1//===- AddressSanitizer.cpp - memory error detector -----------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file is a part of AddressSanitizer, an address basic correctness
10// checker.
11// Details of the algorithm:
12//  https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm
13//
14// FIXME: This sanitizer does not yet handle scalable vectors
15//
16//===----------------------------------------------------------------------===//
17
18#include "llvm/Transforms/Instrumentation/AddressSanitizer.h"
19#include "llvm/ADT/ArrayRef.h"
20#include "llvm/ADT/DenseMap.h"
21#include "llvm/ADT/DepthFirstIterator.h"
22#include "llvm/ADT/SmallPtrSet.h"
23#include "llvm/ADT/SmallVector.h"
24#include "llvm/ADT/Statistic.h"
25#include "llvm/ADT/StringExtras.h"
26#include "llvm/ADT/StringRef.h"
27#include "llvm/ADT/Twine.h"
28#include "llvm/Analysis/GlobalsModRef.h"
29#include "llvm/Analysis/MemoryBuiltins.h"
30#include "llvm/Analysis/StackSafetyAnalysis.h"
31#include "llvm/Analysis/TargetLibraryInfo.h"
32#include "llvm/Analysis/ValueTracking.h"
33#include "llvm/BinaryFormat/MachO.h"
34#include "llvm/Demangle/Demangle.h"
35#include "llvm/IR/Argument.h"
36#include "llvm/IR/Attributes.h"
37#include "llvm/IR/BasicBlock.h"
38#include "llvm/IR/Comdat.h"
39#include "llvm/IR/Constant.h"
40#include "llvm/IR/Constants.h"
41#include "llvm/IR/DIBuilder.h"
42#include "llvm/IR/DataLayout.h"
43#include "llvm/IR/DebugInfoMetadata.h"
44#include "llvm/IR/DebugLoc.h"
45#include "llvm/IR/DerivedTypes.h"
46#include "llvm/IR/Function.h"
47#include "llvm/IR/GlobalAlias.h"
48#include "llvm/IR/GlobalValue.h"
49#include "llvm/IR/GlobalVariable.h"
50#include "llvm/IR/IRBuilder.h"
51#include "llvm/IR/InlineAsm.h"
52#include "llvm/IR/InstVisitor.h"
53#include "llvm/IR/InstrTypes.h"
54#include "llvm/IR/Instruction.h"
55#include "llvm/IR/Instructions.h"
56#include "llvm/IR/IntrinsicInst.h"
57#include "llvm/IR/Intrinsics.h"
58#include "llvm/IR/LLVMContext.h"
59#include "llvm/IR/MDBuilder.h"
60#include "llvm/IR/Metadata.h"
61#include "llvm/IR/Module.h"
62#include "llvm/IR/Type.h"
63#include "llvm/IR/Use.h"
64#include "llvm/IR/Value.h"
65#include "llvm/MC/MCSectionMachO.h"
66#include "llvm/Support/Casting.h"
67#include "llvm/Support/CommandLine.h"
68#include "llvm/Support/Debug.h"
69#include "llvm/Support/ErrorHandling.h"
70#include "llvm/Support/MathExtras.h"
71#include "llvm/Support/raw_ostream.h"
72#include "llvm/TargetParser/Triple.h"
73#include "llvm/Transforms/Instrumentation.h"
74#include "llvm/Transforms/Instrumentation/AddressSanitizerCommon.h"
75#include "llvm/Transforms/Instrumentation/AddressSanitizerOptions.h"
76#include "llvm/Transforms/Utils/ASanStackFrameLayout.h"
77#include "llvm/Transforms/Utils/BasicBlockUtils.h"
78#include "llvm/Transforms/Utils/Local.h"
79#include "llvm/Transforms/Utils/ModuleUtils.h"
80#include "llvm/Transforms/Utils/PromoteMemToReg.h"
81#include <algorithm>
82#include <cassert>
83#include <cstddef>
84#include <cstdint>
85#include <iomanip>
86#include <limits>
87#include <sstream>
88#include <string>
89#include <tuple>
90
91using namespace llvm;
92
93#define DEBUG_TYPE "asan"
94
95static const uint64_t kDefaultShadowScale = 3;
96static const uint64_t kDefaultShadowOffset32 = 1ULL << 29;
97static const uint64_t kDefaultShadowOffset64 = 1ULL << 44;
98static const uint64_t kDynamicShadowSentinel =
99    std::numeric_limits<uint64_t>::max();
100static const uint64_t kSmallX86_64ShadowOffsetBase = 0x7FFFFFFF;  // < 2G.
101static const uint64_t kSmallX86_64ShadowOffsetAlignMask = ~0xFFFULL;
102static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000;
103static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 44;
104static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52;
105static const uint64_t kMIPS_ShadowOffsetN32 = 1ULL << 29;
106static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000;
107static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37;
108static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36;
109static const uint64_t kLoongArch64_ShadowOffset64 = 1ULL << 46;
110static const uint64_t kRISCV64_ShadowOffset64 = 0xd55550000;
111static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30;
112static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46;
113static const uint64_t kFreeBSDAArch64_ShadowOffset64 = 1ULL << 47;
114static const uint64_t kFreeBSDKasan_ShadowOffset64 = 0xdffff7c000000000;
115static const uint64_t kNetBSD_ShadowOffset32 = 1ULL << 30;
116static const uint64_t kNetBSD_ShadowOffset64 = 1ULL << 46;
117static const uint64_t kNetBSDKasan_ShadowOffset64 = 0xdfff900000000000;
118static const uint64_t kPS_ShadowOffset64 = 1ULL << 40;
119static const uint64_t kWindowsShadowOffset32 = 3ULL << 28;
120static const uint64_t kEmscriptenShadowOffset = 0;
121
122// The shadow memory space is dynamically allocated.
123static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel;
124
125static const size_t kMinStackMallocSize = 1 << 6;   // 64B
126static const size_t kMaxStackMallocSize = 1 << 16;  // 64K
127static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3;
128static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E;
129
130const char kAsanModuleCtorName[] = "asan.module_ctor";
131const char kAsanModuleDtorName[] = "asan.module_dtor";
132static const uint64_t kAsanCtorAndDtorPriority = 1;
133// On Emscripten, the system needs more than one priorities for constructors.
134static const uint64_t kAsanEmscriptenCtorAndDtorPriority = 50;
135const char kAsanReportErrorTemplate[] = "__asan_report_";
136const char kAsanRegisterGlobalsName[] = "__asan_register_globals";
137const char kAsanUnregisterGlobalsName[] = "__asan_unregister_globals";
138const char kAsanRegisterImageGlobalsName[] = "__asan_register_image_globals";
139const char kAsanUnregisterImageGlobalsName[] =
140    "__asan_unregister_image_globals";
141const char kAsanRegisterElfGlobalsName[] = "__asan_register_elf_globals";
142const char kAsanUnregisterElfGlobalsName[] = "__asan_unregister_elf_globals";
143const char kAsanPoisonGlobalsName[] = "__asan_before_dynamic_init";
144const char kAsanUnpoisonGlobalsName[] = "__asan_after_dynamic_init";
145const char kAsanInitName[] = "__asan_init";
146const char kAsanVersionCheckNamePrefix[] = "__asan_version_mismatch_check_v";
147const char kAsanPtrCmp[] = "__sanitizer_ptr_cmp";
148const char kAsanPtrSub[] = "__sanitizer_ptr_sub";
149const char kAsanHandleNoReturnName[] = "__asan_handle_no_return";
150static const int kMaxAsanStackMallocSizeClass = 10;
151const char kAsanStackMallocNameTemplate[] = "__asan_stack_malloc_";
152const char kAsanStackMallocAlwaysNameTemplate[] =
153    "__asan_stack_malloc_always_";
154const char kAsanStackFreeNameTemplate[] = "__asan_stack_free_";
155const char kAsanGenPrefix[] = "___asan_gen_";
156const char kODRGenPrefix[] = "__odr_asan_gen_";
157const char kSanCovGenPrefix[] = "__sancov_gen_";
158const char kAsanSetShadowPrefix[] = "__asan_set_shadow_";
159const char kAsanPoisonStackMemoryName[] = "__asan_poison_stack_memory";
160const char kAsanUnpoisonStackMemoryName[] = "__asan_unpoison_stack_memory";
161
162// ASan version script has __asan_* wildcard. Triple underscore prevents a
163// linker (gold) warning about attempting to export a local symbol.
164const char kAsanGlobalsRegisteredFlagName[] = "___asan_globals_registered";
165
166const char kAsanOptionDetectUseAfterReturn[] =
167    "__asan_option_detect_stack_use_after_return";
168
169const char kAsanShadowMemoryDynamicAddress[] =
170    "__asan_shadow_memory_dynamic_address";
171
172const char kAsanAllocaPoison[] = "__asan_alloca_poison";
173const char kAsanAllocasUnpoison[] = "__asan_allocas_unpoison";
174
175const char kAMDGPUAddressSharedName[] = "llvm.amdgcn.is.shared";
176const char kAMDGPUAddressPrivateName[] = "llvm.amdgcn.is.private";
177const char kAMDGPUBallotName[] = "llvm.amdgcn.ballot.i64";
178const char kAMDGPUUnreachableName[] = "llvm.amdgcn.unreachable";
179
180// Accesses sizes are powers of two: 1, 2, 4, 8, 16.
181static const size_t kNumberOfAccessSizes = 5;
182
183static const uint64_t kAllocaRzSize = 32;
184
185// ASanAccessInfo implementation constants.
186constexpr size_t kCompileKernelShift = 0;
187constexpr size_t kCompileKernelMask = 0x1;
188constexpr size_t kAccessSizeIndexShift = 1;
189constexpr size_t kAccessSizeIndexMask = 0xf;
190constexpr size_t kIsWriteShift = 5;
191constexpr size_t kIsWriteMask = 0x1;
192
193// Command-line flags.
194
195static cl::opt<bool> ClEnableKasan(
196    "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"),
197    cl::Hidden, cl::init(false));
198
199static cl::opt<bool> ClRecover(
200    "asan-recover",
201    cl::desc("Enable recovery mode (continue-after-error)."),
202    cl::Hidden, cl::init(false));
203
204static cl::opt<bool> ClInsertVersionCheck(
205    "asan-guard-against-version-mismatch",
206    cl::desc("Guard against compiler/runtime version mismatch."), cl::Hidden,
207    cl::init(true));
208
209// This flag may need to be replaced with -f[no-]asan-reads.
210static cl::opt<bool> ClInstrumentReads("asan-instrument-reads",
211                                       cl::desc("instrument read instructions"),
212                                       cl::Hidden, cl::init(true));
213
214static cl::opt<bool> ClInstrumentWrites(
215    "asan-instrument-writes", cl::desc("instrument write instructions"),
216    cl::Hidden, cl::init(true));
217
218static cl::opt<bool>
219    ClUseStackSafety("asan-use-stack-safety", cl::Hidden, cl::init(true),
220                     cl::Hidden, cl::desc("Use Stack Safety analysis results"),
221                     cl::Optional);
222
223static cl::opt<bool> ClInstrumentAtomics(
224    "asan-instrument-atomics",
225    cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden,
226    cl::init(true));
227
228static cl::opt<bool>
229    ClInstrumentByval("asan-instrument-byval",
230                      cl::desc("instrument byval call arguments"), cl::Hidden,
231                      cl::init(true));
232
233static cl::opt<bool> ClAlwaysSlowPath(
234    "asan-always-slow-path",
235    cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden,
236    cl::init(false));
237
238static cl::opt<bool> ClForceDynamicShadow(
239    "asan-force-dynamic-shadow",
240    cl::desc("Load shadow address into a local variable for each function"),
241    cl::Hidden, cl::init(false));
242
243static cl::opt<bool>
244    ClWithIfunc("asan-with-ifunc",
245                cl::desc("Access dynamic shadow through an ifunc global on "
246                         "platforms that support this"),
247                cl::Hidden, cl::init(true));
248
249static cl::opt<bool> ClWithIfuncSuppressRemat(
250    "asan-with-ifunc-suppress-remat",
251    cl::desc("Suppress rematerialization of dynamic shadow address by passing "
252             "it through inline asm in prologue."),
253    cl::Hidden, cl::init(true));
254
255// This flag limits the number of instructions to be instrumented
256// in any given BB. Normally, this should be set to unlimited (INT_MAX),
257// but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary
258// set it to 10000.
259static cl::opt<int> ClMaxInsnsToInstrumentPerBB(
260    "asan-max-ins-per-bb", cl::init(10000),
261    cl::desc("maximal number of instructions to instrument in any given BB"),
262    cl::Hidden);
263
264// This flag may need to be replaced with -f[no]asan-stack.
265static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"),
266                             cl::Hidden, cl::init(true));
267static cl::opt<uint32_t> ClMaxInlinePoisoningSize(
268    "asan-max-inline-poisoning-size",
269    cl::desc(
270        "Inline shadow poisoning for blocks up to the given size in bytes."),
271    cl::Hidden, cl::init(64));
272
273static cl::opt<AsanDetectStackUseAfterReturnMode> ClUseAfterReturn(
274    "asan-use-after-return",
275    cl::desc("Sets the mode of detection for stack-use-after-return."),
276    cl::values(
277        clEnumValN(AsanDetectStackUseAfterReturnMode::Never, "never",
278                   "Never detect stack use after return."),
279        clEnumValN(
280            AsanDetectStackUseAfterReturnMode::Runtime, "runtime",
281            "Detect stack use after return if "
282            "binary flag 'ASAN_OPTIONS=detect_stack_use_after_return' is set."),
283        clEnumValN(AsanDetectStackUseAfterReturnMode::Always, "always",
284                   "Always detect stack use after return.")),
285    cl::Hidden, cl::init(AsanDetectStackUseAfterReturnMode::Runtime));
286
287static cl::opt<bool> ClRedzoneByvalArgs("asan-redzone-byval-args",
288                                        cl::desc("Create redzones for byval "
289                                                 "arguments (extra copy "
290                                                 "required)"), cl::Hidden,
291                                        cl::init(true));
292
293static cl::opt<bool> ClUseAfterScope("asan-use-after-scope",
294                                     cl::desc("Check stack-use-after-scope"),
295                                     cl::Hidden, cl::init(false));
296
297// This flag may need to be replaced with -f[no]asan-globals.
298static cl::opt<bool> ClGlobals("asan-globals",
299                               cl::desc("Handle global objects"), cl::Hidden,
300                               cl::init(true));
301
302static cl::opt<bool> ClInitializers("asan-initialization-order",
303                                    cl::desc("Handle C++ initializer order"),
304                                    cl::Hidden, cl::init(true));
305
306static cl::opt<bool> ClInvalidPointerPairs(
307    "asan-detect-invalid-pointer-pair",
308    cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden,
309    cl::init(false));
310
311static cl::opt<bool> ClInvalidPointerCmp(
312    "asan-detect-invalid-pointer-cmp",
313    cl::desc("Instrument <, <=, >, >= with pointer operands"), cl::Hidden,
314    cl::init(false));
315
316static cl::opt<bool> ClInvalidPointerSub(
317    "asan-detect-invalid-pointer-sub",
318    cl::desc("Instrument - operations with pointer operands"), cl::Hidden,
319    cl::init(false));
320
321static cl::opt<unsigned> ClRealignStack(
322    "asan-realign-stack",
323    cl::desc("Realign stack to the value of this flag (power of two)"),
324    cl::Hidden, cl::init(32));
325
326static cl::opt<int> ClInstrumentationWithCallsThreshold(
327    "asan-instrumentation-with-call-threshold",
328    cl::desc("If the function being instrumented contains more than "
329             "this number of memory accesses, use callbacks instead of "
330             "inline checks (-1 means never use callbacks)."),
331    cl::Hidden, cl::init(7000));
332
333static cl::opt<std::string> ClMemoryAccessCallbackPrefix(
334    "asan-memory-access-callback-prefix",
335    cl::desc("Prefix for memory access callbacks"), cl::Hidden,
336    cl::init("__asan_"));
337
338static cl::opt<bool> ClKasanMemIntrinCallbackPrefix(
339    "asan-kernel-mem-intrinsic-prefix",
340    cl::desc("Use prefix for memory intrinsics in KASAN mode"), cl::Hidden,
341    cl::init(false));
342
343static cl::opt<bool>
344    ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas",
345                               cl::desc("instrument dynamic allocas"),
346                               cl::Hidden, cl::init(true));
347
348static cl::opt<bool> ClSkipPromotableAllocas(
349    "asan-skip-promotable-allocas",
350    cl::desc("Do not instrument promotable allocas"), cl::Hidden,
351    cl::init(true));
352
353static cl::opt<AsanCtorKind> ClConstructorKind(
354    "asan-constructor-kind",
355    cl::desc("Sets the ASan constructor kind"),
356    cl::values(clEnumValN(AsanCtorKind::None, "none", "No constructors"),
357               clEnumValN(AsanCtorKind::Global, "global",
358                          "Use global constructors")),
359    cl::init(AsanCtorKind::Global), cl::Hidden);
360// These flags allow to change the shadow mapping.
361// The shadow mapping looks like
362//    Shadow = (Mem >> scale) + offset
363
364static cl::opt<int> ClMappingScale("asan-mapping-scale",
365                                   cl::desc("scale of asan shadow mapping"),
366                                   cl::Hidden, cl::init(0));
367
368static cl::opt<uint64_t>
369    ClMappingOffset("asan-mapping-offset",
370                    cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"),
371                    cl::Hidden, cl::init(0));
372
373// Optimization flags. Not user visible, used mostly for testing
374// and benchmarking the tool.
375
376static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"),
377                           cl::Hidden, cl::init(true));
378
379static cl::opt<bool> ClOptimizeCallbacks("asan-optimize-callbacks",
380                                         cl::desc("Optimize callbacks"),
381                                         cl::Hidden, cl::init(false));
382
383static cl::opt<bool> ClOptSameTemp(
384    "asan-opt-same-temp", cl::desc("Instrument the same temp just once"),
385    cl::Hidden, cl::init(true));
386
387static cl::opt<bool> ClOptGlobals("asan-opt-globals",
388                                  cl::desc("Don't instrument scalar globals"),
389                                  cl::Hidden, cl::init(true));
390
391static cl::opt<bool> ClOptStack(
392    "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"),
393    cl::Hidden, cl::init(false));
394
395static cl::opt<bool> ClDynamicAllocaStack(
396    "asan-stack-dynamic-alloca",
397    cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden,
398    cl::init(true));
399
400static cl::opt<uint32_t> ClForceExperiment(
401    "asan-force-experiment",
402    cl::desc("Force optimization experiment (for testing)"), cl::Hidden,
403    cl::init(0));
404
405static cl::opt<bool>
406    ClUsePrivateAlias("asan-use-private-alias",
407                      cl::desc("Use private aliases for global variables"),
408                      cl::Hidden, cl::init(true));
409
410static cl::opt<bool>
411    ClUseOdrIndicator("asan-use-odr-indicator",
412                      cl::desc("Use odr indicators to improve ODR reporting"),
413                      cl::Hidden, cl::init(true));
414
415static cl::opt<bool>
416    ClUseGlobalsGC("asan-globals-live-support",
417                   cl::desc("Use linker features to support dead "
418                            "code stripping of globals"),
419                   cl::Hidden, cl::init(true));
420
421// This is on by default even though there is a bug in gold:
422// https://sourceware.org/bugzilla/show_bug.cgi?id=19002
423static cl::opt<bool>
424    ClWithComdat("asan-with-comdat",
425                 cl::desc("Place ASan constructors in comdat sections"),
426                 cl::Hidden, cl::init(true));
427
428static cl::opt<AsanDtorKind> ClOverrideDestructorKind(
429    "asan-destructor-kind",
430    cl::desc("Sets the ASan destructor kind. The default is to use the value "
431             "provided to the pass constructor"),
432    cl::values(clEnumValN(AsanDtorKind::None, "none", "No destructors"),
433               clEnumValN(AsanDtorKind::Global, "global",
434                          "Use global destructors")),
435    cl::init(AsanDtorKind::Invalid), cl::Hidden);
436
437// Debug flags.
438
439static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden,
440                            cl::init(0));
441
442static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"),
443                                 cl::Hidden, cl::init(0));
444
445static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden,
446                                        cl::desc("Debug func"));
447
448static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"),
449                               cl::Hidden, cl::init(-1));
450
451static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"),
452                               cl::Hidden, cl::init(-1));
453
454STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
455STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
456STATISTIC(NumOptimizedAccessesToGlobalVar,
457          "Number of optimized accesses to global vars");
458STATISTIC(NumOptimizedAccessesToStackVar,
459          "Number of optimized accesses to stack vars");
460
461namespace {
462
463/// This struct defines the shadow mapping using the rule:
464///   shadow = (mem >> Scale) ADD-or-OR Offset.
465/// If InGlobal is true, then
466///   extern char __asan_shadow[];
467///   shadow = (mem >> Scale) + &__asan_shadow
468struct ShadowMapping {
469  int Scale;
470  uint64_t Offset;
471  bool OrShadowOffset;
472  bool InGlobal;
473};
474
475} // end anonymous namespace
476
477static ShadowMapping getShadowMapping(const Triple &TargetTriple, int LongSize,
478                                      bool IsKasan) {
479  bool IsAndroid = TargetTriple.isAndroid();
480  bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS() ||
481               TargetTriple.isDriverKit();
482  bool IsMacOS = TargetTriple.isMacOSX();
483  bool IsFreeBSD = TargetTriple.isOSFreeBSD();
484  bool IsNetBSD = TargetTriple.isOSNetBSD();
485  bool IsPS = TargetTriple.isPS();
486  bool IsLinux = TargetTriple.isOSLinux();
487  bool IsPPC64 = TargetTriple.getArch() == Triple::ppc64 ||
488                 TargetTriple.getArch() == Triple::ppc64le;
489  bool IsSystemZ = TargetTriple.getArch() == Triple::systemz;
490  bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64;
491  bool IsMIPSN32ABI = TargetTriple.getEnvironment() == Triple::GNUABIN32;
492  bool IsMIPS32 = TargetTriple.isMIPS32();
493  bool IsMIPS64 = TargetTriple.isMIPS64();
494  bool IsArmOrThumb = TargetTriple.isARM() || TargetTriple.isThumb();
495  bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64 ||
496                   TargetTriple.getArch() == Triple::aarch64_be;
497  bool IsLoongArch64 = TargetTriple.isLoongArch64();
498  bool IsRISCV64 = TargetTriple.getArch() == Triple::riscv64;
499  bool IsWindows = TargetTriple.isOSWindows();
500  bool IsFuchsia = TargetTriple.isOSFuchsia();
501  bool IsEmscripten = TargetTriple.isOSEmscripten();
502  bool IsAMDGPU = TargetTriple.isAMDGPU();
503
504  ShadowMapping Mapping;
505
506  Mapping.Scale = kDefaultShadowScale;
507  if (ClMappingScale.getNumOccurrences() > 0) {
508    Mapping.Scale = ClMappingScale;
509  }
510
511  if (LongSize == 32) {
512    if (IsAndroid)
513      Mapping.Offset = kDynamicShadowSentinel;
514    else if (IsMIPSN32ABI)
515      Mapping.Offset = kMIPS_ShadowOffsetN32;
516    else if (IsMIPS32)
517      Mapping.Offset = kMIPS32_ShadowOffset32;
518    else if (IsFreeBSD)
519      Mapping.Offset = kFreeBSD_ShadowOffset32;
520    else if (IsNetBSD)
521      Mapping.Offset = kNetBSD_ShadowOffset32;
522    else if (IsIOS)
523      Mapping.Offset = kDynamicShadowSentinel;
524    else if (IsWindows)
525      Mapping.Offset = kWindowsShadowOffset32;
526    else if (IsEmscripten)
527      Mapping.Offset = kEmscriptenShadowOffset;
528    else
529      Mapping.Offset = kDefaultShadowOffset32;
530  } else {  // LongSize == 64
531    // Fuchsia is always PIE, which means that the beginning of the address
532    // space is always available.
533    if (IsFuchsia)
534      Mapping.Offset = 0;
535    else if (IsPPC64)
536      Mapping.Offset = kPPC64_ShadowOffset64;
537    else if (IsSystemZ)
538      Mapping.Offset = kSystemZ_ShadowOffset64;
539    else if (IsFreeBSD && IsAArch64)
540        Mapping.Offset = kFreeBSDAArch64_ShadowOffset64;
541    else if (IsFreeBSD && !IsMIPS64) {
542      if (IsKasan)
543        Mapping.Offset = kFreeBSDKasan_ShadowOffset64;
544      else
545        Mapping.Offset = kFreeBSD_ShadowOffset64;
546    } else if (IsNetBSD) {
547      if (IsKasan)
548        Mapping.Offset = kNetBSDKasan_ShadowOffset64;
549      else
550        Mapping.Offset = kNetBSD_ShadowOffset64;
551    } else if (IsPS)
552      Mapping.Offset = kPS_ShadowOffset64;
553    else if (IsLinux && IsX86_64) {
554      if (IsKasan)
555        Mapping.Offset = kLinuxKasan_ShadowOffset64;
556      else
557        Mapping.Offset = (kSmallX86_64ShadowOffsetBase &
558                          (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale));
559    } else if (IsWindows && IsX86_64) {
560      Mapping.Offset = kWindowsShadowOffset64;
561    } else if (IsMIPS64)
562      Mapping.Offset = kMIPS64_ShadowOffset64;
563    else if (IsIOS)
564      Mapping.Offset = kDynamicShadowSentinel;
565    else if (IsMacOS && IsAArch64)
566      Mapping.Offset = kDynamicShadowSentinel;
567    else if (IsAArch64)
568      Mapping.Offset = kAArch64_ShadowOffset64;
569    else if (IsLoongArch64)
570      Mapping.Offset = kLoongArch64_ShadowOffset64;
571    else if (IsRISCV64)
572      Mapping.Offset = kRISCV64_ShadowOffset64;
573    else if (IsAMDGPU)
574      Mapping.Offset = (kSmallX86_64ShadowOffsetBase &
575                        (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale));
576    else
577      Mapping.Offset = kDefaultShadowOffset64;
578  }
579
580  if (ClForceDynamicShadow) {
581    Mapping.Offset = kDynamicShadowSentinel;
582  }
583
584  if (ClMappingOffset.getNumOccurrences() > 0) {
585    Mapping.Offset = ClMappingOffset;
586  }
587
588  // OR-ing shadow offset if more efficient (at least on x86) if the offset
589  // is a power of two, but on ppc64 and loongarch64 we have to use add since
590  // the shadow offset is not necessarily 1/8-th of the address space.  On
591  // SystemZ, we could OR the constant in a single instruction, but it's more
592  // efficient to load it once and use indexed addressing.
593  Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ && !IsPS &&
594                           !IsRISCV64 && !IsLoongArch64 &&
595                           !(Mapping.Offset & (Mapping.Offset - 1)) &&
596                           Mapping.Offset != kDynamicShadowSentinel;
597  bool IsAndroidWithIfuncSupport =
598      IsAndroid && !TargetTriple.isAndroidVersionLT(21);
599  Mapping.InGlobal = ClWithIfunc && IsAndroidWithIfuncSupport && IsArmOrThumb;
600
601  return Mapping;
602}
603
604namespace llvm {
605void getAddressSanitizerParams(const Triple &TargetTriple, int LongSize,
606                               bool IsKasan, uint64_t *ShadowBase,
607                               int *MappingScale, bool *OrShadowOffset) {
608  auto Mapping = getShadowMapping(TargetTriple, LongSize, IsKasan);
609  *ShadowBase = Mapping.Offset;
610  *MappingScale = Mapping.Scale;
611  *OrShadowOffset = Mapping.OrShadowOffset;
612}
613
614ASanAccessInfo::ASanAccessInfo(int32_t Packed)
615    : Packed(Packed),
616      AccessSizeIndex((Packed >> kAccessSizeIndexShift) & kAccessSizeIndexMask),
617      IsWrite((Packed >> kIsWriteShift) & kIsWriteMask),
618      CompileKernel((Packed >> kCompileKernelShift) & kCompileKernelMask) {}
619
620ASanAccessInfo::ASanAccessInfo(bool IsWrite, bool CompileKernel,
621                               uint8_t AccessSizeIndex)
622    : Packed((IsWrite << kIsWriteShift) +
623             (CompileKernel << kCompileKernelShift) +
624             (AccessSizeIndex << kAccessSizeIndexShift)),
625      AccessSizeIndex(AccessSizeIndex), IsWrite(IsWrite),
626      CompileKernel(CompileKernel) {}
627
628} // namespace llvm
629
630static uint64_t getRedzoneSizeForScale(int MappingScale) {
631  // Redzone used for stack and globals is at least 32 bytes.
632  // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively.
633  return std::max(32U, 1U << MappingScale);
634}
635
636static uint64_t GetCtorAndDtorPriority(Triple &TargetTriple) {
637  if (TargetTriple.isOSEmscripten()) {
638    return kAsanEmscriptenCtorAndDtorPriority;
639  } else {
640    return kAsanCtorAndDtorPriority;
641  }
642}
643
644namespace {
645
646/// AddressSanitizer: instrument the code in module to find memory bugs.
647struct AddressSanitizer {
648  AddressSanitizer(Module &M, const StackSafetyGlobalInfo *SSGI,
649                   int InstrumentationWithCallsThreshold,
650                   uint32_t MaxInlinePoisoningSize, bool CompileKernel = false,
651                   bool Recover = false, bool UseAfterScope = false,
652                   AsanDetectStackUseAfterReturnMode UseAfterReturn =
653                       AsanDetectStackUseAfterReturnMode::Runtime)
654      : CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan
655                                                            : CompileKernel),
656        Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover),
657        UseAfterScope(UseAfterScope || ClUseAfterScope),
658        UseAfterReturn(ClUseAfterReturn.getNumOccurrences() ? ClUseAfterReturn
659                                                            : UseAfterReturn),
660        SSGI(SSGI),
661        InstrumentationWithCallsThreshold(
662            ClInstrumentationWithCallsThreshold.getNumOccurrences() > 0
663                ? ClInstrumentationWithCallsThreshold
664                : InstrumentationWithCallsThreshold),
665        MaxInlinePoisoningSize(ClMaxInlinePoisoningSize.getNumOccurrences() > 0
666                                   ? ClMaxInlinePoisoningSize
667                                   : MaxInlinePoisoningSize) {
668    C = &(M.getContext());
669    DL = &M.getDataLayout();
670    LongSize = M.getDataLayout().getPointerSizeInBits();
671    IntptrTy = Type::getIntNTy(*C, LongSize);
672    PtrTy = PointerType::getUnqual(*C);
673    Int32Ty = Type::getInt32Ty(*C);
674    TargetTriple = Triple(M.getTargetTriple());
675
676    Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel);
677
678    assert(this->UseAfterReturn != AsanDetectStackUseAfterReturnMode::Invalid);
679  }
680
681  TypeSize getAllocaSizeInBytes(const AllocaInst &AI) const {
682    return *AI.getAllocationSize(AI.getModule()->getDataLayout());
683  }
684
685  /// Check if we want (and can) handle this alloca.
686  bool isInterestingAlloca(const AllocaInst &AI);
687
688  bool ignoreAccess(Instruction *Inst, Value *Ptr);
689  void getInterestingMemoryOperands(
690      Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting);
691
692  void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis,
693                     InterestingMemoryOperand &O, bool UseCalls,
694                     const DataLayout &DL);
695  void instrumentPointerComparisonOrSubtraction(Instruction *I);
696  void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore,
697                         Value *Addr, MaybeAlign Alignment,
698                         uint32_t TypeStoreSize, bool IsWrite,
699                         Value *SizeArgument, bool UseCalls, uint32_t Exp);
700  Instruction *instrumentAMDGPUAddress(Instruction *OrigIns,
701                                       Instruction *InsertBefore, Value *Addr,
702                                       uint32_t TypeStoreSize, bool IsWrite,
703                                       Value *SizeArgument);
704  Instruction *genAMDGPUReportBlock(IRBuilder<> &IRB, Value *Cond,
705                                    bool Recover);
706  void instrumentUnusualSizeOrAlignment(Instruction *I,
707                                        Instruction *InsertBefore, Value *Addr,
708                                        TypeSize TypeStoreSize, bool IsWrite,
709                                        Value *SizeArgument, bool UseCalls,
710                                        uint32_t Exp);
711  void instrumentMaskedLoadOrStore(AddressSanitizer *Pass, const DataLayout &DL,
712                                   Type *IntptrTy, Value *Mask, Value *EVL,
713                                   Value *Stride, Instruction *I, Value *Addr,
714                                   MaybeAlign Alignment, unsigned Granularity,
715                                   Type *OpType, bool IsWrite,
716                                   Value *SizeArgument, bool UseCalls,
717                                   uint32_t Exp);
718  Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
719                           Value *ShadowValue, uint32_t TypeStoreSize);
720  Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr,
721                                 bool IsWrite, size_t AccessSizeIndex,
722                                 Value *SizeArgument, uint32_t Exp);
723  void instrumentMemIntrinsic(MemIntrinsic *MI);
724  Value *memToShadow(Value *Shadow, IRBuilder<> &IRB);
725  bool suppressInstrumentationSiteForDebug(int &Instrumented);
726  bool instrumentFunction(Function &F, const TargetLibraryInfo *TLI);
727  bool maybeInsertAsanInitAtFunctionEntry(Function &F);
728  bool maybeInsertDynamicShadowAtFunctionEntry(Function &F);
729  void markEscapedLocalAllocas(Function &F);
730
731private:
732  friend struct FunctionStackPoisoner;
733
734  void initializeCallbacks(Module &M, const TargetLibraryInfo *TLI);
735
736  bool LooksLikeCodeInBug11395(Instruction *I);
737  bool GlobalIsLinkerInitialized(GlobalVariable *G);
738  bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr,
739                    TypeSize TypeStoreSize) const;
740
741  /// Helper to cleanup per-function state.
742  struct FunctionStateRAII {
743    AddressSanitizer *Pass;
744
745    FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) {
746      assert(Pass->ProcessedAllocas.empty() &&
747             "last pass forgot to clear cache");
748      assert(!Pass->LocalDynamicShadow);
749    }
750
751    ~FunctionStateRAII() {
752      Pass->LocalDynamicShadow = nullptr;
753      Pass->ProcessedAllocas.clear();
754    }
755  };
756
757  LLVMContext *C;
758  const DataLayout *DL;
759  Triple TargetTriple;
760  int LongSize;
761  bool CompileKernel;
762  bool Recover;
763  bool UseAfterScope;
764  AsanDetectStackUseAfterReturnMode UseAfterReturn;
765  Type *IntptrTy;
766  Type *Int32Ty;
767  PointerType *PtrTy;
768  ShadowMapping Mapping;
769  FunctionCallee AsanHandleNoReturnFunc;
770  FunctionCallee AsanPtrCmpFunction, AsanPtrSubFunction;
771  Constant *AsanShadowGlobal;
772
773  // These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize).
774  FunctionCallee AsanErrorCallback[2][2][kNumberOfAccessSizes];
775  FunctionCallee AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes];
776
777  // These arrays is indexed by AccessIsWrite and Experiment.
778  FunctionCallee AsanErrorCallbackSized[2][2];
779  FunctionCallee AsanMemoryAccessCallbackSized[2][2];
780
781  FunctionCallee AsanMemmove, AsanMemcpy, AsanMemset;
782  Value *LocalDynamicShadow = nullptr;
783  const StackSafetyGlobalInfo *SSGI;
784  DenseMap<const AllocaInst *, bool> ProcessedAllocas;
785
786  FunctionCallee AMDGPUAddressShared;
787  FunctionCallee AMDGPUAddressPrivate;
788  int InstrumentationWithCallsThreshold;
789  uint32_t MaxInlinePoisoningSize;
790};
791
792class ModuleAddressSanitizer {
793public:
794  ModuleAddressSanitizer(Module &M, bool InsertVersionCheck,
795                         bool CompileKernel = false, bool Recover = false,
796                         bool UseGlobalsGC = true, bool UseOdrIndicator = true,
797                         AsanDtorKind DestructorKind = AsanDtorKind::Global,
798                         AsanCtorKind ConstructorKind = AsanCtorKind::Global)
799      : CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan
800                                                            : CompileKernel),
801        InsertVersionCheck(ClInsertVersionCheck.getNumOccurrences() > 0
802                               ? ClInsertVersionCheck
803                               : InsertVersionCheck),
804        Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover),
805        UseGlobalsGC(UseGlobalsGC && ClUseGlobalsGC && !this->CompileKernel),
806        // Enable aliases as they should have no downside with ODR indicators.
807        UsePrivateAlias(ClUsePrivateAlias.getNumOccurrences() > 0
808                            ? ClUsePrivateAlias
809                            : UseOdrIndicator),
810        UseOdrIndicator(ClUseOdrIndicator.getNumOccurrences() > 0
811                            ? ClUseOdrIndicator
812                            : UseOdrIndicator),
813        // Not a typo: ClWithComdat is almost completely pointless without
814        // ClUseGlobalsGC (because then it only works on modules without
815        // globals, which are rare); it is a prerequisite for ClUseGlobalsGC;
816        // and both suffer from gold PR19002 for which UseGlobalsGC constructor
817        // argument is designed as workaround. Therefore, disable both
818        // ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to
819        // do globals-gc.
820        UseCtorComdat(UseGlobalsGC && ClWithComdat && !this->CompileKernel),
821        DestructorKind(DestructorKind),
822        ConstructorKind(ClConstructorKind.getNumOccurrences() > 0
823                            ? ClConstructorKind
824                            : ConstructorKind) {
825    C = &(M.getContext());
826    int LongSize = M.getDataLayout().getPointerSizeInBits();
827    IntptrTy = Type::getIntNTy(*C, LongSize);
828    PtrTy = PointerType::getUnqual(*C);
829    TargetTriple = Triple(M.getTargetTriple());
830    Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel);
831
832    if (ClOverrideDestructorKind != AsanDtorKind::Invalid)
833      this->DestructorKind = ClOverrideDestructorKind;
834    assert(this->DestructorKind != AsanDtorKind::Invalid);
835  }
836
837  bool instrumentModule(Module &);
838
839private:
840  void initializeCallbacks(Module &M);
841
842  void instrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat);
843  void InstrumentGlobalsCOFF(IRBuilder<> &IRB, Module &M,
844                             ArrayRef<GlobalVariable *> ExtendedGlobals,
845                             ArrayRef<Constant *> MetadataInitializers);
846  void instrumentGlobalsELF(IRBuilder<> &IRB, Module &M,
847                            ArrayRef<GlobalVariable *> ExtendedGlobals,
848                            ArrayRef<Constant *> MetadataInitializers,
849                            const std::string &UniqueModuleId);
850  void InstrumentGlobalsMachO(IRBuilder<> &IRB, Module &M,
851                              ArrayRef<GlobalVariable *> ExtendedGlobals,
852                              ArrayRef<Constant *> MetadataInitializers);
853  void
854  InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB, Module &M,
855                                     ArrayRef<GlobalVariable *> ExtendedGlobals,
856                                     ArrayRef<Constant *> MetadataInitializers);
857
858  GlobalVariable *CreateMetadataGlobal(Module &M, Constant *Initializer,
859                                       StringRef OriginalName);
860  void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata,
861                                  StringRef InternalSuffix);
862  Instruction *CreateAsanModuleDtor(Module &M);
863
864  const GlobalVariable *getExcludedAliasedGlobal(const GlobalAlias &GA) const;
865  bool shouldInstrumentGlobal(GlobalVariable *G) const;
866  bool ShouldUseMachOGlobalsSection() const;
867  StringRef getGlobalMetadataSection() const;
868  void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName);
869  void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName);
870  uint64_t getMinRedzoneSizeForGlobal() const {
871    return getRedzoneSizeForScale(Mapping.Scale);
872  }
873  uint64_t getRedzoneSizeForGlobal(uint64_t SizeInBytes) const;
874  int GetAsanVersion(const Module &M) const;
875
876  bool CompileKernel;
877  bool InsertVersionCheck;
878  bool Recover;
879  bool UseGlobalsGC;
880  bool UsePrivateAlias;
881  bool UseOdrIndicator;
882  bool UseCtorComdat;
883  AsanDtorKind DestructorKind;
884  AsanCtorKind ConstructorKind;
885  Type *IntptrTy;
886  PointerType *PtrTy;
887  LLVMContext *C;
888  Triple TargetTriple;
889  ShadowMapping Mapping;
890  FunctionCallee AsanPoisonGlobals;
891  FunctionCallee AsanUnpoisonGlobals;
892  FunctionCallee AsanRegisterGlobals;
893  FunctionCallee AsanUnregisterGlobals;
894  FunctionCallee AsanRegisterImageGlobals;
895  FunctionCallee AsanUnregisterImageGlobals;
896  FunctionCallee AsanRegisterElfGlobals;
897  FunctionCallee AsanUnregisterElfGlobals;
898
899  Function *AsanCtorFunction = nullptr;
900  Function *AsanDtorFunction = nullptr;
901};
902
903// Stack poisoning does not play well with exception handling.
904// When an exception is thrown, we essentially bypass the code
905// that unpoisones the stack. This is why the run-time library has
906// to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire
907// stack in the interceptor. This however does not work inside the
908// actual function which catches the exception. Most likely because the
909// compiler hoists the load of the shadow value somewhere too high.
910// This causes asan to report a non-existing bug on 453.povray.
911// It sounds like an LLVM bug.
912struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> {
913  Function &F;
914  AddressSanitizer &ASan;
915  DIBuilder DIB;
916  LLVMContext *C;
917  Type *IntptrTy;
918  Type *IntptrPtrTy;
919  ShadowMapping Mapping;
920
921  SmallVector<AllocaInst *, 16> AllocaVec;
922  SmallVector<AllocaInst *, 16> StaticAllocasToMoveUp;
923  SmallVector<Instruction *, 8> RetVec;
924
925  FunctionCallee AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1],
926      AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1];
927  FunctionCallee AsanSetShadowFunc[0x100] = {};
928  FunctionCallee AsanPoisonStackMemoryFunc, AsanUnpoisonStackMemoryFunc;
929  FunctionCallee AsanAllocaPoisonFunc, AsanAllocasUnpoisonFunc;
930
931  // Stores a place and arguments of poisoning/unpoisoning call for alloca.
932  struct AllocaPoisonCall {
933    IntrinsicInst *InsBefore;
934    AllocaInst *AI;
935    uint64_t Size;
936    bool DoPoison;
937  };
938  SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec;
939  SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec;
940  bool HasUntracedLifetimeIntrinsic = false;
941
942  SmallVector<AllocaInst *, 1> DynamicAllocaVec;
943  SmallVector<IntrinsicInst *, 1> StackRestoreVec;
944  AllocaInst *DynamicAllocaLayout = nullptr;
945  IntrinsicInst *LocalEscapeCall = nullptr;
946
947  bool HasInlineAsm = false;
948  bool HasReturnsTwiceCall = false;
949  bool PoisonStack;
950
951  FunctionStackPoisoner(Function &F, AddressSanitizer &ASan)
952      : F(F), ASan(ASan), DIB(*F.getParent(), /*AllowUnresolved*/ false),
953        C(ASan.C), IntptrTy(ASan.IntptrTy),
954        IntptrPtrTy(PointerType::get(IntptrTy, 0)), Mapping(ASan.Mapping),
955        PoisonStack(ClStack &&
956                    !Triple(F.getParent()->getTargetTriple()).isAMDGPU()) {}
957
958  bool runOnFunction() {
959    if (!PoisonStack)
960      return false;
961
962    if (ClRedzoneByvalArgs)
963      copyArgsPassedByValToAllocas();
964
965    // Collect alloca, ret, lifetime instructions etc.
966    for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB);
967
968    if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false;
969
970    initializeCallbacks(*F.getParent());
971
972    if (HasUntracedLifetimeIntrinsic) {
973      // If there are lifetime intrinsics which couldn't be traced back to an
974      // alloca, we may not know exactly when a variable enters scope, and
975      // therefore should "fail safe" by not poisoning them.
976      StaticAllocaPoisonCallVec.clear();
977      DynamicAllocaPoisonCallVec.clear();
978    }
979
980    processDynamicAllocas();
981    processStaticAllocas();
982
983    if (ClDebugStack) {
984      LLVM_DEBUG(dbgs() << F);
985    }
986    return true;
987  }
988
989  // Arguments marked with the "byval" attribute are implicitly copied without
990  // using an alloca instruction.  To produce redzones for those arguments, we
991  // copy them a second time into memory allocated with an alloca instruction.
992  void copyArgsPassedByValToAllocas();
993
994  // Finds all Alloca instructions and puts
995  // poisoned red zones around all of them.
996  // Then unpoison everything back before the function returns.
997  void processStaticAllocas();
998  void processDynamicAllocas();
999
1000  void createDynamicAllocasInitStorage();
1001
1002  // ----------------------- Visitors.
1003  /// Collect all Ret instructions, or the musttail call instruction if it
1004  /// precedes the return instruction.
1005  void visitReturnInst(ReturnInst &RI) {
1006    if (CallInst *CI = RI.getParent()->getTerminatingMustTailCall())
1007      RetVec.push_back(CI);
1008    else
1009      RetVec.push_back(&RI);
1010  }
1011
1012  /// Collect all Resume instructions.
1013  void visitResumeInst(ResumeInst &RI) { RetVec.push_back(&RI); }
1014
1015  /// Collect all CatchReturnInst instructions.
1016  void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(&CRI); }
1017
1018  void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore,
1019                                        Value *SavedStack) {
1020    IRBuilder<> IRB(InstBefore);
1021    Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy);
1022    // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we
1023    // need to adjust extracted SP to compute the address of the most recent
1024    // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for
1025    // this purpose.
1026    if (!isa<ReturnInst>(InstBefore)) {
1027      Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration(
1028          InstBefore->getModule(), Intrinsic::get_dynamic_area_offset,
1029          {IntptrTy});
1030
1031      Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {});
1032
1033      DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy),
1034                                     DynamicAreaOffset);
1035    }
1036
1037    IRB.CreateCall(
1038        AsanAllocasUnpoisonFunc,
1039        {IRB.CreateLoad(IntptrTy, DynamicAllocaLayout), DynamicAreaPtr});
1040  }
1041
1042  // Unpoison dynamic allocas redzones.
1043  void unpoisonDynamicAllocas() {
1044    for (Instruction *Ret : RetVec)
1045      unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout);
1046
1047    for (Instruction *StackRestoreInst : StackRestoreVec)
1048      unpoisonDynamicAllocasBeforeInst(StackRestoreInst,
1049                                       StackRestoreInst->getOperand(0));
1050  }
1051
1052  // Deploy and poison redzones around dynamic alloca call. To do this, we
1053  // should replace this call with another one with changed parameters and
1054  // replace all its uses with new address, so
1055  //   addr = alloca type, old_size, align
1056  // is replaced by
1057  //   new_size = (old_size + additional_size) * sizeof(type)
1058  //   tmp = alloca i8, new_size, max(align, 32)
1059  //   addr = tmp + 32 (first 32 bytes are for the left redzone).
1060  // Additional_size is added to make new memory allocation contain not only
1061  // requested memory, but also left, partial and right redzones.
1062  void handleDynamicAllocaCall(AllocaInst *AI);
1063
1064  /// Collect Alloca instructions we want (and can) handle.
1065  void visitAllocaInst(AllocaInst &AI) {
1066    // FIXME: Handle scalable vectors instead of ignoring them.
1067    if (!ASan.isInterestingAlloca(AI) ||
1068        isa<ScalableVectorType>(AI.getAllocatedType())) {
1069      if (AI.isStaticAlloca()) {
1070        // Skip over allocas that are present *before* the first instrumented
1071        // alloca, we don't want to move those around.
1072        if (AllocaVec.empty())
1073          return;
1074
1075        StaticAllocasToMoveUp.push_back(&AI);
1076      }
1077      return;
1078    }
1079
1080    if (!AI.isStaticAlloca())
1081      DynamicAllocaVec.push_back(&AI);
1082    else
1083      AllocaVec.push_back(&AI);
1084  }
1085
1086  /// Collect lifetime intrinsic calls to check for use-after-scope
1087  /// errors.
1088  void visitIntrinsicInst(IntrinsicInst &II) {
1089    Intrinsic::ID ID = II.getIntrinsicID();
1090    if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II);
1091    if (ID == Intrinsic::localescape) LocalEscapeCall = &II;
1092    if (!ASan.UseAfterScope)
1093      return;
1094    if (!II.isLifetimeStartOrEnd())
1095      return;
1096    // Found lifetime intrinsic, add ASan instrumentation if necessary.
1097    auto *Size = cast<ConstantInt>(II.getArgOperand(0));
1098    // If size argument is undefined, don't do anything.
1099    if (Size->isMinusOne()) return;
1100    // Check that size doesn't saturate uint64_t and can
1101    // be stored in IntptrTy.
1102    const uint64_t SizeValue = Size->getValue().getLimitedValue();
1103    if (SizeValue == ~0ULL ||
1104        !ConstantInt::isValueValidForType(IntptrTy, SizeValue))
1105      return;
1106    // Find alloca instruction that corresponds to llvm.lifetime argument.
1107    // Currently we can only handle lifetime markers pointing to the
1108    // beginning of the alloca.
1109    AllocaInst *AI = findAllocaForValue(II.getArgOperand(1), true);
1110    if (!AI) {
1111      HasUntracedLifetimeIntrinsic = true;
1112      return;
1113    }
1114    // We're interested only in allocas we can handle.
1115    if (!ASan.isInterestingAlloca(*AI))
1116      return;
1117    bool DoPoison = (ID == Intrinsic::lifetime_end);
1118    AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison};
1119    if (AI->isStaticAlloca())
1120      StaticAllocaPoisonCallVec.push_back(APC);
1121    else if (ClInstrumentDynamicAllocas)
1122      DynamicAllocaPoisonCallVec.push_back(APC);
1123  }
1124
1125  void visitCallBase(CallBase &CB) {
1126    if (CallInst *CI = dyn_cast<CallInst>(&CB)) {
1127      HasInlineAsm |= CI->isInlineAsm() && &CB != ASan.LocalDynamicShadow;
1128      HasReturnsTwiceCall |= CI->canReturnTwice();
1129    }
1130  }
1131
1132  // ---------------------- Helpers.
1133  void initializeCallbacks(Module &M);
1134
1135  // Copies bytes from ShadowBytes into shadow memory for indexes where
1136  // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that
1137  // ShadowBytes[i] is constantly zero and doesn't need to be overwritten.
1138  void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes,
1139                    IRBuilder<> &IRB, Value *ShadowBase);
1140  void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes,
1141                    size_t Begin, size_t End, IRBuilder<> &IRB,
1142                    Value *ShadowBase);
1143  void copyToShadowInline(ArrayRef<uint8_t> ShadowMask,
1144                          ArrayRef<uint8_t> ShadowBytes, size_t Begin,
1145                          size_t End, IRBuilder<> &IRB, Value *ShadowBase);
1146
1147  void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison);
1148
1149  Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L,
1150                               bool Dynamic);
1151  PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue,
1152                     Instruction *ThenTerm, Value *ValueIfFalse);
1153};
1154
1155} // end anonymous namespace
1156
1157void AddressSanitizerPass::printPipeline(
1158    raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
1159  static_cast<PassInfoMixin<AddressSanitizerPass> *>(this)->printPipeline(
1160      OS, MapClassName2PassName);
1161  OS << '<';
1162  if (Options.CompileKernel)
1163    OS << "kernel";
1164  OS << '>';
1165}
1166
1167AddressSanitizerPass::AddressSanitizerPass(
1168    const AddressSanitizerOptions &Options, bool UseGlobalGC,
1169    bool UseOdrIndicator, AsanDtorKind DestructorKind,
1170    AsanCtorKind ConstructorKind)
1171    : Options(Options), UseGlobalGC(UseGlobalGC),
1172      UseOdrIndicator(UseOdrIndicator), DestructorKind(DestructorKind),
1173      ConstructorKind(ConstructorKind) {}
1174
1175PreservedAnalyses AddressSanitizerPass::run(Module &M,
1176                                            ModuleAnalysisManager &MAM) {
1177  ModuleAddressSanitizer ModuleSanitizer(
1178      M, Options.InsertVersionCheck, Options.CompileKernel, Options.Recover,
1179      UseGlobalGC, UseOdrIndicator, DestructorKind, ConstructorKind);
1180  bool Modified = false;
1181  auto &FAM = MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1182  const StackSafetyGlobalInfo *const SSGI =
1183      ClUseStackSafety ? &MAM.getResult<StackSafetyGlobalAnalysis>(M) : nullptr;
1184  for (Function &F : M) {
1185    AddressSanitizer FunctionSanitizer(
1186        M, SSGI, Options.InstrumentationWithCallsThreshold,
1187        Options.MaxInlinePoisoningSize, Options.CompileKernel, Options.Recover,
1188        Options.UseAfterScope, Options.UseAfterReturn);
1189    const TargetLibraryInfo &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
1190    Modified |= FunctionSanitizer.instrumentFunction(F, &TLI);
1191  }
1192  Modified |= ModuleSanitizer.instrumentModule(M);
1193  if (!Modified)
1194    return PreservedAnalyses::all();
1195
1196  PreservedAnalyses PA = PreservedAnalyses::none();
1197  // GlobalsAA is considered stateless and does not get invalidated unless
1198  // explicitly invalidated; PreservedAnalyses::none() is not enough. Sanitizers
1199  // make changes that require GlobalsAA to be invalidated.
1200  PA.abandon<GlobalsAA>();
1201  return PA;
1202}
1203
1204static size_t TypeStoreSizeToSizeIndex(uint32_t TypeSize) {
1205  size_t Res = llvm::countr_zero(TypeSize / 8);
1206  assert(Res < kNumberOfAccessSizes);
1207  return Res;
1208}
1209
1210/// Check if \p G has been created by a trusted compiler pass.
1211static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) {
1212  // Do not instrument @llvm.global_ctors, @llvm.used, etc.
1213  if (G->getName().starts_with("llvm.") ||
1214      // Do not instrument gcov counter arrays.
1215      G->getName().starts_with("__llvm_gcov_ctr") ||
1216      // Do not instrument rtti proxy symbols for function sanitizer.
1217      G->getName().starts_with("__llvm_rtti_proxy"))
1218    return true;
1219
1220  // Do not instrument asan globals.
1221  if (G->getName().starts_with(kAsanGenPrefix) ||
1222      G->getName().starts_with(kSanCovGenPrefix) ||
1223      G->getName().starts_with(kODRGenPrefix))
1224    return true;
1225
1226  return false;
1227}
1228
1229static bool isUnsupportedAMDGPUAddrspace(Value *Addr) {
1230  Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType());
1231  unsigned int AddrSpace = PtrTy->getPointerAddressSpace();
1232  if (AddrSpace == 3 || AddrSpace == 5)
1233    return true;
1234  return false;
1235}
1236
1237Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) {
1238  // Shadow >> scale
1239  Shadow = IRB.CreateLShr(Shadow, Mapping.Scale);
1240  if (Mapping.Offset == 0) return Shadow;
1241  // (Shadow >> scale) | offset
1242  Value *ShadowBase;
1243  if (LocalDynamicShadow)
1244    ShadowBase = LocalDynamicShadow;
1245  else
1246    ShadowBase = ConstantInt::get(IntptrTy, Mapping.Offset);
1247  if (Mapping.OrShadowOffset)
1248    return IRB.CreateOr(Shadow, ShadowBase);
1249  else
1250    return IRB.CreateAdd(Shadow, ShadowBase);
1251}
1252
1253// Instrument memset/memmove/memcpy
1254void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) {
1255  InstrumentationIRBuilder IRB(MI);
1256  if (isa<MemTransferInst>(MI)) {
1257    IRB.CreateCall(isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy,
1258                   {MI->getOperand(0), MI->getOperand(1),
1259                    IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
1260  } else if (isa<MemSetInst>(MI)) {
1261    IRB.CreateCall(
1262        AsanMemset,
1263        {MI->getOperand(0),
1264         IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false),
1265         IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
1266  }
1267  MI->eraseFromParent();
1268}
1269
1270/// Check if we want (and can) handle this alloca.
1271bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) {
1272  auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI);
1273
1274  if (PreviouslySeenAllocaInfo != ProcessedAllocas.end())
1275    return PreviouslySeenAllocaInfo->getSecond();
1276
1277  bool IsInteresting =
1278      (AI.getAllocatedType()->isSized() &&
1279       // alloca() may be called with 0 size, ignore it.
1280       ((!AI.isStaticAlloca()) || !getAllocaSizeInBytes(AI).isZero()) &&
1281       // We are only interested in allocas not promotable to registers.
1282       // Promotable allocas are common under -O0.
1283       (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) &&
1284       // inalloca allocas are not treated as static, and we don't want
1285       // dynamic alloca instrumentation for them as well.
1286       !AI.isUsedWithInAlloca() &&
1287       // swifterror allocas are register promoted by ISel
1288       !AI.isSwiftError() &&
1289       // safe allocas are not interesting
1290       !(SSGI && SSGI->isSafe(AI)));
1291
1292  ProcessedAllocas[&AI] = IsInteresting;
1293  return IsInteresting;
1294}
1295
1296bool AddressSanitizer::ignoreAccess(Instruction *Inst, Value *Ptr) {
1297  // Instrument accesses from different address spaces only for AMDGPU.
1298  Type *PtrTy = cast<PointerType>(Ptr->getType()->getScalarType());
1299  if (PtrTy->getPointerAddressSpace() != 0 &&
1300      !(TargetTriple.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(Ptr)))
1301    return true;
1302
1303  // Ignore swifterror addresses.
1304  // swifterror memory addresses are mem2reg promoted by instruction
1305  // selection. As such they cannot have regular uses like an instrumentation
1306  // function and it makes no sense to track them as memory.
1307  if (Ptr->isSwiftError())
1308    return true;
1309
1310  // Treat memory accesses to promotable allocas as non-interesting since they
1311  // will not cause memory violations. This greatly speeds up the instrumented
1312  // executable at -O0.
1313  if (auto AI = dyn_cast_or_null<AllocaInst>(Ptr))
1314    if (ClSkipPromotableAllocas && !isInterestingAlloca(*AI))
1315      return true;
1316
1317  if (SSGI != nullptr && SSGI->stackAccessIsSafe(*Inst) &&
1318      findAllocaForValue(Ptr))
1319    return true;
1320
1321  return false;
1322}
1323
1324void AddressSanitizer::getInterestingMemoryOperands(
1325    Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting) {
1326  // Do not instrument the load fetching the dynamic shadow address.
1327  if (LocalDynamicShadow == I)
1328    return;
1329
1330  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1331    if (!ClInstrumentReads || ignoreAccess(I, LI->getPointerOperand()))
1332      return;
1333    Interesting.emplace_back(I, LI->getPointerOperandIndex(), false,
1334                             LI->getType(), LI->getAlign());
1335  } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
1336    if (!ClInstrumentWrites || ignoreAccess(I, SI->getPointerOperand()))
1337      return;
1338    Interesting.emplace_back(I, SI->getPointerOperandIndex(), true,
1339                             SI->getValueOperand()->getType(), SI->getAlign());
1340  } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
1341    if (!ClInstrumentAtomics || ignoreAccess(I, RMW->getPointerOperand()))
1342      return;
1343    Interesting.emplace_back(I, RMW->getPointerOperandIndex(), true,
1344                             RMW->getValOperand()->getType(), std::nullopt);
1345  } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) {
1346    if (!ClInstrumentAtomics || ignoreAccess(I, XCHG->getPointerOperand()))
1347      return;
1348    Interesting.emplace_back(I, XCHG->getPointerOperandIndex(), true,
1349                             XCHG->getCompareOperand()->getType(),
1350                             std::nullopt);
1351  } else if (auto CI = dyn_cast<CallInst>(I)) {
1352    switch (CI->getIntrinsicID()) {
1353    case Intrinsic::masked_load:
1354    case Intrinsic::masked_store:
1355    case Intrinsic::masked_gather:
1356    case Intrinsic::masked_scatter: {
1357      bool IsWrite = CI->getType()->isVoidTy();
1358      // Masked store has an initial operand for the value.
1359      unsigned OpOffset = IsWrite ? 1 : 0;
1360      if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads)
1361        return;
1362
1363      auto BasePtr = CI->getOperand(OpOffset);
1364      if (ignoreAccess(I, BasePtr))
1365        return;
1366      Type *Ty = IsWrite ? CI->getArgOperand(0)->getType() : CI->getType();
1367      MaybeAlign Alignment = Align(1);
1368      // Otherwise no alignment guarantees. We probably got Undef.
1369      if (auto *Op = dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset)))
1370        Alignment = Op->getMaybeAlignValue();
1371      Value *Mask = CI->getOperand(2 + OpOffset);
1372      Interesting.emplace_back(I, OpOffset, IsWrite, Ty, Alignment, Mask);
1373      break;
1374    }
1375    case Intrinsic::masked_expandload:
1376    case Intrinsic::masked_compressstore: {
1377      bool IsWrite = CI->getIntrinsicID() == Intrinsic::masked_compressstore;
1378      unsigned OpOffset = IsWrite ? 1 : 0;
1379      if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads)
1380        return;
1381      auto BasePtr = CI->getOperand(OpOffset);
1382      if (ignoreAccess(I, BasePtr))
1383        return;
1384      MaybeAlign Alignment = BasePtr->getPointerAlignment(*DL);
1385      Type *Ty = IsWrite ? CI->getArgOperand(0)->getType() : CI->getType();
1386
1387      IRBuilder IB(I);
1388      Value *Mask = CI->getOperand(1 + OpOffset);
1389      // Use the popcount of Mask as the effective vector length.
1390      Type *ExtTy = VectorType::get(IntptrTy, cast<VectorType>(Ty));
1391      Value *ExtMask = IB.CreateZExt(Mask, ExtTy);
1392      Value *EVL = IB.CreateAddReduce(ExtMask);
1393      Value *TrueMask = ConstantInt::get(Mask->getType(), 1);
1394      Interesting.emplace_back(I, OpOffset, IsWrite, Ty, Alignment, TrueMask,
1395                               EVL);
1396      break;
1397    }
1398    case Intrinsic::vp_load:
1399    case Intrinsic::vp_store:
1400    case Intrinsic::experimental_vp_strided_load:
1401    case Intrinsic::experimental_vp_strided_store: {
1402      auto *VPI = cast<VPIntrinsic>(CI);
1403      unsigned IID = CI->getIntrinsicID();
1404      bool IsWrite = CI->getType()->isVoidTy();
1405      if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads)
1406        return;
1407      unsigned PtrOpNo = *VPI->getMemoryPointerParamPos(IID);
1408      Type *Ty = IsWrite ? CI->getArgOperand(0)->getType() : CI->getType();
1409      MaybeAlign Alignment = VPI->getOperand(PtrOpNo)->getPointerAlignment(*DL);
1410      Value *Stride = nullptr;
1411      if (IID == Intrinsic::experimental_vp_strided_store ||
1412          IID == Intrinsic::experimental_vp_strided_load) {
1413        Stride = VPI->getOperand(PtrOpNo + 1);
1414        // Use the pointer alignment as the element alignment if the stride is a
1415        // mutiple of the pointer alignment. Otherwise, the element alignment
1416        // should be Align(1).
1417        unsigned PointerAlign = Alignment.valueOrOne().value();
1418        if (!isa<ConstantInt>(Stride) ||
1419            cast<ConstantInt>(Stride)->getZExtValue() % PointerAlign != 0)
1420          Alignment = Align(1);
1421      }
1422      Interesting.emplace_back(I, PtrOpNo, IsWrite, Ty, Alignment,
1423                               VPI->getMaskParam(), VPI->getVectorLengthParam(),
1424                               Stride);
1425      break;
1426    }
1427    case Intrinsic::vp_gather:
1428    case Intrinsic::vp_scatter: {
1429      auto *VPI = cast<VPIntrinsic>(CI);
1430      unsigned IID = CI->getIntrinsicID();
1431      bool IsWrite = IID == Intrinsic::vp_scatter;
1432      if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads)
1433        return;
1434      unsigned PtrOpNo = *VPI->getMemoryPointerParamPos(IID);
1435      Type *Ty = IsWrite ? CI->getArgOperand(0)->getType() : CI->getType();
1436      MaybeAlign Alignment = VPI->getPointerAlignment();
1437      Interesting.emplace_back(I, PtrOpNo, IsWrite, Ty, Alignment,
1438                               VPI->getMaskParam(),
1439                               VPI->getVectorLengthParam());
1440      break;
1441    }
1442    default:
1443      for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ArgNo++) {
1444        if (!ClInstrumentByval || !CI->isByValArgument(ArgNo) ||
1445            ignoreAccess(I, CI->getArgOperand(ArgNo)))
1446          continue;
1447        Type *Ty = CI->getParamByValType(ArgNo);
1448        Interesting.emplace_back(I, ArgNo, false, Ty, Align(1));
1449      }
1450    }
1451  }
1452}
1453
1454static bool isPointerOperand(Value *V) {
1455  return V->getType()->isPointerTy() || isa<PtrToIntInst>(V);
1456}
1457
1458// This is a rough heuristic; it may cause both false positives and
1459// false negatives. The proper implementation requires cooperation with
1460// the frontend.
1461static bool isInterestingPointerComparison(Instruction *I) {
1462  if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) {
1463    if (!Cmp->isRelational())
1464      return false;
1465  } else {
1466    return false;
1467  }
1468  return isPointerOperand(I->getOperand(0)) &&
1469         isPointerOperand(I->getOperand(1));
1470}
1471
1472// This is a rough heuristic; it may cause both false positives and
1473// false negatives. The proper implementation requires cooperation with
1474// the frontend.
1475static bool isInterestingPointerSubtraction(Instruction *I) {
1476  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
1477    if (BO->getOpcode() != Instruction::Sub)
1478      return false;
1479  } else {
1480    return false;
1481  }
1482  return isPointerOperand(I->getOperand(0)) &&
1483         isPointerOperand(I->getOperand(1));
1484}
1485
1486bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) {
1487  // If a global variable does not have dynamic initialization we don't
1488  // have to instrument it.  However, if a global does not have initializer
1489  // at all, we assume it has dynamic initializer (in other TU).
1490  if (!G->hasInitializer())
1491    return false;
1492
1493  if (G->hasSanitizerMetadata() && G->getSanitizerMetadata().IsDynInit)
1494    return false;
1495
1496  return true;
1497}
1498
1499void AddressSanitizer::instrumentPointerComparisonOrSubtraction(
1500    Instruction *I) {
1501  IRBuilder<> IRB(I);
1502  FunctionCallee F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction;
1503  Value *Param[2] = {I->getOperand(0), I->getOperand(1)};
1504  for (Value *&i : Param) {
1505    if (i->getType()->isPointerTy())
1506      i = IRB.CreatePointerCast(i, IntptrTy);
1507  }
1508  IRB.CreateCall(F, Param);
1509}
1510
1511static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I,
1512                                Instruction *InsertBefore, Value *Addr,
1513                                MaybeAlign Alignment, unsigned Granularity,
1514                                TypeSize TypeStoreSize, bool IsWrite,
1515                                Value *SizeArgument, bool UseCalls,
1516                                uint32_t Exp) {
1517  // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check
1518  // if the data is properly aligned.
1519  if (!TypeStoreSize.isScalable()) {
1520    const auto FixedSize = TypeStoreSize.getFixedValue();
1521    switch (FixedSize) {
1522    case 8:
1523    case 16:
1524    case 32:
1525    case 64:
1526    case 128:
1527      if (!Alignment || *Alignment >= Granularity ||
1528          *Alignment >= FixedSize / 8)
1529        return Pass->instrumentAddress(I, InsertBefore, Addr, Alignment,
1530                                       FixedSize, IsWrite, nullptr, UseCalls,
1531                                       Exp);
1532    }
1533  }
1534  Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeStoreSize,
1535                                         IsWrite, nullptr, UseCalls, Exp);
1536}
1537
1538void AddressSanitizer::instrumentMaskedLoadOrStore(
1539    AddressSanitizer *Pass, const DataLayout &DL, Type *IntptrTy, Value *Mask,
1540    Value *EVL, Value *Stride, Instruction *I, Value *Addr,
1541    MaybeAlign Alignment, unsigned Granularity, Type *OpType, bool IsWrite,
1542    Value *SizeArgument, bool UseCalls, uint32_t Exp) {
1543  auto *VTy = cast<VectorType>(OpType);
1544  TypeSize ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType());
1545  auto Zero = ConstantInt::get(IntptrTy, 0);
1546
1547  IRBuilder IB(I);
1548  Instruction *LoopInsertBefore = I;
1549  if (EVL) {
1550    // The end argument of SplitBlockAndInsertForLane is assumed bigger
1551    // than zero, so we should check whether EVL is zero here.
1552    Type *EVLType = EVL->getType();
1553    Value *IsEVLZero = IB.CreateICmpNE(EVL, ConstantInt::get(EVLType, 0));
1554    LoopInsertBefore = SplitBlockAndInsertIfThen(IsEVLZero, I, false);
1555    IB.SetInsertPoint(LoopInsertBefore);
1556    // Cast EVL to IntptrTy.
1557    EVL = IB.CreateZExtOrTrunc(EVL, IntptrTy);
1558    // To avoid undefined behavior for extracting with out of range index, use
1559    // the minimum of evl and element count as trip count.
1560    Value *EC = IB.CreateElementCount(IntptrTy, VTy->getElementCount());
1561    EVL = IB.CreateBinaryIntrinsic(Intrinsic::umin, EVL, EC);
1562  } else {
1563    EVL = IB.CreateElementCount(IntptrTy, VTy->getElementCount());
1564  }
1565
1566  // Cast Stride to IntptrTy.
1567  if (Stride)
1568    Stride = IB.CreateZExtOrTrunc(Stride, IntptrTy);
1569
1570  SplitBlockAndInsertForEachLane(EVL, LoopInsertBefore,
1571                                 [&](IRBuilderBase &IRB, Value *Index) {
1572    Value *MaskElem = IRB.CreateExtractElement(Mask, Index);
1573    if (auto *MaskElemC = dyn_cast<ConstantInt>(MaskElem)) {
1574      if (MaskElemC->isZero())
1575        // No check
1576        return;
1577      // Unconditional check
1578    } else {
1579      // Conditional check
1580      Instruction *ThenTerm = SplitBlockAndInsertIfThen(
1581          MaskElem, &*IRB.GetInsertPoint(), false);
1582      IRB.SetInsertPoint(ThenTerm);
1583    }
1584
1585    Value *InstrumentedAddress;
1586    if (isa<VectorType>(Addr->getType())) {
1587      assert(
1588          cast<VectorType>(Addr->getType())->getElementType()->isPointerTy() &&
1589          "Expected vector of pointer.");
1590      InstrumentedAddress = IRB.CreateExtractElement(Addr, Index);
1591    } else if (Stride) {
1592      Index = IRB.CreateMul(Index, Stride);
1593      InstrumentedAddress = IRB.CreatePtrAdd(Addr, Index);
1594    } else {
1595      InstrumentedAddress = IRB.CreateGEP(VTy, Addr, {Zero, Index});
1596    }
1597    doInstrumentAddress(Pass, I, &*IRB.GetInsertPoint(),
1598                        InstrumentedAddress, Alignment, Granularity,
1599                        ElemTypeSize, IsWrite, SizeArgument, UseCalls, Exp);
1600  });
1601}
1602
1603void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis,
1604                                     InterestingMemoryOperand &O, bool UseCalls,
1605                                     const DataLayout &DL) {
1606  Value *Addr = O.getPtr();
1607
1608  // Optimization experiments.
1609  // The experiments can be used to evaluate potential optimizations that remove
1610  // instrumentation (assess false negatives). Instead of completely removing
1611  // some instrumentation, you set Exp to a non-zero value (mask of optimization
1612  // experiments that want to remove instrumentation of this instruction).
1613  // If Exp is non-zero, this pass will emit special calls into runtime
1614  // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls
1615  // make runtime terminate the program in a special way (with a different
1616  // exit status). Then you run the new compiler on a buggy corpus, collect
1617  // the special terminations (ideally, you don't see them at all -- no false
1618  // negatives) and make the decision on the optimization.
1619  uint32_t Exp = ClForceExperiment;
1620
1621  if (ClOpt && ClOptGlobals) {
1622    // If initialization order checking is disabled, a simple access to a
1623    // dynamically initialized global is always valid.
1624    GlobalVariable *G = dyn_cast<GlobalVariable>(getUnderlyingObject(Addr));
1625    if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) &&
1626        isSafeAccess(ObjSizeVis, Addr, O.TypeStoreSize)) {
1627      NumOptimizedAccessesToGlobalVar++;
1628      return;
1629    }
1630  }
1631
1632  if (ClOpt && ClOptStack) {
1633    // A direct inbounds access to a stack variable is always valid.
1634    if (isa<AllocaInst>(getUnderlyingObject(Addr)) &&
1635        isSafeAccess(ObjSizeVis, Addr, O.TypeStoreSize)) {
1636      NumOptimizedAccessesToStackVar++;
1637      return;
1638    }
1639  }
1640
1641  if (O.IsWrite)
1642    NumInstrumentedWrites++;
1643  else
1644    NumInstrumentedReads++;
1645
1646  unsigned Granularity = 1 << Mapping.Scale;
1647  if (O.MaybeMask) {
1648    instrumentMaskedLoadOrStore(this, DL, IntptrTy, O.MaybeMask, O.MaybeEVL,
1649                                O.MaybeStride, O.getInsn(), Addr, O.Alignment,
1650                                Granularity, O.OpType, O.IsWrite, nullptr,
1651                                UseCalls, Exp);
1652  } else {
1653    doInstrumentAddress(this, O.getInsn(), O.getInsn(), Addr, O.Alignment,
1654                        Granularity, O.TypeStoreSize, O.IsWrite, nullptr, UseCalls,
1655                        Exp);
1656  }
1657}
1658
1659Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore,
1660                                                 Value *Addr, bool IsWrite,
1661                                                 size_t AccessSizeIndex,
1662                                                 Value *SizeArgument,
1663                                                 uint32_t Exp) {
1664  InstrumentationIRBuilder IRB(InsertBefore);
1665  Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp);
1666  CallInst *Call = nullptr;
1667  if (SizeArgument) {
1668    if (Exp == 0)
1669      Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0],
1670                            {Addr, SizeArgument});
1671    else
1672      Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1],
1673                            {Addr, SizeArgument, ExpVal});
1674  } else {
1675    if (Exp == 0)
1676      Call =
1677          IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr);
1678    else
1679      Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex],
1680                            {Addr, ExpVal});
1681  }
1682
1683  Call->setCannotMerge();
1684  return Call;
1685}
1686
1687Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
1688                                           Value *ShadowValue,
1689                                           uint32_t TypeStoreSize) {
1690  size_t Granularity = static_cast<size_t>(1) << Mapping.Scale;
1691  // Addr & (Granularity - 1)
1692  Value *LastAccessedByte =
1693      IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1));
1694  // (Addr & (Granularity - 1)) + size - 1
1695  if (TypeStoreSize / 8 > 1)
1696    LastAccessedByte = IRB.CreateAdd(
1697        LastAccessedByte, ConstantInt::get(IntptrTy, TypeStoreSize / 8 - 1));
1698  // (uint8_t) ((Addr & (Granularity-1)) + size - 1)
1699  LastAccessedByte =
1700      IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false);
1701  // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue
1702  return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue);
1703}
1704
1705Instruction *AddressSanitizer::instrumentAMDGPUAddress(
1706    Instruction *OrigIns, Instruction *InsertBefore, Value *Addr,
1707    uint32_t TypeStoreSize, bool IsWrite, Value *SizeArgument) {
1708  // Do not instrument unsupported addrspaces.
1709  if (isUnsupportedAMDGPUAddrspace(Addr))
1710    return nullptr;
1711  Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType());
1712  // Follow host instrumentation for global and constant addresses.
1713  if (PtrTy->getPointerAddressSpace() != 0)
1714    return InsertBefore;
1715  // Instrument generic addresses in supported addressspaces.
1716  IRBuilder<> IRB(InsertBefore);
1717  Value *IsShared = IRB.CreateCall(AMDGPUAddressShared, {Addr});
1718  Value *IsPrivate = IRB.CreateCall(AMDGPUAddressPrivate, {Addr});
1719  Value *IsSharedOrPrivate = IRB.CreateOr(IsShared, IsPrivate);
1720  Value *Cmp = IRB.CreateNot(IsSharedOrPrivate);
1721  Value *AddrSpaceZeroLanding =
1722      SplitBlockAndInsertIfThen(Cmp, InsertBefore, false);
1723  InsertBefore = cast<Instruction>(AddrSpaceZeroLanding);
1724  return InsertBefore;
1725}
1726
1727Instruction *AddressSanitizer::genAMDGPUReportBlock(IRBuilder<> &IRB,
1728                                                    Value *Cond, bool Recover) {
1729  Module &M = *IRB.GetInsertBlock()->getModule();
1730  Value *ReportCond = Cond;
1731  if (!Recover) {
1732    auto Ballot = M.getOrInsertFunction(kAMDGPUBallotName, IRB.getInt64Ty(),
1733                                        IRB.getInt1Ty());
1734    ReportCond = IRB.CreateIsNotNull(IRB.CreateCall(Ballot, {Cond}));
1735  }
1736
1737  auto *Trm =
1738      SplitBlockAndInsertIfThen(ReportCond, &*IRB.GetInsertPoint(), false,
1739                                MDBuilder(*C).createBranchWeights(1, 100000));
1740  Trm->getParent()->setName("asan.report");
1741
1742  if (Recover)
1743    return Trm;
1744
1745  Trm = SplitBlockAndInsertIfThen(Cond, Trm, false);
1746  IRB.SetInsertPoint(Trm);
1747  return IRB.CreateCall(
1748      M.getOrInsertFunction(kAMDGPUUnreachableName, IRB.getVoidTy()), {});
1749}
1750
1751void AddressSanitizer::instrumentAddress(Instruction *OrigIns,
1752                                         Instruction *InsertBefore, Value *Addr,
1753                                         MaybeAlign Alignment,
1754                                         uint32_t TypeStoreSize, bool IsWrite,
1755                                         Value *SizeArgument, bool UseCalls,
1756                                         uint32_t Exp) {
1757  if (TargetTriple.isAMDGPU()) {
1758    InsertBefore = instrumentAMDGPUAddress(OrigIns, InsertBefore, Addr,
1759                                           TypeStoreSize, IsWrite, SizeArgument);
1760    if (!InsertBefore)
1761      return;
1762  }
1763
1764  InstrumentationIRBuilder IRB(InsertBefore);
1765  size_t AccessSizeIndex = TypeStoreSizeToSizeIndex(TypeStoreSize);
1766  const ASanAccessInfo AccessInfo(IsWrite, CompileKernel, AccessSizeIndex);
1767
1768  if (UseCalls && ClOptimizeCallbacks) {
1769    const ASanAccessInfo AccessInfo(IsWrite, CompileKernel, AccessSizeIndex);
1770    Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1771    IRB.CreateCall(
1772        Intrinsic::getDeclaration(M, Intrinsic::asan_check_memaccess),
1773        {IRB.CreatePointerCast(Addr, PtrTy),
1774         ConstantInt::get(Int32Ty, AccessInfo.Packed)});
1775    return;
1776  }
1777
1778  Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
1779  if (UseCalls) {
1780    if (Exp == 0)
1781      IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex],
1782                     AddrLong);
1783    else
1784      IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex],
1785                     {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)});
1786    return;
1787  }
1788
1789  Type *ShadowTy =
1790      IntegerType::get(*C, std::max(8U, TypeStoreSize >> Mapping.Scale));
1791  Type *ShadowPtrTy = PointerType::get(ShadowTy, 0);
1792  Value *ShadowPtr = memToShadow(AddrLong, IRB);
1793  const uint64_t ShadowAlign =
1794      std::max<uint64_t>(Alignment.valueOrOne().value() >> Mapping.Scale, 1);
1795  Value *ShadowValue = IRB.CreateAlignedLoad(
1796      ShadowTy, IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy), Align(ShadowAlign));
1797
1798  Value *Cmp = IRB.CreateIsNotNull(ShadowValue);
1799  size_t Granularity = 1ULL << Mapping.Scale;
1800  Instruction *CrashTerm = nullptr;
1801
1802  bool GenSlowPath = (ClAlwaysSlowPath || (TypeStoreSize < 8 * Granularity));
1803
1804  if (TargetTriple.isAMDGCN()) {
1805    if (GenSlowPath) {
1806      auto *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeStoreSize);
1807      Cmp = IRB.CreateAnd(Cmp, Cmp2);
1808    }
1809    CrashTerm = genAMDGPUReportBlock(IRB, Cmp, Recover);
1810  } else if (GenSlowPath) {
1811    // We use branch weights for the slow path check, to indicate that the slow
1812    // path is rarely taken. This seems to be the case for SPEC benchmarks.
1813    Instruction *CheckTerm = SplitBlockAndInsertIfThen(
1814        Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000));
1815    assert(cast<BranchInst>(CheckTerm)->isUnconditional());
1816    BasicBlock *NextBB = CheckTerm->getSuccessor(0);
1817    IRB.SetInsertPoint(CheckTerm);
1818    Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeStoreSize);
1819    if (Recover) {
1820      CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false);
1821    } else {
1822      BasicBlock *CrashBlock =
1823        BasicBlock::Create(*C, "", NextBB->getParent(), NextBB);
1824      CrashTerm = new UnreachableInst(*C, CrashBlock);
1825      BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2);
1826      ReplaceInstWithInst(CheckTerm, NewTerm);
1827    }
1828  } else {
1829    CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover);
1830  }
1831
1832  Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite,
1833                                         AccessSizeIndex, SizeArgument, Exp);
1834  if (OrigIns->getDebugLoc())
1835    Crash->setDebugLoc(OrigIns->getDebugLoc());
1836}
1837
1838// Instrument unusual size or unusual alignment.
1839// We can not do it with a single check, so we do 1-byte check for the first
1840// and the last bytes. We call __asan_report_*_n(addr, real_size) to be able
1841// to report the actual access size.
1842void AddressSanitizer::instrumentUnusualSizeOrAlignment(
1843    Instruction *I, Instruction *InsertBefore, Value *Addr, TypeSize TypeStoreSize,
1844    bool IsWrite, Value *SizeArgument, bool UseCalls, uint32_t Exp) {
1845  InstrumentationIRBuilder IRB(InsertBefore);
1846  Value *NumBits = IRB.CreateTypeSize(IntptrTy, TypeStoreSize);
1847  Value *Size = IRB.CreateLShr(NumBits, ConstantInt::get(IntptrTy, 3));
1848
1849  Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
1850  if (UseCalls) {
1851    if (Exp == 0)
1852      IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0],
1853                     {AddrLong, Size});
1854    else
1855      IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1],
1856                     {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)});
1857  } else {
1858    Value *SizeMinusOne = IRB.CreateSub(Size, ConstantInt::get(IntptrTy, 1));
1859    Value *LastByte = IRB.CreateIntToPtr(
1860        IRB.CreateAdd(AddrLong, SizeMinusOne),
1861        Addr->getType());
1862    instrumentAddress(I, InsertBefore, Addr, {}, 8, IsWrite, Size, false, Exp);
1863    instrumentAddress(I, InsertBefore, LastByte, {}, 8, IsWrite, Size, false,
1864                      Exp);
1865  }
1866}
1867
1868void ModuleAddressSanitizer::poisonOneInitializer(Function &GlobalInit,
1869                                                  GlobalValue *ModuleName) {
1870  // Set up the arguments to our poison/unpoison functions.
1871  IRBuilder<> IRB(&GlobalInit.front(),
1872                  GlobalInit.front().getFirstInsertionPt());
1873
1874  // Add a call to poison all external globals before the given function starts.
1875  Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy);
1876  IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr);
1877
1878  // Add calls to unpoison all globals before each return instruction.
1879  for (auto &BB : GlobalInit)
1880    if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator()))
1881      CallInst::Create(AsanUnpoisonGlobals, "", RI);
1882}
1883
1884void ModuleAddressSanitizer::createInitializerPoisonCalls(
1885    Module &M, GlobalValue *ModuleName) {
1886  GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors");
1887  if (!GV)
1888    return;
1889
1890  ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer());
1891  if (!CA)
1892    return;
1893
1894  for (Use &OP : CA->operands()) {
1895    if (isa<ConstantAggregateZero>(OP)) continue;
1896    ConstantStruct *CS = cast<ConstantStruct>(OP);
1897
1898    // Must have a function or null ptr.
1899    if (Function *F = dyn_cast<Function>(CS->getOperand(1))) {
1900      if (F->getName() == kAsanModuleCtorName) continue;
1901      auto *Priority = cast<ConstantInt>(CS->getOperand(0));
1902      // Don't instrument CTORs that will run before asan.module_ctor.
1903      if (Priority->getLimitedValue() <= GetCtorAndDtorPriority(TargetTriple))
1904        continue;
1905      poisonOneInitializer(*F, ModuleName);
1906    }
1907  }
1908}
1909
1910const GlobalVariable *
1911ModuleAddressSanitizer::getExcludedAliasedGlobal(const GlobalAlias &GA) const {
1912  // In case this function should be expanded to include rules that do not just
1913  // apply when CompileKernel is true, either guard all existing rules with an
1914  // 'if (CompileKernel) { ... }' or be absolutely sure that all these rules
1915  // should also apply to user space.
1916  assert(CompileKernel && "Only expecting to be called when compiling kernel");
1917
1918  const Constant *C = GA.getAliasee();
1919
1920  // When compiling the kernel, globals that are aliased by symbols prefixed
1921  // by "__" are special and cannot be padded with a redzone.
1922  if (GA.getName().starts_with("__"))
1923    return dyn_cast<GlobalVariable>(C->stripPointerCastsAndAliases());
1924
1925  return nullptr;
1926}
1927
1928bool ModuleAddressSanitizer::shouldInstrumentGlobal(GlobalVariable *G) const {
1929  Type *Ty = G->getValueType();
1930  LLVM_DEBUG(dbgs() << "GLOBAL: " << *G << "\n");
1931
1932  if (G->hasSanitizerMetadata() && G->getSanitizerMetadata().NoAddress)
1933    return false;
1934  if (!Ty->isSized()) return false;
1935  if (!G->hasInitializer()) return false;
1936  // Globals in address space 1 and 4 are supported for AMDGPU.
1937  if (G->getAddressSpace() &&
1938      !(TargetTriple.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(G)))
1939    return false;
1940  if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals.
1941  // Two problems with thread-locals:
1942  //   - The address of the main thread's copy can't be computed at link-time.
1943  //   - Need to poison all copies, not just the main thread's one.
1944  if (G->isThreadLocal()) return false;
1945  // For now, just ignore this Global if the alignment is large.
1946  if (G->getAlign() && *G->getAlign() > getMinRedzoneSizeForGlobal()) return false;
1947
1948  // For non-COFF targets, only instrument globals known to be defined by this
1949  // TU.
1950  // FIXME: We can instrument comdat globals on ELF if we are using the
1951  // GC-friendly metadata scheme.
1952  if (!TargetTriple.isOSBinFormatCOFF()) {
1953    if (!G->hasExactDefinition() || G->hasComdat())
1954      return false;
1955  } else {
1956    // On COFF, don't instrument non-ODR linkages.
1957    if (G->isInterposable())
1958      return false;
1959  }
1960
1961  // If a comdat is present, it must have a selection kind that implies ODR
1962  // semantics: no duplicates, any, or exact match.
1963  if (Comdat *C = G->getComdat()) {
1964    switch (C->getSelectionKind()) {
1965    case Comdat::Any:
1966    case Comdat::ExactMatch:
1967    case Comdat::NoDeduplicate:
1968      break;
1969    case Comdat::Largest:
1970    case Comdat::SameSize:
1971      return false;
1972    }
1973  }
1974
1975  if (G->hasSection()) {
1976    // The kernel uses explicit sections for mostly special global variables
1977    // that we should not instrument. E.g. the kernel may rely on their layout
1978    // without redzones, or remove them at link time ("discard.*"), etc.
1979    if (CompileKernel)
1980      return false;
1981
1982    StringRef Section = G->getSection();
1983
1984    // Globals from llvm.metadata aren't emitted, do not instrument them.
1985    if (Section == "llvm.metadata") return false;
1986    // Do not instrument globals from special LLVM sections.
1987    if (Section.contains("__llvm") || Section.contains("__LLVM"))
1988      return false;
1989
1990    // Do not instrument function pointers to initialization and termination
1991    // routines: dynamic linker will not properly handle redzones.
1992    if (Section.starts_with(".preinit_array") ||
1993        Section.starts_with(".init_array") ||
1994        Section.starts_with(".fini_array")) {
1995      return false;
1996    }
1997
1998    // Do not instrument user-defined sections (with names resembling
1999    // valid C identifiers)
2000    if (TargetTriple.isOSBinFormatELF()) {
2001      if (llvm::all_of(Section,
2002                       [](char c) { return llvm::isAlnum(c) || c == '_'; }))
2003        return false;
2004    }
2005
2006    // On COFF, if the section name contains '$', it is highly likely that the
2007    // user is using section sorting to create an array of globals similar to
2008    // the way initialization callbacks are registered in .init_array and
2009    // .CRT$XCU. The ATL also registers things in .ATL$__[azm]. Adding redzones
2010    // to such globals is counterproductive, because the intent is that they
2011    // will form an array, and out-of-bounds accesses are expected.
2012    // See https://github.com/google/sanitizers/issues/305
2013    // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx
2014    if (TargetTriple.isOSBinFormatCOFF() && Section.contains('$')) {
2015      LLVM_DEBUG(dbgs() << "Ignoring global in sorted section (contains '$'): "
2016                        << *G << "\n");
2017      return false;
2018    }
2019
2020    if (TargetTriple.isOSBinFormatMachO()) {
2021      StringRef ParsedSegment, ParsedSection;
2022      unsigned TAA = 0, StubSize = 0;
2023      bool TAAParsed;
2024      cantFail(MCSectionMachO::ParseSectionSpecifier(
2025          Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize));
2026
2027      // Ignore the globals from the __OBJC section. The ObjC runtime assumes
2028      // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to
2029      // them.
2030      if (ParsedSegment == "__OBJC" ||
2031          (ParsedSegment == "__DATA" && ParsedSection.starts_with("__objc_"))) {
2032        LLVM_DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n");
2033        return false;
2034      }
2035      // See https://github.com/google/sanitizers/issues/32
2036      // Constant CFString instances are compiled in the following way:
2037      //  -- the string buffer is emitted into
2038      //     __TEXT,__cstring,cstring_literals
2039      //  -- the constant NSConstantString structure referencing that buffer
2040      //     is placed into __DATA,__cfstring
2041      // Therefore there's no point in placing redzones into __DATA,__cfstring.
2042      // Moreover, it causes the linker to crash on OS X 10.7
2043      if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") {
2044        LLVM_DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n");
2045        return false;
2046      }
2047      // The linker merges the contents of cstring_literals and removes the
2048      // trailing zeroes.
2049      if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) {
2050        LLVM_DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n");
2051        return false;
2052      }
2053    }
2054  }
2055
2056  if (CompileKernel) {
2057    // Globals that prefixed by "__" are special and cannot be padded with a
2058    // redzone.
2059    if (G->getName().starts_with("__"))
2060      return false;
2061  }
2062
2063  return true;
2064}
2065
2066// On Mach-O platforms, we emit global metadata in a separate section of the
2067// binary in order to allow the linker to properly dead strip. This is only
2068// supported on recent versions of ld64.
2069bool ModuleAddressSanitizer::ShouldUseMachOGlobalsSection() const {
2070  if (!TargetTriple.isOSBinFormatMachO())
2071    return false;
2072
2073  if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11))
2074    return true;
2075  if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9))
2076    return true;
2077  if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2))
2078    return true;
2079  if (TargetTriple.isDriverKit())
2080    return true;
2081  if (TargetTriple.isXROS())
2082    return true;
2083
2084  return false;
2085}
2086
2087StringRef ModuleAddressSanitizer::getGlobalMetadataSection() const {
2088  switch (TargetTriple.getObjectFormat()) {
2089  case Triple::COFF:  return ".ASAN$GL";
2090  case Triple::ELF:   return "asan_globals";
2091  case Triple::MachO: return "__DATA,__asan_globals,regular";
2092  case Triple::Wasm:
2093  case Triple::GOFF:
2094  case Triple::SPIRV:
2095  case Triple::XCOFF:
2096  case Triple::DXContainer:
2097    report_fatal_error(
2098        "ModuleAddressSanitizer not implemented for object file format");
2099  case Triple::UnknownObjectFormat:
2100    break;
2101  }
2102  llvm_unreachable("unsupported object format");
2103}
2104
2105void ModuleAddressSanitizer::initializeCallbacks(Module &M) {
2106  IRBuilder<> IRB(*C);
2107
2108  // Declare our poisoning and unpoisoning functions.
2109  AsanPoisonGlobals =
2110      M.getOrInsertFunction(kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy);
2111  AsanUnpoisonGlobals =
2112      M.getOrInsertFunction(kAsanUnpoisonGlobalsName, IRB.getVoidTy());
2113
2114  // Declare functions that register/unregister globals.
2115  AsanRegisterGlobals = M.getOrInsertFunction(
2116      kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy);
2117  AsanUnregisterGlobals = M.getOrInsertFunction(
2118      kAsanUnregisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy);
2119
2120  // Declare the functions that find globals in a shared object and then invoke
2121  // the (un)register function on them.
2122  AsanRegisterImageGlobals = M.getOrInsertFunction(
2123      kAsanRegisterImageGlobalsName, IRB.getVoidTy(), IntptrTy);
2124  AsanUnregisterImageGlobals = M.getOrInsertFunction(
2125      kAsanUnregisterImageGlobalsName, IRB.getVoidTy(), IntptrTy);
2126
2127  AsanRegisterElfGlobals =
2128      M.getOrInsertFunction(kAsanRegisterElfGlobalsName, IRB.getVoidTy(),
2129                            IntptrTy, IntptrTy, IntptrTy);
2130  AsanUnregisterElfGlobals =
2131      M.getOrInsertFunction(kAsanUnregisterElfGlobalsName, IRB.getVoidTy(),
2132                            IntptrTy, IntptrTy, IntptrTy);
2133}
2134
2135// Put the metadata and the instrumented global in the same group. This ensures
2136// that the metadata is discarded if the instrumented global is discarded.
2137void ModuleAddressSanitizer::SetComdatForGlobalMetadata(
2138    GlobalVariable *G, GlobalVariable *Metadata, StringRef InternalSuffix) {
2139  Module &M = *G->getParent();
2140  Comdat *C = G->getComdat();
2141  if (!C) {
2142    if (!G->hasName()) {
2143      // If G is unnamed, it must be internal. Give it an artificial name
2144      // so we can put it in a comdat.
2145      assert(G->hasLocalLinkage());
2146      G->setName(Twine(kAsanGenPrefix) + "_anon_global");
2147    }
2148
2149    if (!InternalSuffix.empty() && G->hasLocalLinkage()) {
2150      std::string Name = std::string(G->getName());
2151      Name += InternalSuffix;
2152      C = M.getOrInsertComdat(Name);
2153    } else {
2154      C = M.getOrInsertComdat(G->getName());
2155    }
2156
2157    // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private
2158    // linkage to internal linkage so that a symbol table entry is emitted. This
2159    // is necessary in order to create the comdat group.
2160    if (TargetTriple.isOSBinFormatCOFF()) {
2161      C->setSelectionKind(Comdat::NoDeduplicate);
2162      if (G->hasPrivateLinkage())
2163        G->setLinkage(GlobalValue::InternalLinkage);
2164    }
2165    G->setComdat(C);
2166  }
2167
2168  assert(G->hasComdat());
2169  Metadata->setComdat(G->getComdat());
2170}
2171
2172// Create a separate metadata global and put it in the appropriate ASan
2173// global registration section.
2174GlobalVariable *
2175ModuleAddressSanitizer::CreateMetadataGlobal(Module &M, Constant *Initializer,
2176                                             StringRef OriginalName) {
2177  auto Linkage = TargetTriple.isOSBinFormatMachO()
2178                     ? GlobalVariable::InternalLinkage
2179                     : GlobalVariable::PrivateLinkage;
2180  GlobalVariable *Metadata = new GlobalVariable(
2181      M, Initializer->getType(), false, Linkage, Initializer,
2182      Twine("__asan_global_") + GlobalValue::dropLLVMManglingEscape(OriginalName));
2183  Metadata->setSection(getGlobalMetadataSection());
2184  // Place metadata in a large section for x86-64 ELF binaries to mitigate
2185  // relocation pressure.
2186  setGlobalVariableLargeSection(TargetTriple, *Metadata);
2187  return Metadata;
2188}
2189
2190Instruction *ModuleAddressSanitizer::CreateAsanModuleDtor(Module &M) {
2191  AsanDtorFunction = Function::createWithDefaultAttr(
2192      FunctionType::get(Type::getVoidTy(*C), false),
2193      GlobalValue::InternalLinkage, 0, kAsanModuleDtorName, &M);
2194  AsanDtorFunction->addFnAttr(Attribute::NoUnwind);
2195  // Ensure Dtor cannot be discarded, even if in a comdat.
2196  appendToUsed(M, {AsanDtorFunction});
2197  BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction);
2198
2199  return ReturnInst::Create(*C, AsanDtorBB);
2200}
2201
2202void ModuleAddressSanitizer::InstrumentGlobalsCOFF(
2203    IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2204    ArrayRef<Constant *> MetadataInitializers) {
2205  assert(ExtendedGlobals.size() == MetadataInitializers.size());
2206  auto &DL = M.getDataLayout();
2207
2208  SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size());
2209  for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
2210    Constant *Initializer = MetadataInitializers[i];
2211    GlobalVariable *G = ExtendedGlobals[i];
2212    GlobalVariable *Metadata =
2213        CreateMetadataGlobal(M, Initializer, G->getName());
2214    MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G));
2215    Metadata->setMetadata(LLVMContext::MD_associated, MD);
2216    MetadataGlobals[i] = Metadata;
2217
2218    // The MSVC linker always inserts padding when linking incrementally. We
2219    // cope with that by aligning each struct to its size, which must be a power
2220    // of two.
2221    unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Initializer->getType());
2222    assert(isPowerOf2_32(SizeOfGlobalStruct) &&
2223           "global metadata will not be padded appropriately");
2224    Metadata->setAlignment(assumeAligned(SizeOfGlobalStruct));
2225
2226    SetComdatForGlobalMetadata(G, Metadata, "");
2227  }
2228
2229  // Update llvm.compiler.used, adding the new metadata globals. This is
2230  // needed so that during LTO these variables stay alive.
2231  if (!MetadataGlobals.empty())
2232    appendToCompilerUsed(M, MetadataGlobals);
2233}
2234
2235void ModuleAddressSanitizer::instrumentGlobalsELF(
2236    IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2237    ArrayRef<Constant *> MetadataInitializers,
2238    const std::string &UniqueModuleId) {
2239  assert(ExtendedGlobals.size() == MetadataInitializers.size());
2240
2241  // Putting globals in a comdat changes the semantic and potentially cause
2242  // false negative odr violations at link time. If odr indicators are used, we
2243  // keep the comdat sections, as link time odr violations will be dectected on
2244  // the odr indicator symbols.
2245  bool UseComdatForGlobalsGC = UseOdrIndicator && !UniqueModuleId.empty();
2246
2247  SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size());
2248  for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
2249    GlobalVariable *G = ExtendedGlobals[i];
2250    GlobalVariable *Metadata =
2251        CreateMetadataGlobal(M, MetadataInitializers[i], G->getName());
2252    MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G));
2253    Metadata->setMetadata(LLVMContext::MD_associated, MD);
2254    MetadataGlobals[i] = Metadata;
2255
2256    if (UseComdatForGlobalsGC)
2257      SetComdatForGlobalMetadata(G, Metadata, UniqueModuleId);
2258  }
2259
2260  // Update llvm.compiler.used, adding the new metadata globals. This is
2261  // needed so that during LTO these variables stay alive.
2262  if (!MetadataGlobals.empty())
2263    appendToCompilerUsed(M, MetadataGlobals);
2264
2265  // RegisteredFlag serves two purposes. First, we can pass it to dladdr()
2266  // to look up the loaded image that contains it. Second, we can store in it
2267  // whether registration has already occurred, to prevent duplicate
2268  // registration.
2269  //
2270  // Common linkage ensures that there is only one global per shared library.
2271  GlobalVariable *RegisteredFlag = new GlobalVariable(
2272      M, IntptrTy, false, GlobalVariable::CommonLinkage,
2273      ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName);
2274  RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility);
2275
2276  // Create start and stop symbols.
2277  GlobalVariable *StartELFMetadata = new GlobalVariable(
2278      M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr,
2279      "__start_" + getGlobalMetadataSection());
2280  StartELFMetadata->setVisibility(GlobalVariable::HiddenVisibility);
2281  GlobalVariable *StopELFMetadata = new GlobalVariable(
2282      M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr,
2283      "__stop_" + getGlobalMetadataSection());
2284  StopELFMetadata->setVisibility(GlobalVariable::HiddenVisibility);
2285
2286  // Create a call to register the globals with the runtime.
2287  if (ConstructorKind == AsanCtorKind::Global)
2288    IRB.CreateCall(AsanRegisterElfGlobals,
2289                 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy),
2290                  IRB.CreatePointerCast(StartELFMetadata, IntptrTy),
2291                  IRB.CreatePointerCast(StopELFMetadata, IntptrTy)});
2292
2293  // We also need to unregister globals at the end, e.g., when a shared library
2294  // gets closed.
2295  if (DestructorKind != AsanDtorKind::None && !MetadataGlobals.empty()) {
2296    IRBuilder<> IrbDtor(CreateAsanModuleDtor(M));
2297    IrbDtor.CreateCall(AsanUnregisterElfGlobals,
2298                       {IRB.CreatePointerCast(RegisteredFlag, IntptrTy),
2299                        IRB.CreatePointerCast(StartELFMetadata, IntptrTy),
2300                        IRB.CreatePointerCast(StopELFMetadata, IntptrTy)});
2301  }
2302}
2303
2304void ModuleAddressSanitizer::InstrumentGlobalsMachO(
2305    IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2306    ArrayRef<Constant *> MetadataInitializers) {
2307  assert(ExtendedGlobals.size() == MetadataInitializers.size());
2308
2309  // On recent Mach-O platforms, use a structure which binds the liveness of
2310  // the global variable to the metadata struct. Keep the list of "Liveness" GV
2311  // created to be added to llvm.compiler.used
2312  StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy);
2313  SmallVector<GlobalValue *, 16> LivenessGlobals(ExtendedGlobals.size());
2314
2315  for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
2316    Constant *Initializer = MetadataInitializers[i];
2317    GlobalVariable *G = ExtendedGlobals[i];
2318    GlobalVariable *Metadata =
2319        CreateMetadataGlobal(M, Initializer, G->getName());
2320
2321    // On recent Mach-O platforms, we emit the global metadata in a way that
2322    // allows the linker to properly strip dead globals.
2323    auto LivenessBinder =
2324        ConstantStruct::get(LivenessTy, Initializer->getAggregateElement(0u),
2325                            ConstantExpr::getPointerCast(Metadata, IntptrTy));
2326    GlobalVariable *Liveness = new GlobalVariable(
2327        M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder,
2328        Twine("__asan_binder_") + G->getName());
2329    Liveness->setSection("__DATA,__asan_liveness,regular,live_support");
2330    LivenessGlobals[i] = Liveness;
2331  }
2332
2333  // Update llvm.compiler.used, adding the new liveness globals. This is
2334  // needed so that during LTO these variables stay alive. The alternative
2335  // would be to have the linker handling the LTO symbols, but libLTO
2336  // current API does not expose access to the section for each symbol.
2337  if (!LivenessGlobals.empty())
2338    appendToCompilerUsed(M, LivenessGlobals);
2339
2340  // RegisteredFlag serves two purposes. First, we can pass it to dladdr()
2341  // to look up the loaded image that contains it. Second, we can store in it
2342  // whether registration has already occurred, to prevent duplicate
2343  // registration.
2344  //
2345  // common linkage ensures that there is only one global per shared library.
2346  GlobalVariable *RegisteredFlag = new GlobalVariable(
2347      M, IntptrTy, false, GlobalVariable::CommonLinkage,
2348      ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName);
2349  RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility);
2350
2351  if (ConstructorKind == AsanCtorKind::Global)
2352    IRB.CreateCall(AsanRegisterImageGlobals,
2353                 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)});
2354
2355  // We also need to unregister globals at the end, e.g., when a shared library
2356  // gets closed.
2357  if (DestructorKind != AsanDtorKind::None) {
2358    IRBuilder<> IrbDtor(CreateAsanModuleDtor(M));
2359    IrbDtor.CreateCall(AsanUnregisterImageGlobals,
2360                       {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)});
2361  }
2362}
2363
2364void ModuleAddressSanitizer::InstrumentGlobalsWithMetadataArray(
2365    IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2366    ArrayRef<Constant *> MetadataInitializers) {
2367  assert(ExtendedGlobals.size() == MetadataInitializers.size());
2368  unsigned N = ExtendedGlobals.size();
2369  assert(N > 0);
2370
2371  // On platforms that don't have a custom metadata section, we emit an array
2372  // of global metadata structures.
2373  ArrayType *ArrayOfGlobalStructTy =
2374      ArrayType::get(MetadataInitializers[0]->getType(), N);
2375  auto AllGlobals = new GlobalVariable(
2376      M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage,
2377      ConstantArray::get(ArrayOfGlobalStructTy, MetadataInitializers), "");
2378  if (Mapping.Scale > 3)
2379    AllGlobals->setAlignment(Align(1ULL << Mapping.Scale));
2380
2381  if (ConstructorKind == AsanCtorKind::Global)
2382    IRB.CreateCall(AsanRegisterGlobals,
2383                 {IRB.CreatePointerCast(AllGlobals, IntptrTy),
2384                  ConstantInt::get(IntptrTy, N)});
2385
2386  // We also need to unregister globals at the end, e.g., when a shared library
2387  // gets closed.
2388  if (DestructorKind != AsanDtorKind::None) {
2389    IRBuilder<> IrbDtor(CreateAsanModuleDtor(M));
2390    IrbDtor.CreateCall(AsanUnregisterGlobals,
2391                       {IRB.CreatePointerCast(AllGlobals, IntptrTy),
2392                        ConstantInt::get(IntptrTy, N)});
2393  }
2394}
2395
2396// This function replaces all global variables with new variables that have
2397// trailing redzones. It also creates a function that poisons
2398// redzones and inserts this function into llvm.global_ctors.
2399// Sets *CtorComdat to true if the global registration code emitted into the
2400// asan constructor is comdat-compatible.
2401void ModuleAddressSanitizer::instrumentGlobals(IRBuilder<> &IRB, Module &M,
2402                                               bool *CtorComdat) {
2403  // Build set of globals that are aliased by some GA, where
2404  // getExcludedAliasedGlobal(GA) returns the relevant GlobalVariable.
2405  SmallPtrSet<const GlobalVariable *, 16> AliasedGlobalExclusions;
2406  if (CompileKernel) {
2407    for (auto &GA : M.aliases()) {
2408      if (const GlobalVariable *GV = getExcludedAliasedGlobal(GA))
2409        AliasedGlobalExclusions.insert(GV);
2410    }
2411  }
2412
2413  SmallVector<GlobalVariable *, 16> GlobalsToChange;
2414  for (auto &G : M.globals()) {
2415    if (!AliasedGlobalExclusions.count(&G) && shouldInstrumentGlobal(&G))
2416      GlobalsToChange.push_back(&G);
2417  }
2418
2419  size_t n = GlobalsToChange.size();
2420  auto &DL = M.getDataLayout();
2421
2422  // A global is described by a structure
2423  //   size_t beg;
2424  //   size_t size;
2425  //   size_t size_with_redzone;
2426  //   const char *name;
2427  //   const char *module_name;
2428  //   size_t has_dynamic_init;
2429  //   size_t padding_for_windows_msvc_incremental_link;
2430  //   size_t odr_indicator;
2431  // We initialize an array of such structures and pass it to a run-time call.
2432  StructType *GlobalStructTy =
2433      StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy,
2434                      IntptrTy, IntptrTy, IntptrTy);
2435  SmallVector<GlobalVariable *, 16> NewGlobals(n);
2436  SmallVector<Constant *, 16> Initializers(n);
2437
2438  bool HasDynamicallyInitializedGlobals = false;
2439
2440  // We shouldn't merge same module names, as this string serves as unique
2441  // module ID in runtime.
2442  GlobalVariable *ModuleName =
2443      n != 0
2444          ? createPrivateGlobalForString(M, M.getModuleIdentifier(),
2445                                         /*AllowMerging*/ false, kAsanGenPrefix)
2446          : nullptr;
2447
2448  for (size_t i = 0; i < n; i++) {
2449    GlobalVariable *G = GlobalsToChange[i];
2450
2451    GlobalValue::SanitizerMetadata MD;
2452    if (G->hasSanitizerMetadata())
2453      MD = G->getSanitizerMetadata();
2454
2455    // The runtime library tries demangling symbol names in the descriptor but
2456    // functionality like __cxa_demangle may be unavailable (e.g.
2457    // -static-libstdc++). So we demangle the symbol names here.
2458    std::string NameForGlobal = G->getName().str();
2459    GlobalVariable *Name =
2460        createPrivateGlobalForString(M, llvm::demangle(NameForGlobal),
2461                                     /*AllowMerging*/ true, kAsanGenPrefix);
2462
2463    Type *Ty = G->getValueType();
2464    const uint64_t SizeInBytes = DL.getTypeAllocSize(Ty);
2465    const uint64_t RightRedzoneSize = getRedzoneSizeForGlobal(SizeInBytes);
2466    Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize);
2467
2468    StructType *NewTy = StructType::get(Ty, RightRedZoneTy);
2469    Constant *NewInitializer = ConstantStruct::get(
2470        NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy));
2471
2472    // Create a new global variable with enough space for a redzone.
2473    GlobalValue::LinkageTypes Linkage = G->getLinkage();
2474    if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage)
2475      Linkage = GlobalValue::InternalLinkage;
2476    GlobalVariable *NewGlobal = new GlobalVariable(
2477        M, NewTy, G->isConstant(), Linkage, NewInitializer, "", G,
2478        G->getThreadLocalMode(), G->getAddressSpace());
2479    NewGlobal->copyAttributesFrom(G);
2480    NewGlobal->setComdat(G->getComdat());
2481    NewGlobal->setAlignment(Align(getMinRedzoneSizeForGlobal()));
2482    // Don't fold globals with redzones. ODR violation detector and redzone
2483    // poisoning implicitly creates a dependence on the global's address, so it
2484    // is no longer valid for it to be marked unnamed_addr.
2485    NewGlobal->setUnnamedAddr(GlobalValue::UnnamedAddr::None);
2486
2487    // Move null-terminated C strings to "__asan_cstring" section on Darwin.
2488    if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() &&
2489        G->isConstant()) {
2490      auto Seq = dyn_cast<ConstantDataSequential>(G->getInitializer());
2491      if (Seq && Seq->isCString())
2492        NewGlobal->setSection("__TEXT,__asan_cstring,regular");
2493    }
2494
2495    // Transfer the debug info and type metadata.  The payload starts at offset
2496    // zero so we can copy the metadata over as is.
2497    NewGlobal->copyMetadata(G, 0);
2498
2499    Value *Indices2[2];
2500    Indices2[0] = IRB.getInt32(0);
2501    Indices2[1] = IRB.getInt32(0);
2502
2503    G->replaceAllUsesWith(
2504        ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true));
2505    NewGlobal->takeName(G);
2506    G->eraseFromParent();
2507    NewGlobals[i] = NewGlobal;
2508
2509    Constant *ODRIndicator = ConstantPointerNull::get(PtrTy);
2510    GlobalValue *InstrumentedGlobal = NewGlobal;
2511
2512    bool CanUsePrivateAliases =
2513        TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO() ||
2514        TargetTriple.isOSBinFormatWasm();
2515    if (CanUsePrivateAliases && UsePrivateAlias) {
2516      // Create local alias for NewGlobal to avoid crash on ODR between
2517      // instrumented and non-instrumented libraries.
2518      InstrumentedGlobal =
2519          GlobalAlias::create(GlobalValue::PrivateLinkage, "", NewGlobal);
2520    }
2521
2522    // ODR should not happen for local linkage.
2523    if (NewGlobal->hasLocalLinkage()) {
2524      ODRIndicator =
2525          ConstantExpr::getIntToPtr(ConstantInt::get(IntptrTy, -1), PtrTy);
2526    } else if (UseOdrIndicator) {
2527      // With local aliases, we need to provide another externally visible
2528      // symbol __odr_asan_XXX to detect ODR violation.
2529      auto *ODRIndicatorSym =
2530          new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage,
2531                             Constant::getNullValue(IRB.getInt8Ty()),
2532                             kODRGenPrefix + NameForGlobal, nullptr,
2533                             NewGlobal->getThreadLocalMode());
2534
2535      // Set meaningful attributes for indicator symbol.
2536      ODRIndicatorSym->setVisibility(NewGlobal->getVisibility());
2537      ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass());
2538      ODRIndicatorSym->setAlignment(Align(1));
2539      ODRIndicator = ODRIndicatorSym;
2540    }
2541
2542    Constant *Initializer = ConstantStruct::get(
2543        GlobalStructTy,
2544        ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy),
2545        ConstantInt::get(IntptrTy, SizeInBytes),
2546        ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize),
2547        ConstantExpr::getPointerCast(Name, IntptrTy),
2548        ConstantExpr::getPointerCast(ModuleName, IntptrTy),
2549        ConstantInt::get(IntptrTy, MD.IsDynInit),
2550        Constant::getNullValue(IntptrTy),
2551        ConstantExpr::getPointerCast(ODRIndicator, IntptrTy));
2552
2553    if (ClInitializers && MD.IsDynInit)
2554      HasDynamicallyInitializedGlobals = true;
2555
2556    LLVM_DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n");
2557
2558    Initializers[i] = Initializer;
2559  }
2560
2561  // Add instrumented globals to llvm.compiler.used list to avoid LTO from
2562  // ConstantMerge'ing them.
2563  SmallVector<GlobalValue *, 16> GlobalsToAddToUsedList;
2564  for (size_t i = 0; i < n; i++) {
2565    GlobalVariable *G = NewGlobals[i];
2566    if (G->getName().empty()) continue;
2567    GlobalsToAddToUsedList.push_back(G);
2568  }
2569  appendToCompilerUsed(M, ArrayRef<GlobalValue *>(GlobalsToAddToUsedList));
2570
2571  if (UseGlobalsGC && TargetTriple.isOSBinFormatELF()) {
2572    // Use COMDAT and register globals even if n == 0 to ensure that (a) the
2573    // linkage unit will only have one module constructor, and (b) the register
2574    // function will be called. The module destructor is not created when n ==
2575    // 0.
2576    *CtorComdat = true;
2577    instrumentGlobalsELF(IRB, M, NewGlobals, Initializers,
2578                         getUniqueModuleId(&M));
2579  } else if (n == 0) {
2580    // When UseGlobalsGC is false, COMDAT can still be used if n == 0, because
2581    // all compile units will have identical module constructor/destructor.
2582    *CtorComdat = TargetTriple.isOSBinFormatELF();
2583  } else {
2584    *CtorComdat = false;
2585    if (UseGlobalsGC && TargetTriple.isOSBinFormatCOFF()) {
2586      InstrumentGlobalsCOFF(IRB, M, NewGlobals, Initializers);
2587    } else if (UseGlobalsGC && ShouldUseMachOGlobalsSection()) {
2588      InstrumentGlobalsMachO(IRB, M, NewGlobals, Initializers);
2589    } else {
2590      InstrumentGlobalsWithMetadataArray(IRB, M, NewGlobals, Initializers);
2591    }
2592  }
2593
2594  // Create calls for poisoning before initializers run and unpoisoning after.
2595  if (HasDynamicallyInitializedGlobals)
2596    createInitializerPoisonCalls(M, ModuleName);
2597
2598  LLVM_DEBUG(dbgs() << M);
2599}
2600
2601uint64_t
2602ModuleAddressSanitizer::getRedzoneSizeForGlobal(uint64_t SizeInBytes) const {
2603  constexpr uint64_t kMaxRZ = 1 << 18;
2604  const uint64_t MinRZ = getMinRedzoneSizeForGlobal();
2605
2606  uint64_t RZ = 0;
2607  if (SizeInBytes <= MinRZ / 2) {
2608    // Reduce redzone size for small size objects, e.g. int, char[1]. MinRZ is
2609    // at least 32 bytes, optimize when SizeInBytes is less than or equal to
2610    // half of MinRZ.
2611    RZ = MinRZ - SizeInBytes;
2612  } else {
2613    // Calculate RZ, where MinRZ <= RZ <= MaxRZ, and RZ ~ 1/4 * SizeInBytes.
2614    RZ = std::clamp((SizeInBytes / MinRZ / 4) * MinRZ, MinRZ, kMaxRZ);
2615
2616    // Round up to multiple of MinRZ.
2617    if (SizeInBytes % MinRZ)
2618      RZ += MinRZ - (SizeInBytes % MinRZ);
2619  }
2620
2621  assert((RZ + SizeInBytes) % MinRZ == 0);
2622
2623  return RZ;
2624}
2625
2626int ModuleAddressSanitizer::GetAsanVersion(const Module &M) const {
2627  int LongSize = M.getDataLayout().getPointerSizeInBits();
2628  bool isAndroid = Triple(M.getTargetTriple()).isAndroid();
2629  int Version = 8;
2630  // 32-bit Android is one version ahead because of the switch to dynamic
2631  // shadow.
2632  Version += (LongSize == 32 && isAndroid);
2633  return Version;
2634}
2635
2636bool ModuleAddressSanitizer::instrumentModule(Module &M) {
2637  initializeCallbacks(M);
2638
2639  // Create a module constructor. A destructor is created lazily because not all
2640  // platforms, and not all modules need it.
2641  if (ConstructorKind == AsanCtorKind::Global) {
2642    if (CompileKernel) {
2643      // The kernel always builds with its own runtime, and therefore does not
2644      // need the init and version check calls.
2645      AsanCtorFunction = createSanitizerCtor(M, kAsanModuleCtorName);
2646    } else {
2647      std::string AsanVersion = std::to_string(GetAsanVersion(M));
2648      std::string VersionCheckName =
2649          InsertVersionCheck ? (kAsanVersionCheckNamePrefix + AsanVersion) : "";
2650      std::tie(AsanCtorFunction, std::ignore) =
2651          createSanitizerCtorAndInitFunctions(M, kAsanModuleCtorName,
2652                                              kAsanInitName, /*InitArgTypes=*/{},
2653                                              /*InitArgs=*/{}, VersionCheckName);
2654    }
2655  }
2656
2657  bool CtorComdat = true;
2658  if (ClGlobals) {
2659    assert(AsanCtorFunction || ConstructorKind == AsanCtorKind::None);
2660    if (AsanCtorFunction) {
2661      IRBuilder<> IRB(AsanCtorFunction->getEntryBlock().getTerminator());
2662      instrumentGlobals(IRB, M, &CtorComdat);
2663    } else {
2664      IRBuilder<> IRB(*C);
2665      instrumentGlobals(IRB, M, &CtorComdat);
2666    }
2667  }
2668
2669  const uint64_t Priority = GetCtorAndDtorPriority(TargetTriple);
2670
2671  // Put the constructor and destructor in comdat if both
2672  // (1) global instrumentation is not TU-specific
2673  // (2) target is ELF.
2674  if (UseCtorComdat && TargetTriple.isOSBinFormatELF() && CtorComdat) {
2675    if (AsanCtorFunction) {
2676      AsanCtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleCtorName));
2677      appendToGlobalCtors(M, AsanCtorFunction, Priority, AsanCtorFunction);
2678    }
2679    if (AsanDtorFunction) {
2680      AsanDtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleDtorName));
2681      appendToGlobalDtors(M, AsanDtorFunction, Priority, AsanDtorFunction);
2682    }
2683  } else {
2684    if (AsanCtorFunction)
2685      appendToGlobalCtors(M, AsanCtorFunction, Priority);
2686    if (AsanDtorFunction)
2687      appendToGlobalDtors(M, AsanDtorFunction, Priority);
2688  }
2689
2690  return true;
2691}
2692
2693void AddressSanitizer::initializeCallbacks(Module &M, const TargetLibraryInfo *TLI) {
2694  IRBuilder<> IRB(*C);
2695  // Create __asan_report* callbacks.
2696  // IsWrite, TypeSize and Exp are encoded in the function name.
2697  for (int Exp = 0; Exp < 2; Exp++) {
2698    for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) {
2699      const std::string TypeStr = AccessIsWrite ? "store" : "load";
2700      const std::string ExpStr = Exp ? "exp_" : "";
2701      const std::string EndingStr = Recover ? "_noabort" : "";
2702
2703      SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy};
2704      SmallVector<Type *, 2> Args1{1, IntptrTy};
2705      AttributeList AL2;
2706      AttributeList AL1;
2707      if (Exp) {
2708        Type *ExpType = Type::getInt32Ty(*C);
2709        Args2.push_back(ExpType);
2710        Args1.push_back(ExpType);
2711        if (auto AK = TLI->getExtAttrForI32Param(false)) {
2712          AL2 = AL2.addParamAttribute(*C, 2, AK);
2713          AL1 = AL1.addParamAttribute(*C, 1, AK);
2714        }
2715      }
2716      AsanErrorCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction(
2717          kAsanReportErrorTemplate + ExpStr + TypeStr + "_n" + EndingStr,
2718          FunctionType::get(IRB.getVoidTy(), Args2, false), AL2);
2719
2720      AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction(
2721          ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr,
2722          FunctionType::get(IRB.getVoidTy(), Args2, false), AL2);
2723
2724      for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
2725           AccessSizeIndex++) {
2726        const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex);
2727        AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] =
2728            M.getOrInsertFunction(
2729                kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr,
2730                FunctionType::get(IRB.getVoidTy(), Args1, false), AL1);
2731
2732        AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] =
2733            M.getOrInsertFunction(
2734                ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr,
2735                FunctionType::get(IRB.getVoidTy(), Args1, false), AL1);
2736      }
2737    }
2738  }
2739
2740  const std::string MemIntrinCallbackPrefix =
2741      (CompileKernel && !ClKasanMemIntrinCallbackPrefix)
2742          ? std::string("")
2743          : ClMemoryAccessCallbackPrefix;
2744  AsanMemmove = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memmove",
2745                                      PtrTy, PtrTy, PtrTy, IntptrTy);
2746  AsanMemcpy = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memcpy", PtrTy,
2747                                     PtrTy, PtrTy, IntptrTy);
2748  AsanMemset = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memset",
2749                                     TLI->getAttrList(C, {1}, /*Signed=*/false),
2750                                     PtrTy, PtrTy, IRB.getInt32Ty(), IntptrTy);
2751
2752  AsanHandleNoReturnFunc =
2753      M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy());
2754
2755  AsanPtrCmpFunction =
2756      M.getOrInsertFunction(kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy);
2757  AsanPtrSubFunction =
2758      M.getOrInsertFunction(kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy);
2759  if (Mapping.InGlobal)
2760    AsanShadowGlobal = M.getOrInsertGlobal("__asan_shadow",
2761                                           ArrayType::get(IRB.getInt8Ty(), 0));
2762
2763  AMDGPUAddressShared =
2764      M.getOrInsertFunction(kAMDGPUAddressSharedName, IRB.getInt1Ty(), PtrTy);
2765  AMDGPUAddressPrivate =
2766      M.getOrInsertFunction(kAMDGPUAddressPrivateName, IRB.getInt1Ty(), PtrTy);
2767}
2768
2769bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) {
2770  // For each NSObject descendant having a +load method, this method is invoked
2771  // by the ObjC runtime before any of the static constructors is called.
2772  // Therefore we need to instrument such methods with a call to __asan_init
2773  // at the beginning in order to initialize our runtime before any access to
2774  // the shadow memory.
2775  // We cannot just ignore these methods, because they may call other
2776  // instrumented functions.
2777  if (F.getName().contains(" load]")) {
2778    FunctionCallee AsanInitFunction =
2779        declareSanitizerInitFunction(*F.getParent(), kAsanInitName, {});
2780    IRBuilder<> IRB(&F.front(), F.front().begin());
2781    IRB.CreateCall(AsanInitFunction, {});
2782    return true;
2783  }
2784  return false;
2785}
2786
2787bool AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) {
2788  // Generate code only when dynamic addressing is needed.
2789  if (Mapping.Offset != kDynamicShadowSentinel)
2790    return false;
2791
2792  IRBuilder<> IRB(&F.front().front());
2793  if (Mapping.InGlobal) {
2794    if (ClWithIfuncSuppressRemat) {
2795      // An empty inline asm with input reg == output reg.
2796      // An opaque pointer-to-int cast, basically.
2797      InlineAsm *Asm = InlineAsm::get(
2798          FunctionType::get(IntptrTy, {AsanShadowGlobal->getType()}, false),
2799          StringRef(""), StringRef("=r,0"),
2800          /*hasSideEffects=*/false);
2801      LocalDynamicShadow =
2802          IRB.CreateCall(Asm, {AsanShadowGlobal}, ".asan.shadow");
2803    } else {
2804      LocalDynamicShadow =
2805          IRB.CreatePointerCast(AsanShadowGlobal, IntptrTy, ".asan.shadow");
2806    }
2807  } else {
2808    Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal(
2809        kAsanShadowMemoryDynamicAddress, IntptrTy);
2810    LocalDynamicShadow = IRB.CreateLoad(IntptrTy, GlobalDynamicAddress);
2811  }
2812  return true;
2813}
2814
2815void AddressSanitizer::markEscapedLocalAllocas(Function &F) {
2816  // Find the one possible call to llvm.localescape and pre-mark allocas passed
2817  // to it as uninteresting. This assumes we haven't started processing allocas
2818  // yet. This check is done up front because iterating the use list in
2819  // isInterestingAlloca would be algorithmically slower.
2820  assert(ProcessedAllocas.empty() && "must process localescape before allocas");
2821
2822  // Try to get the declaration of llvm.localescape. If it's not in the module,
2823  // we can exit early.
2824  if (!F.getParent()->getFunction("llvm.localescape")) return;
2825
2826  // Look for a call to llvm.localescape call in the entry block. It can't be in
2827  // any other block.
2828  for (Instruction &I : F.getEntryBlock()) {
2829    IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I);
2830    if (II && II->getIntrinsicID() == Intrinsic::localescape) {
2831      // We found a call. Mark all the allocas passed in as uninteresting.
2832      for (Value *Arg : II->args()) {
2833        AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
2834        assert(AI && AI->isStaticAlloca() &&
2835               "non-static alloca arg to localescape");
2836        ProcessedAllocas[AI] = false;
2837      }
2838      break;
2839    }
2840  }
2841}
2842
2843bool AddressSanitizer::suppressInstrumentationSiteForDebug(int &Instrumented) {
2844  bool ShouldInstrument =
2845      ClDebugMin < 0 || ClDebugMax < 0 ||
2846      (Instrumented >= ClDebugMin && Instrumented <= ClDebugMax);
2847  Instrumented++;
2848  return !ShouldInstrument;
2849}
2850
2851bool AddressSanitizer::instrumentFunction(Function &F,
2852                                          const TargetLibraryInfo *TLI) {
2853  if (F.empty())
2854    return false;
2855  if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false;
2856  if (!ClDebugFunc.empty() && ClDebugFunc == F.getName()) return false;
2857  if (F.getName().starts_with("__asan_")) return false;
2858
2859  bool FunctionModified = false;
2860
2861  // If needed, insert __asan_init before checking for SanitizeAddress attr.
2862  // This function needs to be called even if the function body is not
2863  // instrumented.
2864  if (maybeInsertAsanInitAtFunctionEntry(F))
2865    FunctionModified = true;
2866
2867  // Leave if the function doesn't need instrumentation.
2868  if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return FunctionModified;
2869
2870  if (F.hasFnAttribute(Attribute::DisableSanitizerInstrumentation))
2871    return FunctionModified;
2872
2873  LLVM_DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n");
2874
2875  initializeCallbacks(*F.getParent(), TLI);
2876
2877  FunctionStateRAII CleanupObj(this);
2878
2879  FunctionModified |= maybeInsertDynamicShadowAtFunctionEntry(F);
2880
2881  // We can't instrument allocas used with llvm.localescape. Only static allocas
2882  // can be passed to that intrinsic.
2883  markEscapedLocalAllocas(F);
2884
2885  // We want to instrument every address only once per basic block (unless there
2886  // are calls between uses).
2887  SmallPtrSet<Value *, 16> TempsToInstrument;
2888  SmallVector<InterestingMemoryOperand, 16> OperandsToInstrument;
2889  SmallVector<MemIntrinsic *, 16> IntrinToInstrument;
2890  SmallVector<Instruction *, 8> NoReturnCalls;
2891  SmallVector<BasicBlock *, 16> AllBlocks;
2892  SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts;
2893
2894  // Fill the set of memory operations to instrument.
2895  for (auto &BB : F) {
2896    AllBlocks.push_back(&BB);
2897    TempsToInstrument.clear();
2898    int NumInsnsPerBB = 0;
2899    for (auto &Inst : BB) {
2900      if (LooksLikeCodeInBug11395(&Inst)) return false;
2901      // Skip instructions inserted by another instrumentation.
2902      if (Inst.hasMetadata(LLVMContext::MD_nosanitize))
2903        continue;
2904      SmallVector<InterestingMemoryOperand, 1> InterestingOperands;
2905      getInterestingMemoryOperands(&Inst, InterestingOperands);
2906
2907      if (!InterestingOperands.empty()) {
2908        for (auto &Operand : InterestingOperands) {
2909          if (ClOpt && ClOptSameTemp) {
2910            Value *Ptr = Operand.getPtr();
2911            // If we have a mask, skip instrumentation if we've already
2912            // instrumented the full object. But don't add to TempsToInstrument
2913            // because we might get another load/store with a different mask.
2914            if (Operand.MaybeMask) {
2915              if (TempsToInstrument.count(Ptr))
2916                continue; // We've seen this (whole) temp in the current BB.
2917            } else {
2918              if (!TempsToInstrument.insert(Ptr).second)
2919                continue; // We've seen this temp in the current BB.
2920            }
2921          }
2922          OperandsToInstrument.push_back(Operand);
2923          NumInsnsPerBB++;
2924        }
2925      } else if (((ClInvalidPointerPairs || ClInvalidPointerCmp) &&
2926                  isInterestingPointerComparison(&Inst)) ||
2927                 ((ClInvalidPointerPairs || ClInvalidPointerSub) &&
2928                  isInterestingPointerSubtraction(&Inst))) {
2929        PointerComparisonsOrSubtracts.push_back(&Inst);
2930      } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(&Inst)) {
2931        // ok, take it.
2932        IntrinToInstrument.push_back(MI);
2933        NumInsnsPerBB++;
2934      } else {
2935        if (auto *CB = dyn_cast<CallBase>(&Inst)) {
2936          // A call inside BB.
2937          TempsToInstrument.clear();
2938          if (CB->doesNotReturn())
2939            NoReturnCalls.push_back(CB);
2940        }
2941        if (CallInst *CI = dyn_cast<CallInst>(&Inst))
2942          maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI);
2943      }
2944      if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break;
2945    }
2946  }
2947
2948  bool UseCalls = (InstrumentationWithCallsThreshold >= 0 &&
2949                   OperandsToInstrument.size() + IntrinToInstrument.size() >
2950                       (unsigned)InstrumentationWithCallsThreshold);
2951  const DataLayout &DL = F.getParent()->getDataLayout();
2952  ObjectSizeOpts ObjSizeOpts;
2953  ObjSizeOpts.RoundToAlign = true;
2954  ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(), ObjSizeOpts);
2955
2956  // Instrument.
2957  int NumInstrumented = 0;
2958  for (auto &Operand : OperandsToInstrument) {
2959    if (!suppressInstrumentationSiteForDebug(NumInstrumented))
2960      instrumentMop(ObjSizeVis, Operand, UseCalls,
2961                    F.getParent()->getDataLayout());
2962    FunctionModified = true;
2963  }
2964  for (auto *Inst : IntrinToInstrument) {
2965    if (!suppressInstrumentationSiteForDebug(NumInstrumented))
2966      instrumentMemIntrinsic(Inst);
2967    FunctionModified = true;
2968  }
2969
2970  FunctionStackPoisoner FSP(F, *this);
2971  bool ChangedStack = FSP.runOnFunction();
2972
2973  // We must unpoison the stack before NoReturn calls (throw, _exit, etc).
2974  // See e.g. https://github.com/google/sanitizers/issues/37
2975  for (auto *CI : NoReturnCalls) {
2976    IRBuilder<> IRB(CI);
2977    IRB.CreateCall(AsanHandleNoReturnFunc, {});
2978  }
2979
2980  for (auto *Inst : PointerComparisonsOrSubtracts) {
2981    instrumentPointerComparisonOrSubtraction(Inst);
2982    FunctionModified = true;
2983  }
2984
2985  if (ChangedStack || !NoReturnCalls.empty())
2986    FunctionModified = true;
2987
2988  LLVM_DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " "
2989                    << F << "\n");
2990
2991  return FunctionModified;
2992}
2993
2994// Workaround for bug 11395: we don't want to instrument stack in functions
2995// with large assembly blobs (32-bit only), otherwise reg alloc may crash.
2996// FIXME: remove once the bug 11395 is fixed.
2997bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) {
2998  if (LongSize != 32) return false;
2999  CallInst *CI = dyn_cast<CallInst>(I);
3000  if (!CI || !CI->isInlineAsm()) return false;
3001  if (CI->arg_size() <= 5)
3002    return false;
3003  // We have inline assembly with quite a few arguments.
3004  return true;
3005}
3006
3007void FunctionStackPoisoner::initializeCallbacks(Module &M) {
3008  IRBuilder<> IRB(*C);
3009  if (ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Always ||
3010      ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Runtime) {
3011    const char *MallocNameTemplate =
3012        ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Always
3013            ? kAsanStackMallocAlwaysNameTemplate
3014            : kAsanStackMallocNameTemplate;
3015    for (int Index = 0; Index <= kMaxAsanStackMallocSizeClass; Index++) {
3016      std::string Suffix = itostr(Index);
3017      AsanStackMallocFunc[Index] = M.getOrInsertFunction(
3018          MallocNameTemplate + Suffix, IntptrTy, IntptrTy);
3019      AsanStackFreeFunc[Index] =
3020          M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix,
3021                                IRB.getVoidTy(), IntptrTy, IntptrTy);
3022    }
3023  }
3024  if (ASan.UseAfterScope) {
3025    AsanPoisonStackMemoryFunc = M.getOrInsertFunction(
3026        kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy);
3027    AsanUnpoisonStackMemoryFunc = M.getOrInsertFunction(
3028        kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy);
3029  }
3030
3031  for (size_t Val : {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0xf1, 0xf2,
3032                     0xf3, 0xf5, 0xf8}) {
3033    std::ostringstream Name;
3034    Name << kAsanSetShadowPrefix;
3035    Name << std::setw(2) << std::setfill('0') << std::hex << Val;
3036    AsanSetShadowFunc[Val] =
3037        M.getOrInsertFunction(Name.str(), IRB.getVoidTy(), IntptrTy, IntptrTy);
3038  }
3039
3040  AsanAllocaPoisonFunc = M.getOrInsertFunction(
3041      kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy);
3042  AsanAllocasUnpoisonFunc = M.getOrInsertFunction(
3043      kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy);
3044}
3045
3046void FunctionStackPoisoner::copyToShadowInline(ArrayRef<uint8_t> ShadowMask,
3047                                               ArrayRef<uint8_t> ShadowBytes,
3048                                               size_t Begin, size_t End,
3049                                               IRBuilder<> &IRB,
3050                                               Value *ShadowBase) {
3051  if (Begin >= End)
3052    return;
3053
3054  const size_t LargestStoreSizeInBytes =
3055      std::min<size_t>(sizeof(uint64_t), ASan.LongSize / 8);
3056
3057  const bool IsLittleEndian = F.getParent()->getDataLayout().isLittleEndian();
3058
3059  // Poison given range in shadow using larges store size with out leading and
3060  // trailing zeros in ShadowMask. Zeros never change, so they need neither
3061  // poisoning nor up-poisoning. Still we don't mind if some of them get into a
3062  // middle of a store.
3063  for (size_t i = Begin; i < End;) {
3064    if (!ShadowMask[i]) {
3065      assert(!ShadowBytes[i]);
3066      ++i;
3067      continue;
3068    }
3069
3070    size_t StoreSizeInBytes = LargestStoreSizeInBytes;
3071    // Fit store size into the range.
3072    while (StoreSizeInBytes > End - i)
3073      StoreSizeInBytes /= 2;
3074
3075    // Minimize store size by trimming trailing zeros.
3076    for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) {
3077      while (j <= StoreSizeInBytes / 2)
3078        StoreSizeInBytes /= 2;
3079    }
3080
3081    uint64_t Val = 0;
3082    for (size_t j = 0; j < StoreSizeInBytes; j++) {
3083      if (IsLittleEndian)
3084        Val |= (uint64_t)ShadowBytes[i + j] << (8 * j);
3085      else
3086        Val = (Val << 8) | ShadowBytes[i + j];
3087    }
3088
3089    Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i));
3090    Value *Poison = IRB.getIntN(StoreSizeInBytes * 8, Val);
3091    IRB.CreateAlignedStore(
3092        Poison, IRB.CreateIntToPtr(Ptr, PointerType::getUnqual(Poison->getContext())),
3093        Align(1));
3094
3095    i += StoreSizeInBytes;
3096  }
3097}
3098
3099void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask,
3100                                         ArrayRef<uint8_t> ShadowBytes,
3101                                         IRBuilder<> &IRB, Value *ShadowBase) {
3102  copyToShadow(ShadowMask, ShadowBytes, 0, ShadowMask.size(), IRB, ShadowBase);
3103}
3104
3105void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask,
3106                                         ArrayRef<uint8_t> ShadowBytes,
3107                                         size_t Begin, size_t End,
3108                                         IRBuilder<> &IRB, Value *ShadowBase) {
3109  assert(ShadowMask.size() == ShadowBytes.size());
3110  size_t Done = Begin;
3111  for (size_t i = Begin, j = Begin + 1; i < End; i = j++) {
3112    if (!ShadowMask[i]) {
3113      assert(!ShadowBytes[i]);
3114      continue;
3115    }
3116    uint8_t Val = ShadowBytes[i];
3117    if (!AsanSetShadowFunc[Val])
3118      continue;
3119
3120    // Skip same values.
3121    for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) {
3122    }
3123
3124    if (j - i >= ASan.MaxInlinePoisoningSize) {
3125      copyToShadowInline(ShadowMask, ShadowBytes, Done, i, IRB, ShadowBase);
3126      IRB.CreateCall(AsanSetShadowFunc[Val],
3127                     {IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)),
3128                      ConstantInt::get(IntptrTy, j - i)});
3129      Done = j;
3130    }
3131  }
3132
3133  copyToShadowInline(ShadowMask, ShadowBytes, Done, End, IRB, ShadowBase);
3134}
3135
3136// Fake stack allocator (asan_fake_stack.h) has 11 size classes
3137// for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass
3138static int StackMallocSizeClass(uint64_t LocalStackSize) {
3139  assert(LocalStackSize <= kMaxStackMallocSize);
3140  uint64_t MaxSize = kMinStackMallocSize;
3141  for (int i = 0;; i++, MaxSize *= 2)
3142    if (LocalStackSize <= MaxSize) return i;
3143  llvm_unreachable("impossible LocalStackSize");
3144}
3145
3146void FunctionStackPoisoner::copyArgsPassedByValToAllocas() {
3147  Instruction *CopyInsertPoint = &F.front().front();
3148  if (CopyInsertPoint == ASan.LocalDynamicShadow) {
3149    // Insert after the dynamic shadow location is determined
3150    CopyInsertPoint = CopyInsertPoint->getNextNode();
3151    assert(CopyInsertPoint);
3152  }
3153  IRBuilder<> IRB(CopyInsertPoint);
3154  const DataLayout &DL = F.getParent()->getDataLayout();
3155  for (Argument &Arg : F.args()) {
3156    if (Arg.hasByValAttr()) {
3157      Type *Ty = Arg.getParamByValType();
3158      const Align Alignment =
3159          DL.getValueOrABITypeAlignment(Arg.getParamAlign(), Ty);
3160
3161      AllocaInst *AI = IRB.CreateAlloca(
3162          Ty, nullptr,
3163          (Arg.hasName() ? Arg.getName() : "Arg" + Twine(Arg.getArgNo())) +
3164              ".byval");
3165      AI->setAlignment(Alignment);
3166      Arg.replaceAllUsesWith(AI);
3167
3168      uint64_t AllocSize = DL.getTypeAllocSize(Ty);
3169      IRB.CreateMemCpy(AI, Alignment, &Arg, Alignment, AllocSize);
3170    }
3171  }
3172}
3173
3174PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond,
3175                                          Value *ValueIfTrue,
3176                                          Instruction *ThenTerm,
3177                                          Value *ValueIfFalse) {
3178  PHINode *PHI = IRB.CreatePHI(IntptrTy, 2);
3179  BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent();
3180  PHI->addIncoming(ValueIfFalse, CondBlock);
3181  BasicBlock *ThenBlock = ThenTerm->getParent();
3182  PHI->addIncoming(ValueIfTrue, ThenBlock);
3183  return PHI;
3184}
3185
3186Value *FunctionStackPoisoner::createAllocaForLayout(
3187    IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) {
3188  AllocaInst *Alloca;
3189  if (Dynamic) {
3190    Alloca = IRB.CreateAlloca(IRB.getInt8Ty(),
3191                              ConstantInt::get(IRB.getInt64Ty(), L.FrameSize),
3192                              "MyAlloca");
3193  } else {
3194    Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize),
3195                              nullptr, "MyAlloca");
3196    assert(Alloca->isStaticAlloca());
3197  }
3198  assert((ClRealignStack & (ClRealignStack - 1)) == 0);
3199  uint64_t FrameAlignment = std::max(L.FrameAlignment, uint64_t(ClRealignStack));
3200  Alloca->setAlignment(Align(FrameAlignment));
3201  return IRB.CreatePointerCast(Alloca, IntptrTy);
3202}
3203
3204void FunctionStackPoisoner::createDynamicAllocasInitStorage() {
3205  BasicBlock &FirstBB = *F.begin();
3206  IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin()));
3207  DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr);
3208  IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout);
3209  DynamicAllocaLayout->setAlignment(Align(32));
3210}
3211
3212void FunctionStackPoisoner::processDynamicAllocas() {
3213  if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) {
3214    assert(DynamicAllocaPoisonCallVec.empty());
3215    return;
3216  }
3217
3218  // Insert poison calls for lifetime intrinsics for dynamic allocas.
3219  for (const auto &APC : DynamicAllocaPoisonCallVec) {
3220    assert(APC.InsBefore);
3221    assert(APC.AI);
3222    assert(ASan.isInterestingAlloca(*APC.AI));
3223    assert(!APC.AI->isStaticAlloca());
3224
3225    IRBuilder<> IRB(APC.InsBefore);
3226    poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison);
3227    // Dynamic allocas will be unpoisoned unconditionally below in
3228    // unpoisonDynamicAllocas.
3229    // Flag that we need unpoison static allocas.
3230  }
3231
3232  // Handle dynamic allocas.
3233  createDynamicAllocasInitStorage();
3234  for (auto &AI : DynamicAllocaVec)
3235    handleDynamicAllocaCall(AI);
3236  unpoisonDynamicAllocas();
3237}
3238
3239/// Collect instructions in the entry block after \p InsBefore which initialize
3240/// permanent storage for a function argument. These instructions must remain in
3241/// the entry block so that uninitialized values do not appear in backtraces. An
3242/// added benefit is that this conserves spill slots. This does not move stores
3243/// before instrumented / "interesting" allocas.
3244static void findStoresToUninstrumentedArgAllocas(
3245    AddressSanitizer &ASan, Instruction &InsBefore,
3246    SmallVectorImpl<Instruction *> &InitInsts) {
3247  Instruction *Start = InsBefore.getNextNonDebugInstruction();
3248  for (Instruction *It = Start; It; It = It->getNextNonDebugInstruction()) {
3249    // Argument initialization looks like:
3250    // 1) store <Argument>, <Alloca> OR
3251    // 2) <CastArgument> = cast <Argument> to ...
3252    //    store <CastArgument> to <Alloca>
3253    // Do not consider any other kind of instruction.
3254    //
3255    // Note: This covers all known cases, but may not be exhaustive. An
3256    // alternative to pattern-matching stores is to DFS over all Argument uses:
3257    // this might be more general, but is probably much more complicated.
3258    if (isa<AllocaInst>(It) || isa<CastInst>(It))
3259      continue;
3260    if (auto *Store = dyn_cast<StoreInst>(It)) {
3261      // The store destination must be an alloca that isn't interesting for
3262      // ASan to instrument. These are moved up before InsBefore, and they're
3263      // not interesting because allocas for arguments can be mem2reg'd.
3264      auto *Alloca = dyn_cast<AllocaInst>(Store->getPointerOperand());
3265      if (!Alloca || ASan.isInterestingAlloca(*Alloca))
3266        continue;
3267
3268      Value *Val = Store->getValueOperand();
3269      bool IsDirectArgInit = isa<Argument>(Val);
3270      bool IsArgInitViaCast =
3271          isa<CastInst>(Val) &&
3272          isa<Argument>(cast<CastInst>(Val)->getOperand(0)) &&
3273          // Check that the cast appears directly before the store. Otherwise
3274          // moving the cast before InsBefore may break the IR.
3275          Val == It->getPrevNonDebugInstruction();
3276      bool IsArgInit = IsDirectArgInit || IsArgInitViaCast;
3277      if (!IsArgInit)
3278        continue;
3279
3280      if (IsArgInitViaCast)
3281        InitInsts.push_back(cast<Instruction>(Val));
3282      InitInsts.push_back(Store);
3283      continue;
3284    }
3285
3286    // Do not reorder past unknown instructions: argument initialization should
3287    // only involve casts and stores.
3288    return;
3289  }
3290}
3291
3292void FunctionStackPoisoner::processStaticAllocas() {
3293  if (AllocaVec.empty()) {
3294    assert(StaticAllocaPoisonCallVec.empty());
3295    return;
3296  }
3297
3298  int StackMallocIdx = -1;
3299  DebugLoc EntryDebugLocation;
3300  if (auto SP = F.getSubprogram())
3301    EntryDebugLocation =
3302        DILocation::get(SP->getContext(), SP->getScopeLine(), 0, SP);
3303
3304  Instruction *InsBefore = AllocaVec[0];
3305  IRBuilder<> IRB(InsBefore);
3306
3307  // Make sure non-instrumented allocas stay in the entry block. Otherwise,
3308  // debug info is broken, because only entry-block allocas are treated as
3309  // regular stack slots.
3310  auto InsBeforeB = InsBefore->getParent();
3311  assert(InsBeforeB == &F.getEntryBlock());
3312  for (auto *AI : StaticAllocasToMoveUp)
3313    if (AI->getParent() == InsBeforeB)
3314      AI->moveBefore(InsBefore);
3315
3316  // Move stores of arguments into entry-block allocas as well. This prevents
3317  // extra stack slots from being generated (to house the argument values until
3318  // they can be stored into the allocas). This also prevents uninitialized
3319  // values from being shown in backtraces.
3320  SmallVector<Instruction *, 8> ArgInitInsts;
3321  findStoresToUninstrumentedArgAllocas(ASan, *InsBefore, ArgInitInsts);
3322  for (Instruction *ArgInitInst : ArgInitInsts)
3323    ArgInitInst->moveBefore(InsBefore);
3324
3325  // If we have a call to llvm.localescape, keep it in the entry block.
3326  if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore);
3327
3328  SmallVector<ASanStackVariableDescription, 16> SVD;
3329  SVD.reserve(AllocaVec.size());
3330  for (AllocaInst *AI : AllocaVec) {
3331    ASanStackVariableDescription D = {AI->getName().data(),
3332                                      ASan.getAllocaSizeInBytes(*AI),
3333                                      0,
3334                                      AI->getAlign().value(),
3335                                      AI,
3336                                      0,
3337                                      0};
3338    SVD.push_back(D);
3339  }
3340
3341  // Minimal header size (left redzone) is 4 pointers,
3342  // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms.
3343  uint64_t Granularity = 1ULL << Mapping.Scale;
3344  uint64_t MinHeaderSize = std::max((uint64_t)ASan.LongSize / 2, Granularity);
3345  const ASanStackFrameLayout &L =
3346      ComputeASanStackFrameLayout(SVD, Granularity, MinHeaderSize);
3347
3348  // Build AllocaToSVDMap for ASanStackVariableDescription lookup.
3349  DenseMap<const AllocaInst *, ASanStackVariableDescription *> AllocaToSVDMap;
3350  for (auto &Desc : SVD)
3351    AllocaToSVDMap[Desc.AI] = &Desc;
3352
3353  // Update SVD with information from lifetime intrinsics.
3354  for (const auto &APC : StaticAllocaPoisonCallVec) {
3355    assert(APC.InsBefore);
3356    assert(APC.AI);
3357    assert(ASan.isInterestingAlloca(*APC.AI));
3358    assert(APC.AI->isStaticAlloca());
3359
3360    ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI];
3361    Desc.LifetimeSize = Desc.Size;
3362    if (const DILocation *FnLoc = EntryDebugLocation.get()) {
3363      if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) {
3364        if (LifetimeLoc->getFile() == FnLoc->getFile())
3365          if (unsigned Line = LifetimeLoc->getLine())
3366            Desc.Line = std::min(Desc.Line ? Desc.Line : Line, Line);
3367      }
3368    }
3369  }
3370
3371  auto DescriptionString = ComputeASanStackFrameDescription(SVD);
3372  LLVM_DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n");
3373  uint64_t LocalStackSize = L.FrameSize;
3374  bool DoStackMalloc =
3375      ASan.UseAfterReturn != AsanDetectStackUseAfterReturnMode::Never &&
3376      !ASan.CompileKernel && LocalStackSize <= kMaxStackMallocSize;
3377  bool DoDynamicAlloca = ClDynamicAllocaStack;
3378  // Don't do dynamic alloca or stack malloc if:
3379  // 1) There is inline asm: too often it makes assumptions on which registers
3380  //    are available.
3381  // 2) There is a returns_twice call (typically setjmp), which is
3382  //    optimization-hostile, and doesn't play well with introduced indirect
3383  //    register-relative calculation of local variable addresses.
3384  DoDynamicAlloca &= !HasInlineAsm && !HasReturnsTwiceCall;
3385  DoStackMalloc &= !HasInlineAsm && !HasReturnsTwiceCall;
3386
3387  Value *StaticAlloca =
3388      DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false);
3389
3390  Value *FakeStack;
3391  Value *LocalStackBase;
3392  Value *LocalStackBaseAlloca;
3393  uint8_t DIExprFlags = DIExpression::ApplyOffset;
3394
3395  if (DoStackMalloc) {
3396    LocalStackBaseAlloca =
3397        IRB.CreateAlloca(IntptrTy, nullptr, "asan_local_stack_base");
3398    if (ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Runtime) {
3399      // void *FakeStack = __asan_option_detect_stack_use_after_return
3400      //     ? __asan_stack_malloc_N(LocalStackSize)
3401      //     : nullptr;
3402      // void *LocalStackBase = (FakeStack) ? FakeStack :
3403      //                        alloca(LocalStackSize);
3404      Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal(
3405          kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty());
3406      Value *UseAfterReturnIsEnabled = IRB.CreateICmpNE(
3407          IRB.CreateLoad(IRB.getInt32Ty(), OptionDetectUseAfterReturn),
3408          Constant::getNullValue(IRB.getInt32Ty()));
3409      Instruction *Term =
3410          SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false);
3411      IRBuilder<> IRBIf(Term);
3412      StackMallocIdx = StackMallocSizeClass(LocalStackSize);
3413      assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass);
3414      Value *FakeStackValue =
3415          IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx],
3416                           ConstantInt::get(IntptrTy, LocalStackSize));
3417      IRB.SetInsertPoint(InsBefore);
3418      FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term,
3419                            ConstantInt::get(IntptrTy, 0));
3420    } else {
3421      // assert(ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode:Always)
3422      // void *FakeStack = __asan_stack_malloc_N(LocalStackSize);
3423      // void *LocalStackBase = (FakeStack) ? FakeStack :
3424      //                        alloca(LocalStackSize);
3425      StackMallocIdx = StackMallocSizeClass(LocalStackSize);
3426      FakeStack = IRB.CreateCall(AsanStackMallocFunc[StackMallocIdx],
3427                                 ConstantInt::get(IntptrTy, LocalStackSize));
3428    }
3429    Value *NoFakeStack =
3430        IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy));
3431    Instruction *Term =
3432        SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false);
3433    IRBuilder<> IRBIf(Term);
3434    Value *AllocaValue =
3435        DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca;
3436
3437    IRB.SetInsertPoint(InsBefore);
3438    LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack);
3439    IRB.CreateStore(LocalStackBase, LocalStackBaseAlloca);
3440    DIExprFlags |= DIExpression::DerefBefore;
3441  } else {
3442    // void *FakeStack = nullptr;
3443    // void *LocalStackBase = alloca(LocalStackSize);
3444    FakeStack = ConstantInt::get(IntptrTy, 0);
3445    LocalStackBase =
3446        DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca;
3447    LocalStackBaseAlloca = LocalStackBase;
3448  }
3449
3450  // It shouldn't matter whether we pass an `alloca` or a `ptrtoint` as the
3451  // dbg.declare address opereand, but passing a `ptrtoint` seems to confuse
3452  // later passes and can result in dropped variable coverage in debug info.
3453  Value *LocalStackBaseAllocaPtr =
3454      isa<PtrToIntInst>(LocalStackBaseAlloca)
3455          ? cast<PtrToIntInst>(LocalStackBaseAlloca)->getPointerOperand()
3456          : LocalStackBaseAlloca;
3457  assert(isa<AllocaInst>(LocalStackBaseAllocaPtr) &&
3458         "Variable descriptions relative to ASan stack base will be dropped");
3459
3460  // Replace Alloca instructions with base+offset.
3461  for (const auto &Desc : SVD) {
3462    AllocaInst *AI = Desc.AI;
3463    replaceDbgDeclare(AI, LocalStackBaseAllocaPtr, DIB, DIExprFlags,
3464                      Desc.Offset);
3465    Value *NewAllocaPtr = IRB.CreateIntToPtr(
3466        IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)),
3467        AI->getType());
3468    AI->replaceAllUsesWith(NewAllocaPtr);
3469  }
3470
3471  // The left-most redzone has enough space for at least 4 pointers.
3472  // Write the Magic value to redzone[0].
3473  Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy);
3474  IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic),
3475                  BasePlus0);
3476  // Write the frame description constant to redzone[1].
3477  Value *BasePlus1 = IRB.CreateIntToPtr(
3478      IRB.CreateAdd(LocalStackBase,
3479                    ConstantInt::get(IntptrTy, ASan.LongSize / 8)),
3480      IntptrPtrTy);
3481  GlobalVariable *StackDescriptionGlobal =
3482      createPrivateGlobalForString(*F.getParent(), DescriptionString,
3483                                   /*AllowMerging*/ true, kAsanGenPrefix);
3484  Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy);
3485  IRB.CreateStore(Description, BasePlus1);
3486  // Write the PC to redzone[2].
3487  Value *BasePlus2 = IRB.CreateIntToPtr(
3488      IRB.CreateAdd(LocalStackBase,
3489                    ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)),
3490      IntptrPtrTy);
3491  IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2);
3492
3493  const auto &ShadowAfterScope = GetShadowBytesAfterScope(SVD, L);
3494
3495  // Poison the stack red zones at the entry.
3496  Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB);
3497  // As mask we must use most poisoned case: red zones and after scope.
3498  // As bytes we can use either the same or just red zones only.
3499  copyToShadow(ShadowAfterScope, ShadowAfterScope, IRB, ShadowBase);
3500
3501  if (!StaticAllocaPoisonCallVec.empty()) {
3502    const auto &ShadowInScope = GetShadowBytes(SVD, L);
3503
3504    // Poison static allocas near lifetime intrinsics.
3505    for (const auto &APC : StaticAllocaPoisonCallVec) {
3506      const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI];
3507      assert(Desc.Offset % L.Granularity == 0);
3508      size_t Begin = Desc.Offset / L.Granularity;
3509      size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity;
3510
3511      IRBuilder<> IRB(APC.InsBefore);
3512      copyToShadow(ShadowAfterScope,
3513                   APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End,
3514                   IRB, ShadowBase);
3515    }
3516  }
3517
3518  SmallVector<uint8_t, 64> ShadowClean(ShadowAfterScope.size(), 0);
3519  SmallVector<uint8_t, 64> ShadowAfterReturn;
3520
3521  // (Un)poison the stack before all ret instructions.
3522  for (Instruction *Ret : RetVec) {
3523    IRBuilder<> IRBRet(Ret);
3524    // Mark the current frame as retired.
3525    IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic),
3526                       BasePlus0);
3527    if (DoStackMalloc) {
3528      assert(StackMallocIdx >= 0);
3529      // if FakeStack != 0  // LocalStackBase == FakeStack
3530      //     // In use-after-return mode, poison the whole stack frame.
3531      //     if StackMallocIdx <= 4
3532      //         // For small sizes inline the whole thing:
3533      //         memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize);
3534      //         **SavedFlagPtr(FakeStack) = 0
3535      //     else
3536      //         __asan_stack_free_N(FakeStack, LocalStackSize)
3537      // else
3538      //     <This is not a fake stack; unpoison the redzones>
3539      Value *Cmp =
3540          IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy));
3541      Instruction *ThenTerm, *ElseTerm;
3542      SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm);
3543
3544      IRBuilder<> IRBPoison(ThenTerm);
3545      if (ASan.MaxInlinePoisoningSize != 0 && StackMallocIdx <= 4) {
3546        int ClassSize = kMinStackMallocSize << StackMallocIdx;
3547        ShadowAfterReturn.resize(ClassSize / L.Granularity,
3548                                 kAsanStackUseAfterReturnMagic);
3549        copyToShadow(ShadowAfterReturn, ShadowAfterReturn, IRBPoison,
3550                     ShadowBase);
3551        Value *SavedFlagPtrPtr = IRBPoison.CreateAdd(
3552            FakeStack,
3553            ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8));
3554        Value *SavedFlagPtr = IRBPoison.CreateLoad(
3555            IntptrTy, IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy));
3556        IRBPoison.CreateStore(
3557            Constant::getNullValue(IRBPoison.getInt8Ty()),
3558            IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getPtrTy()));
3559      } else {
3560        // For larger frames call __asan_stack_free_*.
3561        IRBPoison.CreateCall(
3562            AsanStackFreeFunc[StackMallocIdx],
3563            {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)});
3564      }
3565
3566      IRBuilder<> IRBElse(ElseTerm);
3567      copyToShadow(ShadowAfterScope, ShadowClean, IRBElse, ShadowBase);
3568    } else {
3569      copyToShadow(ShadowAfterScope, ShadowClean, IRBRet, ShadowBase);
3570    }
3571  }
3572
3573  // We are done. Remove the old unused alloca instructions.
3574  for (auto *AI : AllocaVec)
3575    AI->eraseFromParent();
3576}
3577
3578void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size,
3579                                         IRBuilder<> &IRB, bool DoPoison) {
3580  // For now just insert the call to ASan runtime.
3581  Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy);
3582  Value *SizeArg = ConstantInt::get(IntptrTy, Size);
3583  IRB.CreateCall(
3584      DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc,
3585      {AddrArg, SizeArg});
3586}
3587
3588// Handling llvm.lifetime intrinsics for a given %alloca:
3589// (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca.
3590// (2) if %size is constant, poison memory for llvm.lifetime.end (to detect
3591//     invalid accesses) and unpoison it for llvm.lifetime.start (the memory
3592//     could be poisoned by previous llvm.lifetime.end instruction, as the
3593//     variable may go in and out of scope several times, e.g. in loops).
3594// (3) if we poisoned at least one %alloca in a function,
3595//     unpoison the whole stack frame at function exit.
3596void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) {
3597  IRBuilder<> IRB(AI);
3598
3599  const Align Alignment = std::max(Align(kAllocaRzSize), AI->getAlign());
3600  const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1;
3601
3602  Value *Zero = Constant::getNullValue(IntptrTy);
3603  Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize);
3604  Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask);
3605
3606  // Since we need to extend alloca with additional memory to locate
3607  // redzones, and OldSize is number of allocated blocks with
3608  // ElementSize size, get allocated memory size in bytes by
3609  // OldSize * ElementSize.
3610  const unsigned ElementSize =
3611      F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType());
3612  Value *OldSize =
3613      IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false),
3614                    ConstantInt::get(IntptrTy, ElementSize));
3615
3616  // PartialSize = OldSize % 32
3617  Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask);
3618
3619  // Misalign = kAllocaRzSize - PartialSize;
3620  Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize);
3621
3622  // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0;
3623  Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize);
3624  Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero);
3625
3626  // AdditionalChunkSize = Alignment + PartialPadding + kAllocaRzSize
3627  // Alignment is added to locate left redzone, PartialPadding for possible
3628  // partial redzone and kAllocaRzSize for right redzone respectively.
3629  Value *AdditionalChunkSize = IRB.CreateAdd(
3630      ConstantInt::get(IntptrTy, Alignment.value() + kAllocaRzSize),
3631      PartialPadding);
3632
3633  Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize);
3634
3635  // Insert new alloca with new NewSize and Alignment params.
3636  AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize);
3637  NewAlloca->setAlignment(Alignment);
3638
3639  // NewAddress = Address + Alignment
3640  Value *NewAddress =
3641      IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy),
3642                    ConstantInt::get(IntptrTy, Alignment.value()));
3643
3644  // Insert __asan_alloca_poison call for new created alloca.
3645  IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize});
3646
3647  // Store the last alloca's address to DynamicAllocaLayout. We'll need this
3648  // for unpoisoning stuff.
3649  IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout);
3650
3651  Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType());
3652
3653  // Replace all uses of AddessReturnedByAlloca with NewAddressPtr.
3654  AI->replaceAllUsesWith(NewAddressPtr);
3655
3656  // We are done. Erase old alloca from parent.
3657  AI->eraseFromParent();
3658}
3659
3660// isSafeAccess returns true if Addr is always inbounds with respect to its
3661// base object. For example, it is a field access or an array access with
3662// constant inbounds index.
3663bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis,
3664                                    Value *Addr, TypeSize TypeStoreSize) const {
3665  if (TypeStoreSize.isScalable())
3666    // TODO: We can use vscale_range to convert a scalable value to an
3667    // upper bound on the access size.
3668    return false;
3669
3670  SizeOffsetAPInt SizeOffset = ObjSizeVis.compute(Addr);
3671  if (!SizeOffset.bothKnown())
3672    return false;
3673
3674  uint64_t Size = SizeOffset.Size.getZExtValue();
3675  int64_t Offset = SizeOffset.Offset.getSExtValue();
3676
3677  // Three checks are required to ensure safety:
3678  // . Offset >= 0  (since the offset is given from the base ptr)
3679  // . Size >= Offset  (unsigned)
3680  // . Size - Offset >= NeededSize  (unsigned)
3681  return Offset >= 0 && Size >= uint64_t(Offset) &&
3682         Size - uint64_t(Offset) >= TypeStoreSize / 8;
3683}
3684