1//===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This class wraps target description classes used by the various code
10// generation TableGen backends.  This makes it easier to access the data and
11// provides a single place that needs to check it for validity.  All of these
12// classes abort on error conditions.
13//
14//===----------------------------------------------------------------------===//
15
16#include "CodeGenTarget.h"
17#include "CodeGenInstruction.h"
18#include "CodeGenRegisters.h"
19#include "CodeGenSchedule.h"
20#include "llvm/ADT/STLExtras.h"
21#include "llvm/ADT/Twine.h"
22#include "llvm/Support/CommandLine.h"
23#include "llvm/Support/ErrorHandling.h"
24#include "llvm/TableGen/Error.h"
25#include "llvm/TableGen/Record.h"
26#include <algorithm>
27#include <iterator>
28#include <tuple>
29using namespace llvm;
30
31cl::OptionCategory AsmParserCat("Options for -gen-asm-parser");
32cl::OptionCategory AsmWriterCat("Options for -gen-asm-writer");
33
34static cl::opt<unsigned>
35    AsmParserNum("asmparsernum", cl::init(0),
36                 cl::desc("Make -gen-asm-parser emit assembly parser #N"),
37                 cl::cat(AsmParserCat));
38
39static cl::opt<unsigned>
40    AsmWriterNum("asmwriternum", cl::init(0),
41                 cl::desc("Make -gen-asm-writer emit assembly writer #N"),
42                 cl::cat(AsmWriterCat));
43
44/// getValueType - Return the MVT::SimpleValueType that the specified TableGen
45/// record corresponds to.
46MVT::SimpleValueType llvm::getValueType(const Record *Rec) {
47  return (MVT::SimpleValueType)Rec->getValueAsInt("Value");
48}
49
50StringRef llvm::getName(MVT::SimpleValueType T) {
51  switch (T) {
52  case MVT::Other:   return "UNKNOWN";
53  case MVT::iPTR:    return "TLI.getPointerTy()";
54  case MVT::iPTRAny: return "TLI.getPointerTy()";
55  default: return getEnumName(T);
56  }
57}
58
59StringRef llvm::getEnumName(MVT::SimpleValueType T) {
60  // clang-format off
61  switch (T) {
62  case MVT::Other:    return "MVT::Other";
63  case MVT::i1:       return "MVT::i1";
64  case MVT::i2:       return "MVT::i2";
65  case MVT::i4:       return "MVT::i4";
66  case MVT::i8:       return "MVT::i8";
67  case MVT::i16:      return "MVT::i16";
68  case MVT::i32:      return "MVT::i32";
69  case MVT::i64:      return "MVT::i64";
70  case MVT::i128:     return "MVT::i128";
71  case MVT::Any:      return "MVT::Any";
72  case MVT::iAny:     return "MVT::iAny";
73  case MVT::fAny:     return "MVT::fAny";
74  case MVT::vAny:     return "MVT::vAny";
75  case MVT::f16:      return "MVT::f16";
76  case MVT::bf16:     return "MVT::bf16";
77  case MVT::f32:      return "MVT::f32";
78  case MVT::f64:      return "MVT::f64";
79  case MVT::f80:      return "MVT::f80";
80  case MVT::f128:     return "MVT::f128";
81  case MVT::ppcf128:  return "MVT::ppcf128";
82  case MVT::x86mmx:   return "MVT::x86mmx";
83  case MVT::x86amx:   return "MVT::x86amx";
84  case MVT::aarch64svcount:   return "MVT::aarch64svcount";
85  case MVT::i64x8:    return "MVT::i64x8";
86  case MVT::Glue:     return "MVT::Glue";
87  case MVT::isVoid:   return "MVT::isVoid";
88  case MVT::v1i1:     return "MVT::v1i1";
89  case MVT::v2i1:     return "MVT::v2i1";
90  case MVT::v4i1:     return "MVT::v4i1";
91  case MVT::v8i1:     return "MVT::v8i1";
92  case MVT::v16i1:    return "MVT::v16i1";
93  case MVT::v32i1:    return "MVT::v32i1";
94  case MVT::v64i1:    return "MVT::v64i1";
95  case MVT::v128i1:   return "MVT::v128i1";
96  case MVT::v256i1:   return "MVT::v256i1";
97  case MVT::v512i1:   return "MVT::v512i1";
98  case MVT::v1024i1:  return "MVT::v1024i1";
99  case MVT::v2048i1:  return "MVT::v2048i1";
100  case MVT::v128i2:   return "MVT::v128i2";
101  case MVT::v256i2:   return "MVT::v256i2";
102  case MVT::v64i4:    return "MVT::v64i4";
103  case MVT::v128i4:   return "MVT::v128i4";
104  case MVT::v1i8:     return "MVT::v1i8";
105  case MVT::v2i8:     return "MVT::v2i8";
106  case MVT::v4i8:     return "MVT::v4i8";
107  case MVT::v8i8:     return "MVT::v8i8";
108  case MVT::v16i8:    return "MVT::v16i8";
109  case MVT::v32i8:    return "MVT::v32i8";
110  case MVT::v64i8:    return "MVT::v64i8";
111  case MVT::v128i8:   return "MVT::v128i8";
112  case MVT::v256i8:   return "MVT::v256i8";
113  case MVT::v512i8:   return "MVT::v512i8";
114  case MVT::v1024i8:  return "MVT::v1024i8";
115  case MVT::v1i16:    return "MVT::v1i16";
116  case MVT::v2i16:    return "MVT::v2i16";
117  case MVT::v3i16:    return "MVT::v3i16";
118  case MVT::v4i16:    return "MVT::v4i16";
119  case MVT::v8i16:    return "MVT::v8i16";
120  case MVT::v16i16:   return "MVT::v16i16";
121  case MVT::v32i16:   return "MVT::v32i16";
122  case MVT::v64i16:   return "MVT::v64i16";
123  case MVT::v128i16:  return "MVT::v128i16";
124  case MVT::v256i16:  return "MVT::v256i16";
125  case MVT::v512i16:  return "MVT::v512i16";
126  case MVT::v1i32:    return "MVT::v1i32";
127  case MVT::v2i32:    return "MVT::v2i32";
128  case MVT::v3i32:    return "MVT::v3i32";
129  case MVT::v4i32:    return "MVT::v4i32";
130  case MVT::v5i32:    return "MVT::v5i32";
131  case MVT::v6i32:    return "MVT::v6i32";
132  case MVT::v7i32:    return "MVT::v7i32";
133  case MVT::v8i32:    return "MVT::v8i32";
134  case MVT::v9i32:    return "MVT::v9i32";
135  case MVT::v10i32:   return "MVT::v10i32";
136  case MVT::v11i32:   return "MVT::v11i32";
137  case MVT::v12i32:   return "MVT::v12i32";
138  case MVT::v16i32:   return "MVT::v16i32";
139  case MVT::v32i32:   return "MVT::v32i32";
140  case MVT::v64i32:   return "MVT::v64i32";
141  case MVT::v128i32:  return "MVT::v128i32";
142  case MVT::v256i32:  return "MVT::v256i32";
143  case MVT::v512i32:  return "MVT::v512i32";
144  case MVT::v1024i32: return "MVT::v1024i32";
145  case MVT::v2048i32: return "MVT::v2048i32";
146  case MVT::v1i64:    return "MVT::v1i64";
147  case MVT::v2i64:    return "MVT::v2i64";
148  case MVT::v3i64:    return "MVT::v3i64";
149  case MVT::v4i64:    return "MVT::v4i64";
150  case MVT::v8i64:    return "MVT::v8i64";
151  case MVT::v16i64:   return "MVT::v16i64";
152  case MVT::v32i64:   return "MVT::v32i64";
153  case MVT::v64i64:   return "MVT::v64i64";
154  case MVT::v128i64:  return "MVT::v128i64";
155  case MVT::v256i64:  return "MVT::v256i64";
156  case MVT::v1i128:   return "MVT::v1i128";
157  case MVT::v1f16:    return "MVT::v1f16";
158  case MVT::v2f16:    return "MVT::v2f16";
159  case MVT::v3f16:    return "MVT::v3f16";
160  case MVT::v4f16:    return "MVT::v4f16";
161  case MVT::v8f16:    return "MVT::v8f16";
162  case MVT::v16f16:   return "MVT::v16f16";
163  case MVT::v32f16:   return "MVT::v32f16";
164  case MVT::v64f16:   return "MVT::v64f16";
165  case MVT::v128f16:  return "MVT::v128f16";
166  case MVT::v256f16:  return "MVT::v256f16";
167  case MVT::v512f16:  return "MVT::v512f16";
168  case MVT::v2bf16:   return "MVT::v2bf16";
169  case MVT::v3bf16:   return "MVT::v3bf16";
170  case MVT::v4bf16:   return "MVT::v4bf16";
171  case MVT::v8bf16:   return "MVT::v8bf16";
172  case MVT::v16bf16:  return "MVT::v16bf16";
173  case MVT::v32bf16:  return "MVT::v32bf16";
174  case MVT::v64bf16:  return "MVT::v64bf16";
175  case MVT::v128bf16: return "MVT::v128bf16";
176  case MVT::v1f32:    return "MVT::v1f32";
177  case MVT::v2f32:    return "MVT::v2f32";
178  case MVT::v3f32:    return "MVT::v3f32";
179  case MVT::v4f32:    return "MVT::v4f32";
180  case MVT::v5f32:    return "MVT::v5f32";
181  case MVT::v6f32:    return "MVT::v6f32";
182  case MVT::v7f32:    return "MVT::v7f32";
183  case MVT::v8f32:    return "MVT::v8f32";
184  case MVT::v9f32:    return "MVT::v9f32";
185  case MVT::v10f32:   return "MVT::v10f32";
186  case MVT::v11f32:   return "MVT::v11f32";
187  case MVT::v12f32:   return "MVT::v12f32";
188  case MVT::v16f32:   return "MVT::v16f32";
189  case MVT::v32f32:   return "MVT::v32f32";
190  case MVT::v64f32:   return "MVT::v64f32";
191  case MVT::v128f32:  return "MVT::v128f32";
192  case MVT::v256f32:  return "MVT::v256f32";
193  case MVT::v512f32:  return "MVT::v512f32";
194  case MVT::v1024f32: return "MVT::v1024f32";
195  case MVT::v2048f32: return "MVT::v2048f32";
196  case MVT::v1f64:    return "MVT::v1f64";
197  case MVT::v2f64:    return "MVT::v2f64";
198  case MVT::v3f64:    return "MVT::v3f64";
199  case MVT::v4f64:    return "MVT::v4f64";
200  case MVT::v8f64:    return "MVT::v8f64";
201  case MVT::v16f64:   return "MVT::v16f64";
202  case MVT::v32f64:   return "MVT::v32f64";
203  case MVT::v64f64:   return "MVT::v64f64";
204  case MVT::v128f64:  return "MVT::v128f64";
205  case MVT::v256f64:  return "MVT::v256f64";
206  case MVT::nxv1i1:   return "MVT::nxv1i1";
207  case MVT::nxv2i1:   return "MVT::nxv2i1";
208  case MVT::nxv4i1:   return "MVT::nxv4i1";
209  case MVT::nxv8i1:   return "MVT::nxv8i1";
210  case MVT::nxv16i1:  return "MVT::nxv16i1";
211  case MVT::nxv32i1:  return "MVT::nxv32i1";
212  case MVT::nxv64i1:  return "MVT::nxv64i1";
213  case MVT::nxv1i8:   return "MVT::nxv1i8";
214  case MVT::nxv2i8:   return "MVT::nxv2i8";
215  case MVT::nxv4i8:   return "MVT::nxv4i8";
216  case MVT::nxv8i8:   return "MVT::nxv8i8";
217  case MVT::nxv16i8:  return "MVT::nxv16i8";
218  case MVT::nxv32i8:  return "MVT::nxv32i8";
219  case MVT::nxv64i8:  return "MVT::nxv64i8";
220  case MVT::nxv1i16:  return "MVT::nxv1i16";
221  case MVT::nxv2i16:  return "MVT::nxv2i16";
222  case MVT::nxv4i16:  return "MVT::nxv4i16";
223  case MVT::nxv8i16:  return "MVT::nxv8i16";
224  case MVT::nxv16i16: return "MVT::nxv16i16";
225  case MVT::nxv32i16: return "MVT::nxv32i16";
226  case MVT::nxv1i32:  return "MVT::nxv1i32";
227  case MVT::nxv2i32:  return "MVT::nxv2i32";
228  case MVT::nxv4i32:  return "MVT::nxv4i32";
229  case MVT::nxv8i32:  return "MVT::nxv8i32";
230  case MVT::nxv16i32: return "MVT::nxv16i32";
231  case MVT::nxv32i32: return "MVT::nxv32i32";
232  case MVT::nxv1i64:  return "MVT::nxv1i64";
233  case MVT::nxv2i64:  return "MVT::nxv2i64";
234  case MVT::nxv4i64:  return "MVT::nxv4i64";
235  case MVT::nxv8i64:  return "MVT::nxv8i64";
236  case MVT::nxv16i64: return "MVT::nxv16i64";
237  case MVT::nxv32i64: return "MVT::nxv32i64";
238  case MVT::nxv1f16:  return "MVT::nxv1f16";
239  case MVT::nxv2f16:  return "MVT::nxv2f16";
240  case MVT::nxv4f16:  return "MVT::nxv4f16";
241  case MVT::nxv8f16:  return "MVT::nxv8f16";
242  case MVT::nxv16f16: return "MVT::nxv16f16";
243  case MVT::nxv32f16: return "MVT::nxv32f16";
244  case MVT::nxv1bf16:  return "MVT::nxv1bf16";
245  case MVT::nxv2bf16:  return "MVT::nxv2bf16";
246  case MVT::nxv4bf16:  return "MVT::nxv4bf16";
247  case MVT::nxv8bf16:  return "MVT::nxv8bf16";
248  case MVT::nxv16bf16: return "MVT::nxv16bf16";
249  case MVT::nxv32bf16: return "MVT::nxv32bf16";
250  case MVT::nxv1f32:   return "MVT::nxv1f32";
251  case MVT::nxv2f32:   return "MVT::nxv2f32";
252  case MVT::nxv4f32:   return "MVT::nxv4f32";
253  case MVT::nxv8f32:   return "MVT::nxv8f32";
254  case MVT::nxv16f32:  return "MVT::nxv16f32";
255  case MVT::nxv1f64:   return "MVT::nxv1f64";
256  case MVT::nxv2f64:   return "MVT::nxv2f64";
257  case MVT::nxv4f64:   return "MVT::nxv4f64";
258  case MVT::nxv8f64:   return "MVT::nxv8f64";
259  case MVT::token:     return "MVT::token";
260  case MVT::Metadata:  return "MVT::Metadata";
261  case MVT::iPTR:      return "MVT::iPTR";
262  case MVT::iPTRAny:   return "MVT::iPTRAny";
263  case MVT::Untyped:   return "MVT::Untyped";
264  case MVT::funcref:   return "MVT::funcref";
265  case MVT::externref: return "MVT::externref";
266  default: llvm_unreachable("ILLEGAL VALUE TYPE!");
267  }
268  // clang-format on
269}
270
271/// getQualifiedName - Return the name of the specified record, with a
272/// namespace qualifier if the record contains one.
273///
274std::string llvm::getQualifiedName(const Record *R) {
275  std::string Namespace;
276  if (R->getValue("Namespace"))
277    Namespace = std::string(R->getValueAsString("Namespace"));
278  if (Namespace.empty())
279    return std::string(R->getName());
280  return Namespace + "::" + R->getName().str();
281}
282
283
284/// getTarget - Return the current instance of the Target class.
285///
286CodeGenTarget::CodeGenTarget(RecordKeeper &records)
287  : Records(records), CGH(records) {
288  std::vector<Record*> Targets = Records.getAllDerivedDefinitions("Target");
289  if (Targets.size() == 0)
290    PrintFatalError("No 'Target' subclasses defined!");
291  if (Targets.size() != 1)
292    PrintFatalError("Multiple subclasses of Target defined!");
293  TargetRec = Targets[0];
294  MacroFusions = Records.getAllDerivedDefinitions("Fusion");
295}
296
297CodeGenTarget::~CodeGenTarget() {
298}
299
300StringRef CodeGenTarget::getName() const { return TargetRec->getName(); }
301
302/// getInstNamespace - Find and return the target machine's instruction
303/// namespace. The namespace is cached because it is requested multiple times.
304StringRef CodeGenTarget::getInstNamespace() const {
305  if (InstNamespace.empty()) {
306    for (const CodeGenInstruction *Inst : getInstructionsByEnumValue()) {
307      // We are not interested in the "TargetOpcode" namespace.
308      if (Inst->Namespace != "TargetOpcode") {
309        InstNamespace = Inst->Namespace;
310        break;
311      }
312    }
313  }
314
315  return InstNamespace;
316}
317
318StringRef CodeGenTarget::getRegNamespace() const {
319  auto &RegClasses = RegBank->getRegClasses();
320  return RegClasses.size() > 0 ? RegClasses.front().Namespace : "";
321}
322
323Record *CodeGenTarget::getInstructionSet() const {
324  return TargetRec->getValueAsDef("InstructionSet");
325}
326
327bool CodeGenTarget::getAllowRegisterRenaming() const {
328  return TargetRec->getValueAsInt("AllowRegisterRenaming");
329}
330
331/// getAsmParser - Return the AssemblyParser definition for this target.
332///
333Record *CodeGenTarget::getAsmParser() const {
334  std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyParsers");
335  if (AsmParserNum >= LI.size())
336    PrintFatalError("Target does not have an AsmParser #" +
337                    Twine(AsmParserNum) + "!");
338  return LI[AsmParserNum];
339}
340
341/// getAsmParserVariant - Return the AssemblyParserVariant definition for
342/// this target.
343///
344Record *CodeGenTarget::getAsmParserVariant(unsigned i) const {
345  std::vector<Record*> LI =
346    TargetRec->getValueAsListOfDefs("AssemblyParserVariants");
347  if (i >= LI.size())
348    PrintFatalError("Target does not have an AsmParserVariant #" + Twine(i) +
349                    "!");
350  return LI[i];
351}
352
353/// getAsmParserVariantCount - Return the AssemblyParserVariant definition
354/// available for this target.
355///
356unsigned CodeGenTarget::getAsmParserVariantCount() const {
357  std::vector<Record*> LI =
358    TargetRec->getValueAsListOfDefs("AssemblyParserVariants");
359  return LI.size();
360}
361
362/// getAsmWriter - Return the AssemblyWriter definition for this target.
363///
364Record *CodeGenTarget::getAsmWriter() const {
365  std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyWriters");
366  if (AsmWriterNum >= LI.size())
367    PrintFatalError("Target does not have an AsmWriter #" +
368                    Twine(AsmWriterNum) + "!");
369  return LI[AsmWriterNum];
370}
371
372CodeGenRegBank &CodeGenTarget::getRegBank() const {
373  if (!RegBank)
374    RegBank = std::make_unique<CodeGenRegBank>(Records, getHwModes());
375  return *RegBank;
376}
377
378std::optional<CodeGenRegisterClass *> CodeGenTarget::getSuperRegForSubReg(
379    const ValueTypeByHwMode &ValueTy, CodeGenRegBank &RegBank,
380    const CodeGenSubRegIndex *SubIdx, bool MustBeAllocatable) const {
381  std::vector<CodeGenRegisterClass *> Candidates;
382  auto &RegClasses = RegBank.getRegClasses();
383
384  // Try to find a register class which supports ValueTy, and also contains
385  // SubIdx.
386  for (CodeGenRegisterClass &RC : RegClasses) {
387    // Is there a subclass of this class which contains this subregister index?
388    CodeGenRegisterClass *SubClassWithSubReg = RC.getSubClassWithSubReg(SubIdx);
389    if (!SubClassWithSubReg)
390      continue;
391
392    // We have a class. Check if it supports this value type.
393    if (!llvm::is_contained(SubClassWithSubReg->VTs, ValueTy))
394      continue;
395
396    // If necessary, check that it is allocatable.
397    if (MustBeAllocatable && !SubClassWithSubReg->Allocatable)
398      continue;
399
400    // We have a register class which supports both the value type and
401    // subregister index. Remember it.
402    Candidates.push_back(SubClassWithSubReg);
403  }
404
405  // If we didn't find anything, we're done.
406  if (Candidates.empty())
407    return std::nullopt;
408
409  // Find and return the largest of our candidate classes.
410  llvm::stable_sort(Candidates, [&](const CodeGenRegisterClass *A,
411                                    const CodeGenRegisterClass *B) {
412    if (A->getMembers().size() > B->getMembers().size())
413      return true;
414
415    if (A->getMembers().size() < B->getMembers().size())
416      return false;
417
418    // Order by name as a tie-breaker.
419    return StringRef(A->getName()) < B->getName();
420  });
421
422  return Candidates[0];
423}
424
425void CodeGenTarget::ReadRegAltNameIndices() const {
426  RegAltNameIndices = Records.getAllDerivedDefinitions("RegAltNameIndex");
427  llvm::sort(RegAltNameIndices, LessRecord());
428}
429
430/// getRegisterByName - If there is a register with the specific AsmName,
431/// return it.
432const CodeGenRegister *CodeGenTarget::getRegisterByName(StringRef Name) const {
433  return getRegBank().getRegistersByName().lookup(Name);
434}
435
436const CodeGenRegisterClass &CodeGenTarget::getRegisterClass(Record *R) const {
437  return *getRegBank().getRegClass(R);
438}
439
440std::vector<ValueTypeByHwMode> CodeGenTarget::getRegisterVTs(Record *R)
441      const {
442  const CodeGenRegister *Reg = getRegBank().getReg(R);
443  std::vector<ValueTypeByHwMode> Result;
444  for (const auto &RC : getRegBank().getRegClasses()) {
445    if (RC.contains(Reg)) {
446      ArrayRef<ValueTypeByHwMode> InVTs = RC.getValueTypes();
447      llvm::append_range(Result, InVTs);
448    }
449  }
450
451  // Remove duplicates.
452  llvm::sort(Result);
453  Result.erase(std::unique(Result.begin(), Result.end()), Result.end());
454  return Result;
455}
456
457
458void CodeGenTarget::ReadLegalValueTypes() const {
459  for (const auto &RC : getRegBank().getRegClasses())
460    llvm::append_range(LegalValueTypes, RC.VTs);
461
462  // Remove duplicates.
463  llvm::sort(LegalValueTypes);
464  LegalValueTypes.erase(std::unique(LegalValueTypes.begin(),
465                                    LegalValueTypes.end()),
466                        LegalValueTypes.end());
467}
468
469CodeGenSchedModels &CodeGenTarget::getSchedModels() const {
470  if (!SchedModels)
471    SchedModels = std::make_unique<CodeGenSchedModels>(Records, *this);
472  return *SchedModels;
473}
474
475void CodeGenTarget::ReadInstructions() const {
476  std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction");
477  if (Insts.size() <= 2)
478    PrintFatalError("No 'Instruction' subclasses defined!");
479
480  // Parse the instructions defined in the .td file.
481  for (unsigned i = 0, e = Insts.size(); i != e; ++i)
482    Instructions[Insts[i]] = std::make_unique<CodeGenInstruction>(Insts[i]);
483}
484
485static const CodeGenInstruction *
486GetInstByName(const char *Name,
487              const DenseMap<const Record*,
488                             std::unique_ptr<CodeGenInstruction>> &Insts,
489              RecordKeeper &Records) {
490  const Record *Rec = Records.getDef(Name);
491
492  const auto I = Insts.find(Rec);
493  if (!Rec || I == Insts.end())
494    PrintFatalError(Twine("Could not find '") + Name + "' instruction!");
495  return I->second.get();
496}
497
498static const char *FixedInstrs[] = {
499#define HANDLE_TARGET_OPCODE(OPC) #OPC,
500#include "llvm/Support/TargetOpcodes.def"
501    nullptr};
502
503unsigned CodeGenTarget::getNumFixedInstructions() {
504  return std::size(FixedInstrs) - 1;
505}
506
507/// Return all of the instructions defined by the target, ordered by
508/// their enum value.
509void CodeGenTarget::ComputeInstrsByEnum() const {
510  const auto &Insts = getInstructions();
511  for (const char *const *p = FixedInstrs; *p; ++p) {
512    const CodeGenInstruction *Instr = GetInstByName(*p, Insts, Records);
513    assert(Instr && "Missing target independent instruction");
514    assert(Instr->Namespace == "TargetOpcode" && "Bad namespace");
515    InstrsByEnum.push_back(Instr);
516  }
517  unsigned EndOfPredefines = InstrsByEnum.size();
518  assert(EndOfPredefines == getNumFixedInstructions() &&
519         "Missing generic opcode");
520
521  for (const auto &I : Insts) {
522    const CodeGenInstruction *CGI = I.second.get();
523    if (CGI->Namespace != "TargetOpcode") {
524      InstrsByEnum.push_back(CGI);
525      if (CGI->TheDef->getValueAsBit("isPseudo"))
526        ++NumPseudoInstructions;
527    }
528  }
529
530  assert(InstrsByEnum.size() == Insts.size() && "Missing predefined instr");
531
532  // All of the instructions are now in random order based on the map iteration.
533  llvm::sort(
534      InstrsByEnum.begin() + EndOfPredefines, InstrsByEnum.end(),
535      [](const CodeGenInstruction *Rec1, const CodeGenInstruction *Rec2) {
536        const auto &D1 = *Rec1->TheDef;
537        const auto &D2 = *Rec2->TheDef;
538        return std::make_tuple(!D1.getValueAsBit("isPseudo"), D1.getName()) <
539               std::make_tuple(!D2.getValueAsBit("isPseudo"), D2.getName());
540      });
541}
542
543
544/// isLittleEndianEncoding - Return whether this target encodes its instruction
545/// in little-endian format, i.e. bits laid out in the order [0..n]
546///
547bool CodeGenTarget::isLittleEndianEncoding() const {
548  return getInstructionSet()->getValueAsBit("isLittleEndianEncoding");
549}
550
551/// reverseBitsForLittleEndianEncoding - For little-endian instruction bit
552/// encodings, reverse the bit order of all instructions.
553void CodeGenTarget::reverseBitsForLittleEndianEncoding() {
554  if (!isLittleEndianEncoding())
555    return;
556
557  std::vector<Record *> Insts =
558      Records.getAllDerivedDefinitions("InstructionEncoding");
559  for (Record *R : Insts) {
560    if (R->getValueAsString("Namespace") == "TargetOpcode" ||
561        R->getValueAsBit("isPseudo"))
562      continue;
563
564    BitsInit *BI = R->getValueAsBitsInit("Inst");
565
566    unsigned numBits = BI->getNumBits();
567
568    SmallVector<Init *, 16> NewBits(numBits);
569
570    for (unsigned bit = 0, end = numBits / 2; bit != end; ++bit) {
571      unsigned bitSwapIdx = numBits - bit - 1;
572      Init *OrigBit = BI->getBit(bit);
573      Init *BitSwap = BI->getBit(bitSwapIdx);
574      NewBits[bit]        = BitSwap;
575      NewBits[bitSwapIdx] = OrigBit;
576    }
577    if (numBits % 2) {
578      unsigned middle = (numBits + 1) / 2;
579      NewBits[middle] = BI->getBit(middle);
580    }
581
582    BitsInit *NewBI = BitsInit::get(Records, NewBits);
583
584    // Update the bits in reversed order so that emitInstrOpBits will get the
585    // correct endianness.
586    R->getValue("Inst")->setValue(NewBI);
587  }
588}
589
590/// guessInstructionProperties - Return true if it's OK to guess instruction
591/// properties instead of raising an error.
592///
593/// This is configurable as a temporary migration aid. It will eventually be
594/// permanently false.
595bool CodeGenTarget::guessInstructionProperties() const {
596  return getInstructionSet()->getValueAsBit("guessInstructionProperties");
597}
598
599//===----------------------------------------------------------------------===//
600// ComplexPattern implementation
601//
602ComplexPattern::ComplexPattern(Record *R) {
603  Ty          = R->getValueAsDef("Ty");
604  NumOperands = R->getValueAsInt("NumOperands");
605  SelectFunc = std::string(R->getValueAsString("SelectFunc"));
606  RootNodes   = R->getValueAsListOfDefs("RootNodes");
607
608  // FIXME: This is a hack to statically increase the priority of patterns which
609  // maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. To get best
610  // possible pattern match we'll need to dynamically calculate the complexity
611  // of all patterns a dag can potentially map to.
612  int64_t RawComplexity = R->getValueAsInt("Complexity");
613  if (RawComplexity == -1)
614    Complexity = NumOperands * 3;
615  else
616    Complexity = RawComplexity;
617
618  // FIXME: Why is this different from parseSDPatternOperatorProperties?
619  // Parse the properties.
620  Properties = 0;
621  std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
622  for (unsigned i = 0, e = PropList.size(); i != e; ++i)
623    if (PropList[i]->getName() == "SDNPHasChain") {
624      Properties |= 1 << SDNPHasChain;
625    } else if (PropList[i]->getName() == "SDNPOptInGlue") {
626      Properties |= 1 << SDNPOptInGlue;
627    } else if (PropList[i]->getName() == "SDNPMayStore") {
628      Properties |= 1 << SDNPMayStore;
629    } else if (PropList[i]->getName() == "SDNPMayLoad") {
630      Properties |= 1 << SDNPMayLoad;
631    } else if (PropList[i]->getName() == "SDNPSideEffect") {
632      Properties |= 1 << SDNPSideEffect;
633    } else if (PropList[i]->getName() == "SDNPMemOperand") {
634      Properties |= 1 << SDNPMemOperand;
635    } else if (PropList[i]->getName() == "SDNPVariadic") {
636      Properties |= 1 << SDNPVariadic;
637    } else if (PropList[i]->getName() == "SDNPWantRoot") {
638      Properties |= 1 << SDNPWantRoot;
639    } else if (PropList[i]->getName() == "SDNPWantParent") {
640      Properties |= 1 << SDNPWantParent;
641    } else {
642      PrintFatalError(R->getLoc(), "Unsupported SD Node property '" +
643                                       PropList[i]->getName() +
644                                       "' on ComplexPattern '" + R->getName() +
645                                       "'!");
646    }
647}
648