1/*
2 * Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License").  You may not use
5 * this file except in compliance with the License.  You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10/*
11 * RSA low level APIs are deprecated for public use, but still ok for
12 * internal use.
13 */
14#include "internal/deprecated.h"
15
16#include <openssl/crypto.h>
17#include <openssl/core_names.h>
18#ifndef FIPS_MODULE
19# include <openssl/engine.h>
20#endif
21#include <openssl/evp.h>
22#include <openssl/param_build.h>
23#include "internal/cryptlib.h"
24#include "internal/refcount.h"
25#include "crypto/bn.h"
26#include "crypto/evp.h"
27#include "crypto/rsa.h"
28#include "crypto/security_bits.h"
29#include "rsa_local.h"
30
31static RSA *rsa_new_intern(ENGINE *engine, OSSL_LIB_CTX *libctx);
32
33#ifndef FIPS_MODULE
34RSA *RSA_new(void)
35{
36    return rsa_new_intern(NULL, NULL);
37}
38
39const RSA_METHOD *RSA_get_method(const RSA *rsa)
40{
41    return rsa->meth;
42}
43
44int RSA_set_method(RSA *rsa, const RSA_METHOD *meth)
45{
46    /*
47     * NB: The caller is specifically setting a method, so it's not up to us
48     * to deal with which ENGINE it comes from.
49     */
50    const RSA_METHOD *mtmp;
51    mtmp = rsa->meth;
52    if (mtmp->finish)
53        mtmp->finish(rsa);
54#ifndef OPENSSL_NO_ENGINE
55    ENGINE_finish(rsa->engine);
56    rsa->engine = NULL;
57#endif
58    rsa->meth = meth;
59    if (meth->init)
60        meth->init(rsa);
61    return 1;
62}
63
64RSA *RSA_new_method(ENGINE *engine)
65{
66    return rsa_new_intern(engine, NULL);
67}
68#endif
69
70RSA *ossl_rsa_new_with_ctx(OSSL_LIB_CTX *libctx)
71{
72    return rsa_new_intern(NULL, libctx);
73}
74
75static RSA *rsa_new_intern(ENGINE *engine, OSSL_LIB_CTX *libctx)
76{
77    RSA *ret = OPENSSL_zalloc(sizeof(*ret));
78
79    if (ret == NULL) {
80        ERR_raise(ERR_LIB_RSA, ERR_R_MALLOC_FAILURE);
81        return NULL;
82    }
83
84    ret->references = 1;
85    ret->lock = CRYPTO_THREAD_lock_new();
86    if (ret->lock == NULL) {
87        ERR_raise(ERR_LIB_RSA, ERR_R_MALLOC_FAILURE);
88        OPENSSL_free(ret);
89        return NULL;
90    }
91
92    ret->libctx = libctx;
93    ret->meth = RSA_get_default_method();
94#if !defined(OPENSSL_NO_ENGINE) && !defined(FIPS_MODULE)
95    ret->flags = ret->meth->flags & ~RSA_FLAG_NON_FIPS_ALLOW;
96    if (engine) {
97        if (!ENGINE_init(engine)) {
98            ERR_raise(ERR_LIB_RSA, ERR_R_ENGINE_LIB);
99            goto err;
100        }
101        ret->engine = engine;
102    } else {
103        ret->engine = ENGINE_get_default_RSA();
104    }
105    if (ret->engine) {
106        ret->meth = ENGINE_get_RSA(ret->engine);
107        if (ret->meth == NULL) {
108            ERR_raise(ERR_LIB_RSA, ERR_R_ENGINE_LIB);
109            goto err;
110        }
111    }
112#endif
113
114    ret->flags = ret->meth->flags & ~RSA_FLAG_NON_FIPS_ALLOW;
115#ifndef FIPS_MODULE
116    if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_RSA, ret, &ret->ex_data)) {
117        goto err;
118    }
119#endif
120
121    if ((ret->meth->init != NULL) && !ret->meth->init(ret)) {
122        ERR_raise(ERR_LIB_RSA, ERR_R_INIT_FAIL);
123        goto err;
124    }
125
126    return ret;
127
128 err:
129    RSA_free(ret);
130    return NULL;
131}
132
133void RSA_free(RSA *r)
134{
135    int i;
136
137    if (r == NULL)
138        return;
139
140    CRYPTO_DOWN_REF(&r->references, &i, r->lock);
141    REF_PRINT_COUNT("RSA", r);
142    if (i > 0)
143        return;
144    REF_ASSERT_ISNT(i < 0);
145
146    if (r->meth != NULL && r->meth->finish != NULL)
147        r->meth->finish(r);
148#if !defined(OPENSSL_NO_ENGINE) && !defined(FIPS_MODULE)
149    ENGINE_finish(r->engine);
150#endif
151
152#ifndef FIPS_MODULE
153    CRYPTO_free_ex_data(CRYPTO_EX_INDEX_RSA, r, &r->ex_data);
154#endif
155
156    CRYPTO_THREAD_lock_free(r->lock);
157
158    BN_free(r->n);
159    BN_free(r->e);
160    BN_clear_free(r->d);
161    BN_clear_free(r->p);
162    BN_clear_free(r->q);
163    BN_clear_free(r->dmp1);
164    BN_clear_free(r->dmq1);
165    BN_clear_free(r->iqmp);
166
167#if defined(FIPS_MODULE) && !defined(OPENSSL_NO_ACVP_TESTS)
168    ossl_rsa_acvp_test_free(r->acvp_test);
169#endif
170
171#ifndef FIPS_MODULE
172    RSA_PSS_PARAMS_free(r->pss);
173    sk_RSA_PRIME_INFO_pop_free(r->prime_infos, ossl_rsa_multip_info_free);
174#endif
175    BN_BLINDING_free(r->blinding);
176    BN_BLINDING_free(r->mt_blinding);
177    OPENSSL_free(r);
178}
179
180int RSA_up_ref(RSA *r)
181{
182    int i;
183
184    if (CRYPTO_UP_REF(&r->references, &i, r->lock) <= 0)
185        return 0;
186
187    REF_PRINT_COUNT("RSA", r);
188    REF_ASSERT_ISNT(i < 2);
189    return i > 1 ? 1 : 0;
190}
191
192OSSL_LIB_CTX *ossl_rsa_get0_libctx(RSA *r)
193{
194    return r->libctx;
195}
196
197void ossl_rsa_set0_libctx(RSA *r, OSSL_LIB_CTX *libctx)
198{
199    r->libctx = libctx;
200}
201
202#ifndef FIPS_MODULE
203int RSA_set_ex_data(RSA *r, int idx, void *arg)
204{
205    return CRYPTO_set_ex_data(&r->ex_data, idx, arg);
206}
207
208void *RSA_get_ex_data(const RSA *r, int idx)
209{
210    return CRYPTO_get_ex_data(&r->ex_data, idx);
211}
212#endif
213
214/*
215 * Define a scaling constant for our fixed point arithmetic.
216 * This value must be a power of two because the base two logarithm code
217 * makes this assumption.  The exponent must also be a multiple of three so
218 * that the scale factor has an exact cube root.  Finally, the scale factor
219 * should not be so large that a multiplication of two scaled numbers
220 * overflows a 64 bit unsigned integer.
221 */
222static const unsigned int scale = 1 << 18;
223static const unsigned int cbrt_scale = 1 << (2 * 18 / 3);
224
225/* Define some constants, none exceed 32 bits */
226static const unsigned int log_2  = 0x02c5c8;    /* scale * log(2) */
227static const unsigned int log_e  = 0x05c551;    /* scale * log2(M_E) */
228static const unsigned int c1_923 = 0x07b126;    /* scale * 1.923 */
229static const unsigned int c4_690 = 0x12c28f;    /* scale * 4.690 */
230
231/*
232 * Multiply two scaled integers together and rescale the result.
233 */
234static ossl_inline uint64_t mul2(uint64_t a, uint64_t b)
235{
236    return a * b / scale;
237}
238
239/*
240 * Calculate the cube root of a 64 bit scaled integer.
241 * Although the cube root of a 64 bit number does fit into a 32 bit unsigned
242 * integer, this is not guaranteed after scaling, so this function has a
243 * 64 bit return.  This uses the shifting nth root algorithm with some
244 * algebraic simplifications.
245 */
246static uint64_t icbrt64(uint64_t x)
247{
248    uint64_t r = 0;
249    uint64_t b;
250    int s;
251
252    for (s = 63; s >= 0; s -= 3) {
253        r <<= 1;
254        b = 3 * r * (r + 1) + 1;
255        if ((x >> s) >= b) {
256            x -= b << s;
257            r++;
258        }
259    }
260    return r * cbrt_scale;
261}
262
263/*
264 * Calculate the natural logarithm of a 64 bit scaled integer.
265 * This is done by calculating a base two logarithm and scaling.
266 * The maximum logarithm (base 2) is 64 and this reduces base e, so
267 * a 32 bit result should not overflow.  The argument passed must be
268 * greater than unity so we don't need to handle negative results.
269 */
270static uint32_t ilog_e(uint64_t v)
271{
272    uint32_t i, r = 0;
273
274    /*
275     * Scale down the value into the range 1 .. 2.
276     *
277     * If fractional numbers need to be processed, another loop needs
278     * to go here that checks v < scale and if so multiplies it by 2 and
279     * reduces r by scale.  This also means making r signed.
280     */
281    while (v >= 2 * scale) {
282        v >>= 1;
283        r += scale;
284    }
285    for (i = scale / 2; i != 0; i /= 2) {
286        v = mul2(v, v);
287        if (v >= 2 * scale) {
288            v >>= 1;
289            r += i;
290        }
291    }
292    r = (r * (uint64_t)scale) / log_e;
293    return r;
294}
295
296/*
297 * NIST SP 800-56B rev 2 Appendix D: Maximum Security Strength Estimates for IFC
298 * Modulus Lengths.
299 *
300 * Note that this formula is also referred to in SP800-56A rev3 Appendix D:
301 * for FFC safe prime groups for modp and ffdhe.
302 * After Table 25 and Table 26 it refers to
303 * "The maximum security strength estimates were calculated using the formula in
304 * Section 7.5 of the FIPS 140 IG and rounded to the nearest multiple of eight
305 * bits".
306 *
307 * The formula is:
308 *
309 * E = \frac{1.923 \sqrt[3]{nBits \cdot log_e(2)}
310 *           \cdot(log_e(nBits \cdot log_e(2))^{2/3} - 4.69}{log_e(2)}
311 * The two cube roots are merged together here.
312 */
313uint16_t ossl_ifc_ffc_compute_security_bits(int n)
314{
315    uint64_t x;
316    uint32_t lx;
317    uint16_t y, cap;
318
319    /*
320     * Look for common values as listed in standards.
321     * These values are not exactly equal to the results from the formulae in
322     * the standards but are defined to be canonical.
323     */
324    switch (n) {
325    case 2048:      /* SP 800-56B rev 2 Appendix D and FIPS 140-2 IG 7.5 */
326        return 112;
327    case 3072:      /* SP 800-56B rev 2 Appendix D and FIPS 140-2 IG 7.5 */
328        return 128;
329    case 4096:      /* SP 800-56B rev 2 Appendix D */
330        return 152;
331    case 6144:      /* SP 800-56B rev 2 Appendix D */
332        return 176;
333    case 7680:      /* FIPS 140-2 IG 7.5 */
334        return 192;
335    case 8192:      /* SP 800-56B rev 2 Appendix D */
336        return 200;
337    case 15360:     /* FIPS 140-2 IG 7.5 */
338        return 256;
339    }
340
341    /*
342     * The first incorrect result (i.e. not accurate or off by one low) occurs
343     * for n = 699668.  The true value here is 1200.  Instead of using this n
344     * as the check threshold, the smallest n such that the correct result is
345     * 1200 is used instead.
346     */
347    if (n >= 687737)
348        return 1200;
349    if (n < 8)
350        return 0;
351
352    /*
353     * To ensure that the output is non-decreasing with respect to n,
354     * a cap needs to be applied to the two values where the function over
355     * estimates the strength (according to the above fast path).
356     */
357    if (n <= 7680)
358        cap = 192;
359    else if (n <= 15360)
360        cap = 256;
361    else
362        cap = 1200;
363
364    x = n * (uint64_t)log_2;
365    lx = ilog_e(x);
366    y = (uint16_t)((mul2(c1_923, icbrt64(mul2(mul2(x, lx), lx))) - c4_690)
367                   / log_2);
368    y = (y + 4) & ~7;
369    if (y > cap)
370        y = cap;
371    return y;
372}
373
374
375
376int RSA_security_bits(const RSA *rsa)
377{
378    int bits = BN_num_bits(rsa->n);
379
380#ifndef FIPS_MODULE
381    if (rsa->version == RSA_ASN1_VERSION_MULTI) {
382        /* This ought to mean that we have private key at hand. */
383        int ex_primes = sk_RSA_PRIME_INFO_num(rsa->prime_infos);
384
385        if (ex_primes <= 0 || (ex_primes + 2) > ossl_rsa_multip_cap(bits))
386            return 0;
387    }
388#endif
389    return ossl_ifc_ffc_compute_security_bits(bits);
390}
391
392int RSA_set0_key(RSA *r, BIGNUM *n, BIGNUM *e, BIGNUM *d)
393{
394    /* If the fields n and e in r are NULL, the corresponding input
395     * parameters MUST be non-NULL for n and e.  d may be
396     * left NULL (in case only the public key is used).
397     */
398    if ((r->n == NULL && n == NULL)
399        || (r->e == NULL && e == NULL))
400        return 0;
401
402    if (n != NULL) {
403        BN_free(r->n);
404        r->n = n;
405    }
406    if (e != NULL) {
407        BN_free(r->e);
408        r->e = e;
409    }
410    if (d != NULL) {
411        BN_clear_free(r->d);
412        r->d = d;
413        BN_set_flags(r->d, BN_FLG_CONSTTIME);
414    }
415    r->dirty_cnt++;
416
417    return 1;
418}
419
420int RSA_set0_factors(RSA *r, BIGNUM *p, BIGNUM *q)
421{
422    /* If the fields p and q in r are NULL, the corresponding input
423     * parameters MUST be non-NULL.
424     */
425    if ((r->p == NULL && p == NULL)
426        || (r->q == NULL && q == NULL))
427        return 0;
428
429    if (p != NULL) {
430        BN_clear_free(r->p);
431        r->p = p;
432        BN_set_flags(r->p, BN_FLG_CONSTTIME);
433    }
434    if (q != NULL) {
435        BN_clear_free(r->q);
436        r->q = q;
437        BN_set_flags(r->q, BN_FLG_CONSTTIME);
438    }
439    r->dirty_cnt++;
440
441    return 1;
442}
443
444int RSA_set0_crt_params(RSA *r, BIGNUM *dmp1, BIGNUM *dmq1, BIGNUM *iqmp)
445{
446    /* If the fields dmp1, dmq1 and iqmp in r are NULL, the corresponding input
447     * parameters MUST be non-NULL.
448     */
449    if ((r->dmp1 == NULL && dmp1 == NULL)
450        || (r->dmq1 == NULL && dmq1 == NULL)
451        || (r->iqmp == NULL && iqmp == NULL))
452        return 0;
453
454    if (dmp1 != NULL) {
455        BN_clear_free(r->dmp1);
456        r->dmp1 = dmp1;
457        BN_set_flags(r->dmp1, BN_FLG_CONSTTIME);
458    }
459    if (dmq1 != NULL) {
460        BN_clear_free(r->dmq1);
461        r->dmq1 = dmq1;
462        BN_set_flags(r->dmq1, BN_FLG_CONSTTIME);
463    }
464    if (iqmp != NULL) {
465        BN_clear_free(r->iqmp);
466        r->iqmp = iqmp;
467        BN_set_flags(r->iqmp, BN_FLG_CONSTTIME);
468    }
469    r->dirty_cnt++;
470
471    return 1;
472}
473
474#ifndef FIPS_MODULE
475/*
476 * Is it better to export RSA_PRIME_INFO structure
477 * and related functions to let user pass a triplet?
478 */
479int RSA_set0_multi_prime_params(RSA *r, BIGNUM *primes[], BIGNUM *exps[],
480                                BIGNUM *coeffs[], int pnum)
481{
482    STACK_OF(RSA_PRIME_INFO) *prime_infos, *old = NULL;
483    RSA_PRIME_INFO *pinfo;
484    int i;
485
486    if (primes == NULL || exps == NULL || coeffs == NULL || pnum == 0)
487        return 0;
488
489    prime_infos = sk_RSA_PRIME_INFO_new_reserve(NULL, pnum);
490    if (prime_infos == NULL)
491        return 0;
492
493    if (r->prime_infos != NULL)
494        old = r->prime_infos;
495
496    for (i = 0; i < pnum; i++) {
497        pinfo = ossl_rsa_multip_info_new();
498        if (pinfo == NULL)
499            goto err;
500        if (primes[i] != NULL && exps[i] != NULL && coeffs[i] != NULL) {
501            BN_clear_free(pinfo->r);
502            BN_clear_free(pinfo->d);
503            BN_clear_free(pinfo->t);
504            pinfo->r = primes[i];
505            pinfo->d = exps[i];
506            pinfo->t = coeffs[i];
507            BN_set_flags(pinfo->r, BN_FLG_CONSTTIME);
508            BN_set_flags(pinfo->d, BN_FLG_CONSTTIME);
509            BN_set_flags(pinfo->t, BN_FLG_CONSTTIME);
510        } else {
511            ossl_rsa_multip_info_free(pinfo);
512            goto err;
513        }
514        (void)sk_RSA_PRIME_INFO_push(prime_infos, pinfo);
515    }
516
517    r->prime_infos = prime_infos;
518
519    if (!ossl_rsa_multip_calc_product(r)) {
520        r->prime_infos = old;
521        goto err;
522    }
523
524    if (old != NULL) {
525        /*
526         * This is hard to deal with, since the old infos could
527         * also be set by this function and r, d, t should not
528         * be freed in that case. So currently, stay consistent
529         * with other *set0* functions: just free it...
530         */
531        sk_RSA_PRIME_INFO_pop_free(old, ossl_rsa_multip_info_free);
532    }
533
534    r->version = RSA_ASN1_VERSION_MULTI;
535    r->dirty_cnt++;
536
537    return 1;
538 err:
539    /* r, d, t should not be freed */
540    sk_RSA_PRIME_INFO_pop_free(prime_infos, ossl_rsa_multip_info_free_ex);
541    return 0;
542}
543#endif
544
545void RSA_get0_key(const RSA *r,
546                  const BIGNUM **n, const BIGNUM **e, const BIGNUM **d)
547{
548    if (n != NULL)
549        *n = r->n;
550    if (e != NULL)
551        *e = r->e;
552    if (d != NULL)
553        *d = r->d;
554}
555
556void RSA_get0_factors(const RSA *r, const BIGNUM **p, const BIGNUM **q)
557{
558    if (p != NULL)
559        *p = r->p;
560    if (q != NULL)
561        *q = r->q;
562}
563
564#ifndef FIPS_MODULE
565int RSA_get_multi_prime_extra_count(const RSA *r)
566{
567    int pnum;
568
569    pnum = sk_RSA_PRIME_INFO_num(r->prime_infos);
570    if (pnum <= 0)
571        pnum = 0;
572    return pnum;
573}
574
575int RSA_get0_multi_prime_factors(const RSA *r, const BIGNUM *primes[])
576{
577    int pnum, i;
578    RSA_PRIME_INFO *pinfo;
579
580    if ((pnum = RSA_get_multi_prime_extra_count(r)) == 0)
581        return 0;
582
583    /*
584     * return other primes
585     * it's caller's responsibility to allocate oth_primes[pnum]
586     */
587    for (i = 0; i < pnum; i++) {
588        pinfo = sk_RSA_PRIME_INFO_value(r->prime_infos, i);
589        primes[i] = pinfo->r;
590    }
591
592    return 1;
593}
594#endif
595
596void RSA_get0_crt_params(const RSA *r,
597                         const BIGNUM **dmp1, const BIGNUM **dmq1,
598                         const BIGNUM **iqmp)
599{
600    if (dmp1 != NULL)
601        *dmp1 = r->dmp1;
602    if (dmq1 != NULL)
603        *dmq1 = r->dmq1;
604    if (iqmp != NULL)
605        *iqmp = r->iqmp;
606}
607
608#ifndef FIPS_MODULE
609int RSA_get0_multi_prime_crt_params(const RSA *r, const BIGNUM *exps[],
610                                    const BIGNUM *coeffs[])
611{
612    int pnum;
613
614    if ((pnum = RSA_get_multi_prime_extra_count(r)) == 0)
615        return 0;
616
617    /* return other primes */
618    if (exps != NULL || coeffs != NULL) {
619        RSA_PRIME_INFO *pinfo;
620        int i;
621
622        /* it's the user's job to guarantee the buffer length */
623        for (i = 0; i < pnum; i++) {
624            pinfo = sk_RSA_PRIME_INFO_value(r->prime_infos, i);
625            if (exps != NULL)
626                exps[i] = pinfo->d;
627            if (coeffs != NULL)
628                coeffs[i] = pinfo->t;
629        }
630    }
631
632    return 1;
633}
634#endif
635
636const BIGNUM *RSA_get0_n(const RSA *r)
637{
638    return r->n;
639}
640
641const BIGNUM *RSA_get0_e(const RSA *r)
642{
643    return r->e;
644}
645
646const BIGNUM *RSA_get0_d(const RSA *r)
647{
648    return r->d;
649}
650
651const BIGNUM *RSA_get0_p(const RSA *r)
652{
653    return r->p;
654}
655
656const BIGNUM *RSA_get0_q(const RSA *r)
657{
658    return r->q;
659}
660
661const BIGNUM *RSA_get0_dmp1(const RSA *r)
662{
663    return r->dmp1;
664}
665
666const BIGNUM *RSA_get0_dmq1(const RSA *r)
667{
668    return r->dmq1;
669}
670
671const BIGNUM *RSA_get0_iqmp(const RSA *r)
672{
673    return r->iqmp;
674}
675
676const RSA_PSS_PARAMS *RSA_get0_pss_params(const RSA *r)
677{
678#ifdef FIPS_MODULE
679    return NULL;
680#else
681    return r->pss;
682#endif
683}
684
685/* Internal */
686int ossl_rsa_set0_pss_params(RSA *r, RSA_PSS_PARAMS *pss)
687{
688#ifdef FIPS_MODULE
689    return 0;
690#else
691    RSA_PSS_PARAMS_free(r->pss);
692    r->pss = pss;
693    return 1;
694#endif
695}
696
697/* Internal */
698RSA_PSS_PARAMS_30 *ossl_rsa_get0_pss_params_30(RSA *r)
699{
700    return &r->pss_params;
701}
702
703void RSA_clear_flags(RSA *r, int flags)
704{
705    r->flags &= ~flags;
706}
707
708int RSA_test_flags(const RSA *r, int flags)
709{
710    return r->flags & flags;
711}
712
713void RSA_set_flags(RSA *r, int flags)
714{
715    r->flags |= flags;
716}
717
718int RSA_get_version(RSA *r)
719{
720    /* { two-prime(0), multi(1) } */
721    return r->version;
722}
723
724#ifndef FIPS_MODULE
725ENGINE *RSA_get0_engine(const RSA *r)
726{
727    return r->engine;
728}
729
730int RSA_pkey_ctx_ctrl(EVP_PKEY_CTX *ctx, int optype, int cmd, int p1, void *p2)
731{
732    /* If key type not RSA or RSA-PSS return error */
733    if (ctx != NULL && ctx->pmeth != NULL
734        && ctx->pmeth->pkey_id != EVP_PKEY_RSA
735        && ctx->pmeth->pkey_id != EVP_PKEY_RSA_PSS)
736        return -1;
737     return EVP_PKEY_CTX_ctrl(ctx, -1, optype, cmd, p1, p2);
738}
739#endif
740
741DEFINE_STACK_OF(BIGNUM)
742
743int ossl_rsa_set0_all_params(RSA *r, const STACK_OF(BIGNUM) *primes,
744                             const STACK_OF(BIGNUM) *exps,
745                             const STACK_OF(BIGNUM) *coeffs)
746{
747#ifndef FIPS_MODULE
748    STACK_OF(RSA_PRIME_INFO) *prime_infos, *old_infos = NULL;
749#endif
750    int pnum;
751
752    if (primes == NULL || exps == NULL || coeffs == NULL)
753        return 0;
754
755    pnum = sk_BIGNUM_num(primes);
756    if (pnum < 2)
757        return 0;
758
759    if (!RSA_set0_factors(r, sk_BIGNUM_value(primes, 0),
760                          sk_BIGNUM_value(primes, 1)))
761        return 0;
762
763    if (pnum == sk_BIGNUM_num(exps)
764        && pnum == sk_BIGNUM_num(coeffs) + 1) {
765
766        if (!RSA_set0_crt_params(r, sk_BIGNUM_value(exps, 0),
767                                 sk_BIGNUM_value(exps, 1),
768                                 sk_BIGNUM_value(coeffs, 0)))
769        return 0;
770    }
771
772#ifndef FIPS_MODULE
773    old_infos = r->prime_infos;
774#endif
775
776    if (pnum > 2) {
777#ifndef FIPS_MODULE
778        int i;
779
780        prime_infos = sk_RSA_PRIME_INFO_new_reserve(NULL, pnum);
781        if (prime_infos == NULL)
782            return 0;
783
784        for (i = 2; i < pnum; i++) {
785            BIGNUM *prime = sk_BIGNUM_value(primes, i);
786            BIGNUM *exp = sk_BIGNUM_value(exps, i);
787            BIGNUM *coeff = sk_BIGNUM_value(coeffs, i - 1);
788            RSA_PRIME_INFO *pinfo = NULL;
789
790            if (!ossl_assert(prime != NULL && exp != NULL && coeff != NULL))
791                goto err;
792
793            /* Using ossl_rsa_multip_info_new() is wasteful, so allocate directly */
794            if ((pinfo = OPENSSL_zalloc(sizeof(*pinfo))) == NULL) {
795                ERR_raise(ERR_LIB_RSA, ERR_R_MALLOC_FAILURE);
796                goto err;
797            }
798
799            pinfo->r = prime;
800            pinfo->d = exp;
801            pinfo->t = coeff;
802            BN_set_flags(pinfo->r, BN_FLG_CONSTTIME);
803            BN_set_flags(pinfo->d, BN_FLG_CONSTTIME);
804            BN_set_flags(pinfo->t, BN_FLG_CONSTTIME);
805            (void)sk_RSA_PRIME_INFO_push(prime_infos, pinfo);
806        }
807
808        r->prime_infos = prime_infos;
809
810        if (!ossl_rsa_multip_calc_product(r)) {
811            r->prime_infos = old_infos;
812            goto err;
813        }
814#else
815        return 0;
816#endif
817    }
818
819#ifndef FIPS_MODULE
820    if (old_infos != NULL) {
821        /*
822         * This is hard to deal with, since the old infos could
823         * also be set by this function and r, d, t should not
824         * be freed in that case. So currently, stay consistent
825         * with other *set0* functions: just free it...
826         */
827        sk_RSA_PRIME_INFO_pop_free(old_infos, ossl_rsa_multip_info_free);
828    }
829#endif
830
831    r->version = pnum > 2 ? RSA_ASN1_VERSION_MULTI : RSA_ASN1_VERSION_DEFAULT;
832    r->dirty_cnt++;
833
834    return 1;
835#ifndef FIPS_MODULE
836 err:
837    /* r, d, t should not be freed */
838    sk_RSA_PRIME_INFO_pop_free(prime_infos, ossl_rsa_multip_info_free_ex);
839    return 0;
840#endif
841}
842
843DEFINE_SPECIAL_STACK_OF_CONST(BIGNUM_const, BIGNUM)
844
845int ossl_rsa_get0_all_params(RSA *r, STACK_OF(BIGNUM_const) *primes,
846                             STACK_OF(BIGNUM_const) *exps,
847                             STACK_OF(BIGNUM_const) *coeffs)
848{
849#ifndef FIPS_MODULE
850    RSA_PRIME_INFO *pinfo;
851    int i, pnum;
852#endif
853
854    if (r == NULL)
855        return 0;
856
857    /* If |p| is NULL, there are no CRT parameters */
858    if (RSA_get0_p(r) == NULL)
859        return 1;
860
861    sk_BIGNUM_const_push(primes, RSA_get0_p(r));
862    sk_BIGNUM_const_push(primes, RSA_get0_q(r));
863    sk_BIGNUM_const_push(exps, RSA_get0_dmp1(r));
864    sk_BIGNUM_const_push(exps, RSA_get0_dmq1(r));
865    sk_BIGNUM_const_push(coeffs, RSA_get0_iqmp(r));
866
867#ifndef FIPS_MODULE
868    pnum = RSA_get_multi_prime_extra_count(r);
869    for (i = 0; i < pnum; i++) {
870        pinfo = sk_RSA_PRIME_INFO_value(r->prime_infos, i);
871        sk_BIGNUM_const_push(primes, pinfo->r);
872        sk_BIGNUM_const_push(exps, pinfo->d);
873        sk_BIGNUM_const_push(coeffs, pinfo->t);
874    }
875#endif
876
877    return 1;
878}
879
880#ifndef FIPS_MODULE
881/* Helpers to set or get diverse hash algorithm names */
882static int int_set_rsa_md_name(EVP_PKEY_CTX *ctx,
883                               /* For checks */
884                               int keytype, int optype,
885                               /* For EVP_PKEY_CTX_set_params() */
886                               const char *mdkey, const char *mdname,
887                               const char *propkey, const char *mdprops)
888{
889    OSSL_PARAM params[3], *p = params;
890
891    if (ctx == NULL || mdname == NULL || (ctx->operation & optype) == 0) {
892        ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
893        /* Uses the same return values as EVP_PKEY_CTX_ctrl */
894        return -2;
895    }
896
897    /* If key type not RSA return error */
898    switch (keytype) {
899    case -1:
900        if (!EVP_PKEY_CTX_is_a(ctx, "RSA")
901            && !EVP_PKEY_CTX_is_a(ctx, "RSA-PSS"))
902            return -1;
903        break;
904    default:
905        if (!EVP_PKEY_CTX_is_a(ctx, evp_pkey_type2name(keytype)))
906            return -1;
907        break;
908    }
909
910    /* Cast away the const. This is read only so should be safe */
911    *p++ = OSSL_PARAM_construct_utf8_string(mdkey, (char *)mdname, 0);
912    if (evp_pkey_ctx_is_provided(ctx) && mdprops != NULL) {
913        /* Cast away the const. This is read only so should be safe */
914        *p++ = OSSL_PARAM_construct_utf8_string(propkey, (char *)mdprops, 0);
915    }
916    *p++ = OSSL_PARAM_construct_end();
917
918    return evp_pkey_ctx_set_params_strict(ctx, params);
919}
920
921/* Helpers to set or get diverse hash algorithm names */
922static int int_get_rsa_md_name(EVP_PKEY_CTX *ctx,
923                               /* For checks */
924                               int keytype, int optype,
925                               /* For EVP_PKEY_CTX_get_params() */
926                               const char *mdkey,
927                               char *mdname, size_t mdnamesize)
928{
929    OSSL_PARAM params[2], *p = params;
930
931    if (ctx == NULL || mdname == NULL || (ctx->operation & optype) == 0) {
932        ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
933        /* Uses the same return values as EVP_PKEY_CTX_ctrl */
934        return -2;
935    }
936
937    /* If key type not RSA return error */
938    switch (keytype) {
939    case -1:
940        if (!EVP_PKEY_CTX_is_a(ctx, "RSA")
941            && !EVP_PKEY_CTX_is_a(ctx, "RSA-PSS"))
942            return -1;
943        break;
944    default:
945        if (!EVP_PKEY_CTX_is_a(ctx, evp_pkey_type2name(keytype)))
946            return -1;
947        break;
948    }
949
950    /* Cast away the const. This is read only so should be safe */
951    *p++ = OSSL_PARAM_construct_utf8_string(mdkey, (char *)mdname, mdnamesize);
952    *p++ = OSSL_PARAM_construct_end();
953
954    return evp_pkey_ctx_get_params_strict(ctx, params);
955}
956
957/*
958 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
959 * simply because that's easier.
960 */
961int EVP_PKEY_CTX_set_rsa_padding(EVP_PKEY_CTX *ctx, int pad_mode)
962{
963    return RSA_pkey_ctx_ctrl(ctx, -1, EVP_PKEY_CTRL_RSA_PADDING,
964                             pad_mode, NULL);
965}
966
967/*
968 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
969 * simply because that's easier.
970 */
971int EVP_PKEY_CTX_get_rsa_padding(EVP_PKEY_CTX *ctx, int *pad_mode)
972{
973    return RSA_pkey_ctx_ctrl(ctx, -1, EVP_PKEY_CTRL_GET_RSA_PADDING,
974                             0, pad_mode);
975}
976
977/*
978 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
979 * simply because that's easier.
980 */
981int EVP_PKEY_CTX_set_rsa_pss_keygen_md(EVP_PKEY_CTX *ctx, const EVP_MD *md)
982{
983    return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA_PSS, EVP_PKEY_OP_KEYGEN,
984                             EVP_PKEY_CTRL_MD, 0, (void *)(md));
985}
986
987int EVP_PKEY_CTX_set_rsa_pss_keygen_md_name(EVP_PKEY_CTX *ctx,
988                                            const char *mdname,
989                                            const char *mdprops)
990{
991    return int_set_rsa_md_name(ctx, EVP_PKEY_RSA_PSS, EVP_PKEY_OP_KEYGEN,
992                               OSSL_PKEY_PARAM_RSA_DIGEST, mdname,
993                               OSSL_PKEY_PARAM_RSA_DIGEST_PROPS, mdprops);
994}
995
996/*
997 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
998 * simply because that's easier.
999 */
1000int EVP_PKEY_CTX_set_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD *md)
1001{
1002    /* If key type not RSA return error */
1003    if (!EVP_PKEY_CTX_is_a(ctx, "RSA"))
1004        return -1;
1005
1006    return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT,
1007                             EVP_PKEY_CTRL_RSA_OAEP_MD, 0, (void *)(md));
1008}
1009
1010int EVP_PKEY_CTX_set_rsa_oaep_md_name(EVP_PKEY_CTX *ctx, const char *mdname,
1011                                      const char *mdprops)
1012{
1013    return
1014        int_set_rsa_md_name(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT,
1015                            OSSL_ASYM_CIPHER_PARAM_OAEP_DIGEST, mdname,
1016                            OSSL_ASYM_CIPHER_PARAM_OAEP_DIGEST_PROPS, mdprops);
1017}
1018
1019int EVP_PKEY_CTX_get_rsa_oaep_md_name(EVP_PKEY_CTX *ctx, char *name,
1020                                      size_t namesize)
1021{
1022    return int_get_rsa_md_name(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT,
1023                               OSSL_ASYM_CIPHER_PARAM_OAEP_DIGEST,
1024                               name, namesize);
1025}
1026
1027/*
1028 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1029 * simply because that's easier.
1030 */
1031int EVP_PKEY_CTX_get_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD **md)
1032{
1033    /* If key type not RSA return error */
1034    if (!EVP_PKEY_CTX_is_a(ctx, "RSA"))
1035        return -1;
1036
1037    return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT,
1038                             EVP_PKEY_CTRL_GET_RSA_OAEP_MD, 0, (void *)md);
1039}
1040
1041/*
1042 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1043 * simply because that's easier.
1044 */
1045int EVP_PKEY_CTX_set_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD *md)
1046{
1047    return RSA_pkey_ctx_ctrl(ctx, EVP_PKEY_OP_TYPE_SIG | EVP_PKEY_OP_TYPE_CRYPT,
1048                             EVP_PKEY_CTRL_RSA_MGF1_MD, 0, (void *)(md));
1049}
1050
1051int EVP_PKEY_CTX_set_rsa_mgf1_md_name(EVP_PKEY_CTX *ctx, const char *mdname,
1052                                      const char *mdprops)
1053{
1054    return int_set_rsa_md_name(ctx, -1,
1055                               EVP_PKEY_OP_TYPE_CRYPT | EVP_PKEY_OP_TYPE_SIG,
1056                               OSSL_PKEY_PARAM_MGF1_DIGEST, mdname,
1057                               OSSL_PKEY_PARAM_MGF1_PROPERTIES, mdprops);
1058}
1059
1060int EVP_PKEY_CTX_get_rsa_mgf1_md_name(EVP_PKEY_CTX *ctx, char *name,
1061                                      size_t namesize)
1062{
1063    return int_get_rsa_md_name(ctx, -1,
1064                               EVP_PKEY_OP_TYPE_CRYPT | EVP_PKEY_OP_TYPE_SIG,
1065                               OSSL_PKEY_PARAM_MGF1_DIGEST, name, namesize);
1066}
1067
1068/*
1069 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1070 * simply because that's easier.
1071 */
1072int EVP_PKEY_CTX_set_rsa_pss_keygen_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD *md)
1073{
1074    return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA_PSS, EVP_PKEY_OP_KEYGEN,
1075                             EVP_PKEY_CTRL_RSA_MGF1_MD, 0, (void *)(md));
1076}
1077
1078int EVP_PKEY_CTX_set_rsa_pss_keygen_mgf1_md_name(EVP_PKEY_CTX *ctx,
1079                                                 const char *mdname)
1080{
1081    return int_set_rsa_md_name(ctx, EVP_PKEY_RSA_PSS, EVP_PKEY_OP_KEYGEN,
1082                               OSSL_PKEY_PARAM_MGF1_DIGEST, mdname,
1083                               NULL, NULL);
1084}
1085
1086/*
1087 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1088 * simply because that's easier.
1089 */
1090int EVP_PKEY_CTX_get_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD **md)
1091{
1092    return RSA_pkey_ctx_ctrl(ctx, EVP_PKEY_OP_TYPE_SIG | EVP_PKEY_OP_TYPE_CRYPT,
1093                             EVP_PKEY_CTRL_GET_RSA_MGF1_MD, 0, (void *)(md));
1094}
1095
1096int EVP_PKEY_CTX_set0_rsa_oaep_label(EVP_PKEY_CTX *ctx, void *label, int llen)
1097{
1098    OSSL_PARAM rsa_params[2], *p = rsa_params;
1099    const char *empty = "";
1100    /*
1101     * Needed as we swap label with empty if it is NULL, and label is
1102     * freed at the end of this function.
1103     */
1104    void *plabel = label;
1105    int ret;
1106
1107    if (ctx == NULL || !EVP_PKEY_CTX_IS_ASYM_CIPHER_OP(ctx)) {
1108        ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
1109        /* Uses the same return values as EVP_PKEY_CTX_ctrl */
1110        return -2;
1111    }
1112
1113    /* If key type not RSA return error */
1114    if (!EVP_PKEY_CTX_is_a(ctx, "RSA"))
1115        return -1;
1116
1117    /* Accept NULL for backward compatibility */
1118    if (label == NULL && llen == 0)
1119        plabel = (void *)empty;
1120
1121    /* Cast away the const. This is read only so should be safe */
1122    *p++ = OSSL_PARAM_construct_octet_string(OSSL_ASYM_CIPHER_PARAM_OAEP_LABEL,
1123                                             (void *)plabel, (size_t)llen);
1124    *p++ = OSSL_PARAM_construct_end();
1125
1126    ret = evp_pkey_ctx_set_params_strict(ctx, rsa_params);
1127    if (ret <= 0)
1128        return ret;
1129
1130    /* Ownership is supposed to be transfered to the callee. */
1131    OPENSSL_free(label);
1132    return 1;
1133}
1134
1135int EVP_PKEY_CTX_get0_rsa_oaep_label(EVP_PKEY_CTX *ctx, unsigned char **label)
1136{
1137    OSSL_PARAM rsa_params[2], *p = rsa_params;
1138    size_t labellen;
1139
1140    if (ctx == NULL || !EVP_PKEY_CTX_IS_ASYM_CIPHER_OP(ctx)) {
1141        ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
1142        /* Uses the same return values as EVP_PKEY_CTX_ctrl */
1143        return -2;
1144    }
1145
1146    /* If key type not RSA return error */
1147    if (!EVP_PKEY_CTX_is_a(ctx, "RSA"))
1148        return -1;
1149
1150    *p++ = OSSL_PARAM_construct_octet_ptr(OSSL_ASYM_CIPHER_PARAM_OAEP_LABEL,
1151                                          (void **)label, 0);
1152    *p++ = OSSL_PARAM_construct_end();
1153
1154    if (!EVP_PKEY_CTX_get_params(ctx, rsa_params))
1155        return -1;
1156
1157    labellen = rsa_params[0].return_size;
1158    if (labellen > INT_MAX)
1159        return -1;
1160
1161    return (int)labellen;
1162}
1163
1164/*
1165 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1166 * simply because that's easier.
1167 */
1168int EVP_PKEY_CTX_set_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int saltlen)
1169{
1170    /*
1171     * For some reason, the optype was set to this:
1172     *
1173     * EVP_PKEY_OP_SIGN|EVP_PKEY_OP_VERIFY
1174     *
1175     * However, we do use RSA-PSS with the whole gamut of diverse signature
1176     * and verification operations, so the optype gets upgraded to this:
1177     *
1178     * EVP_PKEY_OP_TYPE_SIG
1179     */
1180    return RSA_pkey_ctx_ctrl(ctx, EVP_PKEY_OP_TYPE_SIG,
1181                             EVP_PKEY_CTRL_RSA_PSS_SALTLEN, saltlen, NULL);
1182}
1183
1184/*
1185 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1186 * simply because that's easier.
1187 */
1188int EVP_PKEY_CTX_get_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int *saltlen)
1189{
1190    /*
1191     * Because of circumstances, the optype is updated from:
1192     *
1193     * EVP_PKEY_OP_SIGN|EVP_PKEY_OP_VERIFY
1194     *
1195     * to:
1196     *
1197     * EVP_PKEY_OP_TYPE_SIG
1198     */
1199    return RSA_pkey_ctx_ctrl(ctx, EVP_PKEY_OP_TYPE_SIG,
1200                             EVP_PKEY_CTRL_GET_RSA_PSS_SALTLEN, 0, saltlen);
1201}
1202
1203int EVP_PKEY_CTX_set_rsa_pss_keygen_saltlen(EVP_PKEY_CTX *ctx, int saltlen)
1204{
1205    OSSL_PARAM pad_params[2], *p = pad_params;
1206
1207    if (ctx == NULL || !EVP_PKEY_CTX_IS_GEN_OP(ctx)) {
1208        ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
1209        /* Uses the same return values as EVP_PKEY_CTX_ctrl */
1210        return -2;
1211    }
1212
1213    if (!EVP_PKEY_CTX_is_a(ctx, "RSA-PSS"))
1214        return -1;
1215
1216    *p++ = OSSL_PARAM_construct_int(OSSL_SIGNATURE_PARAM_PSS_SALTLEN,
1217                                    &saltlen);
1218    *p++ = OSSL_PARAM_construct_end();
1219
1220    return evp_pkey_ctx_set_params_strict(ctx, pad_params);
1221}
1222
1223int EVP_PKEY_CTX_set_rsa_keygen_bits(EVP_PKEY_CTX *ctx, int bits)
1224{
1225    OSSL_PARAM params[2], *p = params;
1226    size_t bits2 = bits;
1227
1228    if (ctx == NULL || !EVP_PKEY_CTX_IS_GEN_OP(ctx)) {
1229        ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
1230        /* Uses the same return values as EVP_PKEY_CTX_ctrl */
1231        return -2;
1232    }
1233
1234    /* If key type not RSA return error */
1235    if (!EVP_PKEY_CTX_is_a(ctx, "RSA")
1236        && !EVP_PKEY_CTX_is_a(ctx, "RSA-PSS"))
1237        return -1;
1238
1239    *p++ = OSSL_PARAM_construct_size_t(OSSL_PKEY_PARAM_RSA_BITS, &bits2);
1240    *p++ = OSSL_PARAM_construct_end();
1241
1242    return evp_pkey_ctx_set_params_strict(ctx, params);
1243}
1244
1245int EVP_PKEY_CTX_set_rsa_keygen_pubexp(EVP_PKEY_CTX *ctx, BIGNUM *pubexp)
1246{
1247    int ret = RSA_pkey_ctx_ctrl(ctx, EVP_PKEY_OP_KEYGEN,
1248                                EVP_PKEY_CTRL_RSA_KEYGEN_PUBEXP, 0, pubexp);
1249
1250    /*
1251     * Satisfy memory semantics for pre-3.0 callers of
1252     * EVP_PKEY_CTX_set_rsa_keygen_pubexp(): their expectation is that input
1253     * pubexp BIGNUM becomes managed by the EVP_PKEY_CTX on success.
1254     */
1255    if (ret > 0 && evp_pkey_ctx_is_provided(ctx)) {
1256        BN_free(ctx->rsa_pubexp);
1257        ctx->rsa_pubexp = pubexp;
1258    }
1259
1260    return ret;
1261}
1262
1263int EVP_PKEY_CTX_set1_rsa_keygen_pubexp(EVP_PKEY_CTX *ctx, BIGNUM *pubexp)
1264{
1265    int ret = 0;
1266
1267    /*
1268     * When we're dealing with a provider, there's no need to duplicate
1269     * pubexp, as it gets copied when transforming to an OSSL_PARAM anyway.
1270     */
1271    if (evp_pkey_ctx_is_legacy(ctx)) {
1272        pubexp = BN_dup(pubexp);
1273        if (pubexp == NULL)
1274            return 0;
1275    }
1276    ret = EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_KEYGEN,
1277                            EVP_PKEY_CTRL_RSA_KEYGEN_PUBEXP, 0, pubexp);
1278    if (evp_pkey_ctx_is_legacy(ctx) && ret <= 0)
1279        BN_free(pubexp);
1280    return ret;
1281}
1282
1283int EVP_PKEY_CTX_set_rsa_keygen_primes(EVP_PKEY_CTX *ctx, int primes)
1284{
1285    OSSL_PARAM params[2], *p = params;
1286    size_t primes2 = primes;
1287
1288    if (ctx == NULL || !EVP_PKEY_CTX_IS_GEN_OP(ctx)) {
1289        ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
1290        /* Uses the same return values as EVP_PKEY_CTX_ctrl */
1291        return -2;
1292    }
1293
1294    /* If key type not RSA return error */
1295    if (!EVP_PKEY_CTX_is_a(ctx, "RSA")
1296        && !EVP_PKEY_CTX_is_a(ctx, "RSA-PSS"))
1297        return -1;
1298
1299    *p++ = OSSL_PARAM_construct_size_t(OSSL_PKEY_PARAM_RSA_PRIMES, &primes2);
1300    *p++ = OSSL_PARAM_construct_end();
1301
1302    return evp_pkey_ctx_set_params_strict(ctx, params);
1303}
1304#endif
1305