1//===- DAGISelMatcherGen.cpp - Matcher generator --------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "CodeGenDAGPatterns.h"
10#include "CodeGenInstruction.h"
11#include "CodeGenRegisters.h"
12#include "CodeGenTarget.h"
13#include "DAGISelMatcher.h"
14#include "InfoByHwMode.h"
15#include "SDNodeProperties.h"
16#include "llvm/ADT/SmallVector.h"
17#include "llvm/ADT/StringMap.h"
18#include "llvm/TableGen/Error.h"
19#include "llvm/TableGen/Record.h"
20#include <utility>
21using namespace llvm;
22
23
24/// getRegisterValueType - Look up and return the ValueType of the specified
25/// register. If the register is a member of multiple register classes, they
26/// must all have the same type.
27static MVT::SimpleValueType getRegisterValueType(Record *R,
28                                                 const CodeGenTarget &T) {
29  bool FoundRC = false;
30  MVT::SimpleValueType VT = MVT::Other;
31  const CodeGenRegister *Reg = T.getRegBank().getReg(R);
32
33  for (const auto &RC : T.getRegBank().getRegClasses()) {
34    if (!RC.contains(Reg))
35      continue;
36
37    if (!FoundRC) {
38      FoundRC = true;
39      const ValueTypeByHwMode &VVT = RC.getValueTypeNum(0);
40      assert(VVT.isSimple());
41      VT = VVT.getSimple().SimpleTy;
42      continue;
43    }
44
45#ifndef NDEBUG
46    // If this occurs in multiple register classes, they all have to agree.
47    const ValueTypeByHwMode &VVT = RC.getValueTypeNum(0);
48    assert(VVT.isSimple() && VVT.getSimple().SimpleTy == VT &&
49           "ValueType mismatch between register classes for this register");
50#endif
51  }
52  return VT;
53}
54
55
56namespace {
57  class MatcherGen {
58    const PatternToMatch &Pattern;
59    const CodeGenDAGPatterns &CGP;
60
61    /// PatWithNoTypes - This is a clone of Pattern.getSrcPattern() that starts
62    /// out with all of the types removed.  This allows us to insert type checks
63    /// as we scan the tree.
64    TreePatternNodePtr PatWithNoTypes;
65
66    /// VariableMap - A map from variable names ('$dst') to the recorded operand
67    /// number that they were captured as.  These are biased by 1 to make
68    /// insertion easier.
69    StringMap<unsigned> VariableMap;
70
71    /// This maintains the recorded operand number that OPC_CheckComplexPattern
72    /// drops each sub-operand into. We don't want to insert these into
73    /// VariableMap because that leads to identity checking if they are
74    /// encountered multiple times. Biased by 1 like VariableMap for
75    /// consistency.
76    StringMap<unsigned> NamedComplexPatternOperands;
77
78    /// NextRecordedOperandNo - As we emit opcodes to record matched values in
79    /// the RecordedNodes array, this keeps track of which slot will be next to
80    /// record into.
81    unsigned NextRecordedOperandNo;
82
83    /// MatchedChainNodes - This maintains the position in the recorded nodes
84    /// array of all of the recorded input nodes that have chains.
85    SmallVector<unsigned, 2> MatchedChainNodes;
86
87    /// MatchedComplexPatterns - This maintains a list of all of the
88    /// ComplexPatterns that we need to check. The second element of each pair
89    /// is the recorded operand number of the input node.
90    SmallVector<std::pair<const TreePatternNode*,
91                          unsigned>, 2> MatchedComplexPatterns;
92
93    /// PhysRegInputs - List list has an entry for each explicitly specified
94    /// physreg input to the pattern.  The first elt is the Register node, the
95    /// second is the recorded slot number the input pattern match saved it in.
96    SmallVector<std::pair<Record*, unsigned>, 2> PhysRegInputs;
97
98    /// Matcher - This is the top level of the generated matcher, the result.
99    Matcher *TheMatcher;
100
101    /// CurPredicate - As we emit matcher nodes, this points to the latest check
102    /// which should have future checks stuck into its Next position.
103    Matcher *CurPredicate;
104  public:
105    MatcherGen(const PatternToMatch &pattern, const CodeGenDAGPatterns &cgp);
106
107    bool EmitMatcherCode(unsigned Variant);
108    void EmitResultCode();
109
110    Matcher *GetMatcher() const { return TheMatcher; }
111  private:
112    void AddMatcher(Matcher *NewNode);
113    void InferPossibleTypes();
114
115    // Matcher Generation.
116    void EmitMatchCode(const TreePatternNode *N, TreePatternNode *NodeNoTypes);
117    void EmitLeafMatchCode(const TreePatternNode *N);
118    void EmitOperatorMatchCode(const TreePatternNode *N,
119                               TreePatternNode *NodeNoTypes);
120
121    /// If this is the first time a node with unique identifier Name has been
122    /// seen, record it. Otherwise, emit a check to make sure this is the same
123    /// node. Returns true if this is the first encounter.
124    bool recordUniqueNode(ArrayRef<std::string> Names);
125
126    // Result Code Generation.
127    unsigned getNamedArgumentSlot(StringRef Name) {
128      unsigned VarMapEntry = VariableMap[Name];
129      assert(VarMapEntry != 0 &&
130             "Variable referenced but not defined and not caught earlier!");
131      return VarMapEntry-1;
132    }
133
134    void EmitResultOperand(const TreePatternNode *N,
135                           SmallVectorImpl<unsigned> &ResultOps);
136    void EmitResultOfNamedOperand(const TreePatternNode *N,
137                                  SmallVectorImpl<unsigned> &ResultOps);
138    void EmitResultLeafAsOperand(const TreePatternNode *N,
139                                 SmallVectorImpl<unsigned> &ResultOps);
140    void EmitResultInstructionAsOperand(const TreePatternNode *N,
141                                        SmallVectorImpl<unsigned> &ResultOps);
142    void EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
143                                        SmallVectorImpl<unsigned> &ResultOps);
144    };
145
146} // end anonymous namespace
147
148MatcherGen::MatcherGen(const PatternToMatch &pattern,
149                       const CodeGenDAGPatterns &cgp)
150    : Pattern(pattern), CGP(cgp), NextRecordedOperandNo(0), TheMatcher(nullptr),
151      CurPredicate(nullptr) {
152  // We need to produce the matcher tree for the patterns source pattern.  To
153  // do this we need to match the structure as well as the types.  To do the
154  // type matching, we want to figure out the fewest number of type checks we
155  // need to emit.  For example, if there is only one integer type supported
156  // by a target, there should be no type comparisons at all for integer
157  // patterns!
158  //
159  // To figure out the fewest number of type checks needed, clone the pattern,
160  // remove the types, then perform type inference on the pattern as a whole.
161  // If there are unresolved types, emit an explicit check for those types,
162  // apply the type to the tree, then rerun type inference.  Iterate until all
163  // types are resolved.
164  //
165  PatWithNoTypes = Pattern.getSrcPattern()->clone();
166  PatWithNoTypes->RemoveAllTypes();
167
168  // If there are types that are manifestly known, infer them.
169  InferPossibleTypes();
170}
171
172/// InferPossibleTypes - As we emit the pattern, we end up generating type
173/// checks and applying them to the 'PatWithNoTypes' tree.  As we do this, we
174/// want to propagate implied types as far throughout the tree as possible so
175/// that we avoid doing redundant type checks.  This does the type propagation.
176void MatcherGen::InferPossibleTypes() {
177  // TP - Get *SOME* tree pattern, we don't care which.  It is only used for
178  // diagnostics, which we know are impossible at this point.
179  TreePattern &TP = *CGP.pf_begin()->second;
180
181  bool MadeChange = true;
182  while (MadeChange)
183    MadeChange = PatWithNoTypes->ApplyTypeConstraints(TP,
184                                              true/*Ignore reg constraints*/);
185}
186
187
188/// AddMatcher - Add a matcher node to the current graph we're building.
189void MatcherGen::AddMatcher(Matcher *NewNode) {
190  if (CurPredicate)
191    CurPredicate->setNext(NewNode);
192  else
193    TheMatcher = NewNode;
194  CurPredicate = NewNode;
195}
196
197
198//===----------------------------------------------------------------------===//
199// Pattern Match Generation
200//===----------------------------------------------------------------------===//
201
202/// EmitLeafMatchCode - Generate matching code for leaf nodes.
203void MatcherGen::EmitLeafMatchCode(const TreePatternNode *N) {
204  assert(N->isLeaf() && "Not a leaf?");
205
206  // Direct match against an integer constant.
207  if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) {
208    // If this is the root of the dag we're matching, we emit a redundant opcode
209    // check to ensure that this gets folded into the normal top-level
210    // OpcodeSwitch.
211    if (N == Pattern.getSrcPattern()) {
212      const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed("imm"));
213      AddMatcher(new CheckOpcodeMatcher(NI));
214    }
215
216    return AddMatcher(new CheckIntegerMatcher(II->getValue()));
217  }
218
219  // An UnsetInit represents a named node without any constraints.
220  if (isa<UnsetInit>(N->getLeafValue())) {
221    assert(N->hasName() && "Unnamed ? leaf");
222    return;
223  }
224
225  DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
226  if (!DI) {
227    errs() << "Unknown leaf kind: " << *N << "\n";
228    abort();
229  }
230
231  Record *LeafRec = DI->getDef();
232
233  // A ValueType leaf node can represent a register when named, or itself when
234  // unnamed.
235  if (LeafRec->isSubClassOf("ValueType")) {
236    // A named ValueType leaf always matches: (add i32:$a, i32:$b).
237    if (N->hasName())
238      return;
239    // An unnamed ValueType as in (sext_inreg GPR:$foo, i8).
240    return AddMatcher(new CheckValueTypeMatcher(LeafRec->getName()));
241  }
242
243  if (// Handle register references.  Nothing to do here, they always match.
244      LeafRec->isSubClassOf("RegisterClass") ||
245      LeafRec->isSubClassOf("RegisterOperand") ||
246      LeafRec->isSubClassOf("PointerLikeRegClass") ||
247      LeafRec->isSubClassOf("SubRegIndex") ||
248      // Place holder for SRCVALUE nodes. Nothing to do here.
249      LeafRec->getName() == "srcvalue")
250    return;
251
252  // If we have a physreg reference like (mul gpr:$src, EAX) then we need to
253  // record the register
254  if (LeafRec->isSubClassOf("Register")) {
255    AddMatcher(new RecordMatcher("physreg input "+LeafRec->getName().str(),
256                                 NextRecordedOperandNo));
257    PhysRegInputs.push_back(std::make_pair(LeafRec, NextRecordedOperandNo++));
258    return;
259  }
260
261  if (LeafRec->isSubClassOf("CondCode"))
262    return AddMatcher(new CheckCondCodeMatcher(LeafRec->getName()));
263
264  if (LeafRec->isSubClassOf("ComplexPattern")) {
265    // We can't model ComplexPattern uses that don't have their name taken yet.
266    // The OPC_CheckComplexPattern operation implicitly records the results.
267    if (N->getName().empty()) {
268      std::string S;
269      raw_string_ostream OS(S);
270      OS << "We expect complex pattern uses to have names: " << *N;
271      PrintFatalError(S);
272    }
273
274    // Remember this ComplexPattern so that we can emit it after all the other
275    // structural matches are done.
276    unsigned InputOperand = VariableMap[N->getName()] - 1;
277    MatchedComplexPatterns.push_back(std::make_pair(N, InputOperand));
278    return;
279  }
280
281  if (LeafRec->getName() == "immAllOnesV" ||
282      LeafRec->getName() == "immAllZerosV") {
283    // If this is the root of the dag we're matching, we emit a redundant opcode
284    // check to ensure that this gets folded into the normal top-level
285    // OpcodeSwitch.
286    if (N == Pattern.getSrcPattern()) {
287      MVT VT = N->getSimpleType(0);
288      StringRef Name = VT.isScalableVector() ? "splat_vector" : "build_vector";
289      const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed(Name));
290      AddMatcher(new CheckOpcodeMatcher(NI));
291    }
292    if (LeafRec->getName() == "immAllOnesV")
293      AddMatcher(new CheckImmAllOnesVMatcher());
294    else
295      AddMatcher(new CheckImmAllZerosVMatcher());
296    return;
297  }
298
299  errs() << "Unknown leaf kind: " << *N << "\n";
300  abort();
301}
302
303void MatcherGen::EmitOperatorMatchCode(const TreePatternNode *N,
304                                       TreePatternNode *NodeNoTypes) {
305  assert(!N->isLeaf() && "Not an operator?");
306
307  if (N->getOperator()->isSubClassOf("ComplexPattern")) {
308    // The "name" of a non-leaf complex pattern (MY_PAT $op1, $op2) is
309    // "MY_PAT:op1:op2". We should already have validated that the uses are
310    // consistent.
311    std::string PatternName = std::string(N->getOperator()->getName());
312    for (unsigned i = 0; i < N->getNumChildren(); ++i) {
313      PatternName += ":";
314      PatternName += N->getChild(i)->getName();
315    }
316
317    if (recordUniqueNode(PatternName)) {
318      auto NodeAndOpNum = std::make_pair(N, NextRecordedOperandNo - 1);
319      MatchedComplexPatterns.push_back(NodeAndOpNum);
320    }
321
322    return;
323  }
324
325  const SDNodeInfo &CInfo = CGP.getSDNodeInfo(N->getOperator());
326
327  // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is
328  // a constant without a predicate fn that has more than one bit set, handle
329  // this as a special case.  This is usually for targets that have special
330  // handling of certain large constants (e.g. alpha with it's 8/16/32-bit
331  // handling stuff).  Using these instructions is often far more efficient
332  // than materializing the constant.  Unfortunately, both the instcombiner
333  // and the dag combiner can often infer that bits are dead, and thus drop
334  // them from the mask in the dag.  For example, it might turn 'AND X, 255'
335  // into 'AND X, 254' if it knows the low bit is set.  Emit code that checks
336  // to handle this.
337  if ((N->getOperator()->getName() == "and" ||
338       N->getOperator()->getName() == "or") &&
339      N->getChild(1)->isLeaf() && N->getChild(1)->getPredicateCalls().empty() &&
340      N->getPredicateCalls().empty()) {
341    if (IntInit *II = dyn_cast<IntInit>(N->getChild(1)->getLeafValue())) {
342      if (!llvm::has_single_bit<uint32_t>(
343              II->getValue())) { // Don't bother with single bits.
344        // If this is at the root of the pattern, we emit a redundant
345        // CheckOpcode so that the following checks get factored properly under
346        // a single opcode check.
347        if (N == Pattern.getSrcPattern())
348          AddMatcher(new CheckOpcodeMatcher(CInfo));
349
350        // Emit the CheckAndImm/CheckOrImm node.
351        if (N->getOperator()->getName() == "and")
352          AddMatcher(new CheckAndImmMatcher(II->getValue()));
353        else
354          AddMatcher(new CheckOrImmMatcher(II->getValue()));
355
356        // Match the LHS of the AND as appropriate.
357        AddMatcher(new MoveChildMatcher(0));
358        EmitMatchCode(N->getChild(0), NodeNoTypes->getChild(0));
359        AddMatcher(new MoveParentMatcher());
360        return;
361      }
362    }
363  }
364
365  // Check that the current opcode lines up.
366  AddMatcher(new CheckOpcodeMatcher(CInfo));
367
368  // If this node has memory references (i.e. is a load or store), tell the
369  // interpreter to capture them in the memref array.
370  if (N->NodeHasProperty(SDNPMemOperand, CGP))
371    AddMatcher(new RecordMemRefMatcher());
372
373  // If this node has a chain, then the chain is operand #0 is the SDNode, and
374  // the child numbers of the node are all offset by one.
375  unsigned OpNo = 0;
376  if (N->NodeHasProperty(SDNPHasChain, CGP)) {
377    // Record the node and remember it in our chained nodes list.
378    AddMatcher(new RecordMatcher("'" + N->getOperator()->getName().str() +
379                                         "' chained node",
380                                 NextRecordedOperandNo));
381    // Remember all of the input chains our pattern will match.
382    MatchedChainNodes.push_back(NextRecordedOperandNo++);
383
384    // Don't look at the input chain when matching the tree pattern to the
385    // SDNode.
386    OpNo = 1;
387
388    // If this node is not the root and the subtree underneath it produces a
389    // chain, then the result of matching the node is also produce a chain.
390    // Beyond that, this means that we're also folding (at least) the root node
391    // into the node that produce the chain (for example, matching
392    // "(add reg, (load ptr))" as a add_with_memory on X86).  This is
393    // problematic, if the 'reg' node also uses the load (say, its chain).
394    // Graphically:
395    //
396    //         [LD]
397    //         ^  ^
398    //         |  \                              DAG's like cheese.
399    //        /    |
400    //       /    [YY]
401    //       |     ^
402    //      [XX]--/
403    //
404    // It would be invalid to fold XX and LD.  In this case, folding the two
405    // nodes together would induce a cycle in the DAG, making it a 'cyclic DAG'
406    // To prevent this, we emit a dynamic check for legality before allowing
407    // this to be folded.
408    //
409    const TreePatternNode *Root = Pattern.getSrcPattern();
410    if (N != Root) {                             // Not the root of the pattern.
411      // If there is a node between the root and this node, then we definitely
412      // need to emit the check.
413      bool NeedCheck = !Root->hasChild(N);
414
415      // If it *is* an immediate child of the root, we can still need a check if
416      // the root SDNode has multiple inputs.  For us, this means that it is an
417      // intrinsic, has multiple operands, or has other inputs like chain or
418      // glue).
419      if (!NeedCheck) {
420        const SDNodeInfo &PInfo = CGP.getSDNodeInfo(Root->getOperator());
421        NeedCheck =
422          Root->getOperator() == CGP.get_intrinsic_void_sdnode() ||
423          Root->getOperator() == CGP.get_intrinsic_w_chain_sdnode() ||
424          Root->getOperator() == CGP.get_intrinsic_wo_chain_sdnode() ||
425          PInfo.getNumOperands() > 1 ||
426          PInfo.hasProperty(SDNPHasChain) ||
427          PInfo.hasProperty(SDNPInGlue) ||
428          PInfo.hasProperty(SDNPOptInGlue);
429      }
430
431      if (NeedCheck)
432        AddMatcher(new CheckFoldableChainNodeMatcher());
433    }
434  }
435
436  // If this node has an output glue and isn't the root, remember it.
437  if (N->NodeHasProperty(SDNPOutGlue, CGP) &&
438      N != Pattern.getSrcPattern()) {
439    // TODO: This redundantly records nodes with both glues and chains.
440
441    // Record the node and remember it in our chained nodes list.
442    AddMatcher(new RecordMatcher("'" + N->getOperator()->getName().str() +
443                                         "' glue output node",
444                                 NextRecordedOperandNo));
445  }
446
447  // If this node is known to have an input glue or if it *might* have an input
448  // glue, capture it as the glue input of the pattern.
449  if (N->NodeHasProperty(SDNPOptInGlue, CGP) ||
450      N->NodeHasProperty(SDNPInGlue, CGP))
451    AddMatcher(new CaptureGlueInputMatcher());
452
453  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) {
454    // Get the code suitable for matching this child.  Move to the child, check
455    // it then move back to the parent.
456    AddMatcher(new MoveChildMatcher(OpNo));
457    EmitMatchCode(N->getChild(i), NodeNoTypes->getChild(i));
458    AddMatcher(new MoveParentMatcher());
459  }
460}
461
462bool MatcherGen::recordUniqueNode(ArrayRef<std::string> Names) {
463  unsigned Entry = 0;
464  for (const std::string &Name : Names) {
465    unsigned &VarMapEntry = VariableMap[Name];
466    if (!Entry)
467      Entry = VarMapEntry;
468    assert(Entry == VarMapEntry);
469  }
470
471  bool NewRecord = false;
472  if (Entry == 0) {
473    // If it is a named node, we must emit a 'Record' opcode.
474    std::string WhatFor;
475    for (const std::string &Name : Names) {
476      if (!WhatFor.empty())
477        WhatFor += ',';
478      WhatFor += "$" + Name;
479    }
480    AddMatcher(new RecordMatcher(WhatFor, NextRecordedOperandNo));
481    Entry = ++NextRecordedOperandNo;
482    NewRecord = true;
483  } else {
484    // If we get here, this is a second reference to a specific name.  Since
485    // we already have checked that the first reference is valid, we don't
486    // have to recursively match it, just check that it's the same as the
487    // previously named thing.
488    AddMatcher(new CheckSameMatcher(Entry-1));
489  }
490
491  for (const std::string &Name : Names)
492    VariableMap[Name] = Entry;
493
494  return NewRecord;
495}
496
497void MatcherGen::EmitMatchCode(const TreePatternNode *N,
498                               TreePatternNode *NodeNoTypes) {
499  // If N and NodeNoTypes don't agree on a type, then this is a case where we
500  // need to do a type check.  Emit the check, apply the type to NodeNoTypes and
501  // reinfer any correlated types.
502  SmallVector<unsigned, 2> ResultsToTypeCheck;
503
504  for (unsigned i = 0, e = NodeNoTypes->getNumTypes(); i != e; ++i) {
505    if (NodeNoTypes->getExtType(i) == N->getExtType(i)) continue;
506    NodeNoTypes->setType(i, N->getExtType(i));
507    InferPossibleTypes();
508    ResultsToTypeCheck.push_back(i);
509  }
510
511  // If this node has a name associated with it, capture it in VariableMap. If
512  // we already saw this in the pattern, emit code to verify dagness.
513  SmallVector<std::string, 4> Names;
514  if (!N->getName().empty())
515    Names.push_back(N->getName());
516
517  for (const ScopedName &Name : N->getNamesAsPredicateArg()) {
518    Names.push_back(("pred:" + Twine(Name.getScope()) + ":" + Name.getIdentifier()).str());
519  }
520
521  if (!Names.empty()) {
522    if (!recordUniqueNode(Names))
523      return;
524  }
525
526  if (N->isLeaf())
527    EmitLeafMatchCode(N);
528  else
529    EmitOperatorMatchCode(N, NodeNoTypes);
530
531  // If there are node predicates for this node, generate their checks.
532  for (unsigned i = 0, e = N->getPredicateCalls().size(); i != e; ++i) {
533    const TreePredicateCall &Pred = N->getPredicateCalls()[i];
534    SmallVector<unsigned, 4> Operands;
535    if (Pred.Fn.usesOperands()) {
536      TreePattern *TP = Pred.Fn.getOrigPatFragRecord();
537      for (unsigned i = 0; i < TP->getNumArgs(); ++i) {
538        std::string Name =
539            ("pred:" + Twine(Pred.Scope) + ":" + TP->getArgName(i)).str();
540        Operands.push_back(getNamedArgumentSlot(Name));
541      }
542    }
543    AddMatcher(new CheckPredicateMatcher(Pred.Fn, Operands));
544  }
545
546  for (unsigned i = 0, e = ResultsToTypeCheck.size(); i != e; ++i)
547    AddMatcher(new CheckTypeMatcher(N->getSimpleType(ResultsToTypeCheck[i]),
548                                    ResultsToTypeCheck[i]));
549}
550
551/// EmitMatcherCode - Generate the code that matches the predicate of this
552/// pattern for the specified Variant.  If the variant is invalid this returns
553/// true and does not generate code, if it is valid, it returns false.
554bool MatcherGen::EmitMatcherCode(unsigned Variant) {
555  // If the root of the pattern is a ComplexPattern and if it is specified to
556  // match some number of root opcodes, these are considered to be our variants.
557  // Depending on which variant we're generating code for, emit the root opcode
558  // check.
559  if (const ComplexPattern *CP =
560                   Pattern.getSrcPattern()->getComplexPatternInfo(CGP)) {
561    const std::vector<Record*> &OpNodes = CP->getRootNodes();
562    assert(!OpNodes.empty() &&"Complex Pattern must specify what it can match");
563    if (Variant >= OpNodes.size()) return true;
564
565    AddMatcher(new CheckOpcodeMatcher(CGP.getSDNodeInfo(OpNodes[Variant])));
566  } else {
567    if (Variant != 0) return true;
568  }
569
570  // Emit the matcher for the pattern structure and types.
571  EmitMatchCode(Pattern.getSrcPattern(), PatWithNoTypes.get());
572
573  // If the pattern has a predicate on it (e.g. only enabled when a subtarget
574  // feature is around, do the check).
575  std::string PredicateCheck = Pattern.getPredicateCheck();
576  if (!PredicateCheck.empty())
577    AddMatcher(new CheckPatternPredicateMatcher(PredicateCheck));
578
579  // Now that we've completed the structural type match, emit any ComplexPattern
580  // checks (e.g. addrmode matches).  We emit this after the structural match
581  // because they are generally more expensive to evaluate and more difficult to
582  // factor.
583  for (unsigned i = 0, e = MatchedComplexPatterns.size(); i != e; ++i) {
584    auto N = MatchedComplexPatterns[i].first;
585
586    // Remember where the results of this match get stuck.
587    if (N->isLeaf()) {
588      NamedComplexPatternOperands[N->getName()] = NextRecordedOperandNo + 1;
589    } else {
590      unsigned CurOp = NextRecordedOperandNo;
591      for (unsigned i = 0; i < N->getNumChildren(); ++i) {
592        NamedComplexPatternOperands[N->getChild(i)->getName()] = CurOp + 1;
593        CurOp += N->getChild(i)->getNumMIResults(CGP);
594      }
595    }
596
597    // Get the slot we recorded the value in from the name on the node.
598    unsigned RecNodeEntry = MatchedComplexPatterns[i].second;
599
600    const ComplexPattern *CP = N->getComplexPatternInfo(CGP);
601    assert(CP && "Not a valid ComplexPattern!");
602
603    // Emit a CheckComplexPat operation, which does the match (aborting if it
604    // fails) and pushes the matched operands onto the recorded nodes list.
605    AddMatcher(new CheckComplexPatMatcher(*CP, RecNodeEntry, N->getName(),
606                                          NextRecordedOperandNo));
607
608    // Record the right number of operands.
609    NextRecordedOperandNo += CP->getNumOperands();
610    if (CP->hasProperty(SDNPHasChain)) {
611      // If the complex pattern has a chain, then we need to keep track of the
612      // fact that we just recorded a chain input.  The chain input will be
613      // matched as the last operand of the predicate if it was successful.
614      ++NextRecordedOperandNo; // Chained node operand.
615
616      // It is the last operand recorded.
617      assert(NextRecordedOperandNo > 1 &&
618             "Should have recorded input/result chains at least!");
619      MatchedChainNodes.push_back(NextRecordedOperandNo-1);
620    }
621
622    // TODO: Complex patterns can't have output glues, if they did, we'd want
623    // to record them.
624  }
625
626  return false;
627}
628
629
630//===----------------------------------------------------------------------===//
631// Node Result Generation
632//===----------------------------------------------------------------------===//
633
634void MatcherGen::EmitResultOfNamedOperand(const TreePatternNode *N,
635                                          SmallVectorImpl<unsigned> &ResultOps){
636  assert(!N->getName().empty() && "Operand not named!");
637
638  if (unsigned SlotNo = NamedComplexPatternOperands[N->getName()]) {
639    // Complex operands have already been completely selected, just find the
640    // right slot ant add the arguments directly.
641    for (unsigned i = 0; i < N->getNumMIResults(CGP); ++i)
642      ResultOps.push_back(SlotNo - 1 + i);
643
644    return;
645  }
646
647  unsigned SlotNo = getNamedArgumentSlot(N->getName());
648
649  // If this is an 'imm' or 'fpimm' node, make sure to convert it to the target
650  // version of the immediate so that it doesn't get selected due to some other
651  // node use.
652  if (!N->isLeaf()) {
653    StringRef OperatorName = N->getOperator()->getName();
654    if (OperatorName == "imm" || OperatorName == "fpimm") {
655      AddMatcher(new EmitConvertToTargetMatcher(SlotNo));
656      ResultOps.push_back(NextRecordedOperandNo++);
657      return;
658    }
659  }
660
661  for (unsigned i = 0; i < N->getNumMIResults(CGP); ++i)
662    ResultOps.push_back(SlotNo + i);
663}
664
665void MatcherGen::EmitResultLeafAsOperand(const TreePatternNode *N,
666                                         SmallVectorImpl<unsigned> &ResultOps) {
667  assert(N->isLeaf() && "Must be a leaf");
668
669  if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) {
670    AddMatcher(new EmitIntegerMatcher(II->getValue(), N->getSimpleType(0)));
671    ResultOps.push_back(NextRecordedOperandNo++);
672    return;
673  }
674
675  // If this is an explicit register reference, handle it.
676  if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
677    Record *Def = DI->getDef();
678    if (Def->isSubClassOf("Register")) {
679      const CodeGenRegister *Reg =
680        CGP.getTargetInfo().getRegBank().getReg(Def);
681      AddMatcher(new EmitRegisterMatcher(Reg, N->getSimpleType(0)));
682      ResultOps.push_back(NextRecordedOperandNo++);
683      return;
684    }
685
686    if (Def->getName() == "zero_reg") {
687      AddMatcher(new EmitRegisterMatcher(nullptr, N->getSimpleType(0)));
688      ResultOps.push_back(NextRecordedOperandNo++);
689      return;
690    }
691
692    if (Def->getName() == "undef_tied_input") {
693      MVT::SimpleValueType ResultVT = N->getSimpleType(0);
694      auto IDOperandNo = NextRecordedOperandNo++;
695      Record *ImpDef = Def->getRecords().getDef("IMPLICIT_DEF");
696      CodeGenInstruction &II = CGP.getTargetInfo().getInstruction(ImpDef);
697      AddMatcher(new EmitNodeMatcher(II, ResultVT, std::nullopt, false, false,
698                                     false, false, -1, IDOperandNo));
699      ResultOps.push_back(IDOperandNo);
700      return;
701    }
702
703    // Handle a reference to a register class. This is used
704    // in COPY_TO_SUBREG instructions.
705    if (Def->isSubClassOf("RegisterOperand"))
706      Def = Def->getValueAsDef("RegClass");
707    if (Def->isSubClassOf("RegisterClass")) {
708      // If the register class has an enum integer value greater than 127, the
709      // encoding overflows the limit of 7 bits, which precludes the use of
710      // StringIntegerMatcher. In this case, fallback to using IntegerMatcher.
711      const CodeGenRegisterClass &RC =
712          CGP.getTargetInfo().getRegisterClass(Def);
713      if (RC.EnumValue <= 127) {
714        std::string Value = RC.getQualifiedIdName();
715        AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));
716        ResultOps.push_back(NextRecordedOperandNo++);
717      } else {
718        AddMatcher(new EmitIntegerMatcher(RC.EnumValue, MVT::i32));
719        ResultOps.push_back(NextRecordedOperandNo++);
720      }
721      return;
722    }
723
724    // Handle a subregister index. This is used for INSERT_SUBREG etc.
725    if (Def->isSubClassOf("SubRegIndex")) {
726      const CodeGenRegBank &RB = CGP.getTargetInfo().getRegBank();
727      // If we have more than 127 subreg indices the encoding can overflow
728      // 7 bit and we cannot use StringInteger.
729      if (RB.getSubRegIndices().size() > 127) {
730        const CodeGenSubRegIndex *I = RB.findSubRegIdx(Def);
731        assert(I && "Cannot find subreg index by name!");
732        if (I->EnumValue > 127) {
733          AddMatcher(new EmitIntegerMatcher(I->EnumValue, MVT::i32));
734          ResultOps.push_back(NextRecordedOperandNo++);
735          return;
736        }
737      }
738      std::string Value = getQualifiedName(Def);
739      AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));
740      ResultOps.push_back(NextRecordedOperandNo++);
741      return;
742    }
743  }
744
745  errs() << "unhandled leaf node:\n";
746  N->dump();
747}
748
749static bool
750mayInstNodeLoadOrStore(const TreePatternNode *N,
751                       const CodeGenDAGPatterns &CGP) {
752  Record *Op = N->getOperator();
753  const CodeGenTarget &CGT = CGP.getTargetInfo();
754  CodeGenInstruction &II = CGT.getInstruction(Op);
755  return II.mayLoad || II.mayStore;
756}
757
758static unsigned
759numNodesThatMayLoadOrStore(const TreePatternNode *N,
760                           const CodeGenDAGPatterns &CGP) {
761  if (N->isLeaf())
762    return 0;
763
764  Record *OpRec = N->getOperator();
765  if (!OpRec->isSubClassOf("Instruction"))
766    return 0;
767
768  unsigned Count = 0;
769  if (mayInstNodeLoadOrStore(N, CGP))
770    ++Count;
771
772  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
773    Count += numNodesThatMayLoadOrStore(N->getChild(i), CGP);
774
775  return Count;
776}
777
778void MatcherGen::
779EmitResultInstructionAsOperand(const TreePatternNode *N,
780                               SmallVectorImpl<unsigned> &OutputOps) {
781  Record *Op = N->getOperator();
782  const CodeGenTarget &CGT = CGP.getTargetInfo();
783  CodeGenInstruction &II = CGT.getInstruction(Op);
784  const DAGInstruction &Inst = CGP.getInstruction(Op);
785
786  bool isRoot = N == Pattern.getDstPattern();
787
788  // TreeHasOutGlue - True if this tree has glue.
789  bool TreeHasInGlue = false, TreeHasOutGlue = false;
790  if (isRoot) {
791    const TreePatternNode *SrcPat = Pattern.getSrcPattern();
792    TreeHasInGlue = SrcPat->TreeHasProperty(SDNPOptInGlue, CGP) ||
793                    SrcPat->TreeHasProperty(SDNPInGlue, CGP);
794
795    // FIXME2: this is checking the entire pattern, not just the node in
796    // question, doing this just for the root seems like a total hack.
797    TreeHasOutGlue = SrcPat->TreeHasProperty(SDNPOutGlue, CGP);
798  }
799
800  // NumResults - This is the number of results produced by the instruction in
801  // the "outs" list.
802  unsigned NumResults = Inst.getNumResults();
803
804  // Number of operands we know the output instruction must have. If it is
805  // variadic, we could have more operands.
806  unsigned NumFixedOperands = II.Operands.size();
807
808  SmallVector<unsigned, 8> InstOps;
809
810  // Loop over all of the fixed operands of the instruction pattern, emitting
811  // code to fill them all in. The node 'N' usually has number children equal to
812  // the number of input operands of the instruction.  However, in cases where
813  // there are predicate operands for an instruction, we need to fill in the
814  // 'execute always' values. Match up the node operands to the instruction
815  // operands to do this.
816  unsigned ChildNo = 0;
817
818  // Similarly to the code in TreePatternNode::ApplyTypeConstraints, count the
819  // number of operands at the end of the list which have default values.
820  // Those can come from the pattern if it provides enough arguments, or be
821  // filled in with the default if the pattern hasn't provided them. But any
822  // operand with a default value _before_ the last mandatory one will be
823  // filled in with their defaults unconditionally.
824  unsigned NonOverridableOperands = NumFixedOperands;
825  while (NonOverridableOperands > NumResults &&
826         CGP.operandHasDefault(II.Operands[NonOverridableOperands-1].Rec))
827    --NonOverridableOperands;
828
829  for (unsigned InstOpNo = NumResults, e = NumFixedOperands;
830       InstOpNo != e; ++InstOpNo) {
831    // Determine what to emit for this operand.
832    Record *OperandNode = II.Operands[InstOpNo].Rec;
833    if (CGP.operandHasDefault(OperandNode) &&
834        (InstOpNo < NonOverridableOperands || ChildNo >= N->getNumChildren())) {
835      // This is a predicate or optional def operand which the pattern has not
836      // overridden, or which we aren't letting it override; emit the 'default
837      // ops' operands.
838      const DAGDefaultOperand &DefaultOp
839        = CGP.getDefaultOperand(OperandNode);
840      for (unsigned i = 0, e = DefaultOp.DefaultOps.size(); i != e; ++i)
841        EmitResultOperand(DefaultOp.DefaultOps[i].get(), InstOps);
842      continue;
843    }
844
845    // Otherwise this is a normal operand or a predicate operand without
846    // 'execute always'; emit it.
847
848    // For operands with multiple sub-operands we may need to emit
849    // multiple child patterns to cover them all.  However, ComplexPattern
850    // children may themselves emit multiple MI operands.
851    unsigned NumSubOps = 1;
852    if (OperandNode->isSubClassOf("Operand")) {
853      DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
854      if (unsigned NumArgs = MIOpInfo->getNumArgs())
855        NumSubOps = NumArgs;
856    }
857
858    unsigned FinalNumOps = InstOps.size() + NumSubOps;
859    while (InstOps.size() < FinalNumOps) {
860      const TreePatternNode *Child = N->getChild(ChildNo);
861      unsigned BeforeAddingNumOps = InstOps.size();
862      EmitResultOperand(Child, InstOps);
863      assert(InstOps.size() > BeforeAddingNumOps && "Didn't add any operands");
864
865      // If the operand is an instruction and it produced multiple results, just
866      // take the first one.
867      if (!Child->isLeaf() && Child->getOperator()->isSubClassOf("Instruction"))
868        InstOps.resize(BeforeAddingNumOps+1);
869
870      ++ChildNo;
871    }
872  }
873
874  // If this is a variadic output instruction (i.e. REG_SEQUENCE), we can't
875  // expand suboperands, use default operands, or other features determined from
876  // the CodeGenInstruction after the fixed operands, which were handled
877  // above. Emit the remaining instructions implicitly added by the use for
878  // variable_ops.
879  if (II.Operands.isVariadic) {
880    for (unsigned I = ChildNo, E = N->getNumChildren(); I < E; ++I)
881      EmitResultOperand(N->getChild(I), InstOps);
882  }
883
884  // If this node has input glue or explicitly specified input physregs, we
885  // need to add chained and glued copyfromreg nodes and materialize the glue
886  // input.
887  if (isRoot && !PhysRegInputs.empty()) {
888    // Emit all of the CopyToReg nodes for the input physical registers.  These
889    // occur in patterns like (mul:i8 AL:i8, GR8:i8:$src).
890    for (unsigned i = 0, e = PhysRegInputs.size(); i != e; ++i) {
891      const CodeGenRegister *Reg =
892        CGP.getTargetInfo().getRegBank().getReg(PhysRegInputs[i].first);
893      AddMatcher(new EmitCopyToRegMatcher(PhysRegInputs[i].second,
894                                          Reg));
895    }
896
897    // Even if the node has no other glue inputs, the resultant node must be
898    // glued to the CopyFromReg nodes we just generated.
899    TreeHasInGlue = true;
900  }
901
902  // Result order: node results, chain, glue
903
904  // Determine the result types.
905  SmallVector<MVT::SimpleValueType, 4> ResultVTs;
906  for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i)
907    ResultVTs.push_back(N->getSimpleType(i));
908
909  // If this is the root instruction of a pattern that has physical registers in
910  // its result pattern, add output VTs for them.  For example, X86 has:
911  //   (set AL, (mul ...))
912  // This also handles implicit results like:
913  //   (implicit EFLAGS)
914  if (isRoot && !Pattern.getDstRegs().empty()) {
915    // If the root came from an implicit def in the instruction handling stuff,
916    // don't re-add it.
917    Record *HandledReg = nullptr;
918    if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other)
919      HandledReg = II.ImplicitDefs[0];
920
921    for (Record *Reg : Pattern.getDstRegs()) {
922      if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue;
923      ResultVTs.push_back(getRegisterValueType(Reg, CGT));
924    }
925  }
926
927  // If this is the root of the pattern and the pattern we're matching includes
928  // a node that is variadic, mark the generated node as variadic so that it
929  // gets the excess operands from the input DAG.
930  int NumFixedArityOperands = -1;
931  if (isRoot &&
932      Pattern.getSrcPattern()->NodeHasProperty(SDNPVariadic, CGP))
933    NumFixedArityOperands = Pattern.getSrcPattern()->getNumChildren();
934
935  // If this is the root node and multiple matched nodes in the input pattern
936  // have MemRefs in them, have the interpreter collect them and plop them onto
937  // this node. If there is just one node with MemRefs, leave them on that node
938  // even if it is not the root.
939  //
940  // FIXME3: This is actively incorrect for result patterns with multiple
941  // memory-referencing instructions.
942  bool PatternHasMemOperands =
943    Pattern.getSrcPattern()->TreeHasProperty(SDNPMemOperand, CGP);
944
945  bool NodeHasMemRefs = false;
946  if (PatternHasMemOperands) {
947    unsigned NumNodesThatLoadOrStore =
948      numNodesThatMayLoadOrStore(Pattern.getDstPattern(), CGP);
949    bool NodeIsUniqueLoadOrStore = mayInstNodeLoadOrStore(N, CGP) &&
950                                   NumNodesThatLoadOrStore == 1;
951    NodeHasMemRefs =
952      NodeIsUniqueLoadOrStore || (isRoot && (mayInstNodeLoadOrStore(N, CGP) ||
953                                             NumNodesThatLoadOrStore != 1));
954  }
955
956  // Determine whether we need to attach a chain to this node.
957  bool NodeHasChain = false;
958  if (Pattern.getSrcPattern()->TreeHasProperty(SDNPHasChain, CGP)) {
959    // For some instructions, we were able to infer from the pattern whether
960    // they should have a chain.  Otherwise, attach the chain to the root.
961    //
962    // FIXME2: This is extremely dubious for several reasons, not the least of
963    // which it gives special status to instructions with patterns that Pat<>
964    // nodes can't duplicate.
965    if (II.hasChain_Inferred)
966      NodeHasChain = II.hasChain;
967    else
968      NodeHasChain = isRoot;
969    // Instructions which load and store from memory should have a chain,
970    // regardless of whether they happen to have a pattern saying so.
971    if (II.hasCtrlDep || II.mayLoad || II.mayStore || II.canFoldAsLoad ||
972        II.hasSideEffects)
973      NodeHasChain = true;
974  }
975
976  assert((!ResultVTs.empty() || TreeHasOutGlue || NodeHasChain) &&
977         "Node has no result");
978
979  AddMatcher(new EmitNodeMatcher(II, ResultVTs, InstOps, NodeHasChain,
980                                 TreeHasInGlue, TreeHasOutGlue, NodeHasMemRefs,
981                                 NumFixedArityOperands, NextRecordedOperandNo));
982
983  // The non-chain and non-glue results of the newly emitted node get recorded.
984  for (unsigned i = 0, e = ResultVTs.size(); i != e; ++i) {
985    if (ResultVTs[i] == MVT::Other || ResultVTs[i] == MVT::Glue) break;
986    OutputOps.push_back(NextRecordedOperandNo++);
987  }
988}
989
990void MatcherGen::
991EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
992                               SmallVectorImpl<unsigned> &ResultOps) {
993  assert(N->getOperator()->isSubClassOf("SDNodeXForm") && "Not SDNodeXForm?");
994
995  // Emit the operand.
996  SmallVector<unsigned, 8> InputOps;
997
998  // FIXME2: Could easily generalize this to support multiple inputs and outputs
999  // to the SDNodeXForm.  For now we just support one input and one output like
1000  // the old instruction selector.
1001  assert(N->getNumChildren() == 1);
1002  EmitResultOperand(N->getChild(0), InputOps);
1003
1004  // The input currently must have produced exactly one result.
1005  assert(InputOps.size() == 1 && "Unexpected input to SDNodeXForm");
1006
1007  AddMatcher(new EmitNodeXFormMatcher(InputOps[0], N->getOperator()));
1008  ResultOps.push_back(NextRecordedOperandNo++);
1009}
1010
1011void MatcherGen::EmitResultOperand(const TreePatternNode *N,
1012                                   SmallVectorImpl<unsigned> &ResultOps) {
1013  // This is something selected from the pattern we matched.
1014  if (!N->getName().empty())
1015    return EmitResultOfNamedOperand(N, ResultOps);
1016
1017  if (N->isLeaf())
1018    return EmitResultLeafAsOperand(N, ResultOps);
1019
1020  Record *OpRec = N->getOperator();
1021  if (OpRec->isSubClassOf("Instruction"))
1022    return EmitResultInstructionAsOperand(N, ResultOps);
1023  if (OpRec->isSubClassOf("SDNodeXForm"))
1024    return EmitResultSDNodeXFormAsOperand(N, ResultOps);
1025  errs() << "Unknown result node to emit code for: " << *N << '\n';
1026  PrintFatalError("Unknown node in result pattern!");
1027}
1028
1029void MatcherGen::EmitResultCode() {
1030  // Patterns that match nodes with (potentially multiple) chain inputs have to
1031  // merge them together into a token factor.  This informs the generated code
1032  // what all the chained nodes are.
1033  if (!MatchedChainNodes.empty())
1034    AddMatcher(new EmitMergeInputChainsMatcher(MatchedChainNodes));
1035
1036  // Codegen the root of the result pattern, capturing the resulting values.
1037  SmallVector<unsigned, 8> Ops;
1038  EmitResultOperand(Pattern.getDstPattern(), Ops);
1039
1040  // At this point, we have however many values the result pattern produces.
1041  // However, the input pattern might not need all of these.  If there are
1042  // excess values at the end (such as implicit defs of condition codes etc)
1043  // just lop them off.  This doesn't need to worry about glue or chains, just
1044  // explicit results.
1045  //
1046  unsigned NumSrcResults = Pattern.getSrcPattern()->getNumTypes();
1047
1048  // If the pattern also has (implicit) results, count them as well.
1049  if (!Pattern.getDstRegs().empty()) {
1050    // If the root came from an implicit def in the instruction handling stuff,
1051    // don't re-add it.
1052    Record *HandledReg = nullptr;
1053    const TreePatternNode *DstPat = Pattern.getDstPattern();
1054    if (!DstPat->isLeaf() &&DstPat->getOperator()->isSubClassOf("Instruction")){
1055      const CodeGenTarget &CGT = CGP.getTargetInfo();
1056      CodeGenInstruction &II = CGT.getInstruction(DstPat->getOperator());
1057
1058      if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other)
1059        HandledReg = II.ImplicitDefs[0];
1060    }
1061
1062    for (Record *Reg : Pattern.getDstRegs()) {
1063      if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue;
1064      ++NumSrcResults;
1065    }
1066  }
1067
1068  SmallVector<unsigned, 8> Results(Ops);
1069
1070  // Apply result permutation.
1071  for (unsigned ResNo = 0; ResNo < Pattern.getDstPattern()->getNumResults();
1072       ++ResNo) {
1073    Results[ResNo] = Ops[Pattern.getDstPattern()->getResultIndex(ResNo)];
1074  }
1075
1076  Results.resize(NumSrcResults);
1077  AddMatcher(new CompleteMatchMatcher(Results, Pattern));
1078}
1079
1080
1081/// ConvertPatternToMatcher - Create the matcher for the specified pattern with
1082/// the specified variant.  If the variant number is invalid, this returns null.
1083Matcher *llvm::ConvertPatternToMatcher(const PatternToMatch &Pattern,
1084                                       unsigned Variant,
1085                                       const CodeGenDAGPatterns &CGP) {
1086  MatcherGen Gen(Pattern, CGP);
1087
1088  // Generate the code for the matcher.
1089  if (Gen.EmitMatcherCode(Variant))
1090    return nullptr;
1091
1092  // FIXME2: Kill extra MoveParent commands at the end of the matcher sequence.
1093  // FIXME2: Split result code out to another table, and make the matcher end
1094  // with an "Emit <index>" command.  This allows result generation stuff to be
1095  // shared and factored?
1096
1097  // If the match succeeds, then we generate Pattern.
1098  Gen.EmitResultCode();
1099
1100  // Unconditional match.
1101  return Gen.GetMatcher();
1102}
1103