1//===- CodeExtractor.cpp - Pull code region into a new function -----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the interface to tear out a code region, such as an
10// individual loop or a parallel section, into a new function, replacing it with
11// a call to the new function.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/CodeExtractor.h"
16#include "llvm/ADT/ArrayRef.h"
17#include "llvm/ADT/DenseMap.h"
18#include "llvm/ADT/STLExtras.h"
19#include "llvm/ADT/SetVector.h"
20#include "llvm/ADT/SmallPtrSet.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/Analysis/AssumptionCache.h"
23#include "llvm/Analysis/BlockFrequencyInfo.h"
24#include "llvm/Analysis/BlockFrequencyInfoImpl.h"
25#include "llvm/Analysis/BranchProbabilityInfo.h"
26#include "llvm/Analysis/LoopInfo.h"
27#include "llvm/IR/Argument.h"
28#include "llvm/IR/Attributes.h"
29#include "llvm/IR/BasicBlock.h"
30#include "llvm/IR/CFG.h"
31#include "llvm/IR/Constant.h"
32#include "llvm/IR/Constants.h"
33#include "llvm/IR/DIBuilder.h"
34#include "llvm/IR/DataLayout.h"
35#include "llvm/IR/DebugInfo.h"
36#include "llvm/IR/DebugInfoMetadata.h"
37#include "llvm/IR/DerivedTypes.h"
38#include "llvm/IR/Dominators.h"
39#include "llvm/IR/Function.h"
40#include "llvm/IR/GlobalValue.h"
41#include "llvm/IR/InstIterator.h"
42#include "llvm/IR/InstrTypes.h"
43#include "llvm/IR/Instruction.h"
44#include "llvm/IR/Instructions.h"
45#include "llvm/IR/IntrinsicInst.h"
46#include "llvm/IR/Intrinsics.h"
47#include "llvm/IR/LLVMContext.h"
48#include "llvm/IR/MDBuilder.h"
49#include "llvm/IR/Module.h"
50#include "llvm/IR/PatternMatch.h"
51#include "llvm/IR/Type.h"
52#include "llvm/IR/User.h"
53#include "llvm/IR/Value.h"
54#include "llvm/IR/Verifier.h"
55#include "llvm/Support/BlockFrequency.h"
56#include "llvm/Support/BranchProbability.h"
57#include "llvm/Support/Casting.h"
58#include "llvm/Support/CommandLine.h"
59#include "llvm/Support/Debug.h"
60#include "llvm/Support/ErrorHandling.h"
61#include "llvm/Support/raw_ostream.h"
62#include "llvm/Transforms/Utils/BasicBlockUtils.h"
63#include <cassert>
64#include <cstdint>
65#include <iterator>
66#include <map>
67#include <utility>
68#include <vector>
69
70using namespace llvm;
71using namespace llvm::PatternMatch;
72using ProfileCount = Function::ProfileCount;
73
74#define DEBUG_TYPE "code-extractor"
75
76// Provide a command-line option to aggregate function arguments into a struct
77// for functions produced by the code extractor. This is useful when converting
78// extracted functions to pthread-based code, as only one argument (void*) can
79// be passed in to pthread_create().
80static cl::opt<bool>
81AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
82                 cl::desc("Aggregate arguments to code-extracted functions"));
83
84/// Test whether a block is valid for extraction.
85static bool isBlockValidForExtraction(const BasicBlock &BB,
86                                      const SetVector<BasicBlock *> &Result,
87                                      bool AllowVarArgs, bool AllowAlloca) {
88  // taking the address of a basic block moved to another function is illegal
89  if (BB.hasAddressTaken())
90    return false;
91
92  // don't hoist code that uses another basicblock address, as it's likely to
93  // lead to unexpected behavior, like cross-function jumps
94  SmallPtrSet<User const *, 16> Visited;
95  SmallVector<User const *, 16> ToVisit;
96
97  for (Instruction const &Inst : BB)
98    ToVisit.push_back(&Inst);
99
100  while (!ToVisit.empty()) {
101    User const *Curr = ToVisit.pop_back_val();
102    if (!Visited.insert(Curr).second)
103      continue;
104    if (isa<BlockAddress const>(Curr))
105      return false; // even a reference to self is likely to be not compatible
106
107    if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB)
108      continue;
109
110    for (auto const &U : Curr->operands()) {
111      if (auto *UU = dyn_cast<User>(U))
112        ToVisit.push_back(UU);
113    }
114  }
115
116  // If explicitly requested, allow vastart and alloca. For invoke instructions
117  // verify that extraction is valid.
118  for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) {
119    if (isa<AllocaInst>(I)) {
120       if (!AllowAlloca)
121         return false;
122       continue;
123    }
124
125    if (const auto *II = dyn_cast<InvokeInst>(I)) {
126      // Unwind destination (either a landingpad, catchswitch, or cleanuppad)
127      // must be a part of the subgraph which is being extracted.
128      if (auto *UBB = II->getUnwindDest())
129        if (!Result.count(UBB))
130          return false;
131      continue;
132    }
133
134    // All catch handlers of a catchswitch instruction as well as the unwind
135    // destination must be in the subgraph.
136    if (const auto *CSI = dyn_cast<CatchSwitchInst>(I)) {
137      if (auto *UBB = CSI->getUnwindDest())
138        if (!Result.count(UBB))
139          return false;
140      for (const auto *HBB : CSI->handlers())
141        if (!Result.count(const_cast<BasicBlock*>(HBB)))
142          return false;
143      continue;
144    }
145
146    // Make sure that entire catch handler is within subgraph. It is sufficient
147    // to check that catch return's block is in the list.
148    if (const auto *CPI = dyn_cast<CatchPadInst>(I)) {
149      for (const auto *U : CPI->users())
150        if (const auto *CRI = dyn_cast<CatchReturnInst>(U))
151          if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
152            return false;
153      continue;
154    }
155
156    // And do similar checks for cleanup handler - the entire handler must be
157    // in subgraph which is going to be extracted. For cleanup return should
158    // additionally check that the unwind destination is also in the subgraph.
159    if (const auto *CPI = dyn_cast<CleanupPadInst>(I)) {
160      for (const auto *U : CPI->users())
161        if (const auto *CRI = dyn_cast<CleanupReturnInst>(U))
162          if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
163            return false;
164      continue;
165    }
166    if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) {
167      if (auto *UBB = CRI->getUnwindDest())
168        if (!Result.count(UBB))
169          return false;
170      continue;
171    }
172
173    if (const CallInst *CI = dyn_cast<CallInst>(I)) {
174      if (const Function *F = CI->getCalledFunction()) {
175        auto IID = F->getIntrinsicID();
176        if (IID == Intrinsic::vastart) {
177          if (AllowVarArgs)
178            continue;
179          else
180            return false;
181        }
182
183        // Currently, we miscompile outlined copies of eh_typid_for. There are
184        // proposals for fixing this in llvm.org/PR39545.
185        if (IID == Intrinsic::eh_typeid_for)
186          return false;
187      }
188    }
189  }
190
191  return true;
192}
193
194/// Build a set of blocks to extract if the input blocks are viable.
195static SetVector<BasicBlock *>
196buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
197                        bool AllowVarArgs, bool AllowAlloca) {
198  assert(!BBs.empty() && "The set of blocks to extract must be non-empty");
199  SetVector<BasicBlock *> Result;
200
201  // Loop over the blocks, adding them to our set-vector, and aborting with an
202  // empty set if we encounter invalid blocks.
203  for (BasicBlock *BB : BBs) {
204    // If this block is dead, don't process it.
205    if (DT && !DT->isReachableFromEntry(BB))
206      continue;
207
208    if (!Result.insert(BB))
209      llvm_unreachable("Repeated basic blocks in extraction input");
210  }
211
212  LLVM_DEBUG(dbgs() << "Region front block: " << Result.front()->getName()
213                    << '\n');
214
215  for (auto *BB : Result) {
216    if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca))
217      return {};
218
219    // Make sure that the first block is not a landing pad.
220    if (BB == Result.front()) {
221      if (BB->isEHPad()) {
222        LLVM_DEBUG(dbgs() << "The first block cannot be an unwind block\n");
223        return {};
224      }
225      continue;
226    }
227
228    // All blocks other than the first must not have predecessors outside of
229    // the subgraph which is being extracted.
230    for (auto *PBB : predecessors(BB))
231      if (!Result.count(PBB)) {
232        LLVM_DEBUG(dbgs() << "No blocks in this region may have entries from "
233                             "outside the region except for the first block!\n"
234                          << "Problematic source BB: " << BB->getName() << "\n"
235                          << "Problematic destination BB: " << PBB->getName()
236                          << "\n");
237        return {};
238      }
239  }
240
241  return Result;
242}
243
244CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
245                             bool AggregateArgs, BlockFrequencyInfo *BFI,
246                             BranchProbabilityInfo *BPI, AssumptionCache *AC,
247                             bool AllowVarArgs, bool AllowAlloca,
248                             BasicBlock *AllocationBlock, std::string Suffix,
249                             bool ArgsInZeroAddressSpace)
250    : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
251      BPI(BPI), AC(AC), AllocationBlock(AllocationBlock),
252      AllowVarArgs(AllowVarArgs),
253      Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)),
254      Suffix(Suffix), ArgsInZeroAddressSpace(ArgsInZeroAddressSpace) {}
255
256CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs,
257                             BlockFrequencyInfo *BFI,
258                             BranchProbabilityInfo *BPI, AssumptionCache *AC,
259                             std::string Suffix)
260    : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
261      BPI(BPI), AC(AC), AllocationBlock(nullptr), AllowVarArgs(false),
262      Blocks(buildExtractionBlockSet(L.getBlocks(), &DT,
263                                     /* AllowVarArgs */ false,
264                                     /* AllowAlloca */ false)),
265      Suffix(Suffix) {}
266
267/// definedInRegion - Return true if the specified value is defined in the
268/// extracted region.
269static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) {
270  if (Instruction *I = dyn_cast<Instruction>(V))
271    if (Blocks.count(I->getParent()))
272      return true;
273  return false;
274}
275
276/// definedInCaller - Return true if the specified value is defined in the
277/// function being code extracted, but not in the region being extracted.
278/// These values must be passed in as live-ins to the function.
279static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) {
280  if (isa<Argument>(V)) return true;
281  if (Instruction *I = dyn_cast<Instruction>(V))
282    if (!Blocks.count(I->getParent()))
283      return true;
284  return false;
285}
286
287static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) {
288  BasicBlock *CommonExitBlock = nullptr;
289  auto hasNonCommonExitSucc = [&](BasicBlock *Block) {
290    for (auto *Succ : successors(Block)) {
291      // Internal edges, ok.
292      if (Blocks.count(Succ))
293        continue;
294      if (!CommonExitBlock) {
295        CommonExitBlock = Succ;
296        continue;
297      }
298      if (CommonExitBlock != Succ)
299        return true;
300    }
301    return false;
302  };
303
304  if (any_of(Blocks, hasNonCommonExitSucc))
305    return nullptr;
306
307  return CommonExitBlock;
308}
309
310CodeExtractorAnalysisCache::CodeExtractorAnalysisCache(Function &F) {
311  for (BasicBlock &BB : F) {
312    for (Instruction &II : BB.instructionsWithoutDebug())
313      if (auto *AI = dyn_cast<AllocaInst>(&II))
314        Allocas.push_back(AI);
315
316    findSideEffectInfoForBlock(BB);
317  }
318}
319
320void CodeExtractorAnalysisCache::findSideEffectInfoForBlock(BasicBlock &BB) {
321  for (Instruction &II : BB.instructionsWithoutDebug()) {
322    unsigned Opcode = II.getOpcode();
323    Value *MemAddr = nullptr;
324    switch (Opcode) {
325    case Instruction::Store:
326    case Instruction::Load: {
327      if (Opcode == Instruction::Store) {
328        StoreInst *SI = cast<StoreInst>(&II);
329        MemAddr = SI->getPointerOperand();
330      } else {
331        LoadInst *LI = cast<LoadInst>(&II);
332        MemAddr = LI->getPointerOperand();
333      }
334      // Global variable can not be aliased with locals.
335      if (isa<Constant>(MemAddr))
336        break;
337      Value *Base = MemAddr->stripInBoundsConstantOffsets();
338      if (!isa<AllocaInst>(Base)) {
339        SideEffectingBlocks.insert(&BB);
340        return;
341      }
342      BaseMemAddrs[&BB].insert(Base);
343      break;
344    }
345    default: {
346      IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II);
347      if (IntrInst) {
348        if (IntrInst->isLifetimeStartOrEnd())
349          break;
350        SideEffectingBlocks.insert(&BB);
351        return;
352      }
353      // Treat all the other cases conservatively if it has side effects.
354      if (II.mayHaveSideEffects()) {
355        SideEffectingBlocks.insert(&BB);
356        return;
357      }
358    }
359    }
360  }
361}
362
363bool CodeExtractorAnalysisCache::doesBlockContainClobberOfAddr(
364    BasicBlock &BB, AllocaInst *Addr) const {
365  if (SideEffectingBlocks.count(&BB))
366    return true;
367  auto It = BaseMemAddrs.find(&BB);
368  if (It != BaseMemAddrs.end())
369    return It->second.count(Addr);
370  return false;
371}
372
373bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers(
374    const CodeExtractorAnalysisCache &CEAC, Instruction *Addr) const {
375  AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets());
376  Function *Func = (*Blocks.begin())->getParent();
377  for (BasicBlock &BB : *Func) {
378    if (Blocks.count(&BB))
379      continue;
380    if (CEAC.doesBlockContainClobberOfAddr(BB, AI))
381      return false;
382  }
383  return true;
384}
385
386BasicBlock *
387CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) {
388  BasicBlock *SinglePredFromOutlineRegion = nullptr;
389  assert(!Blocks.count(CommonExitBlock) &&
390         "Expect a block outside the region!");
391  for (auto *Pred : predecessors(CommonExitBlock)) {
392    if (!Blocks.count(Pred))
393      continue;
394    if (!SinglePredFromOutlineRegion) {
395      SinglePredFromOutlineRegion = Pred;
396    } else if (SinglePredFromOutlineRegion != Pred) {
397      SinglePredFromOutlineRegion = nullptr;
398      break;
399    }
400  }
401
402  if (SinglePredFromOutlineRegion)
403    return SinglePredFromOutlineRegion;
404
405#ifndef NDEBUG
406  auto getFirstPHI = [](BasicBlock *BB) {
407    BasicBlock::iterator I = BB->begin();
408    PHINode *FirstPhi = nullptr;
409    while (I != BB->end()) {
410      PHINode *Phi = dyn_cast<PHINode>(I);
411      if (!Phi)
412        break;
413      if (!FirstPhi) {
414        FirstPhi = Phi;
415        break;
416      }
417    }
418    return FirstPhi;
419  };
420  // If there are any phi nodes, the single pred either exists or has already
421  // be created before code extraction.
422  assert(!getFirstPHI(CommonExitBlock) && "Phi not expected");
423#endif
424
425  BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock(
426      CommonExitBlock->getFirstNonPHI()->getIterator());
427
428  for (BasicBlock *Pred :
429       llvm::make_early_inc_range(predecessors(CommonExitBlock))) {
430    if (Blocks.count(Pred))
431      continue;
432    Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock);
433  }
434  // Now add the old exit block to the outline region.
435  Blocks.insert(CommonExitBlock);
436  OldTargets.push_back(NewExitBlock);
437  return CommonExitBlock;
438}
439
440// Find the pair of life time markers for address 'Addr' that are either
441// defined inside the outline region or can legally be shrinkwrapped into the
442// outline region. If there are not other untracked uses of the address, return
443// the pair of markers if found; otherwise return a pair of nullptr.
444CodeExtractor::LifetimeMarkerInfo
445CodeExtractor::getLifetimeMarkers(const CodeExtractorAnalysisCache &CEAC,
446                                  Instruction *Addr,
447                                  BasicBlock *ExitBlock) const {
448  LifetimeMarkerInfo Info;
449
450  for (User *U : Addr->users()) {
451    IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U);
452    if (IntrInst) {
453      // We don't model addresses with multiple start/end markers, but the
454      // markers do not need to be in the region.
455      if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) {
456        if (Info.LifeStart)
457          return {};
458        Info.LifeStart = IntrInst;
459        continue;
460      }
461      if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) {
462        if (Info.LifeEnd)
463          return {};
464        Info.LifeEnd = IntrInst;
465        continue;
466      }
467      // At this point, permit debug uses outside of the region.
468      // This is fixed in a later call to fixupDebugInfoPostExtraction().
469      if (isa<DbgInfoIntrinsic>(IntrInst))
470        continue;
471    }
472    // Find untracked uses of the address, bail.
473    if (!definedInRegion(Blocks, U))
474      return {};
475  }
476
477  if (!Info.LifeStart || !Info.LifeEnd)
478    return {};
479
480  Info.SinkLifeStart = !definedInRegion(Blocks, Info.LifeStart);
481  Info.HoistLifeEnd = !definedInRegion(Blocks, Info.LifeEnd);
482  // Do legality check.
483  if ((Info.SinkLifeStart || Info.HoistLifeEnd) &&
484      !isLegalToShrinkwrapLifetimeMarkers(CEAC, Addr))
485    return {};
486
487  // Check to see if we have a place to do hoisting, if not, bail.
488  if (Info.HoistLifeEnd && !ExitBlock)
489    return {};
490
491  return Info;
492}
493
494void CodeExtractor::findAllocas(const CodeExtractorAnalysisCache &CEAC,
495                                ValueSet &SinkCands, ValueSet &HoistCands,
496                                BasicBlock *&ExitBlock) const {
497  Function *Func = (*Blocks.begin())->getParent();
498  ExitBlock = getCommonExitBlock(Blocks);
499
500  auto moveOrIgnoreLifetimeMarkers =
501      [&](const LifetimeMarkerInfo &LMI) -> bool {
502    if (!LMI.LifeStart)
503      return false;
504    if (LMI.SinkLifeStart) {
505      LLVM_DEBUG(dbgs() << "Sinking lifetime.start: " << *LMI.LifeStart
506                        << "\n");
507      SinkCands.insert(LMI.LifeStart);
508    }
509    if (LMI.HoistLifeEnd) {
510      LLVM_DEBUG(dbgs() << "Hoisting lifetime.end: " << *LMI.LifeEnd << "\n");
511      HoistCands.insert(LMI.LifeEnd);
512    }
513    return true;
514  };
515
516  // Look up allocas in the original function in CodeExtractorAnalysisCache, as
517  // this is much faster than walking all the instructions.
518  for (AllocaInst *AI : CEAC.getAllocas()) {
519    BasicBlock *BB = AI->getParent();
520    if (Blocks.count(BB))
521      continue;
522
523    // As a prior call to extractCodeRegion() may have shrinkwrapped the alloca,
524    // check whether it is actually still in the original function.
525    Function *AIFunc = BB->getParent();
526    if (AIFunc != Func)
527      continue;
528
529    LifetimeMarkerInfo MarkerInfo = getLifetimeMarkers(CEAC, AI, ExitBlock);
530    bool Moved = moveOrIgnoreLifetimeMarkers(MarkerInfo);
531    if (Moved) {
532      LLVM_DEBUG(dbgs() << "Sinking alloca: " << *AI << "\n");
533      SinkCands.insert(AI);
534      continue;
535    }
536
537    // Find bitcasts in the outlined region that have lifetime marker users
538    // outside that region. Replace the lifetime marker use with an
539    // outside region bitcast to avoid unnecessary alloca/reload instructions
540    // and extra lifetime markers.
541    SmallVector<Instruction *, 2> LifetimeBitcastUsers;
542    for (User *U : AI->users()) {
543      if (!definedInRegion(Blocks, U))
544        continue;
545
546      if (U->stripInBoundsConstantOffsets() != AI)
547        continue;
548
549      Instruction *Bitcast = cast<Instruction>(U);
550      for (User *BU : Bitcast->users()) {
551        IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(BU);
552        if (!IntrInst)
553          continue;
554
555        if (!IntrInst->isLifetimeStartOrEnd())
556          continue;
557
558        if (definedInRegion(Blocks, IntrInst))
559          continue;
560
561        LLVM_DEBUG(dbgs() << "Replace use of extracted region bitcast"
562                          << *Bitcast << " in out-of-region lifetime marker "
563                          << *IntrInst << "\n");
564        LifetimeBitcastUsers.push_back(IntrInst);
565      }
566    }
567
568    for (Instruction *I : LifetimeBitcastUsers) {
569      Module *M = AIFunc->getParent();
570      LLVMContext &Ctx = M->getContext();
571      auto *Int8PtrTy = PointerType::getUnqual(Ctx);
572      CastInst *CastI =
573          CastInst::CreatePointerCast(AI, Int8PtrTy, "lt.cast", I);
574      I->replaceUsesOfWith(I->getOperand(1), CastI);
575    }
576
577    // Follow any bitcasts.
578    SmallVector<Instruction *, 2> Bitcasts;
579    SmallVector<LifetimeMarkerInfo, 2> BitcastLifetimeInfo;
580    for (User *U : AI->users()) {
581      if (U->stripInBoundsConstantOffsets() == AI) {
582        Instruction *Bitcast = cast<Instruction>(U);
583        LifetimeMarkerInfo LMI = getLifetimeMarkers(CEAC, Bitcast, ExitBlock);
584        if (LMI.LifeStart) {
585          Bitcasts.push_back(Bitcast);
586          BitcastLifetimeInfo.push_back(LMI);
587          continue;
588        }
589      }
590
591      // Found unknown use of AI.
592      if (!definedInRegion(Blocks, U)) {
593        Bitcasts.clear();
594        break;
595      }
596    }
597
598    // Either no bitcasts reference the alloca or there are unknown uses.
599    if (Bitcasts.empty())
600      continue;
601
602    LLVM_DEBUG(dbgs() << "Sinking alloca (via bitcast): " << *AI << "\n");
603    SinkCands.insert(AI);
604    for (unsigned I = 0, E = Bitcasts.size(); I != E; ++I) {
605      Instruction *BitcastAddr = Bitcasts[I];
606      const LifetimeMarkerInfo &LMI = BitcastLifetimeInfo[I];
607      assert(LMI.LifeStart &&
608             "Unsafe to sink bitcast without lifetime markers");
609      moveOrIgnoreLifetimeMarkers(LMI);
610      if (!definedInRegion(Blocks, BitcastAddr)) {
611        LLVM_DEBUG(dbgs() << "Sinking bitcast-of-alloca: " << *BitcastAddr
612                          << "\n");
613        SinkCands.insert(BitcastAddr);
614      }
615    }
616  }
617}
618
619bool CodeExtractor::isEligible() const {
620  if (Blocks.empty())
621    return false;
622  BasicBlock *Header = *Blocks.begin();
623  Function *F = Header->getParent();
624
625  // For functions with varargs, check that varargs handling is only done in the
626  // outlined function, i.e vastart and vaend are only used in outlined blocks.
627  if (AllowVarArgs && F->getFunctionType()->isVarArg()) {
628    auto containsVarArgIntrinsic = [](const Instruction &I) {
629      if (const CallInst *CI = dyn_cast<CallInst>(&I))
630        if (const Function *Callee = CI->getCalledFunction())
631          return Callee->getIntrinsicID() == Intrinsic::vastart ||
632                 Callee->getIntrinsicID() == Intrinsic::vaend;
633      return false;
634    };
635
636    for (auto &BB : *F) {
637      if (Blocks.count(&BB))
638        continue;
639      if (llvm::any_of(BB, containsVarArgIntrinsic))
640        return false;
641    }
642  }
643  return true;
644}
645
646void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs,
647                                      const ValueSet &SinkCands) const {
648  for (BasicBlock *BB : Blocks) {
649    // If a used value is defined outside the region, it's an input.  If an
650    // instruction is used outside the region, it's an output.
651    for (Instruction &II : *BB) {
652      for (auto &OI : II.operands()) {
653        Value *V = OI;
654        if (!SinkCands.count(V) && definedInCaller(Blocks, V))
655          Inputs.insert(V);
656      }
657
658      for (User *U : II.users())
659        if (!definedInRegion(Blocks, U)) {
660          Outputs.insert(&II);
661          break;
662        }
663    }
664  }
665}
666
667/// severSplitPHINodesOfEntry - If a PHI node has multiple inputs from outside
668/// of the region, we need to split the entry block of the region so that the
669/// PHI node is easier to deal with.
670void CodeExtractor::severSplitPHINodesOfEntry(BasicBlock *&Header) {
671  unsigned NumPredsFromRegion = 0;
672  unsigned NumPredsOutsideRegion = 0;
673
674  if (Header != &Header->getParent()->getEntryBlock()) {
675    PHINode *PN = dyn_cast<PHINode>(Header->begin());
676    if (!PN) return;  // No PHI nodes.
677
678    // If the header node contains any PHI nodes, check to see if there is more
679    // than one entry from outside the region.  If so, we need to sever the
680    // header block into two.
681    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
682      if (Blocks.count(PN->getIncomingBlock(i)))
683        ++NumPredsFromRegion;
684      else
685        ++NumPredsOutsideRegion;
686
687    // If there is one (or fewer) predecessor from outside the region, we don't
688    // need to do anything special.
689    if (NumPredsOutsideRegion <= 1) return;
690  }
691
692  // Otherwise, we need to split the header block into two pieces: one
693  // containing PHI nodes merging values from outside of the region, and a
694  // second that contains all of the code for the block and merges back any
695  // incoming values from inside of the region.
696  BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT);
697
698  // We only want to code extract the second block now, and it becomes the new
699  // header of the region.
700  BasicBlock *OldPred = Header;
701  Blocks.remove(OldPred);
702  Blocks.insert(NewBB);
703  Header = NewBB;
704
705  // Okay, now we need to adjust the PHI nodes and any branches from within the
706  // region to go to the new header block instead of the old header block.
707  if (NumPredsFromRegion) {
708    PHINode *PN = cast<PHINode>(OldPred->begin());
709    // Loop over all of the predecessors of OldPred that are in the region,
710    // changing them to branch to NewBB instead.
711    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
712      if (Blocks.count(PN->getIncomingBlock(i))) {
713        Instruction *TI = PN->getIncomingBlock(i)->getTerminator();
714        TI->replaceUsesOfWith(OldPred, NewBB);
715      }
716
717    // Okay, everything within the region is now branching to the right block, we
718    // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
719    BasicBlock::iterator AfterPHIs;
720    for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
721      PHINode *PN = cast<PHINode>(AfterPHIs);
722      // Create a new PHI node in the new region, which has an incoming value
723      // from OldPred of PN.
724      PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion,
725                                       PN->getName() + ".ce");
726      NewPN->insertBefore(NewBB->begin());
727      PN->replaceAllUsesWith(NewPN);
728      NewPN->addIncoming(PN, OldPred);
729
730      // Loop over all of the incoming value in PN, moving them to NewPN if they
731      // are from the extracted region.
732      for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
733        if (Blocks.count(PN->getIncomingBlock(i))) {
734          NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
735          PN->removeIncomingValue(i);
736          --i;
737        }
738      }
739    }
740  }
741}
742
743/// severSplitPHINodesOfExits - if PHI nodes in exit blocks have inputs from
744/// outlined region, we split these PHIs on two: one with inputs from region
745/// and other with remaining incoming blocks; then first PHIs are placed in
746/// outlined region.
747void CodeExtractor::severSplitPHINodesOfExits(
748    const SmallPtrSetImpl<BasicBlock *> &Exits) {
749  for (BasicBlock *ExitBB : Exits) {
750    BasicBlock *NewBB = nullptr;
751
752    for (PHINode &PN : ExitBB->phis()) {
753      // Find all incoming values from the outlining region.
754      SmallVector<unsigned, 2> IncomingVals;
755      for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i)
756        if (Blocks.count(PN.getIncomingBlock(i)))
757          IncomingVals.push_back(i);
758
759      // Do not process PHI if there is one (or fewer) predecessor from region.
760      // If PHI has exactly one predecessor from region, only this one incoming
761      // will be replaced on codeRepl block, so it should be safe to skip PHI.
762      if (IncomingVals.size() <= 1)
763        continue;
764
765      // Create block for new PHIs and add it to the list of outlined if it
766      // wasn't done before.
767      if (!NewBB) {
768        NewBB = BasicBlock::Create(ExitBB->getContext(),
769                                   ExitBB->getName() + ".split",
770                                   ExitBB->getParent(), ExitBB);
771        NewBB->IsNewDbgInfoFormat = ExitBB->IsNewDbgInfoFormat;
772        SmallVector<BasicBlock *, 4> Preds(predecessors(ExitBB));
773        for (BasicBlock *PredBB : Preds)
774          if (Blocks.count(PredBB))
775            PredBB->getTerminator()->replaceUsesOfWith(ExitBB, NewBB);
776        BranchInst::Create(ExitBB, NewBB);
777        Blocks.insert(NewBB);
778      }
779
780      // Split this PHI.
781      PHINode *NewPN = PHINode::Create(PN.getType(), IncomingVals.size(),
782                                       PN.getName() + ".ce");
783      NewPN->insertBefore(NewBB->getFirstNonPHIIt());
784      for (unsigned i : IncomingVals)
785        NewPN->addIncoming(PN.getIncomingValue(i), PN.getIncomingBlock(i));
786      for (unsigned i : reverse(IncomingVals))
787        PN.removeIncomingValue(i, false);
788      PN.addIncoming(NewPN, NewBB);
789    }
790  }
791}
792
793void CodeExtractor::splitReturnBlocks() {
794  for (BasicBlock *Block : Blocks)
795    if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) {
796      BasicBlock *New =
797          Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret");
798      if (DT) {
799        // Old dominates New. New node dominates all other nodes dominated
800        // by Old.
801        DomTreeNode *OldNode = DT->getNode(Block);
802        SmallVector<DomTreeNode *, 8> Children(OldNode->begin(),
803                                               OldNode->end());
804
805        DomTreeNode *NewNode = DT->addNewBlock(New, Block);
806
807        for (DomTreeNode *I : Children)
808          DT->changeImmediateDominator(I, NewNode);
809      }
810    }
811}
812
813/// constructFunction - make a function based on inputs and outputs, as follows:
814/// f(in0, ..., inN, out0, ..., outN)
815Function *CodeExtractor::constructFunction(const ValueSet &inputs,
816                                           const ValueSet &outputs,
817                                           BasicBlock *header,
818                                           BasicBlock *newRootNode,
819                                           BasicBlock *newHeader,
820                                           Function *oldFunction,
821                                           Module *M) {
822  LLVM_DEBUG(dbgs() << "inputs: " << inputs.size() << "\n");
823  LLVM_DEBUG(dbgs() << "outputs: " << outputs.size() << "\n");
824
825  // This function returns unsigned, outputs will go back by reference.
826  switch (NumExitBlocks) {
827  case 0:
828  case 1: RetTy = Type::getVoidTy(header->getContext()); break;
829  case 2: RetTy = Type::getInt1Ty(header->getContext()); break;
830  default: RetTy = Type::getInt16Ty(header->getContext()); break;
831  }
832
833  std::vector<Type *> ParamTy;
834  std::vector<Type *> AggParamTy;
835  ValueSet StructValues;
836  const DataLayout &DL = M->getDataLayout();
837
838  // Add the types of the input values to the function's argument list
839  for (Value *value : inputs) {
840    LLVM_DEBUG(dbgs() << "value used in func: " << *value << "\n");
841    if (AggregateArgs && !ExcludeArgsFromAggregate.contains(value)) {
842      AggParamTy.push_back(value->getType());
843      StructValues.insert(value);
844    } else
845      ParamTy.push_back(value->getType());
846  }
847
848  // Add the types of the output values to the function's argument list.
849  for (Value *output : outputs) {
850    LLVM_DEBUG(dbgs() << "instr used in func: " << *output << "\n");
851    if (AggregateArgs && !ExcludeArgsFromAggregate.contains(output)) {
852      AggParamTy.push_back(output->getType());
853      StructValues.insert(output);
854    } else
855      ParamTy.push_back(
856          PointerType::get(output->getType(), DL.getAllocaAddrSpace()));
857  }
858
859  assert(
860      (ParamTy.size() + AggParamTy.size()) ==
861          (inputs.size() + outputs.size()) &&
862      "Number of scalar and aggregate params does not match inputs, outputs");
863  assert((StructValues.empty() || AggregateArgs) &&
864         "Expeced StructValues only with AggregateArgs set");
865
866  // Concatenate scalar and aggregate params in ParamTy.
867  size_t NumScalarParams = ParamTy.size();
868  StructType *StructTy = nullptr;
869  if (AggregateArgs && !AggParamTy.empty()) {
870    StructTy = StructType::get(M->getContext(), AggParamTy);
871    ParamTy.push_back(PointerType::get(
872        StructTy, ArgsInZeroAddressSpace ? 0 : DL.getAllocaAddrSpace()));
873  }
874
875  LLVM_DEBUG({
876    dbgs() << "Function type: " << *RetTy << " f(";
877    for (Type *i : ParamTy)
878      dbgs() << *i << ", ";
879    dbgs() << ")\n";
880  });
881
882  FunctionType *funcType = FunctionType::get(
883      RetTy, ParamTy, AllowVarArgs && oldFunction->isVarArg());
884
885  std::string SuffixToUse =
886      Suffix.empty()
887          ? (header->getName().empty() ? "extracted" : header->getName().str())
888          : Suffix;
889  // Create the new function
890  Function *newFunction = Function::Create(
891      funcType, GlobalValue::InternalLinkage, oldFunction->getAddressSpace(),
892      oldFunction->getName() + "." + SuffixToUse, M);
893  newFunction->IsNewDbgInfoFormat = oldFunction->IsNewDbgInfoFormat;
894
895  // Inherit all of the target dependent attributes and white-listed
896  // target independent attributes.
897  //  (e.g. If the extracted region contains a call to an x86.sse
898  //  instruction we need to make sure that the extracted region has the
899  //  "target-features" attribute allowing it to be lowered.
900  // FIXME: This should be changed to check to see if a specific
901  //           attribute can not be inherited.
902  for (const auto &Attr : oldFunction->getAttributes().getFnAttrs()) {
903    if (Attr.isStringAttribute()) {
904      if (Attr.getKindAsString() == "thunk")
905        continue;
906    } else
907      switch (Attr.getKindAsEnum()) {
908      // Those attributes cannot be propagated safely. Explicitly list them
909      // here so we get a warning if new attributes are added.
910      case Attribute::AllocSize:
911      case Attribute::Builtin:
912      case Attribute::Convergent:
913      case Attribute::JumpTable:
914      case Attribute::Naked:
915      case Attribute::NoBuiltin:
916      case Attribute::NoMerge:
917      case Attribute::NoReturn:
918      case Attribute::NoSync:
919      case Attribute::ReturnsTwice:
920      case Attribute::Speculatable:
921      case Attribute::StackAlignment:
922      case Attribute::WillReturn:
923      case Attribute::AllocKind:
924      case Attribute::PresplitCoroutine:
925      case Attribute::Memory:
926      case Attribute::NoFPClass:
927      case Attribute::CoroDestroyOnlyWhenComplete:
928        continue;
929      // Those attributes should be safe to propagate to the extracted function.
930      case Attribute::AlwaysInline:
931      case Attribute::Cold:
932      case Attribute::DisableSanitizerInstrumentation:
933      case Attribute::FnRetThunkExtern:
934      case Attribute::Hot:
935      case Attribute::NoRecurse:
936      case Attribute::InlineHint:
937      case Attribute::MinSize:
938      case Attribute::NoCallback:
939      case Attribute::NoDuplicate:
940      case Attribute::NoFree:
941      case Attribute::NoImplicitFloat:
942      case Attribute::NoInline:
943      case Attribute::NonLazyBind:
944      case Attribute::NoRedZone:
945      case Attribute::NoUnwind:
946      case Attribute::NoSanitizeBounds:
947      case Attribute::NoSanitizeCoverage:
948      case Attribute::NullPointerIsValid:
949      case Attribute::OptimizeForDebugging:
950      case Attribute::OptForFuzzing:
951      case Attribute::OptimizeNone:
952      case Attribute::OptimizeForSize:
953      case Attribute::SafeStack:
954      case Attribute::ShadowCallStack:
955      case Attribute::SanitizeAddress:
956      case Attribute::SanitizeMemory:
957      case Attribute::SanitizeThread:
958      case Attribute::SanitizeHWAddress:
959      case Attribute::SanitizeMemTag:
960      case Attribute::SpeculativeLoadHardening:
961      case Attribute::StackProtect:
962      case Attribute::StackProtectReq:
963      case Attribute::StackProtectStrong:
964      case Attribute::StrictFP:
965      case Attribute::UWTable:
966      case Attribute::VScaleRange:
967      case Attribute::NoCfCheck:
968      case Attribute::MustProgress:
969      case Attribute::NoProfile:
970      case Attribute::SkipProfile:
971        break;
972      // These attributes cannot be applied to functions.
973      case Attribute::Alignment:
974      case Attribute::AllocatedPointer:
975      case Attribute::AllocAlign:
976      case Attribute::ByVal:
977      case Attribute::Dereferenceable:
978      case Attribute::DereferenceableOrNull:
979      case Attribute::ElementType:
980      case Attribute::InAlloca:
981      case Attribute::InReg:
982      case Attribute::Nest:
983      case Attribute::NoAlias:
984      case Attribute::NoCapture:
985      case Attribute::NoUndef:
986      case Attribute::NonNull:
987      case Attribute::Preallocated:
988      case Attribute::ReadNone:
989      case Attribute::ReadOnly:
990      case Attribute::Returned:
991      case Attribute::SExt:
992      case Attribute::StructRet:
993      case Attribute::SwiftError:
994      case Attribute::SwiftSelf:
995      case Attribute::SwiftAsync:
996      case Attribute::ZExt:
997      case Attribute::ImmArg:
998      case Attribute::ByRef:
999      case Attribute::WriteOnly:
1000      case Attribute::Writable:
1001      case Attribute::DeadOnUnwind:
1002      //  These are not really attributes.
1003      case Attribute::None:
1004      case Attribute::EndAttrKinds:
1005      case Attribute::EmptyKey:
1006      case Attribute::TombstoneKey:
1007        llvm_unreachable("Not a function attribute");
1008      }
1009
1010    newFunction->addFnAttr(Attr);
1011  }
1012  newFunction->insert(newFunction->end(), newRootNode);
1013
1014  // Create scalar and aggregate iterators to name all of the arguments we
1015  // inserted.
1016  Function::arg_iterator ScalarAI = newFunction->arg_begin();
1017  Function::arg_iterator AggAI = std::next(ScalarAI, NumScalarParams);
1018
1019  // Rewrite all users of the inputs in the extracted region to use the
1020  // arguments (or appropriate addressing into struct) instead.
1021  for (unsigned i = 0, e = inputs.size(), aggIdx = 0; i != e; ++i) {
1022    Value *RewriteVal;
1023    if (AggregateArgs && StructValues.contains(inputs[i])) {
1024      Value *Idx[2];
1025      Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext()));
1026      Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), aggIdx);
1027      Instruction *TI = newFunction->begin()->getTerminator();
1028      GetElementPtrInst *GEP = GetElementPtrInst::Create(
1029          StructTy, &*AggAI, Idx, "gep_" + inputs[i]->getName(), TI);
1030      RewriteVal = new LoadInst(StructTy->getElementType(aggIdx), GEP,
1031                                "loadgep_" + inputs[i]->getName(), TI);
1032      ++aggIdx;
1033    } else
1034      RewriteVal = &*ScalarAI++;
1035
1036    std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end());
1037    for (User *use : Users)
1038      if (Instruction *inst = dyn_cast<Instruction>(use))
1039        if (Blocks.count(inst->getParent()))
1040          inst->replaceUsesOfWith(inputs[i], RewriteVal);
1041  }
1042
1043  // Set names for input and output arguments.
1044  if (NumScalarParams) {
1045    ScalarAI = newFunction->arg_begin();
1046    for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++ScalarAI)
1047      if (!StructValues.contains(inputs[i]))
1048        ScalarAI->setName(inputs[i]->getName());
1049    for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++ScalarAI)
1050      if (!StructValues.contains(outputs[i]))
1051        ScalarAI->setName(outputs[i]->getName() + ".out");
1052  }
1053
1054  // Rewrite branches to basic blocks outside of the loop to new dummy blocks
1055  // within the new function. This must be done before we lose track of which
1056  // blocks were originally in the code region.
1057  std::vector<User *> Users(header->user_begin(), header->user_end());
1058  for (auto &U : Users)
1059    // The BasicBlock which contains the branch is not in the region
1060    // modify the branch target to a new block
1061    if (Instruction *I = dyn_cast<Instruction>(U))
1062      if (I->isTerminator() && I->getFunction() == oldFunction &&
1063          !Blocks.count(I->getParent()))
1064        I->replaceUsesOfWith(header, newHeader);
1065
1066  return newFunction;
1067}
1068
1069/// Erase lifetime.start markers which reference inputs to the extraction
1070/// region, and insert the referenced memory into \p LifetimesStart.
1071///
1072/// The extraction region is defined by a set of blocks (\p Blocks), and a set
1073/// of allocas which will be moved from the caller function into the extracted
1074/// function (\p SunkAllocas).
1075static void eraseLifetimeMarkersOnInputs(const SetVector<BasicBlock *> &Blocks,
1076                                         const SetVector<Value *> &SunkAllocas,
1077                                         SetVector<Value *> &LifetimesStart) {
1078  for (BasicBlock *BB : Blocks) {
1079    for (Instruction &I : llvm::make_early_inc_range(*BB)) {
1080      auto *II = dyn_cast<IntrinsicInst>(&I);
1081      if (!II || !II->isLifetimeStartOrEnd())
1082        continue;
1083
1084      // Get the memory operand of the lifetime marker. If the underlying
1085      // object is a sunk alloca, or is otherwise defined in the extraction
1086      // region, the lifetime marker must not be erased.
1087      Value *Mem = II->getOperand(1)->stripInBoundsOffsets();
1088      if (SunkAllocas.count(Mem) || definedInRegion(Blocks, Mem))
1089        continue;
1090
1091      if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1092        LifetimesStart.insert(Mem);
1093      II->eraseFromParent();
1094    }
1095  }
1096}
1097
1098/// Insert lifetime start/end markers surrounding the call to the new function
1099/// for objects defined in the caller.
1100static void insertLifetimeMarkersSurroundingCall(
1101    Module *M, ArrayRef<Value *> LifetimesStart, ArrayRef<Value *> LifetimesEnd,
1102    CallInst *TheCall) {
1103  LLVMContext &Ctx = M->getContext();
1104  auto NegativeOne = ConstantInt::getSigned(Type::getInt64Ty(Ctx), -1);
1105  Instruction *Term = TheCall->getParent()->getTerminator();
1106
1107  // Emit lifetime markers for the pointers given in \p Objects. Insert the
1108  // markers before the call if \p InsertBefore, and after the call otherwise.
1109  auto insertMarkers = [&](Intrinsic::ID MarkerFunc, ArrayRef<Value *> Objects,
1110                           bool InsertBefore) {
1111    for (Value *Mem : Objects) {
1112      assert((!isa<Instruction>(Mem) || cast<Instruction>(Mem)->getFunction() ==
1113                                            TheCall->getFunction()) &&
1114             "Input memory not defined in original function");
1115
1116      Function *Func = Intrinsic::getDeclaration(M, MarkerFunc, Mem->getType());
1117      auto Marker = CallInst::Create(Func, {NegativeOne, Mem});
1118      if (InsertBefore)
1119        Marker->insertBefore(TheCall);
1120      else
1121        Marker->insertBefore(Term);
1122    }
1123  };
1124
1125  if (!LifetimesStart.empty()) {
1126    insertMarkers(Intrinsic::lifetime_start, LifetimesStart,
1127                  /*InsertBefore=*/true);
1128  }
1129
1130  if (!LifetimesEnd.empty()) {
1131    insertMarkers(Intrinsic::lifetime_end, LifetimesEnd,
1132                  /*InsertBefore=*/false);
1133  }
1134}
1135
1136/// emitCallAndSwitchStatement - This method sets up the caller side by adding
1137/// the call instruction, splitting any PHI nodes in the header block as
1138/// necessary.
1139CallInst *CodeExtractor::emitCallAndSwitchStatement(Function *newFunction,
1140                                                    BasicBlock *codeReplacer,
1141                                                    ValueSet &inputs,
1142                                                    ValueSet &outputs) {
1143  // Emit a call to the new function, passing in: *pointer to struct (if
1144  // aggregating parameters), or plan inputs and allocated memory for outputs
1145  std::vector<Value *> params, ReloadOutputs, Reloads;
1146  ValueSet StructValues;
1147
1148  Module *M = newFunction->getParent();
1149  LLVMContext &Context = M->getContext();
1150  const DataLayout &DL = M->getDataLayout();
1151  CallInst *call = nullptr;
1152
1153  // Add inputs as params, or to be filled into the struct
1154  unsigned ScalarInputArgNo = 0;
1155  SmallVector<unsigned, 1> SwiftErrorArgs;
1156  for (Value *input : inputs) {
1157    if (AggregateArgs && !ExcludeArgsFromAggregate.contains(input))
1158      StructValues.insert(input);
1159    else {
1160      params.push_back(input);
1161      if (input->isSwiftError())
1162        SwiftErrorArgs.push_back(ScalarInputArgNo);
1163    }
1164    ++ScalarInputArgNo;
1165  }
1166
1167  // Create allocas for the outputs
1168  unsigned ScalarOutputArgNo = 0;
1169  for (Value *output : outputs) {
1170    if (AggregateArgs && !ExcludeArgsFromAggregate.contains(output)) {
1171      StructValues.insert(output);
1172    } else {
1173      AllocaInst *alloca =
1174        new AllocaInst(output->getType(), DL.getAllocaAddrSpace(),
1175                       nullptr, output->getName() + ".loc",
1176                       &codeReplacer->getParent()->front().front());
1177      ReloadOutputs.push_back(alloca);
1178      params.push_back(alloca);
1179      ++ScalarOutputArgNo;
1180    }
1181  }
1182
1183  StructType *StructArgTy = nullptr;
1184  AllocaInst *Struct = nullptr;
1185  unsigned NumAggregatedInputs = 0;
1186  if (AggregateArgs && !StructValues.empty()) {
1187    std::vector<Type *> ArgTypes;
1188    for (Value *V : StructValues)
1189      ArgTypes.push_back(V->getType());
1190
1191    // Allocate a struct at the beginning of this function
1192    StructArgTy = StructType::get(newFunction->getContext(), ArgTypes);
1193    Struct = new AllocaInst(
1194        StructArgTy, DL.getAllocaAddrSpace(), nullptr, "structArg",
1195        AllocationBlock ? &*AllocationBlock->getFirstInsertionPt()
1196                        : &codeReplacer->getParent()->front().front());
1197
1198    if (ArgsInZeroAddressSpace && DL.getAllocaAddrSpace() != 0) {
1199      auto *StructSpaceCast = new AddrSpaceCastInst(
1200          Struct, PointerType ::get(Context, 0), "structArg.ascast");
1201      StructSpaceCast->insertAfter(Struct);
1202      params.push_back(StructSpaceCast);
1203    } else {
1204      params.push_back(Struct);
1205    }
1206    // Store aggregated inputs in the struct.
1207    for (unsigned i = 0, e = StructValues.size(); i != e; ++i) {
1208      if (inputs.contains(StructValues[i])) {
1209        Value *Idx[2];
1210        Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1211        Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i);
1212        GetElementPtrInst *GEP = GetElementPtrInst::Create(
1213            StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName());
1214        GEP->insertInto(codeReplacer, codeReplacer->end());
1215        new StoreInst(StructValues[i], GEP, codeReplacer);
1216        NumAggregatedInputs++;
1217      }
1218    }
1219  }
1220
1221  // Emit the call to the function
1222  call = CallInst::Create(newFunction, params,
1223                          NumExitBlocks > 1 ? "targetBlock" : "");
1224  // Add debug location to the new call, if the original function has debug
1225  // info. In that case, the terminator of the entry block of the extracted
1226  // function contains the first debug location of the extracted function,
1227  // set in extractCodeRegion.
1228  if (codeReplacer->getParent()->getSubprogram()) {
1229    if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc())
1230      call->setDebugLoc(DL);
1231  }
1232  call->insertInto(codeReplacer, codeReplacer->end());
1233
1234  // Set swifterror parameter attributes.
1235  for (unsigned SwiftErrArgNo : SwiftErrorArgs) {
1236    call->addParamAttr(SwiftErrArgNo, Attribute::SwiftError);
1237    newFunction->addParamAttr(SwiftErrArgNo, Attribute::SwiftError);
1238  }
1239
1240  // Reload the outputs passed in by reference, use the struct if output is in
1241  // the aggregate or reload from the scalar argument.
1242  for (unsigned i = 0, e = outputs.size(), scalarIdx = 0,
1243                aggIdx = NumAggregatedInputs;
1244       i != e; ++i) {
1245    Value *Output = nullptr;
1246    if (AggregateArgs && StructValues.contains(outputs[i])) {
1247      Value *Idx[2];
1248      Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1249      Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), aggIdx);
1250      GetElementPtrInst *GEP = GetElementPtrInst::Create(
1251          StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName());
1252      GEP->insertInto(codeReplacer, codeReplacer->end());
1253      Output = GEP;
1254      ++aggIdx;
1255    } else {
1256      Output = ReloadOutputs[scalarIdx];
1257      ++scalarIdx;
1258    }
1259    LoadInst *load = new LoadInst(outputs[i]->getType(), Output,
1260                                  outputs[i]->getName() + ".reload",
1261                                  codeReplacer);
1262    Reloads.push_back(load);
1263    std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end());
1264    for (User *U : Users) {
1265      Instruction *inst = cast<Instruction>(U);
1266      if (!Blocks.count(inst->getParent()))
1267        inst->replaceUsesOfWith(outputs[i], load);
1268    }
1269  }
1270
1271  // Now we can emit a switch statement using the call as a value.
1272  SwitchInst *TheSwitch =
1273      SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)),
1274                         codeReplacer, 0, codeReplacer);
1275
1276  // Since there may be multiple exits from the original region, make the new
1277  // function return an unsigned, switch on that number.  This loop iterates
1278  // over all of the blocks in the extracted region, updating any terminator
1279  // instructions in the to-be-extracted region that branch to blocks that are
1280  // not in the region to be extracted.
1281  std::map<BasicBlock *, BasicBlock *> ExitBlockMap;
1282
1283  // Iterate over the previously collected targets, and create new blocks inside
1284  // the function to branch to.
1285  unsigned switchVal = 0;
1286  for (BasicBlock *OldTarget : OldTargets) {
1287    if (Blocks.count(OldTarget))
1288      continue;
1289    BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
1290    if (NewTarget)
1291      continue;
1292
1293    // If we don't already have an exit stub for this non-extracted
1294    // destination, create one now!
1295    NewTarget = BasicBlock::Create(Context,
1296                                    OldTarget->getName() + ".exitStub",
1297                                    newFunction);
1298    unsigned SuccNum = switchVal++;
1299
1300    Value *brVal = nullptr;
1301    assert(NumExitBlocks < 0xffff && "too many exit blocks for switch");
1302    switch (NumExitBlocks) {
1303    case 0:
1304    case 1: break;  // No value needed.
1305    case 2:         // Conditional branch, return a bool
1306      brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum);
1307      break;
1308    default:
1309      brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum);
1310      break;
1311    }
1312
1313    ReturnInst::Create(Context, brVal, NewTarget);
1314
1315    // Update the switch instruction.
1316    TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context),
1317                                        SuccNum),
1318                        OldTarget);
1319  }
1320
1321  for (BasicBlock *Block : Blocks) {
1322    Instruction *TI = Block->getTerminator();
1323    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1324      if (Blocks.count(TI->getSuccessor(i)))
1325        continue;
1326      BasicBlock *OldTarget = TI->getSuccessor(i);
1327      // add a new basic block which returns the appropriate value
1328      BasicBlock *NewTarget = ExitBlockMap[OldTarget];
1329      assert(NewTarget && "Unknown target block!");
1330
1331      // rewrite the original branch instruction with this new target
1332      TI->setSuccessor(i, NewTarget);
1333   }
1334  }
1335
1336  // Store the arguments right after the definition of output value.
1337  // This should be proceeded after creating exit stubs to be ensure that invoke
1338  // result restore will be placed in the outlined function.
1339  Function::arg_iterator ScalarOutputArgBegin = newFunction->arg_begin();
1340  std::advance(ScalarOutputArgBegin, ScalarInputArgNo);
1341  Function::arg_iterator AggOutputArgBegin = newFunction->arg_begin();
1342  std::advance(AggOutputArgBegin, ScalarInputArgNo + ScalarOutputArgNo);
1343
1344  for (unsigned i = 0, e = outputs.size(), aggIdx = NumAggregatedInputs; i != e;
1345       ++i) {
1346    auto *OutI = dyn_cast<Instruction>(outputs[i]);
1347    if (!OutI)
1348      continue;
1349
1350    // Find proper insertion point.
1351    BasicBlock::iterator InsertPt;
1352    // In case OutI is an invoke, we insert the store at the beginning in the
1353    // 'normal destination' BB. Otherwise we insert the store right after OutI.
1354    if (auto *InvokeI = dyn_cast<InvokeInst>(OutI))
1355      InsertPt = InvokeI->getNormalDest()->getFirstInsertionPt();
1356    else if (auto *Phi = dyn_cast<PHINode>(OutI))
1357      InsertPt = Phi->getParent()->getFirstInsertionPt();
1358    else
1359      InsertPt = std::next(OutI->getIterator());
1360
1361    Instruction *InsertBefore = &*InsertPt;
1362    assert((InsertBefore->getFunction() == newFunction ||
1363            Blocks.count(InsertBefore->getParent())) &&
1364           "InsertPt should be in new function");
1365    if (AggregateArgs && StructValues.contains(outputs[i])) {
1366      assert(AggOutputArgBegin != newFunction->arg_end() &&
1367             "Number of aggregate output arguments should match "
1368             "the number of defined values");
1369      Value *Idx[2];
1370      Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1371      Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), aggIdx);
1372      GetElementPtrInst *GEP = GetElementPtrInst::Create(
1373          StructArgTy, &*AggOutputArgBegin, Idx, "gep_" + outputs[i]->getName(),
1374          InsertBefore);
1375      new StoreInst(outputs[i], GEP, InsertBefore);
1376      ++aggIdx;
1377      // Since there should be only one struct argument aggregating
1378      // all the output values, we shouldn't increment AggOutputArgBegin, which
1379      // always points to the struct argument, in this case.
1380    } else {
1381      assert(ScalarOutputArgBegin != newFunction->arg_end() &&
1382             "Number of scalar output arguments should match "
1383             "the number of defined values");
1384      new StoreInst(outputs[i], &*ScalarOutputArgBegin, InsertBefore);
1385      ++ScalarOutputArgBegin;
1386    }
1387  }
1388
1389  // Now that we've done the deed, simplify the switch instruction.
1390  Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
1391  switch (NumExitBlocks) {
1392  case 0:
1393    // There are no successors (the block containing the switch itself), which
1394    // means that previously this was the last part of the function, and hence
1395    // this should be rewritten as a `ret'
1396
1397    // Check if the function should return a value
1398    if (OldFnRetTy->isVoidTy()) {
1399      ReturnInst::Create(Context, nullptr, TheSwitch);  // Return void
1400    } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
1401      // return what we have
1402      ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch);
1403    } else {
1404      // Otherwise we must have code extracted an unwind or something, just
1405      // return whatever we want.
1406      ReturnInst::Create(Context,
1407                         Constant::getNullValue(OldFnRetTy), TheSwitch);
1408    }
1409
1410    TheSwitch->eraseFromParent();
1411    break;
1412  case 1:
1413    // Only a single destination, change the switch into an unconditional
1414    // branch.
1415    BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch);
1416    TheSwitch->eraseFromParent();
1417    break;
1418  case 2:
1419    BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
1420                       call, TheSwitch);
1421    TheSwitch->eraseFromParent();
1422    break;
1423  default:
1424    // Otherwise, make the default destination of the switch instruction be one
1425    // of the other successors.
1426    TheSwitch->setCondition(call);
1427    TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks));
1428    // Remove redundant case
1429    TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1));
1430    break;
1431  }
1432
1433  // Insert lifetime markers around the reloads of any output values. The
1434  // allocas output values are stored in are only in-use in the codeRepl block.
1435  insertLifetimeMarkersSurroundingCall(M, ReloadOutputs, ReloadOutputs, call);
1436
1437  return call;
1438}
1439
1440void CodeExtractor::moveCodeToFunction(Function *newFunction) {
1441  auto newFuncIt = newFunction->front().getIterator();
1442  for (BasicBlock *Block : Blocks) {
1443    // Delete the basic block from the old function, and the list of blocks
1444    Block->removeFromParent();
1445
1446    // Insert this basic block into the new function
1447    // Insert the original blocks after the entry block created
1448    // for the new function. The entry block may be followed
1449    // by a set of exit blocks at this point, but these exit
1450    // blocks better be placed at the end of the new function.
1451    newFuncIt = newFunction->insert(std::next(newFuncIt), Block);
1452  }
1453}
1454
1455void CodeExtractor::calculateNewCallTerminatorWeights(
1456    BasicBlock *CodeReplacer,
1457    DenseMap<BasicBlock *, BlockFrequency> &ExitWeights,
1458    BranchProbabilityInfo *BPI) {
1459  using Distribution = BlockFrequencyInfoImplBase::Distribution;
1460  using BlockNode = BlockFrequencyInfoImplBase::BlockNode;
1461
1462  // Update the branch weights for the exit block.
1463  Instruction *TI = CodeReplacer->getTerminator();
1464  SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0);
1465
1466  // Block Frequency distribution with dummy node.
1467  Distribution BranchDist;
1468
1469  SmallVector<BranchProbability, 4> EdgeProbabilities(
1470      TI->getNumSuccessors(), BranchProbability::getUnknown());
1471
1472  // Add each of the frequencies of the successors.
1473  for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) {
1474    BlockNode ExitNode(i);
1475    uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency();
1476    if (ExitFreq != 0)
1477      BranchDist.addExit(ExitNode, ExitFreq);
1478    else
1479      EdgeProbabilities[i] = BranchProbability::getZero();
1480  }
1481
1482  // Check for no total weight.
1483  if (BranchDist.Total == 0) {
1484    BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities);
1485    return;
1486  }
1487
1488  // Normalize the distribution so that they can fit in unsigned.
1489  BranchDist.normalize();
1490
1491  // Create normalized branch weights and set the metadata.
1492  for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) {
1493    const auto &Weight = BranchDist.Weights[I];
1494
1495    // Get the weight and update the current BFI.
1496    BranchWeights[Weight.TargetNode.Index] = Weight.Amount;
1497    BranchProbability BP(Weight.Amount, BranchDist.Total);
1498    EdgeProbabilities[Weight.TargetNode.Index] = BP;
1499  }
1500  BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities);
1501  TI->setMetadata(
1502      LLVMContext::MD_prof,
1503      MDBuilder(TI->getContext()).createBranchWeights(BranchWeights));
1504}
1505
1506/// Erase debug info intrinsics which refer to values in \p F but aren't in
1507/// \p F.
1508static void eraseDebugIntrinsicsWithNonLocalRefs(Function &F) {
1509  for (Instruction &I : instructions(F)) {
1510    SmallVector<DbgVariableIntrinsic *, 4> DbgUsers;
1511    SmallVector<DPValue *, 4> DPValues;
1512    findDbgUsers(DbgUsers, &I, &DPValues);
1513    for (DbgVariableIntrinsic *DVI : DbgUsers)
1514      if (DVI->getFunction() != &F)
1515        DVI->eraseFromParent();
1516    for (DPValue *DPV : DPValues)
1517      if (DPV->getFunction() != &F)
1518        DPV->eraseFromParent();
1519  }
1520}
1521
1522/// Fix up the debug info in the old and new functions by pointing line
1523/// locations and debug intrinsics to the new subprogram scope, and by deleting
1524/// intrinsics which point to values outside of the new function.
1525static void fixupDebugInfoPostExtraction(Function &OldFunc, Function &NewFunc,
1526                                         CallInst &TheCall) {
1527  DISubprogram *OldSP = OldFunc.getSubprogram();
1528  LLVMContext &Ctx = OldFunc.getContext();
1529
1530  if (!OldSP) {
1531    // Erase any debug info the new function contains.
1532    stripDebugInfo(NewFunc);
1533    // Make sure the old function doesn't contain any non-local metadata refs.
1534    eraseDebugIntrinsicsWithNonLocalRefs(NewFunc);
1535    return;
1536  }
1537
1538  // Create a subprogram for the new function. Leave out a description of the
1539  // function arguments, as the parameters don't correspond to anything at the
1540  // source level.
1541  assert(OldSP->getUnit() && "Missing compile unit for subprogram");
1542  DIBuilder DIB(*OldFunc.getParent(), /*AllowUnresolved=*/false,
1543                OldSP->getUnit());
1544  auto SPType =
1545      DIB.createSubroutineType(DIB.getOrCreateTypeArray(std::nullopt));
1546  DISubprogram::DISPFlags SPFlags = DISubprogram::SPFlagDefinition |
1547                                    DISubprogram::SPFlagOptimized |
1548                                    DISubprogram::SPFlagLocalToUnit;
1549  auto NewSP = DIB.createFunction(
1550      OldSP->getUnit(), NewFunc.getName(), NewFunc.getName(), OldSP->getFile(),
1551      /*LineNo=*/0, SPType, /*ScopeLine=*/0, DINode::FlagZero, SPFlags);
1552  NewFunc.setSubprogram(NewSP);
1553
1554  auto IsInvalidLocation = [&NewFunc](Value *Location) {
1555    // Location is invalid if it isn't a constant or an instruction, or is an
1556    // instruction but isn't in the new function.
1557    if (!Location ||
1558        (!isa<Constant>(Location) && !isa<Instruction>(Location)))
1559      return true;
1560    Instruction *LocationInst = dyn_cast<Instruction>(Location);
1561    return LocationInst && LocationInst->getFunction() != &NewFunc;
1562  };
1563
1564  // Debug intrinsics in the new function need to be updated in one of two
1565  // ways:
1566  //  1) They need to be deleted, because they describe a value in the old
1567  //     function.
1568  //  2) They need to point to fresh metadata, e.g. because they currently
1569  //     point to a variable in the wrong scope.
1570  SmallDenseMap<DINode *, DINode *> RemappedMetadata;
1571  SmallVector<Instruction *, 4> DebugIntrinsicsToDelete;
1572  SmallVector<DPValue *, 4> DPVsToDelete;
1573  DenseMap<const MDNode *, MDNode *> Cache;
1574
1575  auto GetUpdatedDIVariable = [&](DILocalVariable *OldVar) {
1576    DINode *&NewVar = RemappedMetadata[OldVar];
1577    if (!NewVar) {
1578      DILocalScope *NewScope = DILocalScope::cloneScopeForSubprogram(
1579          *OldVar->getScope(), *NewSP, Ctx, Cache);
1580      NewVar = DIB.createAutoVariable(
1581          NewScope, OldVar->getName(), OldVar->getFile(), OldVar->getLine(),
1582          OldVar->getType(), /*AlwaysPreserve=*/false, DINode::FlagZero,
1583          OldVar->getAlignInBits());
1584    }
1585    return cast<DILocalVariable>(NewVar);
1586  };
1587
1588  auto UpdateDPValuesOnInst = [&](Instruction &I) -> void {
1589    for (auto &DPV : I.getDbgValueRange()) {
1590      // Apply the two updates that dbg.values get: invalid operands, and
1591      // variable metadata fixup.
1592      if (any_of(DPV.location_ops(), IsInvalidLocation)) {
1593        DPVsToDelete.push_back(&DPV);
1594        continue;
1595      }
1596      if (DPV.isDbgAssign() && IsInvalidLocation(DPV.getAddress())) {
1597        DPVsToDelete.push_back(&DPV);
1598        continue;
1599      }
1600      if (!DPV.getDebugLoc().getInlinedAt())
1601        DPV.setVariable(GetUpdatedDIVariable(DPV.getVariable()));
1602      DPV.setDebugLoc(DebugLoc::replaceInlinedAtSubprogram(DPV.getDebugLoc(),
1603                                                           *NewSP, Ctx, Cache));
1604    }
1605  };
1606
1607  for (Instruction &I : instructions(NewFunc)) {
1608    UpdateDPValuesOnInst(I);
1609
1610    auto *DII = dyn_cast<DbgInfoIntrinsic>(&I);
1611    if (!DII)
1612      continue;
1613
1614    // Point the intrinsic to a fresh label within the new function if the
1615    // intrinsic was not inlined from some other function.
1616    if (auto *DLI = dyn_cast<DbgLabelInst>(&I)) {
1617      if (DLI->getDebugLoc().getInlinedAt())
1618        continue;
1619      DILabel *OldLabel = DLI->getLabel();
1620      DINode *&NewLabel = RemappedMetadata[OldLabel];
1621      if (!NewLabel) {
1622        DILocalScope *NewScope = DILocalScope::cloneScopeForSubprogram(
1623            *OldLabel->getScope(), *NewSP, Ctx, Cache);
1624        NewLabel = DILabel::get(Ctx, NewScope, OldLabel->getName(),
1625                                OldLabel->getFile(), OldLabel->getLine());
1626      }
1627      DLI->setArgOperand(0, MetadataAsValue::get(Ctx, NewLabel));
1628      continue;
1629    }
1630
1631    auto *DVI = cast<DbgVariableIntrinsic>(DII);
1632    // If any of the used locations are invalid, delete the intrinsic.
1633    if (any_of(DVI->location_ops(), IsInvalidLocation)) {
1634      DebugIntrinsicsToDelete.push_back(DVI);
1635      continue;
1636    }
1637    // DbgAssign intrinsics have an extra Value argument:
1638    if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI);
1639        DAI && IsInvalidLocation(DAI->getAddress())) {
1640      DebugIntrinsicsToDelete.push_back(DVI);
1641      continue;
1642    }
1643    // If the variable was in the scope of the old function, i.e. it was not
1644    // inlined, point the intrinsic to a fresh variable within the new function.
1645    if (!DVI->getDebugLoc().getInlinedAt())
1646      DVI->setVariable(GetUpdatedDIVariable(DVI->getVariable()));
1647  }
1648
1649  for (auto *DII : DebugIntrinsicsToDelete)
1650    DII->eraseFromParent();
1651  for (auto *DPV : DPVsToDelete)
1652    DPV->getMarker()->MarkedInstr->dropOneDbgValue(DPV);
1653  DIB.finalizeSubprogram(NewSP);
1654
1655  // Fix up the scope information attached to the line locations in the new
1656  // function.
1657  for (Instruction &I : instructions(NewFunc)) {
1658    if (const DebugLoc &DL = I.getDebugLoc())
1659      I.setDebugLoc(
1660          DebugLoc::replaceInlinedAtSubprogram(DL, *NewSP, Ctx, Cache));
1661
1662    // Loop info metadata may contain line locations. Fix them up.
1663    auto updateLoopInfoLoc = [&Ctx, &Cache, NewSP](Metadata *MD) -> Metadata * {
1664      if (auto *Loc = dyn_cast_or_null<DILocation>(MD))
1665        return DebugLoc::replaceInlinedAtSubprogram(Loc, *NewSP, Ctx, Cache);
1666      return MD;
1667    };
1668    updateLoopMetadataDebugLocations(I, updateLoopInfoLoc);
1669  }
1670  if (!TheCall.getDebugLoc())
1671    TheCall.setDebugLoc(DILocation::get(Ctx, 0, 0, OldSP));
1672
1673  eraseDebugIntrinsicsWithNonLocalRefs(NewFunc);
1674}
1675
1676Function *
1677CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC) {
1678  ValueSet Inputs, Outputs;
1679  return extractCodeRegion(CEAC, Inputs, Outputs);
1680}
1681
1682Function *
1683CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC,
1684                                 ValueSet &inputs, ValueSet &outputs) {
1685  if (!isEligible())
1686    return nullptr;
1687
1688  // Assumption: this is a single-entry code region, and the header is the first
1689  // block in the region.
1690  BasicBlock *header = *Blocks.begin();
1691  Function *oldFunction = header->getParent();
1692
1693  // Calculate the entry frequency of the new function before we change the root
1694  //   block.
1695  BlockFrequency EntryFreq;
1696  if (BFI) {
1697    assert(BPI && "Both BPI and BFI are required to preserve profile info");
1698    for (BasicBlock *Pred : predecessors(header)) {
1699      if (Blocks.count(Pred))
1700        continue;
1701      EntryFreq +=
1702          BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header);
1703    }
1704  }
1705
1706  // Remove @llvm.assume calls that will be moved to the new function from the
1707  // old function's assumption cache.
1708  for (BasicBlock *Block : Blocks) {
1709    for (Instruction &I : llvm::make_early_inc_range(*Block)) {
1710      if (auto *AI = dyn_cast<AssumeInst>(&I)) {
1711        if (AC)
1712          AC->unregisterAssumption(AI);
1713        AI->eraseFromParent();
1714      }
1715    }
1716  }
1717
1718  // If we have any return instructions in the region, split those blocks so
1719  // that the return is not in the region.
1720  splitReturnBlocks();
1721
1722  // Calculate the exit blocks for the extracted region and the total exit
1723  // weights for each of those blocks.
1724  DenseMap<BasicBlock *, BlockFrequency> ExitWeights;
1725  SmallPtrSet<BasicBlock *, 1> ExitBlocks;
1726  for (BasicBlock *Block : Blocks) {
1727    for (BasicBlock *Succ : successors(Block)) {
1728      if (!Blocks.count(Succ)) {
1729        // Update the branch weight for this successor.
1730        if (BFI) {
1731          BlockFrequency &BF = ExitWeights[Succ];
1732          BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, Succ);
1733        }
1734        ExitBlocks.insert(Succ);
1735      }
1736    }
1737  }
1738  NumExitBlocks = ExitBlocks.size();
1739
1740  for (BasicBlock *Block : Blocks) {
1741    for (BasicBlock *OldTarget : successors(Block))
1742      if (!Blocks.contains(OldTarget))
1743        OldTargets.push_back(OldTarget);
1744  }
1745
1746  // If we have to split PHI nodes of the entry or exit blocks, do so now.
1747  severSplitPHINodesOfEntry(header);
1748  severSplitPHINodesOfExits(ExitBlocks);
1749
1750  // This takes place of the original loop
1751  BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(),
1752                                                "codeRepl", oldFunction,
1753                                                header);
1754  codeReplacer->IsNewDbgInfoFormat = oldFunction->IsNewDbgInfoFormat;
1755
1756  // The new function needs a root node because other nodes can branch to the
1757  // head of the region, but the entry node of a function cannot have preds.
1758  BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(),
1759                                               "newFuncRoot");
1760  newFuncRoot->IsNewDbgInfoFormat = oldFunction->IsNewDbgInfoFormat;
1761
1762  auto *BranchI = BranchInst::Create(header);
1763  // If the original function has debug info, we have to add a debug location
1764  // to the new branch instruction from the artificial entry block.
1765  // We use the debug location of the first instruction in the extracted
1766  // blocks, as there is no other equivalent line in the source code.
1767  if (oldFunction->getSubprogram()) {
1768    any_of(Blocks, [&BranchI](const BasicBlock *BB) {
1769      return any_of(*BB, [&BranchI](const Instruction &I) {
1770        if (!I.getDebugLoc())
1771          return false;
1772        BranchI->setDebugLoc(I.getDebugLoc());
1773        return true;
1774      });
1775    });
1776  }
1777  BranchI->insertInto(newFuncRoot, newFuncRoot->end());
1778
1779  ValueSet SinkingCands, HoistingCands;
1780  BasicBlock *CommonExit = nullptr;
1781  findAllocas(CEAC, SinkingCands, HoistingCands, CommonExit);
1782  assert(HoistingCands.empty() || CommonExit);
1783
1784  // Find inputs to, outputs from the code region.
1785  findInputsOutputs(inputs, outputs, SinkingCands);
1786
1787  // Now sink all instructions which only have non-phi uses inside the region.
1788  // Group the allocas at the start of the block, so that any bitcast uses of
1789  // the allocas are well-defined.
1790  AllocaInst *FirstSunkAlloca = nullptr;
1791  for (auto *II : SinkingCands) {
1792    if (auto *AI = dyn_cast<AllocaInst>(II)) {
1793      AI->moveBefore(*newFuncRoot, newFuncRoot->getFirstInsertionPt());
1794      if (!FirstSunkAlloca)
1795        FirstSunkAlloca = AI;
1796    }
1797  }
1798  assert((SinkingCands.empty() || FirstSunkAlloca) &&
1799         "Did not expect a sink candidate without any allocas");
1800  for (auto *II : SinkingCands) {
1801    if (!isa<AllocaInst>(II)) {
1802      cast<Instruction>(II)->moveAfter(FirstSunkAlloca);
1803    }
1804  }
1805
1806  if (!HoistingCands.empty()) {
1807    auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit);
1808    Instruction *TI = HoistToBlock->getTerminator();
1809    for (auto *II : HoistingCands)
1810      cast<Instruction>(II)->moveBefore(TI);
1811  }
1812
1813  // Collect objects which are inputs to the extraction region and also
1814  // referenced by lifetime start markers within it. The effects of these
1815  // markers must be replicated in the calling function to prevent the stack
1816  // coloring pass from merging slots which store input objects.
1817  ValueSet LifetimesStart;
1818  eraseLifetimeMarkersOnInputs(Blocks, SinkingCands, LifetimesStart);
1819
1820  // Construct new function based on inputs/outputs & add allocas for all defs.
1821  Function *newFunction =
1822      constructFunction(inputs, outputs, header, newFuncRoot, codeReplacer,
1823                        oldFunction, oldFunction->getParent());
1824
1825  // Update the entry count of the function.
1826  if (BFI) {
1827    auto Count = BFI->getProfileCountFromFreq(EntryFreq);
1828    if (Count)
1829      newFunction->setEntryCount(
1830          ProfileCount(*Count, Function::PCT_Real)); // FIXME
1831    BFI->setBlockFreq(codeReplacer, EntryFreq);
1832  }
1833
1834  CallInst *TheCall =
1835      emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);
1836
1837  moveCodeToFunction(newFunction);
1838
1839  // Replicate the effects of any lifetime start/end markers which referenced
1840  // input objects in the extraction region by placing markers around the call.
1841  insertLifetimeMarkersSurroundingCall(
1842      oldFunction->getParent(), LifetimesStart.getArrayRef(), {}, TheCall);
1843
1844  // Propagate personality info to the new function if there is one.
1845  if (oldFunction->hasPersonalityFn())
1846    newFunction->setPersonalityFn(oldFunction->getPersonalityFn());
1847
1848  // Update the branch weights for the exit block.
1849  if (BFI && NumExitBlocks > 1)
1850    calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI);
1851
1852  // Loop over all of the PHI nodes in the header and exit blocks, and change
1853  // any references to the old incoming edge to be the new incoming edge.
1854  for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
1855    PHINode *PN = cast<PHINode>(I);
1856    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1857      if (!Blocks.count(PN->getIncomingBlock(i)))
1858        PN->setIncomingBlock(i, newFuncRoot);
1859  }
1860
1861  for (BasicBlock *ExitBB : ExitBlocks)
1862    for (PHINode &PN : ExitBB->phis()) {
1863      Value *IncomingCodeReplacerVal = nullptr;
1864      for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1865        // Ignore incoming values from outside of the extracted region.
1866        if (!Blocks.count(PN.getIncomingBlock(i)))
1867          continue;
1868
1869        // Ensure that there is only one incoming value from codeReplacer.
1870        if (!IncomingCodeReplacerVal) {
1871          PN.setIncomingBlock(i, codeReplacer);
1872          IncomingCodeReplacerVal = PN.getIncomingValue(i);
1873        } else
1874          assert(IncomingCodeReplacerVal == PN.getIncomingValue(i) &&
1875                 "PHI has two incompatbile incoming values from codeRepl");
1876      }
1877    }
1878
1879  fixupDebugInfoPostExtraction(*oldFunction, *newFunction, *TheCall);
1880
1881  // Mark the new function `noreturn` if applicable. Terminators which resume
1882  // exception propagation are treated as returning instructions. This is to
1883  // avoid inserting traps after calls to outlined functions which unwind.
1884  bool doesNotReturn = none_of(*newFunction, [](const BasicBlock &BB) {
1885    const Instruction *Term = BB.getTerminator();
1886    return isa<ReturnInst>(Term) || isa<ResumeInst>(Term);
1887  });
1888  if (doesNotReturn)
1889    newFunction->setDoesNotReturn();
1890
1891  LLVM_DEBUG(if (verifyFunction(*newFunction, &errs())) {
1892    newFunction->dump();
1893    report_fatal_error("verification of newFunction failed!");
1894  });
1895  LLVM_DEBUG(if (verifyFunction(*oldFunction))
1896             report_fatal_error("verification of oldFunction failed!"));
1897  LLVM_DEBUG(if (AC && verifyAssumptionCache(*oldFunction, *newFunction, AC))
1898                 report_fatal_error("Stale Asumption cache for old Function!"));
1899  return newFunction;
1900}
1901
1902bool CodeExtractor::verifyAssumptionCache(const Function &OldFunc,
1903                                          const Function &NewFunc,
1904                                          AssumptionCache *AC) {
1905  for (auto AssumeVH : AC->assumptions()) {
1906    auto *I = dyn_cast_or_null<CallInst>(AssumeVH);
1907    if (!I)
1908      continue;
1909
1910    // There shouldn't be any llvm.assume intrinsics in the new function.
1911    if (I->getFunction() != &OldFunc)
1912      return true;
1913
1914    // There shouldn't be any stale affected values in the assumption cache
1915    // that were previously in the old function, but that have now been moved
1916    // to the new function.
1917    for (auto AffectedValVH : AC->assumptionsFor(I->getOperand(0))) {
1918      auto *AffectedCI = dyn_cast_or_null<CallInst>(AffectedValVH);
1919      if (!AffectedCI)
1920        continue;
1921      if (AffectedCI->getFunction() != &OldFunc)
1922        return true;
1923      auto *AssumedInst = cast<Instruction>(AffectedCI->getOperand(0));
1924      if (AssumedInst->getFunction() != &OldFunc)
1925        return true;
1926    }
1927  }
1928  return false;
1929}
1930
1931void CodeExtractor::excludeArgFromAggregate(Value *Arg) {
1932  ExcludeArgsFromAggregate.insert(Arg);
1933}
1934