1//===-- PPCRegisterInfo.cpp - PowerPC Register Information ----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains the PowerPC implementation of the TargetRegisterInfo
10// class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCRegisterInfo.h"
15#include "PPCFrameLowering.h"
16#include "PPCInstrBuilder.h"
17#include "PPCMachineFunctionInfo.h"
18#include "PPCSubtarget.h"
19#include "PPCTargetMachine.h"
20#include "llvm/ADT/BitVector.h"
21#include "llvm/ADT/STLExtras.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineFunction.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/MachineModuleInfo.h"
27#include "llvm/CodeGen/MachineRegisterInfo.h"
28#include "llvm/CodeGen/RegisterScavenging.h"
29#include "llvm/CodeGen/TargetFrameLowering.h"
30#include "llvm/CodeGen/TargetInstrInfo.h"
31#include "llvm/CodeGen/VirtRegMap.h"
32#include "llvm/IR/CallingConv.h"
33#include "llvm/IR/Constants.h"
34#include "llvm/IR/Function.h"
35#include "llvm/IR/Type.h"
36#include "llvm/Support/CommandLine.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Support/ErrorHandling.h"
39#include "llvm/Support/MathExtras.h"
40#include "llvm/Support/raw_ostream.h"
41#include "llvm/Target/TargetMachine.h"
42#include "llvm/Target/TargetOptions.h"
43#include <cstdlib>
44
45using namespace llvm;
46
47#define DEBUG_TYPE "reginfo"
48
49#define GET_REGINFO_TARGET_DESC
50#include "PPCGenRegisterInfo.inc"
51
52STATISTIC(InflateGPRC, "Number of gprc inputs for getLargestLegalClass");
53STATISTIC(InflateGP8RC, "Number of g8rc inputs for getLargestLegalClass");
54
55static cl::opt<bool>
56EnableBasePointer("ppc-use-base-pointer", cl::Hidden, cl::init(true),
57         cl::desc("Enable use of a base pointer for complex stack frames"));
58
59static cl::opt<bool>
60AlwaysBasePointer("ppc-always-use-base-pointer", cl::Hidden, cl::init(false),
61         cl::desc("Force the use of a base pointer in every function"));
62
63static cl::opt<bool>
64EnableGPRToVecSpills("ppc-enable-gpr-to-vsr-spills", cl::Hidden, cl::init(false),
65         cl::desc("Enable spills from gpr to vsr rather than stack"));
66
67static cl::opt<bool>
68StackPtrConst("ppc-stack-ptr-caller-preserved",
69                cl::desc("Consider R1 caller preserved so stack saves of "
70                         "caller preserved registers can be LICM candidates"),
71                cl::init(true), cl::Hidden);
72
73static cl::opt<unsigned>
74MaxCRBitSpillDist("ppc-max-crbit-spill-dist",
75                  cl::desc("Maximum search distance for definition of CR bit "
76                           "spill on ppc"),
77                  cl::Hidden, cl::init(100));
78
79// Copies/moves of physical accumulators are expensive operations
80// that should be avoided whenever possible. MMA instructions are
81// meant to be used in performance-sensitive computational kernels.
82// This option is provided, at least for the time being, to give the
83// user a tool to detect this expensive operation and either rework
84// their code or report a compiler bug if that turns out to be the
85// cause.
86#ifndef NDEBUG
87static cl::opt<bool>
88ReportAccMoves("ppc-report-acc-moves",
89               cl::desc("Emit information about accumulator register spills "
90                        "and copies"),
91               cl::Hidden, cl::init(false));
92#endif
93
94extern cl::opt<bool> DisableAutoPairedVecSt;
95
96static unsigned offsetMinAlignForOpcode(unsigned OpC);
97
98PPCRegisterInfo::PPCRegisterInfo(const PPCTargetMachine &TM)
99  : PPCGenRegisterInfo(TM.isPPC64() ? PPC::LR8 : PPC::LR,
100                       TM.isPPC64() ? 0 : 1,
101                       TM.isPPC64() ? 0 : 1),
102    TM(TM) {
103  ImmToIdxMap[PPC::LD]   = PPC::LDX;    ImmToIdxMap[PPC::STD]  = PPC::STDX;
104  ImmToIdxMap[PPC::LBZ]  = PPC::LBZX;   ImmToIdxMap[PPC::STB]  = PPC::STBX;
105  ImmToIdxMap[PPC::LHZ]  = PPC::LHZX;   ImmToIdxMap[PPC::LHA]  = PPC::LHAX;
106  ImmToIdxMap[PPC::LWZ]  = PPC::LWZX;   ImmToIdxMap[PPC::LWA]  = PPC::LWAX;
107  ImmToIdxMap[PPC::LFS]  = PPC::LFSX;   ImmToIdxMap[PPC::LFD]  = PPC::LFDX;
108  ImmToIdxMap[PPC::STH]  = PPC::STHX;   ImmToIdxMap[PPC::STW]  = PPC::STWX;
109  ImmToIdxMap[PPC::STFS] = PPC::STFSX;  ImmToIdxMap[PPC::STFD] = PPC::STFDX;
110  ImmToIdxMap[PPC::ADDI] = PPC::ADD4;
111  ImmToIdxMap[PPC::LWA_32] = PPC::LWAX_32;
112
113  // 64-bit
114  ImmToIdxMap[PPC::LHA8] = PPC::LHAX8; ImmToIdxMap[PPC::LBZ8] = PPC::LBZX8;
115  ImmToIdxMap[PPC::LHZ8] = PPC::LHZX8; ImmToIdxMap[PPC::LWZ8] = PPC::LWZX8;
116  ImmToIdxMap[PPC::STB8] = PPC::STBX8; ImmToIdxMap[PPC::STH8] = PPC::STHX8;
117  ImmToIdxMap[PPC::STW8] = PPC::STWX8; ImmToIdxMap[PPC::STDU] = PPC::STDUX;
118  ImmToIdxMap[PPC::ADDI8] = PPC::ADD8;
119  ImmToIdxMap[PPC::LQ] = PPC::LQX_PSEUDO;
120  ImmToIdxMap[PPC::STQ] = PPC::STQX_PSEUDO;
121
122  // VSX
123  ImmToIdxMap[PPC::DFLOADf32] = PPC::LXSSPX;
124  ImmToIdxMap[PPC::DFLOADf64] = PPC::LXSDX;
125  ImmToIdxMap[PPC::SPILLTOVSR_LD] = PPC::SPILLTOVSR_LDX;
126  ImmToIdxMap[PPC::SPILLTOVSR_ST] = PPC::SPILLTOVSR_STX;
127  ImmToIdxMap[PPC::DFSTOREf32] = PPC::STXSSPX;
128  ImmToIdxMap[PPC::DFSTOREf64] = PPC::STXSDX;
129  ImmToIdxMap[PPC::LXV] = PPC::LXVX;
130  ImmToIdxMap[PPC::LXSD] = PPC::LXSDX;
131  ImmToIdxMap[PPC::LXSSP] = PPC::LXSSPX;
132  ImmToIdxMap[PPC::STXV] = PPC::STXVX;
133  ImmToIdxMap[PPC::STXSD] = PPC::STXSDX;
134  ImmToIdxMap[PPC::STXSSP] = PPC::STXSSPX;
135
136  // SPE
137  ImmToIdxMap[PPC::EVLDD] = PPC::EVLDDX;
138  ImmToIdxMap[PPC::EVSTDD] = PPC::EVSTDDX;
139  ImmToIdxMap[PPC::SPESTW] = PPC::SPESTWX;
140  ImmToIdxMap[PPC::SPELWZ] = PPC::SPELWZX;
141
142  // Power10
143  ImmToIdxMap[PPC::PLBZ]   = PPC::LBZX; ImmToIdxMap[PPC::PLBZ8]   = PPC::LBZX8;
144  ImmToIdxMap[PPC::PLHZ]   = PPC::LHZX; ImmToIdxMap[PPC::PLHZ8]   = PPC::LHZX8;
145  ImmToIdxMap[PPC::PLHA]   = PPC::LHAX; ImmToIdxMap[PPC::PLHA8]   = PPC::LHAX8;
146  ImmToIdxMap[PPC::PLWZ]   = PPC::LWZX; ImmToIdxMap[PPC::PLWZ8]   = PPC::LWZX8;
147  ImmToIdxMap[PPC::PLWA]   = PPC::LWAX; ImmToIdxMap[PPC::PLWA8]   = PPC::LWAX;
148  ImmToIdxMap[PPC::PLD]    = PPC::LDX;  ImmToIdxMap[PPC::PSTD]   = PPC::STDX;
149
150  ImmToIdxMap[PPC::PSTB]   = PPC::STBX; ImmToIdxMap[PPC::PSTB8]   = PPC::STBX8;
151  ImmToIdxMap[PPC::PSTH]   = PPC::STHX; ImmToIdxMap[PPC::PSTH8]   = PPC::STHX8;
152  ImmToIdxMap[PPC::PSTW]   = PPC::STWX; ImmToIdxMap[PPC::PSTW8]   = PPC::STWX8;
153
154  ImmToIdxMap[PPC::PLFS]   = PPC::LFSX; ImmToIdxMap[PPC::PSTFS]   = PPC::STFSX;
155  ImmToIdxMap[PPC::PLFD]   = PPC::LFDX; ImmToIdxMap[PPC::PSTFD]   = PPC::STFDX;
156  ImmToIdxMap[PPC::PLXSSP] = PPC::LXSSPX; ImmToIdxMap[PPC::PSTXSSP] = PPC::STXSSPX;
157  ImmToIdxMap[PPC::PLXSD]  = PPC::LXSDX; ImmToIdxMap[PPC::PSTXSD]  = PPC::STXSDX;
158  ImmToIdxMap[PPC::PLXV]   = PPC::LXVX; ImmToIdxMap[PPC::PSTXV]  = PPC::STXVX;
159
160  ImmToIdxMap[PPC::LXVP]   = PPC::LXVPX;
161  ImmToIdxMap[PPC::STXVP]  = PPC::STXVPX;
162  ImmToIdxMap[PPC::PLXVP]  = PPC::LXVPX;
163  ImmToIdxMap[PPC::PSTXVP] = PPC::STXVPX;
164}
165
166/// getPointerRegClass - Return the register class to use to hold pointers.
167/// This is used for addressing modes.
168const TargetRegisterClass *
169PPCRegisterInfo::getPointerRegClass(const MachineFunction &MF, unsigned Kind)
170                                                                       const {
171  // Note that PPCInstrInfo::FoldImmediate also directly uses this Kind value
172  // when it checks for ZERO folding.
173  if (Kind == 1) {
174    if (TM.isPPC64())
175      return &PPC::G8RC_NOX0RegClass;
176    return &PPC::GPRC_NOR0RegClass;
177  }
178
179  if (TM.isPPC64())
180    return &PPC::G8RCRegClass;
181  return &PPC::GPRCRegClass;
182}
183
184const MCPhysReg*
185PPCRegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
186  const PPCSubtarget &Subtarget = MF->getSubtarget<PPCSubtarget>();
187  if (MF->getFunction().getCallingConv() == CallingConv::AnyReg) {
188    if (!TM.isPPC64() && Subtarget.isAIXABI())
189      report_fatal_error("AnyReg unimplemented on 32-bit AIX.");
190    if (Subtarget.hasVSX()) {
191      if (Subtarget.pairedVectorMemops())
192        return CSR_64_AllRegs_VSRP_SaveList;
193      if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI())
194        return CSR_64_AllRegs_AIX_Dflt_VSX_SaveList;
195      return CSR_64_AllRegs_VSX_SaveList;
196    }
197    if (Subtarget.hasAltivec()) {
198      if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI())
199        return CSR_64_AllRegs_AIX_Dflt_Altivec_SaveList;
200      return CSR_64_AllRegs_Altivec_SaveList;
201    }
202    return CSR_64_AllRegs_SaveList;
203  }
204
205  // On PPC64, we might need to save r2 (but only if it is not reserved).
206  // We do not need to treat R2 as callee-saved when using PC-Relative calls
207  // because any direct uses of R2 will cause it to be reserved. If the function
208  // is a leaf or the only uses of R2 are implicit uses for calls, the calls
209  // will use the @notoc relocation which will cause this function to set the
210  // st_other bit to 1, thereby communicating to its caller that it arbitrarily
211  // clobbers the TOC.
212  bool SaveR2 = MF->getRegInfo().isAllocatable(PPC::X2) &&
213                !Subtarget.isUsingPCRelativeCalls();
214
215  // Cold calling convention CSRs.
216  if (MF->getFunction().getCallingConv() == CallingConv::Cold) {
217    if (Subtarget.isAIXABI())
218      report_fatal_error("Cold calling unimplemented on AIX.");
219    if (TM.isPPC64()) {
220      if (Subtarget.pairedVectorMemops())
221        return SaveR2 ? CSR_SVR64_ColdCC_R2_VSRP_SaveList
222                      : CSR_SVR64_ColdCC_VSRP_SaveList;
223      if (Subtarget.hasAltivec())
224        return SaveR2 ? CSR_SVR64_ColdCC_R2_Altivec_SaveList
225                      : CSR_SVR64_ColdCC_Altivec_SaveList;
226      return SaveR2 ? CSR_SVR64_ColdCC_R2_SaveList
227                    : CSR_SVR64_ColdCC_SaveList;
228    }
229    // 32-bit targets.
230    if (Subtarget.pairedVectorMemops())
231      return CSR_SVR32_ColdCC_VSRP_SaveList;
232    else if (Subtarget.hasAltivec())
233      return CSR_SVR32_ColdCC_Altivec_SaveList;
234    else if (Subtarget.hasSPE())
235      return CSR_SVR32_ColdCC_SPE_SaveList;
236    return CSR_SVR32_ColdCC_SaveList;
237  }
238  // Standard calling convention CSRs.
239  if (TM.isPPC64()) {
240    if (Subtarget.pairedVectorMemops()) {
241      if (Subtarget.isAIXABI()) {
242        if (!TM.getAIXExtendedAltivecABI())
243          return SaveR2 ? CSR_PPC64_R2_SaveList : CSR_PPC64_SaveList;
244        return SaveR2 ? CSR_AIX64_R2_VSRP_SaveList : CSR_AIX64_VSRP_SaveList;
245      }
246      return SaveR2 ? CSR_SVR464_R2_VSRP_SaveList : CSR_SVR464_VSRP_SaveList;
247    }
248    if (Subtarget.hasAltivec() &&
249        (!Subtarget.isAIXABI() || TM.getAIXExtendedAltivecABI())) {
250      return SaveR2 ? CSR_PPC64_R2_Altivec_SaveList
251                    : CSR_PPC64_Altivec_SaveList;
252    }
253    return SaveR2 ? CSR_PPC64_R2_SaveList : CSR_PPC64_SaveList;
254  }
255  // 32-bit targets.
256  if (Subtarget.isAIXABI()) {
257    if (Subtarget.pairedVectorMemops())
258      return TM.getAIXExtendedAltivecABI() ? CSR_AIX32_VSRP_SaveList
259                                           : CSR_AIX32_SaveList;
260    if (Subtarget.hasAltivec())
261      return TM.getAIXExtendedAltivecABI() ? CSR_AIX32_Altivec_SaveList
262                                           : CSR_AIX32_SaveList;
263    return CSR_AIX32_SaveList;
264  }
265  if (Subtarget.pairedVectorMemops())
266    return CSR_SVR432_VSRP_SaveList;
267  if (Subtarget.hasAltivec())
268    return CSR_SVR432_Altivec_SaveList;
269  else if (Subtarget.hasSPE()) {
270    if (TM.isPositionIndependent() && !TM.isPPC64())
271      return CSR_SVR432_SPE_NO_S30_31_SaveList;
272    return CSR_SVR432_SPE_SaveList;
273   }
274  return CSR_SVR432_SaveList;
275}
276
277const uint32_t *
278PPCRegisterInfo::getCallPreservedMask(const MachineFunction &MF,
279                                      CallingConv::ID CC) const {
280  const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
281  if (CC == CallingConv::AnyReg) {
282    if (Subtarget.hasVSX()) {
283      if (Subtarget.pairedVectorMemops())
284        return CSR_64_AllRegs_VSRP_RegMask;
285      if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI())
286        return CSR_64_AllRegs_AIX_Dflt_VSX_RegMask;
287      return CSR_64_AllRegs_VSX_RegMask;
288    }
289    if (Subtarget.hasAltivec()) {
290      if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI())
291        return CSR_64_AllRegs_AIX_Dflt_Altivec_RegMask;
292      return CSR_64_AllRegs_Altivec_RegMask;
293    }
294    return CSR_64_AllRegs_RegMask;
295  }
296
297  if (Subtarget.isAIXABI()) {
298    if (Subtarget.pairedVectorMemops()) {
299      if (!TM.getAIXExtendedAltivecABI())
300        return TM.isPPC64() ? CSR_PPC64_RegMask : CSR_AIX32_RegMask;
301      return TM.isPPC64() ? CSR_AIX64_VSRP_RegMask : CSR_AIX32_VSRP_RegMask;
302    }
303    return TM.isPPC64()
304               ? ((Subtarget.hasAltivec() && TM.getAIXExtendedAltivecABI())
305                      ? CSR_PPC64_Altivec_RegMask
306                      : CSR_PPC64_RegMask)
307               : ((Subtarget.hasAltivec() && TM.getAIXExtendedAltivecABI())
308                      ? CSR_AIX32_Altivec_RegMask
309                      : CSR_AIX32_RegMask);
310  }
311
312  if (CC == CallingConv::Cold) {
313    if (TM.isPPC64())
314      return Subtarget.pairedVectorMemops()
315                 ? CSR_SVR64_ColdCC_VSRP_RegMask
316                 : (Subtarget.hasAltivec() ? CSR_SVR64_ColdCC_Altivec_RegMask
317                                           : CSR_SVR64_ColdCC_RegMask);
318    else
319      return Subtarget.pairedVectorMemops()
320                 ? CSR_SVR32_ColdCC_VSRP_RegMask
321                 : (Subtarget.hasAltivec()
322                        ? CSR_SVR32_ColdCC_Altivec_RegMask
323                        : (Subtarget.hasSPE() ? CSR_SVR32_ColdCC_SPE_RegMask
324                                              : CSR_SVR32_ColdCC_RegMask));
325  }
326
327  if (TM.isPPC64())
328    return Subtarget.pairedVectorMemops()
329               ? CSR_SVR464_VSRP_RegMask
330               : (Subtarget.hasAltivec() ? CSR_PPC64_Altivec_RegMask
331                                         : CSR_PPC64_RegMask);
332  else
333    return Subtarget.pairedVectorMemops()
334               ? CSR_SVR432_VSRP_RegMask
335               : (Subtarget.hasAltivec()
336                      ? CSR_SVR432_Altivec_RegMask
337                      : (Subtarget.hasSPE()
338                             ? (TM.isPositionIndependent()
339                                     ? CSR_SVR432_SPE_NO_S30_31_RegMask
340                                     : CSR_SVR432_SPE_RegMask)
341                             : CSR_SVR432_RegMask));
342}
343
344const uint32_t*
345PPCRegisterInfo::getNoPreservedMask() const {
346  return CSR_NoRegs_RegMask;
347}
348
349void PPCRegisterInfo::adjustStackMapLiveOutMask(uint32_t *Mask) const {
350  for (unsigned PseudoReg : {PPC::ZERO, PPC::ZERO8, PPC::RM})
351    Mask[PseudoReg / 32] &= ~(1u << (PseudoReg % 32));
352}
353
354BitVector PPCRegisterInfo::getReservedRegs(const MachineFunction &MF) const {
355  BitVector Reserved(getNumRegs());
356  const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
357  const PPCFrameLowering *TFI = getFrameLowering(MF);
358
359  // The ZERO register is not really a register, but the representation of r0
360  // when used in instructions that treat r0 as the constant 0.
361  markSuperRegs(Reserved, PPC::ZERO);
362
363  // The FP register is also not really a register, but is the representation
364  // of the frame pointer register used by ISD::FRAMEADDR.
365  markSuperRegs(Reserved, PPC::FP);
366
367  // The BP register is also not really a register, but is the representation
368  // of the base pointer register used by setjmp.
369  markSuperRegs(Reserved, PPC::BP);
370
371  // The counter registers must be reserved so that counter-based loops can
372  // be correctly formed (and the mtctr instructions are not DCE'd).
373  markSuperRegs(Reserved, PPC::CTR);
374  markSuperRegs(Reserved, PPC::CTR8);
375
376  markSuperRegs(Reserved, PPC::R1);
377  markSuperRegs(Reserved, PPC::LR);
378  markSuperRegs(Reserved, PPC::LR8);
379  markSuperRegs(Reserved, PPC::RM);
380
381  markSuperRegs(Reserved, PPC::VRSAVE);
382
383  // The SVR4 ABI reserves r2 and r13
384  if (Subtarget.isSVR4ABI()) {
385    // We only reserve r2 if we need to use the TOC pointer. If we have no
386    // explicit uses of the TOC pointer (meaning we're a leaf function with
387    // no constant-pool loads, etc.) and we have no potential uses inside an
388    // inline asm block, then we can treat r2 has an ordinary callee-saved
389    // register.
390    const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
391    if (!TM.isPPC64() || FuncInfo->usesTOCBasePtr() || MF.hasInlineAsm())
392      markSuperRegs(Reserved, PPC::R2);  // System-reserved register
393    markSuperRegs(Reserved, PPC::R13); // Small Data Area pointer register
394  }
395
396  // Always reserve r2 on AIX for now.
397  // TODO: Make r2 allocatable on AIX/XCOFF for some leaf functions.
398  if (Subtarget.isAIXABI())
399    markSuperRegs(Reserved, PPC::R2);  // System-reserved register
400
401  // On PPC64, r13 is the thread pointer. Never allocate this register.
402  if (TM.isPPC64())
403    markSuperRegs(Reserved, PPC::R13);
404
405  if (TFI->needsFP(MF))
406    markSuperRegs(Reserved, PPC::R31);
407
408  bool IsPositionIndependent = TM.isPositionIndependent();
409  if (hasBasePointer(MF)) {
410    if (Subtarget.is32BitELFABI() && IsPositionIndependent)
411      markSuperRegs(Reserved, PPC::R29);
412    else
413      markSuperRegs(Reserved, PPC::R30);
414  }
415
416  if (Subtarget.is32BitELFABI() && IsPositionIndependent)
417    markSuperRegs(Reserved, PPC::R30);
418
419  // Reserve Altivec registers when Altivec is unavailable.
420  if (!Subtarget.hasAltivec())
421    for (MCRegister Reg : PPC::VRRCRegClass)
422      markSuperRegs(Reserved, Reg);
423
424  if (Subtarget.isAIXABI() && Subtarget.hasAltivec() &&
425      !TM.getAIXExtendedAltivecABI()) {
426    //  In the AIX default Altivec ABI, vector registers VR20-VR31 are reserved
427    //  and cannot be used.
428    for (auto Reg : CSR_Altivec_SaveList) {
429      if (Reg == 0)
430        break;
431      markSuperRegs(Reserved, Reg);
432      for (MCRegAliasIterator AS(Reg, this, true); AS.isValid(); ++AS) {
433        Reserved.set(*AS);
434      }
435    }
436  }
437
438  assert(checkAllSuperRegsMarked(Reserved));
439  return Reserved;
440}
441
442bool PPCRegisterInfo::isAsmClobberable(const MachineFunction &MF,
443                                       MCRegister PhysReg) const {
444  // We cannot use getReservedRegs() to find the registers that are not asm
445  // clobberable because there are some reserved registers which can be
446  // clobbered by inline asm. For example, when LR is clobbered, the register is
447  // saved and restored. We will hardcode the registers that are not asm
448  // cloberable in this function.
449
450  // The stack pointer (R1/X1) is not clobberable by inline asm
451  return PhysReg != PPC::R1 && PhysReg != PPC::X1;
452}
453
454bool PPCRegisterInfo::requiresFrameIndexScavenging(const MachineFunction &MF) const {
455  const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
456  const PPCInstrInfo *InstrInfo =  Subtarget.getInstrInfo();
457  const MachineFrameInfo &MFI = MF.getFrameInfo();
458  const std::vector<CalleeSavedInfo> &Info = MFI.getCalleeSavedInfo();
459
460  LLVM_DEBUG(dbgs() << "requiresFrameIndexScavenging for " << MF.getName()
461                    << ".\n");
462  // If the callee saved info is invalid we have to default to true for safety.
463  if (!MFI.isCalleeSavedInfoValid()) {
464    LLVM_DEBUG(dbgs() << "TRUE - Invalid callee saved info.\n");
465    return true;
466  }
467
468  // We will require the use of X-Forms because the frame is larger than what
469  // can be represented in signed 16 bits that fit in the immediate of a D-Form.
470  // If we need an X-Form then we need a register to store the address offset.
471  unsigned FrameSize = MFI.getStackSize();
472  // Signed 16 bits means that the FrameSize cannot be more than 15 bits.
473  if (FrameSize & ~0x7FFF) {
474    LLVM_DEBUG(dbgs() << "TRUE - Frame size is too large for D-Form.\n");
475    return true;
476  }
477
478  // The callee saved info is valid so it can be traversed.
479  // Checking for registers that need saving that do not have load or store
480  // forms where the address offset is an immediate.
481  for (const CalleeSavedInfo &CSI : Info) {
482    // If the spill is to a register no scavenging is required.
483    if (CSI.isSpilledToReg())
484      continue;
485
486    int FrIdx = CSI.getFrameIdx();
487    Register Reg = CSI.getReg();
488
489    const TargetRegisterClass *RC = getMinimalPhysRegClass(Reg);
490    unsigned Opcode = InstrInfo->getStoreOpcodeForSpill(RC);
491    if (!MFI.isFixedObjectIndex(FrIdx)) {
492      // This is not a fixed object. If it requires alignment then we may still
493      // need to use the XForm.
494      if (offsetMinAlignForOpcode(Opcode) > 1) {
495        LLVM_DEBUG(dbgs() << "Memory Operand: " << InstrInfo->getName(Opcode)
496                          << " for register " << printReg(Reg, this) << ".\n");
497        LLVM_DEBUG(dbgs() << "TRUE - Not fixed frame object that requires "
498                          << "alignment.\n");
499        return true;
500      }
501    }
502
503    // This is eiher:
504    // 1) A fixed frame index object which we know are aligned so
505    // as long as we have a valid DForm/DSForm/DQForm (non XForm) we don't
506    // need to consider the alignment here.
507    // 2) A not fixed object but in that case we now know that the min required
508    // alignment is no more than 1 based on the previous check.
509    if (InstrInfo->isXFormMemOp(Opcode)) {
510      LLVM_DEBUG(dbgs() << "Memory Operand: " << InstrInfo->getName(Opcode)
511                        << " for register " << printReg(Reg, this) << ".\n");
512      LLVM_DEBUG(dbgs() << "TRUE - Memory operand is X-Form.\n");
513      return true;
514    }
515
516    // This is a spill/restore of a quadword.
517    if ((Opcode == PPC::RESTORE_QUADWORD) || (Opcode == PPC::SPILL_QUADWORD)) {
518      LLVM_DEBUG(dbgs() << "Memory Operand: " << InstrInfo->getName(Opcode)
519                        << " for register " << printReg(Reg, this) << ".\n");
520      LLVM_DEBUG(dbgs() << "TRUE - Memory operand is a quadword.\n");
521      return true;
522    }
523  }
524  LLVM_DEBUG(dbgs() << "FALSE - Scavenging is not required.\n");
525  return false;
526}
527
528bool PPCRegisterInfo::requiresVirtualBaseRegisters(
529    const MachineFunction &MF) const {
530  const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
531  // Do not use virtual base registers when ROP protection is turned on.
532  // Virtual base registers break the layout of the local variable space and may
533  // push the ROP Hash location past the 512 byte range of the ROP store
534  // instruction.
535  return !Subtarget.hasROPProtect();
536}
537
538bool PPCRegisterInfo::isCallerPreservedPhysReg(MCRegister PhysReg,
539                                               const MachineFunction &MF) const {
540  assert(Register::isPhysicalRegister(PhysReg));
541  const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
542  const MachineFrameInfo &MFI = MF.getFrameInfo();
543
544  if (!Subtarget.is64BitELFABI() && !Subtarget.isAIXABI())
545    return false;
546  if (PhysReg == Subtarget.getTOCPointerRegister())
547    // X2/R2 is guaranteed to be preserved within a function if it is reserved.
548    // The reason it's reserved is that it's the TOC pointer (and the function
549    // uses the TOC). In functions where it isn't reserved (i.e. leaf functions
550    // with no TOC access), we can't claim that it is preserved.
551    return (getReservedRegs(MF).test(PhysReg));
552  if (StackPtrConst && PhysReg == Subtarget.getStackPointerRegister() &&
553      !MFI.hasVarSizedObjects() && !MFI.hasOpaqueSPAdjustment())
554    // The value of the stack pointer does not change within a function after
555    // the prologue and before the epilogue if there are no dynamic allocations
556    // and no inline asm which clobbers X1/R1.
557    return true;
558  return false;
559}
560
561bool PPCRegisterInfo::getRegAllocationHints(Register VirtReg,
562                                            ArrayRef<MCPhysReg> Order,
563                                            SmallVectorImpl<MCPhysReg> &Hints,
564                                            const MachineFunction &MF,
565                                            const VirtRegMap *VRM,
566                                            const LiveRegMatrix *Matrix) const {
567  const MachineRegisterInfo *MRI = &MF.getRegInfo();
568
569  // Call the base implementation first to set any hints based on the usual
570  // heuristics and decide what the return value should be. We want to return
571  // the same value returned by the base implementation. If the base
572  // implementation decides to return true and force the allocation then we
573  // will leave it as such. On the other hand if the base implementation
574  // decides to return false the following code will not force the allocation
575  // as we are just looking to provide a hint.
576  bool BaseImplRetVal = TargetRegisterInfo::getRegAllocationHints(
577      VirtReg, Order, Hints, MF, VRM, Matrix);
578
579  // Don't use the allocation hints for ISAFuture.
580  // The WACC registers used in ISAFuture are unlike the ACC registers on
581  // Power 10 and so this logic to register allocation hints does not apply.
582  if (MF.getSubtarget<PPCSubtarget>().isISAFuture())
583    return BaseImplRetVal;
584
585  // We are interested in instructions that copy values to ACC/UACC.
586  // The copy into UACC will be simply a COPY to a subreg so we
587  // want to allocate the corresponding physical subreg for the source.
588  // The copy into ACC will be a BUILD_UACC so we want to allocate
589  // the same number UACC for the source.
590  const TargetRegisterClass *RegClass = MRI->getRegClass(VirtReg);
591  for (MachineInstr &Use : MRI->reg_nodbg_instructions(VirtReg)) {
592    const MachineOperand *ResultOp = nullptr;
593    Register ResultReg;
594    switch (Use.getOpcode()) {
595    case TargetOpcode::COPY: {
596      ResultOp = &Use.getOperand(0);
597      ResultReg = ResultOp->getReg();
598      if (ResultReg.isVirtual() &&
599          MRI->getRegClass(ResultReg)->contains(PPC::UACC0) &&
600          VRM->hasPhys(ResultReg)) {
601        Register UACCPhys = VRM->getPhys(ResultReg);
602        Register HintReg;
603        if (RegClass->contains(PPC::VSRp0)) {
604          HintReg = getSubReg(UACCPhys, ResultOp->getSubReg());
605          // Ensure that the hint is a VSRp register.
606          if (HintReg >= PPC::VSRp0 && HintReg <= PPC::VSRp31)
607            Hints.push_back(HintReg);
608        } else if (RegClass->contains(PPC::ACC0)) {
609          HintReg = PPC::ACC0 + (UACCPhys - PPC::UACC0);
610          if (HintReg >= PPC::ACC0 && HintReg <= PPC::ACC7)
611            Hints.push_back(HintReg);
612        }
613      }
614      break;
615    }
616    case PPC::BUILD_UACC: {
617      ResultOp = &Use.getOperand(0);
618      ResultReg = ResultOp->getReg();
619      if (MRI->getRegClass(ResultReg)->contains(PPC::ACC0) &&
620          VRM->hasPhys(ResultReg)) {
621        Register ACCPhys = VRM->getPhys(ResultReg);
622        assert((ACCPhys >= PPC::ACC0 && ACCPhys <= PPC::ACC7) &&
623               "Expecting an ACC register for BUILD_UACC.");
624        Register HintReg = PPC::UACC0 + (ACCPhys - PPC::ACC0);
625        Hints.push_back(HintReg);
626      }
627      break;
628    }
629    }
630  }
631  return BaseImplRetVal;
632}
633
634unsigned PPCRegisterInfo::getRegPressureLimit(const TargetRegisterClass *RC,
635                                              MachineFunction &MF) const {
636  const PPCFrameLowering *TFI = getFrameLowering(MF);
637  const unsigned DefaultSafety = 1;
638
639  switch (RC->getID()) {
640  default:
641    return 0;
642  case PPC::G8RC_NOX0RegClassID:
643  case PPC::GPRC_NOR0RegClassID:
644  case PPC::SPERCRegClassID:
645  case PPC::G8RCRegClassID:
646  case PPC::GPRCRegClassID: {
647    unsigned FP = TFI->hasFP(MF) ? 1 : 0;
648    return 32 - FP - DefaultSafety;
649  }
650  case PPC::F4RCRegClassID:
651  case PPC::F8RCRegClassID:
652  case PPC::VSLRCRegClassID:
653    return 32 - DefaultSafety;
654  case PPC::VFRCRegClassID:
655  case PPC::VRRCRegClassID: {
656    const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
657    // Vector registers VR20-VR31 are reserved and cannot be used in the default
658    // Altivec ABI on AIX.
659    if (!TM.getAIXExtendedAltivecABI() && Subtarget.isAIXABI())
660      return 20 - DefaultSafety;
661  }
662    return 32 - DefaultSafety;
663  case PPC::VSFRCRegClassID:
664  case PPC::VSSRCRegClassID:
665  case PPC::VSRCRegClassID: {
666    const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
667    if (!TM.getAIXExtendedAltivecABI() && Subtarget.isAIXABI())
668      // Vector registers VR20-VR31 are reserved and cannot be used in the
669      // default Altivec ABI on AIX.
670      return 52 - DefaultSafety;
671  }
672    return 64 - DefaultSafety;
673  case PPC::CRRCRegClassID:
674    return 8 - DefaultSafety;
675  }
676}
677
678const TargetRegisterClass *
679PPCRegisterInfo::getLargestLegalSuperClass(const TargetRegisterClass *RC,
680                                           const MachineFunction &MF) const {
681  const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
682  const auto *DefaultSuperclass =
683      TargetRegisterInfo::getLargestLegalSuperClass(RC, MF);
684  if (Subtarget.hasVSX()) {
685    // With VSX, we can inflate various sub-register classes to the full VSX
686    // register set.
687
688    // For Power9 we allow the user to enable GPR to vector spills.
689    // FIXME: Currently limited to spilling GP8RC. A follow on patch will add
690    // support to spill GPRC.
691    if (TM.isELFv2ABI() || Subtarget.isAIXABI()) {
692      if (Subtarget.hasP9Vector() && EnableGPRToVecSpills &&
693          RC == &PPC::G8RCRegClass) {
694        InflateGP8RC++;
695        return &PPC::SPILLTOVSRRCRegClass;
696      }
697      if (RC == &PPC::GPRCRegClass && EnableGPRToVecSpills)
698        InflateGPRC++;
699    }
700
701    for (const auto *I = RC->getSuperClasses(); *I; ++I) {
702      if (getRegSizeInBits(**I) != getRegSizeInBits(*RC))
703        continue;
704
705      switch ((*I)->getID()) {
706      case PPC::VSSRCRegClassID:
707        return Subtarget.hasP8Vector() ? *I : DefaultSuperclass;
708      case PPC::VSFRCRegClassID:
709      case PPC::VSRCRegClassID:
710        return *I;
711      case PPC::VSRpRCRegClassID:
712        return Subtarget.pairedVectorMemops() ? *I : DefaultSuperclass;
713      case PPC::ACCRCRegClassID:
714      case PPC::UACCRCRegClassID:
715        return Subtarget.hasMMA() ? *I : DefaultSuperclass;
716      }
717    }
718  }
719
720  return DefaultSuperclass;
721}
722
723//===----------------------------------------------------------------------===//
724// Stack Frame Processing methods
725//===----------------------------------------------------------------------===//
726
727/// lowerDynamicAlloc - Generate the code for allocating an object in the
728/// current frame.  The sequence of code will be in the general form
729///
730///   addi   R0, SP, \#frameSize ; get the address of the previous frame
731///   stwxu  R0, SP, Rnegsize   ; add and update the SP with the negated size
732///   addi   Rnew, SP, \#maxCalFrameSize ; get the top of the allocation
733///
734void PPCRegisterInfo::lowerDynamicAlloc(MachineBasicBlock::iterator II) const {
735  // Get the instruction.
736  MachineInstr &MI = *II;
737  // Get the instruction's basic block.
738  MachineBasicBlock &MBB = *MI.getParent();
739  // Get the basic block's function.
740  MachineFunction &MF = *MBB.getParent();
741  // Get the frame info.
742  MachineFrameInfo &MFI = MF.getFrameInfo();
743  const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
744  // Get the instruction info.
745  const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
746  // Determine whether 64-bit pointers are used.
747  bool LP64 = TM.isPPC64();
748  DebugLoc dl = MI.getDebugLoc();
749
750  // Get the maximum call stack size.
751  unsigned maxCallFrameSize = MFI.getMaxCallFrameSize();
752  Align MaxAlign = MFI.getMaxAlign();
753  assert(isAligned(MaxAlign, maxCallFrameSize) &&
754         "Maximum call-frame size not sufficiently aligned");
755  (void)MaxAlign;
756
757  const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
758  const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
759  Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
760  bool KillNegSizeReg = MI.getOperand(1).isKill();
761  Register NegSizeReg = MI.getOperand(1).getReg();
762
763  prepareDynamicAlloca(II, NegSizeReg, KillNegSizeReg, Reg);
764  // Grow the stack and update the stack pointer link, then determine the
765  // address of new allocated space.
766  if (LP64) {
767    BuildMI(MBB, II, dl, TII.get(PPC::STDUX), PPC::X1)
768        .addReg(Reg, RegState::Kill)
769        .addReg(PPC::X1)
770        .addReg(NegSizeReg, getKillRegState(KillNegSizeReg));
771    BuildMI(MBB, II, dl, TII.get(PPC::ADDI8), MI.getOperand(0).getReg())
772        .addReg(PPC::X1)
773        .addImm(maxCallFrameSize);
774  } else {
775    BuildMI(MBB, II, dl, TII.get(PPC::STWUX), PPC::R1)
776        .addReg(Reg, RegState::Kill)
777        .addReg(PPC::R1)
778        .addReg(NegSizeReg, getKillRegState(KillNegSizeReg));
779    BuildMI(MBB, II, dl, TII.get(PPC::ADDI), MI.getOperand(0).getReg())
780        .addReg(PPC::R1)
781        .addImm(maxCallFrameSize);
782  }
783
784  // Discard the DYNALLOC instruction.
785  MBB.erase(II);
786}
787
788/// To accomplish dynamic stack allocation, we have to calculate exact size
789/// subtracted from the stack pointer according alignment information and get
790/// previous frame pointer.
791void PPCRegisterInfo::prepareDynamicAlloca(MachineBasicBlock::iterator II,
792                                           Register &NegSizeReg,
793                                           bool &KillNegSizeReg,
794                                           Register &FramePointer) const {
795  // Get the instruction.
796  MachineInstr &MI = *II;
797  // Get the instruction's basic block.
798  MachineBasicBlock &MBB = *MI.getParent();
799  // Get the basic block's function.
800  MachineFunction &MF = *MBB.getParent();
801  // Get the frame info.
802  MachineFrameInfo &MFI = MF.getFrameInfo();
803  const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
804  // Get the instruction info.
805  const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
806  // Determine whether 64-bit pointers are used.
807  bool LP64 = TM.isPPC64();
808  DebugLoc dl = MI.getDebugLoc();
809  // Get the total frame size.
810  unsigned FrameSize = MFI.getStackSize();
811
812  // Get stack alignments.
813  const PPCFrameLowering *TFI = getFrameLowering(MF);
814  Align TargetAlign = TFI->getStackAlign();
815  Align MaxAlign = MFI.getMaxAlign();
816
817  // Determine the previous frame's address.  If FrameSize can't be
818  // represented as 16 bits or we need special alignment, then we load the
819  // previous frame's address from 0(SP).  Why not do an addis of the hi?
820  // Because R0 is our only safe tmp register and addi/addis treat R0 as zero.
821  // Constructing the constant and adding would take 3 instructions.
822  // Fortunately, a frame greater than 32K is rare.
823  const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
824  const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
825
826  if (MaxAlign < TargetAlign && isInt<16>(FrameSize)) {
827    if (LP64)
828      BuildMI(MBB, II, dl, TII.get(PPC::ADDI8), FramePointer)
829          .addReg(PPC::X31)
830          .addImm(FrameSize);
831    else
832      BuildMI(MBB, II, dl, TII.get(PPC::ADDI), FramePointer)
833          .addReg(PPC::R31)
834          .addImm(FrameSize);
835  } else if (LP64) {
836    BuildMI(MBB, II, dl, TII.get(PPC::LD), FramePointer)
837        .addImm(0)
838        .addReg(PPC::X1);
839  } else {
840    BuildMI(MBB, II, dl, TII.get(PPC::LWZ), FramePointer)
841        .addImm(0)
842        .addReg(PPC::R1);
843  }
844  // Determine the actual NegSizeReg according to alignment info.
845  if (LP64) {
846    if (MaxAlign > TargetAlign) {
847      unsigned UnalNegSizeReg = NegSizeReg;
848      NegSizeReg = MF.getRegInfo().createVirtualRegister(G8RC);
849
850      // Unfortunately, there is no andi, only andi., and we can't insert that
851      // here because we might clobber cr0 while it is live.
852      BuildMI(MBB, II, dl, TII.get(PPC::LI8), NegSizeReg)
853          .addImm(~(MaxAlign.value() - 1));
854
855      unsigned NegSizeReg1 = NegSizeReg;
856      NegSizeReg = MF.getRegInfo().createVirtualRegister(G8RC);
857      BuildMI(MBB, II, dl, TII.get(PPC::AND8), NegSizeReg)
858          .addReg(UnalNegSizeReg, getKillRegState(KillNegSizeReg))
859          .addReg(NegSizeReg1, RegState::Kill);
860      KillNegSizeReg = true;
861    }
862  } else {
863    if (MaxAlign > TargetAlign) {
864      unsigned UnalNegSizeReg = NegSizeReg;
865      NegSizeReg = MF.getRegInfo().createVirtualRegister(GPRC);
866
867      // Unfortunately, there is no andi, only andi., and we can't insert that
868      // here because we might clobber cr0 while it is live.
869      BuildMI(MBB, II, dl, TII.get(PPC::LI), NegSizeReg)
870          .addImm(~(MaxAlign.value() - 1));
871
872      unsigned NegSizeReg1 = NegSizeReg;
873      NegSizeReg = MF.getRegInfo().createVirtualRegister(GPRC);
874      BuildMI(MBB, II, dl, TII.get(PPC::AND), NegSizeReg)
875          .addReg(UnalNegSizeReg, getKillRegState(KillNegSizeReg))
876          .addReg(NegSizeReg1, RegState::Kill);
877      KillNegSizeReg = true;
878    }
879  }
880}
881
882void PPCRegisterInfo::lowerPrepareProbedAlloca(
883    MachineBasicBlock::iterator II) const {
884  MachineInstr &MI = *II;
885  // Get the instruction's basic block.
886  MachineBasicBlock &MBB = *MI.getParent();
887  // Get the basic block's function.
888  MachineFunction &MF = *MBB.getParent();
889  const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
890  // Get the instruction info.
891  const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
892  // Determine whether 64-bit pointers are used.
893  bool LP64 = TM.isPPC64();
894  DebugLoc dl = MI.getDebugLoc();
895  Register FramePointer = MI.getOperand(0).getReg();
896  const Register ActualNegSizeReg = MI.getOperand(1).getReg();
897  bool KillNegSizeReg = MI.getOperand(2).isKill();
898  Register NegSizeReg = MI.getOperand(2).getReg();
899  const MCInstrDesc &CopyInst = TII.get(LP64 ? PPC::OR8 : PPC::OR);
900  // RegAllocator might allocate FramePointer and NegSizeReg in the same phyreg.
901  if (FramePointer == NegSizeReg) {
902    assert(KillNegSizeReg && "FramePointer is a def and NegSizeReg is an use, "
903                             "NegSizeReg should be killed");
904    // FramePointer is clobbered earlier than the use of NegSizeReg in
905    // prepareDynamicAlloca, save NegSizeReg in ActualNegSizeReg to avoid
906    // misuse.
907    BuildMI(MBB, II, dl, CopyInst, ActualNegSizeReg)
908        .addReg(NegSizeReg)
909        .addReg(NegSizeReg);
910    NegSizeReg = ActualNegSizeReg;
911    KillNegSizeReg = false;
912  }
913  prepareDynamicAlloca(II, NegSizeReg, KillNegSizeReg, FramePointer);
914  // NegSizeReg might be updated in prepareDynamicAlloca if MaxAlign >
915  // TargetAlign.
916  if (NegSizeReg != ActualNegSizeReg)
917    BuildMI(MBB, II, dl, CopyInst, ActualNegSizeReg)
918        .addReg(NegSizeReg)
919        .addReg(NegSizeReg);
920  MBB.erase(II);
921}
922
923void PPCRegisterInfo::lowerDynamicAreaOffset(
924    MachineBasicBlock::iterator II) const {
925  // Get the instruction.
926  MachineInstr &MI = *II;
927  // Get the instruction's basic block.
928  MachineBasicBlock &MBB = *MI.getParent();
929  // Get the basic block's function.
930  MachineFunction &MF = *MBB.getParent();
931  // Get the frame info.
932  MachineFrameInfo &MFI = MF.getFrameInfo();
933  const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
934  // Get the instruction info.
935  const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
936
937  unsigned maxCallFrameSize = MFI.getMaxCallFrameSize();
938  bool is64Bit = TM.isPPC64();
939  DebugLoc dl = MI.getDebugLoc();
940  BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::LI8 : PPC::LI),
941          MI.getOperand(0).getReg())
942      .addImm(maxCallFrameSize);
943  MBB.erase(II);
944}
945
946/// lowerCRSpilling - Generate the code for spilling a CR register. Instead of
947/// reserving a whole register (R0), we scrounge for one here. This generates
948/// code like this:
949///
950///   mfcr rA                  ; Move the conditional register into GPR rA.
951///   rlwinm rA, rA, SB, 0, 31 ; Shift the bits left so they are in CR0's slot.
952///   stw rA, FI               ; Store rA to the frame.
953///
954void PPCRegisterInfo::lowerCRSpilling(MachineBasicBlock::iterator II,
955                                      unsigned FrameIndex) const {
956  // Get the instruction.
957  MachineInstr &MI = *II;       // ; SPILL_CR <SrcReg>, <offset>
958  // Get the instruction's basic block.
959  MachineBasicBlock &MBB = *MI.getParent();
960  MachineFunction &MF = *MBB.getParent();
961  const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
962  const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
963  DebugLoc dl = MI.getDebugLoc();
964
965  bool LP64 = TM.isPPC64();
966  const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
967  const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
968
969  Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
970  Register SrcReg = MI.getOperand(0).getReg();
971
972  // We need to store the CR in the low 4-bits of the saved value. First, issue
973  // an MFOCRF to save all of the CRBits and, if needed, kill the SrcReg.
974  BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MFOCRF8 : PPC::MFOCRF), Reg)
975      .addReg(SrcReg, getKillRegState(MI.getOperand(0).isKill()));
976
977  // If the saved register wasn't CR0, shift the bits left so that they are in
978  // CR0's slot.
979  if (SrcReg != PPC::CR0) {
980    Register Reg1 = Reg;
981    Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
982
983    // rlwinm rA, rA, ShiftBits, 0, 31.
984    BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWINM8 : PPC::RLWINM), Reg)
985      .addReg(Reg1, RegState::Kill)
986      .addImm(getEncodingValue(SrcReg) * 4)
987      .addImm(0)
988      .addImm(31);
989  }
990
991  addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::STW8 : PPC::STW))
992                    .addReg(Reg, RegState::Kill),
993                    FrameIndex);
994
995  // Discard the pseudo instruction.
996  MBB.erase(II);
997}
998
999void PPCRegisterInfo::lowerCRRestore(MachineBasicBlock::iterator II,
1000                                      unsigned FrameIndex) const {
1001  // Get the instruction.
1002  MachineInstr &MI = *II;       // ; <DestReg> = RESTORE_CR <offset>
1003  // Get the instruction's basic block.
1004  MachineBasicBlock &MBB = *MI.getParent();
1005  MachineFunction &MF = *MBB.getParent();
1006  const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1007  const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1008  DebugLoc dl = MI.getDebugLoc();
1009
1010  bool LP64 = TM.isPPC64();
1011  const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
1012  const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
1013
1014  Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
1015  Register DestReg = MI.getOperand(0).getReg();
1016  assert(MI.definesRegister(DestReg) &&
1017    "RESTORE_CR does not define its destination");
1018
1019  addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LWZ8 : PPC::LWZ),
1020                              Reg), FrameIndex);
1021
1022  // If the reloaded register isn't CR0, shift the bits right so that they are
1023  // in the right CR's slot.
1024  if (DestReg != PPC::CR0) {
1025    Register Reg1 = Reg;
1026    Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
1027
1028    unsigned ShiftBits = getEncodingValue(DestReg)*4;
1029    // rlwinm r11, r11, 32-ShiftBits, 0, 31.
1030    BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWINM8 : PPC::RLWINM), Reg)
1031             .addReg(Reg1, RegState::Kill).addImm(32-ShiftBits).addImm(0)
1032             .addImm(31);
1033  }
1034
1035  BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MTOCRF8 : PPC::MTOCRF), DestReg)
1036             .addReg(Reg, RegState::Kill);
1037
1038  // Discard the pseudo instruction.
1039  MBB.erase(II);
1040}
1041
1042void PPCRegisterInfo::lowerCRBitSpilling(MachineBasicBlock::iterator II,
1043                                         unsigned FrameIndex) const {
1044  // Get the instruction.
1045  MachineInstr &MI = *II;       // ; SPILL_CRBIT <SrcReg>, <offset>
1046  // Get the instruction's basic block.
1047  MachineBasicBlock &MBB = *MI.getParent();
1048  MachineFunction &MF = *MBB.getParent();
1049  const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1050  const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1051  const TargetRegisterInfo* TRI = Subtarget.getRegisterInfo();
1052  DebugLoc dl = MI.getDebugLoc();
1053
1054  bool LP64 = TM.isPPC64();
1055  const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
1056  const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
1057
1058  Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
1059  Register SrcReg = MI.getOperand(0).getReg();
1060
1061  // Search up the BB to find the definition of the CR bit.
1062  MachineBasicBlock::reverse_iterator Ins = MI;
1063  MachineBasicBlock::reverse_iterator Rend = MBB.rend();
1064  ++Ins;
1065  unsigned CRBitSpillDistance = 0;
1066  bool SeenUse = false;
1067  for (; Ins != Rend; ++Ins) {
1068    // Definition found.
1069    if (Ins->modifiesRegister(SrcReg, TRI))
1070      break;
1071    // Use found.
1072    if (Ins->readsRegister(SrcReg, TRI))
1073      SeenUse = true;
1074    // Unable to find CR bit definition within maximum search distance.
1075    if (CRBitSpillDistance == MaxCRBitSpillDist) {
1076      Ins = MI;
1077      break;
1078    }
1079    // Skip debug instructions when counting CR bit spill distance.
1080    if (!Ins->isDebugInstr())
1081      CRBitSpillDistance++;
1082  }
1083
1084  // Unable to find the definition of the CR bit in the MBB.
1085  if (Ins == MBB.rend())
1086    Ins = MI;
1087
1088  bool SpillsKnownBit = false;
1089  // There is no need to extract the CR bit if its value is already known.
1090  switch (Ins->getOpcode()) {
1091  case PPC::CRUNSET:
1092    BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LI8 : PPC::LI), Reg)
1093      .addImm(0);
1094    SpillsKnownBit = true;
1095    break;
1096  case PPC::CRSET:
1097    BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LIS8 : PPC::LIS), Reg)
1098      .addImm(-32768);
1099    SpillsKnownBit = true;
1100    break;
1101  default:
1102    // On Power10, we can use SETNBC to spill all CR bits. SETNBC will set all
1103    // bits (specifically, it produces a -1 if the CR bit is set). Ultimately,
1104    // the bit that is of importance to us is bit 32 (bit 0 of a 32-bit
1105    // register), and SETNBC will set this.
1106    if (Subtarget.isISA3_1()) {
1107      BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::SETNBC8 : PPC::SETNBC), Reg)
1108          .addReg(SrcReg, RegState::Undef);
1109      break;
1110    }
1111
1112    // On Power9, we can use SETB to extract the LT bit. This only works for
1113    // the LT bit since SETB produces -1/1/0 for LT/GT/<neither>. So the value
1114    // of the bit we care about (32-bit sign bit) will be set to the value of
1115    // the LT bit (regardless of the other bits in the CR field).
1116    if (Subtarget.isISA3_0()) {
1117      if (SrcReg == PPC::CR0LT || SrcReg == PPC::CR1LT ||
1118          SrcReg == PPC::CR2LT || SrcReg == PPC::CR3LT ||
1119          SrcReg == PPC::CR4LT || SrcReg == PPC::CR5LT ||
1120          SrcReg == PPC::CR6LT || SrcReg == PPC::CR7LT) {
1121        BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::SETB8 : PPC::SETB), Reg)
1122          .addReg(getCRFromCRBit(SrcReg), RegState::Undef);
1123        break;
1124      }
1125    }
1126
1127    // We need to move the CR field that contains the CR bit we are spilling.
1128    // The super register may not be explicitly defined (i.e. it can be defined
1129    // by a CR-logical that only defines the subreg) so we state that the CR
1130    // field is undef. Also, in order to preserve the kill flag on the CR bit,
1131    // we add it as an implicit use.
1132    BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MFOCRF8 : PPC::MFOCRF), Reg)
1133      .addReg(getCRFromCRBit(SrcReg), RegState::Undef)
1134      .addReg(SrcReg,
1135              RegState::Implicit | getKillRegState(MI.getOperand(0).isKill()));
1136
1137    // If the saved register wasn't CR0LT, shift the bits left so that the bit
1138    // to store is the first one. Mask all but that bit.
1139    Register Reg1 = Reg;
1140    Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
1141
1142    // rlwinm rA, rA, ShiftBits, 0, 0.
1143    BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWINM8 : PPC::RLWINM), Reg)
1144      .addReg(Reg1, RegState::Kill)
1145      .addImm(getEncodingValue(SrcReg))
1146      .addImm(0).addImm(0);
1147  }
1148  addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::STW8 : PPC::STW))
1149                    .addReg(Reg, RegState::Kill),
1150                    FrameIndex);
1151
1152  bool KillsCRBit = MI.killsRegister(SrcReg, TRI);
1153  // Discard the pseudo instruction.
1154  MBB.erase(II);
1155  if (SpillsKnownBit && KillsCRBit && !SeenUse) {
1156    Ins->setDesc(TII.get(PPC::UNENCODED_NOP));
1157    Ins->removeOperand(0);
1158  }
1159}
1160
1161void PPCRegisterInfo::lowerCRBitRestore(MachineBasicBlock::iterator II,
1162                                      unsigned FrameIndex) const {
1163  // Get the instruction.
1164  MachineInstr &MI = *II;       // ; <DestReg> = RESTORE_CRBIT <offset>
1165  // Get the instruction's basic block.
1166  MachineBasicBlock &MBB = *MI.getParent();
1167  MachineFunction &MF = *MBB.getParent();
1168  const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1169  const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1170  DebugLoc dl = MI.getDebugLoc();
1171
1172  bool LP64 = TM.isPPC64();
1173  const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
1174  const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
1175
1176  Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
1177  Register DestReg = MI.getOperand(0).getReg();
1178  assert(MI.definesRegister(DestReg) &&
1179    "RESTORE_CRBIT does not define its destination");
1180
1181  addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LWZ8 : PPC::LWZ),
1182                              Reg), FrameIndex);
1183
1184  BuildMI(MBB, II, dl, TII.get(TargetOpcode::IMPLICIT_DEF), DestReg);
1185
1186  Register RegO = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
1187  BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MFOCRF8 : PPC::MFOCRF), RegO)
1188          .addReg(getCRFromCRBit(DestReg));
1189
1190  unsigned ShiftBits = getEncodingValue(DestReg);
1191  // rlwimi r11, r10, 32-ShiftBits, ..., ...
1192  BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWIMI8 : PPC::RLWIMI), RegO)
1193      .addReg(RegO, RegState::Kill)
1194      .addReg(Reg, RegState::Kill)
1195      .addImm(ShiftBits ? 32 - ShiftBits : 0)
1196      .addImm(ShiftBits)
1197      .addImm(ShiftBits);
1198
1199  BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MTOCRF8 : PPC::MTOCRF),
1200          getCRFromCRBit(DestReg))
1201      .addReg(RegO, RegState::Kill)
1202      // Make sure we have a use dependency all the way through this
1203      // sequence of instructions. We can't have the other bits in the CR
1204      // modified in between the mfocrf and the mtocrf.
1205      .addReg(getCRFromCRBit(DestReg), RegState::Implicit);
1206
1207  // Discard the pseudo instruction.
1208  MBB.erase(II);
1209}
1210
1211void PPCRegisterInfo::emitAccCopyInfo(MachineBasicBlock &MBB,
1212                                      MCRegister DestReg, MCRegister SrcReg) {
1213#ifdef NDEBUG
1214  return;
1215#else
1216  if (ReportAccMoves) {
1217    std::string Dest = PPC::ACCRCRegClass.contains(DestReg) ? "acc" : "uacc";
1218    std::string Src = PPC::ACCRCRegClass.contains(SrcReg) ? "acc" : "uacc";
1219    dbgs() << "Emitting copy from " << Src << " to " << Dest << ":\n";
1220    MBB.dump();
1221  }
1222#endif
1223}
1224
1225static void emitAccSpillRestoreInfo(MachineBasicBlock &MBB, bool IsPrimed,
1226                                    bool IsRestore) {
1227#ifdef NDEBUG
1228  return;
1229#else
1230  if (ReportAccMoves) {
1231    dbgs() << "Emitting " << (IsPrimed ? "acc" : "uacc") << " register "
1232           << (IsRestore ? "restore" : "spill") << ":\n";
1233    MBB.dump();
1234  }
1235#endif
1236}
1237
1238static void spillRegPairs(MachineBasicBlock &MBB,
1239                          MachineBasicBlock::iterator II, DebugLoc DL,
1240                          const TargetInstrInfo &TII, Register SrcReg,
1241                          unsigned FrameIndex, bool IsLittleEndian,
1242                          bool IsKilled, bool TwoPairs) {
1243  unsigned Offset = 0;
1244  // The register arithmetic in this function does not support virtual
1245  // registers.
1246  assert(!SrcReg.isVirtual() &&
1247         "Spilling register pairs does not support virtual registers.");
1248
1249  if (TwoPairs)
1250    Offset = IsLittleEndian ? 48 : 0;
1251  else
1252    Offset = IsLittleEndian ? 16 : 0;
1253  Register Reg = (SrcReg > PPC::VSRp15) ? PPC::V0 + (SrcReg - PPC::VSRp16) * 2
1254                                        : PPC::VSL0 + (SrcReg - PPC::VSRp0) * 2;
1255  addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXV))
1256                        .addReg(Reg, getKillRegState(IsKilled)),
1257                    FrameIndex, Offset);
1258  Offset += IsLittleEndian ? -16 : 16;
1259  addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXV))
1260                        .addReg(Reg + 1, getKillRegState(IsKilled)),
1261                    FrameIndex, Offset);
1262  if (TwoPairs) {
1263    Offset += IsLittleEndian ? -16 : 16;
1264    addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXV))
1265                          .addReg(Reg + 2, getKillRegState(IsKilled)),
1266                      FrameIndex, Offset);
1267    Offset += IsLittleEndian ? -16 : 16;
1268    addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXV))
1269                          .addReg(Reg + 3, getKillRegState(IsKilled)),
1270                      FrameIndex, Offset);
1271  }
1272}
1273
1274/// Remove any STXVP[X] instructions and split them out into a pair of
1275/// STXV[X] instructions if --disable-auto-paired-vec-st is specified on
1276/// the command line.
1277void PPCRegisterInfo::lowerOctWordSpilling(MachineBasicBlock::iterator II,
1278                                           unsigned FrameIndex) const {
1279  assert(DisableAutoPairedVecSt &&
1280         "Expecting to do this only if paired vector stores are disabled.");
1281  MachineInstr &MI = *II; // STXVP <SrcReg>, <offset>
1282  MachineBasicBlock &MBB = *MI.getParent();
1283  MachineFunction &MF = *MBB.getParent();
1284  const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1285  const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1286  DebugLoc DL = MI.getDebugLoc();
1287  Register SrcReg = MI.getOperand(0).getReg();
1288  bool IsLittleEndian = Subtarget.isLittleEndian();
1289  bool IsKilled = MI.getOperand(0).isKill();
1290  spillRegPairs(MBB, II, DL, TII, SrcReg, FrameIndex, IsLittleEndian, IsKilled,
1291                /* TwoPairs */ false);
1292  // Discard the original instruction.
1293  MBB.erase(II);
1294}
1295
1296static void emitWAccSpillRestoreInfo(MachineBasicBlock &MBB, bool IsRestore) {
1297#ifdef NDEBUG
1298  return;
1299#else
1300  if (ReportAccMoves) {
1301    dbgs() << "Emitting wacc register " << (IsRestore ? "restore" : "spill")
1302           << ":\n";
1303    MBB.dump();
1304  }
1305#endif
1306}
1307
1308/// lowerACCSpilling - Generate the code for spilling the accumulator register.
1309/// Similarly to other spills/reloads that use pseudo-ops, we do not actually
1310/// eliminate the FrameIndex here nor compute the stack offset. We simply
1311/// create a real instruction with an FI and rely on eliminateFrameIndex to
1312/// handle the FI elimination.
1313void PPCRegisterInfo::lowerACCSpilling(MachineBasicBlock::iterator II,
1314                                       unsigned FrameIndex) const {
1315  MachineInstr &MI = *II; // SPILL_ACC <SrcReg>, <offset>
1316  MachineBasicBlock &MBB = *MI.getParent();
1317  MachineFunction &MF = *MBB.getParent();
1318  const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1319  const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1320  DebugLoc DL = MI.getDebugLoc();
1321  Register SrcReg = MI.getOperand(0).getReg();
1322  bool IsKilled = MI.getOperand(0).isKill();
1323
1324  bool IsPrimed = PPC::ACCRCRegClass.contains(SrcReg);
1325  Register Reg =
1326      PPC::VSRp0 + (SrcReg - (IsPrimed ? PPC::ACC0 : PPC::UACC0)) * 2;
1327  bool IsLittleEndian = Subtarget.isLittleEndian();
1328
1329  emitAccSpillRestoreInfo(MBB, IsPrimed, false);
1330
1331  // De-prime the register being spilled, create two stores for the pair
1332  // subregisters accounting for endianness and then re-prime the register if
1333  // it isn't killed.  This uses the Offset parameter to addFrameReference() to
1334  // adjust the offset of the store that is within the 64-byte stack slot.
1335  if (IsPrimed)
1336    BuildMI(MBB, II, DL, TII.get(PPC::XXMFACC), SrcReg).addReg(SrcReg);
1337  if (DisableAutoPairedVecSt)
1338    spillRegPairs(MBB, II, DL, TII, Reg, FrameIndex, IsLittleEndian, IsKilled,
1339                  /* TwoPairs */ true);
1340  else {
1341    addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXVP))
1342                          .addReg(Reg, getKillRegState(IsKilled)),
1343                      FrameIndex, IsLittleEndian ? 32 : 0);
1344    addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXVP))
1345                          .addReg(Reg + 1, getKillRegState(IsKilled)),
1346                      FrameIndex, IsLittleEndian ? 0 : 32);
1347  }
1348  if (IsPrimed && !IsKilled)
1349    BuildMI(MBB, II, DL, TII.get(PPC::XXMTACC), SrcReg).addReg(SrcReg);
1350
1351  // Discard the pseudo instruction.
1352  MBB.erase(II);
1353}
1354
1355/// lowerACCRestore - Generate the code to restore the accumulator register.
1356void PPCRegisterInfo::lowerACCRestore(MachineBasicBlock::iterator II,
1357                                      unsigned FrameIndex) const {
1358  MachineInstr &MI = *II; // <DestReg> = RESTORE_ACC <offset>
1359  MachineBasicBlock &MBB = *MI.getParent();
1360  MachineFunction &MF = *MBB.getParent();
1361  const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1362  const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1363  DebugLoc DL = MI.getDebugLoc();
1364
1365  Register DestReg = MI.getOperand(0).getReg();
1366  assert(MI.definesRegister(DestReg) &&
1367         "RESTORE_ACC does not define its destination");
1368
1369  bool IsPrimed = PPC::ACCRCRegClass.contains(DestReg);
1370  Register Reg =
1371      PPC::VSRp0 + (DestReg - (IsPrimed ? PPC::ACC0 : PPC::UACC0)) * 2;
1372  bool IsLittleEndian = Subtarget.isLittleEndian();
1373
1374  emitAccSpillRestoreInfo(MBB, IsPrimed, true);
1375
1376  // Create two loads for the pair subregisters accounting for endianness and
1377  // then prime the accumulator register being restored.
1378  addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LXVP), Reg),
1379                    FrameIndex, IsLittleEndian ? 32 : 0);
1380  addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LXVP), Reg + 1),
1381                    FrameIndex, IsLittleEndian ? 0 : 32);
1382  if (IsPrimed)
1383    BuildMI(MBB, II, DL, TII.get(PPC::XXMTACC), DestReg).addReg(DestReg);
1384
1385  // Discard the pseudo instruction.
1386  MBB.erase(II);
1387}
1388
1389/// lowerWACCSpilling - Generate the code for spilling the wide accumulator
1390/// register.
1391void PPCRegisterInfo::lowerWACCSpilling(MachineBasicBlock::iterator II,
1392                                        unsigned FrameIndex) const {
1393  MachineInstr &MI = *II; // SPILL_WACC <SrcReg>, <offset>
1394  MachineBasicBlock &MBB = *MI.getParent();
1395  MachineFunction &MF = *MBB.getParent();
1396  const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1397  const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1398  DebugLoc DL = MI.getDebugLoc();
1399  bool IsLittleEndian = Subtarget.isLittleEndian();
1400
1401  emitWAccSpillRestoreInfo(MBB, false);
1402
1403  const TargetRegisterClass *RC = &PPC::VSRpRCRegClass;
1404  Register VSRpReg0 = MF.getRegInfo().createVirtualRegister(RC);
1405  Register VSRpReg1 = MF.getRegInfo().createVirtualRegister(RC);
1406  Register SrcReg = MI.getOperand(0).getReg();
1407
1408  BuildMI(MBB, II, DL, TII.get(PPC::DMXXEXTFDMR512), VSRpReg0)
1409      .addDef(VSRpReg1)
1410      .addReg(SrcReg);
1411
1412  addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXVP))
1413                        .addReg(VSRpReg0, RegState::Kill),
1414                    FrameIndex, IsLittleEndian ? 32 : 0);
1415  addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXVP))
1416                        .addReg(VSRpReg1, RegState::Kill),
1417                    FrameIndex, IsLittleEndian ? 0 : 32);
1418
1419  // Discard the pseudo instruction.
1420  MBB.erase(II);
1421}
1422
1423/// lowerWACCRestore - Generate the code to restore the wide accumulator
1424/// register.
1425void PPCRegisterInfo::lowerWACCRestore(MachineBasicBlock::iterator II,
1426                                       unsigned FrameIndex) const {
1427  MachineInstr &MI = *II; // <DestReg> = RESTORE_WACC <offset>
1428  MachineBasicBlock &MBB = *MI.getParent();
1429  MachineFunction &MF = *MBB.getParent();
1430  const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1431  const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1432  DebugLoc DL = MI.getDebugLoc();
1433  bool IsLittleEndian = Subtarget.isLittleEndian();
1434
1435  emitWAccSpillRestoreInfo(MBB, true);
1436
1437  const TargetRegisterClass *RC = &PPC::VSRpRCRegClass;
1438  Register VSRpReg0 = MF.getRegInfo().createVirtualRegister(RC);
1439  Register VSRpReg1 = MF.getRegInfo().createVirtualRegister(RC);
1440  Register DestReg = MI.getOperand(0).getReg();
1441
1442  addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LXVP), VSRpReg0),
1443                    FrameIndex, IsLittleEndian ? 32 : 0);
1444  addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LXVP), VSRpReg1),
1445                    FrameIndex, IsLittleEndian ? 0 : 32);
1446
1447  // Kill VSRpReg0, VSRpReg1   (killedRegState::Killed)
1448  BuildMI(MBB, II, DL, TII.get(PPC::DMXXINSTFDMR512), DestReg)
1449      .addReg(VSRpReg0, RegState::Kill)
1450      .addReg(VSRpReg1, RegState::Kill);
1451
1452  // Discard the pseudo instruction.
1453  MBB.erase(II);
1454}
1455
1456/// lowerQuadwordSpilling - Generate code to spill paired general register.
1457void PPCRegisterInfo::lowerQuadwordSpilling(MachineBasicBlock::iterator II,
1458                                            unsigned FrameIndex) const {
1459  MachineInstr &MI = *II;
1460  MachineBasicBlock &MBB = *MI.getParent();
1461  MachineFunction &MF = *MBB.getParent();
1462  const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1463  const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1464  DebugLoc DL = MI.getDebugLoc();
1465
1466  Register SrcReg = MI.getOperand(0).getReg();
1467  bool IsKilled = MI.getOperand(0).isKill();
1468
1469  Register Reg = PPC::X0 + (SrcReg - PPC::G8p0) * 2;
1470  bool IsLittleEndian = Subtarget.isLittleEndian();
1471
1472  addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STD))
1473                        .addReg(Reg, getKillRegState(IsKilled)),
1474                    FrameIndex, IsLittleEndian ? 8 : 0);
1475  addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STD))
1476                        .addReg(Reg + 1, getKillRegState(IsKilled)),
1477                    FrameIndex, IsLittleEndian ? 0 : 8);
1478
1479  // Discard the pseudo instruction.
1480  MBB.erase(II);
1481}
1482
1483/// lowerQuadwordRestore - Generate code to restore paired general register.
1484void PPCRegisterInfo::lowerQuadwordRestore(MachineBasicBlock::iterator II,
1485                                           unsigned FrameIndex) const {
1486  MachineInstr &MI = *II;
1487  MachineBasicBlock &MBB = *MI.getParent();
1488  MachineFunction &MF = *MBB.getParent();
1489  const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1490  const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1491  DebugLoc DL = MI.getDebugLoc();
1492
1493  Register DestReg = MI.getOperand(0).getReg();
1494  assert(MI.definesRegister(DestReg) &&
1495         "RESTORE_QUADWORD does not define its destination");
1496
1497  Register Reg = PPC::X0 + (DestReg - PPC::G8p0) * 2;
1498  bool IsLittleEndian = Subtarget.isLittleEndian();
1499
1500  addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LD), Reg), FrameIndex,
1501                    IsLittleEndian ? 8 : 0);
1502  addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LD), Reg + 1), FrameIndex,
1503                    IsLittleEndian ? 0 : 8);
1504
1505  // Discard the pseudo instruction.
1506  MBB.erase(II);
1507}
1508
1509bool PPCRegisterInfo::hasReservedSpillSlot(const MachineFunction &MF,
1510                                           Register Reg, int &FrameIdx) const {
1511  // For the nonvolatile condition registers (CR2, CR3, CR4) return true to
1512  // prevent allocating an additional frame slot.
1513  // For 64-bit ELF and AIX, the CR save area is in the linkage area at SP+8,
1514  // for 32-bit AIX the CR save area is in the linkage area at SP+4.
1515  // We have created a FrameIndex to that spill slot to keep the CalleSaveInfos
1516  // valid.
1517  // For 32-bit ELF, we have previously created the stack slot if needed, so
1518  // return its FrameIdx.
1519  if (PPC::CR2 <= Reg && Reg <= PPC::CR4) {
1520    FrameIdx = MF.getInfo<PPCFunctionInfo>()->getCRSpillFrameIndex();
1521    return true;
1522  }
1523  return false;
1524}
1525
1526// If the offset must be a multiple of some value, return what that value is.
1527static unsigned offsetMinAlignForOpcode(unsigned OpC) {
1528  switch (OpC) {
1529  default:
1530    return 1;
1531  case PPC::LWA:
1532  case PPC::LWA_32:
1533  case PPC::LD:
1534  case PPC::LDU:
1535  case PPC::STD:
1536  case PPC::STDU:
1537  case PPC::DFLOADf32:
1538  case PPC::DFLOADf64:
1539  case PPC::DFSTOREf32:
1540  case PPC::DFSTOREf64:
1541  case PPC::LXSD:
1542  case PPC::LXSSP:
1543  case PPC::STXSD:
1544  case PPC::STXSSP:
1545  case PPC::STQ:
1546    return 4;
1547  case PPC::EVLDD:
1548  case PPC::EVSTDD:
1549    return 8;
1550  case PPC::LXV:
1551  case PPC::STXV:
1552  case PPC::LQ:
1553  case PPC::LXVP:
1554  case PPC::STXVP:
1555    return 16;
1556  }
1557}
1558
1559// If the offset must be a multiple of some value, return what that value is.
1560static unsigned offsetMinAlign(const MachineInstr &MI) {
1561  unsigned OpC = MI.getOpcode();
1562  return offsetMinAlignForOpcode(OpC);
1563}
1564
1565// Return the OffsetOperandNo given the FIOperandNum (and the instruction).
1566static unsigned getOffsetONFromFION(const MachineInstr &MI,
1567                                    unsigned FIOperandNum) {
1568  // Take into account whether it's an add or mem instruction
1569  unsigned OffsetOperandNo = (FIOperandNum == 2) ? 1 : 2;
1570  if (MI.isInlineAsm())
1571    OffsetOperandNo = FIOperandNum - 1;
1572  else if (MI.getOpcode() == TargetOpcode::STACKMAP ||
1573           MI.getOpcode() == TargetOpcode::PATCHPOINT)
1574    OffsetOperandNo = FIOperandNum + 1;
1575
1576  return OffsetOperandNo;
1577}
1578
1579bool
1580PPCRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
1581                                     int SPAdj, unsigned FIOperandNum,
1582                                     RegScavenger *RS) const {
1583  assert(SPAdj == 0 && "Unexpected");
1584
1585  // Get the instruction.
1586  MachineInstr &MI = *II;
1587  // Get the instruction's basic block.
1588  MachineBasicBlock &MBB = *MI.getParent();
1589  // Get the basic block's function.
1590  MachineFunction &MF = *MBB.getParent();
1591  const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1592  // Get the instruction info.
1593  const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
1594  // Get the frame info.
1595  MachineFrameInfo &MFI = MF.getFrameInfo();
1596  DebugLoc dl = MI.getDebugLoc();
1597
1598  unsigned OffsetOperandNo = getOffsetONFromFION(MI, FIOperandNum);
1599
1600  // Get the frame index.
1601  int FrameIndex = MI.getOperand(FIOperandNum).getIndex();
1602
1603  // Get the frame pointer save index.  Users of this index are primarily
1604  // DYNALLOC instructions.
1605  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1606  int FPSI = FI->getFramePointerSaveIndex();
1607  // Get the instruction opcode.
1608  unsigned OpC = MI.getOpcode();
1609
1610  if ((OpC == PPC::DYNAREAOFFSET || OpC == PPC::DYNAREAOFFSET8)) {
1611    lowerDynamicAreaOffset(II);
1612    // lowerDynamicAreaOffset erases II
1613    return true;
1614  }
1615
1616  // Special case for dynamic alloca.
1617  if (FPSI && FrameIndex == FPSI &&
1618      (OpC == PPC::DYNALLOC || OpC == PPC::DYNALLOC8)) {
1619    lowerDynamicAlloc(II);
1620    // lowerDynamicAlloc erases II
1621    return true;
1622  }
1623
1624  if (FPSI && FrameIndex == FPSI &&
1625      (OpC == PPC::PREPARE_PROBED_ALLOCA_64 ||
1626       OpC == PPC::PREPARE_PROBED_ALLOCA_32 ||
1627       OpC == PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64 ||
1628       OpC == PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32)) {
1629    lowerPrepareProbedAlloca(II);
1630    // lowerPrepareProbedAlloca erases II
1631    return true;
1632  }
1633
1634  // Special case for pseudo-ops SPILL_CR and RESTORE_CR, etc.
1635  if (OpC == PPC::SPILL_CR) {
1636    lowerCRSpilling(II, FrameIndex);
1637    return true;
1638  } else if (OpC == PPC::RESTORE_CR) {
1639    lowerCRRestore(II, FrameIndex);
1640    return true;
1641  } else if (OpC == PPC::SPILL_CRBIT) {
1642    lowerCRBitSpilling(II, FrameIndex);
1643    return true;
1644  } else if (OpC == PPC::RESTORE_CRBIT) {
1645    lowerCRBitRestore(II, FrameIndex);
1646    return true;
1647  } else if (OpC == PPC::SPILL_ACC || OpC == PPC::SPILL_UACC) {
1648    lowerACCSpilling(II, FrameIndex);
1649    return true;
1650  } else if (OpC == PPC::RESTORE_ACC || OpC == PPC::RESTORE_UACC) {
1651    lowerACCRestore(II, FrameIndex);
1652    return true;
1653  } else if (OpC == PPC::STXVP && DisableAutoPairedVecSt) {
1654    lowerOctWordSpilling(II, FrameIndex);
1655    return true;
1656  } else if (OpC == PPC::SPILL_WACC) {
1657    lowerWACCSpilling(II, FrameIndex);
1658    return true;
1659  } else if (OpC == PPC::RESTORE_WACC) {
1660    lowerWACCRestore(II, FrameIndex);
1661    return true;
1662  } else if (OpC == PPC::SPILL_QUADWORD) {
1663    lowerQuadwordSpilling(II, FrameIndex);
1664    return true;
1665  } else if (OpC == PPC::RESTORE_QUADWORD) {
1666    lowerQuadwordRestore(II, FrameIndex);
1667    return true;
1668  }
1669
1670  // Replace the FrameIndex with base register with GPR1 (SP) or GPR31 (FP).
1671  MI.getOperand(FIOperandNum).ChangeToRegister(
1672    FrameIndex < 0 ? getBaseRegister(MF) : getFrameRegister(MF), false);
1673
1674  // If the instruction is not present in ImmToIdxMap, then it has no immediate
1675  // form (and must be r+r).
1676  bool noImmForm = !MI.isInlineAsm() && OpC != TargetOpcode::STACKMAP &&
1677                   OpC != TargetOpcode::PATCHPOINT && !ImmToIdxMap.count(OpC);
1678
1679  // Now add the frame object offset to the offset from r1.
1680  int64_t Offset = MFI.getObjectOffset(FrameIndex);
1681  Offset += MI.getOperand(OffsetOperandNo).getImm();
1682
1683  // If we're not using a Frame Pointer that has been set to the value of the
1684  // SP before having the stack size subtracted from it, then add the stack size
1685  // to Offset to get the correct offset.
1686  // Naked functions have stack size 0, although getStackSize may not reflect
1687  // that because we didn't call all the pieces that compute it for naked
1688  // functions.
1689  if (!MF.getFunction().hasFnAttribute(Attribute::Naked)) {
1690    if (!(hasBasePointer(MF) && FrameIndex < 0))
1691      Offset += MFI.getStackSize();
1692  }
1693
1694  // If we encounter an LXVP/STXVP with an offset that doesn't fit, we can
1695  // transform it to the prefixed version so we don't have to use the XForm.
1696  if ((OpC == PPC::LXVP || OpC == PPC::STXVP) &&
1697      (!isInt<16>(Offset) || (Offset % offsetMinAlign(MI)) != 0) &&
1698      Subtarget.hasPrefixInstrs()) {
1699    unsigned NewOpc = OpC == PPC::LXVP ? PPC::PLXVP : PPC::PSTXVP;
1700    MI.setDesc(TII.get(NewOpc));
1701    OpC = NewOpc;
1702  }
1703
1704  // If we can, encode the offset directly into the instruction.  If this is a
1705  // normal PPC "ri" instruction, any 16-bit value can be safely encoded.  If
1706  // this is a PPC64 "ix" instruction, only a 16-bit value with the low two bits
1707  // clear can be encoded.  This is extremely uncommon, because normally you
1708  // only "std" to a stack slot that is at least 4-byte aligned, but it can
1709  // happen in invalid code.
1710  assert(OpC != PPC::DBG_VALUE &&
1711         "This should be handled in a target-independent way");
1712  // FIXME: This should be factored out to a separate function as prefixed
1713  // instructions add a number of opcodes for which we can use 34-bit imm.
1714  bool OffsetFitsMnemonic = (OpC == PPC::EVSTDD || OpC == PPC::EVLDD) ?
1715                            isUInt<8>(Offset) :
1716                            isInt<16>(Offset);
1717  if (TII.isPrefixed(MI.getOpcode()))
1718    OffsetFitsMnemonic = isInt<34>(Offset);
1719  if (!noImmForm && ((OffsetFitsMnemonic &&
1720                      ((Offset % offsetMinAlign(MI)) == 0)) ||
1721                     OpC == TargetOpcode::STACKMAP ||
1722                     OpC == TargetOpcode::PATCHPOINT)) {
1723    MI.getOperand(OffsetOperandNo).ChangeToImmediate(Offset);
1724    return false;
1725  }
1726
1727  // The offset doesn't fit into a single register, scavenge one to build the
1728  // offset in.
1729
1730  bool is64Bit = TM.isPPC64();
1731  const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
1732  const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
1733  const TargetRegisterClass *RC = is64Bit ? G8RC : GPRC;
1734  unsigned NewOpcode = 0u;
1735  bool ScavengingFailed = RS && RS->getRegsAvailable(RC).none() &&
1736                          RS->getRegsAvailable(&PPC::VSFRCRegClass).any();
1737  Register SRegHi, SReg, VSReg;
1738
1739  // The register scavenger is unable to get a GPR but can get a VSR. We
1740  // need to stash a GPR into a VSR so that we can free one up.
1741  if (ScavengingFailed && Subtarget.hasDirectMove()) {
1742    // Pick a volatile register and if we are spilling/restoring that
1743    // particular one, pick the next one.
1744    SRegHi = SReg = is64Bit ? PPC::X4 : PPC::R4;
1745    if (MI.getOperand(0).getReg() == SReg)
1746      SRegHi = SReg = SReg + 1;
1747    VSReg = MF.getRegInfo().createVirtualRegister(&PPC::VSFRCRegClass);
1748    BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::MTVSRD : PPC::MTVSRWZ), VSReg)
1749        .addReg(SReg);
1750  } else {
1751    SRegHi = MF.getRegInfo().createVirtualRegister(RC);
1752    SReg = MF.getRegInfo().createVirtualRegister(RC);
1753  }
1754
1755  // Insert a set of rA with the full offset value before the ld, st, or add
1756  if (isInt<16>(Offset))
1757    BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::LI8 : PPC::LI), SReg)
1758        .addImm(Offset);
1759  else if (isInt<32>(Offset)) {
1760    BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::LIS8 : PPC::LIS), SRegHi)
1761        .addImm(Offset >> 16);
1762    BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::ORI8 : PPC::ORI), SReg)
1763        .addReg(SRegHi, RegState::Kill)
1764        .addImm(Offset);
1765  } else {
1766    assert(is64Bit && "Huge stack is only supported on PPC64");
1767    TII.materializeImmPostRA(MBB, II, dl, SReg, Offset);
1768  }
1769
1770  // Convert into indexed form of the instruction:
1771  //
1772  //   sth 0:rA, 1:imm 2:(rB) ==> sthx 0:rA, 2:rB, 1:r0
1773  //   addi 0:rA 1:rB, 2, imm ==> add 0:rA, 1:rB, 2:r0
1774  unsigned OperandBase;
1775
1776  if (noImmForm)
1777    OperandBase = 1;
1778  else if (OpC != TargetOpcode::INLINEASM &&
1779           OpC != TargetOpcode::INLINEASM_BR) {
1780    assert(ImmToIdxMap.count(OpC) &&
1781           "No indexed form of load or store available!");
1782    NewOpcode = ImmToIdxMap.find(OpC)->second;
1783    MI.setDesc(TII.get(NewOpcode));
1784    OperandBase = 1;
1785  } else {
1786    OperandBase = OffsetOperandNo;
1787  }
1788
1789  Register StackReg = MI.getOperand(FIOperandNum).getReg();
1790  MI.getOperand(OperandBase).ChangeToRegister(StackReg, false);
1791  MI.getOperand(OperandBase + 1).ChangeToRegister(SReg, false, false, true);
1792
1793  // If we stashed a value from a GPR into a VSR, we need to get it back after
1794  // spilling the register.
1795  if (ScavengingFailed && Subtarget.hasDirectMove())
1796    BuildMI(MBB, ++II, dl, TII.get(is64Bit ? PPC::MFVSRD : PPC::MFVSRWZ), SReg)
1797        .addReg(VSReg);
1798
1799  // Since these are not real X-Form instructions, we must
1800  // add the registers and access 0(NewReg) rather than
1801  // emitting the X-Form pseudo.
1802  if (NewOpcode == PPC::LQX_PSEUDO || NewOpcode == PPC::STQX_PSEUDO) {
1803    assert(is64Bit && "Quadword loads/stores only supported in 64-bit mode");
1804    Register NewReg = MF.getRegInfo().createVirtualRegister(&PPC::G8RCRegClass);
1805    BuildMI(MBB, II, dl, TII.get(PPC::ADD8), NewReg)
1806        .addReg(SReg, RegState::Kill)
1807        .addReg(StackReg);
1808    MI.setDesc(TII.get(NewOpcode == PPC::LQX_PSEUDO ? PPC::LQ : PPC::STQ));
1809    MI.getOperand(OperandBase + 1).ChangeToRegister(NewReg, false);
1810    MI.getOperand(OperandBase).ChangeToImmediate(0);
1811  }
1812  return false;
1813}
1814
1815Register PPCRegisterInfo::getFrameRegister(const MachineFunction &MF) const {
1816  const PPCFrameLowering *TFI = getFrameLowering(MF);
1817
1818  if (!TM.isPPC64())
1819    return TFI->hasFP(MF) ? PPC::R31 : PPC::R1;
1820  else
1821    return TFI->hasFP(MF) ? PPC::X31 : PPC::X1;
1822}
1823
1824Register PPCRegisterInfo::getBaseRegister(const MachineFunction &MF) const {
1825  const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1826  if (!hasBasePointer(MF))
1827    return getFrameRegister(MF);
1828
1829  if (TM.isPPC64())
1830    return PPC::X30;
1831
1832  if (Subtarget.isSVR4ABI() && TM.isPositionIndependent())
1833    return PPC::R29;
1834
1835  return PPC::R30;
1836}
1837
1838bool PPCRegisterInfo::hasBasePointer(const MachineFunction &MF) const {
1839  if (!EnableBasePointer)
1840    return false;
1841  if (AlwaysBasePointer)
1842    return true;
1843
1844  // If we need to realign the stack, then the stack pointer can no longer
1845  // serve as an offset into the caller's stack space. As a result, we need a
1846  // base pointer.
1847  return hasStackRealignment(MF);
1848}
1849
1850/// Returns true if the instruction's frame index
1851/// reference would be better served by a base register other than FP
1852/// or SP. Used by LocalStackFrameAllocation to determine which frame index
1853/// references it should create new base registers for.
1854bool PPCRegisterInfo::
1855needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
1856  assert(Offset < 0 && "Local offset must be negative");
1857
1858  // It's the load/store FI references that cause issues, as it can be difficult
1859  // to materialize the offset if it won't fit in the literal field. Estimate
1860  // based on the size of the local frame and some conservative assumptions
1861  // about the rest of the stack frame (note, this is pre-regalloc, so
1862  // we don't know everything for certain yet) whether this offset is likely
1863  // to be out of range of the immediate. Return true if so.
1864
1865  // We only generate virtual base registers for loads and stores that have
1866  // an r+i form. Return false for everything else.
1867  unsigned OpC = MI->getOpcode();
1868  if (!ImmToIdxMap.count(OpC))
1869    return false;
1870
1871  // Don't generate a new virtual base register just to add zero to it.
1872  if ((OpC == PPC::ADDI || OpC == PPC::ADDI8) &&
1873      MI->getOperand(2).getImm() == 0)
1874    return false;
1875
1876  MachineBasicBlock &MBB = *MI->getParent();
1877  MachineFunction &MF = *MBB.getParent();
1878  const PPCFrameLowering *TFI = getFrameLowering(MF);
1879  unsigned StackEst = TFI->determineFrameLayout(MF, true);
1880
1881  // If we likely don't need a stack frame, then we probably don't need a
1882  // virtual base register either.
1883  if (!StackEst)
1884    return false;
1885
1886  // Estimate an offset from the stack pointer.
1887  // The incoming offset is relating to the SP at the start of the function,
1888  // but when we access the local it'll be relative to the SP after local
1889  // allocation, so adjust our SP-relative offset by that allocation size.
1890  Offset += StackEst;
1891
1892  // The frame pointer will point to the end of the stack, so estimate the
1893  // offset as the difference between the object offset and the FP location.
1894  return !isFrameOffsetLegal(MI, getBaseRegister(MF), Offset);
1895}
1896
1897/// Insert defining instruction(s) for BaseReg to
1898/// be a pointer to FrameIdx at the beginning of the basic block.
1899Register PPCRegisterInfo::materializeFrameBaseRegister(MachineBasicBlock *MBB,
1900                                                       int FrameIdx,
1901                                                       int64_t Offset) const {
1902  unsigned ADDriOpc = TM.isPPC64() ? PPC::ADDI8 : PPC::ADDI;
1903
1904  MachineBasicBlock::iterator Ins = MBB->begin();
1905  DebugLoc DL;                  // Defaults to "unknown"
1906  if (Ins != MBB->end())
1907    DL = Ins->getDebugLoc();
1908
1909  const MachineFunction &MF = *MBB->getParent();
1910  const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1911  const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1912  const MCInstrDesc &MCID = TII.get(ADDriOpc);
1913  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
1914  const TargetRegisterClass *RC = getPointerRegClass(MF);
1915  Register BaseReg = MRI.createVirtualRegister(RC);
1916  MRI.constrainRegClass(BaseReg, TII.getRegClass(MCID, 0, this, MF));
1917
1918  BuildMI(*MBB, Ins, DL, MCID, BaseReg)
1919    .addFrameIndex(FrameIdx).addImm(Offset);
1920
1921  return BaseReg;
1922}
1923
1924void PPCRegisterInfo::resolveFrameIndex(MachineInstr &MI, Register BaseReg,
1925                                        int64_t Offset) const {
1926  unsigned FIOperandNum = 0;
1927  while (!MI.getOperand(FIOperandNum).isFI()) {
1928    ++FIOperandNum;
1929    assert(FIOperandNum < MI.getNumOperands() &&
1930           "Instr doesn't have FrameIndex operand!");
1931  }
1932
1933  MI.getOperand(FIOperandNum).ChangeToRegister(BaseReg, false);
1934  unsigned OffsetOperandNo = getOffsetONFromFION(MI, FIOperandNum);
1935  Offset += MI.getOperand(OffsetOperandNo).getImm();
1936  MI.getOperand(OffsetOperandNo).ChangeToImmediate(Offset);
1937
1938  MachineBasicBlock &MBB = *MI.getParent();
1939  MachineFunction &MF = *MBB.getParent();
1940  const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1941  const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1942  const MCInstrDesc &MCID = MI.getDesc();
1943  MachineRegisterInfo &MRI = MF.getRegInfo();
1944  MRI.constrainRegClass(BaseReg,
1945                        TII.getRegClass(MCID, FIOperandNum, this, MF));
1946}
1947
1948bool PPCRegisterInfo::isFrameOffsetLegal(const MachineInstr *MI,
1949                                         Register BaseReg,
1950                                         int64_t Offset) const {
1951  unsigned FIOperandNum = 0;
1952  while (!MI->getOperand(FIOperandNum).isFI()) {
1953    ++FIOperandNum;
1954    assert(FIOperandNum < MI->getNumOperands() &&
1955           "Instr doesn't have FrameIndex operand!");
1956  }
1957
1958  unsigned OffsetOperandNo = getOffsetONFromFION(*MI, FIOperandNum);
1959  Offset += MI->getOperand(OffsetOperandNo).getImm();
1960
1961  return MI->getOpcode() == PPC::DBG_VALUE || // DBG_VALUE is always Reg+Imm
1962         MI->getOpcode() == TargetOpcode::STACKMAP ||
1963         MI->getOpcode() == TargetOpcode::PATCHPOINT ||
1964         (isInt<16>(Offset) && (Offset % offsetMinAlign(*MI)) == 0);
1965}
1966