1#include "blake3_impl.h"
2
3#include <immintrin.h>
4
5#define DEGREE 4
6
7#define _mm_shuffle_ps2(a, b, c)                                               \
8  (_mm_castps_si128(                                                           \
9      _mm_shuffle_ps(_mm_castsi128_ps(a), _mm_castsi128_ps(b), (c))))
10
11INLINE __m128i loadu(const uint8_t src[16]) {
12  return _mm_loadu_si128((const __m128i *)src);
13}
14
15INLINE void storeu(__m128i src, uint8_t dest[16]) {
16  _mm_storeu_si128((__m128i *)dest, src);
17}
18
19INLINE __m128i addv(__m128i a, __m128i b) { return _mm_add_epi32(a, b); }
20
21// Note that clang-format doesn't like the name "xor" for some reason.
22INLINE __m128i xorv(__m128i a, __m128i b) { return _mm_xor_si128(a, b); }
23
24INLINE __m128i set1(uint32_t x) { return _mm_set1_epi32((int32_t)x); }
25
26INLINE __m128i set4(uint32_t a, uint32_t b, uint32_t c, uint32_t d) {
27  return _mm_setr_epi32((int32_t)a, (int32_t)b, (int32_t)c, (int32_t)d);
28}
29
30INLINE __m128i rot16(__m128i x) {
31  return _mm_shuffle_epi8(
32      x, _mm_set_epi8(13, 12, 15, 14, 9, 8, 11, 10, 5, 4, 7, 6, 1, 0, 3, 2));
33}
34
35INLINE __m128i rot12(__m128i x) {
36  return xorv(_mm_srli_epi32(x, 12), _mm_slli_epi32(x, 32 - 12));
37}
38
39INLINE __m128i rot8(__m128i x) {
40  return _mm_shuffle_epi8(
41      x, _mm_set_epi8(12, 15, 14, 13, 8, 11, 10, 9, 4, 7, 6, 5, 0, 3, 2, 1));
42}
43
44INLINE __m128i rot7(__m128i x) {
45  return xorv(_mm_srli_epi32(x, 7), _mm_slli_epi32(x, 32 - 7));
46}
47
48INLINE void g1(__m128i *row0, __m128i *row1, __m128i *row2, __m128i *row3,
49               __m128i m) {
50  *row0 = addv(addv(*row0, m), *row1);
51  *row3 = xorv(*row3, *row0);
52  *row3 = rot16(*row3);
53  *row2 = addv(*row2, *row3);
54  *row1 = xorv(*row1, *row2);
55  *row1 = rot12(*row1);
56}
57
58INLINE void g2(__m128i *row0, __m128i *row1, __m128i *row2, __m128i *row3,
59               __m128i m) {
60  *row0 = addv(addv(*row0, m), *row1);
61  *row3 = xorv(*row3, *row0);
62  *row3 = rot8(*row3);
63  *row2 = addv(*row2, *row3);
64  *row1 = xorv(*row1, *row2);
65  *row1 = rot7(*row1);
66}
67
68// Note the optimization here of leaving row1 as the unrotated row, rather than
69// row0. All the message loads below are adjusted to compensate for this. See
70// discussion at https://github.com/sneves/blake2-avx2/pull/4
71INLINE void diagonalize(__m128i *row0, __m128i *row2, __m128i *row3) {
72  *row0 = _mm_shuffle_epi32(*row0, _MM_SHUFFLE(2, 1, 0, 3));
73  *row3 = _mm_shuffle_epi32(*row3, _MM_SHUFFLE(1, 0, 3, 2));
74  *row2 = _mm_shuffle_epi32(*row2, _MM_SHUFFLE(0, 3, 2, 1));
75}
76
77INLINE void undiagonalize(__m128i *row0, __m128i *row2, __m128i *row3) {
78  *row0 = _mm_shuffle_epi32(*row0, _MM_SHUFFLE(0, 3, 2, 1));
79  *row3 = _mm_shuffle_epi32(*row3, _MM_SHUFFLE(1, 0, 3, 2));
80  *row2 = _mm_shuffle_epi32(*row2, _MM_SHUFFLE(2, 1, 0, 3));
81}
82
83INLINE void compress_pre(__m128i rows[4], const uint32_t cv[8],
84                         const uint8_t block[BLAKE3_BLOCK_LEN],
85                         uint8_t block_len, uint64_t counter, uint8_t flags) {
86  rows[0] = loadu((uint8_t *)&cv[0]);
87  rows[1] = loadu((uint8_t *)&cv[4]);
88  rows[2] = set4(IV[0], IV[1], IV[2], IV[3]);
89  rows[3] = set4(counter_low(counter), counter_high(counter),
90                 (uint32_t)block_len, (uint32_t)flags);
91
92  __m128i m0 = loadu(&block[sizeof(__m128i) * 0]);
93  __m128i m1 = loadu(&block[sizeof(__m128i) * 1]);
94  __m128i m2 = loadu(&block[sizeof(__m128i) * 2]);
95  __m128i m3 = loadu(&block[sizeof(__m128i) * 3]);
96
97  __m128i t0, t1, t2, t3, tt;
98
99  // Round 1. The first round permutes the message words from the original
100  // input order, into the groups that get mixed in parallel.
101  t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(2, 0, 2, 0)); //  6  4  2  0
102  g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
103  t1 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 3, 1)); //  7  5  3  1
104  g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
105  diagonalize(&rows[0], &rows[2], &rows[3]);
106  t2 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(2, 0, 2, 0)); // 14 12 10  8
107  t2 = _mm_shuffle_epi32(t2, _MM_SHUFFLE(2, 1, 0, 3));   // 12 10  8 14
108  g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
109  t3 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 1, 3, 1)); // 15 13 11  9
110  t3 = _mm_shuffle_epi32(t3, _MM_SHUFFLE(2, 1, 0, 3));   // 13 11  9 15
111  g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
112  undiagonalize(&rows[0], &rows[2], &rows[3]);
113  m0 = t0;
114  m1 = t1;
115  m2 = t2;
116  m3 = t3;
117
118  // Round 2. This round and all following rounds apply a fixed permutation
119  // to the message words from the round before.
120  t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
121  t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
122  g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
123  t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
124  tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
125  t1 = _mm_blend_epi16(tt, t1, 0xCC);
126  g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
127  diagonalize(&rows[0], &rows[2], &rows[3]);
128  t2 = _mm_unpacklo_epi64(m3, m1);
129  tt = _mm_blend_epi16(t2, m2, 0xC0);
130  t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
131  g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
132  t3 = _mm_unpackhi_epi32(m1, m3);
133  tt = _mm_unpacklo_epi32(m2, t3);
134  t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
135  g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
136  undiagonalize(&rows[0], &rows[2], &rows[3]);
137  m0 = t0;
138  m1 = t1;
139  m2 = t2;
140  m3 = t3;
141
142  // Round 3
143  t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
144  t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
145  g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
146  t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
147  tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
148  t1 = _mm_blend_epi16(tt, t1, 0xCC);
149  g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
150  diagonalize(&rows[0], &rows[2], &rows[3]);
151  t2 = _mm_unpacklo_epi64(m3, m1);
152  tt = _mm_blend_epi16(t2, m2, 0xC0);
153  t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
154  g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
155  t3 = _mm_unpackhi_epi32(m1, m3);
156  tt = _mm_unpacklo_epi32(m2, t3);
157  t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
158  g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
159  undiagonalize(&rows[0], &rows[2], &rows[3]);
160  m0 = t0;
161  m1 = t1;
162  m2 = t2;
163  m3 = t3;
164
165  // Round 4
166  t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
167  t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
168  g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
169  t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
170  tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
171  t1 = _mm_blend_epi16(tt, t1, 0xCC);
172  g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
173  diagonalize(&rows[0], &rows[2], &rows[3]);
174  t2 = _mm_unpacklo_epi64(m3, m1);
175  tt = _mm_blend_epi16(t2, m2, 0xC0);
176  t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
177  g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
178  t3 = _mm_unpackhi_epi32(m1, m3);
179  tt = _mm_unpacklo_epi32(m2, t3);
180  t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
181  g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
182  undiagonalize(&rows[0], &rows[2], &rows[3]);
183  m0 = t0;
184  m1 = t1;
185  m2 = t2;
186  m3 = t3;
187
188  // Round 5
189  t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
190  t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
191  g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
192  t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
193  tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
194  t1 = _mm_blend_epi16(tt, t1, 0xCC);
195  g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
196  diagonalize(&rows[0], &rows[2], &rows[3]);
197  t2 = _mm_unpacklo_epi64(m3, m1);
198  tt = _mm_blend_epi16(t2, m2, 0xC0);
199  t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
200  g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
201  t3 = _mm_unpackhi_epi32(m1, m3);
202  tt = _mm_unpacklo_epi32(m2, t3);
203  t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
204  g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
205  undiagonalize(&rows[0], &rows[2], &rows[3]);
206  m0 = t0;
207  m1 = t1;
208  m2 = t2;
209  m3 = t3;
210
211  // Round 6
212  t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
213  t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
214  g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
215  t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
216  tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
217  t1 = _mm_blend_epi16(tt, t1, 0xCC);
218  g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
219  diagonalize(&rows[0], &rows[2], &rows[3]);
220  t2 = _mm_unpacklo_epi64(m3, m1);
221  tt = _mm_blend_epi16(t2, m2, 0xC0);
222  t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
223  g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
224  t3 = _mm_unpackhi_epi32(m1, m3);
225  tt = _mm_unpacklo_epi32(m2, t3);
226  t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
227  g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
228  undiagonalize(&rows[0], &rows[2], &rows[3]);
229  m0 = t0;
230  m1 = t1;
231  m2 = t2;
232  m3 = t3;
233
234  // Round 7
235  t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
236  t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
237  g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
238  t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
239  tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
240  t1 = _mm_blend_epi16(tt, t1, 0xCC);
241  g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
242  diagonalize(&rows[0], &rows[2], &rows[3]);
243  t2 = _mm_unpacklo_epi64(m3, m1);
244  tt = _mm_blend_epi16(t2, m2, 0xC0);
245  t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
246  g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
247  t3 = _mm_unpackhi_epi32(m1, m3);
248  tt = _mm_unpacklo_epi32(m2, t3);
249  t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
250  g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
251  undiagonalize(&rows[0], &rows[2], &rows[3]);
252}
253
254void blake3_compress_in_place_sse41(uint32_t cv[8],
255                                    const uint8_t block[BLAKE3_BLOCK_LEN],
256                                    uint8_t block_len, uint64_t counter,
257                                    uint8_t flags) {
258  __m128i rows[4];
259  compress_pre(rows, cv, block, block_len, counter, flags);
260  storeu(xorv(rows[0], rows[2]), (uint8_t *)&cv[0]);
261  storeu(xorv(rows[1], rows[3]), (uint8_t *)&cv[4]);
262}
263
264void blake3_compress_xof_sse41(const uint32_t cv[8],
265                               const uint8_t block[BLAKE3_BLOCK_LEN],
266                               uint8_t block_len, uint64_t counter,
267                               uint8_t flags, uint8_t out[64]) {
268  __m128i rows[4];
269  compress_pre(rows, cv, block, block_len, counter, flags);
270  storeu(xorv(rows[0], rows[2]), &out[0]);
271  storeu(xorv(rows[1], rows[3]), &out[16]);
272  storeu(xorv(rows[2], loadu((uint8_t *)&cv[0])), &out[32]);
273  storeu(xorv(rows[3], loadu((uint8_t *)&cv[4])), &out[48]);
274}
275
276INLINE void round_fn(__m128i v[16], __m128i m[16], size_t r) {
277  v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][0]]);
278  v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][2]]);
279  v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][4]]);
280  v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][6]]);
281  v[0] = addv(v[0], v[4]);
282  v[1] = addv(v[1], v[5]);
283  v[2] = addv(v[2], v[6]);
284  v[3] = addv(v[3], v[7]);
285  v[12] = xorv(v[12], v[0]);
286  v[13] = xorv(v[13], v[1]);
287  v[14] = xorv(v[14], v[2]);
288  v[15] = xorv(v[15], v[3]);
289  v[12] = rot16(v[12]);
290  v[13] = rot16(v[13]);
291  v[14] = rot16(v[14]);
292  v[15] = rot16(v[15]);
293  v[8] = addv(v[8], v[12]);
294  v[9] = addv(v[9], v[13]);
295  v[10] = addv(v[10], v[14]);
296  v[11] = addv(v[11], v[15]);
297  v[4] = xorv(v[4], v[8]);
298  v[5] = xorv(v[5], v[9]);
299  v[6] = xorv(v[6], v[10]);
300  v[7] = xorv(v[7], v[11]);
301  v[4] = rot12(v[4]);
302  v[5] = rot12(v[5]);
303  v[6] = rot12(v[6]);
304  v[7] = rot12(v[7]);
305  v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][1]]);
306  v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][3]]);
307  v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][5]]);
308  v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][7]]);
309  v[0] = addv(v[0], v[4]);
310  v[1] = addv(v[1], v[5]);
311  v[2] = addv(v[2], v[6]);
312  v[3] = addv(v[3], v[7]);
313  v[12] = xorv(v[12], v[0]);
314  v[13] = xorv(v[13], v[1]);
315  v[14] = xorv(v[14], v[2]);
316  v[15] = xorv(v[15], v[3]);
317  v[12] = rot8(v[12]);
318  v[13] = rot8(v[13]);
319  v[14] = rot8(v[14]);
320  v[15] = rot8(v[15]);
321  v[8] = addv(v[8], v[12]);
322  v[9] = addv(v[9], v[13]);
323  v[10] = addv(v[10], v[14]);
324  v[11] = addv(v[11], v[15]);
325  v[4] = xorv(v[4], v[8]);
326  v[5] = xorv(v[5], v[9]);
327  v[6] = xorv(v[6], v[10]);
328  v[7] = xorv(v[7], v[11]);
329  v[4] = rot7(v[4]);
330  v[5] = rot7(v[5]);
331  v[6] = rot7(v[6]);
332  v[7] = rot7(v[7]);
333
334  v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][8]]);
335  v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][10]]);
336  v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][12]]);
337  v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][14]]);
338  v[0] = addv(v[0], v[5]);
339  v[1] = addv(v[1], v[6]);
340  v[2] = addv(v[2], v[7]);
341  v[3] = addv(v[3], v[4]);
342  v[15] = xorv(v[15], v[0]);
343  v[12] = xorv(v[12], v[1]);
344  v[13] = xorv(v[13], v[2]);
345  v[14] = xorv(v[14], v[3]);
346  v[15] = rot16(v[15]);
347  v[12] = rot16(v[12]);
348  v[13] = rot16(v[13]);
349  v[14] = rot16(v[14]);
350  v[10] = addv(v[10], v[15]);
351  v[11] = addv(v[11], v[12]);
352  v[8] = addv(v[8], v[13]);
353  v[9] = addv(v[9], v[14]);
354  v[5] = xorv(v[5], v[10]);
355  v[6] = xorv(v[6], v[11]);
356  v[7] = xorv(v[7], v[8]);
357  v[4] = xorv(v[4], v[9]);
358  v[5] = rot12(v[5]);
359  v[6] = rot12(v[6]);
360  v[7] = rot12(v[7]);
361  v[4] = rot12(v[4]);
362  v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][9]]);
363  v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][11]]);
364  v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][13]]);
365  v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][15]]);
366  v[0] = addv(v[0], v[5]);
367  v[1] = addv(v[1], v[6]);
368  v[2] = addv(v[2], v[7]);
369  v[3] = addv(v[3], v[4]);
370  v[15] = xorv(v[15], v[0]);
371  v[12] = xorv(v[12], v[1]);
372  v[13] = xorv(v[13], v[2]);
373  v[14] = xorv(v[14], v[3]);
374  v[15] = rot8(v[15]);
375  v[12] = rot8(v[12]);
376  v[13] = rot8(v[13]);
377  v[14] = rot8(v[14]);
378  v[10] = addv(v[10], v[15]);
379  v[11] = addv(v[11], v[12]);
380  v[8] = addv(v[8], v[13]);
381  v[9] = addv(v[9], v[14]);
382  v[5] = xorv(v[5], v[10]);
383  v[6] = xorv(v[6], v[11]);
384  v[7] = xorv(v[7], v[8]);
385  v[4] = xorv(v[4], v[9]);
386  v[5] = rot7(v[5]);
387  v[6] = rot7(v[6]);
388  v[7] = rot7(v[7]);
389  v[4] = rot7(v[4]);
390}
391
392INLINE void transpose_vecs(__m128i vecs[DEGREE]) {
393  // Interleave 32-bit lates. The low unpack is lanes 00/11 and the high is
394  // 22/33. Note that this doesn't split the vector into two lanes, as the
395  // AVX2 counterparts do.
396  __m128i ab_01 = _mm_unpacklo_epi32(vecs[0], vecs[1]);
397  __m128i ab_23 = _mm_unpackhi_epi32(vecs[0], vecs[1]);
398  __m128i cd_01 = _mm_unpacklo_epi32(vecs[2], vecs[3]);
399  __m128i cd_23 = _mm_unpackhi_epi32(vecs[2], vecs[3]);
400
401  // Interleave 64-bit lanes.
402  __m128i abcd_0 = _mm_unpacklo_epi64(ab_01, cd_01);
403  __m128i abcd_1 = _mm_unpackhi_epi64(ab_01, cd_01);
404  __m128i abcd_2 = _mm_unpacklo_epi64(ab_23, cd_23);
405  __m128i abcd_3 = _mm_unpackhi_epi64(ab_23, cd_23);
406
407  vecs[0] = abcd_0;
408  vecs[1] = abcd_1;
409  vecs[2] = abcd_2;
410  vecs[3] = abcd_3;
411}
412
413INLINE void transpose_msg_vecs(const uint8_t *const *inputs,
414                               size_t block_offset, __m128i out[16]) {
415  out[0] = loadu(&inputs[0][block_offset + 0 * sizeof(__m128i)]);
416  out[1] = loadu(&inputs[1][block_offset + 0 * sizeof(__m128i)]);
417  out[2] = loadu(&inputs[2][block_offset + 0 * sizeof(__m128i)]);
418  out[3] = loadu(&inputs[3][block_offset + 0 * sizeof(__m128i)]);
419  out[4] = loadu(&inputs[0][block_offset + 1 * sizeof(__m128i)]);
420  out[5] = loadu(&inputs[1][block_offset + 1 * sizeof(__m128i)]);
421  out[6] = loadu(&inputs[2][block_offset + 1 * sizeof(__m128i)]);
422  out[7] = loadu(&inputs[3][block_offset + 1 * sizeof(__m128i)]);
423  out[8] = loadu(&inputs[0][block_offset + 2 * sizeof(__m128i)]);
424  out[9] = loadu(&inputs[1][block_offset + 2 * sizeof(__m128i)]);
425  out[10] = loadu(&inputs[2][block_offset + 2 * sizeof(__m128i)]);
426  out[11] = loadu(&inputs[3][block_offset + 2 * sizeof(__m128i)]);
427  out[12] = loadu(&inputs[0][block_offset + 3 * sizeof(__m128i)]);
428  out[13] = loadu(&inputs[1][block_offset + 3 * sizeof(__m128i)]);
429  out[14] = loadu(&inputs[2][block_offset + 3 * sizeof(__m128i)]);
430  out[15] = loadu(&inputs[3][block_offset + 3 * sizeof(__m128i)]);
431  for (size_t i = 0; i < 4; ++i) {
432    _mm_prefetch((const void *)&inputs[i][block_offset + 256], _MM_HINT_T0);
433  }
434  transpose_vecs(&out[0]);
435  transpose_vecs(&out[4]);
436  transpose_vecs(&out[8]);
437  transpose_vecs(&out[12]);
438}
439
440INLINE void load_counters(uint64_t counter, bool increment_counter,
441                          __m128i *out_lo, __m128i *out_hi) {
442  const __m128i mask = _mm_set1_epi32(-(int32_t)increment_counter);
443  const __m128i add0 = _mm_set_epi32(3, 2, 1, 0);
444  const __m128i add1 = _mm_and_si128(mask, add0);
445  __m128i l = _mm_add_epi32(_mm_set1_epi32((int32_t)counter), add1);
446  __m128i carry = _mm_cmpgt_epi32(_mm_xor_si128(add1, _mm_set1_epi32(0x80000000)),
447                                  _mm_xor_si128(   l, _mm_set1_epi32(0x80000000)));
448  __m128i h = _mm_sub_epi32(_mm_set1_epi32((int32_t)(counter >> 32)), carry);
449  *out_lo = l;
450  *out_hi = h;
451}
452
453static
454void blake3_hash4_sse41(const uint8_t *const *inputs, size_t blocks,
455                        const uint32_t key[8], uint64_t counter,
456                        bool increment_counter, uint8_t flags,
457                        uint8_t flags_start, uint8_t flags_end, uint8_t *out) {
458  __m128i h_vecs[8] = {
459      set1(key[0]), set1(key[1]), set1(key[2]), set1(key[3]),
460      set1(key[4]), set1(key[5]), set1(key[6]), set1(key[7]),
461  };
462  __m128i counter_low_vec, counter_high_vec;
463  load_counters(counter, increment_counter, &counter_low_vec,
464                &counter_high_vec);
465  uint8_t block_flags = flags | flags_start;
466
467  for (size_t block = 0; block < blocks; block++) {
468    if (block + 1 == blocks) {
469      block_flags |= flags_end;
470    }
471    __m128i block_len_vec = set1(BLAKE3_BLOCK_LEN);
472    __m128i block_flags_vec = set1(block_flags);
473    __m128i msg_vecs[16];
474    transpose_msg_vecs(inputs, block * BLAKE3_BLOCK_LEN, msg_vecs);
475
476    __m128i v[16] = {
477        h_vecs[0],       h_vecs[1],        h_vecs[2],     h_vecs[3],
478        h_vecs[4],       h_vecs[5],        h_vecs[6],     h_vecs[7],
479        set1(IV[0]),     set1(IV[1]),      set1(IV[2]),   set1(IV[3]),
480        counter_low_vec, counter_high_vec, block_len_vec, block_flags_vec,
481    };
482    round_fn(v, msg_vecs, 0);
483    round_fn(v, msg_vecs, 1);
484    round_fn(v, msg_vecs, 2);
485    round_fn(v, msg_vecs, 3);
486    round_fn(v, msg_vecs, 4);
487    round_fn(v, msg_vecs, 5);
488    round_fn(v, msg_vecs, 6);
489    h_vecs[0] = xorv(v[0], v[8]);
490    h_vecs[1] = xorv(v[1], v[9]);
491    h_vecs[2] = xorv(v[2], v[10]);
492    h_vecs[3] = xorv(v[3], v[11]);
493    h_vecs[4] = xorv(v[4], v[12]);
494    h_vecs[5] = xorv(v[5], v[13]);
495    h_vecs[6] = xorv(v[6], v[14]);
496    h_vecs[7] = xorv(v[7], v[15]);
497
498    block_flags = flags;
499  }
500
501  transpose_vecs(&h_vecs[0]);
502  transpose_vecs(&h_vecs[4]);
503  // The first four vecs now contain the first half of each output, and the
504  // second four vecs contain the second half of each output.
505  storeu(h_vecs[0], &out[0 * sizeof(__m128i)]);
506  storeu(h_vecs[4], &out[1 * sizeof(__m128i)]);
507  storeu(h_vecs[1], &out[2 * sizeof(__m128i)]);
508  storeu(h_vecs[5], &out[3 * sizeof(__m128i)]);
509  storeu(h_vecs[2], &out[4 * sizeof(__m128i)]);
510  storeu(h_vecs[6], &out[5 * sizeof(__m128i)]);
511  storeu(h_vecs[3], &out[6 * sizeof(__m128i)]);
512  storeu(h_vecs[7], &out[7 * sizeof(__m128i)]);
513}
514
515INLINE void hash_one_sse41(const uint8_t *input, size_t blocks,
516                           const uint32_t key[8], uint64_t counter,
517                           uint8_t flags, uint8_t flags_start,
518                           uint8_t flags_end, uint8_t out[BLAKE3_OUT_LEN]) {
519  uint32_t cv[8];
520  memcpy(cv, key, BLAKE3_KEY_LEN);
521  uint8_t block_flags = flags | flags_start;
522  while (blocks > 0) {
523    if (blocks == 1) {
524      block_flags |= flags_end;
525    }
526    blake3_compress_in_place_sse41(cv, input, BLAKE3_BLOCK_LEN, counter,
527                                   block_flags);
528    input = &input[BLAKE3_BLOCK_LEN];
529    blocks -= 1;
530    block_flags = flags;
531  }
532  memcpy(out, cv, BLAKE3_OUT_LEN);
533}
534
535void blake3_hash_many_sse41(const uint8_t *const *inputs, size_t num_inputs,
536                            size_t blocks, const uint32_t key[8],
537                            uint64_t counter, bool increment_counter,
538                            uint8_t flags, uint8_t flags_start,
539                            uint8_t flags_end, uint8_t *out) {
540  while (num_inputs >= DEGREE) {
541    blake3_hash4_sse41(inputs, blocks, key, counter, increment_counter, flags,
542                       flags_start, flags_end, out);
543    if (increment_counter) {
544      counter += DEGREE;
545    }
546    inputs += DEGREE;
547    num_inputs -= DEGREE;
548    out = &out[DEGREE * BLAKE3_OUT_LEN];
549  }
550  while (num_inputs > 0) {
551    hash_one_sse41(inputs[0], blocks, key, counter, flags, flags_start,
552                   flags_end, out);
553    if (increment_counter) {
554      counter += 1;
555    }
556    inputs += 1;
557    num_inputs -= 1;
558    out = &out[BLAKE3_OUT_LEN];
559  }
560}
561