1//===- DeadStoreElimination.cpp - MemorySSA Backed Dead Store Elimination -===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// The code below implements dead store elimination using MemorySSA. It uses
10// the following general approach: given a MemoryDef, walk upwards to find
11// clobbering MemoryDefs that may be killed by the starting def. Then check
12// that there are no uses that may read the location of the original MemoryDef
13// in between both MemoryDefs. A bit more concretely:
14//
15// For all MemoryDefs StartDef:
16// 1. Get the next dominating clobbering MemoryDef (MaybeDeadAccess) by walking
17//    upwards.
18// 2. Check that there are no reads between MaybeDeadAccess and the StartDef by
19//    checking all uses starting at MaybeDeadAccess and walking until we see
20//    StartDef.
21// 3. For each found CurrentDef, check that:
22//   1. There are no barrier instructions between CurrentDef and StartDef (like
23//       throws or stores with ordering constraints).
24//   2. StartDef is executed whenever CurrentDef is executed.
25//   3. StartDef completely overwrites CurrentDef.
26// 4. Erase CurrentDef from the function and MemorySSA.
27//
28//===----------------------------------------------------------------------===//
29
30#include "llvm/Transforms/Scalar/DeadStoreElimination.h"
31#include "llvm/ADT/APInt.h"
32#include "llvm/ADT/DenseMap.h"
33#include "llvm/ADT/MapVector.h"
34#include "llvm/ADT/PostOrderIterator.h"
35#include "llvm/ADT/SetVector.h"
36#include "llvm/ADT/SmallPtrSet.h"
37#include "llvm/ADT/SmallVector.h"
38#include "llvm/ADT/Statistic.h"
39#include "llvm/ADT/StringRef.h"
40#include "llvm/Analysis/AliasAnalysis.h"
41#include "llvm/Analysis/CaptureTracking.h"
42#include "llvm/Analysis/GlobalsModRef.h"
43#include "llvm/Analysis/LoopInfo.h"
44#include "llvm/Analysis/MemoryBuiltins.h"
45#include "llvm/Analysis/MemoryLocation.h"
46#include "llvm/Analysis/MemorySSA.h"
47#include "llvm/Analysis/MemorySSAUpdater.h"
48#include "llvm/Analysis/MustExecute.h"
49#include "llvm/Analysis/PostDominators.h"
50#include "llvm/Analysis/TargetLibraryInfo.h"
51#include "llvm/Analysis/ValueTracking.h"
52#include "llvm/IR/Argument.h"
53#include "llvm/IR/BasicBlock.h"
54#include "llvm/IR/Constant.h"
55#include "llvm/IR/Constants.h"
56#include "llvm/IR/DataLayout.h"
57#include "llvm/IR/DebugInfo.h"
58#include "llvm/IR/Dominators.h"
59#include "llvm/IR/Function.h"
60#include "llvm/IR/IRBuilder.h"
61#include "llvm/IR/InstIterator.h"
62#include "llvm/IR/InstrTypes.h"
63#include "llvm/IR/Instruction.h"
64#include "llvm/IR/Instructions.h"
65#include "llvm/IR/IntrinsicInst.h"
66#include "llvm/IR/Module.h"
67#include "llvm/IR/PassManager.h"
68#include "llvm/IR/PatternMatch.h"
69#include "llvm/IR/Value.h"
70#include "llvm/Support/Casting.h"
71#include "llvm/Support/CommandLine.h"
72#include "llvm/Support/Debug.h"
73#include "llvm/Support/DebugCounter.h"
74#include "llvm/Support/ErrorHandling.h"
75#include "llvm/Support/raw_ostream.h"
76#include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
77#include "llvm/Transforms/Utils/BuildLibCalls.h"
78#include "llvm/Transforms/Utils/Local.h"
79#include <algorithm>
80#include <cassert>
81#include <cstdint>
82#include <iterator>
83#include <map>
84#include <optional>
85#include <utility>
86
87using namespace llvm;
88using namespace PatternMatch;
89
90#define DEBUG_TYPE "dse"
91
92STATISTIC(NumRemainingStores, "Number of stores remaining after DSE");
93STATISTIC(NumRedundantStores, "Number of redundant stores deleted");
94STATISTIC(NumFastStores, "Number of stores deleted");
95STATISTIC(NumFastOther, "Number of other instrs removed");
96STATISTIC(NumCompletePartials, "Number of stores dead by later partials");
97STATISTIC(NumModifiedStores, "Number of stores modified");
98STATISTIC(NumCFGChecks, "Number of stores modified");
99STATISTIC(NumCFGTries, "Number of stores modified");
100STATISTIC(NumCFGSuccess, "Number of stores modified");
101STATISTIC(NumGetDomMemoryDefPassed,
102          "Number of times a valid candidate is returned from getDomMemoryDef");
103STATISTIC(NumDomMemDefChecks,
104          "Number iterations check for reads in getDomMemoryDef");
105
106DEBUG_COUNTER(MemorySSACounter, "dse-memoryssa",
107              "Controls which MemoryDefs are eliminated.");
108
109static cl::opt<bool>
110EnablePartialOverwriteTracking("enable-dse-partial-overwrite-tracking",
111  cl::init(true), cl::Hidden,
112  cl::desc("Enable partial-overwrite tracking in DSE"));
113
114static cl::opt<bool>
115EnablePartialStoreMerging("enable-dse-partial-store-merging",
116  cl::init(true), cl::Hidden,
117  cl::desc("Enable partial store merging in DSE"));
118
119static cl::opt<unsigned>
120    MemorySSAScanLimit("dse-memoryssa-scanlimit", cl::init(150), cl::Hidden,
121                       cl::desc("The number of memory instructions to scan for "
122                                "dead store elimination (default = 150)"));
123static cl::opt<unsigned> MemorySSAUpwardsStepLimit(
124    "dse-memoryssa-walklimit", cl::init(90), cl::Hidden,
125    cl::desc("The maximum number of steps while walking upwards to find "
126             "MemoryDefs that may be killed (default = 90)"));
127
128static cl::opt<unsigned> MemorySSAPartialStoreLimit(
129    "dse-memoryssa-partial-store-limit", cl::init(5), cl::Hidden,
130    cl::desc("The maximum number candidates that only partially overwrite the "
131             "killing MemoryDef to consider"
132             " (default = 5)"));
133
134static cl::opt<unsigned> MemorySSADefsPerBlockLimit(
135    "dse-memoryssa-defs-per-block-limit", cl::init(5000), cl::Hidden,
136    cl::desc("The number of MemoryDefs we consider as candidates to eliminated "
137             "other stores per basic block (default = 5000)"));
138
139static cl::opt<unsigned> MemorySSASameBBStepCost(
140    "dse-memoryssa-samebb-cost", cl::init(1), cl::Hidden,
141    cl::desc(
142        "The cost of a step in the same basic block as the killing MemoryDef"
143        "(default = 1)"));
144
145static cl::opt<unsigned>
146    MemorySSAOtherBBStepCost("dse-memoryssa-otherbb-cost", cl::init(5),
147                             cl::Hidden,
148                             cl::desc("The cost of a step in a different basic "
149                                      "block than the killing MemoryDef"
150                                      "(default = 5)"));
151
152static cl::opt<unsigned> MemorySSAPathCheckLimit(
153    "dse-memoryssa-path-check-limit", cl::init(50), cl::Hidden,
154    cl::desc("The maximum number of blocks to check when trying to prove that "
155             "all paths to an exit go through a killing block (default = 50)"));
156
157// This flags allows or disallows DSE to optimize MemorySSA during its
158// traversal. Note that DSE optimizing MemorySSA may impact other passes
159// downstream of the DSE invocation and can lead to issues not being
160// reproducible in isolation (i.e. when MemorySSA is built from scratch). In
161// those cases, the flag can be used to check if DSE's MemorySSA optimizations
162// impact follow-up passes.
163static cl::opt<bool>
164    OptimizeMemorySSA("dse-optimize-memoryssa", cl::init(true), cl::Hidden,
165                      cl::desc("Allow DSE to optimize memory accesses."));
166
167//===----------------------------------------------------------------------===//
168// Helper functions
169//===----------------------------------------------------------------------===//
170using OverlapIntervalsTy = std::map<int64_t, int64_t>;
171using InstOverlapIntervalsTy = DenseMap<Instruction *, OverlapIntervalsTy>;
172
173/// Returns true if the end of this instruction can be safely shortened in
174/// length.
175static bool isShortenableAtTheEnd(Instruction *I) {
176  // Don't shorten stores for now
177  if (isa<StoreInst>(I))
178    return false;
179
180  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
181    switch (II->getIntrinsicID()) {
182      default: return false;
183      case Intrinsic::memset:
184      case Intrinsic::memcpy:
185      case Intrinsic::memcpy_element_unordered_atomic:
186      case Intrinsic::memset_element_unordered_atomic:
187        // Do shorten memory intrinsics.
188        // FIXME: Add memmove if it's also safe to transform.
189        return true;
190    }
191  }
192
193  // Don't shorten libcalls calls for now.
194
195  return false;
196}
197
198/// Returns true if the beginning of this instruction can be safely shortened
199/// in length.
200static bool isShortenableAtTheBeginning(Instruction *I) {
201  // FIXME: Handle only memset for now. Supporting memcpy/memmove should be
202  // easily done by offsetting the source address.
203  return isa<AnyMemSetInst>(I);
204}
205
206static std::optional<TypeSize> getPointerSize(const Value *V,
207                                              const DataLayout &DL,
208                                              const TargetLibraryInfo &TLI,
209                                              const Function *F) {
210  uint64_t Size;
211  ObjectSizeOpts Opts;
212  Opts.NullIsUnknownSize = NullPointerIsDefined(F);
213
214  if (getObjectSize(V, Size, DL, &TLI, Opts))
215    return TypeSize::getFixed(Size);
216  return std::nullopt;
217}
218
219namespace {
220
221enum OverwriteResult {
222  OW_Begin,
223  OW_Complete,
224  OW_End,
225  OW_PartialEarlierWithFullLater,
226  OW_MaybePartial,
227  OW_None,
228  OW_Unknown
229};
230
231} // end anonymous namespace
232
233/// Check if two instruction are masked stores that completely
234/// overwrite one another. More specifically, \p KillingI has to
235/// overwrite \p DeadI.
236static OverwriteResult isMaskedStoreOverwrite(const Instruction *KillingI,
237                                              const Instruction *DeadI,
238                                              BatchAAResults &AA) {
239  const auto *KillingII = dyn_cast<IntrinsicInst>(KillingI);
240  const auto *DeadII = dyn_cast<IntrinsicInst>(DeadI);
241  if (KillingII == nullptr || DeadII == nullptr)
242    return OW_Unknown;
243  if (KillingII->getIntrinsicID() != DeadII->getIntrinsicID())
244    return OW_Unknown;
245  if (KillingII->getIntrinsicID() == Intrinsic::masked_store) {
246    // Type size.
247    VectorType *KillingTy =
248        cast<VectorType>(KillingII->getArgOperand(0)->getType());
249    VectorType *DeadTy = cast<VectorType>(DeadII->getArgOperand(0)->getType());
250    if (KillingTy->getScalarSizeInBits() != DeadTy->getScalarSizeInBits())
251      return OW_Unknown;
252    // Element count.
253    if (KillingTy->getElementCount() != DeadTy->getElementCount())
254      return OW_Unknown;
255    // Pointers.
256    Value *KillingPtr = KillingII->getArgOperand(1)->stripPointerCasts();
257    Value *DeadPtr = DeadII->getArgOperand(1)->stripPointerCasts();
258    if (KillingPtr != DeadPtr && !AA.isMustAlias(KillingPtr, DeadPtr))
259      return OW_Unknown;
260    // Masks.
261    // TODO: check that KillingII's mask is a superset of the DeadII's mask.
262    if (KillingII->getArgOperand(3) != DeadII->getArgOperand(3))
263      return OW_Unknown;
264    return OW_Complete;
265  }
266  return OW_Unknown;
267}
268
269/// Return 'OW_Complete' if a store to the 'KillingLoc' location completely
270/// overwrites a store to the 'DeadLoc' location, 'OW_End' if the end of the
271/// 'DeadLoc' location is completely overwritten by 'KillingLoc', 'OW_Begin'
272/// if the beginning of the 'DeadLoc' location is overwritten by 'KillingLoc'.
273/// 'OW_PartialEarlierWithFullLater' means that a dead (big) store was
274/// overwritten by a killing (smaller) store which doesn't write outside the big
275/// store's memory locations. Returns 'OW_Unknown' if nothing can be determined.
276/// NOTE: This function must only be called if both \p KillingLoc and \p
277/// DeadLoc belong to the same underlying object with valid \p KillingOff and
278/// \p DeadOff.
279static OverwriteResult isPartialOverwrite(const MemoryLocation &KillingLoc,
280                                          const MemoryLocation &DeadLoc,
281                                          int64_t KillingOff, int64_t DeadOff,
282                                          Instruction *DeadI,
283                                          InstOverlapIntervalsTy &IOL) {
284  const uint64_t KillingSize = KillingLoc.Size.getValue();
285  const uint64_t DeadSize = DeadLoc.Size.getValue();
286  // We may now overlap, although the overlap is not complete. There might also
287  // be other incomplete overlaps, and together, they might cover the complete
288  // dead store.
289  // Note: The correctness of this logic depends on the fact that this function
290  // is not even called providing DepWrite when there are any intervening reads.
291  if (EnablePartialOverwriteTracking &&
292      KillingOff < int64_t(DeadOff + DeadSize) &&
293      int64_t(KillingOff + KillingSize) >= DeadOff) {
294
295    // Insert our part of the overlap into the map.
296    auto &IM = IOL[DeadI];
297    LLVM_DEBUG(dbgs() << "DSE: Partial overwrite: DeadLoc [" << DeadOff << ", "
298                      << int64_t(DeadOff + DeadSize) << ") KillingLoc ["
299                      << KillingOff << ", " << int64_t(KillingOff + KillingSize)
300                      << ")\n");
301
302    // Make sure that we only insert non-overlapping intervals and combine
303    // adjacent intervals. The intervals are stored in the map with the ending
304    // offset as the key (in the half-open sense) and the starting offset as
305    // the value.
306    int64_t KillingIntStart = KillingOff;
307    int64_t KillingIntEnd = KillingOff + KillingSize;
308
309    // Find any intervals ending at, or after, KillingIntStart which start
310    // before KillingIntEnd.
311    auto ILI = IM.lower_bound(KillingIntStart);
312    if (ILI != IM.end() && ILI->second <= KillingIntEnd) {
313      // This existing interval is overlapped with the current store somewhere
314      // in [KillingIntStart, KillingIntEnd]. Merge them by erasing the existing
315      // intervals and adjusting our start and end.
316      KillingIntStart = std::min(KillingIntStart, ILI->second);
317      KillingIntEnd = std::max(KillingIntEnd, ILI->first);
318      ILI = IM.erase(ILI);
319
320      // Continue erasing and adjusting our end in case other previous
321      // intervals are also overlapped with the current store.
322      //
323      // |--- dead 1 ---|  |--- dead 2 ---|
324      //     |------- killing---------|
325      //
326      while (ILI != IM.end() && ILI->second <= KillingIntEnd) {
327        assert(ILI->second > KillingIntStart && "Unexpected interval");
328        KillingIntEnd = std::max(KillingIntEnd, ILI->first);
329        ILI = IM.erase(ILI);
330      }
331    }
332
333    IM[KillingIntEnd] = KillingIntStart;
334
335    ILI = IM.begin();
336    if (ILI->second <= DeadOff && ILI->first >= int64_t(DeadOff + DeadSize)) {
337      LLVM_DEBUG(dbgs() << "DSE: Full overwrite from partials: DeadLoc ["
338                        << DeadOff << ", " << int64_t(DeadOff + DeadSize)
339                        << ") Composite KillingLoc [" << ILI->second << ", "
340                        << ILI->first << ")\n");
341      ++NumCompletePartials;
342      return OW_Complete;
343    }
344  }
345
346  // Check for a dead store which writes to all the memory locations that
347  // the killing store writes to.
348  if (EnablePartialStoreMerging && KillingOff >= DeadOff &&
349      int64_t(DeadOff + DeadSize) > KillingOff &&
350      uint64_t(KillingOff - DeadOff) + KillingSize <= DeadSize) {
351    LLVM_DEBUG(dbgs() << "DSE: Partial overwrite a dead load [" << DeadOff
352                      << ", " << int64_t(DeadOff + DeadSize)
353                      << ") by a killing store [" << KillingOff << ", "
354                      << int64_t(KillingOff + KillingSize) << ")\n");
355    // TODO: Maybe come up with a better name?
356    return OW_PartialEarlierWithFullLater;
357  }
358
359  // Another interesting case is if the killing store overwrites the end of the
360  // dead store.
361  //
362  //      |--dead--|
363  //                |--   killing   --|
364  //
365  // In this case we may want to trim the size of dead store to avoid
366  // generating stores to addresses which will definitely be overwritten killing
367  // store.
368  if (!EnablePartialOverwriteTracking &&
369      (KillingOff > DeadOff && KillingOff < int64_t(DeadOff + DeadSize) &&
370       int64_t(KillingOff + KillingSize) >= int64_t(DeadOff + DeadSize)))
371    return OW_End;
372
373  // Finally, we also need to check if the killing store overwrites the
374  // beginning of the dead store.
375  //
376  //                |--dead--|
377  //      |--  killing  --|
378  //
379  // In this case we may want to move the destination address and trim the size
380  // of dead store to avoid generating stores to addresses which will definitely
381  // be overwritten killing store.
382  if (!EnablePartialOverwriteTracking &&
383      (KillingOff <= DeadOff && int64_t(KillingOff + KillingSize) > DeadOff)) {
384    assert(int64_t(KillingOff + KillingSize) < int64_t(DeadOff + DeadSize) &&
385           "Expect to be handled as OW_Complete");
386    return OW_Begin;
387  }
388  // Otherwise, they don't completely overlap.
389  return OW_Unknown;
390}
391
392/// Returns true if the memory which is accessed by the second instruction is not
393/// modified between the first and the second instruction.
394/// Precondition: Second instruction must be dominated by the first
395/// instruction.
396static bool
397memoryIsNotModifiedBetween(Instruction *FirstI, Instruction *SecondI,
398                           BatchAAResults &AA, const DataLayout &DL,
399                           DominatorTree *DT) {
400  // Do a backwards scan through the CFG from SecondI to FirstI. Look for
401  // instructions which can modify the memory location accessed by SecondI.
402  //
403  // While doing the walk keep track of the address to check. It might be
404  // different in different basic blocks due to PHI translation.
405  using BlockAddressPair = std::pair<BasicBlock *, PHITransAddr>;
406  SmallVector<BlockAddressPair, 16> WorkList;
407  // Keep track of the address we visited each block with. Bail out if we
408  // visit a block with different addresses.
409  DenseMap<BasicBlock *, Value *> Visited;
410
411  BasicBlock::iterator FirstBBI(FirstI);
412  ++FirstBBI;
413  BasicBlock::iterator SecondBBI(SecondI);
414  BasicBlock *FirstBB = FirstI->getParent();
415  BasicBlock *SecondBB = SecondI->getParent();
416  MemoryLocation MemLoc;
417  if (auto *MemSet = dyn_cast<MemSetInst>(SecondI))
418    MemLoc = MemoryLocation::getForDest(MemSet);
419  else
420    MemLoc = MemoryLocation::get(SecondI);
421
422  auto *MemLocPtr = const_cast<Value *>(MemLoc.Ptr);
423
424  // Start checking the SecondBB.
425  WorkList.push_back(
426      std::make_pair(SecondBB, PHITransAddr(MemLocPtr, DL, nullptr)));
427  bool isFirstBlock = true;
428
429  // Check all blocks going backward until we reach the FirstBB.
430  while (!WorkList.empty()) {
431    BlockAddressPair Current = WorkList.pop_back_val();
432    BasicBlock *B = Current.first;
433    PHITransAddr &Addr = Current.second;
434    Value *Ptr = Addr.getAddr();
435
436    // Ignore instructions before FirstI if this is the FirstBB.
437    BasicBlock::iterator BI = (B == FirstBB ? FirstBBI : B->begin());
438
439    BasicBlock::iterator EI;
440    if (isFirstBlock) {
441      // Ignore instructions after SecondI if this is the first visit of SecondBB.
442      assert(B == SecondBB && "first block is not the store block");
443      EI = SecondBBI;
444      isFirstBlock = false;
445    } else {
446      // It's not SecondBB or (in case of a loop) the second visit of SecondBB.
447      // In this case we also have to look at instructions after SecondI.
448      EI = B->end();
449    }
450    for (; BI != EI; ++BI) {
451      Instruction *I = &*BI;
452      if (I->mayWriteToMemory() && I != SecondI)
453        if (isModSet(AA.getModRefInfo(I, MemLoc.getWithNewPtr(Ptr))))
454          return false;
455    }
456    if (B != FirstBB) {
457      assert(B != &FirstBB->getParent()->getEntryBlock() &&
458          "Should not hit the entry block because SI must be dominated by LI");
459      for (BasicBlock *Pred : predecessors(B)) {
460        PHITransAddr PredAddr = Addr;
461        if (PredAddr.needsPHITranslationFromBlock(B)) {
462          if (!PredAddr.isPotentiallyPHITranslatable())
463            return false;
464          if (!PredAddr.translateValue(B, Pred, DT, false))
465            return false;
466        }
467        Value *TranslatedPtr = PredAddr.getAddr();
468        auto Inserted = Visited.insert(std::make_pair(Pred, TranslatedPtr));
469        if (!Inserted.second) {
470          // We already visited this block before. If it was with a different
471          // address - bail out!
472          if (TranslatedPtr != Inserted.first->second)
473            return false;
474          // ... otherwise just skip it.
475          continue;
476        }
477        WorkList.push_back(std::make_pair(Pred, PredAddr));
478      }
479    }
480  }
481  return true;
482}
483
484static void shortenAssignment(Instruction *Inst, Value *OriginalDest,
485                              uint64_t OldOffsetInBits, uint64_t OldSizeInBits,
486                              uint64_t NewSizeInBits, bool IsOverwriteEnd) {
487  const DataLayout &DL = Inst->getModule()->getDataLayout();
488  uint64_t DeadSliceSizeInBits = OldSizeInBits - NewSizeInBits;
489  uint64_t DeadSliceOffsetInBits =
490      OldOffsetInBits + (IsOverwriteEnd ? NewSizeInBits : 0);
491  auto SetDeadFragExpr = [](auto *Assign,
492                            DIExpression::FragmentInfo DeadFragment) {
493    // createFragmentExpression expects an offset relative to the existing
494    // fragment offset if there is one.
495    uint64_t RelativeOffset = DeadFragment.OffsetInBits -
496                              Assign->getExpression()
497                                  ->getFragmentInfo()
498                                  .value_or(DIExpression::FragmentInfo(0, 0))
499                                  .OffsetInBits;
500    if (auto NewExpr = DIExpression::createFragmentExpression(
501            Assign->getExpression(), RelativeOffset, DeadFragment.SizeInBits)) {
502      Assign->setExpression(*NewExpr);
503      return;
504    }
505    // Failed to create a fragment expression for this so discard the value,
506    // making this a kill location.
507    auto *Expr = *DIExpression::createFragmentExpression(
508        DIExpression::get(Assign->getContext(), std::nullopt),
509        DeadFragment.OffsetInBits, DeadFragment.SizeInBits);
510    Assign->setExpression(Expr);
511    Assign->setKillLocation();
512  };
513
514  // A DIAssignID to use so that the inserted dbg.assign intrinsics do not
515  // link to any instructions. Created in the loop below (once).
516  DIAssignID *LinkToNothing = nullptr;
517  LLVMContext &Ctx = Inst->getContext();
518  auto GetDeadLink = [&Ctx, &LinkToNothing]() {
519    if (!LinkToNothing)
520      LinkToNothing = DIAssignID::getDistinct(Ctx);
521    return LinkToNothing;
522  };
523
524  // Insert an unlinked dbg.assign intrinsic for the dead fragment after each
525  // overlapping dbg.assign intrinsic. The loop invalidates the iterators
526  // returned by getAssignmentMarkers so save a copy of the markers to iterate
527  // over.
528  auto LinkedRange = at::getAssignmentMarkers(Inst);
529  SmallVector<DPValue *> LinkedDPVAssigns = at::getDPVAssignmentMarkers(Inst);
530  SmallVector<DbgAssignIntrinsic *> Linked(LinkedRange.begin(),
531                                           LinkedRange.end());
532  auto InsertAssignForOverlap = [&](auto *Assign) {
533    std::optional<DIExpression::FragmentInfo> NewFragment;
534    if (!at::calculateFragmentIntersect(DL, OriginalDest, DeadSliceOffsetInBits,
535                                        DeadSliceSizeInBits, Assign,
536                                        NewFragment) ||
537        !NewFragment) {
538      // We couldn't calculate the intersecting fragment for some reason. Be
539      // cautious and unlink the whole assignment from the store.
540      Assign->setKillAddress();
541      Assign->setAssignId(GetDeadLink());
542      return;
543    }
544    // No intersect.
545    if (NewFragment->SizeInBits == 0)
546      return;
547
548    // Fragments overlap: insert a new dbg.assign for this dead part.
549    auto *NewAssign = static_cast<decltype(Assign)>(Assign->clone());
550    NewAssign->insertAfter(Assign);
551    NewAssign->setAssignId(GetDeadLink());
552    if (NewFragment)
553      SetDeadFragExpr(NewAssign, *NewFragment);
554    NewAssign->setKillAddress();
555  };
556  for_each(Linked, InsertAssignForOverlap);
557  for_each(LinkedDPVAssigns, InsertAssignForOverlap);
558}
559
560static bool tryToShorten(Instruction *DeadI, int64_t &DeadStart,
561                         uint64_t &DeadSize, int64_t KillingStart,
562                         uint64_t KillingSize, bool IsOverwriteEnd) {
563  auto *DeadIntrinsic = cast<AnyMemIntrinsic>(DeadI);
564  Align PrefAlign = DeadIntrinsic->getDestAlign().valueOrOne();
565
566  // We assume that memet/memcpy operates in chunks of the "largest" native
567  // type size and aligned on the same value. That means optimal start and size
568  // of memset/memcpy should be modulo of preferred alignment of that type. That
569  // is it there is no any sense in trying to reduce store size any further
570  // since any "extra" stores comes for free anyway.
571  // On the other hand, maximum alignment we can achieve is limited by alignment
572  // of initial store.
573
574  // TODO: Limit maximum alignment by preferred (or abi?) alignment of the
575  // "largest" native type.
576  // Note: What is the proper way to get that value?
577  // Should TargetTransformInfo::getRegisterBitWidth be used or anything else?
578  // PrefAlign = std::min(DL.getPrefTypeAlign(LargestType), PrefAlign);
579
580  int64_t ToRemoveStart = 0;
581  uint64_t ToRemoveSize = 0;
582  // Compute start and size of the region to remove. Make sure 'PrefAlign' is
583  // maintained on the remaining store.
584  if (IsOverwriteEnd) {
585    // Calculate required adjustment for 'KillingStart' in order to keep
586    // remaining store size aligned on 'PerfAlign'.
587    uint64_t Off =
588        offsetToAlignment(uint64_t(KillingStart - DeadStart), PrefAlign);
589    ToRemoveStart = KillingStart + Off;
590    if (DeadSize <= uint64_t(ToRemoveStart - DeadStart))
591      return false;
592    ToRemoveSize = DeadSize - uint64_t(ToRemoveStart - DeadStart);
593  } else {
594    ToRemoveStart = DeadStart;
595    assert(KillingSize >= uint64_t(DeadStart - KillingStart) &&
596           "Not overlapping accesses?");
597    ToRemoveSize = KillingSize - uint64_t(DeadStart - KillingStart);
598    // Calculate required adjustment for 'ToRemoveSize'in order to keep
599    // start of the remaining store aligned on 'PerfAlign'.
600    uint64_t Off = offsetToAlignment(ToRemoveSize, PrefAlign);
601    if (Off != 0) {
602      if (ToRemoveSize <= (PrefAlign.value() - Off))
603        return false;
604      ToRemoveSize -= PrefAlign.value() - Off;
605    }
606    assert(isAligned(PrefAlign, ToRemoveSize) &&
607           "Should preserve selected alignment");
608  }
609
610  assert(ToRemoveSize > 0 && "Shouldn't reach here if nothing to remove");
611  assert(DeadSize > ToRemoveSize && "Can't remove more than original size");
612
613  uint64_t NewSize = DeadSize - ToRemoveSize;
614  if (auto *AMI = dyn_cast<AtomicMemIntrinsic>(DeadI)) {
615    // When shortening an atomic memory intrinsic, the newly shortened
616    // length must remain an integer multiple of the element size.
617    const uint32_t ElementSize = AMI->getElementSizeInBytes();
618    if (0 != NewSize % ElementSize)
619      return false;
620  }
621
622  LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n  OW "
623                    << (IsOverwriteEnd ? "END" : "BEGIN") << ": " << *DeadI
624                    << "\n  KILLER [" << ToRemoveStart << ", "
625                    << int64_t(ToRemoveStart + ToRemoveSize) << ")\n");
626
627  Value *DeadWriteLength = DeadIntrinsic->getLength();
628  Value *TrimmedLength = ConstantInt::get(DeadWriteLength->getType(), NewSize);
629  DeadIntrinsic->setLength(TrimmedLength);
630  DeadIntrinsic->setDestAlignment(PrefAlign);
631
632  Value *OrigDest = DeadIntrinsic->getRawDest();
633  if (!IsOverwriteEnd) {
634    Value *Indices[1] = {
635        ConstantInt::get(DeadWriteLength->getType(), ToRemoveSize)};
636    Instruction *NewDestGEP = GetElementPtrInst::CreateInBounds(
637        Type::getInt8Ty(DeadIntrinsic->getContext()), OrigDest, Indices, "", DeadI);
638    NewDestGEP->setDebugLoc(DeadIntrinsic->getDebugLoc());
639    DeadIntrinsic->setDest(NewDestGEP);
640  }
641
642  // Update attached dbg.assign intrinsics. Assume 8-bit byte.
643  shortenAssignment(DeadI, OrigDest, DeadStart * 8, DeadSize * 8, NewSize * 8,
644                    IsOverwriteEnd);
645
646  // Finally update start and size of dead access.
647  if (!IsOverwriteEnd)
648    DeadStart += ToRemoveSize;
649  DeadSize = NewSize;
650
651  return true;
652}
653
654static bool tryToShortenEnd(Instruction *DeadI, OverlapIntervalsTy &IntervalMap,
655                            int64_t &DeadStart, uint64_t &DeadSize) {
656  if (IntervalMap.empty() || !isShortenableAtTheEnd(DeadI))
657    return false;
658
659  OverlapIntervalsTy::iterator OII = --IntervalMap.end();
660  int64_t KillingStart = OII->second;
661  uint64_t KillingSize = OII->first - KillingStart;
662
663  assert(OII->first - KillingStart >= 0 && "Size expected to be positive");
664
665  if (KillingStart > DeadStart &&
666      // Note: "KillingStart - KillingStart" is known to be positive due to
667      // preceding check.
668      (uint64_t)(KillingStart - DeadStart) < DeadSize &&
669      // Note: "DeadSize - (uint64_t)(KillingStart - DeadStart)" is known to
670      // be non negative due to preceding checks.
671      KillingSize >= DeadSize - (uint64_t)(KillingStart - DeadStart)) {
672    if (tryToShorten(DeadI, DeadStart, DeadSize, KillingStart, KillingSize,
673                     true)) {
674      IntervalMap.erase(OII);
675      return true;
676    }
677  }
678  return false;
679}
680
681static bool tryToShortenBegin(Instruction *DeadI,
682                              OverlapIntervalsTy &IntervalMap,
683                              int64_t &DeadStart, uint64_t &DeadSize) {
684  if (IntervalMap.empty() || !isShortenableAtTheBeginning(DeadI))
685    return false;
686
687  OverlapIntervalsTy::iterator OII = IntervalMap.begin();
688  int64_t KillingStart = OII->second;
689  uint64_t KillingSize = OII->first - KillingStart;
690
691  assert(OII->first - KillingStart >= 0 && "Size expected to be positive");
692
693  if (KillingStart <= DeadStart &&
694      // Note: "DeadStart - KillingStart" is known to be non negative due to
695      // preceding check.
696      KillingSize > (uint64_t)(DeadStart - KillingStart)) {
697    // Note: "KillingSize - (uint64_t)(DeadStart - DeadStart)" is known to
698    // be positive due to preceding checks.
699    assert(KillingSize - (uint64_t)(DeadStart - KillingStart) < DeadSize &&
700           "Should have been handled as OW_Complete");
701    if (tryToShorten(DeadI, DeadStart, DeadSize, KillingStart, KillingSize,
702                     false)) {
703      IntervalMap.erase(OII);
704      return true;
705    }
706  }
707  return false;
708}
709
710static Constant *
711tryToMergePartialOverlappingStores(StoreInst *KillingI, StoreInst *DeadI,
712                                   int64_t KillingOffset, int64_t DeadOffset,
713                                   const DataLayout &DL, BatchAAResults &AA,
714                                   DominatorTree *DT) {
715
716  if (DeadI && isa<ConstantInt>(DeadI->getValueOperand()) &&
717      DL.typeSizeEqualsStoreSize(DeadI->getValueOperand()->getType()) &&
718      KillingI && isa<ConstantInt>(KillingI->getValueOperand()) &&
719      DL.typeSizeEqualsStoreSize(KillingI->getValueOperand()->getType()) &&
720      memoryIsNotModifiedBetween(DeadI, KillingI, AA, DL, DT)) {
721    // If the store we find is:
722    //   a) partially overwritten by the store to 'Loc'
723    //   b) the killing store is fully contained in the dead one and
724    //   c) they both have a constant value
725    //   d) none of the two stores need padding
726    // Merge the two stores, replacing the dead store's value with a
727    // merge of both values.
728    // TODO: Deal with other constant types (vectors, etc), and probably
729    // some mem intrinsics (if needed)
730
731    APInt DeadValue = cast<ConstantInt>(DeadI->getValueOperand())->getValue();
732    APInt KillingValue =
733        cast<ConstantInt>(KillingI->getValueOperand())->getValue();
734    unsigned KillingBits = KillingValue.getBitWidth();
735    assert(DeadValue.getBitWidth() > KillingValue.getBitWidth());
736    KillingValue = KillingValue.zext(DeadValue.getBitWidth());
737
738    // Offset of the smaller store inside the larger store
739    unsigned BitOffsetDiff = (KillingOffset - DeadOffset) * 8;
740    unsigned LShiftAmount =
741        DL.isBigEndian() ? DeadValue.getBitWidth() - BitOffsetDiff - KillingBits
742                         : BitOffsetDiff;
743    APInt Mask = APInt::getBitsSet(DeadValue.getBitWidth(), LShiftAmount,
744                                   LShiftAmount + KillingBits);
745    // Clear the bits we'll be replacing, then OR with the smaller
746    // store, shifted appropriately.
747    APInt Merged = (DeadValue & ~Mask) | (KillingValue << LShiftAmount);
748    LLVM_DEBUG(dbgs() << "DSE: Merge Stores:\n  Dead: " << *DeadI
749                      << "\n  Killing: " << *KillingI
750                      << "\n  Merged Value: " << Merged << '\n');
751    return ConstantInt::get(DeadI->getValueOperand()->getType(), Merged);
752  }
753  return nullptr;
754}
755
756namespace {
757// Returns true if \p I is an intrinsic that does not read or write memory.
758bool isNoopIntrinsic(Instruction *I) {
759  if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
760    switch (II->getIntrinsicID()) {
761    case Intrinsic::lifetime_start:
762    case Intrinsic::lifetime_end:
763    case Intrinsic::invariant_end:
764    case Intrinsic::launder_invariant_group:
765    case Intrinsic::assume:
766      return true;
767    case Intrinsic::dbg_declare:
768    case Intrinsic::dbg_label:
769    case Intrinsic::dbg_value:
770      llvm_unreachable("Intrinsic should not be modeled in MemorySSA");
771    default:
772      return false;
773    }
774  }
775  return false;
776}
777
778// Check if we can ignore \p D for DSE.
779bool canSkipDef(MemoryDef *D, bool DefVisibleToCaller) {
780  Instruction *DI = D->getMemoryInst();
781  // Calls that only access inaccessible memory cannot read or write any memory
782  // locations we consider for elimination.
783  if (auto *CB = dyn_cast<CallBase>(DI))
784    if (CB->onlyAccessesInaccessibleMemory())
785      return true;
786
787  // We can eliminate stores to locations not visible to the caller across
788  // throwing instructions.
789  if (DI->mayThrow() && !DefVisibleToCaller)
790    return true;
791
792  // We can remove the dead stores, irrespective of the fence and its ordering
793  // (release/acquire/seq_cst). Fences only constraints the ordering of
794  // already visible stores, it does not make a store visible to other
795  // threads. So, skipping over a fence does not change a store from being
796  // dead.
797  if (isa<FenceInst>(DI))
798    return true;
799
800  // Skip intrinsics that do not really read or modify memory.
801  if (isNoopIntrinsic(DI))
802    return true;
803
804  return false;
805}
806
807struct DSEState {
808  Function &F;
809  AliasAnalysis &AA;
810  EarliestEscapeInfo EI;
811
812  /// The single BatchAA instance that is used to cache AA queries. It will
813  /// not be invalidated over the whole run. This is safe, because:
814  /// 1. Only memory writes are removed, so the alias cache for memory
815  ///    locations remains valid.
816  /// 2. No new instructions are added (only instructions removed), so cached
817  ///    information for a deleted value cannot be accessed by a re-used new
818  ///    value pointer.
819  BatchAAResults BatchAA;
820
821  MemorySSA &MSSA;
822  DominatorTree &DT;
823  PostDominatorTree &PDT;
824  const TargetLibraryInfo &TLI;
825  const DataLayout &DL;
826  const LoopInfo &LI;
827
828  // Whether the function contains any irreducible control flow, useful for
829  // being accurately able to detect loops.
830  bool ContainsIrreducibleLoops;
831
832  // All MemoryDefs that potentially could kill other MemDefs.
833  SmallVector<MemoryDef *, 64> MemDefs;
834  // Any that should be skipped as they are already deleted
835  SmallPtrSet<MemoryAccess *, 4> SkipStores;
836  // Keep track whether a given object is captured before return or not.
837  DenseMap<const Value *, bool> CapturedBeforeReturn;
838  // Keep track of all of the objects that are invisible to the caller after
839  // the function returns.
840  DenseMap<const Value *, bool> InvisibleToCallerAfterRet;
841  // Keep track of blocks with throwing instructions not modeled in MemorySSA.
842  SmallPtrSet<BasicBlock *, 16> ThrowingBlocks;
843  // Post-order numbers for each basic block. Used to figure out if memory
844  // accesses are executed before another access.
845  DenseMap<BasicBlock *, unsigned> PostOrderNumbers;
846
847  /// Keep track of instructions (partly) overlapping with killing MemoryDefs per
848  /// basic block.
849  MapVector<BasicBlock *, InstOverlapIntervalsTy> IOLs;
850  // Check if there are root nodes that are terminated by UnreachableInst.
851  // Those roots pessimize post-dominance queries. If there are such roots,
852  // fall back to CFG scan starting from all non-unreachable roots.
853  bool AnyUnreachableExit;
854
855  // Whether or not we should iterate on removing dead stores at the end of the
856  // function due to removing a store causing a previously captured pointer to
857  // no longer be captured.
858  bool ShouldIterateEndOfFunctionDSE;
859
860  /// Dead instructions to be removed at the end of DSE.
861  SmallVector<Instruction *> ToRemove;
862
863  // Class contains self-reference, make sure it's not copied/moved.
864  DSEState(const DSEState &) = delete;
865  DSEState &operator=(const DSEState &) = delete;
866
867  DSEState(Function &F, AliasAnalysis &AA, MemorySSA &MSSA, DominatorTree &DT,
868           PostDominatorTree &PDT, const TargetLibraryInfo &TLI,
869           const LoopInfo &LI)
870      : F(F), AA(AA), EI(DT, &LI), BatchAA(AA, &EI), MSSA(MSSA), DT(DT),
871        PDT(PDT), TLI(TLI), DL(F.getParent()->getDataLayout()), LI(LI) {
872    // Collect blocks with throwing instructions not modeled in MemorySSA and
873    // alloc-like objects.
874    unsigned PO = 0;
875    for (BasicBlock *BB : post_order(&F)) {
876      PostOrderNumbers[BB] = PO++;
877      for (Instruction &I : *BB) {
878        MemoryAccess *MA = MSSA.getMemoryAccess(&I);
879        if (I.mayThrow() && !MA)
880          ThrowingBlocks.insert(I.getParent());
881
882        auto *MD = dyn_cast_or_null<MemoryDef>(MA);
883        if (MD && MemDefs.size() < MemorySSADefsPerBlockLimit &&
884            (getLocForWrite(&I) || isMemTerminatorInst(&I)))
885          MemDefs.push_back(MD);
886      }
887    }
888
889    // Treat byval or inalloca arguments the same as Allocas, stores to them are
890    // dead at the end of the function.
891    for (Argument &AI : F.args())
892      if (AI.hasPassPointeeByValueCopyAttr())
893        InvisibleToCallerAfterRet.insert({&AI, true});
894
895    // Collect whether there is any irreducible control flow in the function.
896    ContainsIrreducibleLoops = mayContainIrreducibleControl(F, &LI);
897
898    AnyUnreachableExit = any_of(PDT.roots(), [](const BasicBlock *E) {
899      return isa<UnreachableInst>(E->getTerminator());
900    });
901  }
902
903  LocationSize strengthenLocationSize(const Instruction *I,
904                                      LocationSize Size) const {
905    if (auto *CB = dyn_cast<CallBase>(I)) {
906      LibFunc F;
907      if (TLI.getLibFunc(*CB, F) && TLI.has(F) &&
908          (F == LibFunc_memset_chk || F == LibFunc_memcpy_chk)) {
909        // Use the precise location size specified by the 3rd argument
910        // for determining KillingI overwrites DeadLoc if it is a memset_chk
911        // instruction. memset_chk will write either the amount specified as 3rd
912        // argument or the function will immediately abort and exit the program.
913        // NOTE: AA may determine NoAlias if it can prove that the access size
914        // is larger than the allocation size due to that being UB. To avoid
915        // returning potentially invalid NoAlias results by AA, limit the use of
916        // the precise location size to isOverwrite.
917        if (const auto *Len = dyn_cast<ConstantInt>(CB->getArgOperand(2)))
918          return LocationSize::precise(Len->getZExtValue());
919      }
920    }
921    return Size;
922  }
923
924  /// Return 'OW_Complete' if a store to the 'KillingLoc' location (by \p
925  /// KillingI instruction) completely overwrites a store to the 'DeadLoc'
926  /// location (by \p DeadI instruction).
927  /// Return OW_MaybePartial if \p KillingI does not completely overwrite
928  /// \p DeadI, but they both write to the same underlying object. In that
929  /// case, use isPartialOverwrite to check if \p KillingI partially overwrites
930  /// \p DeadI. Returns 'OR_None' if \p KillingI is known to not overwrite the
931  /// \p DeadI. Returns 'OW_Unknown' if nothing can be determined.
932  OverwriteResult isOverwrite(const Instruction *KillingI,
933                              const Instruction *DeadI,
934                              const MemoryLocation &KillingLoc,
935                              const MemoryLocation &DeadLoc,
936                              int64_t &KillingOff, int64_t &DeadOff) {
937    // AliasAnalysis does not always account for loops. Limit overwrite checks
938    // to dependencies for which we can guarantee they are independent of any
939    // loops they are in.
940    if (!isGuaranteedLoopIndependent(DeadI, KillingI, DeadLoc))
941      return OW_Unknown;
942
943    LocationSize KillingLocSize =
944        strengthenLocationSize(KillingI, KillingLoc.Size);
945    const Value *DeadPtr = DeadLoc.Ptr->stripPointerCasts();
946    const Value *KillingPtr = KillingLoc.Ptr->stripPointerCasts();
947    const Value *DeadUndObj = getUnderlyingObject(DeadPtr);
948    const Value *KillingUndObj = getUnderlyingObject(KillingPtr);
949
950    // Check whether the killing store overwrites the whole object, in which
951    // case the size/offset of the dead store does not matter.
952    if (DeadUndObj == KillingUndObj && KillingLocSize.isPrecise() &&
953        isIdentifiedObject(KillingUndObj)) {
954      std::optional<TypeSize> KillingUndObjSize =
955          getPointerSize(KillingUndObj, DL, TLI, &F);
956      if (KillingUndObjSize && *KillingUndObjSize == KillingLocSize.getValue())
957        return OW_Complete;
958    }
959
960    // FIXME: Vet that this works for size upper-bounds. Seems unlikely that we'll
961    // get imprecise values here, though (except for unknown sizes).
962    if (!KillingLocSize.isPrecise() || !DeadLoc.Size.isPrecise()) {
963      // In case no constant size is known, try to an IR values for the number
964      // of bytes written and check if they match.
965      const auto *KillingMemI = dyn_cast<MemIntrinsic>(KillingI);
966      const auto *DeadMemI = dyn_cast<MemIntrinsic>(DeadI);
967      if (KillingMemI && DeadMemI) {
968        const Value *KillingV = KillingMemI->getLength();
969        const Value *DeadV = DeadMemI->getLength();
970        if (KillingV == DeadV && BatchAA.isMustAlias(DeadLoc, KillingLoc))
971          return OW_Complete;
972      }
973
974      // Masked stores have imprecise locations, but we can reason about them
975      // to some extent.
976      return isMaskedStoreOverwrite(KillingI, DeadI, BatchAA);
977    }
978
979    const TypeSize KillingSize = KillingLocSize.getValue();
980    const TypeSize DeadSize = DeadLoc.Size.getValue();
981    // Bail on doing Size comparison which depends on AA for now
982    // TODO: Remove AnyScalable once Alias Analysis deal with scalable vectors
983    const bool AnyScalable =
984        DeadSize.isScalable() || KillingLocSize.isScalable();
985
986    if (AnyScalable)
987      return OW_Unknown;
988    // Query the alias information
989    AliasResult AAR = BatchAA.alias(KillingLoc, DeadLoc);
990
991    // If the start pointers are the same, we just have to compare sizes to see if
992    // the killing store was larger than the dead store.
993    if (AAR == AliasResult::MustAlias) {
994      // Make sure that the KillingSize size is >= the DeadSize size.
995      if (KillingSize >= DeadSize)
996        return OW_Complete;
997    }
998
999    // If we hit a partial alias we may have a full overwrite
1000    if (AAR == AliasResult::PartialAlias && AAR.hasOffset()) {
1001      int32_t Off = AAR.getOffset();
1002      if (Off >= 0 && (uint64_t)Off + DeadSize <= KillingSize)
1003        return OW_Complete;
1004    }
1005
1006    // If we can't resolve the same pointers to the same object, then we can't
1007    // analyze them at all.
1008    if (DeadUndObj != KillingUndObj) {
1009      // Non aliasing stores to different objects don't overlap. Note that
1010      // if the killing store is known to overwrite whole object (out of
1011      // bounds access overwrites whole object as well) then it is assumed to
1012      // completely overwrite any store to the same object even if they don't
1013      // actually alias (see next check).
1014      if (AAR == AliasResult::NoAlias)
1015        return OW_None;
1016      return OW_Unknown;
1017    }
1018
1019    // Okay, we have stores to two completely different pointers.  Try to
1020    // decompose the pointer into a "base + constant_offset" form.  If the base
1021    // pointers are equal, then we can reason about the two stores.
1022    DeadOff = 0;
1023    KillingOff = 0;
1024    const Value *DeadBasePtr =
1025        GetPointerBaseWithConstantOffset(DeadPtr, DeadOff, DL);
1026    const Value *KillingBasePtr =
1027        GetPointerBaseWithConstantOffset(KillingPtr, KillingOff, DL);
1028
1029    // If the base pointers still differ, we have two completely different
1030    // stores.
1031    if (DeadBasePtr != KillingBasePtr)
1032      return OW_Unknown;
1033
1034    // The killing access completely overlaps the dead store if and only if
1035    // both start and end of the dead one is "inside" the killing one:
1036    //    |<->|--dead--|<->|
1037    //    |-----killing------|
1038    // Accesses may overlap if and only if start of one of them is "inside"
1039    // another one:
1040    //    |<->|--dead--|<-------->|
1041    //    |-------killing--------|
1042    //           OR
1043    //    |-------dead-------|
1044    //    |<->|---killing---|<----->|
1045    //
1046    // We have to be careful here as *Off is signed while *.Size is unsigned.
1047
1048    // Check if the dead access starts "not before" the killing one.
1049    if (DeadOff >= KillingOff) {
1050      // If the dead access ends "not after" the killing access then the
1051      // dead one is completely overwritten by the killing one.
1052      if (uint64_t(DeadOff - KillingOff) + DeadSize <= KillingSize)
1053        return OW_Complete;
1054      // If start of the dead access is "before" end of the killing access
1055      // then accesses overlap.
1056      else if ((uint64_t)(DeadOff - KillingOff) < KillingSize)
1057        return OW_MaybePartial;
1058    }
1059    // If start of the killing access is "before" end of the dead access then
1060    // accesses overlap.
1061    else if ((uint64_t)(KillingOff - DeadOff) < DeadSize) {
1062      return OW_MaybePartial;
1063    }
1064
1065    // Can reach here only if accesses are known not to overlap.
1066    return OW_None;
1067  }
1068
1069  bool isInvisibleToCallerAfterRet(const Value *V) {
1070    if (isa<AllocaInst>(V))
1071      return true;
1072    auto I = InvisibleToCallerAfterRet.insert({V, false});
1073    if (I.second) {
1074      if (!isInvisibleToCallerOnUnwind(V)) {
1075        I.first->second = false;
1076      } else if (isNoAliasCall(V)) {
1077        I.first->second = !PointerMayBeCaptured(V, true, false);
1078      }
1079    }
1080    return I.first->second;
1081  }
1082
1083  bool isInvisibleToCallerOnUnwind(const Value *V) {
1084    bool RequiresNoCaptureBeforeUnwind;
1085    if (!isNotVisibleOnUnwind(V, RequiresNoCaptureBeforeUnwind))
1086      return false;
1087    if (!RequiresNoCaptureBeforeUnwind)
1088      return true;
1089
1090    auto I = CapturedBeforeReturn.insert({V, true});
1091    if (I.second)
1092      // NOTE: This could be made more precise by PointerMayBeCapturedBefore
1093      // with the killing MemoryDef. But we refrain from doing so for now to
1094      // limit compile-time and this does not cause any changes to the number
1095      // of stores removed on a large test set in practice.
1096      I.first->second = PointerMayBeCaptured(V, false, true);
1097    return !I.first->second;
1098  }
1099
1100  std::optional<MemoryLocation> getLocForWrite(Instruction *I) const {
1101    if (!I->mayWriteToMemory())
1102      return std::nullopt;
1103
1104    if (auto *CB = dyn_cast<CallBase>(I))
1105      return MemoryLocation::getForDest(CB, TLI);
1106
1107    return MemoryLocation::getOrNone(I);
1108  }
1109
1110  /// Assuming this instruction has a dead analyzable write, can we delete
1111  /// this instruction?
1112  bool isRemovable(Instruction *I) {
1113    assert(getLocForWrite(I) && "Must have analyzable write");
1114
1115    // Don't remove volatile/atomic stores.
1116    if (StoreInst *SI = dyn_cast<StoreInst>(I))
1117      return SI->isUnordered();
1118
1119    if (auto *CB = dyn_cast<CallBase>(I)) {
1120      // Don't remove volatile memory intrinsics.
1121      if (auto *MI = dyn_cast<MemIntrinsic>(CB))
1122        return !MI->isVolatile();
1123
1124      // Never remove dead lifetime intrinsics, e.g. because they are followed
1125      // by a free.
1126      if (CB->isLifetimeStartOrEnd())
1127        return false;
1128
1129      return CB->use_empty() && CB->willReturn() && CB->doesNotThrow() &&
1130             !CB->isTerminator();
1131    }
1132
1133    return false;
1134  }
1135
1136  /// Returns true if \p UseInst completely overwrites \p DefLoc
1137  /// (stored by \p DefInst).
1138  bool isCompleteOverwrite(const MemoryLocation &DefLoc, Instruction *DefInst,
1139                           Instruction *UseInst) {
1140    // UseInst has a MemoryDef associated in MemorySSA. It's possible for a
1141    // MemoryDef to not write to memory, e.g. a volatile load is modeled as a
1142    // MemoryDef.
1143    if (!UseInst->mayWriteToMemory())
1144      return false;
1145
1146    if (auto *CB = dyn_cast<CallBase>(UseInst))
1147      if (CB->onlyAccessesInaccessibleMemory())
1148        return false;
1149
1150    int64_t InstWriteOffset, DepWriteOffset;
1151    if (auto CC = getLocForWrite(UseInst))
1152      return isOverwrite(UseInst, DefInst, *CC, DefLoc, InstWriteOffset,
1153                         DepWriteOffset) == OW_Complete;
1154    return false;
1155  }
1156
1157  /// Returns true if \p Def is not read before returning from the function.
1158  bool isWriteAtEndOfFunction(MemoryDef *Def) {
1159    LLVM_DEBUG(dbgs() << "  Check if def " << *Def << " ("
1160                      << *Def->getMemoryInst()
1161                      << ") is at the end the function \n");
1162
1163    auto MaybeLoc = getLocForWrite(Def->getMemoryInst());
1164    if (!MaybeLoc) {
1165      LLVM_DEBUG(dbgs() << "  ... could not get location for write.\n");
1166      return false;
1167    }
1168
1169    SmallVector<MemoryAccess *, 4> WorkList;
1170    SmallPtrSet<MemoryAccess *, 8> Visited;
1171    auto PushMemUses = [&WorkList, &Visited](MemoryAccess *Acc) {
1172      if (!Visited.insert(Acc).second)
1173        return;
1174      for (Use &U : Acc->uses())
1175        WorkList.push_back(cast<MemoryAccess>(U.getUser()));
1176    };
1177    PushMemUses(Def);
1178    for (unsigned I = 0; I < WorkList.size(); I++) {
1179      if (WorkList.size() >= MemorySSAScanLimit) {
1180        LLVM_DEBUG(dbgs() << "  ... hit exploration limit.\n");
1181        return false;
1182      }
1183
1184      MemoryAccess *UseAccess = WorkList[I];
1185      if (isa<MemoryPhi>(UseAccess)) {
1186        // AliasAnalysis does not account for loops. Limit elimination to
1187        // candidates for which we can guarantee they always store to the same
1188        // memory location.
1189        if (!isGuaranteedLoopInvariant(MaybeLoc->Ptr))
1190          return false;
1191
1192        PushMemUses(cast<MemoryPhi>(UseAccess));
1193        continue;
1194      }
1195      // TODO: Checking for aliasing is expensive. Consider reducing the amount
1196      // of times this is called and/or caching it.
1197      Instruction *UseInst = cast<MemoryUseOrDef>(UseAccess)->getMemoryInst();
1198      if (isReadClobber(*MaybeLoc, UseInst)) {
1199        LLVM_DEBUG(dbgs() << "  ... hit read clobber " << *UseInst << ".\n");
1200        return false;
1201      }
1202
1203      if (MemoryDef *UseDef = dyn_cast<MemoryDef>(UseAccess))
1204        PushMemUses(UseDef);
1205    }
1206    return true;
1207  }
1208
1209  /// If \p I is a memory  terminator like llvm.lifetime.end or free, return a
1210  /// pair with the MemoryLocation terminated by \p I and a boolean flag
1211  /// indicating whether \p I is a free-like call.
1212  std::optional<std::pair<MemoryLocation, bool>>
1213  getLocForTerminator(Instruction *I) const {
1214    uint64_t Len;
1215    Value *Ptr;
1216    if (match(I, m_Intrinsic<Intrinsic::lifetime_end>(m_ConstantInt(Len),
1217                                                      m_Value(Ptr))))
1218      return {std::make_pair(MemoryLocation(Ptr, Len), false)};
1219
1220    if (auto *CB = dyn_cast<CallBase>(I)) {
1221      if (Value *FreedOp = getFreedOperand(CB, &TLI))
1222        return {std::make_pair(MemoryLocation::getAfter(FreedOp), true)};
1223    }
1224
1225    return std::nullopt;
1226  }
1227
1228  /// Returns true if \p I is a memory terminator instruction like
1229  /// llvm.lifetime.end or free.
1230  bool isMemTerminatorInst(Instruction *I) const {
1231    auto *CB = dyn_cast<CallBase>(I);
1232    return CB && (CB->getIntrinsicID() == Intrinsic::lifetime_end ||
1233                  getFreedOperand(CB, &TLI) != nullptr);
1234  }
1235
1236  /// Returns true if \p MaybeTerm is a memory terminator for \p Loc from
1237  /// instruction \p AccessI.
1238  bool isMemTerminator(const MemoryLocation &Loc, Instruction *AccessI,
1239                       Instruction *MaybeTerm) {
1240    std::optional<std::pair<MemoryLocation, bool>> MaybeTermLoc =
1241        getLocForTerminator(MaybeTerm);
1242
1243    if (!MaybeTermLoc)
1244      return false;
1245
1246    // If the terminator is a free-like call, all accesses to the underlying
1247    // object can be considered terminated.
1248    if (getUnderlyingObject(Loc.Ptr) !=
1249        getUnderlyingObject(MaybeTermLoc->first.Ptr))
1250      return false;
1251
1252    auto TermLoc = MaybeTermLoc->first;
1253    if (MaybeTermLoc->second) {
1254      const Value *LocUO = getUnderlyingObject(Loc.Ptr);
1255      return BatchAA.isMustAlias(TermLoc.Ptr, LocUO);
1256    }
1257    int64_t InstWriteOffset = 0;
1258    int64_t DepWriteOffset = 0;
1259    return isOverwrite(MaybeTerm, AccessI, TermLoc, Loc, InstWriteOffset,
1260                       DepWriteOffset) == OW_Complete;
1261  }
1262
1263  // Returns true if \p Use may read from \p DefLoc.
1264  bool isReadClobber(const MemoryLocation &DefLoc, Instruction *UseInst) {
1265    if (isNoopIntrinsic(UseInst))
1266      return false;
1267
1268    // Monotonic or weaker atomic stores can be re-ordered and do not need to be
1269    // treated as read clobber.
1270    if (auto SI = dyn_cast<StoreInst>(UseInst))
1271      return isStrongerThan(SI->getOrdering(), AtomicOrdering::Monotonic);
1272
1273    if (!UseInst->mayReadFromMemory())
1274      return false;
1275
1276    if (auto *CB = dyn_cast<CallBase>(UseInst))
1277      if (CB->onlyAccessesInaccessibleMemory())
1278        return false;
1279
1280    return isRefSet(BatchAA.getModRefInfo(UseInst, DefLoc));
1281  }
1282
1283  /// Returns true if a dependency between \p Current and \p KillingDef is
1284  /// guaranteed to be loop invariant for the loops that they are in. Either
1285  /// because they are known to be in the same block, in the same loop level or
1286  /// by guaranteeing that \p CurrentLoc only references a single MemoryLocation
1287  /// during execution of the containing function.
1288  bool isGuaranteedLoopIndependent(const Instruction *Current,
1289                                   const Instruction *KillingDef,
1290                                   const MemoryLocation &CurrentLoc) {
1291    // If the dependency is within the same block or loop level (being careful
1292    // of irreducible loops), we know that AA will return a valid result for the
1293    // memory dependency. (Both at the function level, outside of any loop,
1294    // would also be valid but we currently disable that to limit compile time).
1295    if (Current->getParent() == KillingDef->getParent())
1296      return true;
1297    const Loop *CurrentLI = LI.getLoopFor(Current->getParent());
1298    if (!ContainsIrreducibleLoops && CurrentLI &&
1299        CurrentLI == LI.getLoopFor(KillingDef->getParent()))
1300      return true;
1301    // Otherwise check the memory location is invariant to any loops.
1302    return isGuaranteedLoopInvariant(CurrentLoc.Ptr);
1303  }
1304
1305  /// Returns true if \p Ptr is guaranteed to be loop invariant for any possible
1306  /// loop. In particular, this guarantees that it only references a single
1307  /// MemoryLocation during execution of the containing function.
1308  bool isGuaranteedLoopInvariant(const Value *Ptr) {
1309    Ptr = Ptr->stripPointerCasts();
1310    if (auto *GEP = dyn_cast<GEPOperator>(Ptr))
1311      if (GEP->hasAllConstantIndices())
1312        Ptr = GEP->getPointerOperand()->stripPointerCasts();
1313
1314    if (auto *I = dyn_cast<Instruction>(Ptr)) {
1315      return I->getParent()->isEntryBlock() ||
1316             (!ContainsIrreducibleLoops && !LI.getLoopFor(I->getParent()));
1317    }
1318    return true;
1319  }
1320
1321  // Find a MemoryDef writing to \p KillingLoc and dominating \p StartAccess,
1322  // with no read access between them or on any other path to a function exit
1323  // block if \p KillingLoc is not accessible after the function returns. If
1324  // there is no such MemoryDef, return std::nullopt. The returned value may not
1325  // (completely) overwrite \p KillingLoc. Currently we bail out when we
1326  // encounter an aliasing MemoryUse (read).
1327  std::optional<MemoryAccess *>
1328  getDomMemoryDef(MemoryDef *KillingDef, MemoryAccess *StartAccess,
1329                  const MemoryLocation &KillingLoc, const Value *KillingUndObj,
1330                  unsigned &ScanLimit, unsigned &WalkerStepLimit,
1331                  bool IsMemTerm, unsigned &PartialLimit) {
1332    if (ScanLimit == 0 || WalkerStepLimit == 0) {
1333      LLVM_DEBUG(dbgs() << "\n    ...  hit scan limit\n");
1334      return std::nullopt;
1335    }
1336
1337    MemoryAccess *Current = StartAccess;
1338    Instruction *KillingI = KillingDef->getMemoryInst();
1339    LLVM_DEBUG(dbgs() << "  trying to get dominating access\n");
1340
1341    // Only optimize defining access of KillingDef when directly starting at its
1342    // defining access. The defining access also must only access KillingLoc. At
1343    // the moment we only support instructions with a single write location, so
1344    // it should be sufficient to disable optimizations for instructions that
1345    // also read from memory.
1346    bool CanOptimize = OptimizeMemorySSA &&
1347                       KillingDef->getDefiningAccess() == StartAccess &&
1348                       !KillingI->mayReadFromMemory();
1349
1350    // Find the next clobbering Mod access for DefLoc, starting at StartAccess.
1351    std::optional<MemoryLocation> CurrentLoc;
1352    for (;; Current = cast<MemoryDef>(Current)->getDefiningAccess()) {
1353      LLVM_DEBUG({
1354        dbgs() << "   visiting " << *Current;
1355        if (!MSSA.isLiveOnEntryDef(Current) && isa<MemoryUseOrDef>(Current))
1356          dbgs() << " (" << *cast<MemoryUseOrDef>(Current)->getMemoryInst()
1357                 << ")";
1358        dbgs() << "\n";
1359      });
1360
1361      // Reached TOP.
1362      if (MSSA.isLiveOnEntryDef(Current)) {
1363        LLVM_DEBUG(dbgs() << "   ...  found LiveOnEntryDef\n");
1364        if (CanOptimize && Current != KillingDef->getDefiningAccess())
1365          // The first clobbering def is... none.
1366          KillingDef->setOptimized(Current);
1367        return std::nullopt;
1368      }
1369
1370      // Cost of a step. Accesses in the same block are more likely to be valid
1371      // candidates for elimination, hence consider them cheaper.
1372      unsigned StepCost = KillingDef->getBlock() == Current->getBlock()
1373                              ? MemorySSASameBBStepCost
1374                              : MemorySSAOtherBBStepCost;
1375      if (WalkerStepLimit <= StepCost) {
1376        LLVM_DEBUG(dbgs() << "   ...  hit walker step limit\n");
1377        return std::nullopt;
1378      }
1379      WalkerStepLimit -= StepCost;
1380
1381      // Return for MemoryPhis. They cannot be eliminated directly and the
1382      // caller is responsible for traversing them.
1383      if (isa<MemoryPhi>(Current)) {
1384        LLVM_DEBUG(dbgs() << "   ...  found MemoryPhi\n");
1385        return Current;
1386      }
1387
1388      // Below, check if CurrentDef is a valid candidate to be eliminated by
1389      // KillingDef. If it is not, check the next candidate.
1390      MemoryDef *CurrentDef = cast<MemoryDef>(Current);
1391      Instruction *CurrentI = CurrentDef->getMemoryInst();
1392
1393      if (canSkipDef(CurrentDef, !isInvisibleToCallerOnUnwind(KillingUndObj))) {
1394        CanOptimize = false;
1395        continue;
1396      }
1397
1398      // Before we try to remove anything, check for any extra throwing
1399      // instructions that block us from DSEing
1400      if (mayThrowBetween(KillingI, CurrentI, KillingUndObj)) {
1401        LLVM_DEBUG(dbgs() << "  ... skip, may throw!\n");
1402        return std::nullopt;
1403      }
1404
1405      // Check for anything that looks like it will be a barrier to further
1406      // removal
1407      if (isDSEBarrier(KillingUndObj, CurrentI)) {
1408        LLVM_DEBUG(dbgs() << "  ... skip, barrier\n");
1409        return std::nullopt;
1410      }
1411
1412      // If Current is known to be on path that reads DefLoc or is a read
1413      // clobber, bail out, as the path is not profitable. We skip this check
1414      // for intrinsic calls, because the code knows how to handle memcpy
1415      // intrinsics.
1416      if (!isa<IntrinsicInst>(CurrentI) && isReadClobber(KillingLoc, CurrentI))
1417        return std::nullopt;
1418
1419      // Quick check if there are direct uses that are read-clobbers.
1420      if (any_of(Current->uses(), [this, &KillingLoc, StartAccess](Use &U) {
1421            if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(U.getUser()))
1422              return !MSSA.dominates(StartAccess, UseOrDef) &&
1423                     isReadClobber(KillingLoc, UseOrDef->getMemoryInst());
1424            return false;
1425          })) {
1426        LLVM_DEBUG(dbgs() << "   ...  found a read clobber\n");
1427        return std::nullopt;
1428      }
1429
1430      // If Current does not have an analyzable write location or is not
1431      // removable, skip it.
1432      CurrentLoc = getLocForWrite(CurrentI);
1433      if (!CurrentLoc || !isRemovable(CurrentI)) {
1434        CanOptimize = false;
1435        continue;
1436      }
1437
1438      // AliasAnalysis does not account for loops. Limit elimination to
1439      // candidates for which we can guarantee they always store to the same
1440      // memory location and not located in different loops.
1441      if (!isGuaranteedLoopIndependent(CurrentI, KillingI, *CurrentLoc)) {
1442        LLVM_DEBUG(dbgs() << "  ... not guaranteed loop independent\n");
1443        CanOptimize = false;
1444        continue;
1445      }
1446
1447      if (IsMemTerm) {
1448        // If the killing def is a memory terminator (e.g. lifetime.end), check
1449        // the next candidate if the current Current does not write the same
1450        // underlying object as the terminator.
1451        if (!isMemTerminator(*CurrentLoc, CurrentI, KillingI)) {
1452          CanOptimize = false;
1453          continue;
1454        }
1455      } else {
1456        int64_t KillingOffset = 0;
1457        int64_t DeadOffset = 0;
1458        auto OR = isOverwrite(KillingI, CurrentI, KillingLoc, *CurrentLoc,
1459                              KillingOffset, DeadOffset);
1460        if (CanOptimize) {
1461          // CurrentDef is the earliest write clobber of KillingDef. Use it as
1462          // optimized access. Do not optimize if CurrentDef is already the
1463          // defining access of KillingDef.
1464          if (CurrentDef != KillingDef->getDefiningAccess() &&
1465              (OR == OW_Complete || OR == OW_MaybePartial))
1466            KillingDef->setOptimized(CurrentDef);
1467
1468          // Once a may-aliasing def is encountered do not set an optimized
1469          // access.
1470          if (OR != OW_None)
1471            CanOptimize = false;
1472        }
1473
1474        // If Current does not write to the same object as KillingDef, check
1475        // the next candidate.
1476        if (OR == OW_Unknown || OR == OW_None)
1477          continue;
1478        else if (OR == OW_MaybePartial) {
1479          // If KillingDef only partially overwrites Current, check the next
1480          // candidate if the partial step limit is exceeded. This aggressively
1481          // limits the number of candidates for partial store elimination,
1482          // which are less likely to be removable in the end.
1483          if (PartialLimit <= 1) {
1484            WalkerStepLimit -= 1;
1485            LLVM_DEBUG(dbgs() << "   ... reached partial limit ... continue with next access\n");
1486            continue;
1487          }
1488          PartialLimit -= 1;
1489        }
1490      }
1491      break;
1492    };
1493
1494    // Accesses to objects accessible after the function returns can only be
1495    // eliminated if the access is dead along all paths to the exit. Collect
1496    // the blocks with killing (=completely overwriting MemoryDefs) and check if
1497    // they cover all paths from MaybeDeadAccess to any function exit.
1498    SmallPtrSet<Instruction *, 16> KillingDefs;
1499    KillingDefs.insert(KillingDef->getMemoryInst());
1500    MemoryAccess *MaybeDeadAccess = Current;
1501    MemoryLocation MaybeDeadLoc = *CurrentLoc;
1502    Instruction *MaybeDeadI = cast<MemoryDef>(MaybeDeadAccess)->getMemoryInst();
1503    LLVM_DEBUG(dbgs() << "  Checking for reads of " << *MaybeDeadAccess << " ("
1504                      << *MaybeDeadI << ")\n");
1505
1506    SmallSetVector<MemoryAccess *, 32> WorkList;
1507    auto PushMemUses = [&WorkList](MemoryAccess *Acc) {
1508      for (Use &U : Acc->uses())
1509        WorkList.insert(cast<MemoryAccess>(U.getUser()));
1510    };
1511    PushMemUses(MaybeDeadAccess);
1512
1513    // Check if DeadDef may be read.
1514    for (unsigned I = 0; I < WorkList.size(); I++) {
1515      MemoryAccess *UseAccess = WorkList[I];
1516
1517      LLVM_DEBUG(dbgs() << "   " << *UseAccess);
1518      // Bail out if the number of accesses to check exceeds the scan limit.
1519      if (ScanLimit < (WorkList.size() - I)) {
1520        LLVM_DEBUG(dbgs() << "\n    ...  hit scan limit\n");
1521        return std::nullopt;
1522      }
1523      --ScanLimit;
1524      NumDomMemDefChecks++;
1525
1526      if (isa<MemoryPhi>(UseAccess)) {
1527        if (any_of(KillingDefs, [this, UseAccess](Instruction *KI) {
1528              return DT.properlyDominates(KI->getParent(),
1529                                          UseAccess->getBlock());
1530            })) {
1531          LLVM_DEBUG(dbgs() << " ... skipping, dominated by killing block\n");
1532          continue;
1533        }
1534        LLVM_DEBUG(dbgs() << "\n    ... adding PHI uses\n");
1535        PushMemUses(UseAccess);
1536        continue;
1537      }
1538
1539      Instruction *UseInst = cast<MemoryUseOrDef>(UseAccess)->getMemoryInst();
1540      LLVM_DEBUG(dbgs() << " (" << *UseInst << ")\n");
1541
1542      if (any_of(KillingDefs, [this, UseInst](Instruction *KI) {
1543            return DT.dominates(KI, UseInst);
1544          })) {
1545        LLVM_DEBUG(dbgs() << " ... skipping, dominated by killing def\n");
1546        continue;
1547      }
1548
1549      // A memory terminator kills all preceeding MemoryDefs and all succeeding
1550      // MemoryAccesses. We do not have to check it's users.
1551      if (isMemTerminator(MaybeDeadLoc, MaybeDeadI, UseInst)) {
1552        LLVM_DEBUG(
1553            dbgs()
1554            << " ... skipping, memterminator invalidates following accesses\n");
1555        continue;
1556      }
1557
1558      if (isNoopIntrinsic(cast<MemoryUseOrDef>(UseAccess)->getMemoryInst())) {
1559        LLVM_DEBUG(dbgs() << "    ... adding uses of intrinsic\n");
1560        PushMemUses(UseAccess);
1561        continue;
1562      }
1563
1564      if (UseInst->mayThrow() && !isInvisibleToCallerOnUnwind(KillingUndObj)) {
1565        LLVM_DEBUG(dbgs() << "  ... found throwing instruction\n");
1566        return std::nullopt;
1567      }
1568
1569      // Uses which may read the original MemoryDef mean we cannot eliminate the
1570      // original MD. Stop walk.
1571      if (isReadClobber(MaybeDeadLoc, UseInst)) {
1572        LLVM_DEBUG(dbgs() << "    ... found read clobber\n");
1573        return std::nullopt;
1574      }
1575
1576      // If this worklist walks back to the original memory access (and the
1577      // pointer is not guarenteed loop invariant) then we cannot assume that a
1578      // store kills itself.
1579      if (MaybeDeadAccess == UseAccess &&
1580          !isGuaranteedLoopInvariant(MaybeDeadLoc.Ptr)) {
1581        LLVM_DEBUG(dbgs() << "    ... found not loop invariant self access\n");
1582        return std::nullopt;
1583      }
1584      // Otherwise, for the KillingDef and MaybeDeadAccess we only have to check
1585      // if it reads the memory location.
1586      // TODO: It would probably be better to check for self-reads before
1587      // calling the function.
1588      if (KillingDef == UseAccess || MaybeDeadAccess == UseAccess) {
1589        LLVM_DEBUG(dbgs() << "    ... skipping killing def/dom access\n");
1590        continue;
1591      }
1592
1593      // Check all uses for MemoryDefs, except for defs completely overwriting
1594      // the original location. Otherwise we have to check uses of *all*
1595      // MemoryDefs we discover, including non-aliasing ones. Otherwise we might
1596      // miss cases like the following
1597      //   1 = Def(LoE) ; <----- DeadDef stores [0,1]
1598      //   2 = Def(1)   ; (2, 1) = NoAlias,   stores [2,3]
1599      //   Use(2)       ; MayAlias 2 *and* 1, loads [0, 3].
1600      //                  (The Use points to the *first* Def it may alias)
1601      //   3 = Def(1)   ; <---- Current  (3, 2) = NoAlias, (3,1) = MayAlias,
1602      //                  stores [0,1]
1603      if (MemoryDef *UseDef = dyn_cast<MemoryDef>(UseAccess)) {
1604        if (isCompleteOverwrite(MaybeDeadLoc, MaybeDeadI, UseInst)) {
1605          BasicBlock *MaybeKillingBlock = UseInst->getParent();
1606          if (PostOrderNumbers.find(MaybeKillingBlock)->second <
1607              PostOrderNumbers.find(MaybeDeadAccess->getBlock())->second) {
1608            if (!isInvisibleToCallerAfterRet(KillingUndObj)) {
1609              LLVM_DEBUG(dbgs()
1610                         << "    ... found killing def " << *UseInst << "\n");
1611              KillingDefs.insert(UseInst);
1612            }
1613          } else {
1614            LLVM_DEBUG(dbgs()
1615                       << "    ... found preceeding def " << *UseInst << "\n");
1616            return std::nullopt;
1617          }
1618        } else
1619          PushMemUses(UseDef);
1620      }
1621    }
1622
1623    // For accesses to locations visible after the function returns, make sure
1624    // that the location is dead (=overwritten) along all paths from
1625    // MaybeDeadAccess to the exit.
1626    if (!isInvisibleToCallerAfterRet(KillingUndObj)) {
1627      SmallPtrSet<BasicBlock *, 16> KillingBlocks;
1628      for (Instruction *KD : KillingDefs)
1629        KillingBlocks.insert(KD->getParent());
1630      assert(!KillingBlocks.empty() &&
1631             "Expected at least a single killing block");
1632
1633      // Find the common post-dominator of all killing blocks.
1634      BasicBlock *CommonPred = *KillingBlocks.begin();
1635      for (BasicBlock *BB : llvm::drop_begin(KillingBlocks)) {
1636        if (!CommonPred)
1637          break;
1638        CommonPred = PDT.findNearestCommonDominator(CommonPred, BB);
1639      }
1640
1641      // If the common post-dominator does not post-dominate MaybeDeadAccess,
1642      // there is a path from MaybeDeadAccess to an exit not going through a
1643      // killing block.
1644      if (!PDT.dominates(CommonPred, MaybeDeadAccess->getBlock())) {
1645        if (!AnyUnreachableExit)
1646          return std::nullopt;
1647
1648        // Fall back to CFG scan starting at all non-unreachable roots if not
1649        // all paths to the exit go through CommonPred.
1650        CommonPred = nullptr;
1651      }
1652
1653      // If CommonPred itself is in the set of killing blocks, we're done.
1654      if (KillingBlocks.count(CommonPred))
1655        return {MaybeDeadAccess};
1656
1657      SetVector<BasicBlock *> WorkList;
1658      // If CommonPred is null, there are multiple exits from the function.
1659      // They all have to be added to the worklist.
1660      if (CommonPred)
1661        WorkList.insert(CommonPred);
1662      else
1663        for (BasicBlock *R : PDT.roots()) {
1664          if (!isa<UnreachableInst>(R->getTerminator()))
1665            WorkList.insert(R);
1666        }
1667
1668      NumCFGTries++;
1669      // Check if all paths starting from an exit node go through one of the
1670      // killing blocks before reaching MaybeDeadAccess.
1671      for (unsigned I = 0; I < WorkList.size(); I++) {
1672        NumCFGChecks++;
1673        BasicBlock *Current = WorkList[I];
1674        if (KillingBlocks.count(Current))
1675          continue;
1676        if (Current == MaybeDeadAccess->getBlock())
1677          return std::nullopt;
1678
1679        // MaybeDeadAccess is reachable from the entry, so we don't have to
1680        // explore unreachable blocks further.
1681        if (!DT.isReachableFromEntry(Current))
1682          continue;
1683
1684        for (BasicBlock *Pred : predecessors(Current))
1685          WorkList.insert(Pred);
1686
1687        if (WorkList.size() >= MemorySSAPathCheckLimit)
1688          return std::nullopt;
1689      }
1690      NumCFGSuccess++;
1691    }
1692
1693    // No aliasing MemoryUses of MaybeDeadAccess found, MaybeDeadAccess is
1694    // potentially dead.
1695    return {MaybeDeadAccess};
1696  }
1697
1698  /// Delete dead memory defs and recursively add their operands to ToRemove if
1699  /// they became dead.
1700  void deleteDeadInstruction(Instruction *SI) {
1701    MemorySSAUpdater Updater(&MSSA);
1702    SmallVector<Instruction *, 32> NowDeadInsts;
1703    NowDeadInsts.push_back(SI);
1704    --NumFastOther;
1705
1706    while (!NowDeadInsts.empty()) {
1707      Instruction *DeadInst = NowDeadInsts.pop_back_val();
1708      ++NumFastOther;
1709
1710      // Try to preserve debug information attached to the dead instruction.
1711      salvageDebugInfo(*DeadInst);
1712      salvageKnowledge(DeadInst);
1713
1714      // Remove the Instruction from MSSA.
1715      MemoryAccess *MA = MSSA.getMemoryAccess(DeadInst);
1716      bool IsMemDef = MA && isa<MemoryDef>(MA);
1717      if (MA) {
1718        if (IsMemDef) {
1719          auto *MD = cast<MemoryDef>(MA);
1720          SkipStores.insert(MD);
1721          if (auto *SI = dyn_cast<StoreInst>(MD->getMemoryInst())) {
1722            if (SI->getValueOperand()->getType()->isPointerTy()) {
1723              const Value *UO = getUnderlyingObject(SI->getValueOperand());
1724              if (CapturedBeforeReturn.erase(UO))
1725                ShouldIterateEndOfFunctionDSE = true;
1726              InvisibleToCallerAfterRet.erase(UO);
1727            }
1728          }
1729        }
1730
1731        Updater.removeMemoryAccess(MA);
1732      }
1733
1734      auto I = IOLs.find(DeadInst->getParent());
1735      if (I != IOLs.end())
1736        I->second.erase(DeadInst);
1737      // Remove its operands
1738      for (Use &O : DeadInst->operands())
1739        if (Instruction *OpI = dyn_cast<Instruction>(O)) {
1740          O.set(PoisonValue::get(O->getType()));
1741          if (isInstructionTriviallyDead(OpI, &TLI))
1742            NowDeadInsts.push_back(OpI);
1743        }
1744
1745      EI.removeInstruction(DeadInst);
1746      // Remove memory defs directly if they don't produce results, but only
1747      // queue other dead instructions for later removal. They may have been
1748      // used as memory locations that have been cached by BatchAA. Removing
1749      // them here may lead to newly created instructions to be allocated at the
1750      // same address, yielding stale cache entries.
1751      if (IsMemDef && DeadInst->getType()->isVoidTy())
1752        DeadInst->eraseFromParent();
1753      else
1754        ToRemove.push_back(DeadInst);
1755    }
1756  }
1757
1758  // Check for any extra throws between \p KillingI and \p DeadI that block
1759  // DSE.  This only checks extra maythrows (those that aren't MemoryDef's).
1760  // MemoryDef that may throw are handled during the walk from one def to the
1761  // next.
1762  bool mayThrowBetween(Instruction *KillingI, Instruction *DeadI,
1763                       const Value *KillingUndObj) {
1764    // First see if we can ignore it by using the fact that KillingI is an
1765    // alloca/alloca like object that is not visible to the caller during
1766    // execution of the function.
1767    if (KillingUndObj && isInvisibleToCallerOnUnwind(KillingUndObj))
1768      return false;
1769
1770    if (KillingI->getParent() == DeadI->getParent())
1771      return ThrowingBlocks.count(KillingI->getParent());
1772    return !ThrowingBlocks.empty();
1773  }
1774
1775  // Check if \p DeadI acts as a DSE barrier for \p KillingI. The following
1776  // instructions act as barriers:
1777  //  * A memory instruction that may throw and \p KillingI accesses a non-stack
1778  //  object.
1779  //  * Atomic stores stronger that monotonic.
1780  bool isDSEBarrier(const Value *KillingUndObj, Instruction *DeadI) {
1781    // If DeadI may throw it acts as a barrier, unless we are to an
1782    // alloca/alloca like object that does not escape.
1783    if (DeadI->mayThrow() && !isInvisibleToCallerOnUnwind(KillingUndObj))
1784      return true;
1785
1786    // If DeadI is an atomic load/store stronger than monotonic, do not try to
1787    // eliminate/reorder it.
1788    if (DeadI->isAtomic()) {
1789      if (auto *LI = dyn_cast<LoadInst>(DeadI))
1790        return isStrongerThanMonotonic(LI->getOrdering());
1791      if (auto *SI = dyn_cast<StoreInst>(DeadI))
1792        return isStrongerThanMonotonic(SI->getOrdering());
1793      if (auto *ARMW = dyn_cast<AtomicRMWInst>(DeadI))
1794        return isStrongerThanMonotonic(ARMW->getOrdering());
1795      if (auto *CmpXchg = dyn_cast<AtomicCmpXchgInst>(DeadI))
1796        return isStrongerThanMonotonic(CmpXchg->getSuccessOrdering()) ||
1797               isStrongerThanMonotonic(CmpXchg->getFailureOrdering());
1798      llvm_unreachable("other instructions should be skipped in MemorySSA");
1799    }
1800    return false;
1801  }
1802
1803  /// Eliminate writes to objects that are not visible in the caller and are not
1804  /// accessed before returning from the function.
1805  bool eliminateDeadWritesAtEndOfFunction() {
1806    bool MadeChange = false;
1807    LLVM_DEBUG(
1808        dbgs()
1809        << "Trying to eliminate MemoryDefs at the end of the function\n");
1810    do {
1811      ShouldIterateEndOfFunctionDSE = false;
1812      for (MemoryDef *Def : llvm::reverse(MemDefs)) {
1813        if (SkipStores.contains(Def))
1814          continue;
1815
1816        Instruction *DefI = Def->getMemoryInst();
1817        auto DefLoc = getLocForWrite(DefI);
1818        if (!DefLoc || !isRemovable(DefI))
1819          continue;
1820
1821        // NOTE: Currently eliminating writes at the end of a function is
1822        // limited to MemoryDefs with a single underlying object, to save
1823        // compile-time. In practice it appears the case with multiple
1824        // underlying objects is very uncommon. If it turns out to be important,
1825        // we can use getUnderlyingObjects here instead.
1826        const Value *UO = getUnderlyingObject(DefLoc->Ptr);
1827        if (!isInvisibleToCallerAfterRet(UO))
1828          continue;
1829
1830        if (isWriteAtEndOfFunction(Def)) {
1831          // See through pointer-to-pointer bitcasts
1832          LLVM_DEBUG(dbgs() << "   ... MemoryDef is not accessed until the end "
1833                               "of the function\n");
1834          deleteDeadInstruction(DefI);
1835          ++NumFastStores;
1836          MadeChange = true;
1837        }
1838      }
1839    } while (ShouldIterateEndOfFunctionDSE);
1840    return MadeChange;
1841  }
1842
1843  /// If we have a zero initializing memset following a call to malloc,
1844  /// try folding it into a call to calloc.
1845  bool tryFoldIntoCalloc(MemoryDef *Def, const Value *DefUO) {
1846    Instruction *DefI = Def->getMemoryInst();
1847    MemSetInst *MemSet = dyn_cast<MemSetInst>(DefI);
1848    if (!MemSet)
1849      // TODO: Could handle zero store to small allocation as well.
1850      return false;
1851    Constant *StoredConstant = dyn_cast<Constant>(MemSet->getValue());
1852    if (!StoredConstant || !StoredConstant->isNullValue())
1853      return false;
1854
1855    if (!isRemovable(DefI))
1856      // The memset might be volatile..
1857      return false;
1858
1859    if (F.hasFnAttribute(Attribute::SanitizeMemory) ||
1860        F.hasFnAttribute(Attribute::SanitizeAddress) ||
1861        F.hasFnAttribute(Attribute::SanitizeHWAddress) ||
1862        F.getName() == "calloc")
1863      return false;
1864    auto *Malloc = const_cast<CallInst *>(dyn_cast<CallInst>(DefUO));
1865    if (!Malloc)
1866      return false;
1867    auto *InnerCallee = Malloc->getCalledFunction();
1868    if (!InnerCallee)
1869      return false;
1870    LibFunc Func;
1871    if (!TLI.getLibFunc(*InnerCallee, Func) || !TLI.has(Func) ||
1872        Func != LibFunc_malloc)
1873      return false;
1874    // Gracefully handle malloc with unexpected memory attributes.
1875    auto *MallocDef = dyn_cast_or_null<MemoryDef>(MSSA.getMemoryAccess(Malloc));
1876    if (!MallocDef)
1877      return false;
1878
1879    auto shouldCreateCalloc = [](CallInst *Malloc, CallInst *Memset) {
1880      // Check for br(icmp ptr, null), truebb, falsebb) pattern at the end
1881      // of malloc block
1882      auto *MallocBB = Malloc->getParent(),
1883        *MemsetBB = Memset->getParent();
1884      if (MallocBB == MemsetBB)
1885        return true;
1886      auto *Ptr = Memset->getArgOperand(0);
1887      auto *TI = MallocBB->getTerminator();
1888      ICmpInst::Predicate Pred;
1889      BasicBlock *TrueBB, *FalseBB;
1890      if (!match(TI, m_Br(m_ICmp(Pred, m_Specific(Ptr), m_Zero()), TrueBB,
1891                          FalseBB)))
1892        return false;
1893      if (Pred != ICmpInst::ICMP_EQ || MemsetBB != FalseBB)
1894        return false;
1895      return true;
1896    };
1897
1898    if (Malloc->getOperand(0) != MemSet->getLength())
1899      return false;
1900    if (!shouldCreateCalloc(Malloc, MemSet) ||
1901        !DT.dominates(Malloc, MemSet) ||
1902        !memoryIsNotModifiedBetween(Malloc, MemSet, BatchAA, DL, &DT))
1903      return false;
1904    IRBuilder<> IRB(Malloc);
1905    Type *SizeTTy = Malloc->getArgOperand(0)->getType();
1906    auto *Calloc = emitCalloc(ConstantInt::get(SizeTTy, 1),
1907                              Malloc->getArgOperand(0), IRB, TLI);
1908    if (!Calloc)
1909      return false;
1910
1911    MemorySSAUpdater Updater(&MSSA);
1912    auto *NewAccess =
1913      Updater.createMemoryAccessAfter(cast<Instruction>(Calloc), nullptr,
1914                                      MallocDef);
1915    auto *NewAccessMD = cast<MemoryDef>(NewAccess);
1916    Updater.insertDef(NewAccessMD, /*RenameUses=*/true);
1917    Malloc->replaceAllUsesWith(Calloc);
1918    deleteDeadInstruction(Malloc);
1919    return true;
1920  }
1921
1922  /// \returns true if \p Def is a no-op store, either because it
1923  /// directly stores back a loaded value or stores zero to a calloced object.
1924  bool storeIsNoop(MemoryDef *Def, const Value *DefUO) {
1925    Instruction *DefI = Def->getMemoryInst();
1926    StoreInst *Store = dyn_cast<StoreInst>(DefI);
1927    MemSetInst *MemSet = dyn_cast<MemSetInst>(DefI);
1928    Constant *StoredConstant = nullptr;
1929    if (Store)
1930      StoredConstant = dyn_cast<Constant>(Store->getOperand(0));
1931    else if (MemSet)
1932      StoredConstant = dyn_cast<Constant>(MemSet->getValue());
1933    else
1934      return false;
1935
1936    if (!isRemovable(DefI))
1937      return false;
1938
1939    if (StoredConstant) {
1940      Constant *InitC =
1941          getInitialValueOfAllocation(DefUO, &TLI, StoredConstant->getType());
1942      // If the clobbering access is LiveOnEntry, no instructions between them
1943      // can modify the memory location.
1944      if (InitC && InitC == StoredConstant)
1945        return MSSA.isLiveOnEntryDef(
1946            MSSA.getSkipSelfWalker()->getClobberingMemoryAccess(Def, BatchAA));
1947    }
1948
1949    if (!Store)
1950      return false;
1951
1952    if (auto *LoadI = dyn_cast<LoadInst>(Store->getOperand(0))) {
1953      if (LoadI->getPointerOperand() == Store->getOperand(1)) {
1954        // Get the defining access for the load.
1955        auto *LoadAccess = MSSA.getMemoryAccess(LoadI)->getDefiningAccess();
1956        // Fast path: the defining accesses are the same.
1957        if (LoadAccess == Def->getDefiningAccess())
1958          return true;
1959
1960        // Look through phi accesses. Recursively scan all phi accesses by
1961        // adding them to a worklist. Bail when we run into a memory def that
1962        // does not match LoadAccess.
1963        SetVector<MemoryAccess *> ToCheck;
1964        MemoryAccess *Current =
1965            MSSA.getWalker()->getClobberingMemoryAccess(Def, BatchAA);
1966        // We don't want to bail when we run into the store memory def. But,
1967        // the phi access may point to it. So, pretend like we've already
1968        // checked it.
1969        ToCheck.insert(Def);
1970        ToCheck.insert(Current);
1971        // Start at current (1) to simulate already having checked Def.
1972        for (unsigned I = 1; I < ToCheck.size(); ++I) {
1973          Current = ToCheck[I];
1974          if (auto PhiAccess = dyn_cast<MemoryPhi>(Current)) {
1975            // Check all the operands.
1976            for (auto &Use : PhiAccess->incoming_values())
1977              ToCheck.insert(cast<MemoryAccess>(&Use));
1978            continue;
1979          }
1980
1981          // If we found a memory def, bail. This happens when we have an
1982          // unrelated write in between an otherwise noop store.
1983          assert(isa<MemoryDef>(Current) &&
1984                 "Only MemoryDefs should reach here.");
1985          // TODO: Skip no alias MemoryDefs that have no aliasing reads.
1986          // We are searching for the definition of the store's destination.
1987          // So, if that is the same definition as the load, then this is a
1988          // noop. Otherwise, fail.
1989          if (LoadAccess != Current)
1990            return false;
1991        }
1992        return true;
1993      }
1994    }
1995
1996    return false;
1997  }
1998
1999  bool removePartiallyOverlappedStores(InstOverlapIntervalsTy &IOL) {
2000    bool Changed = false;
2001    for (auto OI : IOL) {
2002      Instruction *DeadI = OI.first;
2003      MemoryLocation Loc = *getLocForWrite(DeadI);
2004      assert(isRemovable(DeadI) && "Expect only removable instruction");
2005
2006      const Value *Ptr = Loc.Ptr->stripPointerCasts();
2007      int64_t DeadStart = 0;
2008      uint64_t DeadSize = Loc.Size.getValue();
2009      GetPointerBaseWithConstantOffset(Ptr, DeadStart, DL);
2010      OverlapIntervalsTy &IntervalMap = OI.second;
2011      Changed |= tryToShortenEnd(DeadI, IntervalMap, DeadStart, DeadSize);
2012      if (IntervalMap.empty())
2013        continue;
2014      Changed |= tryToShortenBegin(DeadI, IntervalMap, DeadStart, DeadSize);
2015    }
2016    return Changed;
2017  }
2018
2019  /// Eliminates writes to locations where the value that is being written
2020  /// is already stored at the same location.
2021  bool eliminateRedundantStoresOfExistingValues() {
2022    bool MadeChange = false;
2023    LLVM_DEBUG(dbgs() << "Trying to eliminate MemoryDefs that write the "
2024                         "already existing value\n");
2025    for (auto *Def : MemDefs) {
2026      if (SkipStores.contains(Def) || MSSA.isLiveOnEntryDef(Def))
2027        continue;
2028
2029      Instruction *DefInst = Def->getMemoryInst();
2030      auto MaybeDefLoc = getLocForWrite(DefInst);
2031      if (!MaybeDefLoc || !isRemovable(DefInst))
2032        continue;
2033
2034      MemoryDef *UpperDef;
2035      // To conserve compile-time, we avoid walking to the next clobbering def.
2036      // Instead, we just try to get the optimized access, if it exists. DSE
2037      // will try to optimize defs during the earlier traversal.
2038      if (Def->isOptimized())
2039        UpperDef = dyn_cast<MemoryDef>(Def->getOptimized());
2040      else
2041        UpperDef = dyn_cast<MemoryDef>(Def->getDefiningAccess());
2042      if (!UpperDef || MSSA.isLiveOnEntryDef(UpperDef))
2043        continue;
2044
2045      Instruction *UpperInst = UpperDef->getMemoryInst();
2046      auto IsRedundantStore = [&]() {
2047        if (DefInst->isIdenticalTo(UpperInst))
2048          return true;
2049        if (auto *MemSetI = dyn_cast<MemSetInst>(UpperInst)) {
2050          if (auto *SI = dyn_cast<StoreInst>(DefInst)) {
2051            // MemSetInst must have a write location.
2052            MemoryLocation UpperLoc = *getLocForWrite(UpperInst);
2053            int64_t InstWriteOffset = 0;
2054            int64_t DepWriteOffset = 0;
2055            auto OR = isOverwrite(UpperInst, DefInst, UpperLoc, *MaybeDefLoc,
2056                                  InstWriteOffset, DepWriteOffset);
2057            Value *StoredByte = isBytewiseValue(SI->getValueOperand(), DL);
2058            return StoredByte && StoredByte == MemSetI->getOperand(1) &&
2059                   OR == OW_Complete;
2060          }
2061        }
2062        return false;
2063      };
2064
2065      if (!IsRedundantStore() || isReadClobber(*MaybeDefLoc, DefInst))
2066        continue;
2067      LLVM_DEBUG(dbgs() << "DSE: Remove No-Op Store:\n  DEAD: " << *DefInst
2068                        << '\n');
2069      deleteDeadInstruction(DefInst);
2070      NumRedundantStores++;
2071      MadeChange = true;
2072    }
2073    return MadeChange;
2074  }
2075};
2076
2077static bool eliminateDeadStores(Function &F, AliasAnalysis &AA, MemorySSA &MSSA,
2078                                DominatorTree &DT, PostDominatorTree &PDT,
2079                                const TargetLibraryInfo &TLI,
2080                                const LoopInfo &LI) {
2081  bool MadeChange = false;
2082
2083  DSEState State(F, AA, MSSA, DT, PDT, TLI, LI);
2084  // For each store:
2085  for (unsigned I = 0; I < State.MemDefs.size(); I++) {
2086    MemoryDef *KillingDef = State.MemDefs[I];
2087    if (State.SkipStores.count(KillingDef))
2088      continue;
2089    Instruction *KillingI = KillingDef->getMemoryInst();
2090
2091    std::optional<MemoryLocation> MaybeKillingLoc;
2092    if (State.isMemTerminatorInst(KillingI)) {
2093      if (auto KillingLoc = State.getLocForTerminator(KillingI))
2094        MaybeKillingLoc = KillingLoc->first;
2095    } else {
2096      MaybeKillingLoc = State.getLocForWrite(KillingI);
2097    }
2098
2099    if (!MaybeKillingLoc) {
2100      LLVM_DEBUG(dbgs() << "Failed to find analyzable write location for "
2101                        << *KillingI << "\n");
2102      continue;
2103    }
2104    MemoryLocation KillingLoc = *MaybeKillingLoc;
2105    assert(KillingLoc.Ptr && "KillingLoc should not be null");
2106    const Value *KillingUndObj = getUnderlyingObject(KillingLoc.Ptr);
2107    LLVM_DEBUG(dbgs() << "Trying to eliminate MemoryDefs killed by "
2108                      << *KillingDef << " (" << *KillingI << ")\n");
2109
2110    unsigned ScanLimit = MemorySSAScanLimit;
2111    unsigned WalkerStepLimit = MemorySSAUpwardsStepLimit;
2112    unsigned PartialLimit = MemorySSAPartialStoreLimit;
2113    // Worklist of MemoryAccesses that may be killed by KillingDef.
2114    SetVector<MemoryAccess *> ToCheck;
2115    ToCheck.insert(KillingDef->getDefiningAccess());
2116
2117    bool Shortend = false;
2118    bool IsMemTerm = State.isMemTerminatorInst(KillingI);
2119    // Check if MemoryAccesses in the worklist are killed by KillingDef.
2120    for (unsigned I = 0; I < ToCheck.size(); I++) {
2121      MemoryAccess *Current = ToCheck[I];
2122      if (State.SkipStores.count(Current))
2123        continue;
2124
2125      std::optional<MemoryAccess *> MaybeDeadAccess = State.getDomMemoryDef(
2126          KillingDef, Current, KillingLoc, KillingUndObj, ScanLimit,
2127          WalkerStepLimit, IsMemTerm, PartialLimit);
2128
2129      if (!MaybeDeadAccess) {
2130        LLVM_DEBUG(dbgs() << "  finished walk\n");
2131        continue;
2132      }
2133
2134      MemoryAccess *DeadAccess = *MaybeDeadAccess;
2135      LLVM_DEBUG(dbgs() << " Checking if we can kill " << *DeadAccess);
2136      if (isa<MemoryPhi>(DeadAccess)) {
2137        LLVM_DEBUG(dbgs() << "\n  ... adding incoming values to worklist\n");
2138        for (Value *V : cast<MemoryPhi>(DeadAccess)->incoming_values()) {
2139          MemoryAccess *IncomingAccess = cast<MemoryAccess>(V);
2140          BasicBlock *IncomingBlock = IncomingAccess->getBlock();
2141          BasicBlock *PhiBlock = DeadAccess->getBlock();
2142
2143          // We only consider incoming MemoryAccesses that come before the
2144          // MemoryPhi. Otherwise we could discover candidates that do not
2145          // strictly dominate our starting def.
2146          if (State.PostOrderNumbers[IncomingBlock] >
2147              State.PostOrderNumbers[PhiBlock])
2148            ToCheck.insert(IncomingAccess);
2149        }
2150        continue;
2151      }
2152      auto *DeadDefAccess = cast<MemoryDef>(DeadAccess);
2153      Instruction *DeadI = DeadDefAccess->getMemoryInst();
2154      LLVM_DEBUG(dbgs() << " (" << *DeadI << ")\n");
2155      ToCheck.insert(DeadDefAccess->getDefiningAccess());
2156      NumGetDomMemoryDefPassed++;
2157
2158      if (!DebugCounter::shouldExecute(MemorySSACounter))
2159        continue;
2160
2161      MemoryLocation DeadLoc = *State.getLocForWrite(DeadI);
2162
2163      if (IsMemTerm) {
2164        const Value *DeadUndObj = getUnderlyingObject(DeadLoc.Ptr);
2165        if (KillingUndObj != DeadUndObj)
2166          continue;
2167        LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n  DEAD: " << *DeadI
2168                          << "\n  KILLER: " << *KillingI << '\n');
2169        State.deleteDeadInstruction(DeadI);
2170        ++NumFastStores;
2171        MadeChange = true;
2172      } else {
2173        // Check if DeadI overwrites KillingI.
2174        int64_t KillingOffset = 0;
2175        int64_t DeadOffset = 0;
2176        OverwriteResult OR = State.isOverwrite(
2177            KillingI, DeadI, KillingLoc, DeadLoc, KillingOffset, DeadOffset);
2178        if (OR == OW_MaybePartial) {
2179          auto Iter = State.IOLs.insert(
2180              std::make_pair<BasicBlock *, InstOverlapIntervalsTy>(
2181                  DeadI->getParent(), InstOverlapIntervalsTy()));
2182          auto &IOL = Iter.first->second;
2183          OR = isPartialOverwrite(KillingLoc, DeadLoc, KillingOffset,
2184                                  DeadOffset, DeadI, IOL);
2185        }
2186
2187        if (EnablePartialStoreMerging && OR == OW_PartialEarlierWithFullLater) {
2188          auto *DeadSI = dyn_cast<StoreInst>(DeadI);
2189          auto *KillingSI = dyn_cast<StoreInst>(KillingI);
2190          // We are re-using tryToMergePartialOverlappingStores, which requires
2191          // DeadSI to dominate KillingSI.
2192          // TODO: implement tryToMergeParialOverlappingStores using MemorySSA.
2193          if (DeadSI && KillingSI && DT.dominates(DeadSI, KillingSI)) {
2194            if (Constant *Merged = tryToMergePartialOverlappingStores(
2195                    KillingSI, DeadSI, KillingOffset, DeadOffset, State.DL,
2196                    State.BatchAA, &DT)) {
2197
2198              // Update stored value of earlier store to merged constant.
2199              DeadSI->setOperand(0, Merged);
2200              ++NumModifiedStores;
2201              MadeChange = true;
2202
2203              Shortend = true;
2204              // Remove killing store and remove any outstanding overlap
2205              // intervals for the updated store.
2206              State.deleteDeadInstruction(KillingSI);
2207              auto I = State.IOLs.find(DeadSI->getParent());
2208              if (I != State.IOLs.end())
2209                I->second.erase(DeadSI);
2210              break;
2211            }
2212          }
2213        }
2214
2215        if (OR == OW_Complete) {
2216          LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n  DEAD: " << *DeadI
2217                            << "\n  KILLER: " << *KillingI << '\n');
2218          State.deleteDeadInstruction(DeadI);
2219          ++NumFastStores;
2220          MadeChange = true;
2221        }
2222      }
2223    }
2224
2225    // Check if the store is a no-op.
2226    if (!Shortend && State.storeIsNoop(KillingDef, KillingUndObj)) {
2227      LLVM_DEBUG(dbgs() << "DSE: Remove No-Op Store:\n  DEAD: " << *KillingI
2228                        << '\n');
2229      State.deleteDeadInstruction(KillingI);
2230      NumRedundantStores++;
2231      MadeChange = true;
2232      continue;
2233    }
2234
2235    // Can we form a calloc from a memset/malloc pair?
2236    if (!Shortend && State.tryFoldIntoCalloc(KillingDef, KillingUndObj)) {
2237      LLVM_DEBUG(dbgs() << "DSE: Remove memset after forming calloc:\n"
2238                        << "  DEAD: " << *KillingI << '\n');
2239      State.deleteDeadInstruction(KillingI);
2240      MadeChange = true;
2241      continue;
2242    }
2243  }
2244
2245  if (EnablePartialOverwriteTracking)
2246    for (auto &KV : State.IOLs)
2247      MadeChange |= State.removePartiallyOverlappedStores(KV.second);
2248
2249  MadeChange |= State.eliminateRedundantStoresOfExistingValues();
2250  MadeChange |= State.eliminateDeadWritesAtEndOfFunction();
2251
2252  while (!State.ToRemove.empty()) {
2253    Instruction *DeadInst = State.ToRemove.pop_back_val();
2254    DeadInst->eraseFromParent();
2255  }
2256
2257  return MadeChange;
2258}
2259} // end anonymous namespace
2260
2261//===----------------------------------------------------------------------===//
2262// DSE Pass
2263//===----------------------------------------------------------------------===//
2264PreservedAnalyses DSEPass::run(Function &F, FunctionAnalysisManager &AM) {
2265  AliasAnalysis &AA = AM.getResult<AAManager>(F);
2266  const TargetLibraryInfo &TLI = AM.getResult<TargetLibraryAnalysis>(F);
2267  DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
2268  MemorySSA &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
2269  PostDominatorTree &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
2270  LoopInfo &LI = AM.getResult<LoopAnalysis>(F);
2271
2272  bool Changed = eliminateDeadStores(F, AA, MSSA, DT, PDT, TLI, LI);
2273
2274#ifdef LLVM_ENABLE_STATS
2275  if (AreStatisticsEnabled())
2276    for (auto &I : instructions(F))
2277      NumRemainingStores += isa<StoreInst>(&I);
2278#endif
2279
2280  if (!Changed)
2281    return PreservedAnalyses::all();
2282
2283  PreservedAnalyses PA;
2284  PA.preserveSet<CFGAnalyses>();
2285  PA.preserve<MemorySSAAnalysis>();
2286  PA.preserve<LoopAnalysis>();
2287  return PA;
2288}
2289