1//===- LowerSwitch.cpp - Eliminate Switch instructions --------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// The LowerSwitch transformation rewrites switch instructions with a sequence
10// of branches, which allows targets to get away with not implementing the
11// switch instruction until it is convenient.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/LowerSwitch.h"
16#include "llvm/ADT/DenseMap.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/SmallPtrSet.h"
19#include "llvm/ADT/SmallVector.h"
20#include "llvm/Analysis/AssumptionCache.h"
21#include "llvm/Analysis/LazyValueInfo.h"
22#include "llvm/Analysis/ValueTracking.h"
23#include "llvm/IR/BasicBlock.h"
24#include "llvm/IR/CFG.h"
25#include "llvm/IR/ConstantRange.h"
26#include "llvm/IR/Constants.h"
27#include "llvm/IR/Function.h"
28#include "llvm/IR/InstrTypes.h"
29#include "llvm/IR/Instructions.h"
30#include "llvm/IR/PassManager.h"
31#include "llvm/IR/Value.h"
32#include "llvm/InitializePasses.h"
33#include "llvm/Pass.h"
34#include "llvm/Support/Casting.h"
35#include "llvm/Support/Compiler.h"
36#include "llvm/Support/Debug.h"
37#include "llvm/Support/KnownBits.h"
38#include "llvm/Support/raw_ostream.h"
39#include "llvm/Transforms/Utils.h"
40#include "llvm/Transforms/Utils/BasicBlockUtils.h"
41#include <algorithm>
42#include <cassert>
43#include <cstdint>
44#include <iterator>
45#include <vector>
46
47using namespace llvm;
48
49#define DEBUG_TYPE "lower-switch"
50
51namespace {
52
53struct IntRange {
54  APInt Low, High;
55};
56
57} // end anonymous namespace
58
59namespace {
60// Return true iff R is covered by Ranges.
61bool IsInRanges(const IntRange &R, const std::vector<IntRange> &Ranges) {
62  // Note: Ranges must be sorted, non-overlapping and non-adjacent.
63
64  // Find the first range whose High field is >= R.High,
65  // then check if the Low field is <= R.Low. If so, we
66  // have a Range that covers R.
67  auto I = llvm::lower_bound(
68      Ranges, R, [](IntRange A, IntRange B) { return A.High.slt(B.High); });
69  return I != Ranges.end() && I->Low.sle(R.Low);
70}
71
72struct CaseRange {
73  ConstantInt *Low;
74  ConstantInt *High;
75  BasicBlock *BB;
76
77  CaseRange(ConstantInt *low, ConstantInt *high, BasicBlock *bb)
78      : Low(low), High(high), BB(bb) {}
79};
80
81using CaseVector = std::vector<CaseRange>;
82using CaseItr = std::vector<CaseRange>::iterator;
83
84/// The comparison function for sorting the switch case values in the vector.
85/// WARNING: Case ranges should be disjoint!
86struct CaseCmp {
87  bool operator()(const CaseRange &C1, const CaseRange &C2) {
88    const ConstantInt *CI1 = cast<const ConstantInt>(C1.Low);
89    const ConstantInt *CI2 = cast<const ConstantInt>(C2.High);
90    return CI1->getValue().slt(CI2->getValue());
91  }
92};
93
94/// Used for debugging purposes.
95LLVM_ATTRIBUTE_USED
96raw_ostream &operator<<(raw_ostream &O, const CaseVector &C) {
97  O << "[";
98
99  for (CaseVector::const_iterator B = C.begin(), E = C.end(); B != E;) {
100    O << "[" << B->Low->getValue() << ", " << B->High->getValue() << "]";
101    if (++B != E)
102      O << ", ";
103  }
104
105  return O << "]";
106}
107
108/// Update the first occurrence of the "switch statement" BB in the PHI
109/// node with the "new" BB. The other occurrences will:
110///
111/// 1) Be updated by subsequent calls to this function.  Switch statements may
112/// have more than one outcoming edge into the same BB if they all have the same
113/// value. When the switch statement is converted these incoming edges are now
114/// coming from multiple BBs.
115/// 2) Removed if subsequent incoming values now share the same case, i.e.,
116/// multiple outcome edges are condensed into one. This is necessary to keep the
117/// number of phi values equal to the number of branches to SuccBB.
118void FixPhis(BasicBlock *SuccBB, BasicBlock *OrigBB, BasicBlock *NewBB,
119             const APInt &NumMergedCases) {
120  for (auto &I : SuccBB->phis()) {
121    PHINode *PN = cast<PHINode>(&I);
122
123    // Only update the first occurrence if NewBB exists.
124    unsigned Idx = 0, E = PN->getNumIncomingValues();
125    APInt LocalNumMergedCases = NumMergedCases;
126    for (; Idx != E && NewBB; ++Idx) {
127      if (PN->getIncomingBlock(Idx) == OrigBB) {
128        PN->setIncomingBlock(Idx, NewBB);
129        break;
130      }
131    }
132
133    // Skip the updated incoming block so that it will not be removed.
134    if (NewBB)
135      ++Idx;
136
137    // Remove additional occurrences coming from condensed cases and keep the
138    // number of incoming values equal to the number of branches to SuccBB.
139    SmallVector<unsigned, 8> Indices;
140    for (; LocalNumMergedCases.ugt(0) && Idx < E; ++Idx)
141      if (PN->getIncomingBlock(Idx) == OrigBB) {
142        Indices.push_back(Idx);
143        LocalNumMergedCases -= 1;
144      }
145    // Remove incoming values in the reverse order to prevent invalidating
146    // *successive* index.
147    for (unsigned III : llvm::reverse(Indices))
148      PN->removeIncomingValue(III);
149  }
150}
151
152/// Create a new leaf block for the binary lookup tree. It checks if the
153/// switch's value == the case's value. If not, then it jumps to the default
154/// branch. At this point in the tree, the value can't be another valid case
155/// value, so the jump to the "default" branch is warranted.
156BasicBlock *NewLeafBlock(CaseRange &Leaf, Value *Val, ConstantInt *LowerBound,
157                         ConstantInt *UpperBound, BasicBlock *OrigBlock,
158                         BasicBlock *Default) {
159  Function *F = OrigBlock->getParent();
160  BasicBlock *NewLeaf = BasicBlock::Create(Val->getContext(), "LeafBlock");
161  F->insert(++OrigBlock->getIterator(), NewLeaf);
162
163  // Emit comparison
164  ICmpInst *Comp = nullptr;
165  if (Leaf.Low == Leaf.High) {
166    // Make the seteq instruction...
167    Comp =
168        new ICmpInst(*NewLeaf, ICmpInst::ICMP_EQ, Val, Leaf.Low, "SwitchLeaf");
169  } else {
170    // Make range comparison
171    if (Leaf.Low == LowerBound) {
172      // Val >= Min && Val <= Hi --> Val <= Hi
173      Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_SLE, Val, Leaf.High,
174                          "SwitchLeaf");
175    } else if (Leaf.High == UpperBound) {
176      // Val <= Max && Val >= Lo --> Val >= Lo
177      Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_SGE, Val, Leaf.Low,
178                          "SwitchLeaf");
179    } else if (Leaf.Low->isZero()) {
180      // Val >= 0 && Val <= Hi --> Val <=u Hi
181      Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Val, Leaf.High,
182                          "SwitchLeaf");
183    } else {
184      // Emit V-Lo <=u Hi-Lo
185      Constant *NegLo = ConstantExpr::getNeg(Leaf.Low);
186      Instruction *Add = BinaryOperator::CreateAdd(
187          Val, NegLo, Val->getName() + ".off", NewLeaf);
188      Constant *UpperBound = ConstantExpr::getAdd(NegLo, Leaf.High);
189      Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Add, UpperBound,
190                          "SwitchLeaf");
191    }
192  }
193
194  // Make the conditional branch...
195  BasicBlock *Succ = Leaf.BB;
196  BranchInst::Create(Succ, Default, Comp, NewLeaf);
197
198  // Update the PHI incoming value/block for the default.
199  for (auto &I : Default->phis()) {
200    PHINode *PN = cast<PHINode>(&I);
201    auto *V = PN->getIncomingValueForBlock(OrigBlock);
202    PN->addIncoming(V, NewLeaf);
203  }
204
205  // If there were any PHI nodes in this successor, rewrite one entry
206  // from OrigBlock to come from NewLeaf.
207  for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
208    PHINode *PN = cast<PHINode>(I);
209    // Remove all but one incoming entries from the cluster
210    APInt Range = Leaf.High->getValue() - Leaf.Low->getValue();
211    for (APInt j(Range.getBitWidth(), 0, true); j.slt(Range); ++j) {
212      PN->removeIncomingValue(OrigBlock);
213    }
214
215    int BlockIdx = PN->getBasicBlockIndex(OrigBlock);
216    assert(BlockIdx != -1 && "Switch didn't go to this successor??");
217    PN->setIncomingBlock((unsigned)BlockIdx, NewLeaf);
218  }
219
220  return NewLeaf;
221}
222
223/// Convert the switch statement into a binary lookup of the case values.
224/// The function recursively builds this tree. LowerBound and UpperBound are
225/// used to keep track of the bounds for Val that have already been checked by
226/// a block emitted by one of the previous calls to switchConvert in the call
227/// stack.
228BasicBlock *SwitchConvert(CaseItr Begin, CaseItr End, ConstantInt *LowerBound,
229                          ConstantInt *UpperBound, Value *Val,
230                          BasicBlock *Predecessor, BasicBlock *OrigBlock,
231                          BasicBlock *Default,
232                          const std::vector<IntRange> &UnreachableRanges) {
233  assert(LowerBound && UpperBound && "Bounds must be initialized");
234  unsigned Size = End - Begin;
235
236  if (Size == 1) {
237    // Check if the Case Range is perfectly squeezed in between
238    // already checked Upper and Lower bounds. If it is then we can avoid
239    // emitting the code that checks if the value actually falls in the range
240    // because the bounds already tell us so.
241    if (Begin->Low == LowerBound && Begin->High == UpperBound) {
242      APInt NumMergedCases = UpperBound->getValue() - LowerBound->getValue();
243      FixPhis(Begin->BB, OrigBlock, Predecessor, NumMergedCases);
244      return Begin->BB;
245    }
246    return NewLeafBlock(*Begin, Val, LowerBound, UpperBound, OrigBlock,
247                        Default);
248  }
249
250  unsigned Mid = Size / 2;
251  std::vector<CaseRange> LHS(Begin, Begin + Mid);
252  LLVM_DEBUG(dbgs() << "LHS: " << LHS << "\n");
253  std::vector<CaseRange> RHS(Begin + Mid, End);
254  LLVM_DEBUG(dbgs() << "RHS: " << RHS << "\n");
255
256  CaseRange &Pivot = *(Begin + Mid);
257  LLVM_DEBUG(dbgs() << "Pivot ==> [" << Pivot.Low->getValue() << ", "
258                    << Pivot.High->getValue() << "]\n");
259
260  // NewLowerBound here should never be the integer minimal value.
261  // This is because it is computed from a case range that is never
262  // the smallest, so there is always a case range that has at least
263  // a smaller value.
264  ConstantInt *NewLowerBound = Pivot.Low;
265
266  // Because NewLowerBound is never the smallest representable integer
267  // it is safe here to subtract one.
268  ConstantInt *NewUpperBound = ConstantInt::get(NewLowerBound->getContext(),
269                                                NewLowerBound->getValue() - 1);
270
271  if (!UnreachableRanges.empty()) {
272    // Check if the gap between LHS's highest and NewLowerBound is unreachable.
273    APInt GapLow = LHS.back().High->getValue() + 1;
274    APInt GapHigh = NewLowerBound->getValue() - 1;
275    IntRange Gap = {GapLow, GapHigh};
276    if (GapHigh.sge(GapLow) && IsInRanges(Gap, UnreachableRanges))
277      NewUpperBound = LHS.back().High;
278  }
279
280  LLVM_DEBUG(dbgs() << "LHS Bounds ==> [" << LowerBound->getValue() << ", "
281                    << NewUpperBound->getValue() << "]\n"
282                    << "RHS Bounds ==> [" << NewLowerBound->getValue() << ", "
283                    << UpperBound->getValue() << "]\n");
284
285  // Create a new node that checks if the value is < pivot. Go to the
286  // left branch if it is and right branch if not.
287  Function *F = OrigBlock->getParent();
288  BasicBlock *NewNode = BasicBlock::Create(Val->getContext(), "NodeBlock");
289
290  ICmpInst *Comp = new ICmpInst(ICmpInst::ICMP_SLT, Val, Pivot.Low, "Pivot");
291
292  BasicBlock *LBranch =
293      SwitchConvert(LHS.begin(), LHS.end(), LowerBound, NewUpperBound, Val,
294                    NewNode, OrigBlock, Default, UnreachableRanges);
295  BasicBlock *RBranch =
296      SwitchConvert(RHS.begin(), RHS.end(), NewLowerBound, UpperBound, Val,
297                    NewNode, OrigBlock, Default, UnreachableRanges);
298
299  F->insert(++OrigBlock->getIterator(), NewNode);
300  Comp->insertInto(NewNode, NewNode->end());
301
302  BranchInst::Create(LBranch, RBranch, Comp, NewNode);
303  return NewNode;
304}
305
306/// Transform simple list of \p SI's cases into list of CaseRange's \p Cases.
307/// \post \p Cases wouldn't contain references to \p SI's default BB.
308/// \returns Number of \p SI's cases that do not reference \p SI's default BB.
309unsigned Clusterify(CaseVector &Cases, SwitchInst *SI) {
310  unsigned NumSimpleCases = 0;
311
312  // Start with "simple" cases
313  for (auto Case : SI->cases()) {
314    if (Case.getCaseSuccessor() == SI->getDefaultDest())
315      continue;
316    Cases.push_back(CaseRange(Case.getCaseValue(), Case.getCaseValue(),
317                              Case.getCaseSuccessor()));
318    ++NumSimpleCases;
319  }
320
321  llvm::sort(Cases, CaseCmp());
322
323  // Merge case into clusters
324  if (Cases.size() >= 2) {
325    CaseItr I = Cases.begin();
326    for (CaseItr J = std::next(I), E = Cases.end(); J != E; ++J) {
327      const APInt &nextValue = J->Low->getValue();
328      const APInt &currentValue = I->High->getValue();
329      BasicBlock *nextBB = J->BB;
330      BasicBlock *currentBB = I->BB;
331
332      // If the two neighboring cases go to the same destination, merge them
333      // into a single case.
334      assert(nextValue.sgt(currentValue) &&
335             "Cases should be strictly ascending");
336      if ((nextValue == currentValue + 1) && (currentBB == nextBB)) {
337        I->High = J->High;
338        // FIXME: Combine branch weights.
339      } else if (++I != J) {
340        *I = *J;
341      }
342    }
343    Cases.erase(std::next(I), Cases.end());
344  }
345
346  return NumSimpleCases;
347}
348
349/// Replace the specified switch instruction with a sequence of chained if-then
350/// insts in a balanced binary search.
351void ProcessSwitchInst(SwitchInst *SI,
352                       SmallPtrSetImpl<BasicBlock *> &DeleteList,
353                       AssumptionCache *AC, LazyValueInfo *LVI) {
354  BasicBlock *OrigBlock = SI->getParent();
355  Function *F = OrigBlock->getParent();
356  Value *Val = SI->getCondition(); // The value we are switching on...
357  BasicBlock *Default = SI->getDefaultDest();
358
359  // Don't handle unreachable blocks. If there are successors with phis, this
360  // would leave them behind with missing predecessors.
361  if ((OrigBlock != &F->getEntryBlock() && pred_empty(OrigBlock)) ||
362      OrigBlock->getSinglePredecessor() == OrigBlock) {
363    DeleteList.insert(OrigBlock);
364    return;
365  }
366
367  // Prepare cases vector.
368  CaseVector Cases;
369  const unsigned NumSimpleCases = Clusterify(Cases, SI);
370  IntegerType *IT = cast<IntegerType>(SI->getCondition()->getType());
371  const unsigned BitWidth = IT->getBitWidth();
372  // Explictly use higher precision to prevent unsigned overflow where
373  // `UnsignedMax - 0 + 1 == 0`
374  APInt UnsignedZero(BitWidth + 1, 0);
375  APInt UnsignedMax = APInt::getMaxValue(BitWidth);
376  LLVM_DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
377                    << ". Total non-default cases: " << NumSimpleCases
378                    << "\nCase clusters: " << Cases << "\n");
379
380  // If there is only the default destination, just branch.
381  if (Cases.empty()) {
382    BranchInst::Create(Default, OrigBlock);
383    // Remove all the references from Default's PHIs to OrigBlock, but one.
384    FixPhis(Default, OrigBlock, OrigBlock, UnsignedMax);
385    SI->eraseFromParent();
386    return;
387  }
388
389  ConstantInt *LowerBound = nullptr;
390  ConstantInt *UpperBound = nullptr;
391  bool DefaultIsUnreachableFromSwitch = false;
392
393  if (isa<UnreachableInst>(Default->getFirstNonPHIOrDbg())) {
394    // Make the bounds tightly fitted around the case value range, because we
395    // know that the value passed to the switch must be exactly one of the case
396    // values.
397    LowerBound = Cases.front().Low;
398    UpperBound = Cases.back().High;
399    DefaultIsUnreachableFromSwitch = true;
400  } else {
401    // Constraining the range of the value being switched over helps eliminating
402    // unreachable BBs and minimizing the number of `add` instructions
403    // newLeafBlock ends up emitting. Running CorrelatedValuePropagation after
404    // LowerSwitch isn't as good, and also much more expensive in terms of
405    // compile time for the following reasons:
406    // 1. it processes many kinds of instructions, not just switches;
407    // 2. even if limited to icmp instructions only, it will have to process
408    //    roughly C icmp's per switch, where C is the number of cases in the
409    //    switch, while LowerSwitch only needs to call LVI once per switch.
410    const DataLayout &DL = F->getParent()->getDataLayout();
411    KnownBits Known = computeKnownBits(Val, DL, /*Depth=*/0, AC, SI);
412    // TODO Shouldn't this create a signed range?
413    ConstantRange KnownBitsRange =
414        ConstantRange::fromKnownBits(Known, /*IsSigned=*/false);
415    const ConstantRange LVIRange =
416        LVI->getConstantRange(Val, SI, /*UndefAllowed*/ false);
417    ConstantRange ValRange = KnownBitsRange.intersectWith(LVIRange);
418    // We delegate removal of unreachable non-default cases to other passes. In
419    // the unlikely event that some of them survived, we just conservatively
420    // maintain the invariant that all the cases lie between the bounds. This
421    // may, however, still render the default case effectively unreachable.
422    const APInt &Low = Cases.front().Low->getValue();
423    const APInt &High = Cases.back().High->getValue();
424    APInt Min = APIntOps::smin(ValRange.getSignedMin(), Low);
425    APInt Max = APIntOps::smax(ValRange.getSignedMax(), High);
426
427    LowerBound = ConstantInt::get(SI->getContext(), Min);
428    UpperBound = ConstantInt::get(SI->getContext(), Max);
429    DefaultIsUnreachableFromSwitch = (Min + (NumSimpleCases - 1) == Max);
430  }
431
432  std::vector<IntRange> UnreachableRanges;
433
434  if (DefaultIsUnreachableFromSwitch) {
435    DenseMap<BasicBlock *, APInt> Popularity;
436    APInt MaxPop(UnsignedZero);
437    BasicBlock *PopSucc = nullptr;
438
439    APInt SignedMax = APInt::getSignedMaxValue(BitWidth);
440    APInt SignedMin = APInt::getSignedMinValue(BitWidth);
441    IntRange R = {SignedMin, SignedMax};
442    UnreachableRanges.push_back(R);
443    for (const auto &I : Cases) {
444      const APInt &Low = I.Low->getValue();
445      const APInt &High = I.High->getValue();
446
447      IntRange &LastRange = UnreachableRanges.back();
448      if (LastRange.Low.eq(Low)) {
449        // There is nothing left of the previous range.
450        UnreachableRanges.pop_back();
451      } else {
452        // Terminate the previous range.
453        assert(Low.sgt(LastRange.Low));
454        LastRange.High = Low - 1;
455      }
456      if (High.ne(SignedMax)) {
457        IntRange R = {High + 1, SignedMax};
458        UnreachableRanges.push_back(R);
459      }
460
461      // Count popularity.
462      assert(High.sge(Low) && "Popularity shouldn't be negative.");
463      APInt N = High.sext(BitWidth + 1) - Low.sext(BitWidth + 1) + 1;
464      // Explict insert to make sure the bitwidth of APInts match
465      APInt &Pop = Popularity.insert({I.BB, APInt(UnsignedZero)}).first->second;
466      if ((Pop += N).ugt(MaxPop)) {
467        MaxPop = Pop;
468        PopSucc = I.BB;
469      }
470    }
471#ifndef NDEBUG
472    /* UnreachableRanges should be sorted and the ranges non-adjacent. */
473    for (auto I = UnreachableRanges.begin(), E = UnreachableRanges.end();
474         I != E; ++I) {
475      assert(I->Low.sle(I->High));
476      auto Next = I + 1;
477      if (Next != E) {
478        assert(Next->Low.sgt(I->High));
479      }
480    }
481#endif
482
483    // As the default block in the switch is unreachable, update the PHI nodes
484    // (remove all of the references to the default block) to reflect this.
485    const unsigned NumDefaultEdges = SI->getNumCases() + 1 - NumSimpleCases;
486    for (unsigned I = 0; I < NumDefaultEdges; ++I)
487      Default->removePredecessor(OrigBlock);
488
489    // Use the most popular block as the new default, reducing the number of
490    // cases.
491    Default = PopSucc;
492    llvm::erase_if(Cases,
493                   [PopSucc](const CaseRange &R) { return R.BB == PopSucc; });
494
495    // If there are no cases left, just branch.
496    if (Cases.empty()) {
497      BranchInst::Create(Default, OrigBlock);
498      SI->eraseFromParent();
499      // As all the cases have been replaced with a single branch, only keep
500      // one entry in the PHI nodes.
501      if (!MaxPop.isZero())
502        for (APInt I(UnsignedZero); I.ult(MaxPop - 1); ++I)
503          PopSucc->removePredecessor(OrigBlock);
504      return;
505    }
506
507    // If the condition was a PHI node with the switch block as a predecessor
508    // removing predecessors may have caused the condition to be erased.
509    // Getting the condition value again here protects against that.
510    Val = SI->getCondition();
511  }
512
513  BasicBlock *SwitchBlock =
514      SwitchConvert(Cases.begin(), Cases.end(), LowerBound, UpperBound, Val,
515                    OrigBlock, OrigBlock, Default, UnreachableRanges);
516
517  // We have added incoming values for newly-created predecessors in
518  // NewLeafBlock(). The only meaningful work we offload to FixPhis() is to
519  // remove the incoming values from OrigBlock. There might be a special case
520  // that SwitchBlock is the same as Default, under which the PHIs in Default
521  // are fixed inside SwitchConvert().
522  if (SwitchBlock != Default)
523    FixPhis(Default, OrigBlock, nullptr, UnsignedMax);
524
525  // Branch to our shiny new if-then stuff...
526  BranchInst::Create(SwitchBlock, OrigBlock);
527
528  // We are now done with the switch instruction, delete it.
529  BasicBlock *OldDefault = SI->getDefaultDest();
530  SI->eraseFromParent();
531
532  // If the Default block has no more predecessors just add it to DeleteList.
533  if (pred_empty(OldDefault))
534    DeleteList.insert(OldDefault);
535}
536
537bool LowerSwitch(Function &F, LazyValueInfo *LVI, AssumptionCache *AC) {
538  bool Changed = false;
539  SmallPtrSet<BasicBlock *, 8> DeleteList;
540
541  // We use make_early_inc_range here so that we don't traverse new blocks.
542  for (BasicBlock &Cur : llvm::make_early_inc_range(F)) {
543    // If the block is a dead Default block that will be deleted later, don't
544    // waste time processing it.
545    if (DeleteList.count(&Cur))
546      continue;
547
548    if (SwitchInst *SI = dyn_cast<SwitchInst>(Cur.getTerminator())) {
549      Changed = true;
550      ProcessSwitchInst(SI, DeleteList, AC, LVI);
551    }
552  }
553
554  for (BasicBlock *BB : DeleteList) {
555    LVI->eraseBlock(BB);
556    DeleteDeadBlock(BB);
557  }
558
559  return Changed;
560}
561
562/// Replace all SwitchInst instructions with chained branch instructions.
563class LowerSwitchLegacyPass : public FunctionPass {
564public:
565  // Pass identification, replacement for typeid
566  static char ID;
567
568  LowerSwitchLegacyPass() : FunctionPass(ID) {
569    initializeLowerSwitchLegacyPassPass(*PassRegistry::getPassRegistry());
570  }
571
572  bool runOnFunction(Function &F) override;
573
574  void getAnalysisUsage(AnalysisUsage &AU) const override {
575    AU.addRequired<LazyValueInfoWrapperPass>();
576  }
577};
578
579} // end anonymous namespace
580
581char LowerSwitchLegacyPass::ID = 0;
582
583// Publicly exposed interface to pass...
584char &llvm::LowerSwitchID = LowerSwitchLegacyPass::ID;
585
586INITIALIZE_PASS_BEGIN(LowerSwitchLegacyPass, "lowerswitch",
587                      "Lower SwitchInst's to branches", false, false)
588INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
589INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
590INITIALIZE_PASS_END(LowerSwitchLegacyPass, "lowerswitch",
591                    "Lower SwitchInst's to branches", false, false)
592
593// createLowerSwitchPass - Interface to this file...
594FunctionPass *llvm::createLowerSwitchPass() {
595  return new LowerSwitchLegacyPass();
596}
597
598bool LowerSwitchLegacyPass::runOnFunction(Function &F) {
599  LazyValueInfo *LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
600  auto *ACT = getAnalysisIfAvailable<AssumptionCacheTracker>();
601  AssumptionCache *AC = ACT ? &ACT->getAssumptionCache(F) : nullptr;
602  return LowerSwitch(F, LVI, AC);
603}
604
605PreservedAnalyses LowerSwitchPass::run(Function &F,
606                                       FunctionAnalysisManager &AM) {
607  LazyValueInfo *LVI = &AM.getResult<LazyValueAnalysis>(F);
608  AssumptionCache *AC = AM.getCachedResult<AssumptionAnalysis>(F);
609  return LowerSwitch(F, LVI, AC) ? PreservedAnalyses::none()
610                                 : PreservedAnalyses::all();
611}
612