1//===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file transforms calls of the current function (self recursion) followed
10// by a return instruction with a branch to the entry of the function, creating
11// a loop.  This pass also implements the following extensions to the basic
12// algorithm:
13//
14//  1. Trivial instructions between the call and return do not prevent the
15//     transformation from taking place, though currently the analysis cannot
16//     support moving any really useful instructions (only dead ones).
17//  2. This pass transforms functions that are prevented from being tail
18//     recursive by an associative and commutative expression to use an
19//     accumulator variable, thus compiling the typical naive factorial or
20//     'fib' implementation into efficient code.
21//  3. TRE is performed if the function returns void, if the return
22//     returns the result returned by the call, or if the function returns a
23//     run-time constant on all exits from the function.  It is possible, though
24//     unlikely, that the return returns something else (like constant 0), and
25//     can still be TRE'd.  It can be TRE'd if ALL OTHER return instructions in
26//     the function return the exact same value.
27//  4. If it can prove that callees do not access their caller stack frame,
28//     they are marked as eligible for tail call elimination (by the code
29//     generator).
30//
31// There are several improvements that could be made:
32//
33//  1. If the function has any alloca instructions, these instructions will be
34//     moved out of the entry block of the function, causing them to be
35//     evaluated each time through the tail recursion.  Safely keeping allocas
36//     in the entry block requires analysis to proves that the tail-called
37//     function does not read or write the stack object.
38//  2. Tail recursion is only performed if the call immediately precedes the
39//     return instruction.  It's possible that there could be a jump between
40//     the call and the return.
41//  3. There can be intervening operations between the call and the return that
42//     prevent the TRE from occurring.  For example, there could be GEP's and
43//     stores to memory that will not be read or written by the call.  This
44//     requires some substantial analysis (such as with DSA) to prove safe to
45//     move ahead of the call, but doing so could allow many more TREs to be
46//     performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark.
47//  4. The algorithm we use to detect if callees access their caller stack
48//     frames is very primitive.
49//
50//===----------------------------------------------------------------------===//
51
52#include "llvm/Transforms/Scalar/TailRecursionElimination.h"
53#include "llvm/ADT/STLExtras.h"
54#include "llvm/ADT/SmallPtrSet.h"
55#include "llvm/ADT/Statistic.h"
56#include "llvm/Analysis/DomTreeUpdater.h"
57#include "llvm/Analysis/GlobalsModRef.h"
58#include "llvm/Analysis/InstructionSimplify.h"
59#include "llvm/Analysis/Loads.h"
60#include "llvm/Analysis/OptimizationRemarkEmitter.h"
61#include "llvm/Analysis/PostDominators.h"
62#include "llvm/Analysis/TargetTransformInfo.h"
63#include "llvm/Analysis/ValueTracking.h"
64#include "llvm/IR/CFG.h"
65#include "llvm/IR/Constants.h"
66#include "llvm/IR/DataLayout.h"
67#include "llvm/IR/DerivedTypes.h"
68#include "llvm/IR/DiagnosticInfo.h"
69#include "llvm/IR/Dominators.h"
70#include "llvm/IR/Function.h"
71#include "llvm/IR/IRBuilder.h"
72#include "llvm/IR/InstIterator.h"
73#include "llvm/IR/Instructions.h"
74#include "llvm/IR/IntrinsicInst.h"
75#include "llvm/IR/Module.h"
76#include "llvm/InitializePasses.h"
77#include "llvm/Pass.h"
78#include "llvm/Support/Debug.h"
79#include "llvm/Support/raw_ostream.h"
80#include "llvm/Transforms/Scalar.h"
81#include "llvm/Transforms/Utils/BasicBlockUtils.h"
82using namespace llvm;
83
84#define DEBUG_TYPE "tailcallelim"
85
86STATISTIC(NumEliminated, "Number of tail calls removed");
87STATISTIC(NumRetDuped,   "Number of return duplicated");
88STATISTIC(NumAccumAdded, "Number of accumulators introduced");
89
90/// Scan the specified function for alloca instructions.
91/// If it contains any dynamic allocas, returns false.
92static bool canTRE(Function &F) {
93  // TODO: We don't do TRE if dynamic allocas are used.
94  // Dynamic allocas allocate stack space which should be
95  // deallocated before new iteration started. That is
96  // currently not implemented.
97  return llvm::all_of(instructions(F), [](Instruction &I) {
98    auto *AI = dyn_cast<AllocaInst>(&I);
99    return !AI || AI->isStaticAlloca();
100  });
101}
102
103namespace {
104struct AllocaDerivedValueTracker {
105  // Start at a root value and walk its use-def chain to mark calls that use the
106  // value or a derived value in AllocaUsers, and places where it may escape in
107  // EscapePoints.
108  void walk(Value *Root) {
109    SmallVector<Use *, 32> Worklist;
110    SmallPtrSet<Use *, 32> Visited;
111
112    auto AddUsesToWorklist = [&](Value *V) {
113      for (auto &U : V->uses()) {
114        if (!Visited.insert(&U).second)
115          continue;
116        Worklist.push_back(&U);
117      }
118    };
119
120    AddUsesToWorklist(Root);
121
122    while (!Worklist.empty()) {
123      Use *U = Worklist.pop_back_val();
124      Instruction *I = cast<Instruction>(U->getUser());
125
126      switch (I->getOpcode()) {
127      case Instruction::Call:
128      case Instruction::Invoke: {
129        auto &CB = cast<CallBase>(*I);
130        // If the alloca-derived argument is passed byval it is not an escape
131        // point, or a use of an alloca. Calling with byval copies the contents
132        // of the alloca into argument registers or stack slots, which exist
133        // beyond the lifetime of the current frame.
134        if (CB.isArgOperand(U) && CB.isByValArgument(CB.getArgOperandNo(U)))
135          continue;
136        bool IsNocapture =
137            CB.isDataOperand(U) && CB.doesNotCapture(CB.getDataOperandNo(U));
138        callUsesLocalStack(CB, IsNocapture);
139        if (IsNocapture) {
140          // If the alloca-derived argument is passed in as nocapture, then it
141          // can't propagate to the call's return. That would be capturing.
142          continue;
143        }
144        break;
145      }
146      case Instruction::Load: {
147        // The result of a load is not alloca-derived (unless an alloca has
148        // otherwise escaped, but this is a local analysis).
149        continue;
150      }
151      case Instruction::Store: {
152        if (U->getOperandNo() == 0)
153          EscapePoints.insert(I);
154        continue;  // Stores have no users to analyze.
155      }
156      case Instruction::BitCast:
157      case Instruction::GetElementPtr:
158      case Instruction::PHI:
159      case Instruction::Select:
160      case Instruction::AddrSpaceCast:
161        break;
162      default:
163        EscapePoints.insert(I);
164        break;
165      }
166
167      AddUsesToWorklist(I);
168    }
169  }
170
171  void callUsesLocalStack(CallBase &CB, bool IsNocapture) {
172    // Add it to the list of alloca users.
173    AllocaUsers.insert(&CB);
174
175    // If it's nocapture then it can't capture this alloca.
176    if (IsNocapture)
177      return;
178
179    // If it can write to memory, it can leak the alloca value.
180    if (!CB.onlyReadsMemory())
181      EscapePoints.insert(&CB);
182  }
183
184  SmallPtrSet<Instruction *, 32> AllocaUsers;
185  SmallPtrSet<Instruction *, 32> EscapePoints;
186};
187}
188
189static bool markTails(Function &F, OptimizationRemarkEmitter *ORE) {
190  if (F.callsFunctionThatReturnsTwice())
191    return false;
192
193  // The local stack holds all alloca instructions and all byval arguments.
194  AllocaDerivedValueTracker Tracker;
195  for (Argument &Arg : F.args()) {
196    if (Arg.hasByValAttr())
197      Tracker.walk(&Arg);
198  }
199  for (auto &BB : F) {
200    for (auto &I : BB)
201      if (AllocaInst *AI = dyn_cast<AllocaInst>(&I))
202        Tracker.walk(AI);
203  }
204
205  bool Modified = false;
206
207  // Track whether a block is reachable after an alloca has escaped. Blocks that
208  // contain the escaping instruction will be marked as being visited without an
209  // escaped alloca, since that is how the block began.
210  enum VisitType {
211    UNVISITED,
212    UNESCAPED,
213    ESCAPED
214  };
215  DenseMap<BasicBlock *, VisitType> Visited;
216
217  // We propagate the fact that an alloca has escaped from block to successor.
218  // Visit the blocks that are propagating the escapedness first. To do this, we
219  // maintain two worklists.
220  SmallVector<BasicBlock *, 32> WorklistUnescaped, WorklistEscaped;
221
222  // We may enter a block and visit it thinking that no alloca has escaped yet,
223  // then see an escape point and go back around a loop edge and come back to
224  // the same block twice. Because of this, we defer setting tail on calls when
225  // we first encounter them in a block. Every entry in this list does not
226  // statically use an alloca via use-def chain analysis, but may find an alloca
227  // through other means if the block turns out to be reachable after an escape
228  // point.
229  SmallVector<CallInst *, 32> DeferredTails;
230
231  BasicBlock *BB = &F.getEntryBlock();
232  VisitType Escaped = UNESCAPED;
233  do {
234    for (auto &I : *BB) {
235      if (Tracker.EscapePoints.count(&I))
236        Escaped = ESCAPED;
237
238      CallInst *CI = dyn_cast<CallInst>(&I);
239      // A PseudoProbeInst has the IntrInaccessibleMemOnly tag hence it is
240      // considered accessing memory and will be marked as a tail call if we
241      // don't bail out here.
242      if (!CI || CI->isTailCall() || isa<DbgInfoIntrinsic>(&I) ||
243          isa<PseudoProbeInst>(&I))
244        continue;
245
246      // Special-case operand bundles "clang.arc.attachedcall", "ptrauth", and
247      // "kcfi".
248      bool IsNoTail = CI->isNoTailCall() ||
249                      CI->hasOperandBundlesOtherThan(
250                          {LLVMContext::OB_clang_arc_attachedcall,
251                           LLVMContext::OB_ptrauth, LLVMContext::OB_kcfi});
252
253      if (!IsNoTail && CI->doesNotAccessMemory()) {
254        // A call to a readnone function whose arguments are all things computed
255        // outside this function can be marked tail. Even if you stored the
256        // alloca address into a global, a readnone function can't load the
257        // global anyhow.
258        //
259        // Note that this runs whether we know an alloca has escaped or not. If
260        // it has, then we can't trust Tracker.AllocaUsers to be accurate.
261        bool SafeToTail = true;
262        for (auto &Arg : CI->args()) {
263          if (isa<Constant>(Arg.getUser()))
264            continue;
265          if (Argument *A = dyn_cast<Argument>(Arg.getUser()))
266            if (!A->hasByValAttr())
267              continue;
268          SafeToTail = false;
269          break;
270        }
271        if (SafeToTail) {
272          using namespace ore;
273          ORE->emit([&]() {
274            return OptimizationRemark(DEBUG_TYPE, "tailcall-readnone", CI)
275                   << "marked as tail call candidate (readnone)";
276          });
277          CI->setTailCall();
278          Modified = true;
279          continue;
280        }
281      }
282
283      if (!IsNoTail && Escaped == UNESCAPED && !Tracker.AllocaUsers.count(CI))
284        DeferredTails.push_back(CI);
285    }
286
287    for (auto *SuccBB : successors(BB)) {
288      auto &State = Visited[SuccBB];
289      if (State < Escaped) {
290        State = Escaped;
291        if (State == ESCAPED)
292          WorklistEscaped.push_back(SuccBB);
293        else
294          WorklistUnescaped.push_back(SuccBB);
295      }
296    }
297
298    if (!WorklistEscaped.empty()) {
299      BB = WorklistEscaped.pop_back_val();
300      Escaped = ESCAPED;
301    } else {
302      BB = nullptr;
303      while (!WorklistUnescaped.empty()) {
304        auto *NextBB = WorklistUnescaped.pop_back_val();
305        if (Visited[NextBB] == UNESCAPED) {
306          BB = NextBB;
307          Escaped = UNESCAPED;
308          break;
309        }
310      }
311    }
312  } while (BB);
313
314  for (CallInst *CI : DeferredTails) {
315    if (Visited[CI->getParent()] != ESCAPED) {
316      // If the escape point was part way through the block, calls after the
317      // escape point wouldn't have been put into DeferredTails.
318      LLVM_DEBUG(dbgs() << "Marked as tail call candidate: " << *CI << "\n");
319      CI->setTailCall();
320      Modified = true;
321    }
322  }
323
324  return Modified;
325}
326
327/// Return true if it is safe to move the specified
328/// instruction from after the call to before the call, assuming that all
329/// instructions between the call and this instruction are movable.
330///
331static bool canMoveAboveCall(Instruction *I, CallInst *CI, AliasAnalysis *AA) {
332  if (isa<DbgInfoIntrinsic>(I))
333    return true;
334
335  if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
336    if (II->getIntrinsicID() == Intrinsic::lifetime_end &&
337        llvm::findAllocaForValue(II->getArgOperand(1)))
338      return true;
339
340  // FIXME: We can move load/store/call/free instructions above the call if the
341  // call does not mod/ref the memory location being processed.
342  if (I->mayHaveSideEffects())  // This also handles volatile loads.
343    return false;
344
345  if (LoadInst *L = dyn_cast<LoadInst>(I)) {
346    // Loads may always be moved above calls without side effects.
347    if (CI->mayHaveSideEffects()) {
348      // Non-volatile loads may be moved above a call with side effects if it
349      // does not write to memory and the load provably won't trap.
350      // Writes to memory only matter if they may alias the pointer
351      // being loaded from.
352      const DataLayout &DL = L->getModule()->getDataLayout();
353      if (isModSet(AA->getModRefInfo(CI, MemoryLocation::get(L))) ||
354          !isSafeToLoadUnconditionally(L->getPointerOperand(), L->getType(),
355                                       L->getAlign(), DL, L))
356        return false;
357    }
358  }
359
360  // Otherwise, if this is a side-effect free instruction, check to make sure
361  // that it does not use the return value of the call.  If it doesn't use the
362  // return value of the call, it must only use things that are defined before
363  // the call, or movable instructions between the call and the instruction
364  // itself.
365  return !is_contained(I->operands(), CI);
366}
367
368static bool canTransformAccumulatorRecursion(Instruction *I, CallInst *CI) {
369  if (!I->isAssociative() || !I->isCommutative())
370    return false;
371
372  assert(I->getNumOperands() >= 2 &&
373         "Associative/commutative operations should have at least 2 args!");
374
375  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
376    // Accumulators must have an identity.
377    if (!ConstantExpr::getIntrinsicIdentity(II->getIntrinsicID(), I->getType()))
378      return false;
379  }
380
381  // Exactly one operand should be the result of the call instruction.
382  if ((I->getOperand(0) == CI && I->getOperand(1) == CI) ||
383      (I->getOperand(0) != CI && I->getOperand(1) != CI))
384    return false;
385
386  // The only user of this instruction we allow is a single return instruction.
387  if (!I->hasOneUse() || !isa<ReturnInst>(I->user_back()))
388    return false;
389
390  return true;
391}
392
393static Instruction *firstNonDbg(BasicBlock::iterator I) {
394  while (isa<DbgInfoIntrinsic>(I))
395    ++I;
396  return &*I;
397}
398
399namespace {
400class TailRecursionEliminator {
401  Function &F;
402  const TargetTransformInfo *TTI;
403  AliasAnalysis *AA;
404  OptimizationRemarkEmitter *ORE;
405  DomTreeUpdater &DTU;
406
407  // The below are shared state we want to have available when eliminating any
408  // calls in the function. There values should be populated by
409  // createTailRecurseLoopHeader the first time we find a call we can eliminate.
410  BasicBlock *HeaderBB = nullptr;
411  SmallVector<PHINode *, 8> ArgumentPHIs;
412
413  // PHI node to store our return value.
414  PHINode *RetPN = nullptr;
415
416  // i1 PHI node to track if we have a valid return value stored in RetPN.
417  PHINode *RetKnownPN = nullptr;
418
419  // Vector of select instructions we insereted. These selects use RetKnownPN
420  // to either propagate RetPN or select a new return value.
421  SmallVector<SelectInst *, 8> RetSelects;
422
423  // The below are shared state needed when performing accumulator recursion.
424  // There values should be populated by insertAccumulator the first time we
425  // find an elimination that requires an accumulator.
426
427  // PHI node to store our current accumulated value.
428  PHINode *AccPN = nullptr;
429
430  // The instruction doing the accumulating.
431  Instruction *AccumulatorRecursionInstr = nullptr;
432
433  TailRecursionEliminator(Function &F, const TargetTransformInfo *TTI,
434                          AliasAnalysis *AA, OptimizationRemarkEmitter *ORE,
435                          DomTreeUpdater &DTU)
436      : F(F), TTI(TTI), AA(AA), ORE(ORE), DTU(DTU) {}
437
438  CallInst *findTRECandidate(BasicBlock *BB);
439
440  void createTailRecurseLoopHeader(CallInst *CI);
441
442  void insertAccumulator(Instruction *AccRecInstr);
443
444  bool eliminateCall(CallInst *CI);
445
446  void cleanupAndFinalize();
447
448  bool processBlock(BasicBlock &BB);
449
450  void copyByValueOperandIntoLocalTemp(CallInst *CI, int OpndIdx);
451
452  void copyLocalTempOfByValueOperandIntoArguments(CallInst *CI, int OpndIdx);
453
454public:
455  static bool eliminate(Function &F, const TargetTransformInfo *TTI,
456                        AliasAnalysis *AA, OptimizationRemarkEmitter *ORE,
457                        DomTreeUpdater &DTU);
458};
459} // namespace
460
461CallInst *TailRecursionEliminator::findTRECandidate(BasicBlock *BB) {
462  Instruction *TI = BB->getTerminator();
463
464  if (&BB->front() == TI) // Make sure there is something before the terminator.
465    return nullptr;
466
467  // Scan backwards from the return, checking to see if there is a tail call in
468  // this block.  If so, set CI to it.
469  CallInst *CI = nullptr;
470  BasicBlock::iterator BBI(TI);
471  while (true) {
472    CI = dyn_cast<CallInst>(BBI);
473    if (CI && CI->getCalledFunction() == &F)
474      break;
475
476    if (BBI == BB->begin())
477      return nullptr;          // Didn't find a potential tail call.
478    --BBI;
479  }
480
481  assert((!CI->isTailCall() || !CI->isNoTailCall()) &&
482         "Incompatible call site attributes(Tail,NoTail)");
483  if (!CI->isTailCall())
484    return nullptr;
485
486  // As a special case, detect code like this:
487  //   double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call
488  // and disable this xform in this case, because the code generator will
489  // lower the call to fabs into inline code.
490  if (BB == &F.getEntryBlock() &&
491      firstNonDbg(BB->front().getIterator()) == CI &&
492      firstNonDbg(std::next(BB->begin())) == TI && CI->getCalledFunction() &&
493      !TTI->isLoweredToCall(CI->getCalledFunction())) {
494    // A single-block function with just a call and a return. Check that
495    // the arguments match.
496    auto I = CI->arg_begin(), E = CI->arg_end();
497    Function::arg_iterator FI = F.arg_begin(), FE = F.arg_end();
498    for (; I != E && FI != FE; ++I, ++FI)
499      if (*I != &*FI) break;
500    if (I == E && FI == FE)
501      return nullptr;
502  }
503
504  return CI;
505}
506
507void TailRecursionEliminator::createTailRecurseLoopHeader(CallInst *CI) {
508  HeaderBB = &F.getEntryBlock();
509  BasicBlock *NewEntry = BasicBlock::Create(F.getContext(), "", &F, HeaderBB);
510  NewEntry->takeName(HeaderBB);
511  HeaderBB->setName("tailrecurse");
512  BranchInst *BI = BranchInst::Create(HeaderBB, NewEntry);
513  BI->setDebugLoc(CI->getDebugLoc());
514
515  // Move all fixed sized allocas from HeaderBB to NewEntry.
516  for (BasicBlock::iterator OEBI = HeaderBB->begin(), E = HeaderBB->end(),
517                            NEBI = NewEntry->begin();
518       OEBI != E;)
519    if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++))
520      if (isa<ConstantInt>(AI->getArraySize()))
521        AI->moveBefore(&*NEBI);
522
523  // Now that we have created a new block, which jumps to the entry
524  // block, insert a PHI node for each argument of the function.
525  // For now, we initialize each PHI to only have the real arguments
526  // which are passed in.
527  BasicBlock::iterator InsertPos = HeaderBB->begin();
528  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
529    PHINode *PN = PHINode::Create(I->getType(), 2, I->getName() + ".tr");
530    PN->insertBefore(InsertPos);
531    I->replaceAllUsesWith(PN); // Everyone use the PHI node now!
532    PN->addIncoming(&*I, NewEntry);
533    ArgumentPHIs.push_back(PN);
534  }
535
536  // If the function doen't return void, create the RetPN and RetKnownPN PHI
537  // nodes to track our return value. We initialize RetPN with poison and
538  // RetKnownPN with false since we can't know our return value at function
539  // entry.
540  Type *RetType = F.getReturnType();
541  if (!RetType->isVoidTy()) {
542    Type *BoolType = Type::getInt1Ty(F.getContext());
543    RetPN = PHINode::Create(RetType, 2, "ret.tr");
544    RetPN->insertBefore(InsertPos);
545    RetKnownPN = PHINode::Create(BoolType, 2, "ret.known.tr");
546    RetKnownPN->insertBefore(InsertPos);
547
548    RetPN->addIncoming(PoisonValue::get(RetType), NewEntry);
549    RetKnownPN->addIncoming(ConstantInt::getFalse(BoolType), NewEntry);
550  }
551
552  // The entry block was changed from HeaderBB to NewEntry.
553  // The forward DominatorTree needs to be recalculated when the EntryBB is
554  // changed. In this corner-case we recalculate the entire tree.
555  DTU.recalculate(*NewEntry->getParent());
556}
557
558void TailRecursionEliminator::insertAccumulator(Instruction *AccRecInstr) {
559  assert(!AccPN && "Trying to insert multiple accumulators");
560
561  AccumulatorRecursionInstr = AccRecInstr;
562
563  // Start by inserting a new PHI node for the accumulator.
564  pred_iterator PB = pred_begin(HeaderBB), PE = pred_end(HeaderBB);
565  AccPN = PHINode::Create(F.getReturnType(), std::distance(PB, PE) + 1,
566                          "accumulator.tr");
567  AccPN->insertBefore(HeaderBB->begin());
568
569  // Loop over all of the predecessors of the tail recursion block.  For the
570  // real entry into the function we seed the PHI with the identity constant for
571  // the accumulation operation.  For any other existing branches to this block
572  // (due to other tail recursions eliminated) the accumulator is not modified.
573  // Because we haven't added the branch in the current block to HeaderBB yet,
574  // it will not show up as a predecessor.
575  for (pred_iterator PI = PB; PI != PE; ++PI) {
576    BasicBlock *P = *PI;
577    if (P == &F.getEntryBlock()) {
578      Constant *Identity =
579          ConstantExpr::getIdentity(AccRecInstr, AccRecInstr->getType());
580      AccPN->addIncoming(Identity, P);
581    } else {
582      AccPN->addIncoming(AccPN, P);
583    }
584  }
585
586  ++NumAccumAdded;
587}
588
589// Creates a copy of contents of ByValue operand of the specified
590// call instruction into the newly created temporarily variable.
591void TailRecursionEliminator::copyByValueOperandIntoLocalTemp(CallInst *CI,
592                                                              int OpndIdx) {
593  Type *AggTy = CI->getParamByValType(OpndIdx);
594  assert(AggTy);
595  const DataLayout &DL = F.getParent()->getDataLayout();
596
597  // Get alignment of byVal operand.
598  Align Alignment(CI->getParamAlign(OpndIdx).valueOrOne());
599
600  // Create alloca for temporarily byval operands.
601  // Put alloca into the entry block.
602  Value *NewAlloca = new AllocaInst(
603      AggTy, DL.getAllocaAddrSpace(), nullptr, Alignment,
604      CI->getArgOperand(OpndIdx)->getName(), &*F.getEntryBlock().begin());
605
606  IRBuilder<> Builder(CI);
607  Value *Size = Builder.getInt64(DL.getTypeAllocSize(AggTy));
608
609  // Copy data from byvalue operand into the temporarily variable.
610  Builder.CreateMemCpy(NewAlloca, /*DstAlign*/ Alignment,
611                       CI->getArgOperand(OpndIdx),
612                       /*SrcAlign*/ Alignment, Size);
613  CI->setArgOperand(OpndIdx, NewAlloca);
614}
615
616// Creates a copy from temporarily variable(keeping value of ByVal argument)
617// into the corresponding function argument location.
618void TailRecursionEliminator::copyLocalTempOfByValueOperandIntoArguments(
619    CallInst *CI, int OpndIdx) {
620  Type *AggTy = CI->getParamByValType(OpndIdx);
621  assert(AggTy);
622  const DataLayout &DL = F.getParent()->getDataLayout();
623
624  // Get alignment of byVal operand.
625  Align Alignment(CI->getParamAlign(OpndIdx).valueOrOne());
626
627  IRBuilder<> Builder(CI);
628  Value *Size = Builder.getInt64(DL.getTypeAllocSize(AggTy));
629
630  // Copy data from the temporarily variable into corresponding
631  // function argument location.
632  Builder.CreateMemCpy(F.getArg(OpndIdx), /*DstAlign*/ Alignment,
633                       CI->getArgOperand(OpndIdx),
634                       /*SrcAlign*/ Alignment, Size);
635}
636
637bool TailRecursionEliminator::eliminateCall(CallInst *CI) {
638  ReturnInst *Ret = cast<ReturnInst>(CI->getParent()->getTerminator());
639
640  // Ok, we found a potential tail call.  We can currently only transform the
641  // tail call if all of the instructions between the call and the return are
642  // movable to above the call itself, leaving the call next to the return.
643  // Check that this is the case now.
644  Instruction *AccRecInstr = nullptr;
645  BasicBlock::iterator BBI(CI);
646  for (++BBI; &*BBI != Ret; ++BBI) {
647    if (canMoveAboveCall(&*BBI, CI, AA))
648      continue;
649
650    // If we can't move the instruction above the call, it might be because it
651    // is an associative and commutative operation that could be transformed
652    // using accumulator recursion elimination.  Check to see if this is the
653    // case, and if so, remember which instruction accumulates for later.
654    if (AccPN || !canTransformAccumulatorRecursion(&*BBI, CI))
655      return false; // We cannot eliminate the tail recursion!
656
657    // Yes, this is accumulator recursion.  Remember which instruction
658    // accumulates.
659    AccRecInstr = &*BBI;
660  }
661
662  BasicBlock *BB = Ret->getParent();
663
664  using namespace ore;
665  ORE->emit([&]() {
666    return OptimizationRemark(DEBUG_TYPE, "tailcall-recursion", CI)
667           << "transforming tail recursion into loop";
668  });
669
670  // OK! We can transform this tail call.  If this is the first one found,
671  // create the new entry block, allowing us to branch back to the old entry.
672  if (!HeaderBB)
673    createTailRecurseLoopHeader(CI);
674
675  // Copy values of ByVal operands into local temporarily variables.
676  for (unsigned I = 0, E = CI->arg_size(); I != E; ++I) {
677    if (CI->isByValArgument(I))
678      copyByValueOperandIntoLocalTemp(CI, I);
679  }
680
681  // Ok, now that we know we have a pseudo-entry block WITH all of the
682  // required PHI nodes, add entries into the PHI node for the actual
683  // parameters passed into the tail-recursive call.
684  for (unsigned I = 0, E = CI->arg_size(); I != E; ++I) {
685    if (CI->isByValArgument(I)) {
686      copyLocalTempOfByValueOperandIntoArguments(CI, I);
687      // When eliminating a tail call, we modify the values of the arguments.
688      // Therefore, if the byval parameter has a readonly attribute, we have to
689      // remove it. It is safe because, from the perspective of a caller, the
690      // byval parameter is always treated as "readonly," even if the readonly
691      // attribute is removed.
692      F.removeParamAttr(I, Attribute::ReadOnly);
693      ArgumentPHIs[I]->addIncoming(F.getArg(I), BB);
694    } else
695      ArgumentPHIs[I]->addIncoming(CI->getArgOperand(I), BB);
696  }
697
698  if (AccRecInstr) {
699    insertAccumulator(AccRecInstr);
700
701    // Rewrite the accumulator recursion instruction so that it does not use
702    // the result of the call anymore, instead, use the PHI node we just
703    // inserted.
704    AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN);
705  }
706
707  // Update our return value tracking
708  if (RetPN) {
709    if (Ret->getReturnValue() == CI || AccRecInstr) {
710      // Defer selecting a return value
711      RetPN->addIncoming(RetPN, BB);
712      RetKnownPN->addIncoming(RetKnownPN, BB);
713    } else {
714      // We found a return value we want to use, insert a select instruction to
715      // select it if we don't already know what our return value will be and
716      // store the result in our return value PHI node.
717      SelectInst *SI = SelectInst::Create(
718          RetKnownPN, RetPN, Ret->getReturnValue(), "current.ret.tr", Ret);
719      RetSelects.push_back(SI);
720
721      RetPN->addIncoming(SI, BB);
722      RetKnownPN->addIncoming(ConstantInt::getTrue(RetKnownPN->getType()), BB);
723    }
724
725    if (AccPN)
726      AccPN->addIncoming(AccRecInstr ? AccRecInstr : AccPN, BB);
727  }
728
729  // Now that all of the PHI nodes are in place, remove the call and
730  // ret instructions, replacing them with an unconditional branch.
731  BranchInst *NewBI = BranchInst::Create(HeaderBB, Ret);
732  NewBI->setDebugLoc(CI->getDebugLoc());
733
734  Ret->eraseFromParent();  // Remove return.
735  CI->eraseFromParent();   // Remove call.
736  DTU.applyUpdates({{DominatorTree::Insert, BB, HeaderBB}});
737  ++NumEliminated;
738  return true;
739}
740
741void TailRecursionEliminator::cleanupAndFinalize() {
742  // If we eliminated any tail recursions, it's possible that we inserted some
743  // silly PHI nodes which just merge an initial value (the incoming operand)
744  // with themselves.  Check to see if we did and clean up our mess if so.  This
745  // occurs when a function passes an argument straight through to its tail
746  // call.
747  for (PHINode *PN : ArgumentPHIs) {
748    // If the PHI Node is a dynamic constant, replace it with the value it is.
749    if (Value *PNV = simplifyInstruction(PN, F.getParent()->getDataLayout())) {
750      PN->replaceAllUsesWith(PNV);
751      PN->eraseFromParent();
752    }
753  }
754
755  if (RetPN) {
756    if (RetSelects.empty()) {
757      // If we didn't insert any select instructions, then we know we didn't
758      // store a return value and we can remove the PHI nodes we inserted.
759      RetPN->dropAllReferences();
760      RetPN->eraseFromParent();
761
762      RetKnownPN->dropAllReferences();
763      RetKnownPN->eraseFromParent();
764
765      if (AccPN) {
766        // We need to insert a copy of our accumulator instruction before any
767        // return in the function, and return its result instead.
768        Instruction *AccRecInstr = AccumulatorRecursionInstr;
769        for (BasicBlock &BB : F) {
770          ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator());
771          if (!RI)
772            continue;
773
774          Instruction *AccRecInstrNew = AccRecInstr->clone();
775          AccRecInstrNew->setName("accumulator.ret.tr");
776          AccRecInstrNew->setOperand(AccRecInstr->getOperand(0) == AccPN,
777                                     RI->getOperand(0));
778          AccRecInstrNew->insertBefore(RI);
779          RI->setOperand(0, AccRecInstrNew);
780        }
781      }
782    } else {
783      // We need to insert a select instruction before any return left in the
784      // function to select our stored return value if we have one.
785      for (BasicBlock &BB : F) {
786        ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator());
787        if (!RI)
788          continue;
789
790        SelectInst *SI = SelectInst::Create(
791            RetKnownPN, RetPN, RI->getOperand(0), "current.ret.tr", RI);
792        RetSelects.push_back(SI);
793        RI->setOperand(0, SI);
794      }
795
796      if (AccPN) {
797        // We need to insert a copy of our accumulator instruction before any
798        // of the selects we inserted, and select its result instead.
799        Instruction *AccRecInstr = AccumulatorRecursionInstr;
800        for (SelectInst *SI : RetSelects) {
801          Instruction *AccRecInstrNew = AccRecInstr->clone();
802          AccRecInstrNew->setName("accumulator.ret.tr");
803          AccRecInstrNew->setOperand(AccRecInstr->getOperand(0) == AccPN,
804                                     SI->getFalseValue());
805          AccRecInstrNew->insertBefore(SI);
806          SI->setFalseValue(AccRecInstrNew);
807        }
808      }
809    }
810  }
811}
812
813bool TailRecursionEliminator::processBlock(BasicBlock &BB) {
814  Instruction *TI = BB.getTerminator();
815
816  if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
817    if (BI->isConditional())
818      return false;
819
820    BasicBlock *Succ = BI->getSuccessor(0);
821    ReturnInst *Ret = dyn_cast<ReturnInst>(Succ->getFirstNonPHIOrDbg(true));
822
823    if (!Ret)
824      return false;
825
826    CallInst *CI = findTRECandidate(&BB);
827
828    if (!CI)
829      return false;
830
831    LLVM_DEBUG(dbgs() << "FOLDING: " << *Succ
832                      << "INTO UNCOND BRANCH PRED: " << BB);
833    FoldReturnIntoUncondBranch(Ret, Succ, &BB, &DTU);
834    ++NumRetDuped;
835
836    // If all predecessors of Succ have been eliminated by
837    // FoldReturnIntoUncondBranch, delete it.  It is important to empty it,
838    // because the ret instruction in there is still using a value which
839    // eliminateCall will attempt to remove.  This block can only contain
840    // instructions that can't have uses, therefore it is safe to remove.
841    if (pred_empty(Succ))
842      DTU.deleteBB(Succ);
843
844    eliminateCall(CI);
845    return true;
846  } else if (isa<ReturnInst>(TI)) {
847    CallInst *CI = findTRECandidate(&BB);
848
849    if (CI)
850      return eliminateCall(CI);
851  }
852
853  return false;
854}
855
856bool TailRecursionEliminator::eliminate(Function &F,
857                                        const TargetTransformInfo *TTI,
858                                        AliasAnalysis *AA,
859                                        OptimizationRemarkEmitter *ORE,
860                                        DomTreeUpdater &DTU) {
861  if (F.getFnAttribute("disable-tail-calls").getValueAsBool())
862    return false;
863
864  bool MadeChange = false;
865  MadeChange |= markTails(F, ORE);
866
867  // If this function is a varargs function, we won't be able to PHI the args
868  // right, so don't even try to convert it...
869  if (F.getFunctionType()->isVarArg())
870    return MadeChange;
871
872  if (!canTRE(F))
873    return MadeChange;
874
875  // Change any tail recursive calls to loops.
876  TailRecursionEliminator TRE(F, TTI, AA, ORE, DTU);
877
878  for (BasicBlock &BB : F)
879    MadeChange |= TRE.processBlock(BB);
880
881  TRE.cleanupAndFinalize();
882
883  return MadeChange;
884}
885
886namespace {
887struct TailCallElim : public FunctionPass {
888  static char ID; // Pass identification, replacement for typeid
889  TailCallElim() : FunctionPass(ID) {
890    initializeTailCallElimPass(*PassRegistry::getPassRegistry());
891  }
892
893  void getAnalysisUsage(AnalysisUsage &AU) const override {
894    AU.addRequired<TargetTransformInfoWrapperPass>();
895    AU.addRequired<AAResultsWrapperPass>();
896    AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
897    AU.addPreserved<GlobalsAAWrapperPass>();
898    AU.addPreserved<DominatorTreeWrapperPass>();
899    AU.addPreserved<PostDominatorTreeWrapperPass>();
900  }
901
902  bool runOnFunction(Function &F) override {
903    if (skipFunction(F))
904      return false;
905
906    auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
907    auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
908    auto *PDTWP = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>();
909    auto *PDT = PDTWP ? &PDTWP->getPostDomTree() : nullptr;
910    // There is no noticable performance difference here between Lazy and Eager
911    // UpdateStrategy based on some test results. It is feasible to switch the
912    // UpdateStrategy to Lazy if we find it profitable later.
913    DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager);
914
915    return TailRecursionEliminator::eliminate(
916        F, &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F),
917        &getAnalysis<AAResultsWrapperPass>().getAAResults(),
918        &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(), DTU);
919  }
920};
921}
922
923char TailCallElim::ID = 0;
924INITIALIZE_PASS_BEGIN(TailCallElim, "tailcallelim", "Tail Call Elimination",
925                      false, false)
926INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
927INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
928INITIALIZE_PASS_END(TailCallElim, "tailcallelim", "Tail Call Elimination",
929                    false, false)
930
931// Public interface to the TailCallElimination pass
932FunctionPass *llvm::createTailCallEliminationPass() {
933  return new TailCallElim();
934}
935
936PreservedAnalyses TailCallElimPass::run(Function &F,
937                                        FunctionAnalysisManager &AM) {
938
939  TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F);
940  AliasAnalysis &AA = AM.getResult<AAManager>(F);
941  auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
942  auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F);
943  auto *PDT = AM.getCachedResult<PostDominatorTreeAnalysis>(F);
944  // There is no noticable performance difference here between Lazy and Eager
945  // UpdateStrategy based on some test results. It is feasible to switch the
946  // UpdateStrategy to Lazy if we find it profitable later.
947  DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager);
948  bool Changed = TailRecursionEliminator::eliminate(F, &TTI, &AA, &ORE, DTU);
949
950  if (!Changed)
951    return PreservedAnalyses::all();
952  PreservedAnalyses PA;
953  PA.preserve<DominatorTreeAnalysis>();
954  PA.preserve<PostDominatorTreeAnalysis>();
955  return PA;
956}
957