1/*
2** $Id: ltable.c $
3** Lua tables (hash)
4** See Copyright Notice in lua.h
5*/
6
7#define ltable_c
8#define LUA_CORE
9
10#include "lprefix.h"
11
12
13/*
14** Implementation of tables (aka arrays, objects, or hash tables).
15** Tables keep its elements in two parts: an array part and a hash part.
16** Non-negative integer keys are all candidates to be kept in the array
17** part. The actual size of the array is the largest 'n' such that
18** more than half the slots between 1 and n are in use.
19** Hash uses a mix of chained scatter table with Brent's variation.
20** A main invariant of these tables is that, if an element is not
21** in its main position (i.e. the 'original' position that its hash gives
22** to it), then the colliding element is in its own main position.
23** Hence even when the load factor reaches 100%, performance remains good.
24*/
25
26#include <math.h>
27#include <limits.h>
28
29#include "lua.h"
30
31#include "ldebug.h"
32#include "ldo.h"
33#include "lgc.h"
34#include "lmem.h"
35#include "lobject.h"
36#include "lstate.h"
37#include "lstring.h"
38#include "ltable.h"
39#include "lvm.h"
40
41
42/*
43** MAXABITS is the largest integer such that MAXASIZE fits in an
44** unsigned int.
45*/
46#define MAXABITS	cast_int(sizeof(int) * CHAR_BIT - 1)
47
48
49/*
50** MAXASIZE is the maximum size of the array part. It is the minimum
51** between 2^MAXABITS and the maximum size that, measured in bytes,
52** fits in a 'size_t'.
53*/
54#define MAXASIZE	luaM_limitN(1u << MAXABITS, TValue)
55
56/*
57** MAXHBITS is the largest integer such that 2^MAXHBITS fits in a
58** signed int.
59*/
60#define MAXHBITS	(MAXABITS - 1)
61
62
63/*
64** MAXHSIZE is the maximum size of the hash part. It is the minimum
65** between 2^MAXHBITS and the maximum size such that, measured in bytes,
66** it fits in a 'size_t'.
67*/
68#define MAXHSIZE	luaM_limitN(1u << MAXHBITS, Node)
69
70
71/*
72** When the original hash value is good, hashing by a power of 2
73** avoids the cost of '%'.
74*/
75#define hashpow2(t,n)		(gnode(t, lmod((n), sizenode(t))))
76
77/*
78** for other types, it is better to avoid modulo by power of 2, as
79** they can have many 2 factors.
80*/
81#define hashmod(t,n)	(gnode(t, ((n) % ((sizenode(t)-1)|1))))
82
83
84#define hashstr(t,str)		hashpow2(t, (str)->hash)
85#define hashboolean(t,p)	hashpow2(t, p)
86
87
88#define hashpointer(t,p)	hashmod(t, point2uint(p))
89
90
91#define dummynode		(&dummynode_)
92
93static const Node dummynode_ = {
94  {{NULL}, LUA_VEMPTY,  /* value's value and type */
95   LUA_VNIL, 0, {NULL}}  /* key type, next, and key value */
96};
97
98
99static const TValue absentkey = {ABSTKEYCONSTANT};
100
101
102/*
103** Hash for integers. To allow a good hash, use the remainder operator
104** ('%'). If integer fits as a non-negative int, compute an int
105** remainder, which is faster. Otherwise, use an unsigned-integer
106** remainder, which uses all bits and ensures a non-negative result.
107*/
108static Node *hashint (const Table *t, lua_Integer i) {
109  lua_Unsigned ui = l_castS2U(i);
110  if (ui <= cast_uint(INT_MAX))
111    return hashmod(t, cast_int(ui));
112  else
113    return hashmod(t, ui);
114}
115
116
117/*
118** Hash for floating-point numbers.
119** The main computation should be just
120**     n = frexp(n, &i); return (n * INT_MAX) + i
121** but there are some numerical subtleties.
122** In a two-complement representation, INT_MAX does not has an exact
123** representation as a float, but INT_MIN does; because the absolute
124** value of 'frexp' is smaller than 1 (unless 'n' is inf/NaN), the
125** absolute value of the product 'frexp * -INT_MIN' is smaller or equal
126** to INT_MAX. Next, the use of 'unsigned int' avoids overflows when
127** adding 'i'; the use of '~u' (instead of '-u') avoids problems with
128** INT_MIN.
129*/
130#if !defined(l_hashfloat)
131static int l_hashfloat (lua_Number n) {
132  int i;
133  lua_Integer ni;
134  n = l_mathop(frexp)(n, &i) * -cast_num(INT_MIN);
135  if (!lua_numbertointeger(n, &ni)) {  /* is 'n' inf/-inf/NaN? */
136    lua_assert(luai_numisnan(n) || l_mathop(fabs)(n) == cast_num(HUGE_VAL));
137    return 0;
138  }
139  else {  /* normal case */
140    unsigned int u = cast_uint(i) + cast_uint(ni);
141    return cast_int(u <= cast_uint(INT_MAX) ? u : ~u);
142  }
143}
144#endif
145
146
147/*
148** returns the 'main' position of an element in a table (that is,
149** the index of its hash value).
150*/
151static Node *mainpositionTV (const Table *t, const TValue *key) {
152  switch (ttypetag(key)) {
153    case LUA_VNUMINT: {
154      lua_Integer i = ivalue(key);
155      return hashint(t, i);
156    }
157    case LUA_VNUMFLT: {
158      lua_Number n = fltvalue(key);
159      return hashmod(t, l_hashfloat(n));
160    }
161    case LUA_VSHRSTR: {
162      TString *ts = tsvalue(key);
163      return hashstr(t, ts);
164    }
165    case LUA_VLNGSTR: {
166      TString *ts = tsvalue(key);
167      return hashpow2(t, luaS_hashlongstr(ts));
168    }
169    case LUA_VFALSE:
170      return hashboolean(t, 0);
171    case LUA_VTRUE:
172      return hashboolean(t, 1);
173    case LUA_VLIGHTUSERDATA: {
174      void *p = pvalue(key);
175      return hashpointer(t, p);
176    }
177    case LUA_VLCF: {
178      lua_CFunction f = fvalue(key);
179      return hashpointer(t, f);
180    }
181    default: {
182      GCObject *o = gcvalue(key);
183      return hashpointer(t, o);
184    }
185  }
186}
187
188
189l_sinline Node *mainpositionfromnode (const Table *t, Node *nd) {
190  TValue key;
191  getnodekey(cast(lua_State *, NULL), &key, nd);
192  return mainpositionTV(t, &key);
193}
194
195
196/*
197** Check whether key 'k1' is equal to the key in node 'n2'. This
198** equality is raw, so there are no metamethods. Floats with integer
199** values have been normalized, so integers cannot be equal to
200** floats. It is assumed that 'eqshrstr' is simply pointer equality, so
201** that short strings are handled in the default case.
202** A true 'deadok' means to accept dead keys as equal to their original
203** values. All dead keys are compared in the default case, by pointer
204** identity. (Only collectable objects can produce dead keys.) Note that
205** dead long strings are also compared by identity.
206** Once a key is dead, its corresponding value may be collected, and
207** then another value can be created with the same address. If this
208** other value is given to 'next', 'equalkey' will signal a false
209** positive. In a regular traversal, this situation should never happen,
210** as all keys given to 'next' came from the table itself, and therefore
211** could not have been collected. Outside a regular traversal, we
212** have garbage in, garbage out. What is relevant is that this false
213** positive does not break anything.  (In particular, 'next' will return
214** some other valid item on the table or nil.)
215*/
216static int equalkey (const TValue *k1, const Node *n2, int deadok) {
217  if ((rawtt(k1) != keytt(n2)) &&  /* not the same variants? */
218       !(deadok && keyisdead(n2) && iscollectable(k1)))
219   return 0;  /* cannot be same key */
220  switch (keytt(n2)) {
221    case LUA_VNIL: case LUA_VFALSE: case LUA_VTRUE:
222      return 1;
223    case LUA_VNUMINT:
224      return (ivalue(k1) == keyival(n2));
225    case LUA_VNUMFLT:
226      return luai_numeq(fltvalue(k1), fltvalueraw(keyval(n2)));
227    case LUA_VLIGHTUSERDATA:
228      return pvalue(k1) == pvalueraw(keyval(n2));
229    case LUA_VLCF:
230      return fvalue(k1) == fvalueraw(keyval(n2));
231    case ctb(LUA_VLNGSTR):
232      return luaS_eqlngstr(tsvalue(k1), keystrval(n2));
233    default:
234      return gcvalue(k1) == gcvalueraw(keyval(n2));
235  }
236}
237
238
239/*
240** True if value of 'alimit' is equal to the real size of the array
241** part of table 't'. (Otherwise, the array part must be larger than
242** 'alimit'.)
243*/
244#define limitequalsasize(t)	(isrealasize(t) || ispow2((t)->alimit))
245
246
247/*
248** Returns the real size of the 'array' array
249*/
250LUAI_FUNC unsigned int luaH_realasize (const Table *t) {
251  if (limitequalsasize(t))
252    return t->alimit;  /* this is the size */
253  else {
254    unsigned int size = t->alimit;
255    /* compute the smallest power of 2 not smaller than 'n' */
256    size |= (size >> 1);
257    size |= (size >> 2);
258    size |= (size >> 4);
259    size |= (size >> 8);
260#if (UINT_MAX >> 14) > 3  /* unsigned int has more than 16 bits */
261    size |= (size >> 16);
262#if (UINT_MAX >> 30) > 3
263    size |= (size >> 32);  /* unsigned int has more than 32 bits */
264#endif
265#endif
266    size++;
267    lua_assert(ispow2(size) && size/2 < t->alimit && t->alimit < size);
268    return size;
269  }
270}
271
272
273/*
274** Check whether real size of the array is a power of 2.
275** (If it is not, 'alimit' cannot be changed to any other value
276** without changing the real size.)
277*/
278static int ispow2realasize (const Table *t) {
279  return (!isrealasize(t) || ispow2(t->alimit));
280}
281
282
283static unsigned int setlimittosize (Table *t) {
284  t->alimit = luaH_realasize(t);
285  setrealasize(t);
286  return t->alimit;
287}
288
289
290#define limitasasize(t)	check_exp(isrealasize(t), t->alimit)
291
292
293
294/*
295** "Generic" get version. (Not that generic: not valid for integers,
296** which may be in array part, nor for floats with integral values.)
297** See explanation about 'deadok' in function 'equalkey'.
298*/
299static const TValue *getgeneric (Table *t, const TValue *key, int deadok) {
300  Node *n = mainpositionTV(t, key);
301  for (;;) {  /* check whether 'key' is somewhere in the chain */
302    if (equalkey(key, n, deadok))
303      return gval(n);  /* that's it */
304    else {
305      int nx = gnext(n);
306      if (nx == 0)
307        return &absentkey;  /* not found */
308      n += nx;
309    }
310  }
311}
312
313
314/*
315** returns the index for 'k' if 'k' is an appropriate key to live in
316** the array part of a table, 0 otherwise.
317*/
318static unsigned int arrayindex (lua_Integer k) {
319  if (l_castS2U(k) - 1u < MAXASIZE)  /* 'k' in [1, MAXASIZE]? */
320    return cast_uint(k);  /* 'key' is an appropriate array index */
321  else
322    return 0;
323}
324
325
326/*
327** returns the index of a 'key' for table traversals. First goes all
328** elements in the array part, then elements in the hash part. The
329** beginning of a traversal is signaled by 0.
330*/
331static unsigned int findindex (lua_State *L, Table *t, TValue *key,
332                               unsigned int asize) {
333  unsigned int i;
334  if (ttisnil(key)) return 0;  /* first iteration */
335  i = ttisinteger(key) ? arrayindex(ivalue(key)) : 0;
336  if (i - 1u < asize)  /* is 'key' inside array part? */
337    return i;  /* yes; that's the index */
338  else {
339    const TValue *n = getgeneric(t, key, 1);
340    if (l_unlikely(isabstkey(n)))
341      luaG_runerror(L, "invalid key to 'next'");  /* key not found */
342    i = cast_int(nodefromval(n) - gnode(t, 0));  /* key index in hash table */
343    /* hash elements are numbered after array ones */
344    return (i + 1) + asize;
345  }
346}
347
348
349int luaH_next (lua_State *L, Table *t, StkId key) {
350  unsigned int asize = luaH_realasize(t);
351  unsigned int i = findindex(L, t, s2v(key), asize);  /* find original key */
352  for (; i < asize; i++) {  /* try first array part */
353    if (!isempty(&t->array[i])) {  /* a non-empty entry? */
354      setivalue(s2v(key), i + 1);
355      setobj2s(L, key + 1, &t->array[i]);
356      return 1;
357    }
358  }
359  for (i -= asize; cast_int(i) < sizenode(t); i++) {  /* hash part */
360    if (!isempty(gval(gnode(t, i)))) {  /* a non-empty entry? */
361      Node *n = gnode(t, i);
362      getnodekey(L, s2v(key), n);
363      setobj2s(L, key + 1, gval(n));
364      return 1;
365    }
366  }
367  return 0;  /* no more elements */
368}
369
370
371static void freehash (lua_State *L, Table *t) {
372  if (!isdummy(t))
373    luaM_freearray(L, t->node, cast_sizet(sizenode(t)));
374}
375
376
377/*
378** {=============================================================
379** Rehash
380** ==============================================================
381*/
382
383/*
384** Compute the optimal size for the array part of table 't'. 'nums' is a
385** "count array" where 'nums[i]' is the number of integers in the table
386** between 2^(i - 1) + 1 and 2^i. 'pna' enters with the total number of
387** integer keys in the table and leaves with the number of keys that
388** will go to the array part; return the optimal size.  (The condition
389** 'twotoi > 0' in the for loop stops the loop if 'twotoi' overflows.)
390*/
391static unsigned int computesizes (unsigned int nums[], unsigned int *pna) {
392  int i;
393  unsigned int twotoi;  /* 2^i (candidate for optimal size) */
394  unsigned int a = 0;  /* number of elements smaller than 2^i */
395  unsigned int na = 0;  /* number of elements to go to array part */
396  unsigned int optimal = 0;  /* optimal size for array part */
397  /* loop while keys can fill more than half of total size */
398  for (i = 0, twotoi = 1;
399       twotoi > 0 && *pna > twotoi / 2;
400       i++, twotoi *= 2) {
401    a += nums[i];
402    if (a > twotoi/2) {  /* more than half elements present? */
403      optimal = twotoi;  /* optimal size (till now) */
404      na = a;  /* all elements up to 'optimal' will go to array part */
405    }
406  }
407  lua_assert((optimal == 0 || optimal / 2 < na) && na <= optimal);
408  *pna = na;
409  return optimal;
410}
411
412
413static int countint (lua_Integer key, unsigned int *nums) {
414  unsigned int k = arrayindex(key);
415  if (k != 0) {  /* is 'key' an appropriate array index? */
416    nums[luaO_ceillog2(k)]++;  /* count as such */
417    return 1;
418  }
419  else
420    return 0;
421}
422
423
424/*
425** Count keys in array part of table 't': Fill 'nums[i]' with
426** number of keys that will go into corresponding slice and return
427** total number of non-nil keys.
428*/
429static unsigned int numusearray (const Table *t, unsigned int *nums) {
430  int lg;
431  unsigned int ttlg;  /* 2^lg */
432  unsigned int ause = 0;  /* summation of 'nums' */
433  unsigned int i = 1;  /* count to traverse all array keys */
434  unsigned int asize = limitasasize(t);  /* real array size */
435  /* traverse each slice */
436  for (lg = 0, ttlg = 1; lg <= MAXABITS; lg++, ttlg *= 2) {
437    unsigned int lc = 0;  /* counter */
438    unsigned int lim = ttlg;
439    if (lim > asize) {
440      lim = asize;  /* adjust upper limit */
441      if (i > lim)
442        break;  /* no more elements to count */
443    }
444    /* count elements in range (2^(lg - 1), 2^lg] */
445    for (; i <= lim; i++) {
446      if (!isempty(&t->array[i-1]))
447        lc++;
448    }
449    nums[lg] += lc;
450    ause += lc;
451  }
452  return ause;
453}
454
455
456static int numusehash (const Table *t, unsigned int *nums, unsigned int *pna) {
457  int totaluse = 0;  /* total number of elements */
458  int ause = 0;  /* elements added to 'nums' (can go to array part) */
459  int i = sizenode(t);
460  while (i--) {
461    Node *n = &t->node[i];
462    if (!isempty(gval(n))) {
463      if (keyisinteger(n))
464        ause += countint(keyival(n), nums);
465      totaluse++;
466    }
467  }
468  *pna += ause;
469  return totaluse;
470}
471
472
473/*
474** Creates an array for the hash part of a table with the given
475** size, or reuses the dummy node if size is zero.
476** The computation for size overflow is in two steps: the first
477** comparison ensures that the shift in the second one does not
478** overflow.
479*/
480static void setnodevector (lua_State *L, Table *t, unsigned int size) {
481  if (size == 0) {  /* no elements to hash part? */
482    t->node = cast(Node *, dummynode);  /* use common 'dummynode' */
483    t->lsizenode = 0;
484    t->lastfree = NULL;  /* signal that it is using dummy node */
485  }
486  else {
487    int i;
488    int lsize = luaO_ceillog2(size);
489    if (lsize > MAXHBITS || (1u << lsize) > MAXHSIZE)
490      luaG_runerror(L, "table overflow");
491    size = twoto(lsize);
492    t->node = luaM_newvector(L, size, Node);
493    for (i = 0; i < cast_int(size); i++) {
494      Node *n = gnode(t, i);
495      gnext(n) = 0;
496      setnilkey(n);
497      setempty(gval(n));
498    }
499    t->lsizenode = cast_byte(lsize);
500    t->lastfree = gnode(t, size);  /* all positions are free */
501  }
502}
503
504
505/*
506** (Re)insert all elements from the hash part of 'ot' into table 't'.
507*/
508static void reinsert (lua_State *L, Table *ot, Table *t) {
509  int j;
510  int size = sizenode(ot);
511  for (j = 0; j < size; j++) {
512    Node *old = gnode(ot, j);
513    if (!isempty(gval(old))) {
514      /* doesn't need barrier/invalidate cache, as entry was
515         already present in the table */
516      TValue k;
517      getnodekey(L, &k, old);
518      luaH_set(L, t, &k, gval(old));
519    }
520  }
521}
522
523
524/*
525** Exchange the hash part of 't1' and 't2'.
526*/
527static void exchangehashpart (Table *t1, Table *t2) {
528  lu_byte lsizenode = t1->lsizenode;
529  Node *node = t1->node;
530  Node *lastfree = t1->lastfree;
531  t1->lsizenode = t2->lsizenode;
532  t1->node = t2->node;
533  t1->lastfree = t2->lastfree;
534  t2->lsizenode = lsizenode;
535  t2->node = node;
536  t2->lastfree = lastfree;
537}
538
539
540/*
541** Resize table 't' for the new given sizes. Both allocations (for
542** the hash part and for the array part) can fail, which creates some
543** subtleties. If the first allocation, for the hash part, fails, an
544** error is raised and that is it. Otherwise, it copies the elements from
545** the shrinking part of the array (if it is shrinking) into the new
546** hash. Then it reallocates the array part.  If that fails, the table
547** is in its original state; the function frees the new hash part and then
548** raises the allocation error. Otherwise, it sets the new hash part
549** into the table, initializes the new part of the array (if any) with
550** nils and reinserts the elements of the old hash back into the new
551** parts of the table.
552*/
553void luaH_resize (lua_State *L, Table *t, unsigned int newasize,
554                                          unsigned int nhsize) {
555  unsigned int i;
556  Table newt;  /* to keep the new hash part */
557  unsigned int oldasize = setlimittosize(t);
558  TValue *newarray;
559  /* create new hash part with appropriate size into 'newt' */
560  setnodevector(L, &newt, nhsize);
561  if (newasize < oldasize) {  /* will array shrink? */
562    t->alimit = newasize;  /* pretend array has new size... */
563    exchangehashpart(t, &newt);  /* and new hash */
564    /* re-insert into the new hash the elements from vanishing slice */
565    for (i = newasize; i < oldasize; i++) {
566      if (!isempty(&t->array[i]))
567        luaH_setint(L, t, i + 1, &t->array[i]);
568    }
569    t->alimit = oldasize;  /* restore current size... */
570    exchangehashpart(t, &newt);  /* and hash (in case of errors) */
571  }
572  /* allocate new array */
573  newarray = luaM_reallocvector(L, t->array, oldasize, newasize, TValue);
574  if (l_unlikely(newarray == NULL && newasize > 0)) {  /* allocation failed? */
575    freehash(L, &newt);  /* release new hash part */
576    luaM_error(L);  /* raise error (with array unchanged) */
577  }
578  /* allocation ok; initialize new part of the array */
579  exchangehashpart(t, &newt);  /* 't' has the new hash ('newt' has the old) */
580  t->array = newarray;  /* set new array part */
581  t->alimit = newasize;
582  for (i = oldasize; i < newasize; i++)  /* clear new slice of the array */
583     setempty(&t->array[i]);
584  /* re-insert elements from old hash part into new parts */
585  reinsert(L, &newt, t);  /* 'newt' now has the old hash */
586  freehash(L, &newt);  /* free old hash part */
587}
588
589
590void luaH_resizearray (lua_State *L, Table *t, unsigned int nasize) {
591  int nsize = allocsizenode(t);
592  luaH_resize(L, t, nasize, nsize);
593}
594
595/*
596** nums[i] = number of keys 'k' where 2^(i - 1) < k <= 2^i
597*/
598static void rehash (lua_State *L, Table *t, const TValue *ek) {
599  unsigned int asize;  /* optimal size for array part */
600  unsigned int na;  /* number of keys in the array part */
601  unsigned int nums[MAXABITS + 1];
602  int i;
603  int totaluse;
604  for (i = 0; i <= MAXABITS; i++) nums[i] = 0;  /* reset counts */
605  setlimittosize(t);
606  na = numusearray(t, nums);  /* count keys in array part */
607  totaluse = na;  /* all those keys are integer keys */
608  totaluse += numusehash(t, nums, &na);  /* count keys in hash part */
609  /* count extra key */
610  if (ttisinteger(ek))
611    na += countint(ivalue(ek), nums);
612  totaluse++;
613  /* compute new size for array part */
614  asize = computesizes(nums, &na);
615  /* resize the table to new computed sizes */
616  luaH_resize(L, t, asize, totaluse - na);
617}
618
619
620
621/*
622** }=============================================================
623*/
624
625
626Table *luaH_new (lua_State *L) {
627  GCObject *o = luaC_newobj(L, LUA_VTABLE, sizeof(Table));
628  Table *t = gco2t(o);
629  t->metatable = NULL;
630  t->flags = cast_byte(maskflags);  /* table has no metamethod fields */
631  t->array = NULL;
632  t->alimit = 0;
633  setnodevector(L, t, 0);
634  return t;
635}
636
637
638void luaH_free (lua_State *L, Table *t) {
639  freehash(L, t);
640  luaM_freearray(L, t->array, luaH_realasize(t));
641  luaM_free(L, t);
642}
643
644
645static Node *getfreepos (Table *t) {
646  if (!isdummy(t)) {
647    while (t->lastfree > t->node) {
648      t->lastfree--;
649      if (keyisnil(t->lastfree))
650        return t->lastfree;
651    }
652  }
653  return NULL;  /* could not find a free place */
654}
655
656
657
658/*
659** inserts a new key into a hash table; first, check whether key's main
660** position is free. If not, check whether colliding node is in its main
661** position or not: if it is not, move colliding node to an empty place and
662** put new key in its main position; otherwise (colliding node is in its main
663** position), new key goes to an empty position.
664*/
665void luaH_newkey (lua_State *L, Table *t, const TValue *key, TValue *value) {
666  Node *mp;
667  TValue aux;
668  if (l_unlikely(ttisnil(key)))
669    luaG_runerror(L, "table index is nil");
670  else if (ttisfloat(key)) {
671    lua_Number f = fltvalue(key);
672    lua_Integer k;
673    if (luaV_flttointeger(f, &k, F2Ieq)) {  /* does key fit in an integer? */
674      setivalue(&aux, k);
675      key = &aux;  /* insert it as an integer */
676    }
677    else if (l_unlikely(luai_numisnan(f)))
678      luaG_runerror(L, "table index is NaN");
679  }
680  if (ttisnil(value))
681    return;  /* do not insert nil values */
682  mp = mainpositionTV(t, key);
683  if (!isempty(gval(mp)) || isdummy(t)) {  /* main position is taken? */
684    Node *othern;
685    Node *f = getfreepos(t);  /* get a free place */
686    if (f == NULL) {  /* cannot find a free place? */
687      rehash(L, t, key);  /* grow table */
688      /* whatever called 'newkey' takes care of TM cache */
689      luaH_set(L, t, key, value);  /* insert key into grown table */
690      return;
691    }
692    lua_assert(!isdummy(t));
693    othern = mainpositionfromnode(t, mp);
694    if (othern != mp) {  /* is colliding node out of its main position? */
695      /* yes; move colliding node into free position */
696      while (othern + gnext(othern) != mp)  /* find previous */
697        othern += gnext(othern);
698      gnext(othern) = cast_int(f - othern);  /* rechain to point to 'f' */
699      *f = *mp;  /* copy colliding node into free pos. (mp->next also goes) */
700      if (gnext(mp) != 0) {
701        gnext(f) += cast_int(mp - f);  /* correct 'next' */
702        gnext(mp) = 0;  /* now 'mp' is free */
703      }
704      setempty(gval(mp));
705    }
706    else {  /* colliding node is in its own main position */
707      /* new node will go into free position */
708      if (gnext(mp) != 0)
709        gnext(f) = cast_int((mp + gnext(mp)) - f);  /* chain new position */
710      else lua_assert(gnext(f) == 0);
711      gnext(mp) = cast_int(f - mp);
712      mp = f;
713    }
714  }
715  setnodekey(L, mp, key);
716  luaC_barrierback(L, obj2gco(t), key);
717  lua_assert(isempty(gval(mp)));
718  setobj2t(L, gval(mp), value);
719}
720
721
722/*
723** Search function for integers. If integer is inside 'alimit', get it
724** directly from the array part. Otherwise, if 'alimit' is not equal to
725** the real size of the array, key still can be in the array part. In
726** this case, try to avoid a call to 'luaH_realasize' when key is just
727** one more than the limit (so that it can be incremented without
728** changing the real size of the array).
729*/
730const TValue *luaH_getint (Table *t, lua_Integer key) {
731  if (l_castS2U(key) - 1u < t->alimit)  /* 'key' in [1, t->alimit]? */
732    return &t->array[key - 1];
733  else if (!limitequalsasize(t) &&  /* key still may be in the array part? */
734           (l_castS2U(key) == t->alimit + 1 ||
735            l_castS2U(key) - 1u < luaH_realasize(t))) {
736    t->alimit = cast_uint(key);  /* probably '#t' is here now */
737    return &t->array[key - 1];
738  }
739  else {
740    Node *n = hashint(t, key);
741    for (;;) {  /* check whether 'key' is somewhere in the chain */
742      if (keyisinteger(n) && keyival(n) == key)
743        return gval(n);  /* that's it */
744      else {
745        int nx = gnext(n);
746        if (nx == 0) break;
747        n += nx;
748      }
749    }
750    return &absentkey;
751  }
752}
753
754
755/*
756** search function for short strings
757*/
758const TValue *luaH_getshortstr (Table *t, TString *key) {
759  Node *n = hashstr(t, key);
760  lua_assert(key->tt == LUA_VSHRSTR);
761  for (;;) {  /* check whether 'key' is somewhere in the chain */
762    if (keyisshrstr(n) && eqshrstr(keystrval(n), key))
763      return gval(n);  /* that's it */
764    else {
765      int nx = gnext(n);
766      if (nx == 0)
767        return &absentkey;  /* not found */
768      n += nx;
769    }
770  }
771}
772
773
774const TValue *luaH_getstr (Table *t, TString *key) {
775  if (key->tt == LUA_VSHRSTR)
776    return luaH_getshortstr(t, key);
777  else {  /* for long strings, use generic case */
778    TValue ko;
779    setsvalue(cast(lua_State *, NULL), &ko, key);
780    return getgeneric(t, &ko, 0);
781  }
782}
783
784
785/*
786** main search function
787*/
788const TValue *luaH_get (Table *t, const TValue *key) {
789  switch (ttypetag(key)) {
790    case LUA_VSHRSTR: return luaH_getshortstr(t, tsvalue(key));
791    case LUA_VNUMINT: return luaH_getint(t, ivalue(key));
792    case LUA_VNIL: return &absentkey;
793    case LUA_VNUMFLT: {
794      lua_Integer k;
795      if (luaV_flttointeger(fltvalue(key), &k, F2Ieq)) /* integral index? */
796        return luaH_getint(t, k);  /* use specialized version */
797      /* else... */
798    }  /* FALLTHROUGH */
799    default:
800      return getgeneric(t, key, 0);
801  }
802}
803
804
805/*
806** Finish a raw "set table" operation, where 'slot' is where the value
807** should have been (the result of a previous "get table").
808** Beware: when using this function you probably need to check a GC
809** barrier and invalidate the TM cache.
810*/
811void luaH_finishset (lua_State *L, Table *t, const TValue *key,
812                                   const TValue *slot, TValue *value) {
813  if (isabstkey(slot))
814    luaH_newkey(L, t, key, value);
815  else
816    setobj2t(L, cast(TValue *, slot), value);
817}
818
819
820/*
821** beware: when using this function you probably need to check a GC
822** barrier and invalidate the TM cache.
823*/
824void luaH_set (lua_State *L, Table *t, const TValue *key, TValue *value) {
825  const TValue *slot = luaH_get(t, key);
826  luaH_finishset(L, t, key, slot, value);
827}
828
829
830void luaH_setint (lua_State *L, Table *t, lua_Integer key, TValue *value) {
831  const TValue *p = luaH_getint(t, key);
832  if (isabstkey(p)) {
833    TValue k;
834    setivalue(&k, key);
835    luaH_newkey(L, t, &k, value);
836  }
837  else
838    setobj2t(L, cast(TValue *, p), value);
839}
840
841
842/*
843** Try to find a boundary in the hash part of table 't'. From the
844** caller, we know that 'j' is zero or present and that 'j + 1' is
845** present. We want to find a larger key that is absent from the
846** table, so that we can do a binary search between the two keys to
847** find a boundary. We keep doubling 'j' until we get an absent index.
848** If the doubling would overflow, we try LUA_MAXINTEGER. If it is
849** absent, we are ready for the binary search. ('j', being max integer,
850** is larger or equal to 'i', but it cannot be equal because it is
851** absent while 'i' is present; so 'j > i'.) Otherwise, 'j' is a
852** boundary. ('j + 1' cannot be a present integer key because it is
853** not a valid integer in Lua.)
854*/
855static lua_Unsigned hash_search (Table *t, lua_Unsigned j) {
856  lua_Unsigned i;
857  if (j == 0) j++;  /* the caller ensures 'j + 1' is present */
858  do {
859    i = j;  /* 'i' is a present index */
860    if (j <= l_castS2U(LUA_MAXINTEGER) / 2)
861      j *= 2;
862    else {
863      j = LUA_MAXINTEGER;
864      if (isempty(luaH_getint(t, j)))  /* t[j] not present? */
865        break;  /* 'j' now is an absent index */
866      else  /* weird case */
867        return j;  /* well, max integer is a boundary... */
868    }
869  } while (!isempty(luaH_getint(t, j)));  /* repeat until an absent t[j] */
870  /* i < j  &&  t[i] present  &&  t[j] absent */
871  while (j - i > 1u) {  /* do a binary search between them */
872    lua_Unsigned m = (i + j) / 2;
873    if (isempty(luaH_getint(t, m))) j = m;
874    else i = m;
875  }
876  return i;
877}
878
879
880static unsigned int binsearch (const TValue *array, unsigned int i,
881                                                    unsigned int j) {
882  while (j - i > 1u) {  /* binary search */
883    unsigned int m = (i + j) / 2;
884    if (isempty(&array[m - 1])) j = m;
885    else i = m;
886  }
887  return i;
888}
889
890
891/*
892** Try to find a boundary in table 't'. (A 'boundary' is an integer index
893** such that t[i] is present and t[i+1] is absent, or 0 if t[1] is absent
894** and 'maxinteger' if t[maxinteger] is present.)
895** (In the next explanation, we use Lua indices, that is, with base 1.
896** The code itself uses base 0 when indexing the array part of the table.)
897** The code starts with 'limit = t->alimit', a position in the array
898** part that may be a boundary.
899**
900** (1) If 't[limit]' is empty, there must be a boundary before it.
901** As a common case (e.g., after 't[#t]=nil'), check whether 'limit-1'
902** is present. If so, it is a boundary. Otherwise, do a binary search
903** between 0 and limit to find a boundary. In both cases, try to
904** use this boundary as the new 'alimit', as a hint for the next call.
905**
906** (2) If 't[limit]' is not empty and the array has more elements
907** after 'limit', try to find a boundary there. Again, try first
908** the special case (which should be quite frequent) where 'limit+1'
909** is empty, so that 'limit' is a boundary. Otherwise, check the
910** last element of the array part. If it is empty, there must be a
911** boundary between the old limit (present) and the last element
912** (absent), which is found with a binary search. (This boundary always
913** can be a new limit.)
914**
915** (3) The last case is when there are no elements in the array part
916** (limit == 0) or its last element (the new limit) is present.
917** In this case, must check the hash part. If there is no hash part
918** or 'limit+1' is absent, 'limit' is a boundary.  Otherwise, call
919** 'hash_search' to find a boundary in the hash part of the table.
920** (In those cases, the boundary is not inside the array part, and
921** therefore cannot be used as a new limit.)
922*/
923lua_Unsigned luaH_getn (Table *t) {
924  unsigned int limit = t->alimit;
925  if (limit > 0 && isempty(&t->array[limit - 1])) {  /* (1)? */
926    /* there must be a boundary before 'limit' */
927    if (limit >= 2 && !isempty(&t->array[limit - 2])) {
928      /* 'limit - 1' is a boundary; can it be a new limit? */
929      if (ispow2realasize(t) && !ispow2(limit - 1)) {
930        t->alimit = limit - 1;
931        setnorealasize(t);  /* now 'alimit' is not the real size */
932      }
933      return limit - 1;
934    }
935    else {  /* must search for a boundary in [0, limit] */
936      unsigned int boundary = binsearch(t->array, 0, limit);
937      /* can this boundary represent the real size of the array? */
938      if (ispow2realasize(t) && boundary > luaH_realasize(t) / 2) {
939        t->alimit = boundary;  /* use it as the new limit */
940        setnorealasize(t);
941      }
942      return boundary;
943    }
944  }
945  /* 'limit' is zero or present in table */
946  if (!limitequalsasize(t)) {  /* (2)? */
947    /* 'limit' > 0 and array has more elements after 'limit' */
948    if (isempty(&t->array[limit]))  /* 'limit + 1' is empty? */
949      return limit;  /* this is the boundary */
950    /* else, try last element in the array */
951    limit = luaH_realasize(t);
952    if (isempty(&t->array[limit - 1])) {  /* empty? */
953      /* there must be a boundary in the array after old limit,
954         and it must be a valid new limit */
955      unsigned int boundary = binsearch(t->array, t->alimit, limit);
956      t->alimit = boundary;
957      return boundary;
958    }
959    /* else, new limit is present in the table; check the hash part */
960  }
961  /* (3) 'limit' is the last element and either is zero or present in table */
962  lua_assert(limit == luaH_realasize(t) &&
963             (limit == 0 || !isempty(&t->array[limit - 1])));
964  if (isdummy(t) || isempty(luaH_getint(t, cast(lua_Integer, limit + 1))))
965    return limit;  /* 'limit + 1' is absent */
966  else  /* 'limit + 1' is also present */
967    return hash_search(t, limit);
968}
969
970
971
972#if defined(LUA_DEBUG)
973
974/* export these functions for the test library */
975
976Node *luaH_mainposition (const Table *t, const TValue *key) {
977  return mainpositionTV(t, key);
978}
979
980#endif
981