1//===- StraightLineStrengthReduce.cpp - -----------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements straight-line strength reduction (SLSR). Unlike loop
10// strength reduction, this algorithm is designed to reduce arithmetic
11// redundancy in straight-line code instead of loops. It has proven to be
12// effective in simplifying arithmetic statements derived from an unrolled loop.
13// It can also simplify the logic of SeparateConstOffsetFromGEP.
14//
15// There are many optimizations we can perform in the domain of SLSR. This file
16// for now contains only an initial step. Specifically, we look for strength
17// reduction candidates in the following forms:
18//
19// Form 1: B + i * S
20// Form 2: (B + i) * S
21// Form 3: &B[i * S]
22//
23// where S is an integer variable, and i is a constant integer. If we found two
24// candidates S1 and S2 in the same form and S1 dominates S2, we may rewrite S2
25// in a simpler way with respect to S1. For example,
26//
27// S1: X = B + i * S
28// S2: Y = B + i' * S   => X + (i' - i) * S
29//
30// S1: X = (B + i) * S
31// S2: Y = (B + i') * S => X + (i' - i) * S
32//
33// S1: X = &B[i * S]
34// S2: Y = &B[i' * S]   => &X[(i' - i) * S]
35//
36// Note: (i' - i) * S is folded to the extent possible.
37//
38// This rewriting is in general a good idea. The code patterns we focus on
39// usually come from loop unrolling, so (i' - i) * S is likely the same
40// across iterations and can be reused. When that happens, the optimized form
41// takes only one add starting from the second iteration.
42//
43// When such rewriting is possible, we call S1 a "basis" of S2. When S2 has
44// multiple bases, we choose to rewrite S2 with respect to its "immediate"
45// basis, the basis that is the closest ancestor in the dominator tree.
46//
47// TODO:
48//
49// - Floating point arithmetics when fast math is enabled.
50//
51// - SLSR may decrease ILP at the architecture level. Targets that are very
52//   sensitive to ILP may want to disable it. Having SLSR to consider ILP is
53//   left as future work.
54//
55// - When (i' - i) is constant but i and i' are not, we could still perform
56//   SLSR.
57
58#include "llvm/Transforms/Scalar/StraightLineStrengthReduce.h"
59#include "llvm/ADT/APInt.h"
60#include "llvm/ADT/DepthFirstIterator.h"
61#include "llvm/ADT/SmallVector.h"
62#include "llvm/Analysis/ScalarEvolution.h"
63#include "llvm/Analysis/TargetTransformInfo.h"
64#include "llvm/Analysis/ValueTracking.h"
65#include "llvm/IR/Constants.h"
66#include "llvm/IR/DataLayout.h"
67#include "llvm/IR/DerivedTypes.h"
68#include "llvm/IR/Dominators.h"
69#include "llvm/IR/GetElementPtrTypeIterator.h"
70#include "llvm/IR/IRBuilder.h"
71#include "llvm/IR/Instruction.h"
72#include "llvm/IR/Instructions.h"
73#include "llvm/IR/Module.h"
74#include "llvm/IR/Operator.h"
75#include "llvm/IR/PatternMatch.h"
76#include "llvm/IR/Type.h"
77#include "llvm/IR/Value.h"
78#include "llvm/InitializePasses.h"
79#include "llvm/Pass.h"
80#include "llvm/Support/Casting.h"
81#include "llvm/Support/ErrorHandling.h"
82#include "llvm/Transforms/Scalar.h"
83#include "llvm/Transforms/Utils/Local.h"
84#include <cassert>
85#include <cstdint>
86#include <limits>
87#include <list>
88#include <vector>
89
90using namespace llvm;
91using namespace PatternMatch;
92
93static const unsigned UnknownAddressSpace =
94    std::numeric_limits<unsigned>::max();
95
96namespace {
97
98class StraightLineStrengthReduceLegacyPass : public FunctionPass {
99  const DataLayout *DL = nullptr;
100
101public:
102  static char ID;
103
104  StraightLineStrengthReduceLegacyPass() : FunctionPass(ID) {
105    initializeStraightLineStrengthReduceLegacyPassPass(
106        *PassRegistry::getPassRegistry());
107  }
108
109  void getAnalysisUsage(AnalysisUsage &AU) const override {
110    AU.addRequired<DominatorTreeWrapperPass>();
111    AU.addRequired<ScalarEvolutionWrapperPass>();
112    AU.addRequired<TargetTransformInfoWrapperPass>();
113    // We do not modify the shape of the CFG.
114    AU.setPreservesCFG();
115  }
116
117  bool doInitialization(Module &M) override {
118    DL = &M.getDataLayout();
119    return false;
120  }
121
122  bool runOnFunction(Function &F) override;
123};
124
125class StraightLineStrengthReduce {
126public:
127  StraightLineStrengthReduce(const DataLayout *DL, DominatorTree *DT,
128                             ScalarEvolution *SE, TargetTransformInfo *TTI)
129      : DL(DL), DT(DT), SE(SE), TTI(TTI) {}
130
131  // SLSR candidate. Such a candidate must be in one of the forms described in
132  // the header comments.
133  struct Candidate {
134    enum Kind {
135      Invalid, // reserved for the default constructor
136      Add,     // B + i * S
137      Mul,     // (B + i) * S
138      GEP,     // &B[..][i * S][..]
139    };
140
141    Candidate() = default;
142    Candidate(Kind CT, const SCEV *B, ConstantInt *Idx, Value *S,
143              Instruction *I)
144        : CandidateKind(CT), Base(B), Index(Idx), Stride(S), Ins(I) {}
145
146    Kind CandidateKind = Invalid;
147
148    const SCEV *Base = nullptr;
149
150    // Note that Index and Stride of a GEP candidate do not necessarily have the
151    // same integer type. In that case, during rewriting, Stride will be
152    // sign-extended or truncated to Index's type.
153    ConstantInt *Index = nullptr;
154
155    Value *Stride = nullptr;
156
157    // The instruction this candidate corresponds to. It helps us to rewrite a
158    // candidate with respect to its immediate basis. Note that one instruction
159    // can correspond to multiple candidates depending on how you associate the
160    // expression. For instance,
161    //
162    // (a + 1) * (b + 2)
163    //
164    // can be treated as
165    //
166    // <Base: a, Index: 1, Stride: b + 2>
167    //
168    // or
169    //
170    // <Base: b, Index: 2, Stride: a + 1>
171    Instruction *Ins = nullptr;
172
173    // Points to the immediate basis of this candidate, or nullptr if we cannot
174    // find any basis for this candidate.
175    Candidate *Basis = nullptr;
176  };
177
178  bool runOnFunction(Function &F);
179
180private:
181  // Returns true if Basis is a basis for C, i.e., Basis dominates C and they
182  // share the same base and stride.
183  bool isBasisFor(const Candidate &Basis, const Candidate &C);
184
185  // Returns whether the candidate can be folded into an addressing mode.
186  bool isFoldable(const Candidate &C, TargetTransformInfo *TTI,
187                  const DataLayout *DL);
188
189  // Returns true if C is already in a simplest form and not worth being
190  // rewritten.
191  bool isSimplestForm(const Candidate &C);
192
193  // Checks whether I is in a candidate form. If so, adds all the matching forms
194  // to Candidates, and tries to find the immediate basis for each of them.
195  void allocateCandidatesAndFindBasis(Instruction *I);
196
197  // Allocate candidates and find bases for Add instructions.
198  void allocateCandidatesAndFindBasisForAdd(Instruction *I);
199
200  // Given I = LHS + RHS, factors RHS into i * S and makes (LHS + i * S) a
201  // candidate.
202  void allocateCandidatesAndFindBasisForAdd(Value *LHS, Value *RHS,
203                                            Instruction *I);
204  // Allocate candidates and find bases for Mul instructions.
205  void allocateCandidatesAndFindBasisForMul(Instruction *I);
206
207  // Splits LHS into Base + Index and, if succeeds, calls
208  // allocateCandidatesAndFindBasis.
209  void allocateCandidatesAndFindBasisForMul(Value *LHS, Value *RHS,
210                                            Instruction *I);
211
212  // Allocate candidates and find bases for GetElementPtr instructions.
213  void allocateCandidatesAndFindBasisForGEP(GetElementPtrInst *GEP);
214
215  // A helper function that scales Idx with ElementSize before invoking
216  // allocateCandidatesAndFindBasis.
217  void allocateCandidatesAndFindBasisForGEP(const SCEV *B, ConstantInt *Idx,
218                                            Value *S, uint64_t ElementSize,
219                                            Instruction *I);
220
221  // Adds the given form <CT, B, Idx, S> to Candidates, and finds its immediate
222  // basis.
223  void allocateCandidatesAndFindBasis(Candidate::Kind CT, const SCEV *B,
224                                      ConstantInt *Idx, Value *S,
225                                      Instruction *I);
226
227  // Rewrites candidate C with respect to Basis.
228  void rewriteCandidateWithBasis(const Candidate &C, const Candidate &Basis);
229
230  // A helper function that factors ArrayIdx to a product of a stride and a
231  // constant index, and invokes allocateCandidatesAndFindBasis with the
232  // factorings.
233  void factorArrayIndex(Value *ArrayIdx, const SCEV *Base, uint64_t ElementSize,
234                        GetElementPtrInst *GEP);
235
236  // Emit code that computes the "bump" from Basis to C.
237  static Value *emitBump(const Candidate &Basis, const Candidate &C,
238                         IRBuilder<> &Builder, const DataLayout *DL);
239
240  const DataLayout *DL = nullptr;
241  DominatorTree *DT = nullptr;
242  ScalarEvolution *SE;
243  TargetTransformInfo *TTI = nullptr;
244  std::list<Candidate> Candidates;
245
246  // Temporarily holds all instructions that are unlinked (but not deleted) by
247  // rewriteCandidateWithBasis. These instructions will be actually removed
248  // after all rewriting finishes.
249  std::vector<Instruction *> UnlinkedInstructions;
250};
251
252} // end anonymous namespace
253
254char StraightLineStrengthReduceLegacyPass::ID = 0;
255
256INITIALIZE_PASS_BEGIN(StraightLineStrengthReduceLegacyPass, "slsr",
257                      "Straight line strength reduction", false, false)
258INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
259INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
260INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
261INITIALIZE_PASS_END(StraightLineStrengthReduceLegacyPass, "slsr",
262                    "Straight line strength reduction", false, false)
263
264FunctionPass *llvm::createStraightLineStrengthReducePass() {
265  return new StraightLineStrengthReduceLegacyPass();
266}
267
268bool StraightLineStrengthReduce::isBasisFor(const Candidate &Basis,
269                                            const Candidate &C) {
270  return (Basis.Ins != C.Ins && // skip the same instruction
271          // They must have the same type too. Basis.Base == C.Base doesn't
272          // guarantee their types are the same (PR23975).
273          Basis.Ins->getType() == C.Ins->getType() &&
274          // Basis must dominate C in order to rewrite C with respect to Basis.
275          DT->dominates(Basis.Ins->getParent(), C.Ins->getParent()) &&
276          // They share the same base, stride, and candidate kind.
277          Basis.Base == C.Base && Basis.Stride == C.Stride &&
278          Basis.CandidateKind == C.CandidateKind);
279}
280
281static bool isGEPFoldable(GetElementPtrInst *GEP,
282                          const TargetTransformInfo *TTI) {
283  SmallVector<const Value *, 4> Indices(GEP->indices());
284  return TTI->getGEPCost(GEP->getSourceElementType(), GEP->getPointerOperand(),
285                         Indices) == TargetTransformInfo::TCC_Free;
286}
287
288// Returns whether (Base + Index * Stride) can be folded to an addressing mode.
289static bool isAddFoldable(const SCEV *Base, ConstantInt *Index, Value *Stride,
290                          TargetTransformInfo *TTI) {
291  // Index->getSExtValue() may crash if Index is wider than 64-bit.
292  return Index->getBitWidth() <= 64 &&
293         TTI->isLegalAddressingMode(Base->getType(), nullptr, 0, true,
294                                    Index->getSExtValue(), UnknownAddressSpace);
295}
296
297bool StraightLineStrengthReduce::isFoldable(const Candidate &C,
298                                            TargetTransformInfo *TTI,
299                                            const DataLayout *DL) {
300  if (C.CandidateKind == Candidate::Add)
301    return isAddFoldable(C.Base, C.Index, C.Stride, TTI);
302  if (C.CandidateKind == Candidate::GEP)
303    return isGEPFoldable(cast<GetElementPtrInst>(C.Ins), TTI);
304  return false;
305}
306
307// Returns true if GEP has zero or one non-zero index.
308static bool hasOnlyOneNonZeroIndex(GetElementPtrInst *GEP) {
309  unsigned NumNonZeroIndices = 0;
310  for (Use &Idx : GEP->indices()) {
311    ConstantInt *ConstIdx = dyn_cast<ConstantInt>(Idx);
312    if (ConstIdx == nullptr || !ConstIdx->isZero())
313      ++NumNonZeroIndices;
314  }
315  return NumNonZeroIndices <= 1;
316}
317
318bool StraightLineStrengthReduce::isSimplestForm(const Candidate &C) {
319  if (C.CandidateKind == Candidate::Add) {
320    // B + 1 * S or B + (-1) * S
321    return C.Index->isOne() || C.Index->isMinusOne();
322  }
323  if (C.CandidateKind == Candidate::Mul) {
324    // (B + 0) * S
325    return C.Index->isZero();
326  }
327  if (C.CandidateKind == Candidate::GEP) {
328    // (char*)B + S or (char*)B - S
329    return ((C.Index->isOne() || C.Index->isMinusOne()) &&
330            hasOnlyOneNonZeroIndex(cast<GetElementPtrInst>(C.Ins)));
331  }
332  return false;
333}
334
335// TODO: We currently implement an algorithm whose time complexity is linear in
336// the number of existing candidates. However, we could do better by using
337// ScopedHashTable. Specifically, while traversing the dominator tree, we could
338// maintain all the candidates that dominate the basic block being traversed in
339// a ScopedHashTable. This hash table is indexed by the base and the stride of
340// a candidate. Therefore, finding the immediate basis of a candidate boils down
341// to one hash-table look up.
342void StraightLineStrengthReduce::allocateCandidatesAndFindBasis(
343    Candidate::Kind CT, const SCEV *B, ConstantInt *Idx, Value *S,
344    Instruction *I) {
345  Candidate C(CT, B, Idx, S, I);
346  // SLSR can complicate an instruction in two cases:
347  //
348  // 1. If we can fold I into an addressing mode, computing I is likely free or
349  // takes only one instruction.
350  //
351  // 2. I is already in a simplest form. For example, when
352  //      X = B + 8 * S
353  //      Y = B + S,
354  //    rewriting Y to X - 7 * S is probably a bad idea.
355  //
356  // In the above cases, we still add I to the candidate list so that I can be
357  // the basis of other candidates, but we leave I's basis blank so that I
358  // won't be rewritten.
359  if (!isFoldable(C, TTI, DL) && !isSimplestForm(C)) {
360    // Try to compute the immediate basis of C.
361    unsigned NumIterations = 0;
362    // Limit the scan radius to avoid running in quadratice time.
363    static const unsigned MaxNumIterations = 50;
364    for (auto Basis = Candidates.rbegin();
365         Basis != Candidates.rend() && NumIterations < MaxNumIterations;
366         ++Basis, ++NumIterations) {
367      if (isBasisFor(*Basis, C)) {
368        C.Basis = &(*Basis);
369        break;
370      }
371    }
372  }
373  // Regardless of whether we find a basis for C, we need to push C to the
374  // candidate list so that it can be the basis of other candidates.
375  Candidates.push_back(C);
376}
377
378void StraightLineStrengthReduce::allocateCandidatesAndFindBasis(
379    Instruction *I) {
380  switch (I->getOpcode()) {
381  case Instruction::Add:
382    allocateCandidatesAndFindBasisForAdd(I);
383    break;
384  case Instruction::Mul:
385    allocateCandidatesAndFindBasisForMul(I);
386    break;
387  case Instruction::GetElementPtr:
388    allocateCandidatesAndFindBasisForGEP(cast<GetElementPtrInst>(I));
389    break;
390  }
391}
392
393void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd(
394    Instruction *I) {
395  // Try matching B + i * S.
396  if (!isa<IntegerType>(I->getType()))
397    return;
398
399  assert(I->getNumOperands() == 2 && "isn't I an add?");
400  Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
401  allocateCandidatesAndFindBasisForAdd(LHS, RHS, I);
402  if (LHS != RHS)
403    allocateCandidatesAndFindBasisForAdd(RHS, LHS, I);
404}
405
406void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd(
407    Value *LHS, Value *RHS, Instruction *I) {
408  Value *S = nullptr;
409  ConstantInt *Idx = nullptr;
410  if (match(RHS, m_Mul(m_Value(S), m_ConstantInt(Idx)))) {
411    // I = LHS + RHS = LHS + Idx * S
412    allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I);
413  } else if (match(RHS, m_Shl(m_Value(S), m_ConstantInt(Idx)))) {
414    // I = LHS + RHS = LHS + (S << Idx) = LHS + S * (1 << Idx)
415    APInt One(Idx->getBitWidth(), 1);
416    Idx = ConstantInt::get(Idx->getContext(), One << Idx->getValue());
417    allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I);
418  } else {
419    // At least, I = LHS + 1 * RHS
420    ConstantInt *One = ConstantInt::get(cast<IntegerType>(I->getType()), 1);
421    allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), One, RHS,
422                                   I);
423  }
424}
425
426// Returns true if A matches B + C where C is constant.
427static bool matchesAdd(Value *A, Value *&B, ConstantInt *&C) {
428  return (match(A, m_Add(m_Value(B), m_ConstantInt(C))) ||
429          match(A, m_Add(m_ConstantInt(C), m_Value(B))));
430}
431
432// Returns true if A matches B | C where C is constant.
433static bool matchesOr(Value *A, Value *&B, ConstantInt *&C) {
434  return (match(A, m_Or(m_Value(B), m_ConstantInt(C))) ||
435          match(A, m_Or(m_ConstantInt(C), m_Value(B))));
436}
437
438void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul(
439    Value *LHS, Value *RHS, Instruction *I) {
440  Value *B = nullptr;
441  ConstantInt *Idx = nullptr;
442  if (matchesAdd(LHS, B, Idx)) {
443    // If LHS is in the form of "Base + Index", then I is in the form of
444    // "(Base + Index) * RHS".
445    allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I);
446  } else if (matchesOr(LHS, B, Idx) && haveNoCommonBitsSet(B, Idx, *DL)) {
447    // If LHS is in the form of "Base | Index" and Base and Index have no common
448    // bits set, then
449    //   Base | Index = Base + Index
450    // and I is thus in the form of "(Base + Index) * RHS".
451    allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I);
452  } else {
453    // Otherwise, at least try the form (LHS + 0) * RHS.
454    ConstantInt *Zero = ConstantInt::get(cast<IntegerType>(I->getType()), 0);
455    allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(LHS), Zero, RHS,
456                                   I);
457  }
458}
459
460void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul(
461    Instruction *I) {
462  // Try matching (B + i) * S.
463  // TODO: we could extend SLSR to float and vector types.
464  if (!isa<IntegerType>(I->getType()))
465    return;
466
467  assert(I->getNumOperands() == 2 && "isn't I a mul?");
468  Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
469  allocateCandidatesAndFindBasisForMul(LHS, RHS, I);
470  if (LHS != RHS) {
471    // Symmetrically, try to split RHS to Base + Index.
472    allocateCandidatesAndFindBasisForMul(RHS, LHS, I);
473  }
474}
475
476void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP(
477    const SCEV *B, ConstantInt *Idx, Value *S, uint64_t ElementSize,
478    Instruction *I) {
479  // I = B + sext(Idx *nsw S) * ElementSize
480  //   = B + (sext(Idx) * sext(S)) * ElementSize
481  //   = B + (sext(Idx) * ElementSize) * sext(S)
482  // Casting to IntegerType is safe because we skipped vector GEPs.
483  IntegerType *PtrIdxTy = cast<IntegerType>(DL->getIndexType(I->getType()));
484  ConstantInt *ScaledIdx = ConstantInt::get(
485      PtrIdxTy, Idx->getSExtValue() * (int64_t)ElementSize, true);
486  allocateCandidatesAndFindBasis(Candidate::GEP, B, ScaledIdx, S, I);
487}
488
489void StraightLineStrengthReduce::factorArrayIndex(Value *ArrayIdx,
490                                                  const SCEV *Base,
491                                                  uint64_t ElementSize,
492                                                  GetElementPtrInst *GEP) {
493  // At least, ArrayIdx = ArrayIdx *nsw 1.
494  allocateCandidatesAndFindBasisForGEP(
495      Base, ConstantInt::get(cast<IntegerType>(ArrayIdx->getType()), 1),
496      ArrayIdx, ElementSize, GEP);
497  Value *LHS = nullptr;
498  ConstantInt *RHS = nullptr;
499  // One alternative is matching the SCEV of ArrayIdx instead of ArrayIdx
500  // itself. This would allow us to handle the shl case for free. However,
501  // matching SCEVs has two issues:
502  //
503  // 1. this would complicate rewriting because the rewriting procedure
504  // would have to translate SCEVs back to IR instructions. This translation
505  // is difficult when LHS is further evaluated to a composite SCEV.
506  //
507  // 2. ScalarEvolution is designed to be control-flow oblivious. It tends
508  // to strip nsw/nuw flags which are critical for SLSR to trace into
509  // sext'ed multiplication.
510  if (match(ArrayIdx, m_NSWMul(m_Value(LHS), m_ConstantInt(RHS)))) {
511    // SLSR is currently unsafe if i * S may overflow.
512    // GEP = Base + sext(LHS *nsw RHS) * ElementSize
513    allocateCandidatesAndFindBasisForGEP(Base, RHS, LHS, ElementSize, GEP);
514  } else if (match(ArrayIdx, m_NSWShl(m_Value(LHS), m_ConstantInt(RHS)))) {
515    // GEP = Base + sext(LHS <<nsw RHS) * ElementSize
516    //     = Base + sext(LHS *nsw (1 << RHS)) * ElementSize
517    APInt One(RHS->getBitWidth(), 1);
518    ConstantInt *PowerOf2 =
519        ConstantInt::get(RHS->getContext(), One << RHS->getValue());
520    allocateCandidatesAndFindBasisForGEP(Base, PowerOf2, LHS, ElementSize, GEP);
521  }
522}
523
524void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP(
525    GetElementPtrInst *GEP) {
526  // TODO: handle vector GEPs
527  if (GEP->getType()->isVectorTy())
528    return;
529
530  SmallVector<const SCEV *, 4> IndexExprs;
531  for (Use &Idx : GEP->indices())
532    IndexExprs.push_back(SE->getSCEV(Idx));
533
534  gep_type_iterator GTI = gep_type_begin(GEP);
535  for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
536    if (GTI.isStruct())
537      continue;
538
539    const SCEV *OrigIndexExpr = IndexExprs[I - 1];
540    IndexExprs[I - 1] = SE->getZero(OrigIndexExpr->getType());
541
542    // The base of this candidate is GEP's base plus the offsets of all
543    // indices except this current one.
544    const SCEV *BaseExpr = SE->getGEPExpr(cast<GEPOperator>(GEP), IndexExprs);
545    Value *ArrayIdx = GEP->getOperand(I);
546    uint64_t ElementSize = GTI.getSequentialElementStride(*DL);
547    if (ArrayIdx->getType()->getIntegerBitWidth() <=
548        DL->getIndexSizeInBits(GEP->getAddressSpace())) {
549      // Skip factoring if ArrayIdx is wider than the index size, because
550      // ArrayIdx is implicitly truncated to the index size.
551      factorArrayIndex(ArrayIdx, BaseExpr, ElementSize, GEP);
552    }
553    // When ArrayIdx is the sext of a value, we try to factor that value as
554    // well.  Handling this case is important because array indices are
555    // typically sign-extended to the pointer index size.
556    Value *TruncatedArrayIdx = nullptr;
557    if (match(ArrayIdx, m_SExt(m_Value(TruncatedArrayIdx))) &&
558        TruncatedArrayIdx->getType()->getIntegerBitWidth() <=
559            DL->getIndexSizeInBits(GEP->getAddressSpace())) {
560      // Skip factoring if TruncatedArrayIdx is wider than the pointer size,
561      // because TruncatedArrayIdx is implicitly truncated to the pointer size.
562      factorArrayIndex(TruncatedArrayIdx, BaseExpr, ElementSize, GEP);
563    }
564
565    IndexExprs[I - 1] = OrigIndexExpr;
566  }
567}
568
569// A helper function that unifies the bitwidth of A and B.
570static void unifyBitWidth(APInt &A, APInt &B) {
571  if (A.getBitWidth() < B.getBitWidth())
572    A = A.sext(B.getBitWidth());
573  else if (A.getBitWidth() > B.getBitWidth())
574    B = B.sext(A.getBitWidth());
575}
576
577Value *StraightLineStrengthReduce::emitBump(const Candidate &Basis,
578                                            const Candidate &C,
579                                            IRBuilder<> &Builder,
580                                            const DataLayout *DL) {
581  APInt Idx = C.Index->getValue(), BasisIdx = Basis.Index->getValue();
582  unifyBitWidth(Idx, BasisIdx);
583  APInt IndexOffset = Idx - BasisIdx;
584
585  // Compute Bump = C - Basis = (i' - i) * S.
586  // Common case 1: if (i' - i) is 1, Bump = S.
587  if (IndexOffset == 1)
588    return C.Stride;
589  // Common case 2: if (i' - i) is -1, Bump = -S.
590  if (IndexOffset.isAllOnes())
591    return Builder.CreateNeg(C.Stride);
592
593  // Otherwise, Bump = (i' - i) * sext/trunc(S). Note that (i' - i) and S may
594  // have different bit widths.
595  IntegerType *DeltaType =
596      IntegerType::get(Basis.Ins->getContext(), IndexOffset.getBitWidth());
597  Value *ExtendedStride = Builder.CreateSExtOrTrunc(C.Stride, DeltaType);
598  if (IndexOffset.isPowerOf2()) {
599    // If (i' - i) is a power of 2, Bump = sext/trunc(S) << log(i' - i).
600    ConstantInt *Exponent = ConstantInt::get(DeltaType, IndexOffset.logBase2());
601    return Builder.CreateShl(ExtendedStride, Exponent);
602  }
603  if (IndexOffset.isNegatedPowerOf2()) {
604    // If (i - i') is a power of 2, Bump = -sext/trunc(S) << log(i' - i).
605    ConstantInt *Exponent =
606        ConstantInt::get(DeltaType, (-IndexOffset).logBase2());
607    return Builder.CreateNeg(Builder.CreateShl(ExtendedStride, Exponent));
608  }
609  Constant *Delta = ConstantInt::get(DeltaType, IndexOffset);
610  return Builder.CreateMul(ExtendedStride, Delta);
611}
612
613void StraightLineStrengthReduce::rewriteCandidateWithBasis(
614    const Candidate &C, const Candidate &Basis) {
615  assert(C.CandidateKind == Basis.CandidateKind && C.Base == Basis.Base &&
616         C.Stride == Basis.Stride);
617  // We run rewriteCandidateWithBasis on all candidates in a post-order, so the
618  // basis of a candidate cannot be unlinked before the candidate.
619  assert(Basis.Ins->getParent() != nullptr && "the basis is unlinked");
620
621  // An instruction can correspond to multiple candidates. Therefore, instead of
622  // simply deleting an instruction when we rewrite it, we mark its parent as
623  // nullptr (i.e. unlink it) so that we can skip the candidates whose
624  // instruction is already rewritten.
625  if (!C.Ins->getParent())
626    return;
627
628  IRBuilder<> Builder(C.Ins);
629  Value *Bump = emitBump(Basis, C, Builder, DL);
630  Value *Reduced = nullptr; // equivalent to but weaker than C.Ins
631  switch (C.CandidateKind) {
632  case Candidate::Add:
633  case Candidate::Mul: {
634    // C = Basis + Bump
635    Value *NegBump;
636    if (match(Bump, m_Neg(m_Value(NegBump)))) {
637      // If Bump is a neg instruction, emit C = Basis - (-Bump).
638      Reduced = Builder.CreateSub(Basis.Ins, NegBump);
639      // We only use the negative argument of Bump, and Bump itself may be
640      // trivially dead.
641      RecursivelyDeleteTriviallyDeadInstructions(Bump);
642    } else {
643      // It's tempting to preserve nsw on Bump and/or Reduced. However, it's
644      // usually unsound, e.g.,
645      //
646      // X = (-2 +nsw 1) *nsw INT_MAX
647      // Y = (-2 +nsw 3) *nsw INT_MAX
648      //   =>
649      // Y = X + 2 * INT_MAX
650      //
651      // Neither + and * in the resultant expression are nsw.
652      Reduced = Builder.CreateAdd(Basis.Ins, Bump);
653    }
654    break;
655  }
656  case Candidate::GEP: {
657    bool InBounds = cast<GetElementPtrInst>(C.Ins)->isInBounds();
658    // C = (char *)Basis + Bump
659    Reduced = Builder.CreatePtrAdd(Basis.Ins, Bump, "", InBounds);
660    break;
661  }
662  default:
663    llvm_unreachable("C.CandidateKind is invalid");
664  };
665  Reduced->takeName(C.Ins);
666  C.Ins->replaceAllUsesWith(Reduced);
667  // Unlink C.Ins so that we can skip other candidates also corresponding to
668  // C.Ins. The actual deletion is postponed to the end of runOnFunction.
669  C.Ins->removeFromParent();
670  UnlinkedInstructions.push_back(C.Ins);
671}
672
673bool StraightLineStrengthReduceLegacyPass::runOnFunction(Function &F) {
674  if (skipFunction(F))
675    return false;
676
677  auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
678  auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
679  auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
680  return StraightLineStrengthReduce(DL, DT, SE, TTI).runOnFunction(F);
681}
682
683bool StraightLineStrengthReduce::runOnFunction(Function &F) {
684  // Traverse the dominator tree in the depth-first order. This order makes sure
685  // all bases of a candidate are in Candidates when we process it.
686  for (const auto Node : depth_first(DT))
687    for (auto &I : *(Node->getBlock()))
688      allocateCandidatesAndFindBasis(&I);
689
690  // Rewrite candidates in the reverse depth-first order. This order makes sure
691  // a candidate being rewritten is not a basis for any other candidate.
692  while (!Candidates.empty()) {
693    const Candidate &C = Candidates.back();
694    if (C.Basis != nullptr) {
695      rewriteCandidateWithBasis(C, *C.Basis);
696    }
697    Candidates.pop_back();
698  }
699
700  // Delete all unlink instructions.
701  for (auto *UnlinkedInst : UnlinkedInstructions) {
702    for (unsigned I = 0, E = UnlinkedInst->getNumOperands(); I != E; ++I) {
703      Value *Op = UnlinkedInst->getOperand(I);
704      UnlinkedInst->setOperand(I, nullptr);
705      RecursivelyDeleteTriviallyDeadInstructions(Op);
706    }
707    UnlinkedInst->deleteValue();
708  }
709  bool Ret = !UnlinkedInstructions.empty();
710  UnlinkedInstructions.clear();
711  return Ret;
712}
713
714namespace llvm {
715
716PreservedAnalyses
717StraightLineStrengthReducePass::run(Function &F, FunctionAnalysisManager &AM) {
718  const DataLayout *DL = &F.getParent()->getDataLayout();
719  auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
720  auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
721  auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
722
723  if (!StraightLineStrengthReduce(DL, DT, SE, TTI).runOnFunction(F))
724    return PreservedAnalyses::all();
725
726  PreservedAnalyses PA;
727  PA.preserveSet<CFGAnalyses>();
728  PA.preserve<DominatorTreeAnalysis>();
729  PA.preserve<ScalarEvolutionAnalysis>();
730  PA.preserve<TargetIRAnalysis>();
731  return PA;
732}
733
734} // namespace llvm
735