1/*
2 * iterator/iter_utils.c - iterative resolver module utility functions.
3 *
4 * Copyright (c) 2007, NLnet Labs. All rights reserved.
5 *
6 * This software is open source.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * Redistributions of source code must retain the above copyright notice,
13 * this list of conditions and the following disclaimer.
14 *
15 * Redistributions in binary form must reproduce the above copyright notice,
16 * this list of conditions and the following disclaimer in the documentation
17 * and/or other materials provided with the distribution.
18 *
19 * Neither the name of the NLNET LABS nor the names of its contributors may
20 * be used to endorse or promote products derived from this software without
21 * specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
26 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
27 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
28 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
29 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
30 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
31 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
32 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
33 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34 */
35
36/**
37 * \file
38 *
39 * This file contains functions to assist the iterator module.
40 * Configuration options. Forward zones.
41 */
42#include "config.h"
43#include "iterator/iter_utils.h"
44#include "iterator/iterator.h"
45#include "iterator/iter_hints.h"
46#include "iterator/iter_fwd.h"
47#include "iterator/iter_donotq.h"
48#include "iterator/iter_delegpt.h"
49#include "iterator/iter_priv.h"
50#include "services/cache/infra.h"
51#include "services/cache/dns.h"
52#include "services/cache/rrset.h"
53#include "services/outside_network.h"
54#include "util/net_help.h"
55#include "util/module.h"
56#include "util/log.h"
57#include "util/config_file.h"
58#include "util/regional.h"
59#include "util/data/msgparse.h"
60#include "util/data/dname.h"
61#include "util/random.h"
62#include "util/fptr_wlist.h"
63#include "validator/val_anchor.h"
64#include "validator/val_kcache.h"
65#include "validator/val_kentry.h"
66#include "validator/val_utils.h"
67#include "validator/val_sigcrypt.h"
68#include "sldns/sbuffer.h"
69#include "sldns/str2wire.h"
70
71/** time when nameserver glue is said to be 'recent' */
72#define SUSPICION_RECENT_EXPIRY 86400
73
74/** if NAT64 is enabled and no NAT64 prefix is configured, first fall back to
75 * DNS64 prefix.  If that is not configured, fall back to this default value.
76 */
77static const char DEFAULT_NAT64_PREFIX[] = "64:ff9b::/96";
78
79/** fillup fetch policy array */
80static void
81fetch_fill(struct iter_env* ie, const char* str)
82{
83	char* s = (char*)str, *e;
84	int i;
85	for(i=0; i<ie->max_dependency_depth+1; i++) {
86		ie->target_fetch_policy[i] = strtol(s, &e, 10);
87		if(s == e)
88			fatal_exit("cannot parse fetch policy number %s", s);
89		s = e;
90	}
91}
92
93/** Read config string that represents the target fetch policy */
94static int
95read_fetch_policy(struct iter_env* ie, const char* str)
96{
97	int count = cfg_count_numbers(str);
98	if(count < 1) {
99		log_err("Cannot parse target fetch policy: \"%s\"", str);
100		return 0;
101	}
102	ie->max_dependency_depth = count - 1;
103	ie->target_fetch_policy = (int*)calloc(
104		(size_t)ie->max_dependency_depth+1, sizeof(int));
105	if(!ie->target_fetch_policy) {
106		log_err("alloc fetch policy: out of memory");
107		return 0;
108	}
109	fetch_fill(ie, str);
110	return 1;
111}
112
113/** apply config caps whitelist items to name tree */
114static int
115caps_white_apply_cfg(rbtree_type* ntree, struct config_file* cfg)
116{
117	struct config_strlist* p;
118	for(p=cfg->caps_whitelist; p; p=p->next) {
119		struct name_tree_node* n;
120		size_t len;
121		uint8_t* nm = sldns_str2wire_dname(p->str, &len);
122		if(!nm) {
123			log_err("could not parse %s", p->str);
124			return 0;
125		}
126		n = (struct name_tree_node*)calloc(1, sizeof(*n));
127		if(!n) {
128			log_err("out of memory");
129			free(nm);
130			return 0;
131		}
132		n->node.key = n;
133		n->name = nm;
134		n->len = len;
135		n->labs = dname_count_labels(nm);
136		n->dclass = LDNS_RR_CLASS_IN;
137		if(!name_tree_insert(ntree, n, nm, len, n->labs, n->dclass)) {
138			/* duplicate element ignored, idempotent */
139			free(n->name);
140			free(n);
141		}
142	}
143	name_tree_init_parents(ntree);
144	return 1;
145}
146
147int
148iter_apply_cfg(struct iter_env* iter_env, struct config_file* cfg)
149{
150	const char *nat64_prefix;
151	int i;
152	/* target fetch policy */
153	if(!read_fetch_policy(iter_env, cfg->target_fetch_policy))
154		return 0;
155	for(i=0; i<iter_env->max_dependency_depth+1; i++)
156		verbose(VERB_QUERY, "target fetch policy for level %d is %d",
157			i, iter_env->target_fetch_policy[i]);
158
159	if(!iter_env->donotq)
160		iter_env->donotq = donotq_create();
161	if(!iter_env->donotq || !donotq_apply_cfg(iter_env->donotq, cfg)) {
162		log_err("Could not set donotqueryaddresses");
163		return 0;
164	}
165	if(!iter_env->priv)
166		iter_env->priv = priv_create();
167	if(!iter_env->priv || !priv_apply_cfg(iter_env->priv, cfg)) {
168		log_err("Could not set private addresses");
169		return 0;
170	}
171	if(cfg->caps_whitelist) {
172		if(!iter_env->caps_white)
173			iter_env->caps_white = rbtree_create(name_tree_compare);
174		if(!iter_env->caps_white || !caps_white_apply_cfg(
175			iter_env->caps_white, cfg)) {
176			log_err("Could not set capsforid whitelist");
177			return 0;
178		}
179
180	}
181
182	nat64_prefix = cfg->nat64_prefix;
183	if(!nat64_prefix)
184		nat64_prefix = cfg->dns64_prefix;
185	if(!nat64_prefix)
186		nat64_prefix = DEFAULT_NAT64_PREFIX;
187	if(!netblockstrtoaddr(nat64_prefix, 0, &iter_env->nat64_prefix_addr,
188		&iter_env->nat64_prefix_addrlen,
189		&iter_env->nat64_prefix_net)) {
190		log_err("cannot parse nat64-prefix netblock: %s", nat64_prefix);
191		return 0;
192	}
193	if(!addr_is_ip6(&iter_env->nat64_prefix_addr,
194		iter_env->nat64_prefix_addrlen)) {
195		log_err("nat64-prefix is not IPv6: %s", cfg->nat64_prefix);
196		return 0;
197	}
198	if(!prefixnet_is_nat64(iter_env->nat64_prefix_net)) {
199		log_err("nat64-prefix length it not 32, 40, 48, 56, 64 or 96: %s",
200			nat64_prefix);
201		return 0;
202	}
203
204	iter_env->supports_ipv6 = cfg->do_ip6;
205	iter_env->supports_ipv4 = cfg->do_ip4;
206	iter_env->use_nat64 = cfg->do_nat64;
207	iter_env->outbound_msg_retry = cfg->outbound_msg_retry;
208	iter_env->max_sent_count = cfg->max_sent_count;
209	iter_env->max_query_restarts = cfg->max_query_restarts;
210	return 1;
211}
212
213/** filter out unsuitable targets
214 * @param iter_env: iterator environment with ipv6-support flag.
215 * @param env: module environment with infra cache.
216 * @param name: zone name
217 * @param namelen: length of name
218 * @param qtype: query type (host order).
219 * @param now: current time
220 * @param a: address in delegation point we are examining.
221 * @return an integer that signals the target suitability.
222 *	as follows:
223 *	-1: The address should be omitted from the list.
224 *	    Because:
225 *		o The address is bogus (DNSSEC validation failure).
226 *		o Listed as donotquery
227 *		o is ipv6 but no ipv6 support (in operating system).
228 *		o is ipv4 but no ipv4 support (in operating system).
229 *		o is lame
230 *	Otherwise, an rtt in milliseconds.
231 *	0 .. USEFUL_SERVER_TOP_TIMEOUT-1
232 *		The roundtrip time timeout estimate. less than 2 minutes.
233 *		Note that util/rtt.c has a MIN_TIMEOUT of 50 msec, thus
234 *		values 0 .. 49 are not used, unless that is changed.
235 *	USEFUL_SERVER_TOP_TIMEOUT
236 *		This value exactly is given for unresponsive blacklisted.
237 *	USEFUL_SERVER_TOP_TIMEOUT+1
238 *		For non-blacklisted servers: huge timeout, but has traffic.
239 *	USEFUL_SERVER_TOP_TIMEOUT*1 ..
240 *		parent-side lame servers get this penalty. A dispreferential
241 *		server. (lame in delegpt).
242 *	USEFUL_SERVER_TOP_TIMEOUT*2 ..
243 *		dnsseclame servers get penalty
244 *	USEFUL_SERVER_TOP_TIMEOUT*3 ..
245 *		recursion lame servers get penalty
246 *	UNKNOWN_SERVER_NICENESS
247 *		If no information is known about the server, this is
248 *		returned. 376 msec or so.
249 *	+BLACKLIST_PENALTY (of USEFUL_TOP_TIMEOUT*4) for dnssec failed IPs.
250 *
251 * When a final value is chosen that is dnsseclame ; dnsseclameness checking
252 * is turned off (so we do not discard the reply).
253 * When a final value is chosen that is recursionlame; RD bit is set on query.
254 * Because of the numbers this means recursionlame also have dnssec lameness
255 * checking turned off.
256 */
257static int
258iter_filter_unsuitable(struct iter_env* iter_env, struct module_env* env,
259	uint8_t* name, size_t namelen, uint16_t qtype, time_t now,
260	struct delegpt_addr* a)
261{
262	int rtt, lame, reclame, dnsseclame;
263	if(a->bogus)
264		return -1; /* address of server is bogus */
265	if(donotq_lookup(iter_env->donotq, &a->addr, a->addrlen)) {
266		log_addr(VERB_ALGO, "skip addr on the donotquery list",
267			&a->addr, a->addrlen);
268		return -1; /* server is on the donotquery list */
269	}
270	if(!iter_env->supports_ipv6 && addr_is_ip6(&a->addr, a->addrlen)) {
271		return -1; /* there is no ip6 available */
272	}
273	if(!iter_env->supports_ipv4 && !iter_env->use_nat64 &&
274	   !addr_is_ip6(&a->addr, a->addrlen)) {
275		return -1; /* there is no ip4 available */
276	}
277	/* check lameness - need zone , class info */
278	if(infra_get_lame_rtt(env->infra_cache, &a->addr, a->addrlen,
279		name, namelen, qtype, &lame, &dnsseclame, &reclame,
280		&rtt, now)) {
281		log_addr(VERB_ALGO, "servselect", &a->addr, a->addrlen);
282		verbose(VERB_ALGO, "   rtt=%d%s%s%s%s", rtt,
283			lame?" LAME":"",
284			dnsseclame?" DNSSEC_LAME":"",
285			reclame?" REC_LAME":"",
286			a->lame?" ADDR_LAME":"");
287		if(lame)
288			return -1; /* server is lame */
289		else if(rtt >= USEFUL_SERVER_TOP_TIMEOUT)
290			/* server is unresponsive,
291			 * we used to return TOP_TIMEOUT, but fairly useless,
292			 * because if == TOP_TIMEOUT is dropped because
293			 * blacklisted later, instead, remove it here, so
294			 * other choices (that are not blacklisted) can be
295			 * tried */
296			return -1;
297		/* select remainder from worst to best */
298		else if(reclame)
299			return rtt+USEFUL_SERVER_TOP_TIMEOUT*3; /* nonpref */
300		else if(dnsseclame || a->dnsseclame)
301			return rtt+USEFUL_SERVER_TOP_TIMEOUT*2; /* nonpref */
302		else if(a->lame)
303			return rtt+USEFUL_SERVER_TOP_TIMEOUT+1; /* nonpref */
304		else	return rtt;
305	}
306	/* no server information present */
307	if(a->dnsseclame)
308		return UNKNOWN_SERVER_NICENESS+USEFUL_SERVER_TOP_TIMEOUT*2; /* nonpref */
309	else if(a->lame)
310		return USEFUL_SERVER_TOP_TIMEOUT+1+UNKNOWN_SERVER_NICENESS; /* nonpref */
311	return UNKNOWN_SERVER_NICENESS;
312}
313
314/** lookup RTT information, and also store fastest rtt (if any) */
315static int
316iter_fill_rtt(struct iter_env* iter_env, struct module_env* env,
317	uint8_t* name, size_t namelen, uint16_t qtype, time_t now,
318	struct delegpt* dp, int* best_rtt, struct sock_list* blacklist,
319	size_t* num_suitable_results)
320{
321	int got_it = 0;
322	struct delegpt_addr* a;
323	*num_suitable_results = 0;
324
325	if(dp->bogus)
326		return 0; /* NS bogus, all bogus, nothing found */
327	for(a=dp->result_list; a; a = a->next_result) {
328		a->sel_rtt = iter_filter_unsuitable(iter_env, env,
329			name, namelen, qtype, now, a);
330		if(a->sel_rtt != -1) {
331			if(sock_list_find(blacklist, &a->addr, a->addrlen))
332				a->sel_rtt += BLACKLIST_PENALTY;
333
334			if(!got_it) {
335				*best_rtt = a->sel_rtt;
336				got_it = 1;
337			} else if(a->sel_rtt < *best_rtt) {
338				*best_rtt = a->sel_rtt;
339			}
340			(*num_suitable_results)++;
341		}
342	}
343	return got_it;
344}
345
346/** compare two rtts, return -1, 0 or 1 */
347static int
348rtt_compare(const void* x, const void* y)
349{
350	if(*(int*)x == *(int*)y)
351		return 0;
352	if(*(int*)x > *(int*)y)
353		return 1;
354	return -1;
355}
356
357/** get RTT for the Nth fastest server */
358static int
359nth_rtt(struct delegpt_addr* result_list, size_t num_results, size_t n)
360{
361	int rtt_band;
362	size_t i;
363	int* rtt_list, *rtt_index;
364
365	if(num_results < 1 || n >= num_results) {
366		return -1;
367	}
368
369	rtt_list = calloc(num_results, sizeof(int));
370	if(!rtt_list) {
371		log_err("malloc failure: allocating rtt_list");
372		return -1;
373	}
374	rtt_index = rtt_list;
375
376	for(i=0; i<num_results && result_list; i++) {
377		if(result_list->sel_rtt != -1) {
378			*rtt_index = result_list->sel_rtt;
379			rtt_index++;
380		}
381		result_list=result_list->next_result;
382	}
383	qsort(rtt_list, num_results, sizeof(*rtt_list), rtt_compare);
384
385	log_assert(n > 0);
386	rtt_band = rtt_list[n-1];
387	free(rtt_list);
388
389	return rtt_band;
390}
391
392/** filter the address list, putting best targets at front,
393 * returns number of best targets (or 0, no suitable targets) */
394static int
395iter_filter_order(struct iter_env* iter_env, struct module_env* env,
396	uint8_t* name, size_t namelen, uint16_t qtype, time_t now,
397	struct delegpt* dp, int* selected_rtt, int open_target,
398	struct sock_list* blacklist, time_t prefetch)
399{
400	int got_num = 0, low_rtt = 0, swap_to_front, rtt_band = RTT_BAND, nth;
401	int alllame = 0;
402	size_t num_results;
403	struct delegpt_addr* a, *n, *prev=NULL;
404
405	/* fillup sel_rtt and find best rtt in the bunch */
406	got_num = iter_fill_rtt(iter_env, env, name, namelen, qtype, now, dp,
407		&low_rtt, blacklist, &num_results);
408	if(got_num == 0)
409		return 0;
410	if(low_rtt >= USEFUL_SERVER_TOP_TIMEOUT &&
411		/* If all missing (or not fully resolved) targets are lame,
412		 * then use the remaining lame address. */
413		((delegpt_count_missing_targets(dp, &alllame) > 0 && !alllame) ||
414		open_target > 0)) {
415		verbose(VERB_ALGO, "Bad choices, trying to get more choice");
416		return 0; /* we want more choice. The best choice is a bad one.
417			     return 0 to force the caller to fetch more */
418	}
419
420	if(env->cfg->fast_server_permil != 0 && prefetch == 0 &&
421		num_results > env->cfg->fast_server_num &&
422		ub_random_max(env->rnd, 1000) < env->cfg->fast_server_permil) {
423		/* the query is not prefetch, but for a downstream client,
424		 * there are more servers available then the fastest N we want
425		 * to choose from. Limit our choice to the fastest servers. */
426		nth = nth_rtt(dp->result_list, num_results,
427			env->cfg->fast_server_num);
428		if(nth > 0) {
429			rtt_band = nth - low_rtt;
430			if(rtt_band > RTT_BAND)
431				rtt_band = RTT_BAND;
432		}
433	}
434
435	got_num = 0;
436	a = dp->result_list;
437	while(a) {
438		/* skip unsuitable targets */
439		if(a->sel_rtt == -1) {
440			prev = a;
441			a = a->next_result;
442			continue;
443		}
444		/* classify the server address and determine what to do */
445		swap_to_front = 0;
446		if(a->sel_rtt >= low_rtt && a->sel_rtt - low_rtt <= rtt_band) {
447			got_num++;
448			swap_to_front = 1;
449		} else if(a->sel_rtt<low_rtt && low_rtt-a->sel_rtt<=rtt_band) {
450			got_num++;
451			swap_to_front = 1;
452		}
453		/* swap to front if necessary, or move to next result */
454		if(swap_to_front && prev) {
455			n = a->next_result;
456			prev->next_result = n;
457			a->next_result = dp->result_list;
458			dp->result_list = a;
459			a = n;
460		} else {
461			prev = a;
462			a = a->next_result;
463		}
464	}
465	*selected_rtt = low_rtt;
466
467	if (env->cfg->prefer_ip6) {
468		int got_num6 = 0;
469		int low_rtt6 = 0;
470		int i;
471		int attempt = -1; /* filter to make sure addresses have
472		  less attempts on them than the first, to force round
473		  robin when all the IPv6 addresses fail */
474		int num4ok = 0; /* number ip4 at low attempt count */
475		int num4_lowrtt = 0;
476		prev = NULL;
477		a = dp->result_list;
478		for(i = 0; i < got_num; i++) {
479			if(!a) break; /* robustness */
480			swap_to_front = 0;
481			if(a->addr.ss_family != AF_INET6 && attempt == -1) {
482				/* if we only have ip4 at low attempt count,
483				 * then ip6 is failing, and we need to
484				 * select one of the remaining IPv4 addrs */
485				attempt = a->attempts;
486				num4ok++;
487				num4_lowrtt = a->sel_rtt;
488			} else if(a->addr.ss_family != AF_INET6 && attempt == a->attempts) {
489				num4ok++;
490				if(num4_lowrtt == 0 || a->sel_rtt < num4_lowrtt) {
491					num4_lowrtt = a->sel_rtt;
492				}
493			}
494			if(a->addr.ss_family == AF_INET6) {
495				if(attempt == -1) {
496					attempt = a->attempts;
497				} else if(a->attempts > attempt) {
498					break;
499				}
500				got_num6++;
501				swap_to_front = 1;
502				if(low_rtt6 == 0 || a->sel_rtt < low_rtt6) {
503					low_rtt6 = a->sel_rtt;
504				}
505			}
506			/* swap to front if IPv6, or move to next result */
507			if(swap_to_front && prev) {
508				n = a->next_result;
509				prev->next_result = n;
510				a->next_result = dp->result_list;
511				dp->result_list = a;
512				a = n;
513			} else {
514				prev = a;
515				a = a->next_result;
516			}
517		}
518		if(got_num6 > 0) {
519			got_num = got_num6;
520			*selected_rtt = low_rtt6;
521		} else if(num4ok > 0) {
522			got_num = num4ok;
523			*selected_rtt = num4_lowrtt;
524		}
525	} else if (env->cfg->prefer_ip4) {
526		int got_num4 = 0;
527		int low_rtt4 = 0;
528		int i;
529		int attempt = -1; /* filter to make sure addresses have
530		  less attempts on them than the first, to force round
531		  robin when all the IPv4 addresses fail */
532		int num6ok = 0; /* number ip6 at low attempt count */
533		int num6_lowrtt = 0;
534		prev = NULL;
535		a = dp->result_list;
536		for(i = 0; i < got_num; i++) {
537			if(!a) break; /* robustness */
538			swap_to_front = 0;
539			if(a->addr.ss_family != AF_INET && attempt == -1) {
540				/* if we only have ip6 at low attempt count,
541				 * then ip4 is failing, and we need to
542				 * select one of the remaining IPv6 addrs */
543				attempt = a->attempts;
544				num6ok++;
545				num6_lowrtt = a->sel_rtt;
546			} else if(a->addr.ss_family != AF_INET && attempt == a->attempts) {
547				num6ok++;
548				if(num6_lowrtt == 0 || a->sel_rtt < num6_lowrtt) {
549					num6_lowrtt = a->sel_rtt;
550				}
551			}
552			if(a->addr.ss_family == AF_INET) {
553				if(attempt == -1) {
554					attempt = a->attempts;
555				} else if(a->attempts > attempt) {
556					break;
557				}
558				got_num4++;
559				swap_to_front = 1;
560				if(low_rtt4 == 0 || a->sel_rtt < low_rtt4) {
561					low_rtt4 = a->sel_rtt;
562				}
563			}
564			/* swap to front if IPv4, or move to next result */
565			if(swap_to_front && prev) {
566				n = a->next_result;
567				prev->next_result = n;
568				a->next_result = dp->result_list;
569				dp->result_list = a;
570				a = n;
571			} else {
572				prev = a;
573				a = a->next_result;
574			}
575		}
576		if(got_num4 > 0) {
577			got_num = got_num4;
578			*selected_rtt = low_rtt4;
579		} else if(num6ok > 0) {
580			got_num = num6ok;
581			*selected_rtt = num6_lowrtt;
582		}
583	}
584	return got_num;
585}
586
587struct delegpt_addr*
588iter_server_selection(struct iter_env* iter_env,
589	struct module_env* env, struct delegpt* dp,
590	uint8_t* name, size_t namelen, uint16_t qtype, int* dnssec_lame,
591	int* chase_to_rd, int open_target, struct sock_list* blacklist,
592	time_t prefetch)
593{
594	int sel;
595	int selrtt;
596	struct delegpt_addr* a, *prev;
597	int num = iter_filter_order(iter_env, env, name, namelen, qtype,
598		*env->now, dp, &selrtt, open_target, blacklist, prefetch);
599
600	if(num == 0)
601		return NULL;
602	verbose(VERB_ALGO, "selrtt %d", selrtt);
603	if(selrtt > BLACKLIST_PENALTY) {
604		if(selrtt-BLACKLIST_PENALTY > USEFUL_SERVER_TOP_TIMEOUT*3) {
605			verbose(VERB_ALGO, "chase to "
606				"blacklisted recursion lame server");
607			*chase_to_rd = 1;
608		}
609		if(selrtt-BLACKLIST_PENALTY > USEFUL_SERVER_TOP_TIMEOUT*2) {
610			verbose(VERB_ALGO, "chase to "
611				"blacklisted dnssec lame server");
612			*dnssec_lame = 1;
613		}
614	} else {
615		if(selrtt > USEFUL_SERVER_TOP_TIMEOUT*3) {
616			verbose(VERB_ALGO, "chase to recursion lame server");
617			*chase_to_rd = 1;
618		}
619		if(selrtt > USEFUL_SERVER_TOP_TIMEOUT*2) {
620			verbose(VERB_ALGO, "chase to dnssec lame server");
621			*dnssec_lame = 1;
622		}
623		if(selrtt == USEFUL_SERVER_TOP_TIMEOUT) {
624			verbose(VERB_ALGO, "chase to blacklisted lame server");
625			return NULL;
626		}
627	}
628
629	if(num == 1) {
630		a = dp->result_list;
631		if(++a->attempts < iter_env->outbound_msg_retry)
632			return a;
633		dp->result_list = a->next_result;
634		return a;
635	}
636
637	/* randomly select a target from the list */
638	log_assert(num > 1);
639	/* grab secure random number, to pick unexpected server.
640	 * also we need it to be threadsafe. */
641	sel = ub_random_max(env->rnd, num);
642	a = dp->result_list;
643	prev = NULL;
644	while(sel > 0 && a) {
645		prev = a;
646		a = a->next_result;
647		sel--;
648	}
649	if(!a)  /* robustness */
650		return NULL;
651	if(++a->attempts < iter_env->outbound_msg_retry)
652		return a;
653	/* remove it from the delegation point result list */
654	if(prev)
655		prev->next_result = a->next_result;
656	else	dp->result_list = a->next_result;
657	return a;
658}
659
660struct dns_msg*
661dns_alloc_msg(sldns_buffer* pkt, struct msg_parse* msg,
662	struct regional* region)
663{
664	struct dns_msg* m = (struct dns_msg*)regional_alloc(region,
665		sizeof(struct dns_msg));
666	if(!m)
667		return NULL;
668	memset(m, 0, sizeof(*m));
669	if(!parse_create_msg(pkt, msg, NULL, &m->qinfo, &m->rep, region)) {
670		log_err("malloc failure: allocating incoming dns_msg");
671		return NULL;
672	}
673	return m;
674}
675
676struct dns_msg*
677dns_copy_msg(struct dns_msg* from, struct regional* region)
678{
679	struct dns_msg* m = (struct dns_msg*)regional_alloc(region,
680		sizeof(struct dns_msg));
681	if(!m)
682		return NULL;
683	m->qinfo = from->qinfo;
684	if(!(m->qinfo.qname = regional_alloc_init(region, from->qinfo.qname,
685		from->qinfo.qname_len)))
686		return NULL;
687	if(!(m->rep = reply_info_copy(from->rep, NULL, region)))
688		return NULL;
689	return m;
690}
691
692void
693iter_dns_store(struct module_env* env, struct query_info* msgqinf,
694	struct reply_info* msgrep, int is_referral, time_t leeway, int pside,
695	struct regional* region, uint16_t flags, time_t qstarttime)
696{
697	if(!dns_cache_store(env, msgqinf, msgrep, is_referral, leeway,
698		pside, region, flags, qstarttime))
699		log_err("out of memory: cannot store data in cache");
700}
701
702int
703iter_ns_probability(struct ub_randstate* rnd, int n, int m)
704{
705	int sel;
706	if(n == m) /* 100% chance */
707		return 1;
708	/* we do not need secure random numbers here, but
709	 * we do need it to be threadsafe, so we use this */
710	sel = ub_random_max(rnd, m);
711	return (sel < n);
712}
713
714/** detect dependency cycle for query and target */
715static int
716causes_cycle(struct module_qstate* qstate, uint8_t* name, size_t namelen,
717	uint16_t t, uint16_t c)
718{
719	struct query_info qinf;
720	qinf.qname = name;
721	qinf.qname_len = namelen;
722	qinf.qtype = t;
723	qinf.qclass = c;
724	qinf.local_alias = NULL;
725	fptr_ok(fptr_whitelist_modenv_detect_cycle(
726		qstate->env->detect_cycle));
727	return (*qstate->env->detect_cycle)(qstate, &qinf,
728		(uint16_t)(BIT_RD|BIT_CD), qstate->is_priming,
729		qstate->is_valrec);
730}
731
732void
733iter_mark_cycle_targets(struct module_qstate* qstate, struct delegpt* dp)
734{
735	struct delegpt_ns* ns;
736	for(ns = dp->nslist; ns; ns = ns->next) {
737		if(ns->resolved)
738			continue;
739		/* see if this ns as target causes dependency cycle */
740		if(causes_cycle(qstate, ns->name, ns->namelen,
741			LDNS_RR_TYPE_AAAA, qstate->qinfo.qclass) ||
742		   causes_cycle(qstate, ns->name, ns->namelen,
743			LDNS_RR_TYPE_A, qstate->qinfo.qclass)) {
744			log_nametypeclass(VERB_QUERY, "skipping target due "
745			 	"to dependency cycle (harden-glue: no may "
746				"fix some of the cycles)",
747				ns->name, LDNS_RR_TYPE_A,
748				qstate->qinfo.qclass);
749			ns->resolved = 1;
750		}
751	}
752}
753
754void
755iter_mark_pside_cycle_targets(struct module_qstate* qstate, struct delegpt* dp)
756{
757	struct delegpt_ns* ns;
758	for(ns = dp->nslist; ns; ns = ns->next) {
759		if(ns->done_pside4 && ns->done_pside6)
760			continue;
761		/* see if this ns as target causes dependency cycle */
762		if(causes_cycle(qstate, ns->name, ns->namelen,
763			LDNS_RR_TYPE_A, qstate->qinfo.qclass)) {
764			log_nametypeclass(VERB_QUERY, "skipping target due "
765			 	"to dependency cycle", ns->name,
766				LDNS_RR_TYPE_A, qstate->qinfo.qclass);
767			ns->done_pside4 = 1;
768		}
769		if(causes_cycle(qstate, ns->name, ns->namelen,
770			LDNS_RR_TYPE_AAAA, qstate->qinfo.qclass)) {
771			log_nametypeclass(VERB_QUERY, "skipping target due "
772			 	"to dependency cycle", ns->name,
773				LDNS_RR_TYPE_AAAA, qstate->qinfo.qclass);
774			ns->done_pside6 = 1;
775		}
776	}
777}
778
779int
780iter_dp_is_useless(struct query_info* qinfo, uint16_t qflags,
781	struct delegpt* dp, int supports_ipv4, int supports_ipv6,
782	int use_nat64)
783{
784	struct delegpt_ns* ns;
785	struct delegpt_addr* a;
786
787	if(supports_ipv6 && use_nat64)
788		supports_ipv4 = 1;
789
790	/* check:
791	 *      o RD qflag is on.
792	 *      o no addresses are provided.
793	 *      o all NS items are required glue.
794	 * OR
795	 *      o RD qflag is on.
796	 *      o no addresses are provided.
797	 *      o the query is for one of the nameservers in dp,
798	 *        and that nameserver is a glue-name for this dp.
799	 */
800	if(!(qflags&BIT_RD))
801		return 0;
802	/* either available or unused targets,
803	 * if they exist, the dp is not useless. */
804	for(a = dp->usable_list; a; a = a->next_usable) {
805		if(!addr_is_ip6(&a->addr, a->addrlen) && supports_ipv4)
806			return 0;
807		else if(addr_is_ip6(&a->addr, a->addrlen) && supports_ipv6)
808			return 0;
809	}
810	for(a = dp->result_list; a; a = a->next_result) {
811		if(!addr_is_ip6(&a->addr, a->addrlen) && supports_ipv4)
812			return 0;
813		else if(addr_is_ip6(&a->addr, a->addrlen) && supports_ipv6)
814			return 0;
815	}
816
817	/* see if query is for one of the nameservers, which is glue */
818	if( ((qinfo->qtype == LDNS_RR_TYPE_A && supports_ipv4) ||
819		(qinfo->qtype == LDNS_RR_TYPE_AAAA && supports_ipv6)) &&
820		dname_subdomain_c(qinfo->qname, dp->name) &&
821		delegpt_find_ns(dp, qinfo->qname, qinfo->qname_len))
822		return 1;
823
824	for(ns = dp->nslist; ns; ns = ns->next) {
825		if(ns->resolved) /* skip failed targets */
826			continue;
827		if(!dname_subdomain_c(ns->name, dp->name))
828			return 0; /* one address is not required glue */
829	}
830	return 1;
831}
832
833int
834iter_qname_indicates_dnssec(struct module_env* env, struct query_info *qinfo)
835{
836	struct trust_anchor* a;
837	if(!env || !env->anchors || !qinfo || !qinfo->qname)
838		return 0;
839	/* a trust anchor exists above the name? */
840	if((a=anchors_lookup(env->anchors, qinfo->qname, qinfo->qname_len,
841		qinfo->qclass))) {
842		if(a->numDS == 0 && a->numDNSKEY == 0) {
843			/* insecure trust point */
844			lock_basic_unlock(&a->lock);
845			return 0;
846		}
847		lock_basic_unlock(&a->lock);
848		return 1;
849	}
850	/* no trust anchor above it. */
851	return 0;
852}
853
854int
855iter_indicates_dnssec(struct module_env* env, struct delegpt* dp,
856        struct dns_msg* msg, uint16_t dclass)
857{
858	struct trust_anchor* a;
859	/* information not available, !env->anchors can be common */
860	if(!env || !env->anchors || !dp || !dp->name)
861		return 0;
862	/* a trust anchor exists with this name, RRSIGs expected */
863	if((a=anchor_find(env->anchors, dp->name, dp->namelabs, dp->namelen,
864		dclass))) {
865		if(a->numDS == 0 && a->numDNSKEY == 0) {
866			/* insecure trust point */
867			lock_basic_unlock(&a->lock);
868			return 0;
869		}
870		lock_basic_unlock(&a->lock);
871		return 1;
872	}
873	/* see if DS rrset was given, in AUTH section */
874	if(msg && msg->rep &&
875		reply_find_rrset_section_ns(msg->rep, dp->name, dp->namelen,
876		LDNS_RR_TYPE_DS, dclass))
877		return 1;
878	/* look in key cache */
879	if(env->key_cache) {
880		struct key_entry_key* kk = key_cache_obtain(env->key_cache,
881			dp->name, dp->namelen, dclass, env->scratch, *env->now);
882		if(kk) {
883			if(query_dname_compare(kk->name, dp->name) == 0) {
884			  if(key_entry_isgood(kk) || key_entry_isbad(kk)) {
885				regional_free_all(env->scratch);
886				return 1;
887			  } else if(key_entry_isnull(kk)) {
888				regional_free_all(env->scratch);
889				return 0;
890			  }
891			}
892			regional_free_all(env->scratch);
893		}
894	}
895	return 0;
896}
897
898int
899iter_msg_has_dnssec(struct dns_msg* msg)
900{
901	size_t i;
902	if(!msg || !msg->rep)
903		return 0;
904	for(i=0; i<msg->rep->an_numrrsets + msg->rep->ns_numrrsets; i++) {
905		if(((struct packed_rrset_data*)msg->rep->rrsets[i]->
906			entry.data)->rrsig_count > 0)
907			return 1;
908	}
909	/* empty message has no DNSSEC info, with DNSSEC the reply is
910	 * not empty (NSEC) */
911	return 0;
912}
913
914int iter_msg_from_zone(struct dns_msg* msg, struct delegpt* dp,
915        enum response_type type, uint16_t dclass)
916{
917	if(!msg || !dp || !msg->rep || !dp->name)
918		return 0;
919	/* SOA RRset - always from reply zone */
920	if(reply_find_rrset_section_an(msg->rep, dp->name, dp->namelen,
921		LDNS_RR_TYPE_SOA, dclass) ||
922	   reply_find_rrset_section_ns(msg->rep, dp->name, dp->namelen,
923		LDNS_RR_TYPE_SOA, dclass))
924		return 1;
925	if(type == RESPONSE_TYPE_REFERRAL) {
926		size_t i;
927		/* if it adds a single label, i.e. we expect .com,
928		 * and referral to example.com. NS ... , then origin zone
929		 * is .com. For a referral to sub.example.com. NS ... then
930		 * we do not know, since example.com. may be in between. */
931		for(i=0; i<msg->rep->an_numrrsets+msg->rep->ns_numrrsets;
932			i++) {
933			struct ub_packed_rrset_key* s = msg->rep->rrsets[i];
934			if(ntohs(s->rk.type) == LDNS_RR_TYPE_NS &&
935				ntohs(s->rk.rrset_class) == dclass) {
936				int l = dname_count_labels(s->rk.dname);
937				if(l == dp->namelabs + 1 &&
938					dname_strict_subdomain(s->rk.dname,
939					l, dp->name, dp->namelabs))
940					return 1;
941			}
942		}
943		return 0;
944	}
945	log_assert(type==RESPONSE_TYPE_ANSWER || type==RESPONSE_TYPE_CNAME);
946	/* not a referral, and not lame delegation (upwards), so,
947	 * any NS rrset must be from the zone itself */
948	if(reply_find_rrset_section_an(msg->rep, dp->name, dp->namelen,
949		LDNS_RR_TYPE_NS, dclass) ||
950	   reply_find_rrset_section_ns(msg->rep, dp->name, dp->namelen,
951		LDNS_RR_TYPE_NS, dclass))
952		return 1;
953	/* a DNSKEY set is expected at the zone apex as well */
954	/* this is for 'minimal responses' for DNSKEYs */
955	if(reply_find_rrset_section_an(msg->rep, dp->name, dp->namelen,
956		LDNS_RR_TYPE_DNSKEY, dclass))
957		return 1;
958	return 0;
959}
960
961/**
962 * check equality of two rrsets
963 * @param k1: rrset
964 * @param k2: rrset
965 * @return true if equal
966 */
967static int
968rrset_equal(struct ub_packed_rrset_key* k1, struct ub_packed_rrset_key* k2)
969{
970	struct packed_rrset_data* d1 = (struct packed_rrset_data*)
971		k1->entry.data;
972	struct packed_rrset_data* d2 = (struct packed_rrset_data*)
973		k2->entry.data;
974	size_t i, t;
975	if(k1->rk.dname_len != k2->rk.dname_len ||
976		k1->rk.flags != k2->rk.flags ||
977		k1->rk.type != k2->rk.type ||
978		k1->rk.rrset_class != k2->rk.rrset_class ||
979		query_dname_compare(k1->rk.dname, k2->rk.dname) != 0)
980		return 0;
981	if(	/* do not check ttl: d1->ttl != d2->ttl || */
982		d1->count != d2->count ||
983		d1->rrsig_count != d2->rrsig_count ||
984		d1->trust != d2->trust ||
985		d1->security != d2->security)
986		return 0;
987	t = d1->count + d1->rrsig_count;
988	for(i=0; i<t; i++) {
989		if(d1->rr_len[i] != d2->rr_len[i] ||
990			/* no ttl check: d1->rr_ttl[i] != d2->rr_ttl[i] ||*/
991			memcmp(d1->rr_data[i], d2->rr_data[i],
992				d1->rr_len[i]) != 0)
993			return 0;
994	}
995	return 1;
996}
997
998/** compare rrsets and sort canonically.  Compares rrset name, type, class.
999 * return 0 if equal, +1 if x > y, and -1 if x < y.
1000 */
1001static int
1002rrset_canonical_sort_cmp(const void* x, const void* y)
1003{
1004	struct ub_packed_rrset_key* rrx = *(struct ub_packed_rrset_key**)x;
1005	struct ub_packed_rrset_key* rry = *(struct ub_packed_rrset_key**)y;
1006	int r = dname_canonical_compare(rrx->rk.dname, rry->rk.dname);
1007	if(r != 0)
1008		return r;
1009	if(rrx->rk.type != rry->rk.type) {
1010		if(ntohs(rrx->rk.type) > ntohs(rry->rk.type))
1011			return 1;
1012		else	return -1;
1013	}
1014	if(rrx->rk.rrset_class != rry->rk.rrset_class) {
1015		if(ntohs(rrx->rk.rrset_class) > ntohs(rry->rk.rrset_class))
1016			return 1;
1017		else	return -1;
1018	}
1019	return 0;
1020}
1021
1022int
1023reply_equal(struct reply_info* p, struct reply_info* q, struct regional* region)
1024{
1025	size_t i;
1026	struct ub_packed_rrset_key** sorted_p, **sorted_q;
1027	if(p->flags != q->flags ||
1028		p->qdcount != q->qdcount ||
1029		/* do not check TTL, this may differ */
1030		/*
1031		p->ttl != q->ttl ||
1032		p->prefetch_ttl != q->prefetch_ttl ||
1033		*/
1034		p->security != q->security ||
1035		p->an_numrrsets != q->an_numrrsets ||
1036		p->ns_numrrsets != q->ns_numrrsets ||
1037		p->ar_numrrsets != q->ar_numrrsets ||
1038		p->rrset_count != q->rrset_count)
1039		return 0;
1040	/* sort the rrsets in the authority and additional sections before
1041	 * compare, the query and answer sections are ordered in the sequence
1042	 * they should have (eg. one after the other for aliases). */
1043	sorted_p = (struct ub_packed_rrset_key**)regional_alloc_init(
1044		region, p->rrsets, sizeof(*sorted_p)*p->rrset_count);
1045	if(!sorted_p) return 0;
1046	log_assert(p->an_numrrsets + p->ns_numrrsets + p->ar_numrrsets <=
1047		p->rrset_count);
1048	qsort(sorted_p + p->an_numrrsets, p->ns_numrrsets,
1049		sizeof(*sorted_p), rrset_canonical_sort_cmp);
1050	qsort(sorted_p + p->an_numrrsets + p->ns_numrrsets, p->ar_numrrsets,
1051		sizeof(*sorted_p), rrset_canonical_sort_cmp);
1052
1053	sorted_q = (struct ub_packed_rrset_key**)regional_alloc_init(
1054		region, q->rrsets, sizeof(*sorted_q)*q->rrset_count);
1055	if(!sorted_q) {
1056		regional_free_all(region);
1057		return 0;
1058	}
1059	log_assert(q->an_numrrsets + q->ns_numrrsets + q->ar_numrrsets <=
1060		q->rrset_count);
1061	qsort(sorted_q + q->an_numrrsets, q->ns_numrrsets,
1062		sizeof(*sorted_q), rrset_canonical_sort_cmp);
1063	qsort(sorted_q + q->an_numrrsets + q->ns_numrrsets, q->ar_numrrsets,
1064		sizeof(*sorted_q), rrset_canonical_sort_cmp);
1065
1066	/* compare the rrsets */
1067	for(i=0; i<p->rrset_count; i++) {
1068		if(!rrset_equal(sorted_p[i], sorted_q[i])) {
1069			if(!rrset_canonical_equal(region, sorted_p[i],
1070				sorted_q[i])) {
1071				regional_free_all(region);
1072				return 0;
1073			}
1074		}
1075	}
1076	regional_free_all(region);
1077	return 1;
1078}
1079
1080void
1081caps_strip_reply(struct reply_info* rep)
1082{
1083	size_t i;
1084	if(!rep) return;
1085	/* see if message is a referral, in which case the additional and
1086	 * NS record cannot be removed */
1087	/* referrals have the AA flag unset (strict check, not elsewhere in
1088	 * unbound, but for 0x20 this is very convenient). */
1089	if(!(rep->flags&BIT_AA))
1090		return;
1091	/* remove the additional section from the reply */
1092	if(rep->ar_numrrsets != 0) {
1093		verbose(VERB_ALGO, "caps fallback: removing additional section");
1094		rep->rrset_count -= rep->ar_numrrsets;
1095		rep->ar_numrrsets = 0;
1096	}
1097	/* is there an NS set in the authority section to remove? */
1098	/* the failure case (Cisco firewalls) only has one rrset in authsec */
1099	for(i=rep->an_numrrsets; i<rep->an_numrrsets+rep->ns_numrrsets; i++) {
1100		struct ub_packed_rrset_key* s = rep->rrsets[i];
1101		if(ntohs(s->rk.type) == LDNS_RR_TYPE_NS) {
1102			/* remove NS rrset and break from loop (loop limits
1103			 * have changed) */
1104			/* move last rrset into this position (there is no
1105			 * additional section any more) */
1106			verbose(VERB_ALGO, "caps fallback: removing NS rrset");
1107			if(i < rep->rrset_count-1)
1108				rep->rrsets[i]=rep->rrsets[rep->rrset_count-1];
1109			rep->rrset_count --;
1110			rep->ns_numrrsets --;
1111			break;
1112		}
1113	}
1114}
1115
1116int caps_failed_rcode(struct reply_info* rep)
1117{
1118	return !(FLAGS_GET_RCODE(rep->flags) == LDNS_RCODE_NOERROR ||
1119		FLAGS_GET_RCODE(rep->flags) == LDNS_RCODE_NXDOMAIN);
1120}
1121
1122void
1123iter_store_parentside_rrset(struct module_env* env,
1124	struct ub_packed_rrset_key* rrset)
1125{
1126	struct rrset_ref ref;
1127	rrset = packed_rrset_copy_alloc(rrset, env->alloc, *env->now);
1128	if(!rrset) {
1129		log_err("malloc failure in store_parentside_rrset");
1130		return;
1131	}
1132	rrset->rk.flags |= PACKED_RRSET_PARENT_SIDE;
1133	rrset->entry.hash = rrset_key_hash(&rrset->rk);
1134	ref.key = rrset;
1135	ref.id = rrset->id;
1136	/* ignore ret: if it was in the cache, ref updated */
1137	(void)rrset_cache_update(env->rrset_cache, &ref, env->alloc, *env->now);
1138}
1139
1140/** fetch NS record from reply, if any */
1141static struct ub_packed_rrset_key*
1142reply_get_NS_rrset(struct reply_info* rep)
1143{
1144	size_t i;
1145	for(i=0; i<rep->rrset_count; i++) {
1146		if(rep->rrsets[i]->rk.type == htons(LDNS_RR_TYPE_NS)) {
1147			return rep->rrsets[i];
1148		}
1149	}
1150	return NULL;
1151}
1152
1153void
1154iter_store_parentside_NS(struct module_env* env, struct reply_info* rep)
1155{
1156	struct ub_packed_rrset_key* rrset = reply_get_NS_rrset(rep);
1157	if(rrset) {
1158		log_rrset_key(VERB_ALGO, "store parent-side NS", rrset);
1159		iter_store_parentside_rrset(env, rrset);
1160	}
1161}
1162
1163void iter_store_parentside_neg(struct module_env* env,
1164        struct query_info* qinfo, struct reply_info* rep)
1165{
1166	/* TTL: NS from referral in iq->deleg_msg,
1167	 *      or first RR from iq->response,
1168	 *      or servfail5secs if !iq->response */
1169	time_t ttl = NORR_TTL;
1170	struct ub_packed_rrset_key* neg;
1171	struct packed_rrset_data* newd;
1172	if(rep) {
1173		struct ub_packed_rrset_key* rrset = reply_get_NS_rrset(rep);
1174		if(!rrset && rep->rrset_count != 0) rrset = rep->rrsets[0];
1175		if(rrset) ttl = ub_packed_rrset_ttl(rrset);
1176	}
1177	/* create empty rrset to store */
1178	neg = (struct ub_packed_rrset_key*)regional_alloc(env->scratch,
1179	                sizeof(struct ub_packed_rrset_key));
1180	if(!neg) {
1181		log_err("out of memory in store_parentside_neg");
1182		return;
1183	}
1184	memset(&neg->entry, 0, sizeof(neg->entry));
1185	neg->entry.key = neg;
1186	neg->rk.type = htons(qinfo->qtype);
1187	neg->rk.rrset_class = htons(qinfo->qclass);
1188	neg->rk.flags = 0;
1189	neg->rk.dname = regional_alloc_init(env->scratch, qinfo->qname,
1190		qinfo->qname_len);
1191	if(!neg->rk.dname) {
1192		log_err("out of memory in store_parentside_neg");
1193		return;
1194	}
1195	neg->rk.dname_len = qinfo->qname_len;
1196	neg->entry.hash = rrset_key_hash(&neg->rk);
1197	newd = (struct packed_rrset_data*)regional_alloc_zero(env->scratch,
1198		sizeof(struct packed_rrset_data) + sizeof(size_t) +
1199		sizeof(uint8_t*) + sizeof(time_t) + sizeof(uint16_t));
1200	if(!newd) {
1201		log_err("out of memory in store_parentside_neg");
1202		return;
1203	}
1204	neg->entry.data = newd;
1205	newd->ttl = ttl;
1206	/* entry must have one RR, otherwise not valid in cache.
1207	 * put in one RR with empty rdata: those are ignored as nameserver */
1208	newd->count = 1;
1209	newd->rrsig_count = 0;
1210	newd->trust = rrset_trust_ans_noAA;
1211	newd->rr_len = (size_t*)((uint8_t*)newd +
1212		sizeof(struct packed_rrset_data));
1213	newd->rr_len[0] = 0 /* zero len rdata */ + sizeof(uint16_t);
1214	packed_rrset_ptr_fixup(newd);
1215	newd->rr_ttl[0] = newd->ttl;
1216	sldns_write_uint16(newd->rr_data[0], 0 /* zero len rdata */);
1217	/* store it */
1218	log_rrset_key(VERB_ALGO, "store parent-side negative", neg);
1219	iter_store_parentside_rrset(env, neg);
1220}
1221
1222int
1223iter_lookup_parent_NS_from_cache(struct module_env* env, struct delegpt* dp,
1224	struct regional* region, struct query_info* qinfo)
1225{
1226	struct ub_packed_rrset_key* akey;
1227	akey = rrset_cache_lookup(env->rrset_cache, dp->name,
1228		dp->namelen, LDNS_RR_TYPE_NS, qinfo->qclass,
1229		PACKED_RRSET_PARENT_SIDE, *env->now, 0);
1230	if(akey) {
1231		log_rrset_key(VERB_ALGO, "found parent-side NS in cache", akey);
1232		dp->has_parent_side_NS = 1;
1233		/* and mark the new names as lame */
1234		if(!delegpt_rrset_add_ns(dp, region, akey, 1)) {
1235			lock_rw_unlock(&akey->entry.lock);
1236			return 0;
1237		}
1238		lock_rw_unlock(&akey->entry.lock);
1239	}
1240	return 1;
1241}
1242
1243int iter_lookup_parent_glue_from_cache(struct module_env* env,
1244        struct delegpt* dp, struct regional* region, struct query_info* qinfo)
1245{
1246	struct ub_packed_rrset_key* akey;
1247	struct delegpt_ns* ns;
1248	size_t num = delegpt_count_targets(dp);
1249	for(ns = dp->nslist; ns; ns = ns->next) {
1250		if(ns->cache_lookup_count > ITERATOR_NAME_CACHELOOKUP_MAX_PSIDE)
1251			continue;
1252		ns->cache_lookup_count++;
1253		/* get cached parentside A */
1254		akey = rrset_cache_lookup(env->rrset_cache, ns->name,
1255			ns->namelen, LDNS_RR_TYPE_A, qinfo->qclass,
1256			PACKED_RRSET_PARENT_SIDE, *env->now, 0);
1257		if(akey) {
1258			log_rrset_key(VERB_ALGO, "found parent-side", akey);
1259			ns->done_pside4 = 1;
1260			/* a negative-cache-element has no addresses it adds */
1261			if(!delegpt_add_rrset_A(dp, region, akey, 1, NULL))
1262				log_err("malloc failure in lookup_parent_glue");
1263			lock_rw_unlock(&akey->entry.lock);
1264		}
1265		/* get cached parentside AAAA */
1266		akey = rrset_cache_lookup(env->rrset_cache, ns->name,
1267			ns->namelen, LDNS_RR_TYPE_AAAA, qinfo->qclass,
1268			PACKED_RRSET_PARENT_SIDE, *env->now, 0);
1269		if(akey) {
1270			log_rrset_key(VERB_ALGO, "found parent-side", akey);
1271			ns->done_pside6 = 1;
1272			/* a negative-cache-element has no addresses it adds */
1273			if(!delegpt_add_rrset_AAAA(dp, region, akey, 1, NULL))
1274				log_err("malloc failure in lookup_parent_glue");
1275			lock_rw_unlock(&akey->entry.lock);
1276		}
1277	}
1278	/* see if new (but lame) addresses have become available */
1279	return delegpt_count_targets(dp) != num;
1280}
1281
1282int
1283iter_get_next_root(struct iter_hints* hints, struct iter_forwards* fwd,
1284	uint16_t* c)
1285{
1286	uint16_t c1 = *c, c2 = *c;
1287	int r1, r2;
1288	int nolock = 1;
1289
1290	/* prelock both forwards and hints for atomic read. */
1291	lock_rw_rdlock(&fwd->lock);
1292	lock_rw_rdlock(&hints->lock);
1293	r1 = hints_next_root(hints, &c1, nolock);
1294	r2 = forwards_next_root(fwd, &c2, nolock);
1295	lock_rw_unlock(&fwd->lock);
1296	lock_rw_unlock(&hints->lock);
1297
1298	if(!r1 && !r2) /* got none, end of list */
1299		return 0;
1300	else if(!r1) /* got one, return that */
1301		*c = c2;
1302	else if(!r2)
1303		*c = c1;
1304	else if(c1 < c2) /* got both take smallest */
1305		*c = c1;
1306	else	*c = c2;
1307	return 1;
1308}
1309
1310void
1311iter_scrub_ds(struct dns_msg* msg, struct ub_packed_rrset_key* ns, uint8_t* z)
1312{
1313	/* Only the DS record for the delegation itself is expected.
1314	 * We allow DS for everything between the bailiwick and the
1315	 * zonecut, thus DS records must be at or above the zonecut.
1316	 * And the DS records must be below the server authority zone.
1317	 * The answer section is already scrubbed. */
1318	size_t i = msg->rep->an_numrrsets;
1319	while(i < (msg->rep->an_numrrsets + msg->rep->ns_numrrsets)) {
1320		struct ub_packed_rrset_key* s = msg->rep->rrsets[i];
1321		if(ntohs(s->rk.type) == LDNS_RR_TYPE_DS &&
1322			(!ns || !dname_subdomain_c(ns->rk.dname, s->rk.dname)
1323			|| query_dname_compare(z, s->rk.dname) == 0)) {
1324			log_nametypeclass(VERB_ALGO, "removing irrelevant DS",
1325				s->rk.dname, ntohs(s->rk.type),
1326				ntohs(s->rk.rrset_class));
1327			memmove(msg->rep->rrsets+i, msg->rep->rrsets+i+1,
1328				sizeof(struct ub_packed_rrset_key*) *
1329				(msg->rep->rrset_count-i-1));
1330			msg->rep->ns_numrrsets--;
1331			msg->rep->rrset_count--;
1332			/* stay at same i, but new record */
1333			continue;
1334		}
1335		i++;
1336	}
1337}
1338
1339void
1340iter_scrub_nxdomain(struct dns_msg* msg)
1341{
1342	if(msg->rep->an_numrrsets == 0)
1343		return;
1344
1345	memmove(msg->rep->rrsets, msg->rep->rrsets+msg->rep->an_numrrsets,
1346		sizeof(struct ub_packed_rrset_key*) *
1347		(msg->rep->rrset_count-msg->rep->an_numrrsets));
1348	msg->rep->rrset_count -= msg->rep->an_numrrsets;
1349	msg->rep->an_numrrsets = 0;
1350}
1351
1352void iter_dec_attempts(struct delegpt* dp, int d, int outbound_msg_retry)
1353{
1354	struct delegpt_addr* a;
1355	for(a=dp->target_list; a; a = a->next_target) {
1356		if(a->attempts >= outbound_msg_retry) {
1357			/* add back to result list */
1358			delegpt_add_to_result_list(dp, a);
1359		}
1360		if(a->attempts > d)
1361			a->attempts -= d;
1362		else a->attempts = 0;
1363	}
1364}
1365
1366void iter_merge_retry_counts(struct delegpt* dp, struct delegpt* old,
1367	int outbound_msg_retry)
1368{
1369	struct delegpt_addr* a, *o, *prev;
1370	for(a=dp->target_list; a; a = a->next_target) {
1371		o = delegpt_find_addr(old, &a->addr, a->addrlen);
1372		if(o) {
1373			log_addr(VERB_ALGO, "copy attempt count previous dp",
1374				&a->addr, a->addrlen);
1375			a->attempts = o->attempts;
1376		}
1377	}
1378	prev = NULL;
1379	a = dp->usable_list;
1380	while(a) {
1381		if(a->attempts >= outbound_msg_retry) {
1382			log_addr(VERB_ALGO, "remove from usable list dp",
1383				&a->addr, a->addrlen);
1384			/* remove from result list */
1385			if(prev)
1386				prev->next_usable = a->next_usable;
1387			else	dp->usable_list = a->next_usable;
1388			/* prev stays the same */
1389			a = a->next_usable;
1390			continue;
1391		}
1392		prev = a;
1393		a = a->next_usable;
1394	}
1395}
1396
1397int
1398iter_ds_toolow(struct dns_msg* msg, struct delegpt* dp)
1399{
1400	/* if for query example.com, there is example.com SOA or a subdomain
1401	 * of example.com, then we are too low and need to fetch NS. */
1402	size_t i;
1403	/* if we have a DNAME or CNAME we are probably wrong */
1404	/* if we have a qtype DS in the answer section, its fine */
1405	for(i=0; i < msg->rep->an_numrrsets; i++) {
1406		struct ub_packed_rrset_key* s = msg->rep->rrsets[i];
1407		if(ntohs(s->rk.type) == LDNS_RR_TYPE_DNAME ||
1408			ntohs(s->rk.type) == LDNS_RR_TYPE_CNAME) {
1409			/* not the right answer, maybe too low, check the
1410			 * RRSIG signer name (if there is any) for a hint
1411			 * that it is from the dp zone anyway */
1412			uint8_t* sname;
1413			size_t slen;
1414			val_find_rrset_signer(s, &sname, &slen);
1415			if(sname && query_dname_compare(dp->name, sname)==0)
1416				return 0; /* it is fine, from the right dp */
1417			return 1;
1418		}
1419		if(ntohs(s->rk.type) == LDNS_RR_TYPE_DS)
1420			return 0; /* fine, we have a DS record */
1421	}
1422	for(i=msg->rep->an_numrrsets;
1423		i < msg->rep->an_numrrsets + msg->rep->ns_numrrsets; i++) {
1424		struct ub_packed_rrset_key* s = msg->rep->rrsets[i];
1425		if(ntohs(s->rk.type) == LDNS_RR_TYPE_SOA) {
1426			if(dname_subdomain_c(s->rk.dname, msg->qinfo.qname))
1427				return 1; /* point is too low */
1428			if(query_dname_compare(s->rk.dname, dp->name)==0)
1429				return 0; /* right dp */
1430		}
1431		if(ntohs(s->rk.type) == LDNS_RR_TYPE_NSEC ||
1432			ntohs(s->rk.type) == LDNS_RR_TYPE_NSEC3) {
1433			uint8_t* sname;
1434			size_t slen;
1435			val_find_rrset_signer(s, &sname, &slen);
1436			if(sname && query_dname_compare(dp->name, sname)==0)
1437				return 0; /* it is fine, from the right dp */
1438			return 1;
1439		}
1440	}
1441	/* we do not know */
1442	return 1;
1443}
1444
1445int iter_dp_cangodown(struct query_info* qinfo, struct delegpt* dp)
1446{
1447	/* no delegation point, do not see how we can go down,
1448	 * robust check, it should really exist */
1449	if(!dp) return 0;
1450
1451	/* see if dp equals the qname, then we cannot go down further */
1452	if(query_dname_compare(qinfo->qname, dp->name) == 0)
1453		return 0;
1454	/* if dp is one label above the name we also cannot go down further */
1455	if(dname_count_labels(qinfo->qname) == dp->namelabs+1)
1456		return 0;
1457	return 1;
1458}
1459
1460int
1461iter_stub_fwd_no_cache(struct module_qstate *qstate, struct query_info *qinf,
1462	uint8_t** retdpname, size_t* retdpnamelen, uint8_t* dpname_storage,
1463	size_t dpname_storage_len)
1464{
1465	struct iter_hints_stub *stub;
1466	struct delegpt *dp;
1467	int nolock = 1;
1468
1469	/* Check for stub. */
1470	/* Lock both forwards and hints for atomic read. */
1471	lock_rw_rdlock(&qstate->env->fwds->lock);
1472	lock_rw_rdlock(&qstate->env->hints->lock);
1473	stub = hints_lookup_stub(qstate->env->hints, qinf->qname,
1474	    qinf->qclass, NULL, nolock);
1475	dp = forwards_lookup(qstate->env->fwds, qinf->qname, qinf->qclass,
1476		nolock);
1477
1478	/* see if forward or stub is more pertinent */
1479	if(stub && stub->dp && dp) {
1480		if(dname_strict_subdomain(dp->name, dp->namelabs,
1481			stub->dp->name, stub->dp->namelabs)) {
1482			stub = NULL; /* ignore stub, forward is lower */
1483		} else {
1484			dp = NULL; /* ignore forward, stub is lower */
1485		}
1486	}
1487
1488	/* check stub */
1489	if (stub != NULL && stub->dp != NULL) {
1490		int stub_no_cache = stub->dp->no_cache;
1491		lock_rw_unlock(&qstate->env->fwds->lock);
1492		if(stub_no_cache) {
1493			char qname[255+1];
1494			char dpname[255+1];
1495			dname_str(qinf->qname, qname);
1496			dname_str(stub->dp->name, dpname);
1497			verbose(VERB_ALGO, "stub for %s %s has no_cache", qname, dpname);
1498		}
1499		if(retdpname) {
1500			if(stub->dp->namelen > dpname_storage_len) {
1501				verbose(VERB_ALGO, "no cache stub dpname too long");
1502				lock_rw_unlock(&qstate->env->hints->lock);
1503				*retdpname = NULL;
1504				*retdpnamelen = 0;
1505				return stub_no_cache;
1506			}
1507			memmove(dpname_storage, stub->dp->name,
1508				stub->dp->namelen);
1509			*retdpname = dpname_storage;
1510			*retdpnamelen = stub->dp->namelen;
1511		}
1512		lock_rw_unlock(&qstate->env->hints->lock);
1513		return stub_no_cache;
1514	}
1515
1516	/* Check for forward. */
1517	if (dp) {
1518		int dp_no_cache = dp->no_cache;
1519		lock_rw_unlock(&qstate->env->hints->lock);
1520		if(dp_no_cache) {
1521			char qname[255+1];
1522			char dpname[255+1];
1523			dname_str(qinf->qname, qname);
1524			dname_str(dp->name, dpname);
1525			verbose(VERB_ALGO, "forward for %s %s has no_cache", qname, dpname);
1526		}
1527		if(retdpname) {
1528			if(dp->namelen > dpname_storage_len) {
1529				verbose(VERB_ALGO, "no cache dpname too long");
1530				lock_rw_unlock(&qstate->env->fwds->lock);
1531				*retdpname = NULL;
1532				*retdpnamelen = 0;
1533				return dp_no_cache;
1534			}
1535			memmove(dpname_storage, dp->name, dp->namelen);
1536			*retdpname = dpname_storage;
1537			*retdpnamelen = dp->namelen;
1538		}
1539		lock_rw_unlock(&qstate->env->fwds->lock);
1540		return dp_no_cache;
1541	}
1542	lock_rw_unlock(&qstate->env->fwds->lock);
1543	lock_rw_unlock(&qstate->env->hints->lock);
1544	if(retdpname) {
1545		*retdpname = NULL;
1546		*retdpnamelen = 0;
1547	}
1548	return 0;
1549}
1550
1551void iterator_set_ip46_support(struct module_stack* mods,
1552	struct module_env* env, struct outside_network* outnet)
1553{
1554	int m = modstack_find(mods, "iterator");
1555	struct iter_env* ie = NULL;
1556	if(m == -1)
1557		return;
1558	ie = (struct iter_env*)env->modinfo[m];
1559	if(outnet->pending == NULL)
1560		return; /* we are in testbound, no rbtree for UDP */
1561	if(outnet->num_ip4 == 0)
1562		ie->supports_ipv4 = 0;
1563	if(outnet->num_ip6 == 0)
1564		ie->supports_ipv6 = 0;
1565}
1566