1//===-- HexagonISelLoweringHVX.cpp --- Lowering HVX operations ------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "HexagonISelLowering.h"
10#include "HexagonRegisterInfo.h"
11#include "HexagonSubtarget.h"
12#include "llvm/ADT/SetVector.h"
13#include "llvm/ADT/SmallVector.h"
14#include "llvm/Analysis/MemoryLocation.h"
15#include "llvm/CodeGen/MachineBasicBlock.h"
16#include "llvm/CodeGen/MachineFunction.h"
17#include "llvm/CodeGen/MachineInstr.h"
18#include "llvm/CodeGen/MachineOperand.h"
19#include "llvm/CodeGen/MachineRegisterInfo.h"
20#include "llvm/CodeGen/TargetInstrInfo.h"
21#include "llvm/IR/IntrinsicsHexagon.h"
22#include "llvm/Support/CommandLine.h"
23
24#include <algorithm>
25#include <string>
26#include <utility>
27
28using namespace llvm;
29
30static cl::opt<unsigned> HvxWidenThreshold("hexagon-hvx-widen",
31  cl::Hidden, cl::init(16),
32  cl::desc("Lower threshold (in bytes) for widening to HVX vectors"));
33
34static const MVT LegalV64[] =  { MVT::v64i8,  MVT::v32i16,  MVT::v16i32 };
35static const MVT LegalW64[] =  { MVT::v128i8, MVT::v64i16,  MVT::v32i32 };
36static const MVT LegalV128[] = { MVT::v128i8, MVT::v64i16,  MVT::v32i32 };
37static const MVT LegalW128[] = { MVT::v256i8, MVT::v128i16, MVT::v64i32 };
38
39static std::tuple<unsigned, unsigned, unsigned> getIEEEProperties(MVT Ty) {
40  // For a float scalar type, return (exp-bits, exp-bias, fraction-bits)
41  MVT ElemTy = Ty.getScalarType();
42  switch (ElemTy.SimpleTy) {
43    case MVT::f16:
44      return std::make_tuple(5, 15, 10);
45    case MVT::f32:
46      return std::make_tuple(8, 127, 23);
47    case MVT::f64:
48      return std::make_tuple(11, 1023, 52);
49    default:
50      break;
51  }
52  llvm_unreachable(("Unexpected type: " + EVT(ElemTy).getEVTString()).c_str());
53}
54
55void
56HexagonTargetLowering::initializeHVXLowering() {
57  if (Subtarget.useHVX64BOps()) {
58    addRegisterClass(MVT::v64i8,  &Hexagon::HvxVRRegClass);
59    addRegisterClass(MVT::v32i16, &Hexagon::HvxVRRegClass);
60    addRegisterClass(MVT::v16i32, &Hexagon::HvxVRRegClass);
61    addRegisterClass(MVT::v128i8, &Hexagon::HvxWRRegClass);
62    addRegisterClass(MVT::v64i16, &Hexagon::HvxWRRegClass);
63    addRegisterClass(MVT::v32i32, &Hexagon::HvxWRRegClass);
64    // These "short" boolean vector types should be legal because
65    // they will appear as results of vector compares. If they were
66    // not legal, type legalization would try to make them legal
67    // and that would require using operations that do not use or
68    // produce such types. That, in turn, would imply using custom
69    // nodes, which would be unoptimizable by the DAG combiner.
70    // The idea is to rely on target-independent operations as much
71    // as possible.
72    addRegisterClass(MVT::v16i1, &Hexagon::HvxQRRegClass);
73    addRegisterClass(MVT::v32i1, &Hexagon::HvxQRRegClass);
74    addRegisterClass(MVT::v64i1, &Hexagon::HvxQRRegClass);
75  } else if (Subtarget.useHVX128BOps()) {
76    addRegisterClass(MVT::v128i8,  &Hexagon::HvxVRRegClass);
77    addRegisterClass(MVT::v64i16,  &Hexagon::HvxVRRegClass);
78    addRegisterClass(MVT::v32i32,  &Hexagon::HvxVRRegClass);
79    addRegisterClass(MVT::v256i8,  &Hexagon::HvxWRRegClass);
80    addRegisterClass(MVT::v128i16, &Hexagon::HvxWRRegClass);
81    addRegisterClass(MVT::v64i32,  &Hexagon::HvxWRRegClass);
82    addRegisterClass(MVT::v32i1, &Hexagon::HvxQRRegClass);
83    addRegisterClass(MVT::v64i1, &Hexagon::HvxQRRegClass);
84    addRegisterClass(MVT::v128i1, &Hexagon::HvxQRRegClass);
85    if (Subtarget.useHVXV68Ops() && Subtarget.useHVXFloatingPoint()) {
86      addRegisterClass(MVT::v32f32, &Hexagon::HvxVRRegClass);
87      addRegisterClass(MVT::v64f16, &Hexagon::HvxVRRegClass);
88      addRegisterClass(MVT::v64f32, &Hexagon::HvxWRRegClass);
89      addRegisterClass(MVT::v128f16, &Hexagon::HvxWRRegClass);
90    }
91  }
92
93  // Set up operation actions.
94
95  bool Use64b = Subtarget.useHVX64BOps();
96  ArrayRef<MVT> LegalV = Use64b ? LegalV64 : LegalV128;
97  ArrayRef<MVT> LegalW = Use64b ? LegalW64 : LegalW128;
98  MVT ByteV = Use64b ?  MVT::v64i8 : MVT::v128i8;
99  MVT WordV = Use64b ? MVT::v16i32 : MVT::v32i32;
100  MVT ByteW = Use64b ? MVT::v128i8 : MVT::v256i8;
101
102  auto setPromoteTo = [this] (unsigned Opc, MVT FromTy, MVT ToTy) {
103    setOperationAction(Opc, FromTy, Promote);
104    AddPromotedToType(Opc, FromTy, ToTy);
105  };
106
107  // Handle bitcasts of vector predicates to scalars (e.g. v32i1 to i32).
108  // Note: v16i1 -> i16 is handled in type legalization instead of op
109  // legalization.
110  setOperationAction(ISD::BITCAST,              MVT::i16, Custom);
111  setOperationAction(ISD::BITCAST,              MVT::i32, Custom);
112  setOperationAction(ISD::BITCAST,              MVT::i64, Custom);
113  setOperationAction(ISD::BITCAST,            MVT::v16i1, Custom);
114  setOperationAction(ISD::BITCAST,           MVT::v128i1, Custom);
115  setOperationAction(ISD::BITCAST,             MVT::i128, Custom);
116  setOperationAction(ISD::VECTOR_SHUFFLE,          ByteV, Legal);
117  setOperationAction(ISD::VECTOR_SHUFFLE,          ByteW, Legal);
118  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
119
120  if (Subtarget.useHVX128BOps() && Subtarget.useHVXV68Ops() &&
121      Subtarget.useHVXFloatingPoint()) {
122
123    static const MVT FloatV[] = { MVT::v64f16, MVT::v32f32 };
124    static const MVT FloatW[] = { MVT::v128f16, MVT::v64f32 };
125
126    for (MVT T : FloatV) {
127      setOperationAction(ISD::FADD,              T, Legal);
128      setOperationAction(ISD::FSUB,              T, Legal);
129      setOperationAction(ISD::FMUL,              T, Legal);
130      setOperationAction(ISD::FMINNUM,           T, Legal);
131      setOperationAction(ISD::FMAXNUM,           T, Legal);
132
133      setOperationAction(ISD::INSERT_SUBVECTOR,  T, Custom);
134      setOperationAction(ISD::EXTRACT_SUBVECTOR, T, Custom);
135
136      setOperationAction(ISD::SPLAT_VECTOR,      T, Legal);
137      setOperationAction(ISD::SPLAT_VECTOR,      T, Legal);
138
139      setOperationAction(ISD::MLOAD,             T, Custom);
140      setOperationAction(ISD::MSTORE,            T, Custom);
141      // Custom-lower BUILD_VECTOR. The standard (target-independent)
142      // handling of it would convert it to a load, which is not always
143      // the optimal choice.
144      setOperationAction(ISD::BUILD_VECTOR,      T, Custom);
145    }
146
147
148    // BUILD_VECTOR with f16 operands cannot be promoted without
149    // promoting the result, so lower the node to vsplat or constant pool
150    setOperationAction(ISD::BUILD_VECTOR,      MVT::f16, Custom);
151    setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::f16, Custom);
152    setOperationAction(ISD::SPLAT_VECTOR,      MVT::f16, Custom);
153
154    // Vector shuffle is always promoted to ByteV and a bitcast to f16 is
155    // generated.
156    setPromoteTo(ISD::VECTOR_SHUFFLE, MVT::v128f16, ByteW);
157    setPromoteTo(ISD::VECTOR_SHUFFLE,  MVT::v64f16, ByteV);
158    setPromoteTo(ISD::VECTOR_SHUFFLE,  MVT::v64f32, ByteW);
159    setPromoteTo(ISD::VECTOR_SHUFFLE,  MVT::v32f32, ByteV);
160
161    for (MVT P : FloatW) {
162      setOperationAction(ISD::LOAD,           P, Custom);
163      setOperationAction(ISD::STORE,          P, Custom);
164      setOperationAction(ISD::FADD,           P, Custom);
165      setOperationAction(ISD::FSUB,           P, Custom);
166      setOperationAction(ISD::FMUL,           P, Custom);
167      setOperationAction(ISD::FMINNUM,        P, Custom);
168      setOperationAction(ISD::FMAXNUM,        P, Custom);
169      setOperationAction(ISD::SETCC,          P, Custom);
170      setOperationAction(ISD::VSELECT,        P, Custom);
171
172      // Custom-lower BUILD_VECTOR. The standard (target-independent)
173      // handling of it would convert it to a load, which is not always
174      // the optimal choice.
175      setOperationAction(ISD::BUILD_VECTOR,   P, Custom);
176      // Make concat-vectors custom to handle concats of more than 2 vectors.
177      setOperationAction(ISD::CONCAT_VECTORS, P, Custom);
178
179      setOperationAction(ISD::MLOAD,          P, Custom);
180      setOperationAction(ISD::MSTORE,         P, Custom);
181    }
182
183    if (Subtarget.useHVXQFloatOps()) {
184      setOperationAction(ISD::FP_EXTEND, MVT::v64f32, Custom);
185      setOperationAction(ISD::FP_ROUND,  MVT::v64f16, Legal);
186    } else if (Subtarget.useHVXIEEEFPOps()) {
187      setOperationAction(ISD::FP_EXTEND, MVT::v64f32, Legal);
188      setOperationAction(ISD::FP_ROUND,  MVT::v64f16, Legal);
189    }
190  }
191
192  for (MVT T : LegalV) {
193    setIndexedLoadAction(ISD::POST_INC,  T, Legal);
194    setIndexedStoreAction(ISD::POST_INC, T, Legal);
195
196    setOperationAction(ISD::ABS,            T, Legal);
197    setOperationAction(ISD::AND,            T, Legal);
198    setOperationAction(ISD::OR,             T, Legal);
199    setOperationAction(ISD::XOR,            T, Legal);
200    setOperationAction(ISD::ADD,            T, Legal);
201    setOperationAction(ISD::SUB,            T, Legal);
202    setOperationAction(ISD::MUL,            T, Legal);
203    setOperationAction(ISD::CTPOP,          T, Legal);
204    setOperationAction(ISD::CTLZ,           T, Legal);
205    setOperationAction(ISD::SELECT,         T, Legal);
206    setOperationAction(ISD::SPLAT_VECTOR,   T, Legal);
207    if (T != ByteV) {
208      setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, T, Legal);
209      setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, T, Legal);
210      setOperationAction(ISD::BSWAP,                    T, Legal);
211    }
212
213    setOperationAction(ISD::SMIN,           T, Legal);
214    setOperationAction(ISD::SMAX,           T, Legal);
215    if (T.getScalarType() != MVT::i32) {
216      setOperationAction(ISD::UMIN,         T, Legal);
217      setOperationAction(ISD::UMAX,         T, Legal);
218    }
219
220    setOperationAction(ISD::CTTZ,               T, Custom);
221    setOperationAction(ISD::LOAD,               T, Custom);
222    setOperationAction(ISD::MLOAD,              T, Custom);
223    setOperationAction(ISD::MSTORE,             T, Custom);
224    if (T.getScalarType() != MVT::i32) {
225      setOperationAction(ISD::MULHS,              T, Legal);
226      setOperationAction(ISD::MULHU,              T, Legal);
227    }
228
229    setOperationAction(ISD::BUILD_VECTOR,       T, Custom);
230    // Make concat-vectors custom to handle concats of more than 2 vectors.
231    setOperationAction(ISD::CONCAT_VECTORS,     T, Custom);
232    setOperationAction(ISD::INSERT_SUBVECTOR,   T, Custom);
233    setOperationAction(ISD::INSERT_VECTOR_ELT,  T, Custom);
234    setOperationAction(ISD::EXTRACT_SUBVECTOR,  T, Custom);
235    setOperationAction(ISD::EXTRACT_VECTOR_ELT, T, Custom);
236    setOperationAction(ISD::ANY_EXTEND,         T, Custom);
237    setOperationAction(ISD::SIGN_EXTEND,        T, Custom);
238    setOperationAction(ISD::ZERO_EXTEND,        T, Custom);
239    setOperationAction(ISD::FSHL,               T, Custom);
240    setOperationAction(ISD::FSHR,               T, Custom);
241    if (T != ByteV) {
242      setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, T, Custom);
243      // HVX only has shifts of words and halfwords.
244      setOperationAction(ISD::SRA,                     T, Custom);
245      setOperationAction(ISD::SHL,                     T, Custom);
246      setOperationAction(ISD::SRL,                     T, Custom);
247
248      // Promote all shuffles to operate on vectors of bytes.
249      setPromoteTo(ISD::VECTOR_SHUFFLE, T, ByteV);
250    }
251
252    if (Subtarget.useHVXFloatingPoint()) {
253      // Same action for both QFloat and IEEE.
254      setOperationAction(ISD::SINT_TO_FP, T, Custom);
255      setOperationAction(ISD::UINT_TO_FP, T, Custom);
256      setOperationAction(ISD::FP_TO_SINT, T, Custom);
257      setOperationAction(ISD::FP_TO_UINT, T, Custom);
258    }
259
260    setCondCodeAction(ISD::SETNE,  T, Expand);
261    setCondCodeAction(ISD::SETLE,  T, Expand);
262    setCondCodeAction(ISD::SETGE,  T, Expand);
263    setCondCodeAction(ISD::SETLT,  T, Expand);
264    setCondCodeAction(ISD::SETULE, T, Expand);
265    setCondCodeAction(ISD::SETUGE, T, Expand);
266    setCondCodeAction(ISD::SETULT, T, Expand);
267  }
268
269  for (MVT T : LegalW) {
270    // Custom-lower BUILD_VECTOR for vector pairs. The standard (target-
271    // independent) handling of it would convert it to a load, which is
272    // not always the optimal choice.
273    setOperationAction(ISD::BUILD_VECTOR,   T, Custom);
274    // Make concat-vectors custom to handle concats of more than 2 vectors.
275    setOperationAction(ISD::CONCAT_VECTORS, T, Custom);
276
277    // Custom-lower these operations for pairs. Expand them into a concat
278    // of the corresponding operations on individual vectors.
279    setOperationAction(ISD::ANY_EXTEND,               T, Custom);
280    setOperationAction(ISD::SIGN_EXTEND,              T, Custom);
281    setOperationAction(ISD::ZERO_EXTEND,              T, Custom);
282    setOperationAction(ISD::SIGN_EXTEND_INREG,        T, Custom);
283    setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG,  T, Custom);
284    setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, T, Legal);
285    setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, T, Legal);
286    setOperationAction(ISD::SPLAT_VECTOR,             T, Custom);
287
288    setOperationAction(ISD::LOAD,     T, Custom);
289    setOperationAction(ISD::STORE,    T, Custom);
290    setOperationAction(ISD::MLOAD,    T, Custom);
291    setOperationAction(ISD::MSTORE,   T, Custom);
292    setOperationAction(ISD::ABS,      T, Custom);
293    setOperationAction(ISD::CTLZ,     T, Custom);
294    setOperationAction(ISD::CTTZ,     T, Custom);
295    setOperationAction(ISD::CTPOP,    T, Custom);
296
297    setOperationAction(ISD::ADD,      T, Legal);
298    setOperationAction(ISD::SUB,      T, Legal);
299    setOperationAction(ISD::MUL,      T, Custom);
300    setOperationAction(ISD::MULHS,    T, Custom);
301    setOperationAction(ISD::MULHU,    T, Custom);
302    setOperationAction(ISD::AND,      T, Custom);
303    setOperationAction(ISD::OR,       T, Custom);
304    setOperationAction(ISD::XOR,      T, Custom);
305    setOperationAction(ISD::SETCC,    T, Custom);
306    setOperationAction(ISD::VSELECT,  T, Custom);
307    if (T != ByteW) {
308      setOperationAction(ISD::SRA,      T, Custom);
309      setOperationAction(ISD::SHL,      T, Custom);
310      setOperationAction(ISD::SRL,      T, Custom);
311
312      // Promote all shuffles to operate on vectors of bytes.
313      setPromoteTo(ISD::VECTOR_SHUFFLE, T, ByteW);
314    }
315    setOperationAction(ISD::FSHL,     T, Custom);
316    setOperationAction(ISD::FSHR,     T, Custom);
317
318    setOperationAction(ISD::SMIN,     T, Custom);
319    setOperationAction(ISD::SMAX,     T, Custom);
320    if (T.getScalarType() != MVT::i32) {
321      setOperationAction(ISD::UMIN,     T, Custom);
322      setOperationAction(ISD::UMAX,     T, Custom);
323    }
324
325    if (Subtarget.useHVXFloatingPoint()) {
326      // Same action for both QFloat and IEEE.
327      setOperationAction(ISD::SINT_TO_FP, T, Custom);
328      setOperationAction(ISD::UINT_TO_FP, T, Custom);
329      setOperationAction(ISD::FP_TO_SINT, T, Custom);
330      setOperationAction(ISD::FP_TO_UINT, T, Custom);
331    }
332  }
333
334  // Legalize all of these to HexagonISD::[SU]MUL_LOHI.
335  setOperationAction(ISD::MULHS,      WordV, Custom); // -> _LOHI
336  setOperationAction(ISD::MULHU,      WordV, Custom); // -> _LOHI
337  setOperationAction(ISD::SMUL_LOHI,  WordV, Custom);
338  setOperationAction(ISD::UMUL_LOHI,  WordV, Custom);
339
340  setCondCodeAction(ISD::SETNE,  MVT::v64f16, Expand);
341  setCondCodeAction(ISD::SETLE,  MVT::v64f16, Expand);
342  setCondCodeAction(ISD::SETGE,  MVT::v64f16, Expand);
343  setCondCodeAction(ISD::SETLT,  MVT::v64f16, Expand);
344  setCondCodeAction(ISD::SETONE, MVT::v64f16, Expand);
345  setCondCodeAction(ISD::SETOLE, MVT::v64f16, Expand);
346  setCondCodeAction(ISD::SETOGE, MVT::v64f16, Expand);
347  setCondCodeAction(ISD::SETOLT, MVT::v64f16, Expand);
348  setCondCodeAction(ISD::SETUNE, MVT::v64f16, Expand);
349  setCondCodeAction(ISD::SETULE, MVT::v64f16, Expand);
350  setCondCodeAction(ISD::SETUGE, MVT::v64f16, Expand);
351  setCondCodeAction(ISD::SETULT, MVT::v64f16, Expand);
352
353  setCondCodeAction(ISD::SETNE,  MVT::v32f32, Expand);
354  setCondCodeAction(ISD::SETLE,  MVT::v32f32, Expand);
355  setCondCodeAction(ISD::SETGE,  MVT::v32f32, Expand);
356  setCondCodeAction(ISD::SETLT,  MVT::v32f32, Expand);
357  setCondCodeAction(ISD::SETONE, MVT::v32f32, Expand);
358  setCondCodeAction(ISD::SETOLE, MVT::v32f32, Expand);
359  setCondCodeAction(ISD::SETOGE, MVT::v32f32, Expand);
360  setCondCodeAction(ISD::SETOLT, MVT::v32f32, Expand);
361  setCondCodeAction(ISD::SETUNE, MVT::v32f32, Expand);
362  setCondCodeAction(ISD::SETULE, MVT::v32f32, Expand);
363  setCondCodeAction(ISD::SETUGE, MVT::v32f32, Expand);
364  setCondCodeAction(ISD::SETULT, MVT::v32f32, Expand);
365
366  // Boolean vectors.
367
368  for (MVT T : LegalW) {
369    // Boolean types for vector pairs will overlap with the boolean
370    // types for single vectors, e.g.
371    //   v64i8  -> v64i1 (single)
372    //   v64i16 -> v64i1 (pair)
373    // Set these actions first, and allow the single actions to overwrite
374    // any duplicates.
375    MVT BoolW = MVT::getVectorVT(MVT::i1, T.getVectorNumElements());
376    setOperationAction(ISD::SETCC,              BoolW, Custom);
377    setOperationAction(ISD::AND,                BoolW, Custom);
378    setOperationAction(ISD::OR,                 BoolW, Custom);
379    setOperationAction(ISD::XOR,                BoolW, Custom);
380    // Masked load/store takes a mask that may need splitting.
381    setOperationAction(ISD::MLOAD,              BoolW, Custom);
382    setOperationAction(ISD::MSTORE,             BoolW, Custom);
383  }
384
385  for (MVT T : LegalV) {
386    MVT BoolV = MVT::getVectorVT(MVT::i1, T.getVectorNumElements());
387    setOperationAction(ISD::BUILD_VECTOR,       BoolV, Custom);
388    setOperationAction(ISD::CONCAT_VECTORS,     BoolV, Custom);
389    setOperationAction(ISD::INSERT_SUBVECTOR,   BoolV, Custom);
390    setOperationAction(ISD::INSERT_VECTOR_ELT,  BoolV, Custom);
391    setOperationAction(ISD::EXTRACT_SUBVECTOR,  BoolV, Custom);
392    setOperationAction(ISD::EXTRACT_VECTOR_ELT, BoolV, Custom);
393    setOperationAction(ISD::SELECT,             BoolV, Custom);
394    setOperationAction(ISD::AND,                BoolV, Legal);
395    setOperationAction(ISD::OR,                 BoolV, Legal);
396    setOperationAction(ISD::XOR,                BoolV, Legal);
397  }
398
399  if (Use64b) {
400    for (MVT T: {MVT::v32i8, MVT::v32i16, MVT::v16i8, MVT::v16i16, MVT::v16i32})
401      setOperationAction(ISD::SIGN_EXTEND_INREG, T, Legal);
402  } else {
403    for (MVT T: {MVT::v64i8, MVT::v64i16, MVT::v32i8, MVT::v32i16, MVT::v32i32})
404      setOperationAction(ISD::SIGN_EXTEND_INREG, T, Legal);
405  }
406
407  // Handle store widening for short vectors.
408  unsigned HwLen = Subtarget.getVectorLength();
409  for (MVT ElemTy : Subtarget.getHVXElementTypes()) {
410    if (ElemTy == MVT::i1)
411      continue;
412    int ElemWidth = ElemTy.getFixedSizeInBits();
413    int MaxElems = (8*HwLen) / ElemWidth;
414    for (int N = 2; N < MaxElems; N *= 2) {
415      MVT VecTy = MVT::getVectorVT(ElemTy, N);
416      auto Action = getPreferredVectorAction(VecTy);
417      if (Action == TargetLoweringBase::TypeWidenVector) {
418        setOperationAction(ISD::LOAD,         VecTy, Custom);
419        setOperationAction(ISD::STORE,        VecTy, Custom);
420        setOperationAction(ISD::SETCC,        VecTy, Custom);
421        setOperationAction(ISD::TRUNCATE,     VecTy, Custom);
422        setOperationAction(ISD::ANY_EXTEND,   VecTy, Custom);
423        setOperationAction(ISD::SIGN_EXTEND,  VecTy, Custom);
424        setOperationAction(ISD::ZERO_EXTEND,  VecTy, Custom);
425        if (Subtarget.useHVXFloatingPoint()) {
426          setOperationAction(ISD::FP_TO_SINT,   VecTy, Custom);
427          setOperationAction(ISD::FP_TO_UINT,   VecTy, Custom);
428          setOperationAction(ISD::SINT_TO_FP,   VecTy, Custom);
429          setOperationAction(ISD::UINT_TO_FP,   VecTy, Custom);
430        }
431
432        MVT BoolTy = MVT::getVectorVT(MVT::i1, N);
433        if (!isTypeLegal(BoolTy))
434          setOperationAction(ISD::SETCC, BoolTy, Custom);
435      }
436    }
437  }
438
439  setTargetDAGCombine({ISD::CONCAT_VECTORS, ISD::TRUNCATE, ISD::VSELECT});
440}
441
442unsigned
443HexagonTargetLowering::getPreferredHvxVectorAction(MVT VecTy) const {
444  MVT ElemTy = VecTy.getVectorElementType();
445  unsigned VecLen = VecTy.getVectorNumElements();
446  unsigned HwLen = Subtarget.getVectorLength();
447
448  // Split vectors of i1 that exceed byte vector length.
449  if (ElemTy == MVT::i1 && VecLen > HwLen)
450    return TargetLoweringBase::TypeSplitVector;
451
452  ArrayRef<MVT> Tys = Subtarget.getHVXElementTypes();
453  // For shorter vectors of i1, widen them if any of the corresponding
454  // vectors of integers needs to be widened.
455  if (ElemTy == MVT::i1) {
456    for (MVT T : Tys) {
457      assert(T != MVT::i1);
458      auto A = getPreferredHvxVectorAction(MVT::getVectorVT(T, VecLen));
459      if (A != ~0u)
460        return A;
461    }
462    return ~0u;
463  }
464
465  // If the size of VecTy is at least half of the vector length,
466  // widen the vector. Note: the threshold was not selected in
467  // any scientific way.
468  if (llvm::is_contained(Tys, ElemTy)) {
469    unsigned VecWidth = VecTy.getSizeInBits();
470    unsigned HwWidth = 8*HwLen;
471    if (VecWidth > 2*HwWidth)
472      return TargetLoweringBase::TypeSplitVector;
473
474    bool HaveThreshold = HvxWidenThreshold.getNumOccurrences() > 0;
475    if (HaveThreshold && 8*HvxWidenThreshold <= VecWidth)
476      return TargetLoweringBase::TypeWidenVector;
477    if (VecWidth >= HwWidth/2 && VecWidth < HwWidth)
478      return TargetLoweringBase::TypeWidenVector;
479  }
480
481  // Defer to default.
482  return ~0u;
483}
484
485unsigned
486HexagonTargetLowering::getCustomHvxOperationAction(SDNode &Op) const {
487  unsigned Opc = Op.getOpcode();
488  switch (Opc) {
489  case HexagonISD::SMUL_LOHI:
490  case HexagonISD::UMUL_LOHI:
491  case HexagonISD::USMUL_LOHI:
492    return TargetLoweringBase::Custom;
493  }
494  return TargetLoweringBase::Legal;
495}
496
497SDValue
498HexagonTargetLowering::getInt(unsigned IntId, MVT ResTy, ArrayRef<SDValue> Ops,
499                              const SDLoc &dl, SelectionDAG &DAG) const {
500  SmallVector<SDValue,4> IntOps;
501  IntOps.push_back(DAG.getConstant(IntId, dl, MVT::i32));
502  append_range(IntOps, Ops);
503  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, ResTy, IntOps);
504}
505
506MVT
507HexagonTargetLowering::typeJoin(const TypePair &Tys) const {
508  assert(Tys.first.getVectorElementType() == Tys.second.getVectorElementType());
509
510  MVT ElemTy = Tys.first.getVectorElementType();
511  return MVT::getVectorVT(ElemTy, Tys.first.getVectorNumElements() +
512                                  Tys.second.getVectorNumElements());
513}
514
515HexagonTargetLowering::TypePair
516HexagonTargetLowering::typeSplit(MVT VecTy) const {
517  assert(VecTy.isVector());
518  unsigned NumElem = VecTy.getVectorNumElements();
519  assert((NumElem % 2) == 0 && "Expecting even-sized vector type");
520  MVT HalfTy = MVT::getVectorVT(VecTy.getVectorElementType(), NumElem/2);
521  return { HalfTy, HalfTy };
522}
523
524MVT
525HexagonTargetLowering::typeExtElem(MVT VecTy, unsigned Factor) const {
526  MVT ElemTy = VecTy.getVectorElementType();
527  MVT NewElemTy = MVT::getIntegerVT(ElemTy.getSizeInBits() * Factor);
528  return MVT::getVectorVT(NewElemTy, VecTy.getVectorNumElements());
529}
530
531MVT
532HexagonTargetLowering::typeTruncElem(MVT VecTy, unsigned Factor) const {
533  MVT ElemTy = VecTy.getVectorElementType();
534  MVT NewElemTy = MVT::getIntegerVT(ElemTy.getSizeInBits() / Factor);
535  return MVT::getVectorVT(NewElemTy, VecTy.getVectorNumElements());
536}
537
538SDValue
539HexagonTargetLowering::opCastElem(SDValue Vec, MVT ElemTy,
540                                  SelectionDAG &DAG) const {
541  if (ty(Vec).getVectorElementType() == ElemTy)
542    return Vec;
543  MVT CastTy = tyVector(Vec.getValueType().getSimpleVT(), ElemTy);
544  return DAG.getBitcast(CastTy, Vec);
545}
546
547SDValue
548HexagonTargetLowering::opJoin(const VectorPair &Ops, const SDLoc &dl,
549                              SelectionDAG &DAG) const {
550  return DAG.getNode(ISD::CONCAT_VECTORS, dl, typeJoin(ty(Ops)),
551                     Ops.first, Ops.second);
552}
553
554HexagonTargetLowering::VectorPair
555HexagonTargetLowering::opSplit(SDValue Vec, const SDLoc &dl,
556                               SelectionDAG &DAG) const {
557  TypePair Tys = typeSplit(ty(Vec));
558  if (Vec.getOpcode() == HexagonISD::QCAT)
559    return VectorPair(Vec.getOperand(0), Vec.getOperand(1));
560  return DAG.SplitVector(Vec, dl, Tys.first, Tys.second);
561}
562
563bool
564HexagonTargetLowering::isHvxSingleTy(MVT Ty) const {
565  return Subtarget.isHVXVectorType(Ty) &&
566         Ty.getSizeInBits() == 8 * Subtarget.getVectorLength();
567}
568
569bool
570HexagonTargetLowering::isHvxPairTy(MVT Ty) const {
571  return Subtarget.isHVXVectorType(Ty) &&
572         Ty.getSizeInBits() == 16 * Subtarget.getVectorLength();
573}
574
575bool
576HexagonTargetLowering::isHvxBoolTy(MVT Ty) const {
577  return Subtarget.isHVXVectorType(Ty, true) &&
578         Ty.getVectorElementType() == MVT::i1;
579}
580
581bool HexagonTargetLowering::allowsHvxMemoryAccess(
582    MVT VecTy, MachineMemOperand::Flags Flags, unsigned *Fast) const {
583  // Bool vectors are excluded by default, but make it explicit to
584  // emphasize that bool vectors cannot be loaded or stored.
585  // Also, disallow double vector stores (to prevent unnecessary
586  // store widening in DAG combiner).
587  if (VecTy.getSizeInBits() > 8*Subtarget.getVectorLength())
588    return false;
589  if (!Subtarget.isHVXVectorType(VecTy, /*IncludeBool=*/false))
590    return false;
591  if (Fast)
592    *Fast = 1;
593  return true;
594}
595
596bool HexagonTargetLowering::allowsHvxMisalignedMemoryAccesses(
597    MVT VecTy, MachineMemOperand::Flags Flags, unsigned *Fast) const {
598  if (!Subtarget.isHVXVectorType(VecTy))
599    return false;
600  // XXX Should this be false?  vmemu are a bit slower than vmem.
601  if (Fast)
602    *Fast = 1;
603  return true;
604}
605
606void HexagonTargetLowering::AdjustHvxInstrPostInstrSelection(
607    MachineInstr &MI, SDNode *Node) const {
608  unsigned Opc = MI.getOpcode();
609  const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
610  MachineBasicBlock &MB = *MI.getParent();
611  MachineFunction &MF = *MB.getParent();
612  MachineRegisterInfo &MRI = MF.getRegInfo();
613  DebugLoc DL = MI.getDebugLoc();
614  auto At = MI.getIterator();
615
616  switch (Opc) {
617  case Hexagon::PS_vsplatib:
618    if (Subtarget.useHVXV62Ops()) {
619      // SplatV = A2_tfrsi #imm
620      // OutV = V6_lvsplatb SplatV
621      Register SplatV = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
622      BuildMI(MB, At, DL, TII.get(Hexagon::A2_tfrsi), SplatV)
623        .add(MI.getOperand(1));
624      Register OutV = MI.getOperand(0).getReg();
625      BuildMI(MB, At, DL, TII.get(Hexagon::V6_lvsplatb), OutV)
626        .addReg(SplatV);
627    } else {
628      // SplatV = A2_tfrsi #imm:#imm:#imm:#imm
629      // OutV = V6_lvsplatw SplatV
630      Register SplatV = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
631      const MachineOperand &InpOp = MI.getOperand(1);
632      assert(InpOp.isImm());
633      uint32_t V = InpOp.getImm() & 0xFF;
634      BuildMI(MB, At, DL, TII.get(Hexagon::A2_tfrsi), SplatV)
635          .addImm(V << 24 | V << 16 | V << 8 | V);
636      Register OutV = MI.getOperand(0).getReg();
637      BuildMI(MB, At, DL, TII.get(Hexagon::V6_lvsplatw), OutV).addReg(SplatV);
638    }
639    MB.erase(At);
640    break;
641  case Hexagon::PS_vsplatrb:
642    if (Subtarget.useHVXV62Ops()) {
643      // OutV = V6_lvsplatb Inp
644      Register OutV = MI.getOperand(0).getReg();
645      BuildMI(MB, At, DL, TII.get(Hexagon::V6_lvsplatb), OutV)
646        .add(MI.getOperand(1));
647    } else {
648      Register SplatV = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
649      const MachineOperand &InpOp = MI.getOperand(1);
650      BuildMI(MB, At, DL, TII.get(Hexagon::S2_vsplatrb), SplatV)
651          .addReg(InpOp.getReg(), 0, InpOp.getSubReg());
652      Register OutV = MI.getOperand(0).getReg();
653      BuildMI(MB, At, DL, TII.get(Hexagon::V6_lvsplatw), OutV)
654          .addReg(SplatV);
655    }
656    MB.erase(At);
657    break;
658  case Hexagon::PS_vsplatih:
659    if (Subtarget.useHVXV62Ops()) {
660      // SplatV = A2_tfrsi #imm
661      // OutV = V6_lvsplath SplatV
662      Register SplatV = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
663      BuildMI(MB, At, DL, TII.get(Hexagon::A2_tfrsi), SplatV)
664        .add(MI.getOperand(1));
665      Register OutV = MI.getOperand(0).getReg();
666      BuildMI(MB, At, DL, TII.get(Hexagon::V6_lvsplath), OutV)
667        .addReg(SplatV);
668    } else {
669      // SplatV = A2_tfrsi #imm:#imm
670      // OutV = V6_lvsplatw SplatV
671      Register SplatV = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
672      const MachineOperand &InpOp = MI.getOperand(1);
673      assert(InpOp.isImm());
674      uint32_t V = InpOp.getImm() & 0xFFFF;
675      BuildMI(MB, At, DL, TII.get(Hexagon::A2_tfrsi), SplatV)
676          .addImm(V << 16 | V);
677      Register OutV = MI.getOperand(0).getReg();
678      BuildMI(MB, At, DL, TII.get(Hexagon::V6_lvsplatw), OutV).addReg(SplatV);
679    }
680    MB.erase(At);
681    break;
682  case Hexagon::PS_vsplatrh:
683    if (Subtarget.useHVXV62Ops()) {
684      // OutV = V6_lvsplath Inp
685      Register OutV = MI.getOperand(0).getReg();
686      BuildMI(MB, At, DL, TII.get(Hexagon::V6_lvsplath), OutV)
687        .add(MI.getOperand(1));
688    } else {
689      // SplatV = A2_combine_ll Inp, Inp
690      // OutV = V6_lvsplatw SplatV
691      Register SplatV = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
692      const MachineOperand &InpOp = MI.getOperand(1);
693      BuildMI(MB, At, DL, TII.get(Hexagon::A2_combine_ll), SplatV)
694          .addReg(InpOp.getReg(), 0, InpOp.getSubReg())
695          .addReg(InpOp.getReg(), 0, InpOp.getSubReg());
696      Register OutV = MI.getOperand(0).getReg();
697      BuildMI(MB, At, DL, TII.get(Hexagon::V6_lvsplatw), OutV).addReg(SplatV);
698    }
699    MB.erase(At);
700    break;
701  case Hexagon::PS_vsplatiw:
702  case Hexagon::PS_vsplatrw:
703    if (Opc == Hexagon::PS_vsplatiw) {
704      // SplatV = A2_tfrsi #imm
705      Register SplatV = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
706      BuildMI(MB, At, DL, TII.get(Hexagon::A2_tfrsi), SplatV)
707        .add(MI.getOperand(1));
708      MI.getOperand(1).ChangeToRegister(SplatV, false);
709    }
710    // OutV = V6_lvsplatw SplatV/Inp
711    MI.setDesc(TII.get(Hexagon::V6_lvsplatw));
712    break;
713  }
714}
715
716SDValue
717HexagonTargetLowering::convertToByteIndex(SDValue ElemIdx, MVT ElemTy,
718                                          SelectionDAG &DAG) const {
719  if (ElemIdx.getValueType().getSimpleVT() != MVT::i32)
720    ElemIdx = DAG.getBitcast(MVT::i32, ElemIdx);
721
722  unsigned ElemWidth = ElemTy.getSizeInBits();
723  if (ElemWidth == 8)
724    return ElemIdx;
725
726  unsigned L = Log2_32(ElemWidth/8);
727  const SDLoc &dl(ElemIdx);
728  return DAG.getNode(ISD::SHL, dl, MVT::i32,
729                     {ElemIdx, DAG.getConstant(L, dl, MVT::i32)});
730}
731
732SDValue
733HexagonTargetLowering::getIndexInWord32(SDValue Idx, MVT ElemTy,
734                                        SelectionDAG &DAG) const {
735  unsigned ElemWidth = ElemTy.getSizeInBits();
736  assert(ElemWidth >= 8 && ElemWidth <= 32);
737  if (ElemWidth == 32)
738    return Idx;
739
740  if (ty(Idx) != MVT::i32)
741    Idx = DAG.getBitcast(MVT::i32, Idx);
742  const SDLoc &dl(Idx);
743  SDValue Mask = DAG.getConstant(32/ElemWidth - 1, dl, MVT::i32);
744  SDValue SubIdx = DAG.getNode(ISD::AND, dl, MVT::i32, {Idx, Mask});
745  return SubIdx;
746}
747
748SDValue
749HexagonTargetLowering::getByteShuffle(const SDLoc &dl, SDValue Op0,
750                                      SDValue Op1, ArrayRef<int> Mask,
751                                      SelectionDAG &DAG) const {
752  MVT OpTy = ty(Op0);
753  assert(OpTy == ty(Op1));
754
755  MVT ElemTy = OpTy.getVectorElementType();
756  if (ElemTy == MVT::i8)
757    return DAG.getVectorShuffle(OpTy, dl, Op0, Op1, Mask);
758  assert(ElemTy.getSizeInBits() >= 8);
759
760  MVT ResTy = tyVector(OpTy, MVT::i8);
761  unsigned ElemSize = ElemTy.getSizeInBits() / 8;
762
763  SmallVector<int,128> ByteMask;
764  for (int M : Mask) {
765    if (M < 0) {
766      for (unsigned I = 0; I != ElemSize; ++I)
767        ByteMask.push_back(-1);
768    } else {
769      int NewM = M*ElemSize;
770      for (unsigned I = 0; I != ElemSize; ++I)
771        ByteMask.push_back(NewM+I);
772    }
773  }
774  assert(ResTy.getVectorNumElements() == ByteMask.size());
775  return DAG.getVectorShuffle(ResTy, dl, opCastElem(Op0, MVT::i8, DAG),
776                              opCastElem(Op1, MVT::i8, DAG), ByteMask);
777}
778
779SDValue
780HexagonTargetLowering::buildHvxVectorReg(ArrayRef<SDValue> Values,
781                                         const SDLoc &dl, MVT VecTy,
782                                         SelectionDAG &DAG) const {
783  unsigned VecLen = Values.size();
784  MachineFunction &MF = DAG.getMachineFunction();
785  MVT ElemTy = VecTy.getVectorElementType();
786  unsigned ElemWidth = ElemTy.getSizeInBits();
787  unsigned HwLen = Subtarget.getVectorLength();
788
789  unsigned ElemSize = ElemWidth / 8;
790  assert(ElemSize*VecLen == HwLen);
791  SmallVector<SDValue,32> Words;
792
793  if (VecTy.getVectorElementType() != MVT::i32 &&
794      !(Subtarget.useHVXFloatingPoint() &&
795      VecTy.getVectorElementType() == MVT::f32)) {
796    assert((ElemSize == 1 || ElemSize == 2) && "Invalid element size");
797    unsigned OpsPerWord = (ElemSize == 1) ? 4 : 2;
798    MVT PartVT = MVT::getVectorVT(VecTy.getVectorElementType(), OpsPerWord);
799    for (unsigned i = 0; i != VecLen; i += OpsPerWord) {
800      SDValue W = buildVector32(Values.slice(i, OpsPerWord), dl, PartVT, DAG);
801      Words.push_back(DAG.getBitcast(MVT::i32, W));
802    }
803  } else {
804    for (SDValue V : Values)
805      Words.push_back(DAG.getBitcast(MVT::i32, V));
806  }
807  auto isSplat = [] (ArrayRef<SDValue> Values, SDValue &SplatV) {
808    unsigned NumValues = Values.size();
809    assert(NumValues > 0);
810    bool IsUndef = true;
811    for (unsigned i = 0; i != NumValues; ++i) {
812      if (Values[i].isUndef())
813        continue;
814      IsUndef = false;
815      if (!SplatV.getNode())
816        SplatV = Values[i];
817      else if (SplatV != Values[i])
818        return false;
819    }
820    if (IsUndef)
821      SplatV = Values[0];
822    return true;
823  };
824
825  unsigned NumWords = Words.size();
826  SDValue SplatV;
827  bool IsSplat = isSplat(Words, SplatV);
828  if (IsSplat && isUndef(SplatV))
829    return DAG.getUNDEF(VecTy);
830  if (IsSplat) {
831    assert(SplatV.getNode());
832    if (isNullConstant(SplatV))
833      return getZero(dl, VecTy, DAG);
834    MVT WordTy = MVT::getVectorVT(MVT::i32, HwLen/4);
835    SDValue S = DAG.getNode(ISD::SPLAT_VECTOR, dl, WordTy, SplatV);
836    return DAG.getBitcast(VecTy, S);
837  }
838
839  // Delay recognizing constant vectors until here, so that we can generate
840  // a vsplat.
841  SmallVector<ConstantInt*, 128> Consts(VecLen);
842  bool AllConst = getBuildVectorConstInts(Values, VecTy, DAG, Consts);
843  if (AllConst) {
844    ArrayRef<Constant*> Tmp((Constant**)Consts.begin(),
845                            (Constant**)Consts.end());
846    Constant *CV = ConstantVector::get(Tmp);
847    Align Alignment(HwLen);
848    SDValue CP =
849        LowerConstantPool(DAG.getConstantPool(CV, VecTy, Alignment), DAG);
850    return DAG.getLoad(VecTy, dl, DAG.getEntryNode(), CP,
851                       MachinePointerInfo::getConstantPool(MF), Alignment);
852  }
853
854  // A special case is a situation where the vector is built entirely from
855  // elements extracted from another vector. This could be done via a shuffle
856  // more efficiently, but typically, the size of the source vector will not
857  // match the size of the vector being built (which precludes the use of a
858  // shuffle directly).
859  // This only handles a single source vector, and the vector being built
860  // should be of a sub-vector type of the source vector type.
861  auto IsBuildFromExtracts = [this,&Values] (SDValue &SrcVec,
862                                             SmallVectorImpl<int> &SrcIdx) {
863    SDValue Vec;
864    for (SDValue V : Values) {
865      if (isUndef(V)) {
866        SrcIdx.push_back(-1);
867        continue;
868      }
869      if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
870        return false;
871      // All extracts should come from the same vector.
872      SDValue T = V.getOperand(0);
873      if (Vec.getNode() != nullptr && T.getNode() != Vec.getNode())
874        return false;
875      Vec = T;
876      ConstantSDNode *C = dyn_cast<ConstantSDNode>(V.getOperand(1));
877      if (C == nullptr)
878        return false;
879      int I = C->getSExtValue();
880      assert(I >= 0 && "Negative element index");
881      SrcIdx.push_back(I);
882    }
883    SrcVec = Vec;
884    return true;
885  };
886
887  SmallVector<int,128> ExtIdx;
888  SDValue ExtVec;
889  if (IsBuildFromExtracts(ExtVec, ExtIdx)) {
890    MVT ExtTy = ty(ExtVec);
891    unsigned ExtLen = ExtTy.getVectorNumElements();
892    if (ExtLen == VecLen || ExtLen == 2*VecLen) {
893      // Construct a new shuffle mask that will produce a vector with the same
894      // number of elements as the input vector, and such that the vector we
895      // want will be the initial subvector of it.
896      SmallVector<int,128> Mask;
897      BitVector Used(ExtLen);
898
899      for (int M : ExtIdx) {
900        Mask.push_back(M);
901        if (M >= 0)
902          Used.set(M);
903      }
904      // Fill the rest of the mask with the unused elements of ExtVec in hopes
905      // that it will result in a permutation of ExtVec's elements. It's still
906      // fine if it doesn't (e.g. if undefs are present, or elements are
907      // repeated), but permutations can always be done efficiently via vdelta
908      // and vrdelta.
909      for (unsigned I = 0; I != ExtLen; ++I) {
910        if (Mask.size() == ExtLen)
911          break;
912        if (!Used.test(I))
913          Mask.push_back(I);
914      }
915
916      SDValue S = DAG.getVectorShuffle(ExtTy, dl, ExtVec,
917                                       DAG.getUNDEF(ExtTy), Mask);
918      return ExtLen == VecLen ? S : LoHalf(S, DAG);
919    }
920  }
921
922  // Find most common element to initialize vector with. This is to avoid
923  // unnecessary vinsert/valign for cases where the same value is present
924  // many times. Creates a histogram of the vector's elements to find the
925  // most common element n.
926  assert(4*Words.size() == Subtarget.getVectorLength());
927  int VecHist[32];
928  int n = 0;
929  for (unsigned i = 0; i != NumWords; ++i) {
930    VecHist[i] = 0;
931    if (Words[i].isUndef())
932      continue;
933    for (unsigned j = i; j != NumWords; ++j)
934      if (Words[i] == Words[j])
935        VecHist[i]++;
936
937    if (VecHist[i] > VecHist[n])
938      n = i;
939  }
940
941  SDValue HalfV = getZero(dl, VecTy, DAG);
942  if (VecHist[n] > 1) {
943    SDValue SplatV = DAG.getNode(ISD::SPLAT_VECTOR, dl, VecTy, Words[n]);
944    HalfV = DAG.getNode(HexagonISD::VALIGN, dl, VecTy,
945                       {HalfV, SplatV, DAG.getConstant(HwLen/2, dl, MVT::i32)});
946  }
947  SDValue HalfV0 = HalfV;
948  SDValue HalfV1 = HalfV;
949
950  // Construct two halves in parallel, then or them together. Rn and Rm count
951  // number of rotations needed before the next element. One last rotation is
952  // performed post-loop to position the last element.
953  int Rn = 0, Rm = 0;
954  SDValue Sn, Sm;
955  SDValue N = HalfV0;
956  SDValue M = HalfV1;
957  for (unsigned i = 0; i != NumWords/2; ++i) {
958    // Rotate by element count since last insertion.
959    if (Words[i] != Words[n] || VecHist[n] <= 1) {
960      Sn = DAG.getConstant(Rn, dl, MVT::i32);
961      HalfV0 = DAG.getNode(HexagonISD::VROR, dl, VecTy, {N, Sn});
962      N = DAG.getNode(HexagonISD::VINSERTW0, dl, VecTy,
963                      {HalfV0, Words[i]});
964      Rn = 0;
965    }
966    if (Words[i+NumWords/2] != Words[n] || VecHist[n] <= 1) {
967      Sm = DAG.getConstant(Rm, dl, MVT::i32);
968      HalfV1 = DAG.getNode(HexagonISD::VROR, dl, VecTy, {M, Sm});
969      M = DAG.getNode(HexagonISD::VINSERTW0, dl, VecTy,
970                      {HalfV1, Words[i+NumWords/2]});
971      Rm = 0;
972    }
973    Rn += 4;
974    Rm += 4;
975  }
976  // Perform last rotation.
977  Sn = DAG.getConstant(Rn+HwLen/2, dl, MVT::i32);
978  Sm = DAG.getConstant(Rm, dl, MVT::i32);
979  HalfV0 = DAG.getNode(HexagonISD::VROR, dl, VecTy, {N, Sn});
980  HalfV1 = DAG.getNode(HexagonISD::VROR, dl, VecTy, {M, Sm});
981
982  SDValue T0 = DAG.getBitcast(tyVector(VecTy, MVT::i32), HalfV0);
983  SDValue T1 = DAG.getBitcast(tyVector(VecTy, MVT::i32), HalfV1);
984
985  SDValue DstV = DAG.getNode(ISD::OR, dl, ty(T0), {T0, T1});
986
987  SDValue OutV =
988      DAG.getBitcast(tyVector(ty(DstV), VecTy.getVectorElementType()), DstV);
989  return OutV;
990}
991
992SDValue
993HexagonTargetLowering::createHvxPrefixPred(SDValue PredV, const SDLoc &dl,
994      unsigned BitBytes, bool ZeroFill, SelectionDAG &DAG) const {
995  MVT PredTy = ty(PredV);
996  unsigned HwLen = Subtarget.getVectorLength();
997  MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
998
999  if (Subtarget.isHVXVectorType(PredTy, true)) {
1000    // Move the vector predicate SubV to a vector register, and scale it
1001    // down to match the representation (bytes per type element) that VecV
1002    // uses. The scaling down will pick every 2nd or 4th (every Scale-th
1003    // in general) element and put them at the front of the resulting
1004    // vector. This subvector will then be inserted into the Q2V of VecV.
1005    // To avoid having an operation that generates an illegal type (short
1006    // vector), generate a full size vector.
1007    //
1008    SDValue T = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, PredV);
1009    SmallVector<int,128> Mask(HwLen);
1010    // Scale = BitBytes(PredV) / Given BitBytes.
1011    unsigned Scale = HwLen / (PredTy.getVectorNumElements() * BitBytes);
1012    unsigned BlockLen = PredTy.getVectorNumElements() * BitBytes;
1013
1014    for (unsigned i = 0; i != HwLen; ++i) {
1015      unsigned Num = i % Scale;
1016      unsigned Off = i / Scale;
1017      Mask[BlockLen*Num + Off] = i;
1018    }
1019    SDValue S = DAG.getVectorShuffle(ByteTy, dl, T, DAG.getUNDEF(ByteTy), Mask);
1020    if (!ZeroFill)
1021      return S;
1022    // Fill the bytes beyond BlockLen with 0s.
1023    // V6_pred_scalar2 cannot fill the entire predicate, so it only works
1024    // when BlockLen < HwLen.
1025    assert(BlockLen < HwLen && "vsetq(v1) prerequisite");
1026    MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen);
1027    SDValue Q = getInstr(Hexagon::V6_pred_scalar2, dl, BoolTy,
1028                         {DAG.getConstant(BlockLen, dl, MVT::i32)}, DAG);
1029    SDValue M = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, Q);
1030    return DAG.getNode(ISD::AND, dl, ByteTy, S, M);
1031  }
1032
1033  // Make sure that this is a valid scalar predicate.
1034  assert(PredTy == MVT::v2i1 || PredTy == MVT::v4i1 || PredTy == MVT::v8i1);
1035
1036  unsigned Bytes = 8 / PredTy.getVectorNumElements();
1037  SmallVector<SDValue,4> Words[2];
1038  unsigned IdxW = 0;
1039
1040  SDValue W0 = isUndef(PredV)
1041                  ? DAG.getUNDEF(MVT::i64)
1042                  : DAG.getNode(HexagonISD::P2D, dl, MVT::i64, PredV);
1043  Words[IdxW].push_back(HiHalf(W0, DAG));
1044  Words[IdxW].push_back(LoHalf(W0, DAG));
1045
1046  while (Bytes < BitBytes) {
1047    IdxW ^= 1;
1048    Words[IdxW].clear();
1049
1050    if (Bytes < 4) {
1051      for (const SDValue &W : Words[IdxW ^ 1]) {
1052        SDValue T = expandPredicate(W, dl, DAG);
1053        Words[IdxW].push_back(HiHalf(T, DAG));
1054        Words[IdxW].push_back(LoHalf(T, DAG));
1055      }
1056    } else {
1057      for (const SDValue &W : Words[IdxW ^ 1]) {
1058        Words[IdxW].push_back(W);
1059        Words[IdxW].push_back(W);
1060      }
1061    }
1062    Bytes *= 2;
1063  }
1064
1065  assert(Bytes == BitBytes);
1066
1067  SDValue Vec = ZeroFill ? getZero(dl, ByteTy, DAG) : DAG.getUNDEF(ByteTy);
1068  SDValue S4 = DAG.getConstant(HwLen-4, dl, MVT::i32);
1069  for (const SDValue &W : Words[IdxW]) {
1070    Vec = DAG.getNode(HexagonISD::VROR, dl, ByteTy, Vec, S4);
1071    Vec = DAG.getNode(HexagonISD::VINSERTW0, dl, ByteTy, Vec, W);
1072  }
1073
1074  return Vec;
1075}
1076
1077SDValue
1078HexagonTargetLowering::buildHvxVectorPred(ArrayRef<SDValue> Values,
1079                                          const SDLoc &dl, MVT VecTy,
1080                                          SelectionDAG &DAG) const {
1081  // Construct a vector V of bytes, such that a comparison V >u 0 would
1082  // produce the required vector predicate.
1083  unsigned VecLen = Values.size();
1084  unsigned HwLen = Subtarget.getVectorLength();
1085  assert(VecLen <= HwLen || VecLen == 8*HwLen);
1086  SmallVector<SDValue,128> Bytes;
1087  bool AllT = true, AllF = true;
1088
1089  auto IsTrue = [] (SDValue V) {
1090    if (const auto *N = dyn_cast<ConstantSDNode>(V.getNode()))
1091      return !N->isZero();
1092    return false;
1093  };
1094  auto IsFalse = [] (SDValue V) {
1095    if (const auto *N = dyn_cast<ConstantSDNode>(V.getNode()))
1096      return N->isZero();
1097    return false;
1098  };
1099
1100  if (VecLen <= HwLen) {
1101    // In the hardware, each bit of a vector predicate corresponds to a byte
1102    // of a vector register. Calculate how many bytes does a bit of VecTy
1103    // correspond to.
1104    assert(HwLen % VecLen == 0);
1105    unsigned BitBytes = HwLen / VecLen;
1106    for (SDValue V : Values) {
1107      AllT &= IsTrue(V);
1108      AllF &= IsFalse(V);
1109
1110      SDValue Ext = !V.isUndef() ? DAG.getZExtOrTrunc(V, dl, MVT::i8)
1111                                 : DAG.getUNDEF(MVT::i8);
1112      for (unsigned B = 0; B != BitBytes; ++B)
1113        Bytes.push_back(Ext);
1114    }
1115  } else {
1116    // There are as many i1 values, as there are bits in a vector register.
1117    // Divide the values into groups of 8 and check that each group consists
1118    // of the same value (ignoring undefs).
1119    for (unsigned I = 0; I != VecLen; I += 8) {
1120      unsigned B = 0;
1121      // Find the first non-undef value in this group.
1122      for (; B != 8; ++B) {
1123        if (!Values[I+B].isUndef())
1124          break;
1125      }
1126      SDValue F = Values[I+B];
1127      AllT &= IsTrue(F);
1128      AllF &= IsFalse(F);
1129
1130      SDValue Ext = (B < 8) ? DAG.getZExtOrTrunc(F, dl, MVT::i8)
1131                            : DAG.getUNDEF(MVT::i8);
1132      Bytes.push_back(Ext);
1133      // Verify that the rest of values in the group are the same as the
1134      // first.
1135      for (; B != 8; ++B)
1136        assert(Values[I+B].isUndef() || Values[I+B] == F);
1137    }
1138  }
1139
1140  if (AllT)
1141    return DAG.getNode(HexagonISD::QTRUE, dl, VecTy);
1142  if (AllF)
1143    return DAG.getNode(HexagonISD::QFALSE, dl, VecTy);
1144
1145  MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
1146  SDValue ByteVec = buildHvxVectorReg(Bytes, dl, ByteTy, DAG);
1147  return DAG.getNode(HexagonISD::V2Q, dl, VecTy, ByteVec);
1148}
1149
1150SDValue
1151HexagonTargetLowering::extractHvxElementReg(SDValue VecV, SDValue IdxV,
1152      const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const {
1153  MVT ElemTy = ty(VecV).getVectorElementType();
1154
1155  unsigned ElemWidth = ElemTy.getSizeInBits();
1156  assert(ElemWidth >= 8 && ElemWidth <= 32);
1157  (void)ElemWidth;
1158
1159  SDValue ByteIdx = convertToByteIndex(IdxV, ElemTy, DAG);
1160  SDValue ExWord = DAG.getNode(HexagonISD::VEXTRACTW, dl, MVT::i32,
1161                               {VecV, ByteIdx});
1162  if (ElemTy == MVT::i32)
1163    return ExWord;
1164
1165  // Have an extracted word, need to extract the smaller element out of it.
1166  // 1. Extract the bits of (the original) IdxV that correspond to the index
1167  //    of the desired element in the 32-bit word.
1168  SDValue SubIdx = getIndexInWord32(IdxV, ElemTy, DAG);
1169  // 2. Extract the element from the word.
1170  SDValue ExVec = DAG.getBitcast(tyVector(ty(ExWord), ElemTy), ExWord);
1171  return extractVector(ExVec, SubIdx, dl, ElemTy, MVT::i32, DAG);
1172}
1173
1174SDValue
1175HexagonTargetLowering::extractHvxElementPred(SDValue VecV, SDValue IdxV,
1176      const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const {
1177  // Implement other return types if necessary.
1178  assert(ResTy == MVT::i1);
1179
1180  unsigned HwLen = Subtarget.getVectorLength();
1181  MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
1182  SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV);
1183
1184  unsigned Scale = HwLen / ty(VecV).getVectorNumElements();
1185  SDValue ScV = DAG.getConstant(Scale, dl, MVT::i32);
1186  IdxV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, ScV);
1187
1188  SDValue ExtB = extractHvxElementReg(ByteVec, IdxV, dl, MVT::i32, DAG);
1189  SDValue Zero = DAG.getTargetConstant(0, dl, MVT::i32);
1190  return getInstr(Hexagon::C2_cmpgtui, dl, MVT::i1, {ExtB, Zero}, DAG);
1191}
1192
1193SDValue
1194HexagonTargetLowering::insertHvxElementReg(SDValue VecV, SDValue IdxV,
1195      SDValue ValV, const SDLoc &dl, SelectionDAG &DAG) const {
1196  MVT ElemTy = ty(VecV).getVectorElementType();
1197
1198  unsigned ElemWidth = ElemTy.getSizeInBits();
1199  assert(ElemWidth >= 8 && ElemWidth <= 32);
1200  (void)ElemWidth;
1201
1202  auto InsertWord = [&DAG,&dl,this] (SDValue VecV, SDValue ValV,
1203                                     SDValue ByteIdxV) {
1204    MVT VecTy = ty(VecV);
1205    unsigned HwLen = Subtarget.getVectorLength();
1206    SDValue MaskV = DAG.getNode(ISD::AND, dl, MVT::i32,
1207                                {ByteIdxV, DAG.getConstant(-4, dl, MVT::i32)});
1208    SDValue RotV = DAG.getNode(HexagonISD::VROR, dl, VecTy, {VecV, MaskV});
1209    SDValue InsV = DAG.getNode(HexagonISD::VINSERTW0, dl, VecTy, {RotV, ValV});
1210    SDValue SubV = DAG.getNode(ISD::SUB, dl, MVT::i32,
1211                               {DAG.getConstant(HwLen, dl, MVT::i32), MaskV});
1212    SDValue TorV = DAG.getNode(HexagonISD::VROR, dl, VecTy, {InsV, SubV});
1213    return TorV;
1214  };
1215
1216  SDValue ByteIdx = convertToByteIndex(IdxV, ElemTy, DAG);
1217  if (ElemTy == MVT::i32)
1218    return InsertWord(VecV, ValV, ByteIdx);
1219
1220  // If this is not inserting a 32-bit word, convert it into such a thing.
1221  // 1. Extract the existing word from the target vector.
1222  SDValue WordIdx = DAG.getNode(ISD::SRL, dl, MVT::i32,
1223                                {ByteIdx, DAG.getConstant(2, dl, MVT::i32)});
1224  SDValue Ext = extractHvxElementReg(opCastElem(VecV, MVT::i32, DAG), WordIdx,
1225                                     dl, MVT::i32, DAG);
1226
1227  // 2. Treating the extracted word as a 32-bit vector, insert the given
1228  //    value into it.
1229  SDValue SubIdx = getIndexInWord32(IdxV, ElemTy, DAG);
1230  MVT SubVecTy = tyVector(ty(Ext), ElemTy);
1231  SDValue Ins = insertVector(DAG.getBitcast(SubVecTy, Ext),
1232                             ValV, SubIdx, dl, ElemTy, DAG);
1233
1234  // 3. Insert the 32-bit word back into the original vector.
1235  return InsertWord(VecV, Ins, ByteIdx);
1236}
1237
1238SDValue
1239HexagonTargetLowering::insertHvxElementPred(SDValue VecV, SDValue IdxV,
1240      SDValue ValV, const SDLoc &dl, SelectionDAG &DAG) const {
1241  unsigned HwLen = Subtarget.getVectorLength();
1242  MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
1243  SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV);
1244
1245  unsigned Scale = HwLen / ty(VecV).getVectorNumElements();
1246  SDValue ScV = DAG.getConstant(Scale, dl, MVT::i32);
1247  IdxV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, ScV);
1248  ValV = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i32, ValV);
1249
1250  SDValue InsV = insertHvxElementReg(ByteVec, IdxV, ValV, dl, DAG);
1251  return DAG.getNode(HexagonISD::V2Q, dl, ty(VecV), InsV);
1252}
1253
1254SDValue
1255HexagonTargetLowering::extractHvxSubvectorReg(SDValue OrigOp, SDValue VecV,
1256      SDValue IdxV, const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const {
1257  MVT VecTy = ty(VecV);
1258  unsigned HwLen = Subtarget.getVectorLength();
1259  unsigned Idx = IdxV.getNode()->getAsZExtVal();
1260  MVT ElemTy = VecTy.getVectorElementType();
1261  unsigned ElemWidth = ElemTy.getSizeInBits();
1262
1263  // If the source vector is a vector pair, get the single vector containing
1264  // the subvector of interest. The subvector will never overlap two single
1265  // vectors.
1266  if (isHvxPairTy(VecTy)) {
1267    if (Idx * ElemWidth >= 8*HwLen)
1268      Idx -= VecTy.getVectorNumElements() / 2;
1269
1270    VecV = OrigOp;
1271    if (typeSplit(VecTy).first == ResTy)
1272      return VecV;
1273  }
1274
1275  // The only meaningful subvectors of a single HVX vector are those that
1276  // fit in a scalar register.
1277  assert(ResTy.getSizeInBits() == 32 || ResTy.getSizeInBits() == 64);
1278
1279  MVT WordTy = tyVector(VecTy, MVT::i32);
1280  SDValue WordVec = DAG.getBitcast(WordTy, VecV);
1281  unsigned WordIdx = (Idx*ElemWidth) / 32;
1282
1283  SDValue W0Idx = DAG.getConstant(WordIdx, dl, MVT::i32);
1284  SDValue W0 = extractHvxElementReg(WordVec, W0Idx, dl, MVT::i32, DAG);
1285  if (ResTy.getSizeInBits() == 32)
1286    return DAG.getBitcast(ResTy, W0);
1287
1288  SDValue W1Idx = DAG.getConstant(WordIdx+1, dl, MVT::i32);
1289  SDValue W1 = extractHvxElementReg(WordVec, W1Idx, dl, MVT::i32, DAG);
1290  SDValue WW = getCombine(W1, W0, dl, MVT::i64, DAG);
1291  return DAG.getBitcast(ResTy, WW);
1292}
1293
1294SDValue
1295HexagonTargetLowering::extractHvxSubvectorPred(SDValue VecV, SDValue IdxV,
1296      const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const {
1297  MVT VecTy = ty(VecV);
1298  unsigned HwLen = Subtarget.getVectorLength();
1299  MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
1300  SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV);
1301  // IdxV is required to be a constant.
1302  unsigned Idx = IdxV.getNode()->getAsZExtVal();
1303
1304  unsigned ResLen = ResTy.getVectorNumElements();
1305  unsigned BitBytes = HwLen / VecTy.getVectorNumElements();
1306  unsigned Offset = Idx * BitBytes;
1307  SDValue Undef = DAG.getUNDEF(ByteTy);
1308  SmallVector<int,128> Mask;
1309
1310  if (Subtarget.isHVXVectorType(ResTy, true)) {
1311    // Converting between two vector predicates. Since the result is shorter
1312    // than the source, it will correspond to a vector predicate with the
1313    // relevant bits replicated. The replication count is the ratio of the
1314    // source and target vector lengths.
1315    unsigned Rep = VecTy.getVectorNumElements() / ResLen;
1316    assert(isPowerOf2_32(Rep) && HwLen % Rep == 0);
1317    for (unsigned i = 0; i != HwLen/Rep; ++i) {
1318      for (unsigned j = 0; j != Rep; ++j)
1319        Mask.push_back(i + Offset);
1320    }
1321    SDValue ShuffV = DAG.getVectorShuffle(ByteTy, dl, ByteVec, Undef, Mask);
1322    return DAG.getNode(HexagonISD::V2Q, dl, ResTy, ShuffV);
1323  }
1324
1325  // Converting between a vector predicate and a scalar predicate. In the
1326  // vector predicate, a group of BitBytes bits will correspond to a single
1327  // i1 element of the source vector type. Those bits will all have the same
1328  // value. The same will be true for ByteVec, where each byte corresponds
1329  // to a bit in the vector predicate.
1330  // The algorithm is to traverse the ByteVec, going over the i1 values from
1331  // the source vector, and generate the corresponding representation in an
1332  // 8-byte vector. To avoid repeated extracts from ByteVec, shuffle the
1333  // elements so that the interesting 8 bytes will be in the low end of the
1334  // vector.
1335  unsigned Rep = 8 / ResLen;
1336  // Make sure the output fill the entire vector register, so repeat the
1337  // 8-byte groups as many times as necessary.
1338  for (unsigned r = 0; r != HwLen/ResLen; ++r) {
1339    // This will generate the indexes of the 8 interesting bytes.
1340    for (unsigned i = 0; i != ResLen; ++i) {
1341      for (unsigned j = 0; j != Rep; ++j)
1342        Mask.push_back(Offset + i*BitBytes);
1343    }
1344  }
1345
1346  SDValue Zero = getZero(dl, MVT::i32, DAG);
1347  SDValue ShuffV = DAG.getVectorShuffle(ByteTy, dl, ByteVec, Undef, Mask);
1348  // Combine the two low words from ShuffV into a v8i8, and byte-compare
1349  // them against 0.
1350  SDValue W0 = DAG.getNode(HexagonISD::VEXTRACTW, dl, MVT::i32, {ShuffV, Zero});
1351  SDValue W1 = DAG.getNode(HexagonISD::VEXTRACTW, dl, MVT::i32,
1352                           {ShuffV, DAG.getConstant(4, dl, MVT::i32)});
1353  SDValue Vec64 = getCombine(W1, W0, dl, MVT::v8i8, DAG);
1354  return getInstr(Hexagon::A4_vcmpbgtui, dl, ResTy,
1355                  {Vec64, DAG.getTargetConstant(0, dl, MVT::i32)}, DAG);
1356}
1357
1358SDValue
1359HexagonTargetLowering::insertHvxSubvectorReg(SDValue VecV, SDValue SubV,
1360      SDValue IdxV, const SDLoc &dl, SelectionDAG &DAG) const {
1361  MVT VecTy = ty(VecV);
1362  MVT SubTy = ty(SubV);
1363  unsigned HwLen = Subtarget.getVectorLength();
1364  MVT ElemTy = VecTy.getVectorElementType();
1365  unsigned ElemWidth = ElemTy.getSizeInBits();
1366
1367  bool IsPair = isHvxPairTy(VecTy);
1368  MVT SingleTy = MVT::getVectorVT(ElemTy, (8*HwLen)/ElemWidth);
1369  // The two single vectors that VecV consists of, if it's a pair.
1370  SDValue V0, V1;
1371  SDValue SingleV = VecV;
1372  SDValue PickHi;
1373
1374  if (IsPair) {
1375    V0 = LoHalf(VecV, DAG);
1376    V1 = HiHalf(VecV, DAG);
1377
1378    SDValue HalfV = DAG.getConstant(SingleTy.getVectorNumElements(),
1379                                    dl, MVT::i32);
1380    PickHi = DAG.getSetCC(dl, MVT::i1, IdxV, HalfV, ISD::SETUGT);
1381    if (isHvxSingleTy(SubTy)) {
1382      if (const auto *CN = dyn_cast<const ConstantSDNode>(IdxV.getNode())) {
1383        unsigned Idx = CN->getZExtValue();
1384        assert(Idx == 0 || Idx == VecTy.getVectorNumElements()/2);
1385        unsigned SubIdx = (Idx == 0) ? Hexagon::vsub_lo : Hexagon::vsub_hi;
1386        return DAG.getTargetInsertSubreg(SubIdx, dl, VecTy, VecV, SubV);
1387      }
1388      // If IdxV is not a constant, generate the two variants: with the
1389      // SubV as the high and as the low subregister, and select the right
1390      // pair based on the IdxV.
1391      SDValue InLo = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {SubV, V1});
1392      SDValue InHi = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {V0, SubV});
1393      return DAG.getNode(ISD::SELECT, dl, VecTy, PickHi, InHi, InLo);
1394    }
1395    // The subvector being inserted must be entirely contained in one of
1396    // the vectors V0 or V1. Set SingleV to the correct one, and update
1397    // IdxV to be the index relative to the beginning of that vector.
1398    SDValue S = DAG.getNode(ISD::SUB, dl, MVT::i32, IdxV, HalfV);
1399    IdxV = DAG.getNode(ISD::SELECT, dl, MVT::i32, PickHi, S, IdxV);
1400    SingleV = DAG.getNode(ISD::SELECT, dl, SingleTy, PickHi, V1, V0);
1401  }
1402
1403  // The only meaningful subvectors of a single HVX vector are those that
1404  // fit in a scalar register.
1405  assert(SubTy.getSizeInBits() == 32 || SubTy.getSizeInBits() == 64);
1406  // Convert IdxV to be index in bytes.
1407  auto *IdxN = dyn_cast<ConstantSDNode>(IdxV.getNode());
1408  if (!IdxN || !IdxN->isZero()) {
1409    IdxV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
1410                       DAG.getConstant(ElemWidth/8, dl, MVT::i32));
1411    SingleV = DAG.getNode(HexagonISD::VROR, dl, SingleTy, SingleV, IdxV);
1412  }
1413  // When inserting a single word, the rotation back to the original position
1414  // would be by HwLen-Idx, but if two words are inserted, it will need to be
1415  // by (HwLen-4)-Idx.
1416  unsigned RolBase = HwLen;
1417  if (SubTy.getSizeInBits() == 32) {
1418    SDValue V = DAG.getBitcast(MVT::i32, SubV);
1419    SingleV = DAG.getNode(HexagonISD::VINSERTW0, dl, SingleTy, SingleV, V);
1420  } else {
1421    SDValue V = DAG.getBitcast(MVT::i64, SubV);
1422    SDValue R0 = LoHalf(V, DAG);
1423    SDValue R1 = HiHalf(V, DAG);
1424    SingleV = DAG.getNode(HexagonISD::VINSERTW0, dl, SingleTy, SingleV, R0);
1425    SingleV = DAG.getNode(HexagonISD::VROR, dl, SingleTy, SingleV,
1426                          DAG.getConstant(4, dl, MVT::i32));
1427    SingleV = DAG.getNode(HexagonISD::VINSERTW0, dl, SingleTy, SingleV, R1);
1428    RolBase = HwLen-4;
1429  }
1430  // If the vector wasn't ror'ed, don't ror it back.
1431  if (RolBase != 4 || !IdxN || !IdxN->isZero()) {
1432    SDValue RolV = DAG.getNode(ISD::SUB, dl, MVT::i32,
1433                               DAG.getConstant(RolBase, dl, MVT::i32), IdxV);
1434    SingleV = DAG.getNode(HexagonISD::VROR, dl, SingleTy, SingleV, RolV);
1435  }
1436
1437  if (IsPair) {
1438    SDValue InLo = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {SingleV, V1});
1439    SDValue InHi = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {V0, SingleV});
1440    return DAG.getNode(ISD::SELECT, dl, VecTy, PickHi, InHi, InLo);
1441  }
1442  return SingleV;
1443}
1444
1445SDValue
1446HexagonTargetLowering::insertHvxSubvectorPred(SDValue VecV, SDValue SubV,
1447      SDValue IdxV, const SDLoc &dl, SelectionDAG &DAG) const {
1448  MVT VecTy = ty(VecV);
1449  MVT SubTy = ty(SubV);
1450  assert(Subtarget.isHVXVectorType(VecTy, true));
1451  // VecV is an HVX vector predicate. SubV may be either an HVX vector
1452  // predicate as well, or it can be a scalar predicate.
1453
1454  unsigned VecLen = VecTy.getVectorNumElements();
1455  unsigned HwLen = Subtarget.getVectorLength();
1456  assert(HwLen % VecLen == 0 && "Unexpected vector type");
1457
1458  unsigned Scale = VecLen / SubTy.getVectorNumElements();
1459  unsigned BitBytes = HwLen / VecLen;
1460  unsigned BlockLen = HwLen / Scale;
1461
1462  MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
1463  SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV);
1464  SDValue ByteSub = createHvxPrefixPred(SubV, dl, BitBytes, false, DAG);
1465  SDValue ByteIdx;
1466
1467  auto *IdxN = dyn_cast<ConstantSDNode>(IdxV.getNode());
1468  if (!IdxN || !IdxN->isZero()) {
1469    ByteIdx = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
1470                          DAG.getConstant(BitBytes, dl, MVT::i32));
1471    ByteVec = DAG.getNode(HexagonISD::VROR, dl, ByteTy, ByteVec, ByteIdx);
1472  }
1473
1474  // ByteVec is the target vector VecV rotated in such a way that the
1475  // subvector should be inserted at index 0. Generate a predicate mask
1476  // and use vmux to do the insertion.
1477  assert(BlockLen < HwLen && "vsetq(v1) prerequisite");
1478  MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen);
1479  SDValue Q = getInstr(Hexagon::V6_pred_scalar2, dl, BoolTy,
1480                       {DAG.getConstant(BlockLen, dl, MVT::i32)}, DAG);
1481  ByteVec = getInstr(Hexagon::V6_vmux, dl, ByteTy, {Q, ByteSub, ByteVec}, DAG);
1482  // Rotate ByteVec back, and convert to a vector predicate.
1483  if (!IdxN || !IdxN->isZero()) {
1484    SDValue HwLenV = DAG.getConstant(HwLen, dl, MVT::i32);
1485    SDValue ByteXdi = DAG.getNode(ISD::SUB, dl, MVT::i32, HwLenV, ByteIdx);
1486    ByteVec = DAG.getNode(HexagonISD::VROR, dl, ByteTy, ByteVec, ByteXdi);
1487  }
1488  return DAG.getNode(HexagonISD::V2Q, dl, VecTy, ByteVec);
1489}
1490
1491SDValue
1492HexagonTargetLowering::extendHvxVectorPred(SDValue VecV, const SDLoc &dl,
1493      MVT ResTy, bool ZeroExt, SelectionDAG &DAG) const {
1494  // Sign- and any-extending of a vector predicate to a vector register is
1495  // equivalent to Q2V. For zero-extensions, generate a vmux between 0 and
1496  // a vector of 1s (where the 1s are of type matching the vector type).
1497  assert(Subtarget.isHVXVectorType(ResTy));
1498  if (!ZeroExt)
1499    return DAG.getNode(HexagonISD::Q2V, dl, ResTy, VecV);
1500
1501  assert(ty(VecV).getVectorNumElements() == ResTy.getVectorNumElements());
1502  SDValue True = DAG.getNode(ISD::SPLAT_VECTOR, dl, ResTy,
1503                             DAG.getConstant(1, dl, MVT::i32));
1504  SDValue False = getZero(dl, ResTy, DAG);
1505  return DAG.getSelect(dl, ResTy, VecV, True, False);
1506}
1507
1508SDValue
1509HexagonTargetLowering::compressHvxPred(SDValue VecQ, const SDLoc &dl,
1510      MVT ResTy, SelectionDAG &DAG) const {
1511  // Given a predicate register VecQ, transfer bits VecQ[0..HwLen-1]
1512  // (i.e. the entire predicate register) to bits [0..HwLen-1] of a
1513  // vector register. The remaining bits of the vector register are
1514  // unspecified.
1515
1516  MachineFunction &MF = DAG.getMachineFunction();
1517  unsigned HwLen = Subtarget.getVectorLength();
1518  MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
1519  MVT PredTy = ty(VecQ);
1520  unsigned PredLen = PredTy.getVectorNumElements();
1521  assert(HwLen % PredLen == 0);
1522  MVT VecTy = MVT::getVectorVT(MVT::getIntegerVT(8*HwLen/PredLen), PredLen);
1523
1524  Type *Int8Ty = Type::getInt8Ty(*DAG.getContext());
1525  SmallVector<Constant*, 128> Tmp;
1526  // Create an array of bytes (hex): 01,02,04,08,10,20,40,80, 01,02,04,08,...
1527  // These are bytes with the LSB rotated left with respect to their index.
1528  for (unsigned i = 0; i != HwLen/8; ++i) {
1529    for (unsigned j = 0; j != 8; ++j)
1530      Tmp.push_back(ConstantInt::get(Int8Ty, 1ull << j));
1531  }
1532  Constant *CV = ConstantVector::get(Tmp);
1533  Align Alignment(HwLen);
1534  SDValue CP =
1535      LowerConstantPool(DAG.getConstantPool(CV, ByteTy, Alignment), DAG);
1536  SDValue Bytes =
1537      DAG.getLoad(ByteTy, dl, DAG.getEntryNode(), CP,
1538                  MachinePointerInfo::getConstantPool(MF), Alignment);
1539
1540  // Select the bytes that correspond to true bits in the vector predicate.
1541  SDValue Sel = DAG.getSelect(dl, VecTy, VecQ, DAG.getBitcast(VecTy, Bytes),
1542      getZero(dl, VecTy, DAG));
1543  // Calculate the OR of all bytes in each group of 8. That will compress
1544  // all the individual bits into a single byte.
1545  // First, OR groups of 4, via vrmpy with 0x01010101.
1546  SDValue All1 =
1547      DAG.getSplatBuildVector(MVT::v4i8, dl, DAG.getConstant(1, dl, MVT::i32));
1548  SDValue Vrmpy = getInstr(Hexagon::V6_vrmpyub, dl, ByteTy, {Sel, All1}, DAG);
1549  // Then rotate the accumulated vector by 4 bytes, and do the final OR.
1550  SDValue Rot = getInstr(Hexagon::V6_valignbi, dl, ByteTy,
1551      {Vrmpy, Vrmpy, DAG.getTargetConstant(4, dl, MVT::i32)}, DAG);
1552  SDValue Vor = DAG.getNode(ISD::OR, dl, ByteTy, {Vrmpy, Rot});
1553
1554  // Pick every 8th byte and coalesce them at the beginning of the output.
1555  // For symmetry, coalesce every 1+8th byte after that, then every 2+8th
1556  // byte and so on.
1557  SmallVector<int,128> Mask;
1558  for (unsigned i = 0; i != HwLen; ++i)
1559    Mask.push_back((8*i) % HwLen + i/(HwLen/8));
1560  SDValue Collect =
1561      DAG.getVectorShuffle(ByteTy, dl, Vor, DAG.getUNDEF(ByteTy), Mask);
1562  return DAG.getBitcast(ResTy, Collect);
1563}
1564
1565SDValue
1566HexagonTargetLowering::resizeToWidth(SDValue VecV, MVT ResTy, bool Signed,
1567                                     const SDLoc &dl, SelectionDAG &DAG) const {
1568  // Take a vector and resize the element type to match the given type.
1569  MVT InpTy = ty(VecV);
1570  if (InpTy == ResTy)
1571    return VecV;
1572
1573  unsigned InpWidth = InpTy.getSizeInBits();
1574  unsigned ResWidth = ResTy.getSizeInBits();
1575
1576  if (InpTy.isFloatingPoint()) {
1577    return InpWidth < ResWidth ? DAG.getNode(ISD::FP_EXTEND, dl, ResTy, VecV)
1578                               : DAG.getNode(ISD::FP_ROUND, dl, ResTy, VecV,
1579                                             getZero(dl, MVT::i32, DAG));
1580  }
1581
1582  assert(InpTy.isInteger());
1583
1584  if (InpWidth < ResWidth) {
1585    unsigned ExtOpc = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1586    return DAG.getNode(ExtOpc, dl, ResTy, VecV);
1587  } else {
1588    unsigned NarOpc = Signed ? HexagonISD::SSAT : HexagonISD::USAT;
1589    return DAG.getNode(NarOpc, dl, ResTy, VecV, DAG.getValueType(ResTy));
1590  }
1591}
1592
1593SDValue
1594HexagonTargetLowering::extractSubvector(SDValue Vec, MVT SubTy, unsigned SubIdx,
1595      SelectionDAG &DAG) const {
1596  assert(ty(Vec).getSizeInBits() % SubTy.getSizeInBits() == 0);
1597
1598  const SDLoc &dl(Vec);
1599  unsigned ElemIdx = SubIdx * SubTy.getVectorNumElements();
1600  return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubTy,
1601                     {Vec, DAG.getConstant(ElemIdx, dl, MVT::i32)});
1602}
1603
1604SDValue
1605HexagonTargetLowering::LowerHvxBuildVector(SDValue Op, SelectionDAG &DAG)
1606      const {
1607  const SDLoc &dl(Op);
1608  MVT VecTy = ty(Op);
1609
1610  unsigned Size = Op.getNumOperands();
1611  SmallVector<SDValue,128> Ops;
1612  for (unsigned i = 0; i != Size; ++i)
1613    Ops.push_back(Op.getOperand(i));
1614
1615  // First, split the BUILD_VECTOR for vector pairs. We could generate
1616  // some pairs directly (via splat), but splats should be generated
1617  // by the combiner prior to getting here.
1618  if (VecTy.getSizeInBits() == 16*Subtarget.getVectorLength()) {
1619    ArrayRef<SDValue> A(Ops);
1620    MVT SingleTy = typeSplit(VecTy).first;
1621    SDValue V0 = buildHvxVectorReg(A.take_front(Size/2), dl, SingleTy, DAG);
1622    SDValue V1 = buildHvxVectorReg(A.drop_front(Size/2), dl, SingleTy, DAG);
1623    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, V0, V1);
1624  }
1625
1626  if (VecTy.getVectorElementType() == MVT::i1)
1627    return buildHvxVectorPred(Ops, dl, VecTy, DAG);
1628
1629  // In case of MVT::f16 BUILD_VECTOR, since MVT::f16 is
1630  // not a legal type, just bitcast the node to use i16
1631  // types and bitcast the result back to f16
1632  if (VecTy.getVectorElementType() == MVT::f16) {
1633    SmallVector<SDValue,64> NewOps;
1634    for (unsigned i = 0; i != Size; i++)
1635      NewOps.push_back(DAG.getBitcast(MVT::i16, Ops[i]));
1636
1637    SDValue T0 = DAG.getNode(ISD::BUILD_VECTOR, dl,
1638        tyVector(VecTy, MVT::i16), NewOps);
1639    return DAG.getBitcast(tyVector(VecTy, MVT::f16), T0);
1640  }
1641
1642  return buildHvxVectorReg(Ops, dl, VecTy, DAG);
1643}
1644
1645SDValue
1646HexagonTargetLowering::LowerHvxSplatVector(SDValue Op, SelectionDAG &DAG)
1647      const {
1648  const SDLoc &dl(Op);
1649  MVT VecTy = ty(Op);
1650  MVT ArgTy = ty(Op.getOperand(0));
1651
1652  if (ArgTy == MVT::f16) {
1653    MVT SplatTy =  MVT::getVectorVT(MVT::i16, VecTy.getVectorNumElements());
1654    SDValue ToInt16 = DAG.getBitcast(MVT::i16, Op.getOperand(0));
1655    SDValue ToInt32 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, ToInt16);
1656    SDValue Splat = DAG.getNode(ISD::SPLAT_VECTOR, dl, SplatTy, ToInt32);
1657    return DAG.getBitcast(VecTy, Splat);
1658  }
1659
1660  return SDValue();
1661}
1662
1663SDValue
1664HexagonTargetLowering::LowerHvxConcatVectors(SDValue Op, SelectionDAG &DAG)
1665      const {
1666  // Vector concatenation of two integer (non-bool) vectors does not need
1667  // special lowering. Custom-lower concats of bool vectors and expand
1668  // concats of more than 2 vectors.
1669  MVT VecTy = ty(Op);
1670  const SDLoc &dl(Op);
1671  unsigned NumOp = Op.getNumOperands();
1672  if (VecTy.getVectorElementType() != MVT::i1) {
1673    if (NumOp == 2)
1674      return Op;
1675    // Expand the other cases into a build-vector.
1676    SmallVector<SDValue,8> Elems;
1677    for (SDValue V : Op.getNode()->ops())
1678      DAG.ExtractVectorElements(V, Elems);
1679    // A vector of i16 will be broken up into a build_vector of i16's.
1680    // This is a problem, since at the time of operation legalization,
1681    // all operations are expected to be type-legalized, and i16 is not
1682    // a legal type. If any of the extracted elements is not of a valid
1683    // type, sign-extend it to a valid one.
1684    for (unsigned i = 0, e = Elems.size(); i != e; ++i) {
1685      SDValue V = Elems[i];
1686      MVT Ty = ty(V);
1687      if (!isTypeLegal(Ty)) {
1688        MVT NTy = typeLegalize(Ty, DAG);
1689        if (V.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
1690          Elems[i] = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NTy,
1691                                 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NTy,
1692                                             V.getOperand(0), V.getOperand(1)),
1693                                 DAG.getValueType(Ty));
1694          continue;
1695        }
1696        // A few less complicated cases.
1697        switch (V.getOpcode()) {
1698          case ISD::Constant:
1699            Elems[i] = DAG.getSExtOrTrunc(V, dl, NTy);
1700            break;
1701          case ISD::UNDEF:
1702            Elems[i] = DAG.getUNDEF(NTy);
1703            break;
1704          case ISD::TRUNCATE:
1705            Elems[i] = V.getOperand(0);
1706            break;
1707          default:
1708            llvm_unreachable("Unexpected vector element");
1709        }
1710      }
1711    }
1712    return DAG.getBuildVector(VecTy, dl, Elems);
1713  }
1714
1715  assert(VecTy.getVectorElementType() == MVT::i1);
1716  unsigned HwLen = Subtarget.getVectorLength();
1717  assert(isPowerOf2_32(NumOp) && HwLen % NumOp == 0);
1718
1719  SDValue Op0 = Op.getOperand(0);
1720
1721  // If the operands are HVX types (i.e. not scalar predicates), then
1722  // defer the concatenation, and create QCAT instead.
1723  if (Subtarget.isHVXVectorType(ty(Op0), true)) {
1724    if (NumOp == 2)
1725      return DAG.getNode(HexagonISD::QCAT, dl, VecTy, Op0, Op.getOperand(1));
1726
1727    ArrayRef<SDUse> U(Op.getNode()->ops());
1728    SmallVector<SDValue,4> SV(U.begin(), U.end());
1729    ArrayRef<SDValue> Ops(SV);
1730
1731    MVT HalfTy = typeSplit(VecTy).first;
1732    SDValue V0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfTy,
1733                             Ops.take_front(NumOp/2));
1734    SDValue V1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfTy,
1735                             Ops.take_back(NumOp/2));
1736    return DAG.getNode(HexagonISD::QCAT, dl, VecTy, V0, V1);
1737  }
1738
1739  // Count how many bytes (in a vector register) each bit in VecTy
1740  // corresponds to.
1741  unsigned BitBytes = HwLen / VecTy.getVectorNumElements();
1742
1743  SmallVector<SDValue,8> Prefixes;
1744  for (SDValue V : Op.getNode()->op_values()) {
1745    SDValue P = createHvxPrefixPred(V, dl, BitBytes, true, DAG);
1746    Prefixes.push_back(P);
1747  }
1748
1749  unsigned InpLen = ty(Op.getOperand(0)).getVectorNumElements();
1750  MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
1751  SDValue S = DAG.getConstant(InpLen*BitBytes, dl, MVT::i32);
1752  SDValue Res = getZero(dl, ByteTy, DAG);
1753  for (unsigned i = 0, e = Prefixes.size(); i != e; ++i) {
1754    Res = DAG.getNode(HexagonISD::VROR, dl, ByteTy, Res, S);
1755    Res = DAG.getNode(ISD::OR, dl, ByteTy, Res, Prefixes[e-i-1]);
1756  }
1757  return DAG.getNode(HexagonISD::V2Q, dl, VecTy, Res);
1758}
1759
1760SDValue
1761HexagonTargetLowering::LowerHvxExtractElement(SDValue Op, SelectionDAG &DAG)
1762      const {
1763  // Change the type of the extracted element to i32.
1764  SDValue VecV = Op.getOperand(0);
1765  MVT ElemTy = ty(VecV).getVectorElementType();
1766  const SDLoc &dl(Op);
1767  SDValue IdxV = Op.getOperand(1);
1768  if (ElemTy == MVT::i1)
1769    return extractHvxElementPred(VecV, IdxV, dl, ty(Op), DAG);
1770
1771  return extractHvxElementReg(VecV, IdxV, dl, ty(Op), DAG);
1772}
1773
1774SDValue
1775HexagonTargetLowering::LowerHvxInsertElement(SDValue Op, SelectionDAG &DAG)
1776      const {
1777  const SDLoc &dl(Op);
1778  MVT VecTy = ty(Op);
1779  SDValue VecV = Op.getOperand(0);
1780  SDValue ValV = Op.getOperand(1);
1781  SDValue IdxV = Op.getOperand(2);
1782  MVT ElemTy = ty(VecV).getVectorElementType();
1783  if (ElemTy == MVT::i1)
1784    return insertHvxElementPred(VecV, IdxV, ValV, dl, DAG);
1785
1786  if (ElemTy == MVT::f16) {
1787    SDValue T0 = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
1788        tyVector(VecTy, MVT::i16),
1789        DAG.getBitcast(tyVector(VecTy, MVT::i16), VecV),
1790        DAG.getBitcast(MVT::i16, ValV), IdxV);
1791    return DAG.getBitcast(tyVector(VecTy, MVT::f16), T0);
1792  }
1793
1794  return insertHvxElementReg(VecV, IdxV, ValV, dl, DAG);
1795}
1796
1797SDValue
1798HexagonTargetLowering::LowerHvxExtractSubvector(SDValue Op, SelectionDAG &DAG)
1799      const {
1800  SDValue SrcV = Op.getOperand(0);
1801  MVT SrcTy = ty(SrcV);
1802  MVT DstTy = ty(Op);
1803  SDValue IdxV = Op.getOperand(1);
1804  unsigned Idx = IdxV.getNode()->getAsZExtVal();
1805  assert(Idx % DstTy.getVectorNumElements() == 0);
1806  (void)Idx;
1807  const SDLoc &dl(Op);
1808
1809  MVT ElemTy = SrcTy.getVectorElementType();
1810  if (ElemTy == MVT::i1)
1811    return extractHvxSubvectorPred(SrcV, IdxV, dl, DstTy, DAG);
1812
1813  return extractHvxSubvectorReg(Op, SrcV, IdxV, dl, DstTy, DAG);
1814}
1815
1816SDValue
1817HexagonTargetLowering::LowerHvxInsertSubvector(SDValue Op, SelectionDAG &DAG)
1818      const {
1819  // Idx does not need to be a constant.
1820  SDValue VecV = Op.getOperand(0);
1821  SDValue ValV = Op.getOperand(1);
1822  SDValue IdxV = Op.getOperand(2);
1823
1824  const SDLoc &dl(Op);
1825  MVT VecTy = ty(VecV);
1826  MVT ElemTy = VecTy.getVectorElementType();
1827  if (ElemTy == MVT::i1)
1828    return insertHvxSubvectorPred(VecV, ValV, IdxV, dl, DAG);
1829
1830  return insertHvxSubvectorReg(VecV, ValV, IdxV, dl, DAG);
1831}
1832
1833SDValue
1834HexagonTargetLowering::LowerHvxAnyExt(SDValue Op, SelectionDAG &DAG) const {
1835  // Lower any-extends of boolean vectors to sign-extends, since they
1836  // translate directly to Q2V. Zero-extending could also be done equally
1837  // fast, but Q2V is used/recognized in more places.
1838  // For all other vectors, use zero-extend.
1839  MVT ResTy = ty(Op);
1840  SDValue InpV = Op.getOperand(0);
1841  MVT ElemTy = ty(InpV).getVectorElementType();
1842  if (ElemTy == MVT::i1 && Subtarget.isHVXVectorType(ResTy))
1843    return LowerHvxSignExt(Op, DAG);
1844  return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(Op), ResTy, InpV);
1845}
1846
1847SDValue
1848HexagonTargetLowering::LowerHvxSignExt(SDValue Op, SelectionDAG &DAG) const {
1849  MVT ResTy = ty(Op);
1850  SDValue InpV = Op.getOperand(0);
1851  MVT ElemTy = ty(InpV).getVectorElementType();
1852  if (ElemTy == MVT::i1 && Subtarget.isHVXVectorType(ResTy))
1853    return extendHvxVectorPred(InpV, SDLoc(Op), ty(Op), false, DAG);
1854  return Op;
1855}
1856
1857SDValue
1858HexagonTargetLowering::LowerHvxZeroExt(SDValue Op, SelectionDAG &DAG) const {
1859  MVT ResTy = ty(Op);
1860  SDValue InpV = Op.getOperand(0);
1861  MVT ElemTy = ty(InpV).getVectorElementType();
1862  if (ElemTy == MVT::i1 && Subtarget.isHVXVectorType(ResTy))
1863    return extendHvxVectorPred(InpV, SDLoc(Op), ty(Op), true, DAG);
1864  return Op;
1865}
1866
1867SDValue
1868HexagonTargetLowering::LowerHvxCttz(SDValue Op, SelectionDAG &DAG) const {
1869  // Lower vector CTTZ into a computation using CTLZ (Hacker's Delight):
1870  // cttz(x) = bitwidth(x) - ctlz(~x & (x-1))
1871  const SDLoc &dl(Op);
1872  MVT ResTy = ty(Op);
1873  SDValue InpV = Op.getOperand(0);
1874  assert(ResTy == ty(InpV));
1875
1876  // Calculate the vectors of 1 and bitwidth(x).
1877  MVT ElemTy = ty(InpV).getVectorElementType();
1878  unsigned ElemWidth = ElemTy.getSizeInBits();
1879
1880  SDValue Vec1 = DAG.getNode(ISD::SPLAT_VECTOR, dl, ResTy,
1881                             DAG.getConstant(1, dl, MVT::i32));
1882  SDValue VecW = DAG.getNode(ISD::SPLAT_VECTOR, dl, ResTy,
1883                             DAG.getConstant(ElemWidth, dl, MVT::i32));
1884  SDValue VecN1 = DAG.getNode(ISD::SPLAT_VECTOR, dl, ResTy,
1885                              DAG.getConstant(-1, dl, MVT::i32));
1886
1887  // Do not use DAG.getNOT, because that would create BUILD_VECTOR with
1888  // a BITCAST. Here we can skip the BITCAST (so we don't have to handle
1889  // it separately in custom combine or selection).
1890  SDValue A = DAG.getNode(ISD::AND, dl, ResTy,
1891                          {DAG.getNode(ISD::XOR, dl, ResTy, {InpV, VecN1}),
1892                           DAG.getNode(ISD::SUB, dl, ResTy, {InpV, Vec1})});
1893  return DAG.getNode(ISD::SUB, dl, ResTy,
1894                     {VecW, DAG.getNode(ISD::CTLZ, dl, ResTy, A)});
1895}
1896
1897SDValue
1898HexagonTargetLowering::LowerHvxMulh(SDValue Op, SelectionDAG &DAG) const {
1899  const SDLoc &dl(Op);
1900  MVT ResTy = ty(Op);
1901  assert(ResTy.getVectorElementType() == MVT::i32);
1902
1903  SDValue Vs = Op.getOperand(0);
1904  SDValue Vt = Op.getOperand(1);
1905
1906  SDVTList ResTys = DAG.getVTList(ResTy, ResTy);
1907  unsigned Opc = Op.getOpcode();
1908
1909  // On HVX v62+ producing the full product is cheap, so legalize MULH to LOHI.
1910  if (Opc == ISD::MULHU)
1911    return DAG.getNode(HexagonISD::UMUL_LOHI, dl, ResTys, {Vs, Vt}).getValue(1);
1912  if (Opc == ISD::MULHS)
1913    return DAG.getNode(HexagonISD::SMUL_LOHI, dl, ResTys, {Vs, Vt}).getValue(1);
1914
1915#ifndef NDEBUG
1916  Op.dump(&DAG);
1917#endif
1918  llvm_unreachable("Unexpected mulh operation");
1919}
1920
1921SDValue
1922HexagonTargetLowering::LowerHvxMulLoHi(SDValue Op, SelectionDAG &DAG) const {
1923  const SDLoc &dl(Op);
1924  unsigned Opc = Op.getOpcode();
1925  SDValue Vu = Op.getOperand(0);
1926  SDValue Vv = Op.getOperand(1);
1927
1928  // If the HI part is not used, convert it to a regular MUL.
1929  if (auto HiVal = Op.getValue(1); HiVal.use_empty()) {
1930    // Need to preserve the types and the number of values.
1931    SDValue Hi = DAG.getUNDEF(ty(HiVal));
1932    SDValue Lo = DAG.getNode(ISD::MUL, dl, ty(Op), {Vu, Vv});
1933    return DAG.getMergeValues({Lo, Hi}, dl);
1934  }
1935
1936  bool SignedVu = Opc == HexagonISD::SMUL_LOHI;
1937  bool SignedVv = Opc == HexagonISD::SMUL_LOHI || Opc == HexagonISD::USMUL_LOHI;
1938
1939  // Legal on HVX v62+, but lower it here because patterns can't handle multi-
1940  // valued nodes.
1941  if (Subtarget.useHVXV62Ops())
1942    return emitHvxMulLoHiV62(Vu, SignedVu, Vv, SignedVv, dl, DAG);
1943
1944  if (Opc == HexagonISD::SMUL_LOHI) {
1945    // Direct MULHS expansion is cheaper than doing the whole SMUL_LOHI,
1946    // for other signedness LOHI is cheaper.
1947    if (auto LoVal = Op.getValue(0); LoVal.use_empty()) {
1948      SDValue Hi = emitHvxMulHsV60(Vu, Vv, dl, DAG);
1949      SDValue Lo = DAG.getUNDEF(ty(LoVal));
1950      return DAG.getMergeValues({Lo, Hi}, dl);
1951    }
1952  }
1953
1954  return emitHvxMulLoHiV60(Vu, SignedVu, Vv, SignedVv, dl, DAG);
1955}
1956
1957SDValue
1958HexagonTargetLowering::LowerHvxBitcast(SDValue Op, SelectionDAG &DAG) const {
1959  SDValue Val = Op.getOperand(0);
1960  MVT ResTy = ty(Op);
1961  MVT ValTy = ty(Val);
1962  const SDLoc &dl(Op);
1963
1964  if (isHvxBoolTy(ValTy) && ResTy.isScalarInteger()) {
1965    unsigned HwLen = Subtarget.getVectorLength();
1966    MVT WordTy = MVT::getVectorVT(MVT::i32, HwLen/4);
1967    SDValue VQ = compressHvxPred(Val, dl, WordTy, DAG);
1968    unsigned BitWidth = ResTy.getSizeInBits();
1969
1970    if (BitWidth < 64) {
1971      SDValue W0 = extractHvxElementReg(VQ, DAG.getConstant(0, dl, MVT::i32),
1972          dl, MVT::i32, DAG);
1973      if (BitWidth == 32)
1974        return W0;
1975      assert(BitWidth < 32u);
1976      return DAG.getZExtOrTrunc(W0, dl, ResTy);
1977    }
1978
1979    // The result is >= 64 bits. The only options are 64 or 128.
1980    assert(BitWidth == 64 || BitWidth == 128);
1981    SmallVector<SDValue,4> Words;
1982    for (unsigned i = 0; i != BitWidth/32; ++i) {
1983      SDValue W = extractHvxElementReg(
1984          VQ, DAG.getConstant(i, dl, MVT::i32), dl, MVT::i32, DAG);
1985      Words.push_back(W);
1986    }
1987    SmallVector<SDValue,2> Combines;
1988    assert(Words.size() % 2 == 0);
1989    for (unsigned i = 0, e = Words.size(); i < e; i += 2) {
1990      SDValue C = getCombine(Words[i+1], Words[i], dl, MVT::i64, DAG);
1991      Combines.push_back(C);
1992    }
1993
1994    if (BitWidth == 64)
1995      return Combines[0];
1996
1997    return DAG.getNode(ISD::BUILD_PAIR, dl, ResTy, Combines);
1998  }
1999  if (isHvxBoolTy(ResTy) && ValTy.isScalarInteger()) {
2000    // Handle bitcast from i128 -> v128i1 and i64 -> v64i1.
2001    unsigned BitWidth = ValTy.getSizeInBits();
2002    unsigned HwLen = Subtarget.getVectorLength();
2003    assert(BitWidth == HwLen);
2004
2005    MVT ValAsVecTy = MVT::getVectorVT(MVT::i8, BitWidth / 8);
2006    SDValue ValAsVec = DAG.getBitcast(ValAsVecTy, Val);
2007    // Splat each byte of Val 8 times.
2008    // Bytes = [(b0)x8, (b1)x8, ...., (b15)x8]
2009    // where b0, b1,..., b15 are least to most significant bytes of I.
2010    SmallVector<SDValue, 128> Bytes;
2011    // Tmp: 0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80, 0x01,0x02,0x04,0x08,...
2012    // These are bytes with the LSB rotated left with respect to their index.
2013    SmallVector<SDValue, 128> Tmp;
2014    for (unsigned I = 0; I != HwLen / 8; ++I) {
2015      SDValue Idx = DAG.getConstant(I, dl, MVT::i32);
2016      SDValue Byte =
2017          DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i8, ValAsVec, Idx);
2018      for (unsigned J = 0; J != 8; ++J) {
2019        Bytes.push_back(Byte);
2020        Tmp.push_back(DAG.getConstant(1ull << J, dl, MVT::i8));
2021      }
2022    }
2023
2024    MVT ConstantVecTy = MVT::getVectorVT(MVT::i8, HwLen);
2025    SDValue ConstantVec = DAG.getBuildVector(ConstantVecTy, dl, Tmp);
2026    SDValue I2V = buildHvxVectorReg(Bytes, dl, ConstantVecTy, DAG);
2027
2028    // Each Byte in the I2V will be set iff corresponding bit is set in Val.
2029    I2V = DAG.getNode(ISD::AND, dl, ConstantVecTy, {I2V, ConstantVec});
2030    return DAG.getNode(HexagonISD::V2Q, dl, ResTy, I2V);
2031  }
2032
2033  return Op;
2034}
2035
2036SDValue
2037HexagonTargetLowering::LowerHvxExtend(SDValue Op, SelectionDAG &DAG) const {
2038  // Sign- and zero-extends are legal.
2039  assert(Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG);
2040  return DAG.getNode(ISD::ZERO_EXTEND_VECTOR_INREG, SDLoc(Op), ty(Op),
2041                     Op.getOperand(0));
2042}
2043
2044SDValue
2045HexagonTargetLowering::LowerHvxSelect(SDValue Op, SelectionDAG &DAG) const {
2046  MVT ResTy = ty(Op);
2047  if (ResTy.getVectorElementType() != MVT::i1)
2048    return Op;
2049
2050  const SDLoc &dl(Op);
2051  unsigned HwLen = Subtarget.getVectorLength();
2052  unsigned VecLen = ResTy.getVectorNumElements();
2053  assert(HwLen % VecLen == 0);
2054  unsigned ElemSize = HwLen / VecLen;
2055
2056  MVT VecTy = MVT::getVectorVT(MVT::getIntegerVT(ElemSize * 8), VecLen);
2057  SDValue S =
2058      DAG.getNode(ISD::SELECT, dl, VecTy, Op.getOperand(0),
2059                  DAG.getNode(HexagonISD::Q2V, dl, VecTy, Op.getOperand(1)),
2060                  DAG.getNode(HexagonISD::Q2V, dl, VecTy, Op.getOperand(2)));
2061  return DAG.getNode(HexagonISD::V2Q, dl, ResTy, S);
2062}
2063
2064SDValue
2065HexagonTargetLowering::LowerHvxShift(SDValue Op, SelectionDAG &DAG) const {
2066  if (SDValue S = getVectorShiftByInt(Op, DAG))
2067    return S;
2068  return Op;
2069}
2070
2071SDValue
2072HexagonTargetLowering::LowerHvxFunnelShift(SDValue Op,
2073                                           SelectionDAG &DAG) const {
2074  unsigned Opc = Op.getOpcode();
2075  assert(Opc == ISD::FSHL || Opc == ISD::FSHR);
2076
2077  // Make sure the shift amount is within the range of the bitwidth
2078  // of the element type.
2079  SDValue A = Op.getOperand(0);
2080  SDValue B = Op.getOperand(1);
2081  SDValue S = Op.getOperand(2);
2082
2083  MVT InpTy = ty(A);
2084  MVT ElemTy = InpTy.getVectorElementType();
2085
2086  const SDLoc &dl(Op);
2087  unsigned ElemWidth = ElemTy.getSizeInBits();
2088  bool IsLeft = Opc == ISD::FSHL;
2089
2090  // The expansion into regular shifts produces worse code for i8 and for
2091  // right shift of i32 on v65+.
2092  bool UseShifts = ElemTy != MVT::i8;
2093  if (Subtarget.useHVXV65Ops() && ElemTy == MVT::i32)
2094    UseShifts = false;
2095
2096  if (SDValue SplatV = getSplatValue(S, DAG); SplatV && UseShifts) {
2097    // If this is a funnel shift by a scalar, lower it into regular shifts.
2098    SDValue Mask = DAG.getConstant(ElemWidth - 1, dl, MVT::i32);
2099    SDValue ModS =
2100        DAG.getNode(ISD::AND, dl, MVT::i32,
2101                    {DAG.getZExtOrTrunc(SplatV, dl, MVT::i32), Mask});
2102    SDValue NegS =
2103        DAG.getNode(ISD::SUB, dl, MVT::i32,
2104                    {DAG.getConstant(ElemWidth, dl, MVT::i32), ModS});
2105    SDValue IsZero =
2106        DAG.getSetCC(dl, MVT::i1, ModS, getZero(dl, MVT::i32, DAG), ISD::SETEQ);
2107    // FSHL A, B  =>  A <<  | B >>n
2108    // FSHR A, B  =>  A <<n | B >>
2109    SDValue Part1 =
2110        DAG.getNode(HexagonISD::VASL, dl, InpTy, {A, IsLeft ? ModS : NegS});
2111    SDValue Part2 =
2112        DAG.getNode(HexagonISD::VLSR, dl, InpTy, {B, IsLeft ? NegS : ModS});
2113    SDValue Or = DAG.getNode(ISD::OR, dl, InpTy, {Part1, Part2});
2114    // If the shift amount was 0, pick A or B, depending on the direction.
2115    // The opposite shift will also be by 0, so the "Or" will be incorrect.
2116    return DAG.getNode(ISD::SELECT, dl, InpTy, {IsZero, (IsLeft ? A : B), Or});
2117  }
2118
2119  SDValue Mask = DAG.getSplatBuildVector(
2120      InpTy, dl, DAG.getConstant(ElemWidth - 1, dl, ElemTy));
2121
2122  unsigned MOpc = Opc == ISD::FSHL ? HexagonISD::MFSHL : HexagonISD::MFSHR;
2123  return DAG.getNode(MOpc, dl, ty(Op),
2124                     {A, B, DAG.getNode(ISD::AND, dl, InpTy, {S, Mask})});
2125}
2126
2127SDValue
2128HexagonTargetLowering::LowerHvxIntrinsic(SDValue Op, SelectionDAG &DAG) const {
2129  const SDLoc &dl(Op);
2130  unsigned IntNo = Op.getConstantOperandVal(0);
2131  SmallVector<SDValue> Ops(Op->ops().begin(), Op->ops().end());
2132
2133  auto Swap = [&](SDValue P) {
2134    return DAG.getMergeValues({P.getValue(1), P.getValue(0)}, dl);
2135  };
2136
2137  switch (IntNo) {
2138  case Intrinsic::hexagon_V6_pred_typecast:
2139  case Intrinsic::hexagon_V6_pred_typecast_128B: {
2140    MVT ResTy = ty(Op), InpTy = ty(Ops[1]);
2141    if (isHvxBoolTy(ResTy) && isHvxBoolTy(InpTy)) {
2142      if (ResTy == InpTy)
2143        return Ops[1];
2144      return DAG.getNode(HexagonISD::TYPECAST, dl, ResTy, Ops[1]);
2145    }
2146    break;
2147  }
2148  case Intrinsic::hexagon_V6_vmpyss_parts:
2149  case Intrinsic::hexagon_V6_vmpyss_parts_128B:
2150    return Swap(DAG.getNode(HexagonISD::SMUL_LOHI, dl, Op->getVTList(),
2151                            {Ops[1], Ops[2]}));
2152  case Intrinsic::hexagon_V6_vmpyuu_parts:
2153  case Intrinsic::hexagon_V6_vmpyuu_parts_128B:
2154    return Swap(DAG.getNode(HexagonISD::UMUL_LOHI, dl, Op->getVTList(),
2155                            {Ops[1], Ops[2]}));
2156  case Intrinsic::hexagon_V6_vmpyus_parts:
2157  case Intrinsic::hexagon_V6_vmpyus_parts_128B: {
2158    return Swap(DAG.getNode(HexagonISD::USMUL_LOHI, dl, Op->getVTList(),
2159                            {Ops[1], Ops[2]}));
2160  }
2161  } // switch
2162
2163  return Op;
2164}
2165
2166SDValue
2167HexagonTargetLowering::LowerHvxMaskedOp(SDValue Op, SelectionDAG &DAG) const {
2168  const SDLoc &dl(Op);
2169  unsigned HwLen = Subtarget.getVectorLength();
2170  MachineFunction &MF = DAG.getMachineFunction();
2171  auto *MaskN = cast<MaskedLoadStoreSDNode>(Op.getNode());
2172  SDValue Mask = MaskN->getMask();
2173  SDValue Chain = MaskN->getChain();
2174  SDValue Base = MaskN->getBasePtr();
2175  auto *MemOp = MF.getMachineMemOperand(MaskN->getMemOperand(), 0, HwLen);
2176
2177  unsigned Opc = Op->getOpcode();
2178  assert(Opc == ISD::MLOAD || Opc == ISD::MSTORE);
2179
2180  if (Opc == ISD::MLOAD) {
2181    MVT ValTy = ty(Op);
2182    SDValue Load = DAG.getLoad(ValTy, dl, Chain, Base, MemOp);
2183    SDValue Thru = cast<MaskedLoadSDNode>(MaskN)->getPassThru();
2184    if (isUndef(Thru))
2185      return Load;
2186    SDValue VSel = DAG.getNode(ISD::VSELECT, dl, ValTy, Mask, Load, Thru);
2187    return DAG.getMergeValues({VSel, Load.getValue(1)}, dl);
2188  }
2189
2190  // MSTORE
2191  // HVX only has aligned masked stores.
2192
2193  // TODO: Fold negations of the mask into the store.
2194  unsigned StoreOpc = Hexagon::V6_vS32b_qpred_ai;
2195  SDValue Value = cast<MaskedStoreSDNode>(MaskN)->getValue();
2196  SDValue Offset0 = DAG.getTargetConstant(0, dl, ty(Base));
2197
2198  if (MaskN->getAlign().value() % HwLen == 0) {
2199    SDValue Store = getInstr(StoreOpc, dl, MVT::Other,
2200                             {Mask, Base, Offset0, Value, Chain}, DAG);
2201    DAG.setNodeMemRefs(cast<MachineSDNode>(Store.getNode()), {MemOp});
2202    return Store;
2203  }
2204
2205  // Unaligned case.
2206  auto StoreAlign = [&](SDValue V, SDValue A) {
2207    SDValue Z = getZero(dl, ty(V), DAG);
2208    // TODO: use funnel shifts?
2209    // vlalign(Vu,Vv,Rt) rotates the pair Vu:Vv left by Rt and takes the
2210    // upper half.
2211    SDValue LoV = getInstr(Hexagon::V6_vlalignb, dl, ty(V), {V, Z, A}, DAG);
2212    SDValue HiV = getInstr(Hexagon::V6_vlalignb, dl, ty(V), {Z, V, A}, DAG);
2213    return std::make_pair(LoV, HiV);
2214  };
2215
2216  MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
2217  MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen);
2218  SDValue MaskV = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, Mask);
2219  VectorPair Tmp = StoreAlign(MaskV, Base);
2220  VectorPair MaskU = {DAG.getNode(HexagonISD::V2Q, dl, BoolTy, Tmp.first),
2221                      DAG.getNode(HexagonISD::V2Q, dl, BoolTy, Tmp.second)};
2222  VectorPair ValueU = StoreAlign(Value, Base);
2223
2224  SDValue Offset1 = DAG.getTargetConstant(HwLen, dl, MVT::i32);
2225  SDValue StoreLo =
2226      getInstr(StoreOpc, dl, MVT::Other,
2227               {MaskU.first, Base, Offset0, ValueU.first, Chain}, DAG);
2228  SDValue StoreHi =
2229      getInstr(StoreOpc, dl, MVT::Other,
2230               {MaskU.second, Base, Offset1, ValueU.second, Chain}, DAG);
2231  DAG.setNodeMemRefs(cast<MachineSDNode>(StoreLo.getNode()), {MemOp});
2232  DAG.setNodeMemRefs(cast<MachineSDNode>(StoreHi.getNode()), {MemOp});
2233  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, {StoreLo, StoreHi});
2234}
2235
2236SDValue HexagonTargetLowering::LowerHvxFpExtend(SDValue Op,
2237                                                SelectionDAG &DAG) const {
2238  // This conversion only applies to QFloat. IEEE extension from f16 to f32
2239  // is legal (done via a pattern).
2240  assert(Subtarget.useHVXQFloatOps());
2241
2242  assert(Op->getOpcode() == ISD::FP_EXTEND);
2243
2244  MVT VecTy = ty(Op);
2245  MVT ArgTy = ty(Op.getOperand(0));
2246  const SDLoc &dl(Op);
2247  assert(VecTy == MVT::v64f32 && ArgTy == MVT::v64f16);
2248
2249  SDValue F16Vec = Op.getOperand(0);
2250
2251  APFloat FloatVal = APFloat(1.0f);
2252  bool Ignored;
2253  FloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &Ignored);
2254  SDValue Fp16Ones = DAG.getConstantFP(FloatVal, dl, ArgTy);
2255  SDValue VmpyVec =
2256      getInstr(Hexagon::V6_vmpy_qf32_hf, dl, VecTy, {F16Vec, Fp16Ones}, DAG);
2257
2258  MVT HalfTy = typeSplit(VecTy).first;
2259  VectorPair Pair = opSplit(VmpyVec, dl, DAG);
2260  SDValue LoVec =
2261      getInstr(Hexagon::V6_vconv_sf_qf32, dl, HalfTy, {Pair.first}, DAG);
2262  SDValue HiVec =
2263      getInstr(Hexagon::V6_vconv_sf_qf32, dl, HalfTy, {Pair.second}, DAG);
2264
2265  SDValue ShuffVec =
2266      getInstr(Hexagon::V6_vshuffvdd, dl, VecTy,
2267               {HiVec, LoVec, DAG.getConstant(-4, dl, MVT::i32)}, DAG);
2268
2269  return ShuffVec;
2270}
2271
2272SDValue
2273HexagonTargetLowering::LowerHvxFpToInt(SDValue Op, SelectionDAG &DAG) const {
2274  // Catch invalid conversion ops (just in case).
2275  assert(Op.getOpcode() == ISD::FP_TO_SINT ||
2276         Op.getOpcode() == ISD::FP_TO_UINT);
2277
2278  MVT ResTy = ty(Op);
2279  MVT FpTy = ty(Op.getOperand(0)).getVectorElementType();
2280  MVT IntTy = ResTy.getVectorElementType();
2281
2282  if (Subtarget.useHVXIEEEFPOps()) {
2283    // There are only conversions from f16.
2284    if (FpTy == MVT::f16) {
2285      // Other int types aren't legal in HVX, so we shouldn't see them here.
2286      assert(IntTy == MVT::i8 || IntTy == MVT::i16 || IntTy == MVT::i32);
2287      // Conversions to i8 and i16 are legal.
2288      if (IntTy == MVT::i8 || IntTy == MVT::i16)
2289        return Op;
2290    }
2291  }
2292
2293  if (IntTy.getSizeInBits() != FpTy.getSizeInBits())
2294    return EqualizeFpIntConversion(Op, DAG);
2295
2296  return ExpandHvxFpToInt(Op, DAG);
2297}
2298
2299SDValue
2300HexagonTargetLowering::LowerHvxIntToFp(SDValue Op, SelectionDAG &DAG) const {
2301  // Catch invalid conversion ops (just in case).
2302  assert(Op.getOpcode() == ISD::SINT_TO_FP ||
2303         Op.getOpcode() == ISD::UINT_TO_FP);
2304
2305  MVT ResTy = ty(Op);
2306  MVT IntTy = ty(Op.getOperand(0)).getVectorElementType();
2307  MVT FpTy = ResTy.getVectorElementType();
2308
2309  if (Subtarget.useHVXIEEEFPOps()) {
2310    // There are only conversions to f16.
2311    if (FpTy == MVT::f16) {
2312      // Other int types aren't legal in HVX, so we shouldn't see them here.
2313      assert(IntTy == MVT::i8 || IntTy == MVT::i16 || IntTy == MVT::i32);
2314      // i8, i16 -> f16 is legal.
2315      if (IntTy == MVT::i8 || IntTy == MVT::i16)
2316        return Op;
2317    }
2318  }
2319
2320  if (IntTy.getSizeInBits() != FpTy.getSizeInBits())
2321    return EqualizeFpIntConversion(Op, DAG);
2322
2323  return ExpandHvxIntToFp(Op, DAG);
2324}
2325
2326HexagonTargetLowering::TypePair
2327HexagonTargetLowering::typeExtendToWider(MVT Ty0, MVT Ty1) const {
2328  // Compare the widths of elements of the two types, and extend the narrower
2329  // type to match the with of the wider type. For vector types, apply this
2330  // to the element type.
2331  assert(Ty0.isVector() == Ty1.isVector());
2332
2333  MVT ElemTy0 = Ty0.getScalarType();
2334  MVT ElemTy1 = Ty1.getScalarType();
2335
2336  unsigned Width0 = ElemTy0.getSizeInBits();
2337  unsigned Width1 = ElemTy1.getSizeInBits();
2338  unsigned MaxWidth = std::max(Width0, Width1);
2339
2340  auto getScalarWithWidth = [](MVT ScalarTy, unsigned Width) {
2341    if (ScalarTy.isInteger())
2342      return MVT::getIntegerVT(Width);
2343    assert(ScalarTy.isFloatingPoint());
2344    return MVT::getFloatingPointVT(Width);
2345  };
2346
2347  MVT WideETy0 = getScalarWithWidth(ElemTy0, MaxWidth);
2348  MVT WideETy1 = getScalarWithWidth(ElemTy1, MaxWidth);
2349
2350  if (!Ty0.isVector()) {
2351    // Both types are scalars.
2352    return {WideETy0, WideETy1};
2353  }
2354
2355  // Vector types.
2356  unsigned NumElem = Ty0.getVectorNumElements();
2357  assert(NumElem == Ty1.getVectorNumElements());
2358
2359  return {MVT::getVectorVT(WideETy0, NumElem),
2360          MVT::getVectorVT(WideETy1, NumElem)};
2361}
2362
2363HexagonTargetLowering::TypePair
2364HexagonTargetLowering::typeWidenToWider(MVT Ty0, MVT Ty1) const {
2365  // Compare the numbers of elements of two vector types, and widen the
2366  // narrower one to match the number of elements in the wider one.
2367  assert(Ty0.isVector() && Ty1.isVector());
2368
2369  unsigned Len0 = Ty0.getVectorNumElements();
2370  unsigned Len1 = Ty1.getVectorNumElements();
2371  if (Len0 == Len1)
2372    return {Ty0, Ty1};
2373
2374  unsigned MaxLen = std::max(Len0, Len1);
2375  return {MVT::getVectorVT(Ty0.getVectorElementType(), MaxLen),
2376          MVT::getVectorVT(Ty1.getVectorElementType(), MaxLen)};
2377}
2378
2379MVT
2380HexagonTargetLowering::typeLegalize(MVT Ty, SelectionDAG &DAG) const {
2381  EVT LegalTy = getTypeToTransformTo(*DAG.getContext(), Ty);
2382  assert(LegalTy.isSimple());
2383  return LegalTy.getSimpleVT();
2384}
2385
2386MVT
2387HexagonTargetLowering::typeWidenToHvx(MVT Ty) const {
2388  unsigned HwWidth = 8 * Subtarget.getVectorLength();
2389  assert(Ty.getSizeInBits() <= HwWidth);
2390  if (Ty.getSizeInBits() == HwWidth)
2391    return Ty;
2392
2393  MVT ElemTy = Ty.getScalarType();
2394  return MVT::getVectorVT(ElemTy, HwWidth / ElemTy.getSizeInBits());
2395}
2396
2397HexagonTargetLowering::VectorPair
2398HexagonTargetLowering::emitHvxAddWithOverflow(SDValue A, SDValue B,
2399      const SDLoc &dl, bool Signed, SelectionDAG &DAG) const {
2400  // Compute A+B, return {A+B, O}, where O = vector predicate indicating
2401  // whether an overflow has occured.
2402  MVT ResTy = ty(A);
2403  assert(ResTy == ty(B));
2404  MVT PredTy = MVT::getVectorVT(MVT::i1, ResTy.getVectorNumElements());
2405
2406  if (!Signed) {
2407    // V62+ has V6_vaddcarry, but it requires input predicate, so it doesn't
2408    // save any instructions.
2409    SDValue Add = DAG.getNode(ISD::ADD, dl, ResTy, {A, B});
2410    SDValue Ovf = DAG.getSetCC(dl, PredTy, Add, A, ISD::SETULT);
2411    return {Add, Ovf};
2412  }
2413
2414  // Signed overflow has happened, if:
2415  // (A, B have the same sign) and (A+B has a different sign from either)
2416  // i.e. (~A xor B) & ((A+B) xor B), then check the sign bit
2417  SDValue Add = DAG.getNode(ISD::ADD, dl, ResTy, {A, B});
2418  SDValue NotA =
2419      DAG.getNode(ISD::XOR, dl, ResTy, {A, DAG.getConstant(-1, dl, ResTy)});
2420  SDValue Xor0 = DAG.getNode(ISD::XOR, dl, ResTy, {NotA, B});
2421  SDValue Xor1 = DAG.getNode(ISD::XOR, dl, ResTy, {Add, B});
2422  SDValue And = DAG.getNode(ISD::AND, dl, ResTy, {Xor0, Xor1});
2423  SDValue MSB =
2424      DAG.getSetCC(dl, PredTy, And, getZero(dl, ResTy, DAG), ISD::SETLT);
2425  return {Add, MSB};
2426}
2427
2428HexagonTargetLowering::VectorPair
2429HexagonTargetLowering::emitHvxShiftRightRnd(SDValue Val, unsigned Amt,
2430      bool Signed, SelectionDAG &DAG) const {
2431  // Shift Val right by Amt bits, round the result to the nearest integer,
2432  // tie-break by rounding halves to even integer.
2433
2434  const SDLoc &dl(Val);
2435  MVT ValTy = ty(Val);
2436
2437  // This should also work for signed integers.
2438  //
2439  //   uint tmp0 = inp + ((1 << (Amt-1)) - 1);
2440  //   bool ovf = (inp > tmp0);
2441  //   uint rup = inp & (1 << (Amt+1));
2442  //
2443  //   uint tmp1 = inp >> (Amt-1);    // tmp1 == tmp2 iff
2444  //   uint tmp2 = tmp0 >> (Amt-1);   // the Amt-1 lower bits were all 0
2445  //   uint tmp3 = tmp2 + rup;
2446  //   uint frac = (tmp1 != tmp2) ? tmp2 >> 1 : tmp3 >> 1;
2447  unsigned ElemWidth = ValTy.getVectorElementType().getSizeInBits();
2448  MVT ElemTy = MVT::getIntegerVT(ElemWidth);
2449  MVT IntTy = tyVector(ValTy, ElemTy);
2450  MVT PredTy = MVT::getVectorVT(MVT::i1, IntTy.getVectorNumElements());
2451  unsigned ShRight = Signed ? ISD::SRA : ISD::SRL;
2452
2453  SDValue Inp = DAG.getBitcast(IntTy, Val);
2454  SDValue LowBits = DAG.getConstant((1ull << (Amt - 1)) - 1, dl, IntTy);
2455
2456  SDValue AmtP1 = DAG.getConstant(1ull << Amt, dl, IntTy);
2457  SDValue And = DAG.getNode(ISD::AND, dl, IntTy, {Inp, AmtP1});
2458  SDValue Zero = getZero(dl, IntTy, DAG);
2459  SDValue Bit = DAG.getSetCC(dl, PredTy, And, Zero, ISD::SETNE);
2460  SDValue Rup = DAG.getZExtOrTrunc(Bit, dl, IntTy);
2461  auto [Tmp0, Ovf] = emitHvxAddWithOverflow(Inp, LowBits, dl, Signed, DAG);
2462
2463  SDValue AmtM1 = DAG.getConstant(Amt - 1, dl, IntTy);
2464  SDValue Tmp1 = DAG.getNode(ShRight, dl, IntTy, Inp, AmtM1);
2465  SDValue Tmp2 = DAG.getNode(ShRight, dl, IntTy, Tmp0, AmtM1);
2466  SDValue Tmp3 = DAG.getNode(ISD::ADD, dl, IntTy, Tmp2, Rup);
2467
2468  SDValue Eq = DAG.getSetCC(dl, PredTy, Tmp1, Tmp2, ISD::SETEQ);
2469  SDValue One = DAG.getConstant(1, dl, IntTy);
2470  SDValue Tmp4 = DAG.getNode(ShRight, dl, IntTy, {Tmp2, One});
2471  SDValue Tmp5 = DAG.getNode(ShRight, dl, IntTy, {Tmp3, One});
2472  SDValue Mux = DAG.getNode(ISD::VSELECT, dl, IntTy, {Eq, Tmp5, Tmp4});
2473  return {Mux, Ovf};
2474}
2475
2476SDValue
2477HexagonTargetLowering::emitHvxMulHsV60(SDValue A, SDValue B, const SDLoc &dl,
2478                                       SelectionDAG &DAG) const {
2479  MVT VecTy = ty(A);
2480  MVT PairTy = typeJoin({VecTy, VecTy});
2481  assert(VecTy.getVectorElementType() == MVT::i32);
2482
2483  SDValue S16 = DAG.getConstant(16, dl, MVT::i32);
2484
2485  // mulhs(A,B) =
2486  //   = [(Hi(A)*2^16 + Lo(A)) *s (Hi(B)*2^16 + Lo(B))] >> 32
2487  //   = [Hi(A)*2^16 *s Hi(B)*2^16 + Hi(A) *su Lo(B)*2^16
2488  //      + Lo(A) *us (Hi(B)*2^16 + Lo(B))] >> 32
2489  //   = [Hi(A) *s Hi(B)*2^32 + Hi(A) *su Lo(B)*2^16 + Lo(A) *us B] >> 32
2490  // The low half of Lo(A)*Lo(B) will be discarded (it's not added to
2491  // anything, so it cannot produce any carry over to higher bits),
2492  // so everything in [] can be shifted by 16 without loss of precision.
2493  //   = [Hi(A) *s Hi(B)*2^16 + Hi(A)*su Lo(B) + Lo(A)*B >> 16] >> 16
2494  //   = [Hi(A) *s Hi(B)*2^16 + Hi(A)*su Lo(B) + V6_vmpyewuh(A,B)] >> 16
2495  // The final additions need to make sure to properly maintain any carry-
2496  // out bits.
2497  //
2498  //                Hi(B) Lo(B)
2499  //                Hi(A) Lo(A)
2500  //               --------------
2501  //                Lo(B)*Lo(A)  | T0 = V6_vmpyewuh(B,A) does this,
2502  //         Hi(B)*Lo(A)         |      + dropping the low 16 bits
2503  //         Hi(A)*Lo(B)   | T2
2504  //  Hi(B)*Hi(A)
2505
2506  SDValue T0 = getInstr(Hexagon::V6_vmpyewuh, dl, VecTy, {B, A}, DAG);
2507  // T1 = get Hi(A) into low halves.
2508  SDValue T1 = getInstr(Hexagon::V6_vasrw, dl, VecTy, {A, S16}, DAG);
2509  // P0 = interleaved T1.h*B.uh (full precision product)
2510  SDValue P0 = getInstr(Hexagon::V6_vmpyhus, dl, PairTy, {T1, B}, DAG);
2511  // T2 = T1.even(h) * B.even(uh), i.e. Hi(A)*Lo(B)
2512  SDValue T2 = LoHalf(P0, DAG);
2513  // We need to add T0+T2, recording the carry-out, which will be 1<<16
2514  // added to the final sum.
2515  // P1 = interleaved even/odd 32-bit (unsigned) sums of 16-bit halves
2516  SDValue P1 = getInstr(Hexagon::V6_vadduhw, dl, PairTy, {T0, T2}, DAG);
2517  // P2 = interleaved even/odd 32-bit (signed) sums of 16-bit halves
2518  SDValue P2 = getInstr(Hexagon::V6_vaddhw, dl, PairTy, {T0, T2}, DAG);
2519  // T3 = full-precision(T0+T2) >> 16
2520  // The low halves are added-unsigned, the high ones are added-signed.
2521  SDValue T3 = getInstr(Hexagon::V6_vasrw_acc, dl, VecTy,
2522                        {HiHalf(P2, DAG), LoHalf(P1, DAG), S16}, DAG);
2523  SDValue T4 = getInstr(Hexagon::V6_vasrw, dl, VecTy, {B, S16}, DAG);
2524  // P3 = interleaved Hi(B)*Hi(A) (full precision),
2525  // which is now Lo(T1)*Lo(T4), so we want to keep the even product.
2526  SDValue P3 = getInstr(Hexagon::V6_vmpyhv, dl, PairTy, {T1, T4}, DAG);
2527  SDValue T5 = LoHalf(P3, DAG);
2528  // Add:
2529  SDValue T6 = DAG.getNode(ISD::ADD, dl, VecTy, {T3, T5});
2530  return T6;
2531}
2532
2533SDValue
2534HexagonTargetLowering::emitHvxMulLoHiV60(SDValue A, bool SignedA, SDValue B,
2535                                         bool SignedB, const SDLoc &dl,
2536                                         SelectionDAG &DAG) const {
2537  MVT VecTy = ty(A);
2538  MVT PairTy = typeJoin({VecTy, VecTy});
2539  assert(VecTy.getVectorElementType() == MVT::i32);
2540
2541  SDValue S16 = DAG.getConstant(16, dl, MVT::i32);
2542
2543  if (SignedA && !SignedB) {
2544    // Make A:unsigned, B:signed.
2545    std::swap(A, B);
2546    std::swap(SignedA, SignedB);
2547  }
2548
2549  // Do halfword-wise multiplications for unsigned*unsigned product, then
2550  // add corrections for signed and unsigned*signed.
2551
2552  SDValue Lo, Hi;
2553
2554  // P0:lo = (uu) products of low halves of A and B,
2555  // P0:hi = (uu) products of high halves.
2556  SDValue P0 = getInstr(Hexagon::V6_vmpyuhv, dl, PairTy, {A, B}, DAG);
2557
2558  // Swap low/high halves in B
2559  SDValue T0 = getInstr(Hexagon::V6_lvsplatw, dl, VecTy,
2560                        {DAG.getConstant(0x02020202, dl, MVT::i32)}, DAG);
2561  SDValue T1 = getInstr(Hexagon::V6_vdelta, dl, VecTy, {B, T0}, DAG);
2562  // P1 = products of even/odd halfwords.
2563  // P1:lo = (uu) products of even(A.uh) * odd(B.uh)
2564  // P1:hi = (uu) products of odd(A.uh) * even(B.uh)
2565  SDValue P1 = getInstr(Hexagon::V6_vmpyuhv, dl, PairTy, {A, T1}, DAG);
2566
2567  // P2:lo = low halves of P1:lo + P1:hi,
2568  // P2:hi = high halves of P1:lo + P1:hi.
2569  SDValue P2 = getInstr(Hexagon::V6_vadduhw, dl, PairTy,
2570                        {HiHalf(P1, DAG), LoHalf(P1, DAG)}, DAG);
2571  // Still need to add the high halves of P0:lo to P2:lo
2572  SDValue T2 =
2573      getInstr(Hexagon::V6_vlsrw, dl, VecTy, {LoHalf(P0, DAG), S16}, DAG);
2574  SDValue T3 = DAG.getNode(ISD::ADD, dl, VecTy, {LoHalf(P2, DAG), T2});
2575
2576  // The high halves of T3 will contribute to the HI part of LOHI.
2577  SDValue T4 = getInstr(Hexagon::V6_vasrw_acc, dl, VecTy,
2578                        {HiHalf(P2, DAG), T3, S16}, DAG);
2579
2580  // The low halves of P2 need to be added to high halves of the LO part.
2581  Lo = getInstr(Hexagon::V6_vaslw_acc, dl, VecTy,
2582                {LoHalf(P0, DAG), LoHalf(P2, DAG), S16}, DAG);
2583  Hi = DAG.getNode(ISD::ADD, dl, VecTy, {HiHalf(P0, DAG), T4});
2584
2585  if (SignedA) {
2586    assert(SignedB && "Signed A and unsigned B should have been inverted");
2587
2588    MVT PredTy = MVT::getVectorVT(MVT::i1, VecTy.getVectorNumElements());
2589    SDValue Zero = getZero(dl, VecTy, DAG);
2590    SDValue Q0 = DAG.getSetCC(dl, PredTy, A, Zero, ISD::SETLT);
2591    SDValue Q1 = DAG.getSetCC(dl, PredTy, B, Zero, ISD::SETLT);
2592    SDValue X0 = DAG.getNode(ISD::VSELECT, dl, VecTy, {Q0, B, Zero});
2593    SDValue X1 = getInstr(Hexagon::V6_vaddwq, dl, VecTy, {Q1, X0, A}, DAG);
2594    Hi = getInstr(Hexagon::V6_vsubw, dl, VecTy, {Hi, X1}, DAG);
2595  } else if (SignedB) {
2596    // Same correction as for mulhus:
2597    // mulhus(A.uw,B.w) = mulhu(A.uw,B.uw) - (A.w if B < 0)
2598    MVT PredTy = MVT::getVectorVT(MVT::i1, VecTy.getVectorNumElements());
2599    SDValue Zero = getZero(dl, VecTy, DAG);
2600    SDValue Q1 = DAG.getSetCC(dl, PredTy, B, Zero, ISD::SETLT);
2601    Hi = getInstr(Hexagon::V6_vsubwq, dl, VecTy, {Q1, Hi, A}, DAG);
2602  } else {
2603    assert(!SignedA && !SignedB);
2604  }
2605
2606  return DAG.getMergeValues({Lo, Hi}, dl);
2607}
2608
2609SDValue
2610HexagonTargetLowering::emitHvxMulLoHiV62(SDValue A, bool SignedA,
2611                                         SDValue B, bool SignedB,
2612                                         const SDLoc &dl,
2613                                         SelectionDAG &DAG) const {
2614  MVT VecTy = ty(A);
2615  MVT PairTy = typeJoin({VecTy, VecTy});
2616  assert(VecTy.getVectorElementType() == MVT::i32);
2617
2618  if (SignedA && !SignedB) {
2619    // Make A:unsigned, B:signed.
2620    std::swap(A, B);
2621    std::swap(SignedA, SignedB);
2622  }
2623
2624  // Do S*S first, then make corrections for U*S or U*U if needed.
2625  SDValue P0 = getInstr(Hexagon::V6_vmpyewuh_64, dl, PairTy, {A, B}, DAG);
2626  SDValue P1 =
2627      getInstr(Hexagon::V6_vmpyowh_64_acc, dl, PairTy, {P0, A, B}, DAG);
2628  SDValue Lo = LoHalf(P1, DAG);
2629  SDValue Hi = HiHalf(P1, DAG);
2630
2631  if (!SignedB) {
2632    assert(!SignedA && "Signed A and unsigned B should have been inverted");
2633    SDValue Zero = getZero(dl, VecTy, DAG);
2634    MVT PredTy = MVT::getVectorVT(MVT::i1, VecTy.getVectorNumElements());
2635
2636    // Mulhu(X, Y) = Mulhs(X, Y) + (X, if Y < 0) + (Y, if X < 0).
2637    // def: Pat<(VecI32 (mulhu HVI32:$A, HVI32:$B)),
2638    //          (V6_vaddw (HiHalf (Muls64O $A, $B)),
2639    //                    (V6_vaddwq (V6_vgtw (V6_vd0), $B),
2640    //                               (V6_vandvqv (V6_vgtw (V6_vd0), $A), $B),
2641    //                               $A))>;
2642    SDValue Q0 = DAG.getSetCC(dl, PredTy, A, Zero, ISD::SETLT);
2643    SDValue Q1 = DAG.getSetCC(dl, PredTy, B, Zero, ISD::SETLT);
2644    SDValue T0 = getInstr(Hexagon::V6_vandvqv, dl, VecTy, {Q0, B}, DAG);
2645    SDValue T1 = getInstr(Hexagon::V6_vaddwq, dl, VecTy, {Q1, T0, A}, DAG);
2646    Hi = getInstr(Hexagon::V6_vaddw, dl, VecTy, {Hi, T1}, DAG);
2647  } else if (!SignedA) {
2648    SDValue Zero = getZero(dl, VecTy, DAG);
2649    MVT PredTy = MVT::getVectorVT(MVT::i1, VecTy.getVectorNumElements());
2650
2651    // Mulhus(unsigned X, signed Y) = Mulhs(X, Y) + (Y, if X < 0).
2652    // def: Pat<(VecI32 (HexagonMULHUS HVI32:$A, HVI32:$B)),
2653    //          (V6_vaddwq (V6_vgtw (V6_vd0), $A),
2654    //                     (HiHalf (Muls64O $A, $B)),
2655    //                     $B)>;
2656    SDValue Q0 = DAG.getSetCC(dl, PredTy, A, Zero, ISD::SETLT);
2657    Hi = getInstr(Hexagon::V6_vaddwq, dl, VecTy, {Q0, Hi, B}, DAG);
2658  }
2659
2660  return DAG.getMergeValues({Lo, Hi}, dl);
2661}
2662
2663SDValue
2664HexagonTargetLowering::EqualizeFpIntConversion(SDValue Op, SelectionDAG &DAG)
2665      const {
2666  // Rewrite conversion between integer and floating-point in such a way that
2667  // the integer type is extended/narrowed to match the bitwidth of the
2668  // floating-point type, combined with additional integer-integer extensions
2669  // or narrowings to match the original input/result types.
2670  // E.g.  f32 -> i8  ==>  f32 -> i32 -> i8
2671  //
2672  // The input/result types are not required to be legal, but if they are
2673  // legal, this function should not introduce illegal types.
2674
2675  unsigned Opc = Op.getOpcode();
2676  assert(Opc == ISD::FP_TO_SINT || Opc == ISD::FP_TO_UINT ||
2677         Opc == ISD::SINT_TO_FP || Opc == ISD::UINT_TO_FP);
2678
2679  SDValue Inp = Op.getOperand(0);
2680  MVT InpTy = ty(Inp);
2681  MVT ResTy = ty(Op);
2682
2683  if (InpTy == ResTy)
2684    return Op;
2685
2686  const SDLoc &dl(Op);
2687  bool Signed = Opc == ISD::FP_TO_SINT || Opc == ISD::SINT_TO_FP;
2688
2689  auto [WInpTy, WResTy] = typeExtendToWider(InpTy, ResTy);
2690  SDValue WInp = resizeToWidth(Inp, WInpTy, Signed, dl, DAG);
2691  SDValue Conv = DAG.getNode(Opc, dl, WResTy, WInp);
2692  SDValue Res = resizeToWidth(Conv, ResTy, Signed, dl, DAG);
2693  return Res;
2694}
2695
2696SDValue
2697HexagonTargetLowering::ExpandHvxFpToInt(SDValue Op, SelectionDAG &DAG) const {
2698  unsigned Opc = Op.getOpcode();
2699  assert(Opc == ISD::FP_TO_SINT || Opc == ISD::FP_TO_UINT);
2700
2701  const SDLoc &dl(Op);
2702  SDValue Op0 = Op.getOperand(0);
2703  MVT InpTy = ty(Op0);
2704  MVT ResTy = ty(Op);
2705  assert(InpTy.changeTypeToInteger() == ResTy);
2706
2707  // int32_t conv_f32_to_i32(uint32_t inp) {
2708  //   // s | exp8 | frac23
2709  //
2710  //   int neg = (int32_t)inp < 0;
2711  //
2712  //   // "expm1" is the actual exponent minus 1: instead of "bias", subtract
2713  //   // "bias+1". When the encoded exp is "all-1" (i.e. inf/nan), this will
2714  //   // produce a large positive "expm1", which will result in max u/int.
2715  //   // In all IEEE formats, bias is the largest positive number that can be
2716  //   // represented in bias-width bits (i.e. 011..1).
2717  //   int32_t expm1 = (inp << 1) - 0x80000000;
2718  //   expm1 >>= 24;
2719  //
2720  //   // Always insert the "implicit 1". Subnormal numbers will become 0
2721  //   // regardless.
2722  //   uint32_t frac = (inp << 8) | 0x80000000;
2723  //
2724  //   // "frac" is the fraction part represented as Q1.31. If it was
2725  //   // interpreted as uint32_t, it would be the fraction part multiplied
2726  //   // by 2^31.
2727  //
2728  //   // Calculate the amount of right shift, since shifting further to the
2729  //   // left would lose significant bits. Limit it to 32, because we want
2730  //   // shifts by 32+ to produce 0, whereas V6_vlsrwv treats the shift
2731  //   // amount as a 6-bit signed value (so 33 is same as -31, i.e. shift
2732  //   // left by 31). "rsh" can be negative.
2733  //   int32_t rsh = min(31 - (expm1 + 1), 32);
2734  //
2735  //   frac >>= rsh;   // rsh == 32 will produce 0
2736  //
2737  //   // Everything up to this point is the same for conversion to signed
2738  //   // unsigned integer.
2739  //
2740  //   if (neg)                 // Only for signed int
2741  //     frac = -frac;          //
2742  //   if (rsh <= 0 && neg)     //   bound = neg ? 0x80000000 : 0x7fffffff
2743  //     frac = 0x80000000;     //   frac = rsh <= 0 ? bound : frac
2744  //   if (rsh <= 0 && !neg)    //
2745  //     frac = 0x7fffffff;     //
2746  //
2747  //   if (neg)                 // Only for unsigned int
2748  //     frac = 0;              //
2749  //   if (rsh < 0 && !neg)     //   frac = rsh < 0 ? 0x7fffffff : frac;
2750  //     frac = 0x7fffffff;     //   frac = neg ? 0 : frac;
2751  //
2752  //   return frac;
2753  // }
2754
2755  MVT PredTy = MVT::getVectorVT(MVT::i1, ResTy.getVectorElementCount());
2756
2757  // Zero = V6_vd0();
2758  // Neg = V6_vgtw(Zero, Inp);
2759  // One = V6_lvsplatw(1);
2760  // M80 = V6_lvsplatw(0x80000000);
2761  // Exp00 = V6_vaslwv(Inp, One);
2762  // Exp01 = V6_vsubw(Exp00, M80);
2763  // ExpM1 = V6_vasrw(Exp01, 24);
2764  // Frc00 = V6_vaslw(Inp, 8);
2765  // Frc01 = V6_vor(Frc00, M80);
2766  // Rsh00 = V6_vsubw(V6_lvsplatw(30), ExpM1);
2767  // Rsh01 = V6_vminw(Rsh00, V6_lvsplatw(32));
2768  // Frc02 = V6_vlsrwv(Frc01, Rsh01);
2769
2770  // if signed int:
2771  // Bnd = V6_vmux(Neg, M80, V6_lvsplatw(0x7fffffff))
2772  // Pos = V6_vgtw(Rsh01, Zero);
2773  // Frc13 = V6_vsubw(Zero, Frc02);
2774  // Frc14 = V6_vmux(Neg, Frc13, Frc02);
2775  // Int = V6_vmux(Pos, Frc14, Bnd);
2776  //
2777  // if unsigned int:
2778  // Rsn = V6_vgtw(Zero, Rsh01)
2779  // Frc23 = V6_vmux(Rsn, V6_lvsplatw(0x7fffffff), Frc02)
2780  // Int = V6_vmux(Neg, Zero, Frc23)
2781
2782  auto [ExpWidth, ExpBias, FracWidth] = getIEEEProperties(InpTy);
2783  unsigned ElemWidth = 1 + ExpWidth + FracWidth;
2784  assert((1ull << (ExpWidth - 1)) == (1 + ExpBias));
2785
2786  SDValue Inp = DAG.getBitcast(ResTy, Op0);
2787  SDValue Zero = getZero(dl, ResTy, DAG);
2788  SDValue Neg = DAG.getSetCC(dl, PredTy, Inp, Zero, ISD::SETLT);
2789  SDValue M80 = DAG.getConstant(1ull << (ElemWidth - 1), dl, ResTy);
2790  SDValue M7F = DAG.getConstant((1ull << (ElemWidth - 1)) - 1, dl, ResTy);
2791  SDValue One = DAG.getConstant(1, dl, ResTy);
2792  SDValue Exp00 = DAG.getNode(ISD::SHL, dl, ResTy, {Inp, One});
2793  SDValue Exp01 = DAG.getNode(ISD::SUB, dl, ResTy, {Exp00, M80});
2794  SDValue MNE = DAG.getConstant(ElemWidth - ExpWidth, dl, ResTy);
2795  SDValue ExpM1 = DAG.getNode(ISD::SRA, dl, ResTy, {Exp01, MNE});
2796
2797  SDValue ExpW = DAG.getConstant(ExpWidth, dl, ResTy);
2798  SDValue Frc00 = DAG.getNode(ISD::SHL, dl, ResTy, {Inp, ExpW});
2799  SDValue Frc01 = DAG.getNode(ISD::OR, dl, ResTy, {Frc00, M80});
2800
2801  SDValue MN2 = DAG.getConstant(ElemWidth - 2, dl, ResTy);
2802  SDValue Rsh00 = DAG.getNode(ISD::SUB, dl, ResTy, {MN2, ExpM1});
2803  SDValue MW = DAG.getConstant(ElemWidth, dl, ResTy);
2804  SDValue Rsh01 = DAG.getNode(ISD::SMIN, dl, ResTy, {Rsh00, MW});
2805  SDValue Frc02 = DAG.getNode(ISD::SRL, dl, ResTy, {Frc01, Rsh01});
2806
2807  SDValue Int;
2808
2809  if (Opc == ISD::FP_TO_SINT) {
2810    SDValue Bnd = DAG.getNode(ISD::VSELECT, dl, ResTy, {Neg, M80, M7F});
2811    SDValue Pos = DAG.getSetCC(dl, PredTy, Rsh01, Zero, ISD::SETGT);
2812    SDValue Frc13 = DAG.getNode(ISD::SUB, dl, ResTy, {Zero, Frc02});
2813    SDValue Frc14 = DAG.getNode(ISD::VSELECT, dl, ResTy, {Neg, Frc13, Frc02});
2814    Int = DAG.getNode(ISD::VSELECT, dl, ResTy, {Pos, Frc14, Bnd});
2815  } else {
2816    assert(Opc == ISD::FP_TO_UINT);
2817    SDValue Rsn = DAG.getSetCC(dl, PredTy, Rsh01, Zero, ISD::SETLT);
2818    SDValue Frc23 = DAG.getNode(ISD::VSELECT, dl, ResTy, Rsn, M7F, Frc02);
2819    Int = DAG.getNode(ISD::VSELECT, dl, ResTy, Neg, Zero, Frc23);
2820  }
2821
2822  return Int;
2823}
2824
2825SDValue
2826HexagonTargetLowering::ExpandHvxIntToFp(SDValue Op, SelectionDAG &DAG) const {
2827  unsigned Opc = Op.getOpcode();
2828  assert(Opc == ISD::SINT_TO_FP || Opc == ISD::UINT_TO_FP);
2829
2830  const SDLoc &dl(Op);
2831  SDValue Op0 = Op.getOperand(0);
2832  MVT InpTy = ty(Op0);
2833  MVT ResTy = ty(Op);
2834  assert(ResTy.changeTypeToInteger() == InpTy);
2835
2836  // uint32_t vnoc1_rnd(int32_t w) {
2837  //   int32_t iszero = w == 0;
2838  //   int32_t isneg = w < 0;
2839  //   uint32_t u = __builtin_HEXAGON_A2_abs(w);
2840  //
2841  //   uint32_t norm_left = __builtin_HEXAGON_S2_cl0(u) + 1;
2842  //   uint32_t frac0 = (uint64_t)u << norm_left;
2843  //
2844  //   // Rounding:
2845  //   uint32_t frac1 = frac0 + ((1 << 8) - 1);
2846  //   uint32_t renorm = (frac0 > frac1);
2847  //   uint32_t rup = (int)(frac0 << 22) < 0;
2848  //
2849  //   uint32_t frac2 = frac0 >> 8;
2850  //   uint32_t frac3 = frac1 >> 8;
2851  //   uint32_t frac = (frac2 != frac3) ? frac3 >> 1 : (frac3 + rup) >> 1;
2852  //
2853  //   int32_t exp = 32 - norm_left + renorm + 127;
2854  //   exp <<= 23;
2855  //
2856  //   uint32_t sign = 0x80000000 * isneg;
2857  //   uint32_t f = sign | exp | frac;
2858  //   return iszero ? 0 : f;
2859  // }
2860
2861  MVT PredTy = MVT::getVectorVT(MVT::i1, InpTy.getVectorElementCount());
2862  bool Signed = Opc == ISD::SINT_TO_FP;
2863
2864  auto [ExpWidth, ExpBias, FracWidth] = getIEEEProperties(ResTy);
2865  unsigned ElemWidth = 1 + ExpWidth + FracWidth;
2866
2867  SDValue Zero = getZero(dl, InpTy, DAG);
2868  SDValue One = DAG.getConstant(1, dl, InpTy);
2869  SDValue IsZero = DAG.getSetCC(dl, PredTy, Op0, Zero, ISD::SETEQ);
2870  SDValue Abs = Signed ? DAG.getNode(ISD::ABS, dl, InpTy, Op0) : Op0;
2871  SDValue Clz = DAG.getNode(ISD::CTLZ, dl, InpTy, Abs);
2872  SDValue NLeft = DAG.getNode(ISD::ADD, dl, InpTy, {Clz, One});
2873  SDValue Frac0 = DAG.getNode(ISD::SHL, dl, InpTy, {Abs, NLeft});
2874
2875  auto [Frac, Ovf] = emitHvxShiftRightRnd(Frac0, ExpWidth + 1, false, DAG);
2876  if (Signed) {
2877    SDValue IsNeg = DAG.getSetCC(dl, PredTy, Op0, Zero, ISD::SETLT);
2878    SDValue M80 = DAG.getConstant(1ull << (ElemWidth - 1), dl, InpTy);
2879    SDValue Sign = DAG.getNode(ISD::VSELECT, dl, InpTy, {IsNeg, M80, Zero});
2880    Frac = DAG.getNode(ISD::OR, dl, InpTy, {Sign, Frac});
2881  }
2882
2883  SDValue Rnrm = DAG.getZExtOrTrunc(Ovf, dl, InpTy);
2884  SDValue Exp0 = DAG.getConstant(ElemWidth + ExpBias, dl, InpTy);
2885  SDValue Exp1 = DAG.getNode(ISD::ADD, dl, InpTy, {Rnrm, Exp0});
2886  SDValue Exp2 = DAG.getNode(ISD::SUB, dl, InpTy, {Exp1, NLeft});
2887  SDValue Exp3 = DAG.getNode(ISD::SHL, dl, InpTy,
2888                             {Exp2, DAG.getConstant(FracWidth, dl, InpTy)});
2889  SDValue Flt0 = DAG.getNode(ISD::OR, dl, InpTy, {Frac, Exp3});
2890  SDValue Flt1 = DAG.getNode(ISD::VSELECT, dl, InpTy, {IsZero, Zero, Flt0});
2891  SDValue Flt = DAG.getBitcast(ResTy, Flt1);
2892
2893  return Flt;
2894}
2895
2896SDValue
2897HexagonTargetLowering::CreateTLWrapper(SDValue Op, SelectionDAG &DAG) const {
2898  unsigned Opc = Op.getOpcode();
2899  unsigned TLOpc;
2900  switch (Opc) {
2901  case ISD::ANY_EXTEND:
2902  case ISD::SIGN_EXTEND:
2903  case ISD::ZERO_EXTEND:
2904    TLOpc = HexagonISD::TL_EXTEND;
2905    break;
2906  case ISD::TRUNCATE:
2907    TLOpc = HexagonISD::TL_TRUNCATE;
2908    break;
2909#ifndef NDEBUG
2910    Op.dump(&DAG);
2911#endif
2912    llvm_unreachable("Unepected operator");
2913  }
2914
2915  const SDLoc &dl(Op);
2916  return DAG.getNode(TLOpc, dl, ty(Op), Op.getOperand(0),
2917                     DAG.getUNDEF(MVT::i128), // illegal type
2918                     DAG.getConstant(Opc, dl, MVT::i32));
2919}
2920
2921SDValue
2922HexagonTargetLowering::RemoveTLWrapper(SDValue Op, SelectionDAG &DAG) const {
2923  assert(Op.getOpcode() == HexagonISD::TL_EXTEND ||
2924         Op.getOpcode() == HexagonISD::TL_TRUNCATE);
2925  unsigned Opc = Op.getConstantOperandVal(2);
2926  return DAG.getNode(Opc, SDLoc(Op), ty(Op), Op.getOperand(0));
2927}
2928
2929HexagonTargetLowering::VectorPair
2930HexagonTargetLowering::SplitVectorOp(SDValue Op, SelectionDAG &DAG) const {
2931  assert(!Op.isMachineOpcode());
2932  SmallVector<SDValue, 2> OpsL, OpsH;
2933  const SDLoc &dl(Op);
2934
2935  auto SplitVTNode = [&DAG, this](const VTSDNode *N) {
2936    MVT Ty = typeSplit(N->getVT().getSimpleVT()).first;
2937    SDValue TV = DAG.getValueType(Ty);
2938    return std::make_pair(TV, TV);
2939  };
2940
2941  for (SDValue A : Op.getNode()->ops()) {
2942    auto [Lo, Hi] =
2943        ty(A).isVector() ? opSplit(A, dl, DAG) : std::make_pair(A, A);
2944    // Special case for type operand.
2945    switch (Op.getOpcode()) {
2946      case ISD::SIGN_EXTEND_INREG:
2947      case HexagonISD::SSAT:
2948      case HexagonISD::USAT:
2949        if (const auto *N = dyn_cast<const VTSDNode>(A.getNode()))
2950          std::tie(Lo, Hi) = SplitVTNode(N);
2951      break;
2952    }
2953    OpsL.push_back(Lo);
2954    OpsH.push_back(Hi);
2955  }
2956
2957  MVT ResTy = ty(Op);
2958  MVT HalfTy = typeSplit(ResTy).first;
2959  SDValue L = DAG.getNode(Op.getOpcode(), dl, HalfTy, OpsL);
2960  SDValue H = DAG.getNode(Op.getOpcode(), dl, HalfTy, OpsH);
2961  return {L, H};
2962}
2963
2964SDValue
2965HexagonTargetLowering::SplitHvxMemOp(SDValue Op, SelectionDAG &DAG) const {
2966  auto *MemN = cast<MemSDNode>(Op.getNode());
2967
2968  MVT MemTy = MemN->getMemoryVT().getSimpleVT();
2969  if (!isHvxPairTy(MemTy))
2970    return Op;
2971
2972  const SDLoc &dl(Op);
2973  unsigned HwLen = Subtarget.getVectorLength();
2974  MVT SingleTy = typeSplit(MemTy).first;
2975  SDValue Chain = MemN->getChain();
2976  SDValue Base0 = MemN->getBasePtr();
2977  SDValue Base1 =
2978      DAG.getMemBasePlusOffset(Base0, TypeSize::getFixed(HwLen), dl);
2979  unsigned MemOpc = MemN->getOpcode();
2980
2981  MachineMemOperand *MOp0 = nullptr, *MOp1 = nullptr;
2982  if (MachineMemOperand *MMO = MemN->getMemOperand()) {
2983    MachineFunction &MF = DAG.getMachineFunction();
2984    uint64_t MemSize = (MemOpc == ISD::MLOAD || MemOpc == ISD::MSTORE)
2985                           ? (uint64_t)MemoryLocation::UnknownSize
2986                           : HwLen;
2987    MOp0 = MF.getMachineMemOperand(MMO, 0, MemSize);
2988    MOp1 = MF.getMachineMemOperand(MMO, HwLen, MemSize);
2989  }
2990
2991  if (MemOpc == ISD::LOAD) {
2992    assert(cast<LoadSDNode>(Op)->isUnindexed());
2993    SDValue Load0 = DAG.getLoad(SingleTy, dl, Chain, Base0, MOp0);
2994    SDValue Load1 = DAG.getLoad(SingleTy, dl, Chain, Base1, MOp1);
2995    return DAG.getMergeValues(
2996        { DAG.getNode(ISD::CONCAT_VECTORS, dl, MemTy, Load0, Load1),
2997          DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2998                      Load0.getValue(1), Load1.getValue(1)) }, dl);
2999  }
3000  if (MemOpc == ISD::STORE) {
3001    assert(cast<StoreSDNode>(Op)->isUnindexed());
3002    VectorPair Vals = opSplit(cast<StoreSDNode>(Op)->getValue(), dl, DAG);
3003    SDValue Store0 = DAG.getStore(Chain, dl, Vals.first, Base0, MOp0);
3004    SDValue Store1 = DAG.getStore(Chain, dl, Vals.second, Base1, MOp1);
3005    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store0, Store1);
3006  }
3007
3008  assert(MemOpc == ISD::MLOAD || MemOpc == ISD::MSTORE);
3009
3010  auto MaskN = cast<MaskedLoadStoreSDNode>(Op);
3011  assert(MaskN->isUnindexed());
3012  VectorPair Masks = opSplit(MaskN->getMask(), dl, DAG);
3013  SDValue Offset = DAG.getUNDEF(MVT::i32);
3014
3015  if (MemOpc == ISD::MLOAD) {
3016    VectorPair Thru =
3017        opSplit(cast<MaskedLoadSDNode>(Op)->getPassThru(), dl, DAG);
3018    SDValue MLoad0 =
3019        DAG.getMaskedLoad(SingleTy, dl, Chain, Base0, Offset, Masks.first,
3020                          Thru.first, SingleTy, MOp0, ISD::UNINDEXED,
3021                          ISD::NON_EXTLOAD, false);
3022    SDValue MLoad1 =
3023        DAG.getMaskedLoad(SingleTy, dl, Chain, Base1, Offset, Masks.second,
3024                          Thru.second, SingleTy, MOp1, ISD::UNINDEXED,
3025                          ISD::NON_EXTLOAD, false);
3026    return DAG.getMergeValues(
3027        { DAG.getNode(ISD::CONCAT_VECTORS, dl, MemTy, MLoad0, MLoad1),
3028          DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3029                      MLoad0.getValue(1), MLoad1.getValue(1)) }, dl);
3030  }
3031  if (MemOpc == ISD::MSTORE) {
3032    VectorPair Vals = opSplit(cast<MaskedStoreSDNode>(Op)->getValue(), dl, DAG);
3033    SDValue MStore0 = DAG.getMaskedStore(Chain, dl, Vals.first, Base0, Offset,
3034                                         Masks.first, SingleTy, MOp0,
3035                                         ISD::UNINDEXED, false, false);
3036    SDValue MStore1 = DAG.getMaskedStore(Chain, dl, Vals.second, Base1, Offset,
3037                                         Masks.second, SingleTy, MOp1,
3038                                         ISD::UNINDEXED, false, false);
3039    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MStore0, MStore1);
3040  }
3041
3042  std::string Name = "Unexpected operation: " + Op->getOperationName(&DAG);
3043  llvm_unreachable(Name.c_str());
3044}
3045
3046SDValue
3047HexagonTargetLowering::WidenHvxLoad(SDValue Op, SelectionDAG &DAG) const {
3048  const SDLoc &dl(Op);
3049  auto *LoadN = cast<LoadSDNode>(Op.getNode());
3050  assert(LoadN->isUnindexed() && "Not widening indexed loads yet");
3051  assert(LoadN->getMemoryVT().getVectorElementType() != MVT::i1 &&
3052         "Not widening loads of i1 yet");
3053
3054  SDValue Chain = LoadN->getChain();
3055  SDValue Base = LoadN->getBasePtr();
3056  SDValue Offset = DAG.getUNDEF(MVT::i32);
3057
3058  MVT ResTy = ty(Op);
3059  unsigned HwLen = Subtarget.getVectorLength();
3060  unsigned ResLen = ResTy.getStoreSize();
3061  assert(ResLen < HwLen && "vsetq(v1) prerequisite");
3062
3063  MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen);
3064  SDValue Mask = getInstr(Hexagon::V6_pred_scalar2, dl, BoolTy,
3065                          {DAG.getConstant(ResLen, dl, MVT::i32)}, DAG);
3066
3067  MVT LoadTy = MVT::getVectorVT(MVT::i8, HwLen);
3068  MachineFunction &MF = DAG.getMachineFunction();
3069  auto *MemOp = MF.getMachineMemOperand(LoadN->getMemOperand(), 0, HwLen);
3070
3071  SDValue Load = DAG.getMaskedLoad(LoadTy, dl, Chain, Base, Offset, Mask,
3072                                   DAG.getUNDEF(LoadTy), LoadTy, MemOp,
3073                                   ISD::UNINDEXED, ISD::NON_EXTLOAD, false);
3074  SDValue Value = opCastElem(Load, ResTy.getVectorElementType(), DAG);
3075  return DAG.getMergeValues({Value, Load.getValue(1)}, dl);
3076}
3077
3078SDValue
3079HexagonTargetLowering::WidenHvxStore(SDValue Op, SelectionDAG &DAG) const {
3080  const SDLoc &dl(Op);
3081  auto *StoreN = cast<StoreSDNode>(Op.getNode());
3082  assert(StoreN->isUnindexed() && "Not widening indexed stores yet");
3083  assert(StoreN->getMemoryVT().getVectorElementType() != MVT::i1 &&
3084         "Not widening stores of i1 yet");
3085
3086  SDValue Chain = StoreN->getChain();
3087  SDValue Base = StoreN->getBasePtr();
3088  SDValue Offset = DAG.getUNDEF(MVT::i32);
3089
3090  SDValue Value = opCastElem(StoreN->getValue(), MVT::i8, DAG);
3091  MVT ValueTy = ty(Value);
3092  unsigned ValueLen = ValueTy.getVectorNumElements();
3093  unsigned HwLen = Subtarget.getVectorLength();
3094  assert(isPowerOf2_32(ValueLen));
3095
3096  for (unsigned Len = ValueLen; Len < HwLen; ) {
3097    Value = opJoin({Value, DAG.getUNDEF(ty(Value))}, dl, DAG);
3098    Len = ty(Value).getVectorNumElements(); // This is Len *= 2
3099  }
3100  assert(ty(Value).getVectorNumElements() == HwLen);  // Paranoia
3101
3102  assert(ValueLen < HwLen && "vsetq(v1) prerequisite");
3103  MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen);
3104  SDValue Mask = getInstr(Hexagon::V6_pred_scalar2, dl, BoolTy,
3105                          {DAG.getConstant(ValueLen, dl, MVT::i32)}, DAG);
3106  MachineFunction &MF = DAG.getMachineFunction();
3107  auto *MemOp = MF.getMachineMemOperand(StoreN->getMemOperand(), 0, HwLen);
3108  return DAG.getMaskedStore(Chain, dl, Value, Base, Offset, Mask, ty(Value),
3109                            MemOp, ISD::UNINDEXED, false, false);
3110}
3111
3112SDValue
3113HexagonTargetLowering::WidenHvxSetCC(SDValue Op, SelectionDAG &DAG) const {
3114  const SDLoc &dl(Op);
3115  SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
3116  MVT ElemTy = ty(Op0).getVectorElementType();
3117  unsigned HwLen = Subtarget.getVectorLength();
3118
3119  unsigned WideOpLen = (8 * HwLen) / ElemTy.getSizeInBits();
3120  assert(WideOpLen * ElemTy.getSizeInBits() == 8 * HwLen);
3121  MVT WideOpTy = MVT::getVectorVT(ElemTy, WideOpLen);
3122  if (!Subtarget.isHVXVectorType(WideOpTy, true))
3123    return SDValue();
3124
3125  SDValue WideOp0 = appendUndef(Op0, WideOpTy, DAG);
3126  SDValue WideOp1 = appendUndef(Op1, WideOpTy, DAG);
3127  EVT ResTy =
3128      getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), WideOpTy);
3129  SDValue SetCC = DAG.getNode(ISD::SETCC, dl, ResTy,
3130                              {WideOp0, WideOp1, Op.getOperand(2)});
3131
3132  EVT RetTy = typeLegalize(ty(Op), DAG);
3133  return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, RetTy,
3134                     {SetCC, getZero(dl, MVT::i32, DAG)});
3135}
3136
3137SDValue
3138HexagonTargetLowering::LowerHvxOperation(SDValue Op, SelectionDAG &DAG) const {
3139  unsigned Opc = Op.getOpcode();
3140  bool IsPairOp = isHvxPairTy(ty(Op)) ||
3141                  llvm::any_of(Op.getNode()->ops(), [this] (SDValue V) {
3142                    return isHvxPairTy(ty(V));
3143                  });
3144
3145  if (IsPairOp) {
3146    switch (Opc) {
3147      default:
3148        break;
3149      case ISD::LOAD:
3150      case ISD::STORE:
3151      case ISD::MLOAD:
3152      case ISD::MSTORE:
3153        return SplitHvxMemOp(Op, DAG);
3154      case ISD::SINT_TO_FP:
3155      case ISD::UINT_TO_FP:
3156      case ISD::FP_TO_SINT:
3157      case ISD::FP_TO_UINT:
3158        if (ty(Op).getSizeInBits() == ty(Op.getOperand(0)).getSizeInBits())
3159          return opJoin(SplitVectorOp(Op, DAG), SDLoc(Op), DAG);
3160        break;
3161      case ISD::ABS:
3162      case ISD::CTPOP:
3163      case ISD::CTLZ:
3164      case ISD::CTTZ:
3165      case ISD::MUL:
3166      case ISD::FADD:
3167      case ISD::FSUB:
3168      case ISD::FMUL:
3169      case ISD::FMINNUM:
3170      case ISD::FMAXNUM:
3171      case ISD::MULHS:
3172      case ISD::MULHU:
3173      case ISD::AND:
3174      case ISD::OR:
3175      case ISD::XOR:
3176      case ISD::SRA:
3177      case ISD::SHL:
3178      case ISD::SRL:
3179      case ISD::FSHL:
3180      case ISD::FSHR:
3181      case ISD::SMIN:
3182      case ISD::SMAX:
3183      case ISD::UMIN:
3184      case ISD::UMAX:
3185      case ISD::SETCC:
3186      case ISD::VSELECT:
3187      case ISD::SIGN_EXTEND_INREG:
3188      case ISD::SPLAT_VECTOR:
3189        return opJoin(SplitVectorOp(Op, DAG), SDLoc(Op), DAG);
3190      case ISD::SIGN_EXTEND:
3191      case ISD::ZERO_EXTEND:
3192        // In general, sign- and zero-extends can't be split and still
3193        // be legal. The only exception is extending bool vectors.
3194        if (ty(Op.getOperand(0)).getVectorElementType() == MVT::i1)
3195          return opJoin(SplitVectorOp(Op, DAG), SDLoc(Op), DAG);
3196        break;
3197    }
3198  }
3199
3200  switch (Opc) {
3201    default:
3202      break;
3203    case ISD::BUILD_VECTOR:            return LowerHvxBuildVector(Op, DAG);
3204    case ISD::SPLAT_VECTOR:            return LowerHvxSplatVector(Op, DAG);
3205    case ISD::CONCAT_VECTORS:          return LowerHvxConcatVectors(Op, DAG);
3206    case ISD::INSERT_SUBVECTOR:        return LowerHvxInsertSubvector(Op, DAG);
3207    case ISD::INSERT_VECTOR_ELT:       return LowerHvxInsertElement(Op, DAG);
3208    case ISD::EXTRACT_SUBVECTOR:       return LowerHvxExtractSubvector(Op, DAG);
3209    case ISD::EXTRACT_VECTOR_ELT:      return LowerHvxExtractElement(Op, DAG);
3210    case ISD::BITCAST:                 return LowerHvxBitcast(Op, DAG);
3211    case ISD::ANY_EXTEND:              return LowerHvxAnyExt(Op, DAG);
3212    case ISD::SIGN_EXTEND:             return LowerHvxSignExt(Op, DAG);
3213    case ISD::ZERO_EXTEND:             return LowerHvxZeroExt(Op, DAG);
3214    case ISD::CTTZ:                    return LowerHvxCttz(Op, DAG);
3215    case ISD::SELECT:                  return LowerHvxSelect(Op, DAG);
3216    case ISD::SRA:
3217    case ISD::SHL:
3218    case ISD::SRL:                     return LowerHvxShift(Op, DAG);
3219    case ISD::FSHL:
3220    case ISD::FSHR:                    return LowerHvxFunnelShift(Op, DAG);
3221    case ISD::MULHS:
3222    case ISD::MULHU:                   return LowerHvxMulh(Op, DAG);
3223    case ISD::SMUL_LOHI:
3224    case ISD::UMUL_LOHI:               return LowerHvxMulLoHi(Op, DAG);
3225    case ISD::ANY_EXTEND_VECTOR_INREG: return LowerHvxExtend(Op, DAG);
3226    case ISD::SETCC:
3227    case ISD::INTRINSIC_VOID:          return Op;
3228    case ISD::INTRINSIC_WO_CHAIN:      return LowerHvxIntrinsic(Op, DAG);
3229    case ISD::MLOAD:
3230    case ISD::MSTORE:                  return LowerHvxMaskedOp(Op, DAG);
3231    // Unaligned loads will be handled by the default lowering.
3232    case ISD::LOAD:                    return SDValue();
3233    case ISD::FP_EXTEND:               return LowerHvxFpExtend(Op, DAG);
3234    case ISD::FP_TO_SINT:
3235    case ISD::FP_TO_UINT:              return LowerHvxFpToInt(Op, DAG);
3236    case ISD::SINT_TO_FP:
3237    case ISD::UINT_TO_FP:              return LowerHvxIntToFp(Op, DAG);
3238
3239    // Special nodes:
3240    case HexagonISD::SMUL_LOHI:
3241    case HexagonISD::UMUL_LOHI:
3242    case HexagonISD::USMUL_LOHI:       return LowerHvxMulLoHi(Op, DAG);
3243  }
3244#ifndef NDEBUG
3245  Op.dumpr(&DAG);
3246#endif
3247  llvm_unreachable("Unhandled HVX operation");
3248}
3249
3250SDValue
3251HexagonTargetLowering::ExpandHvxResizeIntoSteps(SDValue Op, SelectionDAG &DAG)
3252      const {
3253  // Rewrite the extension/truncation/saturation op into steps where each
3254  // step changes the type widths by a factor of 2.
3255  // E.g.  i8 -> i16 remains unchanged, but i8 -> i32  ==>  i8 -> i16 -> i32.
3256  //
3257  // Some of the vector types in Op may not be legal.
3258
3259  unsigned Opc = Op.getOpcode();
3260  switch (Opc) {
3261    case HexagonISD::SSAT:
3262    case HexagonISD::USAT:
3263    case HexagonISD::TL_EXTEND:
3264    case HexagonISD::TL_TRUNCATE:
3265      break;
3266    case ISD::ANY_EXTEND:
3267    case ISD::ZERO_EXTEND:
3268    case ISD::SIGN_EXTEND:
3269    case ISD::TRUNCATE:
3270      llvm_unreachable("ISD:: ops will be auto-folded");
3271      break;
3272#ifndef NDEBUG
3273    Op.dump(&DAG);
3274#endif
3275    llvm_unreachable("Unexpected operation");
3276  }
3277
3278  SDValue Inp = Op.getOperand(0);
3279  MVT InpTy = ty(Inp);
3280  MVT ResTy = ty(Op);
3281
3282  unsigned InpWidth = InpTy.getVectorElementType().getSizeInBits();
3283  unsigned ResWidth = ResTy.getVectorElementType().getSizeInBits();
3284  assert(InpWidth != ResWidth);
3285
3286  if (InpWidth == 2 * ResWidth || ResWidth == 2 * InpWidth)
3287    return Op;
3288
3289  const SDLoc &dl(Op);
3290  unsigned NumElems = InpTy.getVectorNumElements();
3291  assert(NumElems == ResTy.getVectorNumElements());
3292
3293  auto repeatOp = [&](unsigned NewWidth, SDValue Arg) {
3294    MVT Ty = MVT::getVectorVT(MVT::getIntegerVT(NewWidth), NumElems);
3295    switch (Opc) {
3296      case HexagonISD::SSAT:
3297      case HexagonISD::USAT:
3298        return DAG.getNode(Opc, dl, Ty, {Arg, DAG.getValueType(Ty)});
3299      case HexagonISD::TL_EXTEND:
3300      case HexagonISD::TL_TRUNCATE:
3301        return DAG.getNode(Opc, dl, Ty, {Arg, Op.getOperand(1), Op.getOperand(2)});
3302      default:
3303        llvm_unreachable("Unexpected opcode");
3304    }
3305  };
3306
3307  SDValue S = Inp;
3308  if (InpWidth < ResWidth) {
3309    assert(ResWidth % InpWidth == 0 && isPowerOf2_32(ResWidth / InpWidth));
3310    while (InpWidth * 2 <= ResWidth)
3311      S = repeatOp(InpWidth *= 2, S);
3312  } else {
3313    // InpWidth > ResWidth
3314    assert(InpWidth % ResWidth == 0 && isPowerOf2_32(InpWidth / ResWidth));
3315    while (InpWidth / 2 >= ResWidth)
3316      S = repeatOp(InpWidth /= 2, S);
3317  }
3318  return S;
3319}
3320
3321SDValue
3322HexagonTargetLowering::LegalizeHvxResize(SDValue Op, SelectionDAG &DAG) const {
3323  SDValue Inp0 = Op.getOperand(0);
3324  MVT InpTy = ty(Inp0);
3325  MVT ResTy = ty(Op);
3326  unsigned InpWidth = InpTy.getSizeInBits();
3327  unsigned ResWidth = ResTy.getSizeInBits();
3328  unsigned Opc = Op.getOpcode();
3329
3330  if (shouldWidenToHvx(InpTy, DAG) || shouldWidenToHvx(ResTy, DAG)) {
3331    // First, make sure that the narrower type is widened to HVX.
3332    // This may cause the result to be wider than what the legalizer
3333    // expects, so insert EXTRACT_SUBVECTOR to bring it back to the
3334    // desired type.
3335    auto [WInpTy, WResTy] =
3336        InpWidth < ResWidth ? typeWidenToWider(typeWidenToHvx(InpTy), ResTy)
3337                            : typeWidenToWider(InpTy, typeWidenToHvx(ResTy));
3338    SDValue W = appendUndef(Inp0, WInpTy, DAG);
3339    SDValue S;
3340    if (Opc == HexagonISD::TL_EXTEND || Opc == HexagonISD::TL_TRUNCATE) {
3341      S = DAG.getNode(Opc, SDLoc(Op), WResTy, W, Op.getOperand(1),
3342                      Op.getOperand(2));
3343    } else {
3344      S = DAG.getNode(Opc, SDLoc(Op), WResTy, W, DAG.getValueType(WResTy));
3345    }
3346    SDValue T = ExpandHvxResizeIntoSteps(S, DAG);
3347    return extractSubvector(T, typeLegalize(ResTy, DAG), 0, DAG);
3348  } else if (shouldSplitToHvx(InpWidth < ResWidth ? ResTy : InpTy, DAG)) {
3349    return opJoin(SplitVectorOp(Op, DAG), SDLoc(Op), DAG);
3350  } else {
3351    assert(isTypeLegal(InpTy) && isTypeLegal(ResTy));
3352    return RemoveTLWrapper(Op, DAG);
3353  }
3354  llvm_unreachable("Unexpected situation");
3355}
3356
3357void
3358HexagonTargetLowering::LowerHvxOperationWrapper(SDNode *N,
3359      SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
3360  unsigned Opc = N->getOpcode();
3361  SDValue Op(N, 0);
3362  SDValue Inp0;   // Optional first argument.
3363  if (N->getNumOperands() > 0)
3364    Inp0 = Op.getOperand(0);
3365
3366  switch (Opc) {
3367    case ISD::ANY_EXTEND:
3368    case ISD::SIGN_EXTEND:
3369    case ISD::ZERO_EXTEND:
3370    case ISD::TRUNCATE:
3371      if (Subtarget.isHVXElementType(ty(Op)) &&
3372          Subtarget.isHVXElementType(ty(Inp0))) {
3373        Results.push_back(CreateTLWrapper(Op, DAG));
3374      }
3375      break;
3376    case ISD::SETCC:
3377      if (shouldWidenToHvx(ty(Inp0), DAG)) {
3378        if (SDValue T = WidenHvxSetCC(Op, DAG))
3379          Results.push_back(T);
3380      }
3381      break;
3382    case ISD::STORE: {
3383      if (shouldWidenToHvx(ty(cast<StoreSDNode>(N)->getValue()), DAG)) {
3384        SDValue Store = WidenHvxStore(Op, DAG);
3385        Results.push_back(Store);
3386      }
3387      break;
3388    }
3389    case ISD::MLOAD:
3390      if (isHvxPairTy(ty(Op))) {
3391        SDValue S = SplitHvxMemOp(Op, DAG);
3392        assert(S->getOpcode() == ISD::MERGE_VALUES);
3393        Results.push_back(S.getOperand(0));
3394        Results.push_back(S.getOperand(1));
3395      }
3396      break;
3397    case ISD::MSTORE:
3398      if (isHvxPairTy(ty(Op->getOperand(1)))) {    // Stored value
3399        SDValue S = SplitHvxMemOp(Op, DAG);
3400        Results.push_back(S);
3401      }
3402      break;
3403    case ISD::SINT_TO_FP:
3404    case ISD::UINT_TO_FP:
3405    case ISD::FP_TO_SINT:
3406    case ISD::FP_TO_UINT:
3407      if (ty(Op).getSizeInBits() != ty(Inp0).getSizeInBits()) {
3408        SDValue T = EqualizeFpIntConversion(Op, DAG);
3409        Results.push_back(T);
3410      }
3411      break;
3412    case HexagonISD::SSAT:
3413    case HexagonISD::USAT:
3414    case HexagonISD::TL_EXTEND:
3415    case HexagonISD::TL_TRUNCATE:
3416      Results.push_back(LegalizeHvxResize(Op, DAG));
3417      break;
3418    default:
3419      break;
3420  }
3421}
3422
3423void
3424HexagonTargetLowering::ReplaceHvxNodeResults(SDNode *N,
3425      SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
3426  unsigned Opc = N->getOpcode();
3427  SDValue Op(N, 0);
3428  SDValue Inp0;   // Optional first argument.
3429  if (N->getNumOperands() > 0)
3430    Inp0 = Op.getOperand(0);
3431
3432  switch (Opc) {
3433    case ISD::ANY_EXTEND:
3434    case ISD::SIGN_EXTEND:
3435    case ISD::ZERO_EXTEND:
3436    case ISD::TRUNCATE:
3437      if (Subtarget.isHVXElementType(ty(Op)) &&
3438          Subtarget.isHVXElementType(ty(Inp0))) {
3439        Results.push_back(CreateTLWrapper(Op, DAG));
3440      }
3441      break;
3442    case ISD::SETCC:
3443      if (shouldWidenToHvx(ty(Op), DAG)) {
3444        if (SDValue T = WidenHvxSetCC(Op, DAG))
3445          Results.push_back(T);
3446      }
3447      break;
3448    case ISD::LOAD: {
3449      if (shouldWidenToHvx(ty(Op), DAG)) {
3450        SDValue Load = WidenHvxLoad(Op, DAG);
3451        assert(Load->getOpcode() == ISD::MERGE_VALUES);
3452        Results.push_back(Load.getOperand(0));
3453        Results.push_back(Load.getOperand(1));
3454      }
3455      break;
3456    }
3457    case ISD::BITCAST:
3458      if (isHvxBoolTy(ty(Inp0))) {
3459        SDValue C = LowerHvxBitcast(Op, DAG);
3460        Results.push_back(C);
3461      }
3462      break;
3463    case ISD::FP_TO_SINT:
3464    case ISD::FP_TO_UINT:
3465      if (ty(Op).getSizeInBits() != ty(Inp0).getSizeInBits()) {
3466        SDValue T = EqualizeFpIntConversion(Op, DAG);
3467        Results.push_back(T);
3468      }
3469      break;
3470    case HexagonISD::SSAT:
3471    case HexagonISD::USAT:
3472    case HexagonISD::TL_EXTEND:
3473    case HexagonISD::TL_TRUNCATE:
3474      Results.push_back(LegalizeHvxResize(Op, DAG));
3475      break;
3476    default:
3477      break;
3478  }
3479}
3480
3481SDValue
3482HexagonTargetLowering::combineTruncateBeforeLegal(SDValue Op,
3483                                                  DAGCombinerInfo &DCI) const {
3484  // Simplify V:v2NiB --(bitcast)--> vNi2B --(truncate)--> vNiB
3485  // to extract-subvector (shuffle V, pick even, pick odd)
3486
3487  assert(Op.getOpcode() == ISD::TRUNCATE);
3488  SelectionDAG &DAG = DCI.DAG;
3489  const SDLoc &dl(Op);
3490
3491  if (Op.getOperand(0).getOpcode() == ISD::BITCAST)
3492    return SDValue();
3493  SDValue Cast = Op.getOperand(0);
3494  SDValue Src = Cast.getOperand(0);
3495
3496  EVT TruncTy = Op.getValueType();
3497  EVT CastTy = Cast.getValueType();
3498  EVT SrcTy = Src.getValueType();
3499  if (SrcTy.isSimple())
3500    return SDValue();
3501  if (SrcTy.getVectorElementType() != TruncTy.getVectorElementType())
3502    return SDValue();
3503  unsigned SrcLen = SrcTy.getVectorNumElements();
3504  unsigned CastLen = CastTy.getVectorNumElements();
3505  if (2 * CastLen != SrcLen)
3506    return SDValue();
3507
3508  SmallVector<int, 128> Mask(SrcLen);
3509  for (int i = 0; i != static_cast<int>(CastLen); ++i) {
3510    Mask[i] = 2 * i;
3511    Mask[i + CastLen] = 2 * i + 1;
3512  }
3513  SDValue Deal =
3514      DAG.getVectorShuffle(SrcTy, dl, Src, DAG.getUNDEF(SrcTy), Mask);
3515  return opSplit(Deal, dl, DAG).first;
3516}
3517
3518SDValue
3519HexagonTargetLowering::combineConcatVectorsBeforeLegal(
3520    SDValue Op, DAGCombinerInfo &DCI) const {
3521  // Fold
3522  //   concat (shuffle x, y, m1), (shuffle x, y, m2)
3523  // into
3524  //   shuffle (concat x, y), undef, m3
3525  if (Op.getNumOperands() != 2)
3526    return SDValue();
3527
3528  SelectionDAG &DAG = DCI.DAG;
3529  const SDLoc &dl(Op);
3530  SDValue V0 = Op.getOperand(0);
3531  SDValue V1 = Op.getOperand(1);
3532
3533  if (V0.getOpcode() != ISD::VECTOR_SHUFFLE)
3534    return SDValue();
3535  if (V1.getOpcode() != ISD::VECTOR_SHUFFLE)
3536    return SDValue();
3537
3538  SetVector<SDValue> Order;
3539  Order.insert(V0.getOperand(0));
3540  Order.insert(V0.getOperand(1));
3541  Order.insert(V1.getOperand(0));
3542  Order.insert(V1.getOperand(1));
3543
3544  if (Order.size() > 2)
3545    return SDValue();
3546
3547  // In ISD::VECTOR_SHUFFLE, the types of each input and the type of the
3548  // result must be the same.
3549  EVT InpTy = V0.getValueType();
3550  assert(InpTy.isVector());
3551  unsigned InpLen = InpTy.getVectorNumElements();
3552
3553  SmallVector<int, 128> LongMask;
3554  auto AppendToMask = [&](SDValue Shuffle) {
3555    auto *SV = cast<ShuffleVectorSDNode>(Shuffle.getNode());
3556    ArrayRef<int> Mask = SV->getMask();
3557    SDValue X = Shuffle.getOperand(0);
3558    SDValue Y = Shuffle.getOperand(1);
3559    for (int M : Mask) {
3560      if (M == -1) {
3561        LongMask.push_back(M);
3562        continue;
3563      }
3564      SDValue Src = static_cast<unsigned>(M) < InpLen ? X : Y;
3565      if (static_cast<unsigned>(M) >= InpLen)
3566        M -= InpLen;
3567
3568      int OutOffset = Order[0] == Src ? 0 : InpLen;
3569      LongMask.push_back(M + OutOffset);
3570    }
3571  };
3572
3573  AppendToMask(V0);
3574  AppendToMask(V1);
3575
3576  SDValue C0 = Order.front();
3577  SDValue C1 = Order.back();  // Can be same as front
3578  EVT LongTy = InpTy.getDoubleNumVectorElementsVT(*DAG.getContext());
3579
3580  SDValue Cat = DAG.getNode(ISD::CONCAT_VECTORS, dl, LongTy, {C0, C1});
3581  return DAG.getVectorShuffle(LongTy, dl, Cat, DAG.getUNDEF(LongTy), LongMask);
3582}
3583
3584SDValue
3585HexagonTargetLowering::PerformHvxDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
3586      const {
3587  const SDLoc &dl(N);
3588  SelectionDAG &DAG = DCI.DAG;
3589  SDValue Op(N, 0);
3590  unsigned Opc = Op.getOpcode();
3591
3592  SmallVector<SDValue, 4> Ops(N->ops().begin(), N->ops().end());
3593
3594  if (Opc == ISD::TRUNCATE)
3595    return combineTruncateBeforeLegal(Op, DCI);
3596  if (Opc == ISD::CONCAT_VECTORS)
3597    return combineConcatVectorsBeforeLegal(Op, DCI);
3598
3599  if (DCI.isBeforeLegalizeOps())
3600    return SDValue();
3601
3602  switch (Opc) {
3603    case ISD::VSELECT: {
3604      // (vselect (xor x, qtrue), v0, v1) -> (vselect x, v1, v0)
3605      SDValue Cond = Ops[0];
3606      if (Cond->getOpcode() == ISD::XOR) {
3607        SDValue C0 = Cond.getOperand(0), C1 = Cond.getOperand(1);
3608        if (C1->getOpcode() == HexagonISD::QTRUE)
3609          return DAG.getNode(ISD::VSELECT, dl, ty(Op), C0, Ops[2], Ops[1]);
3610      }
3611      break;
3612    }
3613    case HexagonISD::V2Q:
3614      if (Ops[0].getOpcode() == ISD::SPLAT_VECTOR) {
3615        if (const auto *C = dyn_cast<ConstantSDNode>(Ops[0].getOperand(0)))
3616          return C->isZero() ? DAG.getNode(HexagonISD::QFALSE, dl, ty(Op))
3617                             : DAG.getNode(HexagonISD::QTRUE, dl, ty(Op));
3618      }
3619      break;
3620    case HexagonISD::Q2V:
3621      if (Ops[0].getOpcode() == HexagonISD::QTRUE)
3622        return DAG.getNode(ISD::SPLAT_VECTOR, dl, ty(Op),
3623                           DAG.getConstant(-1, dl, MVT::i32));
3624      if (Ops[0].getOpcode() == HexagonISD::QFALSE)
3625        return getZero(dl, ty(Op), DAG);
3626      break;
3627    case HexagonISD::VINSERTW0:
3628      if (isUndef(Ops[1]))
3629        return Ops[0];
3630      break;
3631    case HexagonISD::VROR: {
3632      if (Ops[0].getOpcode() == HexagonISD::VROR) {
3633        SDValue Vec = Ops[0].getOperand(0);
3634        SDValue Rot0 = Ops[1], Rot1 = Ops[0].getOperand(1);
3635        SDValue Rot = DAG.getNode(ISD::ADD, dl, ty(Rot0), {Rot0, Rot1});
3636        return DAG.getNode(HexagonISD::VROR, dl, ty(Op), {Vec, Rot});
3637      }
3638      break;
3639    }
3640  }
3641
3642  return SDValue();
3643}
3644
3645bool
3646HexagonTargetLowering::shouldSplitToHvx(MVT Ty, SelectionDAG &DAG) const {
3647  if (Subtarget.isHVXVectorType(Ty, true))
3648    return false;
3649  auto Action = getPreferredHvxVectorAction(Ty);
3650  if (Action == TargetLoweringBase::TypeSplitVector)
3651    return Subtarget.isHVXVectorType(typeLegalize(Ty, DAG), true);
3652  return false;
3653}
3654
3655bool
3656HexagonTargetLowering::shouldWidenToHvx(MVT Ty, SelectionDAG &DAG) const {
3657  if (Subtarget.isHVXVectorType(Ty, true))
3658    return false;
3659  auto Action = getPreferredHvxVectorAction(Ty);
3660  if (Action == TargetLoweringBase::TypeWidenVector)
3661    return Subtarget.isHVXVectorType(typeLegalize(Ty, DAG), true);
3662  return false;
3663}
3664
3665bool
3666HexagonTargetLowering::isHvxOperation(SDNode *N, SelectionDAG &DAG) const {
3667  if (!Subtarget.useHVXOps())
3668    return false;
3669  // If the type of any result, or any operand type are HVX vector types,
3670  // this is an HVX operation.
3671  auto IsHvxTy = [this](EVT Ty) {
3672    return Ty.isSimple() && Subtarget.isHVXVectorType(Ty.getSimpleVT(), true);
3673  };
3674  auto IsHvxOp = [this](SDValue Op) {
3675    return Op.getValueType().isSimple() &&
3676           Subtarget.isHVXVectorType(ty(Op), true);
3677  };
3678  if (llvm::any_of(N->values(), IsHvxTy) || llvm::any_of(N->ops(), IsHvxOp))
3679    return true;
3680
3681  // Check if this could be an HVX operation after type widening.
3682  auto IsWidenedToHvx = [this, &DAG](SDValue Op) {
3683    if (!Op.getValueType().isSimple())
3684      return false;
3685    MVT ValTy = ty(Op);
3686    return ValTy.isVector() && shouldWidenToHvx(ValTy, DAG);
3687  };
3688
3689  for (int i = 0, e = N->getNumValues(); i != e; ++i) {
3690    if (IsWidenedToHvx(SDValue(N, i)))
3691      return true;
3692  }
3693  return llvm::any_of(N->ops(), IsWidenedToHvx);
3694}
3695