1// SPDX-License-Identifier: 0BSD
2
3///////////////////////////////////////////////////////////////////////////////
4//
5/// \file       tuklib_integer.h
6/// \brief      Various integer and bit operations
7///
8/// This file provides macros or functions to do some basic integer and bit
9/// operations.
10///
11/// Native endian inline functions (XX = 16, 32, or 64):
12///   - Unaligned native endian reads: readXXne(ptr)
13///   - Unaligned native endian writes: writeXXne(ptr, num)
14///   - Aligned native endian reads: aligned_readXXne(ptr)
15///   - Aligned native endian writes: aligned_writeXXne(ptr, num)
16///
17/// Endianness-converting integer operations (these can be macros!)
18/// (XX = 16, 32, or 64; Y = b or l):
19///   - Byte swapping: byteswapXX(num)
20///   - Byte order conversions to/from native (byteswaps if Y isn't
21///     the native endianness): convXXYe(num)
22///   - Unaligned reads: readXXYe(ptr)
23///   - Unaligned writes: writeXXYe(ptr, num)
24///   - Aligned reads: aligned_readXXYe(ptr)
25///   - Aligned writes: aligned_writeXXYe(ptr, num)
26///
27/// Since the above can macros, the arguments should have no side effects
28/// because they may be evaluated more than once.
29///
30/// Bit scan operations for non-zero 32-bit integers (inline functions):
31///   - Bit scan reverse (find highest non-zero bit): bsr32(num)
32///   - Count leading zeros: clz32(num)
33///   - Count trailing zeros: ctz32(num)
34///   - Bit scan forward (simply an alias for ctz32()): bsf32(num)
35///
36/// The above bit scan operations return 0-31. If num is zero,
37/// the result is undefined.
38//
39//  Authors:    Lasse Collin
40//              Joachim Henke
41//
42///////////////////////////////////////////////////////////////////////////////
43
44#ifndef TUKLIB_INTEGER_H
45#define TUKLIB_INTEGER_H
46
47#include "tuklib_common.h"
48#include <string.h>
49
50// Newer Intel C compilers require immintrin.h for _bit_scan_reverse()
51// and such functions.
52#if defined(__INTEL_COMPILER) && (__INTEL_COMPILER >= 1500)
53#	include <immintrin.h>
54// Only include <intrin.h> when it is needed. GCC and Clang can both
55// use __builtin's, so we only need Windows instrincs when using MSVC.
56// GCC and Clang can set _MSC_VER on Windows, so we need to exclude these
57// cases explicitly.
58#elif defined(_MSC_VER) && !TUKLIB_GNUC_REQ(3, 4) && !defined(__clang__)
59#	include <intrin.h>
60#endif
61
62
63///////////////////
64// Byte swapping //
65///////////////////
66
67#if defined(HAVE___BUILTIN_BSWAPXX)
68	// GCC >= 4.8 and Clang
69#	define byteswap16(num) __builtin_bswap16(num)
70#	define byteswap32(num) __builtin_bswap32(num)
71#	define byteswap64(num) __builtin_bswap64(num)
72
73#elif defined(HAVE_BYTESWAP_H)
74	// glibc, uClibc, dietlibc
75#	include <byteswap.h>
76#	ifdef HAVE_BSWAP_16
77#		define byteswap16(num) bswap_16(num)
78#	endif
79#	ifdef HAVE_BSWAP_32
80#		define byteswap32(num) bswap_32(num)
81#	endif
82#	ifdef HAVE_BSWAP_64
83#		define byteswap64(num) bswap_64(num)
84#	endif
85
86#elif defined(HAVE_SYS_ENDIAN_H)
87	// *BSDs and Darwin
88#	include <sys/endian.h>
89#	define byteswap16(num) bswap16(num)
90#	define byteswap32(num) bswap32(num)
91#	define byteswap64(num) bswap64(num)
92
93#elif defined(HAVE_SYS_BYTEORDER_H)
94	// Solaris
95#	include <sys/byteorder.h>
96#	ifdef BSWAP_16
97#		define byteswap16(num) BSWAP_16(num)
98#	endif
99#	ifdef BSWAP_32
100#		define byteswap32(num) BSWAP_32(num)
101#	endif
102#	ifdef BSWAP_64
103#		define byteswap64(num) BSWAP_64(num)
104#	endif
105#	ifdef BE_16
106#		define conv16be(num) BE_16(num)
107#	endif
108#	ifdef BE_32
109#		define conv32be(num) BE_32(num)
110#	endif
111#	ifdef BE_64
112#		define conv64be(num) BE_64(num)
113#	endif
114#	ifdef LE_16
115#		define conv16le(num) LE_16(num)
116#	endif
117#	ifdef LE_32
118#		define conv32le(num) LE_32(num)
119#	endif
120#	ifdef LE_64
121#		define conv64le(num) LE_64(num)
122#	endif
123#endif
124
125#ifndef byteswap16
126#	define byteswap16(n) (uint16_t)( \
127		  (((n) & 0x00FFU) << 8) \
128		| (((n) & 0xFF00U) >> 8) \
129	)
130#endif
131
132#ifndef byteswap32
133#	define byteswap32(n) (uint32_t)( \
134		  (((n) & UINT32_C(0x000000FF)) << 24) \
135		| (((n) & UINT32_C(0x0000FF00)) << 8) \
136		| (((n) & UINT32_C(0x00FF0000)) >> 8) \
137		| (((n) & UINT32_C(0xFF000000)) >> 24) \
138	)
139#endif
140
141#ifndef byteswap64
142#	define byteswap64(n) (uint64_t)( \
143		  (((n) & UINT64_C(0x00000000000000FF)) << 56) \
144		| (((n) & UINT64_C(0x000000000000FF00)) << 40) \
145		| (((n) & UINT64_C(0x0000000000FF0000)) << 24) \
146		| (((n) & UINT64_C(0x00000000FF000000)) << 8) \
147		| (((n) & UINT64_C(0x000000FF00000000)) >> 8) \
148		| (((n) & UINT64_C(0x0000FF0000000000)) >> 24) \
149		| (((n) & UINT64_C(0x00FF000000000000)) >> 40) \
150		| (((n) & UINT64_C(0xFF00000000000000)) >> 56) \
151	)
152#endif
153
154// Define conversion macros using the basic byte swapping macros.
155#ifdef WORDS_BIGENDIAN
156#	ifndef conv16be
157#		define conv16be(num) ((uint16_t)(num))
158#	endif
159#	ifndef conv32be
160#		define conv32be(num) ((uint32_t)(num))
161#	endif
162#	ifndef conv64be
163#		define conv64be(num) ((uint64_t)(num))
164#	endif
165#	ifndef conv16le
166#		define conv16le(num) byteswap16(num)
167#	endif
168#	ifndef conv32le
169#		define conv32le(num) byteswap32(num)
170#	endif
171#	ifndef conv64le
172#		define conv64le(num) byteswap64(num)
173#	endif
174#else
175#	ifndef conv16be
176#		define conv16be(num) byteswap16(num)
177#	endif
178#	ifndef conv32be
179#		define conv32be(num) byteswap32(num)
180#	endif
181#	ifndef conv64be
182#		define conv64be(num) byteswap64(num)
183#	endif
184#	ifndef conv16le
185#		define conv16le(num) ((uint16_t)(num))
186#	endif
187#	ifndef conv32le
188#		define conv32le(num) ((uint32_t)(num))
189#	endif
190#	ifndef conv64le
191#		define conv64le(num) ((uint64_t)(num))
192#	endif
193#endif
194
195
196////////////////////////////////
197// Unaligned reads and writes //
198////////////////////////////////
199
200// No-strict-align archs like x86-64
201// ---------------------------------
202//
203// The traditional way of casting e.g. *(const uint16_t *)uint8_pointer
204// is bad even if the uint8_pointer is properly aligned because this kind
205// of casts break strict aliasing rules and result in undefined behavior.
206// With unaligned pointers it's even worse: compilers may emit vector
207// instructions that require aligned pointers even if non-vector
208// instructions work with unaligned pointers.
209//
210// Using memcpy() is the standard compliant way to do unaligned access.
211// Many modern compilers inline it so there is no function call overhead.
212// For those compilers that don't handle the memcpy() method well, the
213// old casting method (that violates strict aliasing) can be requested at
214// build time. A third method, casting to a packed struct, would also be
215// an option but isn't provided to keep things simpler (it's already a mess).
216// Hopefully this is flexible enough in practice.
217//
218// Some compilers on x86-64 like Clang >= 10 and GCC >= 5.1 detect that
219//
220//     buf[0] | (buf[1] << 8)
221//
222// reads a 16-bit value and can emit a single 16-bit load and produce
223// identical code than with the memcpy() method. In other cases Clang and GCC
224// produce either the same or better code with memcpy(). For example, Clang 9
225// on x86-64 can detect 32-bit load but not 16-bit load.
226//
227// MSVC uses unaligned access with the memcpy() method but emits byte-by-byte
228// code for "buf[0] | (buf[1] << 8)".
229//
230// Conclusion: The memcpy() method is the best choice when unaligned access
231// is supported.
232//
233// Strict-align archs like SPARC
234// -----------------------------
235//
236// GCC versions from around 4.x to to at least 13.2.0 produce worse code
237// from the memcpy() method than from simple byte-by-byte shift-or code
238// when reading a 32-bit integer:
239//
240//     (1) It may be constructed on stack using using four 8-bit loads,
241//         four 8-bit stores to stack, and finally one 32-bit load from stack.
242//
243//     (2) Especially with -Os, an actual memcpy() call may be emitted.
244//
245// This is true on at least on ARM, ARM64, SPARC, SPARC64, MIPS64EL, and
246// RISC-V. Of these, ARM, ARM64, and RISC-V support unaligned access in
247// some processors but not all so this is relevant only in the case when
248// GCC assumes that unaligned is not supported or -mstrict-align or
249// -mno-unaligned-access is used.
250//
251// For Clang it makes little difference. ARM64 with -O2 -mstrict-align
252// was one the very few with a minor difference: the memcpy() version
253// was one instruction longer.
254//
255// Conclusion: At least in case of GCC and Clang, byte-by-byte code is
256// the best choice for strict-align archs to do unaligned access.
257//
258// See also: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=111502
259//
260// Thanks to <https://godbolt.org/> it was easy to test different compilers.
261// The following is for little endian targets:
262/*
263#include <stdint.h>
264#include <string.h>
265
266uint32_t bytes16(const uint8_t *b)
267{
268    return (uint32_t)b[0]
269        | ((uint32_t)b[1] << 8);
270}
271
272uint32_t copy16(const uint8_t *b)
273{
274    uint16_t v;
275    memcpy(&v, b, sizeof(v));
276    return v;
277}
278
279uint32_t bytes32(const uint8_t *b)
280{
281    return (uint32_t)b[0]
282        | ((uint32_t)b[1] << 8)
283        | ((uint32_t)b[2] << 16)
284        | ((uint32_t)b[3] << 24);
285}
286
287uint32_t copy32(const uint8_t *b)
288{
289    uint32_t v;
290    memcpy(&v, b, sizeof(v));
291    return v;
292}
293
294void wbytes16(uint8_t *b, uint16_t v)
295{
296    b[0] = (uint8_t)v;
297    b[1] = (uint8_t)(v >> 8);
298}
299
300void wcopy16(uint8_t *b, uint16_t v)
301{
302    memcpy(b, &v, sizeof(v));
303}
304
305void wbytes32(uint8_t *b, uint32_t v)
306{
307    b[0] = (uint8_t)v;
308    b[1] = (uint8_t)(v >> 8);
309    b[2] = (uint8_t)(v >> 16);
310    b[3] = (uint8_t)(v >> 24);
311}
312
313void wcopy32(uint8_t *b, uint32_t v)
314{
315    memcpy(b, &v, sizeof(v));
316}
317*/
318
319
320#ifdef TUKLIB_FAST_UNALIGNED_ACCESS
321
322static inline uint16_t
323read16ne(const uint8_t *buf)
324{
325#ifdef TUKLIB_USE_UNSAFE_TYPE_PUNNING
326	return *(const uint16_t *)buf;
327#else
328	uint16_t num;
329	memcpy(&num, buf, sizeof(num));
330	return num;
331#endif
332}
333
334
335static inline uint32_t
336read32ne(const uint8_t *buf)
337{
338#ifdef TUKLIB_USE_UNSAFE_TYPE_PUNNING
339	return *(const uint32_t *)buf;
340#else
341	uint32_t num;
342	memcpy(&num, buf, sizeof(num));
343	return num;
344#endif
345}
346
347
348static inline uint64_t
349read64ne(const uint8_t *buf)
350{
351#ifdef TUKLIB_USE_UNSAFE_TYPE_PUNNING
352	return *(const uint64_t *)buf;
353#else
354	uint64_t num;
355	memcpy(&num, buf, sizeof(num));
356	return num;
357#endif
358}
359
360
361static inline void
362write16ne(uint8_t *buf, uint16_t num)
363{
364#ifdef TUKLIB_USE_UNSAFE_TYPE_PUNNING
365	*(uint16_t *)buf = num;
366#else
367	memcpy(buf, &num, sizeof(num));
368#endif
369	return;
370}
371
372
373static inline void
374write32ne(uint8_t *buf, uint32_t num)
375{
376#ifdef TUKLIB_USE_UNSAFE_TYPE_PUNNING
377	*(uint32_t *)buf = num;
378#else
379	memcpy(buf, &num, sizeof(num));
380#endif
381	return;
382}
383
384
385static inline void
386write64ne(uint8_t *buf, uint64_t num)
387{
388#ifdef TUKLIB_USE_UNSAFE_TYPE_PUNNING
389	*(uint64_t *)buf = num;
390#else
391	memcpy(buf, &num, sizeof(num));
392#endif
393	return;
394}
395
396
397static inline uint16_t
398read16be(const uint8_t *buf)
399{
400	uint16_t num = read16ne(buf);
401	return conv16be(num);
402}
403
404
405static inline uint16_t
406read16le(const uint8_t *buf)
407{
408	uint16_t num = read16ne(buf);
409	return conv16le(num);
410}
411
412
413static inline uint32_t
414read32be(const uint8_t *buf)
415{
416	uint32_t num = read32ne(buf);
417	return conv32be(num);
418}
419
420
421static inline uint32_t
422read32le(const uint8_t *buf)
423{
424	uint32_t num = read32ne(buf);
425	return conv32le(num);
426}
427
428
429static inline uint64_t
430read64be(const uint8_t *buf)
431{
432	uint64_t num = read64ne(buf);
433	return conv64be(num);
434}
435
436
437static inline uint64_t
438read64le(const uint8_t *buf)
439{
440	uint64_t num = read64ne(buf);
441	return conv64le(num);
442}
443
444
445// NOTE: Possible byte swapping must be done in a macro to allow the compiler
446// to optimize byte swapping of constants when using glibc's or *BSD's
447// byte swapping macros. The actual write is done in an inline function
448// to make type checking of the buf pointer possible.
449#define write16be(buf, num) write16ne(buf, conv16be(num))
450#define write32be(buf, num) write32ne(buf, conv32be(num))
451#define write64be(buf, num) write64ne(buf, conv64be(num))
452#define write16le(buf, num) write16ne(buf, conv16le(num))
453#define write32le(buf, num) write32ne(buf, conv32le(num))
454#define write64le(buf, num) write64ne(buf, conv64le(num))
455
456#else
457
458#ifdef WORDS_BIGENDIAN
459#	define read16ne read16be
460#	define read32ne read32be
461#	define read64ne read64be
462#	define write16ne write16be
463#	define write32ne write32be
464#	define write64ne write64be
465#else
466#	define read16ne read16le
467#	define read32ne read32le
468#	define read64ne read64le
469#	define write16ne write16le
470#	define write32ne write32le
471#	define write64ne write64le
472#endif
473
474
475static inline uint16_t
476read16be(const uint8_t *buf)
477{
478	uint16_t num = ((uint16_t)buf[0] << 8) | (uint16_t)buf[1];
479	return num;
480}
481
482
483static inline uint16_t
484read16le(const uint8_t *buf)
485{
486	uint16_t num = ((uint16_t)buf[0]) | ((uint16_t)buf[1] << 8);
487	return num;
488}
489
490
491static inline uint32_t
492read32be(const uint8_t *buf)
493{
494	uint32_t num = (uint32_t)buf[0] << 24;
495	num |= (uint32_t)buf[1] << 16;
496	num |= (uint32_t)buf[2] << 8;
497	num |= (uint32_t)buf[3];
498	return num;
499}
500
501
502static inline uint32_t
503read32le(const uint8_t *buf)
504{
505	uint32_t num = (uint32_t)buf[0];
506	num |= (uint32_t)buf[1] << 8;
507	num |= (uint32_t)buf[2] << 16;
508	num |= (uint32_t)buf[3] << 24;
509	return num;
510}
511
512
513static inline uint64_t
514read64be(const uint8_t *buf)
515{
516	uint64_t num = (uint64_t)buf[0] << 56;
517	num |= (uint64_t)buf[1] << 48;
518	num |= (uint64_t)buf[2] << 40;
519	num |= (uint64_t)buf[3] << 32;
520	num |= (uint64_t)buf[4] << 24;
521	num |= (uint64_t)buf[5] << 16;
522	num |= (uint64_t)buf[6] << 8;
523	num |= (uint64_t)buf[7];
524	return num;
525}
526
527
528static inline uint64_t
529read64le(const uint8_t *buf)
530{
531	uint64_t num = (uint64_t)buf[0];
532	num |= (uint64_t)buf[1] << 8;
533	num |= (uint64_t)buf[2] << 16;
534	num |= (uint64_t)buf[3] << 24;
535	num |= (uint64_t)buf[4] << 32;
536	num |= (uint64_t)buf[5] << 40;
537	num |= (uint64_t)buf[6] << 48;
538	num |= (uint64_t)buf[7] << 56;
539	return num;
540}
541
542
543static inline void
544write16be(uint8_t *buf, uint16_t num)
545{
546	buf[0] = (uint8_t)(num >> 8);
547	buf[1] = (uint8_t)num;
548	return;
549}
550
551
552static inline void
553write16le(uint8_t *buf, uint16_t num)
554{
555	buf[0] = (uint8_t)num;
556	buf[1] = (uint8_t)(num >> 8);
557	return;
558}
559
560
561static inline void
562write32be(uint8_t *buf, uint32_t num)
563{
564	buf[0] = (uint8_t)(num >> 24);
565	buf[1] = (uint8_t)(num >> 16);
566	buf[2] = (uint8_t)(num >> 8);
567	buf[3] = (uint8_t)num;
568	return;
569}
570
571
572static inline void
573write32le(uint8_t *buf, uint32_t num)
574{
575	buf[0] = (uint8_t)num;
576	buf[1] = (uint8_t)(num >> 8);
577	buf[2] = (uint8_t)(num >> 16);
578	buf[3] = (uint8_t)(num >> 24);
579	return;
580}
581
582
583static inline void
584write64be(uint8_t *buf, uint64_t num)
585{
586	buf[0] = (uint8_t)(num >> 56);
587	buf[1] = (uint8_t)(num >> 48);
588	buf[2] = (uint8_t)(num >> 40);
589	buf[3] = (uint8_t)(num >> 32);
590	buf[4] = (uint8_t)(num >> 24);
591	buf[5] = (uint8_t)(num >> 16);
592	buf[6] = (uint8_t)(num >> 8);
593	buf[7] = (uint8_t)num;
594	return;
595}
596
597
598static inline void
599write64le(uint8_t *buf, uint64_t num)
600{
601	buf[0] = (uint8_t)num;
602	buf[1] = (uint8_t)(num >> 8);
603	buf[2] = (uint8_t)(num >> 16);
604	buf[3] = (uint8_t)(num >> 24);
605	buf[4] = (uint8_t)(num >> 32);
606	buf[5] = (uint8_t)(num >> 40);
607	buf[6] = (uint8_t)(num >> 48);
608	buf[7] = (uint8_t)(num >> 56);
609	return;
610}
611
612#endif
613
614
615//////////////////////////////
616// Aligned reads and writes //
617//////////////////////////////
618
619// Separate functions for aligned reads and writes are provided since on
620// strict-align archs aligned access is much faster than unaligned access.
621//
622// Just like in the unaligned case, memcpy() is needed to avoid
623// strict aliasing violations. However, on archs that don't support
624// unaligned access the compiler cannot know that the pointers given
625// to memcpy() are aligned which results in slow code. As of C11 there is
626// no standard way to tell the compiler that we know that the address is
627// aligned but some compilers have language extensions to do that. With
628// such language extensions the memcpy() method gives excellent results.
629//
630// What to do on a strict-align system when no known language extensions
631// are available? Falling back to byte-by-byte access would be safe but ruin
632// optimizations that have been made specifically with aligned access in mind.
633// As a compromise, aligned reads will fall back to non-compliant type punning
634// but aligned writes will be byte-by-byte, that is, fast reads are preferred
635// over fast writes. This obviously isn't great but hopefully it's a working
636// compromise for now.
637//
638// __builtin_assume_aligned is support by GCC >= 4.7 and clang >= 3.6.
639#ifdef HAVE___BUILTIN_ASSUME_ALIGNED
640#	define tuklib_memcpy_aligned(dest, src, size) \
641		memcpy(dest, __builtin_assume_aligned(src, size), size)
642#else
643#	define tuklib_memcpy_aligned(dest, src, size) \
644		memcpy(dest, src, size)
645#	ifndef TUKLIB_FAST_UNALIGNED_ACCESS
646#		define TUKLIB_USE_UNSAFE_ALIGNED_READS 1
647#	endif
648#endif
649
650
651static inline uint16_t
652aligned_read16ne(const uint8_t *buf)
653{
654#if defined(TUKLIB_USE_UNSAFE_TYPE_PUNNING) \
655		|| defined(TUKLIB_USE_UNSAFE_ALIGNED_READS)
656	return *(const uint16_t *)buf;
657#else
658	uint16_t num;
659	tuklib_memcpy_aligned(&num, buf, sizeof(num));
660	return num;
661#endif
662}
663
664
665static inline uint32_t
666aligned_read32ne(const uint8_t *buf)
667{
668#if defined(TUKLIB_USE_UNSAFE_TYPE_PUNNING) \
669		|| defined(TUKLIB_USE_UNSAFE_ALIGNED_READS)
670	return *(const uint32_t *)buf;
671#else
672	uint32_t num;
673	tuklib_memcpy_aligned(&num, buf, sizeof(num));
674	return num;
675#endif
676}
677
678
679static inline uint64_t
680aligned_read64ne(const uint8_t *buf)
681{
682#if defined(TUKLIB_USE_UNSAFE_TYPE_PUNNING) \
683		|| defined(TUKLIB_USE_UNSAFE_ALIGNED_READS)
684	return *(const uint64_t *)buf;
685#else
686	uint64_t num;
687	tuklib_memcpy_aligned(&num, buf, sizeof(num));
688	return num;
689#endif
690}
691
692
693static inline void
694aligned_write16ne(uint8_t *buf, uint16_t num)
695{
696#ifdef TUKLIB_USE_UNSAFE_TYPE_PUNNING
697	*(uint16_t *)buf = num;
698#else
699	tuklib_memcpy_aligned(buf, &num, sizeof(num));
700#endif
701	return;
702}
703
704
705static inline void
706aligned_write32ne(uint8_t *buf, uint32_t num)
707{
708#ifdef TUKLIB_USE_UNSAFE_TYPE_PUNNING
709	*(uint32_t *)buf = num;
710#else
711	tuklib_memcpy_aligned(buf, &num, sizeof(num));
712#endif
713	return;
714}
715
716
717static inline void
718aligned_write64ne(uint8_t *buf, uint64_t num)
719{
720#ifdef TUKLIB_USE_UNSAFE_TYPE_PUNNING
721	*(uint64_t *)buf = num;
722#else
723	tuklib_memcpy_aligned(buf, &num, sizeof(num));
724#endif
725	return;
726}
727
728
729static inline uint16_t
730aligned_read16be(const uint8_t *buf)
731{
732	uint16_t num = aligned_read16ne(buf);
733	return conv16be(num);
734}
735
736
737static inline uint16_t
738aligned_read16le(const uint8_t *buf)
739{
740	uint16_t num = aligned_read16ne(buf);
741	return conv16le(num);
742}
743
744
745static inline uint32_t
746aligned_read32be(const uint8_t *buf)
747{
748	uint32_t num = aligned_read32ne(buf);
749	return conv32be(num);
750}
751
752
753static inline uint32_t
754aligned_read32le(const uint8_t *buf)
755{
756	uint32_t num = aligned_read32ne(buf);
757	return conv32le(num);
758}
759
760
761static inline uint64_t
762aligned_read64be(const uint8_t *buf)
763{
764	uint64_t num = aligned_read64ne(buf);
765	return conv64be(num);
766}
767
768
769static inline uint64_t
770aligned_read64le(const uint8_t *buf)
771{
772	uint64_t num = aligned_read64ne(buf);
773	return conv64le(num);
774}
775
776
777// These need to be macros like in the unaligned case.
778#define aligned_write16be(buf, num) aligned_write16ne((buf), conv16be(num))
779#define aligned_write16le(buf, num) aligned_write16ne((buf), conv16le(num))
780#define aligned_write32be(buf, num) aligned_write32ne((buf), conv32be(num))
781#define aligned_write32le(buf, num) aligned_write32ne((buf), conv32le(num))
782#define aligned_write64be(buf, num) aligned_write64ne((buf), conv64be(num))
783#define aligned_write64le(buf, num) aligned_write64ne((buf), conv64le(num))
784
785
786////////////////////
787// Bit operations //
788////////////////////
789
790static inline uint32_t
791bsr32(uint32_t n)
792{
793	// Check for ICC first, since it tends to define __GNUC__ too.
794#if defined(__INTEL_COMPILER)
795	return _bit_scan_reverse(n);
796
797#elif (TUKLIB_GNUC_REQ(3, 4) || defined(__clang__)) && UINT_MAX == UINT32_MAX
798	// GCC >= 3.4 has __builtin_clz(), which gives good results on
799	// multiple architectures. On x86, __builtin_clz() ^ 31U becomes
800	// either plain BSR (so the XOR gets optimized away) or LZCNT and
801	// XOR (if -march indicates that SSE4a instructions are supported).
802	return (uint32_t)__builtin_clz(n) ^ 31U;
803
804#elif defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
805	uint32_t i;
806	__asm__("bsrl %1, %0" : "=r" (i) : "rm" (n));
807	return i;
808
809#elif defined(_MSC_VER)
810	unsigned long i;
811	_BitScanReverse(&i, n);
812	return i;
813
814#else
815	uint32_t i = 31;
816
817	if ((n & 0xFFFF0000) == 0) {
818		n <<= 16;
819		i = 15;
820	}
821
822	if ((n & 0xFF000000) == 0) {
823		n <<= 8;
824		i -= 8;
825	}
826
827	if ((n & 0xF0000000) == 0) {
828		n <<= 4;
829		i -= 4;
830	}
831
832	if ((n & 0xC0000000) == 0) {
833		n <<= 2;
834		i -= 2;
835	}
836
837	if ((n & 0x80000000) == 0)
838		--i;
839
840	return i;
841#endif
842}
843
844
845static inline uint32_t
846clz32(uint32_t n)
847{
848#if defined(__INTEL_COMPILER)
849	return _bit_scan_reverse(n) ^ 31U;
850
851#elif (TUKLIB_GNUC_REQ(3, 4) || defined(__clang__)) && UINT_MAX == UINT32_MAX
852	return (uint32_t)__builtin_clz(n);
853
854#elif defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
855	uint32_t i;
856	__asm__("bsrl %1, %0\n\t"
857		"xorl $31, %0"
858		: "=r" (i) : "rm" (n));
859	return i;
860
861#elif defined(_MSC_VER)
862	unsigned long i;
863	_BitScanReverse(&i, n);
864	return i ^ 31U;
865
866#else
867	uint32_t i = 0;
868
869	if ((n & 0xFFFF0000) == 0) {
870		n <<= 16;
871		i = 16;
872	}
873
874	if ((n & 0xFF000000) == 0) {
875		n <<= 8;
876		i += 8;
877	}
878
879	if ((n & 0xF0000000) == 0) {
880		n <<= 4;
881		i += 4;
882	}
883
884	if ((n & 0xC0000000) == 0) {
885		n <<= 2;
886		i += 2;
887	}
888
889	if ((n & 0x80000000) == 0)
890		++i;
891
892	return i;
893#endif
894}
895
896
897static inline uint32_t
898ctz32(uint32_t n)
899{
900#if defined(__INTEL_COMPILER)
901	return _bit_scan_forward(n);
902
903#elif (TUKLIB_GNUC_REQ(3, 4) || defined(__clang__)) && UINT_MAX >= UINT32_MAX
904	return (uint32_t)__builtin_ctz(n);
905
906#elif defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
907	uint32_t i;
908	__asm__("bsfl %1, %0" : "=r" (i) : "rm" (n));
909	return i;
910
911#elif defined(_MSC_VER)
912	unsigned long i;
913	_BitScanForward(&i, n);
914	return i;
915
916#else
917	uint32_t i = 0;
918
919	if ((n & 0x0000FFFF) == 0) {
920		n >>= 16;
921		i = 16;
922	}
923
924	if ((n & 0x000000FF) == 0) {
925		n >>= 8;
926		i += 8;
927	}
928
929	if ((n & 0x0000000F) == 0) {
930		n >>= 4;
931		i += 4;
932	}
933
934	if ((n & 0x00000003) == 0) {
935		n >>= 2;
936		i += 2;
937	}
938
939	if ((n & 0x00000001) == 0)
940		++i;
941
942	return i;
943#endif
944}
945
946#define bsf32 ctz32
947
948#endif
949