xp_rtaddr.len &&
677			(memcmp(ent->cache_addr.buf, xprt->xp_rtaddr.buf,
678				xprt->xp_rtaddr.len) == 0)) {
679#ifdef RPC_CACHE_DEBUG
680			if (nconf = getnetconfigent(xprt->xp_netid)) {
681				uaddr = taddr2uaddr(nconf, &xprt->xp_rtaddr);
682				freenetconfigent(nconf);
683				printf(
684	"cache entry found for xid=%x prog=%d vers=%d proc=%d for rmtaddr=%s\n",
685					su->su_xid, msg->rm_call.cb_prog,
686					msg->rm_call.cb_vers,
687					msg->rm_call.cb_proc, uaddr);
688				free(uaddr);
689			}
690#endif
691			*replyp = ent->cache_reply;
692			*replylenp = ent->cache_replylen;
693			mutex_unlock(&dupreq_lock);
694			return (1);
695		}
696	}
697	/*
698	 * Failed to find entry
699	 * Remember a few things so we can do a set later
700	 */
701	uc->uc_proc = msg->rm_call.cb_proc;
702	uc->uc_vers = msg->rm_call.cb_vers;
703	uc->uc_prog = msg->rm_call.cb_prog;
704	mutex_unlock(&dupreq_lock);
705	return (0);
706}
707