1//===----- X86CallFrameOptimization.cpp - Optimize x86 call sequences -----===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines a pass that optimizes call sequences on x86.
10// Currently, it converts movs of function parameters onto the stack into
11// pushes. This is beneficial for two main reasons:
12// 1) The push instruction encoding is much smaller than a stack-ptr-based mov.
13// 2) It is possible to push memory arguments directly. So, if the
14//    the transformation is performed pre-reg-alloc, it can help relieve
15//    register pressure.
16//
17//===----------------------------------------------------------------------===//
18
19#include "MCTargetDesc/X86BaseInfo.h"
20#include "X86.h"
21#include "X86FrameLowering.h"
22#include "X86InstrInfo.h"
23#include "X86MachineFunctionInfo.h"
24#include "X86RegisterInfo.h"
25#include "X86Subtarget.h"
26#include "llvm/ADT/DenseSet.h"
27#include "llvm/ADT/SmallVector.h"
28#include "llvm/ADT/StringRef.h"
29#include "llvm/CodeGen/MachineBasicBlock.h"
30#include "llvm/CodeGen/MachineFrameInfo.h"
31#include "llvm/CodeGen/MachineFunction.h"
32#include "llvm/CodeGen/MachineFunctionPass.h"
33#include "llvm/CodeGen/MachineInstr.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineOperand.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/CodeGen/TargetInstrInfo.h"
38#include "llvm/CodeGen/TargetRegisterInfo.h"
39#include "llvm/IR/DebugLoc.h"
40#include "llvm/IR/Function.h"
41#include "llvm/MC/MCDwarf.h"
42#include "llvm/Support/CommandLine.h"
43#include "llvm/Support/ErrorHandling.h"
44#include "llvm/Support/MathExtras.h"
45#include <cassert>
46#include <cstddef>
47#include <cstdint>
48#include <iterator>
49
50using namespace llvm;
51
52#define DEBUG_TYPE "x86-cf-opt"
53
54static cl::opt<bool>
55    NoX86CFOpt("no-x86-call-frame-opt",
56               cl::desc("Avoid optimizing x86 call frames for size"),
57               cl::init(false), cl::Hidden);
58
59namespace {
60
61class X86CallFrameOptimization : public MachineFunctionPass {
62public:
63  X86CallFrameOptimization() : MachineFunctionPass(ID) { }
64
65  bool runOnMachineFunction(MachineFunction &MF) override;
66
67  static char ID;
68
69private:
70  // Information we know about a particular call site
71  struct CallContext {
72    CallContext() : FrameSetup(nullptr), ArgStoreVector(4, nullptr) {}
73
74    // Iterator referring to the frame setup instruction
75    MachineBasicBlock::iterator FrameSetup;
76
77    // Actual call instruction
78    MachineInstr *Call = nullptr;
79
80    // A copy of the stack pointer
81    MachineInstr *SPCopy = nullptr;
82
83    // The total displacement of all passed parameters
84    int64_t ExpectedDist = 0;
85
86    // The sequence of storing instructions used to pass the parameters
87    SmallVector<MachineInstr *, 4> ArgStoreVector;
88
89    // True if this call site has no stack parameters
90    bool NoStackParams = false;
91
92    // True if this call site can use push instructions
93    bool UsePush = false;
94  };
95
96  typedef SmallVector<CallContext, 8> ContextVector;
97
98  bool isLegal(MachineFunction &MF);
99
100  bool isProfitable(MachineFunction &MF, ContextVector &CallSeqMap);
101
102  void collectCallInfo(MachineFunction &MF, MachineBasicBlock &MBB,
103                       MachineBasicBlock::iterator I, CallContext &Context);
104
105  void adjustCallSequence(MachineFunction &MF, const CallContext &Context);
106
107  MachineInstr *canFoldIntoRegPush(MachineBasicBlock::iterator FrameSetup,
108                                   Register Reg);
109
110  enum InstClassification { Convert, Skip, Exit };
111
112  InstClassification classifyInstruction(MachineBasicBlock &MBB,
113                                         MachineBasicBlock::iterator MI,
114                                         const X86RegisterInfo &RegInfo,
115                                         DenseSet<unsigned int> &UsedRegs);
116
117  StringRef getPassName() const override { return "X86 Optimize Call Frame"; }
118
119  const X86InstrInfo *TII = nullptr;
120  const X86FrameLowering *TFL = nullptr;
121  const X86Subtarget *STI = nullptr;
122  MachineRegisterInfo *MRI = nullptr;
123  unsigned SlotSize = 0;
124  unsigned Log2SlotSize = 0;
125};
126
127} // end anonymous namespace
128char X86CallFrameOptimization::ID = 0;
129INITIALIZE_PASS(X86CallFrameOptimization, DEBUG_TYPE,
130                "X86 Call Frame Optimization", false, false)
131
132// This checks whether the transformation is legal.
133// Also returns false in cases where it's potentially legal, but
134// we don't even want to try.
135bool X86CallFrameOptimization::isLegal(MachineFunction &MF) {
136  if (NoX86CFOpt.getValue())
137    return false;
138
139  // We can't encode multiple DW_CFA_GNU_args_size or DW_CFA_def_cfa_offset
140  // in the compact unwind encoding that Darwin uses. So, bail if there
141  // is a danger of that being generated.
142  if (STI->isTargetDarwin() &&
143      (!MF.getLandingPads().empty() ||
144       (MF.getFunction().needsUnwindTableEntry() && !TFL->hasFP(MF))))
145    return false;
146
147  // It is not valid to change the stack pointer outside the prolog/epilog
148  // on 64-bit Windows.
149  if (STI->isTargetWin64())
150    return false;
151
152  // You would expect straight-line code between call-frame setup and
153  // call-frame destroy. You would be wrong. There are circumstances (e.g.
154  // CMOV_GR8 expansion of a select that feeds a function call!) where we can
155  // end up with the setup and the destroy in different basic blocks.
156  // This is bad, and breaks SP adjustment.
157  // So, check that all of the frames in the function are closed inside
158  // the same block, and, for good measure, that there are no nested frames.
159  //
160  // If any call allocates more argument stack memory than the stack
161  // probe size, don't do this optimization. Otherwise, this pass
162  // would need to synthesize additional stack probe calls to allocate
163  // memory for arguments.
164  unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode();
165  unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
166  bool EmitStackProbeCall = STI->getTargetLowering()->hasStackProbeSymbol(MF);
167  unsigned StackProbeSize = STI->getTargetLowering()->getStackProbeSize(MF);
168  for (MachineBasicBlock &BB : MF) {
169    bool InsideFrameSequence = false;
170    for (MachineInstr &MI : BB) {
171      if (MI.getOpcode() == FrameSetupOpcode) {
172        if (TII->getFrameSize(MI) >= StackProbeSize && EmitStackProbeCall)
173          return false;
174        if (InsideFrameSequence)
175          return false;
176        InsideFrameSequence = true;
177      } else if (MI.getOpcode() == FrameDestroyOpcode) {
178        if (!InsideFrameSequence)
179          return false;
180        InsideFrameSequence = false;
181      }
182    }
183
184    if (InsideFrameSequence)
185      return false;
186  }
187
188  return true;
189}
190
191// Check whether this transformation is profitable for a particular
192// function - in terms of code size.
193bool X86CallFrameOptimization::isProfitable(MachineFunction &MF,
194                                            ContextVector &CallSeqVector) {
195  // This transformation is always a win when we do not expect to have
196  // a reserved call frame. Under other circumstances, it may be either
197  // a win or a loss, and requires a heuristic.
198  bool CannotReserveFrame = MF.getFrameInfo().hasVarSizedObjects();
199  if (CannotReserveFrame)
200    return true;
201
202  Align StackAlign = TFL->getStackAlign();
203
204  int64_t Advantage = 0;
205  for (const auto &CC : CallSeqVector) {
206    // Call sites where no parameters are passed on the stack
207    // do not affect the cost, since there needs to be no
208    // stack adjustment.
209    if (CC.NoStackParams)
210      continue;
211
212    if (!CC.UsePush) {
213      // If we don't use pushes for a particular call site,
214      // we pay for not having a reserved call frame with an
215      // additional sub/add esp pair. The cost is ~3 bytes per instruction,
216      // depending on the size of the constant.
217      // TODO: Callee-pop functions should have a smaller penalty, because
218      // an add is needed even with a reserved call frame.
219      Advantage -= 6;
220    } else {
221      // We can use pushes. First, account for the fixed costs.
222      // We'll need a add after the call.
223      Advantage -= 3;
224      // If we have to realign the stack, we'll also need a sub before
225      if (!isAligned(StackAlign, CC.ExpectedDist))
226        Advantage -= 3;
227      // Now, for each push, we save ~3 bytes. For small constants, we actually,
228      // save more (up to 5 bytes), but 3 should be a good approximation.
229      Advantage += (CC.ExpectedDist >> Log2SlotSize) * 3;
230    }
231  }
232
233  return Advantage >= 0;
234}
235
236bool X86CallFrameOptimization::runOnMachineFunction(MachineFunction &MF) {
237  STI = &MF.getSubtarget<X86Subtarget>();
238  TII = STI->getInstrInfo();
239  TFL = STI->getFrameLowering();
240  MRI = &MF.getRegInfo();
241
242  const X86RegisterInfo &RegInfo =
243      *static_cast<const X86RegisterInfo *>(STI->getRegisterInfo());
244  SlotSize = RegInfo.getSlotSize();
245  assert(isPowerOf2_32(SlotSize) && "Expect power of 2 stack slot size");
246  Log2SlotSize = Log2_32(SlotSize);
247
248  if (skipFunction(MF.getFunction()) || !isLegal(MF))
249    return false;
250
251  unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode();
252
253  bool Changed = false;
254
255  ContextVector CallSeqVector;
256
257  for (auto &MBB : MF)
258    for (auto &MI : MBB)
259      if (MI.getOpcode() == FrameSetupOpcode) {
260        CallContext Context;
261        collectCallInfo(MF, MBB, MI, Context);
262        CallSeqVector.push_back(Context);
263      }
264
265  if (!isProfitable(MF, CallSeqVector))
266    return false;
267
268  for (const auto &CC : CallSeqVector) {
269    if (CC.UsePush) {
270      adjustCallSequence(MF, CC);
271      Changed = true;
272    }
273  }
274
275  return Changed;
276}
277
278X86CallFrameOptimization::InstClassification
279X86CallFrameOptimization::classifyInstruction(
280    MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
281    const X86RegisterInfo &RegInfo, DenseSet<unsigned int> &UsedRegs) {
282  if (MI == MBB.end())
283    return Exit;
284
285  // The instructions we actually care about are movs onto the stack or special
286  // cases of constant-stores to stack
287  switch (MI->getOpcode()) {
288    case X86::AND16mi:
289    case X86::AND32mi:
290    case X86::AND64mi32: {
291      const MachineOperand &ImmOp = MI->getOperand(X86::AddrNumOperands);
292      return ImmOp.getImm() == 0 ? Convert : Exit;
293    }
294    case X86::OR16mi:
295    case X86::OR32mi:
296    case X86::OR64mi32: {
297      const MachineOperand &ImmOp = MI->getOperand(X86::AddrNumOperands);
298      return ImmOp.getImm() == -1 ? Convert : Exit;
299    }
300    case X86::MOV32mi:
301    case X86::MOV32mr:
302    case X86::MOV64mi32:
303    case X86::MOV64mr:
304      return Convert;
305  }
306
307  // Not all calling conventions have only stack MOVs between the stack
308  // adjust and the call.
309
310  // We want to tolerate other instructions, to cover more cases.
311  // In particular:
312  // a) PCrel calls, where we expect an additional COPY of the basereg.
313  // b) Passing frame-index addresses.
314  // c) Calling conventions that have inreg parameters. These generate
315  //    both copies and movs into registers.
316  // To avoid creating lots of special cases, allow any instruction
317  // that does not write into memory, does not def or use the stack
318  // pointer, and does not def any register that was used by a preceding
319  // push.
320  // (Reading from memory is allowed, even if referenced through a
321  // frame index, since these will get adjusted properly in PEI)
322
323  // The reason for the last condition is that the pushes can't replace
324  // the movs in place, because the order must be reversed.
325  // So if we have a MOV32mr that uses EDX, then an instruction that defs
326  // EDX, and then the call, after the transformation the push will use
327  // the modified version of EDX, and not the original one.
328  // Since we are still in SSA form at this point, we only need to
329  // make sure we don't clobber any *physical* registers that were
330  // used by an earlier mov that will become a push.
331
332  if (MI->isCall() || MI->mayStore())
333    return Exit;
334
335  for (const MachineOperand &MO : MI->operands()) {
336    if (!MO.isReg())
337      continue;
338    Register Reg = MO.getReg();
339    if (!Reg.isPhysical())
340      continue;
341    if (RegInfo.regsOverlap(Reg, RegInfo.getStackRegister()))
342      return Exit;
343    if (MO.isDef()) {
344      for (unsigned int U : UsedRegs)
345        if (RegInfo.regsOverlap(Reg, U))
346          return Exit;
347    }
348  }
349
350  return Skip;
351}
352
353void X86CallFrameOptimization::collectCallInfo(MachineFunction &MF,
354                                               MachineBasicBlock &MBB,
355                                               MachineBasicBlock::iterator I,
356                                               CallContext &Context) {
357  // Check that this particular call sequence is amenable to the
358  // transformation.
359  const X86RegisterInfo &RegInfo =
360      *static_cast<const X86RegisterInfo *>(STI->getRegisterInfo());
361
362  // We expect to enter this at the beginning of a call sequence
363  assert(I->getOpcode() == TII->getCallFrameSetupOpcode());
364  MachineBasicBlock::iterator FrameSetup = I++;
365  Context.FrameSetup = FrameSetup;
366
367  // How much do we adjust the stack? This puts an upper bound on
368  // the number of parameters actually passed on it.
369  unsigned int MaxAdjust = TII->getFrameSize(*FrameSetup) >> Log2SlotSize;
370
371  // A zero adjustment means no stack parameters
372  if (!MaxAdjust) {
373    Context.NoStackParams = true;
374    return;
375  }
376
377  // Skip over DEBUG_VALUE.
378  // For globals in PIC mode, we can have some LEAs here. Skip them as well.
379  // TODO: Extend this to something that covers more cases.
380  while (I->getOpcode() == X86::LEA32r || I->isDebugInstr())
381    ++I;
382
383  Register StackPtr = RegInfo.getStackRegister();
384  auto StackPtrCopyInst = MBB.end();
385  // SelectionDAG (but not FastISel) inserts a copy of ESP into a virtual
386  // register.  If it's there, use that virtual register as stack pointer
387  // instead. Also, we need to locate this instruction so that we can later
388  // safely ignore it while doing the conservative processing of the call chain.
389  // The COPY can be located anywhere between the call-frame setup
390  // instruction and its first use. We use the call instruction as a boundary
391  // because it is usually cheaper to check if an instruction is a call than
392  // checking if an instruction uses a register.
393  for (auto J = I; !J->isCall(); ++J)
394    if (J->isCopy() && J->getOperand(0).isReg() && J->getOperand(1).isReg() &&
395        J->getOperand(1).getReg() == StackPtr) {
396      StackPtrCopyInst = J;
397      Context.SPCopy = &*J++;
398      StackPtr = Context.SPCopy->getOperand(0).getReg();
399      break;
400    }
401
402  // Scan the call setup sequence for the pattern we're looking for.
403  // We only handle a simple case - a sequence of store instructions that
404  // push a sequence of stack-slot-aligned values onto the stack, with
405  // no gaps between them.
406  if (MaxAdjust > 4)
407    Context.ArgStoreVector.resize(MaxAdjust, nullptr);
408
409  DenseSet<unsigned int> UsedRegs;
410
411  for (InstClassification Classification = Skip; Classification != Exit; ++I) {
412    // If this is the COPY of the stack pointer, it's ok to ignore.
413    if (I == StackPtrCopyInst)
414      continue;
415    Classification = classifyInstruction(MBB, I, RegInfo, UsedRegs);
416    if (Classification != Convert)
417      continue;
418    // We know the instruction has a supported store opcode.
419    // We only want movs of the form:
420    // mov imm/reg, k(%StackPtr)
421    // If we run into something else, bail.
422    // Note that AddrBaseReg may, counter to its name, not be a register,
423    // but rather a frame index.
424    // TODO: Support the fi case. This should probably work now that we
425    // have the infrastructure to track the stack pointer within a call
426    // sequence.
427    if (!I->getOperand(X86::AddrBaseReg).isReg() ||
428        (I->getOperand(X86::AddrBaseReg).getReg() != StackPtr) ||
429        !I->getOperand(X86::AddrScaleAmt).isImm() ||
430        (I->getOperand(X86::AddrScaleAmt).getImm() != 1) ||
431        (I->getOperand(X86::AddrIndexReg).getReg() != X86::NoRegister) ||
432        (I->getOperand(X86::AddrSegmentReg).getReg() != X86::NoRegister) ||
433        !I->getOperand(X86::AddrDisp).isImm())
434      return;
435
436    int64_t StackDisp = I->getOperand(X86::AddrDisp).getImm();
437    assert(StackDisp >= 0 &&
438           "Negative stack displacement when passing parameters");
439
440    // We really don't want to consider the unaligned case.
441    if (StackDisp & (SlotSize - 1))
442      return;
443    StackDisp >>= Log2SlotSize;
444
445    assert((size_t)StackDisp < Context.ArgStoreVector.size() &&
446           "Function call has more parameters than the stack is adjusted for.");
447
448    // If the same stack slot is being filled twice, something's fishy.
449    if (Context.ArgStoreVector[StackDisp] != nullptr)
450      return;
451    Context.ArgStoreVector[StackDisp] = &*I;
452
453    for (const MachineOperand &MO : I->uses()) {
454      if (!MO.isReg())
455        continue;
456      Register Reg = MO.getReg();
457      if (Reg.isPhysical())
458        UsedRegs.insert(Reg);
459    }
460  }
461
462  --I;
463
464  // We now expect the end of the sequence. If we stopped early,
465  // or reached the end of the block without finding a call, bail.
466  if (I == MBB.end() || !I->isCall())
467    return;
468
469  Context.Call = &*I;
470  if ((++I)->getOpcode() != TII->getCallFrameDestroyOpcode())
471    return;
472
473  // Now, go through the vector, and see that we don't have any gaps,
474  // but only a series of storing instructions.
475  auto MMI = Context.ArgStoreVector.begin(), MME = Context.ArgStoreVector.end();
476  for (; MMI != MME; ++MMI, Context.ExpectedDist += SlotSize)
477    if (*MMI == nullptr)
478      break;
479
480  // If the call had no parameters, do nothing
481  if (MMI == Context.ArgStoreVector.begin())
482    return;
483
484  // We are either at the last parameter, or a gap.
485  // Make sure it's not a gap
486  for (; MMI != MME; ++MMI)
487    if (*MMI != nullptr)
488      return;
489
490  Context.UsePush = true;
491}
492
493void X86CallFrameOptimization::adjustCallSequence(MachineFunction &MF,
494                                                  const CallContext &Context) {
495  // Ok, we can in fact do the transformation for this call.
496  // Do not remove the FrameSetup instruction, but adjust the parameters.
497  // PEI will end up finalizing the handling of this.
498  MachineBasicBlock::iterator FrameSetup = Context.FrameSetup;
499  MachineBasicBlock &MBB = *(FrameSetup->getParent());
500  TII->setFrameAdjustment(*FrameSetup, Context.ExpectedDist);
501
502  const DebugLoc &DL = FrameSetup->getDebugLoc();
503  bool Is64Bit = STI->is64Bit();
504  // Now, iterate through the vector in reverse order, and replace the store to
505  // stack with pushes. MOVmi/MOVmr doesn't have any defs, so no need to
506  // replace uses.
507  for (int Idx = (Context.ExpectedDist >> Log2SlotSize) - 1; Idx >= 0; --Idx) {
508    MachineBasicBlock::iterator Store = *Context.ArgStoreVector[Idx];
509    const MachineOperand &PushOp = Store->getOperand(X86::AddrNumOperands);
510    MachineBasicBlock::iterator Push = nullptr;
511    unsigned PushOpcode;
512    switch (Store->getOpcode()) {
513    default:
514      llvm_unreachable("Unexpected Opcode!");
515    case X86::AND16mi:
516    case X86::AND32mi:
517    case X86::AND64mi32:
518    case X86::OR16mi:
519    case X86::OR32mi:
520    case X86::OR64mi32:
521    case X86::MOV32mi:
522    case X86::MOV64mi32:
523      PushOpcode = Is64Bit ? X86::PUSH64i32 : X86::PUSH32i;
524      Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode)).add(PushOp);
525      Push->cloneMemRefs(MF, *Store);
526      break;
527    case X86::MOV32mr:
528    case X86::MOV64mr: {
529      Register Reg = PushOp.getReg();
530
531      // If storing a 32-bit vreg on 64-bit targets, extend to a 64-bit vreg
532      // in preparation for the PUSH64. The upper 32 bits can be undef.
533      if (Is64Bit && Store->getOpcode() == X86::MOV32mr) {
534        Register UndefReg = MRI->createVirtualRegister(&X86::GR64RegClass);
535        Reg = MRI->createVirtualRegister(&X86::GR64RegClass);
536        BuildMI(MBB, Context.Call, DL, TII->get(X86::IMPLICIT_DEF), UndefReg);
537        BuildMI(MBB, Context.Call, DL, TII->get(X86::INSERT_SUBREG), Reg)
538            .addReg(UndefReg)
539            .add(PushOp)
540            .addImm(X86::sub_32bit);
541      }
542
543      // If PUSHrmm is not slow on this target, try to fold the source of the
544      // push into the instruction.
545      bool SlowPUSHrmm = STI->slowTwoMemOps();
546
547      // Check that this is legal to fold. Right now, we're extremely
548      // conservative about that.
549      MachineInstr *DefMov = nullptr;
550      if (!SlowPUSHrmm && (DefMov = canFoldIntoRegPush(FrameSetup, Reg))) {
551        PushOpcode = Is64Bit ? X86::PUSH64rmm : X86::PUSH32rmm;
552        Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode));
553
554        unsigned NumOps = DefMov->getDesc().getNumOperands();
555        for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i)
556          Push->addOperand(DefMov->getOperand(i));
557        Push->cloneMergedMemRefs(MF, {DefMov, &*Store});
558        DefMov->eraseFromParent();
559      } else {
560        PushOpcode = Is64Bit ? X86::PUSH64r : X86::PUSH32r;
561        Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode))
562                   .addReg(Reg)
563                   .getInstr();
564        Push->cloneMemRefs(MF, *Store);
565      }
566      break;
567    }
568    }
569
570    // For debugging, when using SP-based CFA, we need to adjust the CFA
571    // offset after each push.
572    // TODO: This is needed only if we require precise CFA.
573    if (!TFL->hasFP(MF))
574      TFL->BuildCFI(
575          MBB, std::next(Push), DL,
576          MCCFIInstruction::createAdjustCfaOffset(nullptr, SlotSize));
577
578    MBB.erase(Store);
579  }
580
581  // The stack-pointer copy is no longer used in the call sequences.
582  // There should not be any other users, but we can't commit to that, so:
583  if (Context.SPCopy && MRI->use_empty(Context.SPCopy->getOperand(0).getReg()))
584    Context.SPCopy->eraseFromParent();
585
586  // Once we've done this, we need to make sure PEI doesn't assume a reserved
587  // frame.
588  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
589  FuncInfo->setHasPushSequences(true);
590}
591
592MachineInstr *X86CallFrameOptimization::canFoldIntoRegPush(
593    MachineBasicBlock::iterator FrameSetup, Register Reg) {
594  // Do an extremely restricted form of load folding.
595  // ISel will often create patterns like:
596  // movl    4(%edi), %eax
597  // movl    8(%edi), %ecx
598  // movl    12(%edi), %edx
599  // movl    %edx, 8(%esp)
600  // movl    %ecx, 4(%esp)
601  // movl    %eax, (%esp)
602  // call
603  // Get rid of those with prejudice.
604  if (!Reg.isVirtual())
605    return nullptr;
606
607  // Make sure this is the only use of Reg.
608  if (!MRI->hasOneNonDBGUse(Reg))
609    return nullptr;
610
611  MachineInstr &DefMI = *MRI->getVRegDef(Reg);
612
613  // Make sure the def is a MOV from memory.
614  // If the def is in another block, give up.
615  if ((DefMI.getOpcode() != X86::MOV32rm &&
616       DefMI.getOpcode() != X86::MOV64rm) ||
617      DefMI.getParent() != FrameSetup->getParent())
618    return nullptr;
619
620  // Make sure we don't have any instructions between DefMI and the
621  // push that make folding the load illegal.
622  for (MachineBasicBlock::iterator I = DefMI; I != FrameSetup; ++I)
623    if (I->isLoadFoldBarrier())
624      return nullptr;
625
626  return &DefMI;
627}
628
629FunctionPass *llvm::createX86CallFrameOptimization() {
630  return new X86CallFrameOptimization();
631}
632