1//===- CallPromotionUtils.cpp - Utilities for call promotion ----*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements utilities useful for promoting indirect call sites to
10// direct call sites.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Transforms/Utils/CallPromotionUtils.h"
15#include "llvm/Analysis/Loads.h"
16#include "llvm/Analysis/TypeMetadataUtils.h"
17#include "llvm/IR/AttributeMask.h"
18#include "llvm/IR/IRBuilder.h"
19#include "llvm/IR/Instructions.h"
20#include "llvm/Transforms/Utils/BasicBlockUtils.h"
21
22using namespace llvm;
23
24#define DEBUG_TYPE "call-promotion-utils"
25
26/// Fix-up phi nodes in an invoke instruction's normal destination.
27///
28/// After versioning an invoke instruction, values coming from the original
29/// block will now be coming from the "merge" block. For example, in the code
30/// below:
31///
32///   then_bb:
33///     %t0 = invoke i32 %ptr() to label %merge_bb unwind label %unwind_dst
34///
35///   else_bb:
36///     %t1 = invoke i32 %ptr() to label %merge_bb unwind label %unwind_dst
37///
38///   merge_bb:
39///     %t2 = phi i32 [ %t0, %then_bb ], [ %t1, %else_bb ]
40///     br %normal_dst
41///
42///   normal_dst:
43///     %t3 = phi i32 [ %x, %orig_bb ], ...
44///
45/// "orig_bb" is no longer a predecessor of "normal_dst", so the phi nodes in
46/// "normal_dst" must be fixed to refer to "merge_bb":
47///
48///    normal_dst:
49///      %t3 = phi i32 [ %x, %merge_bb ], ...
50///
51static void fixupPHINodeForNormalDest(InvokeInst *Invoke, BasicBlock *OrigBlock,
52                                      BasicBlock *MergeBlock) {
53  for (PHINode &Phi : Invoke->getNormalDest()->phis()) {
54    int Idx = Phi.getBasicBlockIndex(OrigBlock);
55    if (Idx == -1)
56      continue;
57    Phi.setIncomingBlock(Idx, MergeBlock);
58  }
59}
60
61/// Fix-up phi nodes in an invoke instruction's unwind destination.
62///
63/// After versioning an invoke instruction, values coming from the original
64/// block will now be coming from either the "then" block or the "else" block.
65/// For example, in the code below:
66///
67///   then_bb:
68///     %t0 = invoke i32 %ptr() to label %merge_bb unwind label %unwind_dst
69///
70///   else_bb:
71///     %t1 = invoke i32 %ptr() to label %merge_bb unwind label %unwind_dst
72///
73///   unwind_dst:
74///     %t3 = phi i32 [ %x, %orig_bb ], ...
75///
76/// "orig_bb" is no longer a predecessor of "unwind_dst", so the phi nodes in
77/// "unwind_dst" must be fixed to refer to "then_bb" and "else_bb":
78///
79///   unwind_dst:
80///     %t3 = phi i32 [ %x, %then_bb ], [ %x, %else_bb ], ...
81///
82static void fixupPHINodeForUnwindDest(InvokeInst *Invoke, BasicBlock *OrigBlock,
83                                      BasicBlock *ThenBlock,
84                                      BasicBlock *ElseBlock) {
85  for (PHINode &Phi : Invoke->getUnwindDest()->phis()) {
86    int Idx = Phi.getBasicBlockIndex(OrigBlock);
87    if (Idx == -1)
88      continue;
89    auto *V = Phi.getIncomingValue(Idx);
90    Phi.setIncomingBlock(Idx, ThenBlock);
91    Phi.addIncoming(V, ElseBlock);
92  }
93}
94
95/// Create a phi node for the returned value of a call or invoke instruction.
96///
97/// After versioning a call or invoke instruction that returns a value, we have
98/// to merge the value of the original and new instructions. We do this by
99/// creating a phi node and replacing uses of the original instruction with this
100/// phi node.
101///
102/// For example, if \p OrigInst is defined in "else_bb" and \p NewInst is
103/// defined in "then_bb", we create the following phi node:
104///
105///   ; Uses of the original instruction are replaced by uses of the phi node.
106///   %t0 = phi i32 [ %orig_inst, %else_bb ], [ %new_inst, %then_bb ],
107///
108static void createRetPHINode(Instruction *OrigInst, Instruction *NewInst,
109                             BasicBlock *MergeBlock, IRBuilder<> &Builder) {
110
111  if (OrigInst->getType()->isVoidTy() || OrigInst->use_empty())
112    return;
113
114  Builder.SetInsertPoint(MergeBlock, MergeBlock->begin());
115  PHINode *Phi = Builder.CreatePHI(OrigInst->getType(), 0);
116  SmallVector<User *, 16> UsersToUpdate(OrigInst->users());
117  for (User *U : UsersToUpdate)
118    U->replaceUsesOfWith(OrigInst, Phi);
119  Phi->addIncoming(OrigInst, OrigInst->getParent());
120  Phi->addIncoming(NewInst, NewInst->getParent());
121}
122
123/// Cast a call or invoke instruction to the given type.
124///
125/// When promoting a call site, the return type of the call site might not match
126/// that of the callee. If this is the case, we have to cast the returned value
127/// to the correct type. The location of the cast depends on if we have a call
128/// or invoke instruction.
129///
130/// For example, if the call instruction below requires a bitcast after
131/// promotion:
132///
133///   orig_bb:
134///     %t0 = call i32 @func()
135///     ...
136///
137/// The bitcast is placed after the call instruction:
138///
139///   orig_bb:
140///     ; Uses of the original return value are replaced by uses of the bitcast.
141///     %t0 = call i32 @func()
142///     %t1 = bitcast i32 %t0 to ...
143///     ...
144///
145/// A similar transformation is performed for invoke instructions. However,
146/// since invokes are terminating, a new block is created for the bitcast. For
147/// example, if the invoke instruction below requires a bitcast after promotion:
148///
149///   orig_bb:
150///     %t0 = invoke i32 @func() to label %normal_dst unwind label %unwind_dst
151///
152/// The edge between the original block and the invoke's normal destination is
153/// split, and the bitcast is placed there:
154///
155///   orig_bb:
156///     %t0 = invoke i32 @func() to label %split_bb unwind label %unwind_dst
157///
158///   split_bb:
159///     ; Uses of the original return value are replaced by uses of the bitcast.
160///     %t1 = bitcast i32 %t0 to ...
161///     br label %normal_dst
162///
163static void createRetBitCast(CallBase &CB, Type *RetTy, CastInst **RetBitCast) {
164
165  // Save the users of the calling instruction. These uses will be changed to
166  // use the bitcast after we create it.
167  SmallVector<User *, 16> UsersToUpdate(CB.users());
168
169  // Determine an appropriate location to create the bitcast for the return
170  // value. The location depends on if we have a call or invoke instruction.
171  Instruction *InsertBefore = nullptr;
172  if (auto *Invoke = dyn_cast<InvokeInst>(&CB))
173    InsertBefore =
174        &SplitEdge(Invoke->getParent(), Invoke->getNormalDest())->front();
175  else
176    InsertBefore = &*std::next(CB.getIterator());
177
178  // Bitcast the return value to the correct type.
179  auto *Cast = CastInst::CreateBitOrPointerCast(&CB, RetTy, "", InsertBefore);
180  if (RetBitCast)
181    *RetBitCast = Cast;
182
183  // Replace all the original uses of the calling instruction with the bitcast.
184  for (User *U : UsersToUpdate)
185    U->replaceUsesOfWith(&CB, Cast);
186}
187
188/// Predicate and clone the given call site.
189///
190/// This function creates an if-then-else structure at the location of the call
191/// site. The "if" condition compares the call site's called value to the given
192/// callee. The original call site is moved into the "else" block, and a clone
193/// of the call site is placed in the "then" block. The cloned instruction is
194/// returned.
195///
196/// For example, the call instruction below:
197///
198///   orig_bb:
199///     %t0 = call i32 %ptr()
200///     ...
201///
202/// Is replace by the following:
203///
204///   orig_bb:
205///     %cond = icmp eq i32 ()* %ptr, @func
206///     br i1 %cond, %then_bb, %else_bb
207///
208///   then_bb:
209///     ; The clone of the original call instruction is placed in the "then"
210///     ; block. It is not yet promoted.
211///     %t1 = call i32 %ptr()
212///     br merge_bb
213///
214///   else_bb:
215///     ; The original call instruction is moved to the "else" block.
216///     %t0 = call i32 %ptr()
217///     br merge_bb
218///
219///   merge_bb:
220///     ; Uses of the original call instruction are replaced by uses of the phi
221///     ; node.
222///     %t2 = phi i32 [ %t0, %else_bb ], [ %t1, %then_bb ]
223///     ...
224///
225/// A similar transformation is performed for invoke instructions. However,
226/// since invokes are terminating, more work is required. For example, the
227/// invoke instruction below:
228///
229///   orig_bb:
230///     %t0 = invoke %ptr() to label %normal_dst unwind label %unwind_dst
231///
232/// Is replace by the following:
233///
234///   orig_bb:
235///     %cond = icmp eq i32 ()* %ptr, @func
236///     br i1 %cond, %then_bb, %else_bb
237///
238///   then_bb:
239///     ; The clone of the original invoke instruction is placed in the "then"
240///     ; block, and its normal destination is set to the "merge" block. It is
241///     ; not yet promoted.
242///     %t1 = invoke i32 %ptr() to label %merge_bb unwind label %unwind_dst
243///
244///   else_bb:
245///     ; The original invoke instruction is moved into the "else" block, and
246///     ; its normal destination is set to the "merge" block.
247///     %t0 = invoke i32 %ptr() to label %merge_bb unwind label %unwind_dst
248///
249///   merge_bb:
250///     ; Uses of the original invoke instruction are replaced by uses of the
251///     ; phi node, and the merge block branches to the normal destination.
252///     %t2 = phi i32 [ %t0, %else_bb ], [ %t1, %then_bb ]
253///     br %normal_dst
254///
255/// An indirect musttail call is processed slightly differently in that:
256/// 1. No merge block needed for the orginal and the cloned callsite, since
257///    either one ends the flow. No phi node is needed either.
258/// 2. The return statement following the original call site is duplicated too
259///    and placed immediately after the cloned call site per the IR convention.
260///
261/// For example, the musttail call instruction below:
262///
263///   orig_bb:
264///     %t0 = musttail call i32 %ptr()
265///     ...
266///
267/// Is replaced by the following:
268///
269///   cond_bb:
270///     %cond = icmp eq i32 ()* %ptr, @func
271///     br i1 %cond, %then_bb, %orig_bb
272///
273///   then_bb:
274///     ; The clone of the original call instruction is placed in the "then"
275///     ; block. It is not yet promoted.
276///     %t1 = musttail call i32 %ptr()
277///     ret %t1
278///
279///   orig_bb:
280///     ; The original call instruction stays in its original block.
281///     %t0 = musttail call i32 %ptr()
282///     ret %t0
283CallBase &llvm::versionCallSite(CallBase &CB, Value *Callee,
284                                MDNode *BranchWeights) {
285
286  IRBuilder<> Builder(&CB);
287  CallBase *OrigInst = &CB;
288  BasicBlock *OrigBlock = OrigInst->getParent();
289
290  // Create the compare. The called value and callee must have the same type to
291  // be compared.
292  if (CB.getCalledOperand()->getType() != Callee->getType())
293    Callee = Builder.CreateBitCast(Callee, CB.getCalledOperand()->getType());
294  auto *Cond = Builder.CreateICmpEQ(CB.getCalledOperand(), Callee);
295
296  if (OrigInst->isMustTailCall()) {
297    // Create an if-then structure. The original instruction stays in its block,
298    // and a clone of the original instruction is placed in the "then" block.
299    Instruction *ThenTerm =
300        SplitBlockAndInsertIfThen(Cond, &CB, false, BranchWeights);
301    BasicBlock *ThenBlock = ThenTerm->getParent();
302    ThenBlock->setName("if.true.direct_targ");
303    CallBase *NewInst = cast<CallBase>(OrigInst->clone());
304    NewInst->insertBefore(ThenTerm);
305
306    // Place a clone of the optional bitcast after the new call site.
307    Value *NewRetVal = NewInst;
308    auto Next = OrigInst->getNextNode();
309    if (auto *BitCast = dyn_cast_or_null<BitCastInst>(Next)) {
310      assert(BitCast->getOperand(0) == OrigInst &&
311             "bitcast following musttail call must use the call");
312      auto NewBitCast = BitCast->clone();
313      NewBitCast->replaceUsesOfWith(OrigInst, NewInst);
314      NewBitCast->insertBefore(ThenTerm);
315      NewRetVal = NewBitCast;
316      Next = BitCast->getNextNode();
317    }
318
319    // Place a clone of the return instruction after the new call site.
320    ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
321    assert(Ret && "musttail call must precede a ret with an optional bitcast");
322    auto NewRet = Ret->clone();
323    if (Ret->getReturnValue())
324      NewRet->replaceUsesOfWith(Ret->getReturnValue(), NewRetVal);
325    NewRet->insertBefore(ThenTerm);
326
327    // A return instructions is terminating, so we don't need the terminator
328    // instruction just created.
329    ThenTerm->eraseFromParent();
330
331    return *NewInst;
332  }
333
334  // Create an if-then-else structure. The original instruction is moved into
335  // the "else" block, and a clone of the original instruction is placed in the
336  // "then" block.
337  Instruction *ThenTerm = nullptr;
338  Instruction *ElseTerm = nullptr;
339  SplitBlockAndInsertIfThenElse(Cond, &CB, &ThenTerm, &ElseTerm, BranchWeights);
340  BasicBlock *ThenBlock = ThenTerm->getParent();
341  BasicBlock *ElseBlock = ElseTerm->getParent();
342  BasicBlock *MergeBlock = OrigInst->getParent();
343
344  ThenBlock->setName("if.true.direct_targ");
345  ElseBlock->setName("if.false.orig_indirect");
346  MergeBlock->setName("if.end.icp");
347
348  CallBase *NewInst = cast<CallBase>(OrigInst->clone());
349  OrigInst->moveBefore(ElseTerm);
350  NewInst->insertBefore(ThenTerm);
351
352  // If the original call site is an invoke instruction, we have extra work to
353  // do since invoke instructions are terminating. We have to fix-up phi nodes
354  // in the invoke's normal and unwind destinations.
355  if (auto *OrigInvoke = dyn_cast<InvokeInst>(OrigInst)) {
356    auto *NewInvoke = cast<InvokeInst>(NewInst);
357
358    // Invoke instructions are terminating, so we don't need the terminator
359    // instructions that were just created.
360    ThenTerm->eraseFromParent();
361    ElseTerm->eraseFromParent();
362
363    // Branch from the "merge" block to the original normal destination.
364    Builder.SetInsertPoint(MergeBlock);
365    Builder.CreateBr(OrigInvoke->getNormalDest());
366
367    // Fix-up phi nodes in the original invoke's normal and unwind destinations.
368    fixupPHINodeForNormalDest(OrigInvoke, OrigBlock, MergeBlock);
369    fixupPHINodeForUnwindDest(OrigInvoke, MergeBlock, ThenBlock, ElseBlock);
370
371    // Now set the normal destinations of the invoke instructions to be the
372    // "merge" block.
373    OrigInvoke->setNormalDest(MergeBlock);
374    NewInvoke->setNormalDest(MergeBlock);
375  }
376
377  // Create a phi node for the returned value of the call site.
378  createRetPHINode(OrigInst, NewInst, MergeBlock, Builder);
379
380  return *NewInst;
381}
382
383bool llvm::isLegalToPromote(const CallBase &CB, Function *Callee,
384                            const char **FailureReason) {
385  assert(!CB.getCalledFunction() && "Only indirect call sites can be promoted");
386
387  auto &DL = Callee->getParent()->getDataLayout();
388
389  // Check the return type. The callee's return value type must be bitcast
390  // compatible with the call site's type.
391  Type *CallRetTy = CB.getType();
392  Type *FuncRetTy = Callee->getReturnType();
393  if (CallRetTy != FuncRetTy)
394    if (!CastInst::isBitOrNoopPointerCastable(FuncRetTy, CallRetTy, DL)) {
395      if (FailureReason)
396        *FailureReason = "Return type mismatch";
397      return false;
398    }
399
400  // The number of formal arguments of the callee.
401  unsigned NumParams = Callee->getFunctionType()->getNumParams();
402
403  // The number of actual arguments in the call.
404  unsigned NumArgs = CB.arg_size();
405
406  // Check the number of arguments. The callee and call site must agree on the
407  // number of arguments.
408  if (NumArgs != NumParams && !Callee->isVarArg()) {
409    if (FailureReason)
410      *FailureReason = "The number of arguments mismatch";
411    return false;
412  }
413
414  // Check the argument types. The callee's formal argument types must be
415  // bitcast compatible with the corresponding actual argument types of the call
416  // site.
417  unsigned I = 0;
418  for (; I < NumParams; ++I) {
419    // Make sure that the callee and call agree on byval/inalloca. The types do
420    // not have to match.
421    if (Callee->hasParamAttribute(I, Attribute::ByVal) !=
422        CB.getAttributes().hasParamAttr(I, Attribute::ByVal)) {
423      if (FailureReason)
424        *FailureReason = "byval mismatch";
425      return false;
426    }
427    if (Callee->hasParamAttribute(I, Attribute::InAlloca) !=
428        CB.getAttributes().hasParamAttr(I, Attribute::InAlloca)) {
429      if (FailureReason)
430        *FailureReason = "inalloca mismatch";
431      return false;
432    }
433
434    Type *FormalTy = Callee->getFunctionType()->getFunctionParamType(I);
435    Type *ActualTy = CB.getArgOperand(I)->getType();
436    if (FormalTy == ActualTy)
437      continue;
438    if (!CastInst::isBitOrNoopPointerCastable(ActualTy, FormalTy, DL)) {
439      if (FailureReason)
440        *FailureReason = "Argument type mismatch";
441      return false;
442    }
443
444    // MustTail call needs stricter type match. See
445    // Verifier::verifyMustTailCall().
446    if (CB.isMustTailCall()) {
447      PointerType *PF = dyn_cast<PointerType>(FormalTy);
448      PointerType *PA = dyn_cast<PointerType>(ActualTy);
449      if (!PF || !PA || PF->getAddressSpace() != PA->getAddressSpace()) {
450        if (FailureReason)
451          *FailureReason = "Musttail call Argument type mismatch";
452        return false;
453      }
454    }
455  }
456  for (; I < NumArgs; I++) {
457    // Vararg functions can have more arguments than parameters.
458    assert(Callee->isVarArg());
459    if (CB.paramHasAttr(I, Attribute::StructRet)) {
460      if (FailureReason)
461        *FailureReason = "SRet arg to vararg function";
462      return false;
463    }
464  }
465
466  return true;
467}
468
469CallBase &llvm::promoteCall(CallBase &CB, Function *Callee,
470                            CastInst **RetBitCast) {
471  assert(!CB.getCalledFunction() && "Only indirect call sites can be promoted");
472
473  // Set the called function of the call site to be the given callee (but don't
474  // change the type).
475  CB.setCalledOperand(Callee);
476
477  // Since the call site will no longer be direct, we must clear metadata that
478  // is only appropriate for indirect calls. This includes !prof and !callees
479  // metadata.
480  CB.setMetadata(LLVMContext::MD_prof, nullptr);
481  CB.setMetadata(LLVMContext::MD_callees, nullptr);
482
483  // If the function type of the call site matches that of the callee, no
484  // additional work is required.
485  if (CB.getFunctionType() == Callee->getFunctionType())
486    return CB;
487
488  // Save the return types of the call site and callee.
489  Type *CallSiteRetTy = CB.getType();
490  Type *CalleeRetTy = Callee->getReturnType();
491
492  // Change the function type of the call site the match that of the callee.
493  CB.mutateFunctionType(Callee->getFunctionType());
494
495  // Inspect the arguments of the call site. If an argument's type doesn't
496  // match the corresponding formal argument's type in the callee, bitcast it
497  // to the correct type.
498  auto CalleeType = Callee->getFunctionType();
499  auto CalleeParamNum = CalleeType->getNumParams();
500
501  LLVMContext &Ctx = Callee->getContext();
502  const AttributeList &CallerPAL = CB.getAttributes();
503  // The new list of argument attributes.
504  SmallVector<AttributeSet, 4> NewArgAttrs;
505  bool AttributeChanged = false;
506
507  for (unsigned ArgNo = 0; ArgNo < CalleeParamNum; ++ArgNo) {
508    auto *Arg = CB.getArgOperand(ArgNo);
509    Type *FormalTy = CalleeType->getParamType(ArgNo);
510    Type *ActualTy = Arg->getType();
511    if (FormalTy != ActualTy) {
512      auto *Cast = CastInst::CreateBitOrPointerCast(Arg, FormalTy, "", &CB);
513      CB.setArgOperand(ArgNo, Cast);
514
515      // Remove any incompatible attributes for the argument.
516      AttrBuilder ArgAttrs(Ctx, CallerPAL.getParamAttrs(ArgNo));
517      ArgAttrs.remove(AttributeFuncs::typeIncompatible(FormalTy));
518
519      // We may have a different byval/inalloca type.
520      if (ArgAttrs.getByValType())
521        ArgAttrs.addByValAttr(Callee->getParamByValType(ArgNo));
522      if (ArgAttrs.getInAllocaType())
523        ArgAttrs.addInAllocaAttr(Callee->getParamInAllocaType(ArgNo));
524
525      NewArgAttrs.push_back(AttributeSet::get(Ctx, ArgAttrs));
526      AttributeChanged = true;
527    } else
528      NewArgAttrs.push_back(CallerPAL.getParamAttrs(ArgNo));
529  }
530
531  // If the return type of the call site doesn't match that of the callee, cast
532  // the returned value to the appropriate type.
533  // Remove any incompatible return value attribute.
534  AttrBuilder RAttrs(Ctx, CallerPAL.getRetAttrs());
535  if (!CallSiteRetTy->isVoidTy() && CallSiteRetTy != CalleeRetTy) {
536    createRetBitCast(CB, CallSiteRetTy, RetBitCast);
537    RAttrs.remove(AttributeFuncs::typeIncompatible(CalleeRetTy));
538    AttributeChanged = true;
539  }
540
541  // Set the new callsite attribute.
542  if (AttributeChanged)
543    CB.setAttributes(AttributeList::get(Ctx, CallerPAL.getFnAttrs(),
544                                        AttributeSet::get(Ctx, RAttrs),
545                                        NewArgAttrs));
546
547  return CB;
548}
549
550CallBase &llvm::promoteCallWithIfThenElse(CallBase &CB, Function *Callee,
551                                          MDNode *BranchWeights) {
552
553  // Version the indirect call site. If the called value is equal to the given
554  // callee, 'NewInst' will be executed, otherwise the original call site will
555  // be executed.
556  CallBase &NewInst = versionCallSite(CB, Callee, BranchWeights);
557
558  // Promote 'NewInst' so that it directly calls the desired function.
559  return promoteCall(NewInst, Callee);
560}
561
562bool llvm::tryPromoteCall(CallBase &CB) {
563  assert(!CB.getCalledFunction());
564  Module *M = CB.getCaller()->getParent();
565  const DataLayout &DL = M->getDataLayout();
566  Value *Callee = CB.getCalledOperand();
567
568  LoadInst *VTableEntryLoad = dyn_cast<LoadInst>(Callee);
569  if (!VTableEntryLoad)
570    return false; // Not a vtable entry load.
571  Value *VTableEntryPtr = VTableEntryLoad->getPointerOperand();
572  APInt VTableOffset(DL.getTypeSizeInBits(VTableEntryPtr->getType()), 0);
573  Value *VTableBasePtr = VTableEntryPtr->stripAndAccumulateConstantOffsets(
574      DL, VTableOffset, /* AllowNonInbounds */ true);
575  LoadInst *VTablePtrLoad = dyn_cast<LoadInst>(VTableBasePtr);
576  if (!VTablePtrLoad)
577    return false; // Not a vtable load.
578  Value *Object = VTablePtrLoad->getPointerOperand();
579  APInt ObjectOffset(DL.getTypeSizeInBits(Object->getType()), 0);
580  Value *ObjectBase = Object->stripAndAccumulateConstantOffsets(
581      DL, ObjectOffset, /* AllowNonInbounds */ true);
582  if (!(isa<AllocaInst>(ObjectBase) && ObjectOffset == 0))
583    // Not an Alloca or the offset isn't zero.
584    return false;
585
586  // Look for the vtable pointer store into the object by the ctor.
587  BasicBlock::iterator BBI(VTablePtrLoad);
588  Value *VTablePtr = FindAvailableLoadedValue(
589      VTablePtrLoad, VTablePtrLoad->getParent(), BBI, 0, nullptr, nullptr);
590  if (!VTablePtr)
591    return false; // No vtable found.
592  APInt VTableOffsetGVBase(DL.getTypeSizeInBits(VTablePtr->getType()), 0);
593  Value *VTableGVBase = VTablePtr->stripAndAccumulateConstantOffsets(
594      DL, VTableOffsetGVBase, /* AllowNonInbounds */ true);
595  GlobalVariable *GV = dyn_cast<GlobalVariable>(VTableGVBase);
596  if (!(GV && GV->isConstant() && GV->hasDefinitiveInitializer()))
597    // Not in the form of a global constant variable with an initializer.
598    return false;
599
600  Constant *VTableGVInitializer = GV->getInitializer();
601  APInt VTableGVOffset = VTableOffsetGVBase + VTableOffset;
602  if (!(VTableGVOffset.getActiveBits() <= 64))
603    return false; // Out of range.
604  Constant *Ptr = getPointerAtOffset(VTableGVInitializer,
605                                     VTableGVOffset.getZExtValue(),
606                                     *M);
607  if (!Ptr)
608    return false; // No constant (function) pointer found.
609  Function *DirectCallee = dyn_cast<Function>(Ptr->stripPointerCasts());
610  if (!DirectCallee)
611    return false; // No function pointer found.
612
613  if (!isLegalToPromote(CB, DirectCallee))
614    return false;
615
616  // Success.
617  promoteCall(CB, DirectCallee);
618  return true;
619}
620
621#undef DEBUG_TYPE
622