1//===- MCExpr.cpp - Assembly Level Expression Implementation --------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "llvm/MC/MCExpr.h"
10#include "llvm/ADT/Statistic.h"
11#include "llvm/ADT/StringSwitch.h"
12#include "llvm/Config/llvm-config.h"
13#include "llvm/MC/MCAsmBackend.h"
14#include "llvm/MC/MCAsmInfo.h"
15#include "llvm/MC/MCAsmLayout.h"
16#include "llvm/MC/MCAssembler.h"
17#include "llvm/MC/MCContext.h"
18#include "llvm/MC/MCObjectWriter.h"
19#include "llvm/MC/MCSymbol.h"
20#include "llvm/MC/MCValue.h"
21#include "llvm/Support/Casting.h"
22#include "llvm/Support/Compiler.h"
23#include "llvm/Support/Debug.h"
24#include "llvm/Support/ErrorHandling.h"
25#include "llvm/Support/raw_ostream.h"
26#include <cassert>
27#include <cstdint>
28
29using namespace llvm;
30
31#define DEBUG_TYPE "mcexpr"
32
33namespace {
34namespace stats {
35
36STATISTIC(MCExprEvaluate, "Number of MCExpr evaluations");
37
38} // end namespace stats
39} // end anonymous namespace
40
41void MCExpr::print(raw_ostream &OS, const MCAsmInfo *MAI, bool InParens) const {
42  switch (getKind()) {
43  case MCExpr::Target:
44    return cast<MCTargetExpr>(this)->printImpl(OS, MAI);
45  case MCExpr::Constant: {
46    auto Value = cast<MCConstantExpr>(*this).getValue();
47    auto PrintInHex = cast<MCConstantExpr>(*this).useHexFormat();
48    auto SizeInBytes = cast<MCConstantExpr>(*this).getSizeInBytes();
49    if (Value < 0 && MAI && !MAI->supportsSignedData())
50      PrintInHex = true;
51    if (PrintInHex)
52      switch (SizeInBytes) {
53      default:
54        OS << "0x" << Twine::utohexstr(Value);
55        break;
56      case 1:
57        OS << format("0x%02" PRIx64, Value);
58        break;
59      case 2:
60        OS << format("0x%04" PRIx64, Value);
61        break;
62      case 4:
63        OS << format("0x%08" PRIx64, Value);
64        break;
65      case 8:
66        OS << format("0x%016" PRIx64, Value);
67        break;
68      }
69    else
70      OS << Value;
71    return;
72  }
73  case MCExpr::SymbolRef: {
74    const MCSymbolRefExpr &SRE = cast<MCSymbolRefExpr>(*this);
75    const MCSymbol &Sym = SRE.getSymbol();
76    // Parenthesize names that start with $ so that they don't look like
77    // absolute names.
78    bool UseParens = MAI && MAI->useParensForDollarSignNames() && !InParens &&
79                     !Sym.getName().empty() && Sym.getName()[0] == '$';
80
81    if (UseParens) {
82      OS << '(';
83      Sym.print(OS, MAI);
84      OS << ')';
85    } else
86      Sym.print(OS, MAI);
87
88    const MCSymbolRefExpr::VariantKind Kind = SRE.getKind();
89    if (Kind != MCSymbolRefExpr::VK_None) {
90      if (MAI && MAI->useParensForSymbolVariant()) // ARM
91        OS << '(' << MCSymbolRefExpr::getVariantKindName(Kind) << ')';
92      else
93        OS << '@' << MCSymbolRefExpr::getVariantKindName(Kind);
94    }
95
96    return;
97  }
98
99  case MCExpr::Unary: {
100    const MCUnaryExpr &UE = cast<MCUnaryExpr>(*this);
101    switch (UE.getOpcode()) {
102    case MCUnaryExpr::LNot:  OS << '!'; break;
103    case MCUnaryExpr::Minus: OS << '-'; break;
104    case MCUnaryExpr::Not:   OS << '~'; break;
105    case MCUnaryExpr::Plus:  OS << '+'; break;
106    }
107    bool Binary = UE.getSubExpr()->getKind() == MCExpr::Binary;
108    if (Binary) OS << "(";
109    UE.getSubExpr()->print(OS, MAI);
110    if (Binary) OS << ")";
111    return;
112  }
113
114  case MCExpr::Binary: {
115    const MCBinaryExpr &BE = cast<MCBinaryExpr>(*this);
116
117    // Only print parens around the LHS if it is non-trivial.
118    if (isa<MCConstantExpr>(BE.getLHS()) || isa<MCSymbolRefExpr>(BE.getLHS())) {
119      BE.getLHS()->print(OS, MAI);
120    } else {
121      OS << '(';
122      BE.getLHS()->print(OS, MAI);
123      OS << ')';
124    }
125
126    switch (BE.getOpcode()) {
127    case MCBinaryExpr::Add:
128      // Print "X-42" instead of "X+-42".
129      if (const MCConstantExpr *RHSC = dyn_cast<MCConstantExpr>(BE.getRHS())) {
130        if (RHSC->getValue() < 0) {
131          OS << RHSC->getValue();
132          return;
133        }
134      }
135
136      OS <<  '+';
137      break;
138    case MCBinaryExpr::AShr: OS << ">>"; break;
139    case MCBinaryExpr::And:  OS <<  '&'; break;
140    case MCBinaryExpr::Div:  OS <<  '/'; break;
141    case MCBinaryExpr::EQ:   OS << "=="; break;
142    case MCBinaryExpr::GT:   OS <<  '>'; break;
143    case MCBinaryExpr::GTE:  OS << ">="; break;
144    case MCBinaryExpr::LAnd: OS << "&&"; break;
145    case MCBinaryExpr::LOr:  OS << "||"; break;
146    case MCBinaryExpr::LShr: OS << ">>"; break;
147    case MCBinaryExpr::LT:   OS <<  '<'; break;
148    case MCBinaryExpr::LTE:  OS << "<="; break;
149    case MCBinaryExpr::Mod:  OS <<  '%'; break;
150    case MCBinaryExpr::Mul:  OS <<  '*'; break;
151    case MCBinaryExpr::NE:   OS << "!="; break;
152    case MCBinaryExpr::Or:   OS <<  '|'; break;
153    case MCBinaryExpr::OrNot: OS << '!'; break;
154    case MCBinaryExpr::Shl:  OS << "<<"; break;
155    case MCBinaryExpr::Sub:  OS <<  '-'; break;
156    case MCBinaryExpr::Xor:  OS <<  '^'; break;
157    }
158
159    // Only print parens around the LHS if it is non-trivial.
160    if (isa<MCConstantExpr>(BE.getRHS()) || isa<MCSymbolRefExpr>(BE.getRHS())) {
161      BE.getRHS()->print(OS, MAI);
162    } else {
163      OS << '(';
164      BE.getRHS()->print(OS, MAI);
165      OS << ')';
166    }
167    return;
168  }
169  }
170
171  llvm_unreachable("Invalid expression kind!");
172}
173
174#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
175LLVM_DUMP_METHOD void MCExpr::dump() const {
176  dbgs() << *this;
177  dbgs() << '\n';
178}
179#endif
180
181/* *** */
182
183const MCBinaryExpr *MCBinaryExpr::create(Opcode Opc, const MCExpr *LHS,
184                                         const MCExpr *RHS, MCContext &Ctx,
185                                         SMLoc Loc) {
186  return new (Ctx) MCBinaryExpr(Opc, LHS, RHS, Loc);
187}
188
189const MCUnaryExpr *MCUnaryExpr::create(Opcode Opc, const MCExpr *Expr,
190                                       MCContext &Ctx, SMLoc Loc) {
191  return new (Ctx) MCUnaryExpr(Opc, Expr, Loc);
192}
193
194const MCConstantExpr *MCConstantExpr::create(int64_t Value, MCContext &Ctx,
195                                             bool PrintInHex,
196                                             unsigned SizeInBytes) {
197  return new (Ctx) MCConstantExpr(Value, PrintInHex, SizeInBytes);
198}
199
200/* *** */
201
202MCSymbolRefExpr::MCSymbolRefExpr(const MCSymbol *Symbol, VariantKind Kind,
203                                 const MCAsmInfo *MAI, SMLoc Loc)
204    : MCExpr(MCExpr::SymbolRef, Loc,
205             encodeSubclassData(Kind, MAI->hasSubsectionsViaSymbols())),
206      Symbol(Symbol) {
207  assert(Symbol);
208}
209
210const MCSymbolRefExpr *MCSymbolRefExpr::create(const MCSymbol *Sym,
211                                               VariantKind Kind,
212                                               MCContext &Ctx, SMLoc Loc) {
213  return new (Ctx) MCSymbolRefExpr(Sym, Kind, Ctx.getAsmInfo(), Loc);
214}
215
216const MCSymbolRefExpr *MCSymbolRefExpr::create(StringRef Name, VariantKind Kind,
217                                               MCContext &Ctx) {
218  return create(Ctx.getOrCreateSymbol(Name), Kind, Ctx);
219}
220
221StringRef MCSymbolRefExpr::getVariantKindName(VariantKind Kind) {
222  switch (Kind) {
223  case VK_Invalid: return "<<invalid>>";
224  case VK_None: return "<<none>>";
225
226  case VK_DTPOFF: return "DTPOFF";
227  case VK_DTPREL: return "DTPREL";
228  case VK_GOT: return "GOT";
229  case VK_GOTOFF: return "GOTOFF";
230  case VK_GOTREL: return "GOTREL";
231  case VK_PCREL: return "PCREL";
232  case VK_GOTPCREL: return "GOTPCREL";
233  case VK_GOTPCREL_NORELAX: return "GOTPCREL_NORELAX";
234  case VK_GOTTPOFF: return "GOTTPOFF";
235  case VK_INDNTPOFF: return "INDNTPOFF";
236  case VK_NTPOFF: return "NTPOFF";
237  case VK_GOTNTPOFF: return "GOTNTPOFF";
238  case VK_PLT: return "PLT";
239  case VK_TLSGD: return "TLSGD";
240  case VK_TLSLD: return "TLSLD";
241  case VK_TLSLDM: return "TLSLDM";
242  case VK_TPOFF: return "TPOFF";
243  case VK_TPREL: return "TPREL";
244  case VK_TLSCALL: return "tlscall";
245  case VK_TLSDESC: return "tlsdesc";
246  case VK_TLVP: return "TLVP";
247  case VK_TLVPPAGE: return "TLVPPAGE";
248  case VK_TLVPPAGEOFF: return "TLVPPAGEOFF";
249  case VK_PAGE: return "PAGE";
250  case VK_PAGEOFF: return "PAGEOFF";
251  case VK_GOTPAGE: return "GOTPAGE";
252  case VK_GOTPAGEOFF: return "GOTPAGEOFF";
253  case VK_SECREL: return "SECREL32";
254  case VK_SIZE: return "SIZE";
255  case VK_WEAKREF: return "WEAKREF";
256  case VK_X86_ABS8: return "ABS8";
257  case VK_X86_PLTOFF: return "PLTOFF";
258  case VK_ARM_NONE: return "none";
259  case VK_ARM_GOT_PREL: return "GOT_PREL";
260  case VK_ARM_TARGET1: return "target1";
261  case VK_ARM_TARGET2: return "target2";
262  case VK_ARM_PREL31: return "prel31";
263  case VK_ARM_SBREL: return "sbrel";
264  case VK_ARM_TLSLDO: return "tlsldo";
265  case VK_ARM_TLSDESCSEQ: return "tlsdescseq";
266  case VK_AVR_NONE: return "none";
267  case VK_AVR_LO8: return "lo8";
268  case VK_AVR_HI8: return "hi8";
269  case VK_AVR_HLO8: return "hlo8";
270  case VK_AVR_DIFF8: return "diff8";
271  case VK_AVR_DIFF16: return "diff16";
272  case VK_AVR_DIFF32: return "diff32";
273  case VK_AVR_PM: return "pm";
274  case VK_PPC_LO: return "l";
275  case VK_PPC_HI: return "h";
276  case VK_PPC_HA: return "ha";
277  case VK_PPC_HIGH: return "high";
278  case VK_PPC_HIGHA: return "higha";
279  case VK_PPC_HIGHER: return "higher";
280  case VK_PPC_HIGHERA: return "highera";
281  case VK_PPC_HIGHEST: return "highest";
282  case VK_PPC_HIGHESTA: return "highesta";
283  case VK_PPC_GOT_LO: return "got@l";
284  case VK_PPC_GOT_HI: return "got@h";
285  case VK_PPC_GOT_HA: return "got@ha";
286  case VK_PPC_TOCBASE: return "tocbase";
287  case VK_PPC_TOC: return "toc";
288  case VK_PPC_TOC_LO: return "toc@l";
289  case VK_PPC_TOC_HI: return "toc@h";
290  case VK_PPC_TOC_HA: return "toc@ha";
291  case VK_PPC_U: return "u";
292  case VK_PPC_L: return "l";
293  case VK_PPC_DTPMOD: return "dtpmod";
294  case VK_PPC_TPREL_LO: return "tprel@l";
295  case VK_PPC_TPREL_HI: return "tprel@h";
296  case VK_PPC_TPREL_HA: return "tprel@ha";
297  case VK_PPC_TPREL_HIGH: return "tprel@high";
298  case VK_PPC_TPREL_HIGHA: return "tprel@higha";
299  case VK_PPC_TPREL_HIGHER: return "tprel@higher";
300  case VK_PPC_TPREL_HIGHERA: return "tprel@highera";
301  case VK_PPC_TPREL_HIGHEST: return "tprel@highest";
302  case VK_PPC_TPREL_HIGHESTA: return "tprel@highesta";
303  case VK_PPC_DTPREL_LO: return "dtprel@l";
304  case VK_PPC_DTPREL_HI: return "dtprel@h";
305  case VK_PPC_DTPREL_HA: return "dtprel@ha";
306  case VK_PPC_DTPREL_HIGH: return "dtprel@high";
307  case VK_PPC_DTPREL_HIGHA: return "dtprel@higha";
308  case VK_PPC_DTPREL_HIGHER: return "dtprel@higher";
309  case VK_PPC_DTPREL_HIGHERA: return "dtprel@highera";
310  case VK_PPC_DTPREL_HIGHEST: return "dtprel@highest";
311  case VK_PPC_DTPREL_HIGHESTA: return "dtprel@highesta";
312  case VK_PPC_GOT_TPREL: return "got@tprel";
313  case VK_PPC_GOT_TPREL_LO: return "got@tprel@l";
314  case VK_PPC_GOT_TPREL_HI: return "got@tprel@h";
315  case VK_PPC_GOT_TPREL_HA: return "got@tprel@ha";
316  case VK_PPC_GOT_DTPREL: return "got@dtprel";
317  case VK_PPC_GOT_DTPREL_LO: return "got@dtprel@l";
318  case VK_PPC_GOT_DTPREL_HI: return "got@dtprel@h";
319  case VK_PPC_GOT_DTPREL_HA: return "got@dtprel@ha";
320  case VK_PPC_TLS: return "tls";
321  case VK_PPC_GOT_TLSGD: return "got@tlsgd";
322  case VK_PPC_GOT_TLSGD_LO: return "got@tlsgd@l";
323  case VK_PPC_GOT_TLSGD_HI: return "got@tlsgd@h";
324  case VK_PPC_GOT_TLSGD_HA: return "got@tlsgd@ha";
325  case VK_PPC_TLSGD: return "tlsgd";
326  case VK_PPC_AIX_TLSGD:
327    return "gd";
328  case VK_PPC_AIX_TLSGDM:
329    return "m";
330  case VK_PPC_AIX_TLSIE:
331    return "ie";
332  case VK_PPC_AIX_TLSLE:
333    return "le";
334  case VK_PPC_GOT_TLSLD: return "got@tlsld";
335  case VK_PPC_GOT_TLSLD_LO: return "got@tlsld@l";
336  case VK_PPC_GOT_TLSLD_HI: return "got@tlsld@h";
337  case VK_PPC_GOT_TLSLD_HA: return "got@tlsld@ha";
338  case VK_PPC_GOT_PCREL:
339    return "got@pcrel";
340  case VK_PPC_GOT_TLSGD_PCREL:
341    return "got@tlsgd@pcrel";
342  case VK_PPC_GOT_TLSLD_PCREL:
343    return "got@tlsld@pcrel";
344  case VK_PPC_GOT_TPREL_PCREL:
345    return "got@tprel@pcrel";
346  case VK_PPC_TLS_PCREL:
347    return "tls@pcrel";
348  case VK_PPC_TLSLD: return "tlsld";
349  case VK_PPC_LOCAL: return "local";
350  case VK_PPC_NOTOC: return "notoc";
351  case VK_PPC_PCREL_OPT: return "<<invalid>>";
352  case VK_COFF_IMGREL32: return "IMGREL";
353  case VK_Hexagon_LO16: return "LO16";
354  case VK_Hexagon_HI16: return "HI16";
355  case VK_Hexagon_GPREL: return "GPREL";
356  case VK_Hexagon_GD_GOT: return "GDGOT";
357  case VK_Hexagon_LD_GOT: return "LDGOT";
358  case VK_Hexagon_GD_PLT: return "GDPLT";
359  case VK_Hexagon_LD_PLT: return "LDPLT";
360  case VK_Hexagon_IE: return "IE";
361  case VK_Hexagon_IE_GOT: return "IEGOT";
362  case VK_WASM_TYPEINDEX: return "TYPEINDEX";
363  case VK_WASM_MBREL: return "MBREL";
364  case VK_WASM_TLSREL: return "TLSREL";
365  case VK_WASM_TBREL: return "TBREL";
366  case VK_WASM_GOT_TLS: return "GOT@TLS";
367  case VK_WASM_FUNCINDEX: return "FUNCINDEX";
368  case VK_AMDGPU_GOTPCREL32_LO: return "gotpcrel32@lo";
369  case VK_AMDGPU_GOTPCREL32_HI: return "gotpcrel32@hi";
370  case VK_AMDGPU_REL32_LO: return "rel32@lo";
371  case VK_AMDGPU_REL32_HI: return "rel32@hi";
372  case VK_AMDGPU_REL64: return "rel64";
373  case VK_AMDGPU_ABS32_LO: return "abs32@lo";
374  case VK_AMDGPU_ABS32_HI: return "abs32@hi";
375  case VK_VE_HI32: return "hi";
376  case VK_VE_LO32: return "lo";
377  case VK_VE_PC_HI32: return "pc_hi";
378  case VK_VE_PC_LO32: return "pc_lo";
379  case VK_VE_GOT_HI32: return "got_hi";
380  case VK_VE_GOT_LO32: return "got_lo";
381  case VK_VE_GOTOFF_HI32: return "gotoff_hi";
382  case VK_VE_GOTOFF_LO32: return "gotoff_lo";
383  case VK_VE_PLT_HI32: return "plt_hi";
384  case VK_VE_PLT_LO32: return "plt_lo";
385  case VK_VE_TLS_GD_HI32: return "tls_gd_hi";
386  case VK_VE_TLS_GD_LO32: return "tls_gd_lo";
387  case VK_VE_TPOFF_HI32: return "tpoff_hi";
388  case VK_VE_TPOFF_LO32: return "tpoff_lo";
389  }
390  llvm_unreachable("Invalid variant kind");
391}
392
393MCSymbolRefExpr::VariantKind
394MCSymbolRefExpr::getVariantKindForName(StringRef Name) {
395  return StringSwitch<VariantKind>(Name.lower())
396    .Case("dtprel", VK_DTPREL)
397    .Case("dtpoff", VK_DTPOFF)
398    .Case("got", VK_GOT)
399    .Case("gotoff", VK_GOTOFF)
400    .Case("gotrel", VK_GOTREL)
401    .Case("pcrel", VK_PCREL)
402    .Case("gotpcrel", VK_GOTPCREL)
403    .Case("gotpcrel_norelax", VK_GOTPCREL_NORELAX)
404    .Case("gottpoff", VK_GOTTPOFF)
405    .Case("indntpoff", VK_INDNTPOFF)
406    .Case("ntpoff", VK_NTPOFF)
407    .Case("gotntpoff", VK_GOTNTPOFF)
408    .Case("plt", VK_PLT)
409    .Case("tlscall", VK_TLSCALL)
410    .Case("tlsdesc", VK_TLSDESC)
411    .Case("tlsgd", VK_TLSGD)
412    .Case("tlsld", VK_TLSLD)
413    .Case("tlsldm", VK_TLSLDM)
414    .Case("tpoff", VK_TPOFF)
415    .Case("tprel", VK_TPREL)
416    .Case("tlvp", VK_TLVP)
417    .Case("tlvppage", VK_TLVPPAGE)
418    .Case("tlvppageoff", VK_TLVPPAGEOFF)
419    .Case("page", VK_PAGE)
420    .Case("pageoff", VK_PAGEOFF)
421    .Case("gotpage", VK_GOTPAGE)
422    .Case("gotpageoff", VK_GOTPAGEOFF)
423    .Case("imgrel", VK_COFF_IMGREL32)
424    .Case("secrel32", VK_SECREL)
425    .Case("size", VK_SIZE)
426    .Case("abs8", VK_X86_ABS8)
427    .Case("pltoff", VK_X86_PLTOFF)
428    .Case("l", VK_PPC_LO)
429    .Case("h", VK_PPC_HI)
430    .Case("ha", VK_PPC_HA)
431    .Case("high", VK_PPC_HIGH)
432    .Case("higha", VK_PPC_HIGHA)
433    .Case("higher", VK_PPC_HIGHER)
434    .Case("highera", VK_PPC_HIGHERA)
435    .Case("highest", VK_PPC_HIGHEST)
436    .Case("highesta", VK_PPC_HIGHESTA)
437    .Case("got@l", VK_PPC_GOT_LO)
438    .Case("got@h", VK_PPC_GOT_HI)
439    .Case("got@ha", VK_PPC_GOT_HA)
440    .Case("local", VK_PPC_LOCAL)
441    .Case("tocbase", VK_PPC_TOCBASE)
442    .Case("toc", VK_PPC_TOC)
443    .Case("toc@l", VK_PPC_TOC_LO)
444    .Case("toc@h", VK_PPC_TOC_HI)
445    .Case("toc@ha", VK_PPC_TOC_HA)
446    .Case("u", VK_PPC_U)
447    .Case("l", VK_PPC_L)
448    .Case("tls", VK_PPC_TLS)
449    .Case("dtpmod", VK_PPC_DTPMOD)
450    .Case("tprel@l", VK_PPC_TPREL_LO)
451    .Case("tprel@h", VK_PPC_TPREL_HI)
452    .Case("tprel@ha", VK_PPC_TPREL_HA)
453    .Case("tprel@high", VK_PPC_TPREL_HIGH)
454    .Case("tprel@higha", VK_PPC_TPREL_HIGHA)
455    .Case("tprel@higher", VK_PPC_TPREL_HIGHER)
456    .Case("tprel@highera", VK_PPC_TPREL_HIGHERA)
457    .Case("tprel@highest", VK_PPC_TPREL_HIGHEST)
458    .Case("tprel@highesta", VK_PPC_TPREL_HIGHESTA)
459    .Case("dtprel@l", VK_PPC_DTPREL_LO)
460    .Case("dtprel@h", VK_PPC_DTPREL_HI)
461    .Case("dtprel@ha", VK_PPC_DTPREL_HA)
462    .Case("dtprel@high", VK_PPC_DTPREL_HIGH)
463    .Case("dtprel@higha", VK_PPC_DTPREL_HIGHA)
464    .Case("dtprel@higher", VK_PPC_DTPREL_HIGHER)
465    .Case("dtprel@highera", VK_PPC_DTPREL_HIGHERA)
466    .Case("dtprel@highest", VK_PPC_DTPREL_HIGHEST)
467    .Case("dtprel@highesta", VK_PPC_DTPREL_HIGHESTA)
468    .Case("got@tprel", VK_PPC_GOT_TPREL)
469    .Case("got@tprel@l", VK_PPC_GOT_TPREL_LO)
470    .Case("got@tprel@h", VK_PPC_GOT_TPREL_HI)
471    .Case("got@tprel@ha", VK_PPC_GOT_TPREL_HA)
472    .Case("got@dtprel", VK_PPC_GOT_DTPREL)
473    .Case("got@dtprel@l", VK_PPC_GOT_DTPREL_LO)
474    .Case("got@dtprel@h", VK_PPC_GOT_DTPREL_HI)
475    .Case("got@dtprel@ha", VK_PPC_GOT_DTPREL_HA)
476    .Case("got@tlsgd", VK_PPC_GOT_TLSGD)
477    .Case("got@tlsgd@l", VK_PPC_GOT_TLSGD_LO)
478    .Case("got@tlsgd@h", VK_PPC_GOT_TLSGD_HI)
479    .Case("got@tlsgd@ha", VK_PPC_GOT_TLSGD_HA)
480    .Case("got@tlsld", VK_PPC_GOT_TLSLD)
481    .Case("got@tlsld@l", VK_PPC_GOT_TLSLD_LO)
482    .Case("got@tlsld@h", VK_PPC_GOT_TLSLD_HI)
483    .Case("got@tlsld@ha", VK_PPC_GOT_TLSLD_HA)
484    .Case("got@pcrel", VK_PPC_GOT_PCREL)
485    .Case("got@tlsgd@pcrel", VK_PPC_GOT_TLSGD_PCREL)
486    .Case("got@tlsld@pcrel", VK_PPC_GOT_TLSLD_PCREL)
487    .Case("got@tprel@pcrel", VK_PPC_GOT_TPREL_PCREL)
488    .Case("tls@pcrel", VK_PPC_TLS_PCREL)
489    .Case("notoc", VK_PPC_NOTOC)
490    .Case("gdgot", VK_Hexagon_GD_GOT)
491    .Case("gdplt", VK_Hexagon_GD_PLT)
492    .Case("iegot", VK_Hexagon_IE_GOT)
493    .Case("ie", VK_Hexagon_IE)
494    .Case("ldgot", VK_Hexagon_LD_GOT)
495    .Case("ldplt", VK_Hexagon_LD_PLT)
496    .Case("none", VK_ARM_NONE)
497    .Case("got_prel", VK_ARM_GOT_PREL)
498    .Case("target1", VK_ARM_TARGET1)
499    .Case("target2", VK_ARM_TARGET2)
500    .Case("prel31", VK_ARM_PREL31)
501    .Case("sbrel", VK_ARM_SBREL)
502    .Case("tlsldo", VK_ARM_TLSLDO)
503    .Case("lo8", VK_AVR_LO8)
504    .Case("hi8", VK_AVR_HI8)
505    .Case("hlo8", VK_AVR_HLO8)
506    .Case("typeindex", VK_WASM_TYPEINDEX)
507    .Case("tbrel", VK_WASM_TBREL)
508    .Case("mbrel", VK_WASM_MBREL)
509    .Case("tlsrel", VK_WASM_TLSREL)
510    .Case("got@tls", VK_WASM_GOT_TLS)
511    .Case("funcindex", VK_WASM_FUNCINDEX)
512    .Case("gotpcrel32@lo", VK_AMDGPU_GOTPCREL32_LO)
513    .Case("gotpcrel32@hi", VK_AMDGPU_GOTPCREL32_HI)
514    .Case("rel32@lo", VK_AMDGPU_REL32_LO)
515    .Case("rel32@hi", VK_AMDGPU_REL32_HI)
516    .Case("rel64", VK_AMDGPU_REL64)
517    .Case("abs32@lo", VK_AMDGPU_ABS32_LO)
518    .Case("abs32@hi", VK_AMDGPU_ABS32_HI)
519    .Case("hi", VK_VE_HI32)
520    .Case("lo", VK_VE_LO32)
521    .Case("pc_hi", VK_VE_PC_HI32)
522    .Case("pc_lo", VK_VE_PC_LO32)
523    .Case("got_hi", VK_VE_GOT_HI32)
524    .Case("got_lo", VK_VE_GOT_LO32)
525    .Case("gotoff_hi", VK_VE_GOTOFF_HI32)
526    .Case("gotoff_lo", VK_VE_GOTOFF_LO32)
527    .Case("plt_hi", VK_VE_PLT_HI32)
528    .Case("plt_lo", VK_VE_PLT_LO32)
529    .Case("tls_gd_hi", VK_VE_TLS_GD_HI32)
530    .Case("tls_gd_lo", VK_VE_TLS_GD_LO32)
531    .Case("tpoff_hi", VK_VE_TPOFF_HI32)
532    .Case("tpoff_lo", VK_VE_TPOFF_LO32)
533    .Default(VK_Invalid);
534}
535
536/* *** */
537
538void MCTargetExpr::anchor() {}
539
540/* *** */
541
542bool MCExpr::evaluateAsAbsolute(int64_t &Res) const {
543  return evaluateAsAbsolute(Res, nullptr, nullptr, nullptr, false);
544}
545
546bool MCExpr::evaluateAsAbsolute(int64_t &Res,
547                                const MCAsmLayout &Layout) const {
548  return evaluateAsAbsolute(Res, &Layout.getAssembler(), &Layout, nullptr, false);
549}
550
551bool MCExpr::evaluateAsAbsolute(int64_t &Res,
552                                const MCAsmLayout &Layout,
553                                const SectionAddrMap &Addrs) const {
554  // Setting InSet causes us to absolutize differences across sections and that
555  // is what the MachO writer uses Addrs for.
556  return evaluateAsAbsolute(Res, &Layout.getAssembler(), &Layout, &Addrs, true);
557}
558
559bool MCExpr::evaluateAsAbsolute(int64_t &Res, const MCAssembler &Asm) const {
560  return evaluateAsAbsolute(Res, &Asm, nullptr, nullptr, false);
561}
562
563bool MCExpr::evaluateAsAbsolute(int64_t &Res, const MCAssembler *Asm) const {
564  return evaluateAsAbsolute(Res, Asm, nullptr, nullptr, false);
565}
566
567bool MCExpr::evaluateKnownAbsolute(int64_t &Res,
568                                   const MCAsmLayout &Layout) const {
569  return evaluateAsAbsolute(Res, &Layout.getAssembler(), &Layout, nullptr,
570                            true);
571}
572
573bool MCExpr::evaluateAsAbsolute(int64_t &Res, const MCAssembler *Asm,
574                                const MCAsmLayout *Layout,
575                                const SectionAddrMap *Addrs, bool InSet) const {
576  MCValue Value;
577
578  // Fast path constants.
579  if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(this)) {
580    Res = CE->getValue();
581    return true;
582  }
583
584  bool IsRelocatable =
585      evaluateAsRelocatableImpl(Value, Asm, Layout, nullptr, Addrs, InSet);
586
587  // Record the current value.
588  Res = Value.getConstant();
589
590  return IsRelocatable && Value.isAbsolute();
591}
592
593/// Helper method for \see EvaluateSymbolAdd().
594static void AttemptToFoldSymbolOffsetDifference(
595    const MCAssembler *Asm, const MCAsmLayout *Layout,
596    const SectionAddrMap *Addrs, bool InSet, const MCSymbolRefExpr *&A,
597    const MCSymbolRefExpr *&B, int64_t &Addend) {
598  if (!A || !B)
599    return;
600
601  const MCSymbol &SA = A->getSymbol();
602  const MCSymbol &SB = B->getSymbol();
603
604  if (SA.isUndefined() || SB.isUndefined())
605    return;
606
607  if (!Asm->getWriter().isSymbolRefDifferenceFullyResolved(*Asm, A, B, InSet))
608    return;
609
610  auto FinalizeFolding = [&]() {
611    // Pointers to Thumb symbols need to have their low-bit set to allow
612    // for interworking.
613    if (Asm->isThumbFunc(&SA))
614      Addend |= 1;
615
616    // Clear the symbol expr pointers to indicate we have folded these
617    // operands.
618    A = B = nullptr;
619  };
620
621  const MCFragment *FA = SA.getFragment();
622  const MCFragment *FB = SB.getFragment();
623  const MCSection &SecA = *FA->getParent();
624  const MCSection &SecB = *FB->getParent();
625  if ((&SecA != &SecB) && !Addrs)
626    return;
627
628  // When layout is available, we can generally compute the difference using the
629  // getSymbolOffset path, which also avoids the possible slow fragment walk.
630  // However, linker relaxation may cause incorrect fold of A-B if A and B are
631  // separated by a linker-relaxable instruction. If the section contains
632  // instructions and InSet is false (not expressions in directive like
633  // .size/.fill), disable the fast path.
634  if (Layout && (InSet || !SecA.hasInstructions() ||
635                 !(Asm->getContext().getTargetTriple().isRISCV() ||
636                   Asm->getContext().getTargetTriple().isLoongArch()))) {
637    // If both symbols are in the same fragment, return the difference of their
638    // offsets. canGetFragmentOffset(FA) may be false.
639    if (FA == FB && !SA.isVariable() && !SB.isVariable()) {
640      Addend += SA.getOffset() - SB.getOffset();
641      return FinalizeFolding();
642    }
643    // One of the symbol involved is part of a fragment being laid out. Quit now
644    // to avoid a self loop.
645    if (!Layout->canGetFragmentOffset(FA) || !Layout->canGetFragmentOffset(FB))
646      return;
647
648    // Eagerly evaluate when layout is finalized.
649    Addend += Layout->getSymbolOffset(A->getSymbol()) -
650              Layout->getSymbolOffset(B->getSymbol());
651    if (Addrs && (&SecA != &SecB))
652      Addend += (Addrs->lookup(&SecA) - Addrs->lookup(&SecB));
653
654    FinalizeFolding();
655  } else {
656    // When layout is not finalized, our ability to resolve differences between
657    // symbols is limited to specific cases where the fragments between two
658    // symbols (including the fragments the symbols are defined in) are
659    // fixed-size fragments so the difference can be calculated. For example,
660    // this is important when the Subtarget is changed and a new MCDataFragment
661    // is created in the case of foo: instr; .arch_extension ext; instr .if . -
662    // foo.
663    if (SA.isVariable() || SB.isVariable() ||
664        FA->getSubsectionNumber() != FB->getSubsectionNumber())
665      return;
666
667    // Try to find a constant displacement from FA to FB, add the displacement
668    // between the offset in FA of SA and the offset in FB of SB.
669    bool Reverse = false;
670    if (FA == FB) {
671      Reverse = SA.getOffset() < SB.getOffset();
672    } else if (!isa<MCDummyFragment>(FA)) {
673      Reverse = std::find_if(std::next(FA->getIterator()), SecA.end(),
674                             [&](auto &I) { return &I == FB; }) != SecA.end();
675    }
676
677    uint64_t SAOffset = SA.getOffset(), SBOffset = SB.getOffset();
678    int64_t Displacement = SA.getOffset() - SB.getOffset();
679    if (Reverse) {
680      std::swap(FA, FB);
681      std::swap(SAOffset, SBOffset);
682      Displacement *= -1;
683    }
684
685    [[maybe_unused]] bool Found = false;
686    // Track whether B is before a relaxable instruction and whether A is after
687    // a relaxable instruction. If SA and SB are separated by a linker-relaxable
688    // instruction, the difference cannot be resolved as it may be changed by
689    // the linker.
690    bool BBeforeRelax = false, AAfterRelax = false;
691    for (auto FI = FB->getIterator(), FE = SecA.end(); FI != FE; ++FI) {
692      auto DF = dyn_cast<MCDataFragment>(FI);
693      if (DF && DF->isLinkerRelaxable()) {
694        if (&*FI != FB || SBOffset != DF->getContents().size())
695          BBeforeRelax = true;
696        if (&*FI != FA || SAOffset == DF->getContents().size())
697          AAfterRelax = true;
698        if (BBeforeRelax && AAfterRelax)
699          return;
700      }
701      if (&*FI == FA) {
702        Found = true;
703        break;
704      }
705
706      int64_t Num;
707      unsigned Count;
708      if (DF) {
709        Displacement += DF->getContents().size();
710      } else if (auto *AF = dyn_cast<MCAlignFragment>(FI);
711                 AF && Layout && AF->hasEmitNops() &&
712                 !Asm->getBackend().shouldInsertExtraNopBytesForCodeAlign(
713                     *AF, Count)) {
714        Displacement += Asm->computeFragmentSize(*Layout, *AF);
715      } else if (auto *FF = dyn_cast<MCFillFragment>(FI);
716                 FF && FF->getNumValues().evaluateAsAbsolute(Num)) {
717        Displacement += Num * FF->getValueSize();
718      } else {
719        return;
720      }
721    }
722    // If the previous loop does not find FA, FA must be a dummy fragment not in
723    // the fragment list (which means SA is a pending label (see
724    // flushPendingLabels)). In either case, we can resolve the difference.
725    assert(Found || isa<MCDummyFragment>(FA));
726    Addend += Reverse ? -Displacement : Displacement;
727    FinalizeFolding();
728  }
729}
730
731/// Evaluate the result of an add between (conceptually) two MCValues.
732///
733/// This routine conceptually attempts to construct an MCValue:
734///   Result = (Result_A - Result_B + Result_Cst)
735/// from two MCValue's LHS and RHS where
736///   Result = LHS + RHS
737/// and
738///   Result = (LHS_A - LHS_B + LHS_Cst) + (RHS_A - RHS_B + RHS_Cst).
739///
740/// This routine attempts to aggressively fold the operands such that the result
741/// is representable in an MCValue, but may not always succeed.
742///
743/// \returns True on success, false if the result is not representable in an
744/// MCValue.
745
746/// NOTE: It is really important to have both the Asm and Layout arguments.
747/// They might look redundant, but this function can be used before layout
748/// is done (see the object streamer for example) and having the Asm argument
749/// lets us avoid relaxations early.
750static bool EvaluateSymbolicAdd(const MCAssembler *Asm,
751                                const MCAsmLayout *Layout,
752                                const SectionAddrMap *Addrs, bool InSet,
753                                const MCValue &LHS, const MCValue &RHS,
754                                MCValue &Res) {
755  // FIXME: This routine (and other evaluation parts) are *incredibly* sloppy
756  // about dealing with modifiers. This will ultimately bite us, one day.
757  const MCSymbolRefExpr *LHS_A = LHS.getSymA();
758  const MCSymbolRefExpr *LHS_B = LHS.getSymB();
759  int64_t LHS_Cst = LHS.getConstant();
760
761  const MCSymbolRefExpr *RHS_A = RHS.getSymA();
762  const MCSymbolRefExpr *RHS_B = RHS.getSymB();
763  int64_t RHS_Cst = RHS.getConstant();
764
765  if (LHS.getRefKind() != RHS.getRefKind())
766    return false;
767
768  // Fold the result constant immediately.
769  int64_t Result_Cst = LHS_Cst + RHS_Cst;
770
771  assert((!Layout || Asm) &&
772         "Must have an assembler object if layout is given!");
773
774  // If we have a layout, we can fold resolved differences.
775  if (Asm) {
776    // First, fold out any differences which are fully resolved. By
777    // reassociating terms in
778    //   Result = (LHS_A - LHS_B + LHS_Cst) + (RHS_A - RHS_B + RHS_Cst).
779    // we have the four possible differences:
780    //   (LHS_A - LHS_B),
781    //   (LHS_A - RHS_B),
782    //   (RHS_A - LHS_B),
783    //   (RHS_A - RHS_B).
784    // Since we are attempting to be as aggressive as possible about folding, we
785    // attempt to evaluate each possible alternative.
786    AttemptToFoldSymbolOffsetDifference(Asm, Layout, Addrs, InSet, LHS_A, LHS_B,
787                                        Result_Cst);
788    AttemptToFoldSymbolOffsetDifference(Asm, Layout, Addrs, InSet, LHS_A, RHS_B,
789                                        Result_Cst);
790    AttemptToFoldSymbolOffsetDifference(Asm, Layout, Addrs, InSet, RHS_A, LHS_B,
791                                        Result_Cst);
792    AttemptToFoldSymbolOffsetDifference(Asm, Layout, Addrs, InSet, RHS_A, RHS_B,
793                                        Result_Cst);
794  }
795
796  // We can't represent the addition or subtraction of two symbols.
797  if ((LHS_A && RHS_A) || (LHS_B && RHS_B))
798    return false;
799
800  // At this point, we have at most one additive symbol and one subtractive
801  // symbol -- find them.
802  const MCSymbolRefExpr *A = LHS_A ? LHS_A : RHS_A;
803  const MCSymbolRefExpr *B = LHS_B ? LHS_B : RHS_B;
804
805  Res = MCValue::get(A, B, Result_Cst);
806  return true;
807}
808
809bool MCExpr::evaluateAsRelocatable(MCValue &Res,
810                                   const MCAsmLayout *Layout,
811                                   const MCFixup *Fixup) const {
812  MCAssembler *Assembler = Layout ? &Layout->getAssembler() : nullptr;
813  return evaluateAsRelocatableImpl(Res, Assembler, Layout, Fixup, nullptr,
814                                   false);
815}
816
817bool MCExpr::evaluateAsValue(MCValue &Res, const MCAsmLayout &Layout) const {
818  MCAssembler *Assembler = &Layout.getAssembler();
819  return evaluateAsRelocatableImpl(Res, Assembler, &Layout, nullptr, nullptr,
820                                   true);
821}
822
823static bool canExpand(const MCSymbol &Sym, bool InSet) {
824  if (Sym.isWeakExternal())
825    return false;
826
827  const MCExpr *Expr = Sym.getVariableValue();
828  const auto *Inner = dyn_cast<MCSymbolRefExpr>(Expr);
829  if (Inner) {
830    if (Inner->getKind() == MCSymbolRefExpr::VK_WEAKREF)
831      return false;
832  }
833
834  if (InSet)
835    return true;
836  return !Sym.isInSection();
837}
838
839bool MCExpr::evaluateAsRelocatableImpl(MCValue &Res, const MCAssembler *Asm,
840                                       const MCAsmLayout *Layout,
841                                       const MCFixup *Fixup,
842                                       const SectionAddrMap *Addrs,
843                                       bool InSet) const {
844  ++stats::MCExprEvaluate;
845
846  switch (getKind()) {
847  case Target:
848    return cast<MCTargetExpr>(this)->evaluateAsRelocatableImpl(Res, Layout,
849                                                               Fixup);
850
851  case Constant:
852    Res = MCValue::get(cast<MCConstantExpr>(this)->getValue());
853    return true;
854
855  case SymbolRef: {
856    const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(this);
857    const MCSymbol &Sym = SRE->getSymbol();
858    const auto Kind = SRE->getKind();
859
860    // Evaluate recursively if this is a variable.
861    if (Sym.isVariable() && (Kind == MCSymbolRefExpr::VK_None || Layout) &&
862        canExpand(Sym, InSet)) {
863      bool IsMachO = SRE->hasSubsectionsViaSymbols();
864      if (Sym.getVariableValue()->evaluateAsRelocatableImpl(
865              Res, Asm, Layout, Fixup, Addrs, InSet || IsMachO)) {
866        if (Kind != MCSymbolRefExpr::VK_None) {
867          if (Res.isAbsolute()) {
868            Res = MCValue::get(SRE, nullptr, 0);
869            return true;
870          }
871          // If the reference has a variant kind, we can only handle expressions
872          // which evaluate exactly to a single unadorned symbol. Attach the
873          // original VariantKind to SymA of the result.
874          if (Res.getRefKind() != MCSymbolRefExpr::VK_None || !Res.getSymA() ||
875              Res.getSymB() || Res.getConstant())
876            return false;
877          Res =
878              MCValue::get(MCSymbolRefExpr::create(&Res.getSymA()->getSymbol(),
879                                                   Kind, Asm->getContext()),
880                           Res.getSymB(), Res.getConstant(), Res.getRefKind());
881        }
882        if (!IsMachO)
883          return true;
884
885        const MCSymbolRefExpr *A = Res.getSymA();
886        const MCSymbolRefExpr *B = Res.getSymB();
887        // FIXME: This is small hack. Given
888        // a = b + 4
889        // .long a
890        // the OS X assembler will completely drop the 4. We should probably
891        // include it in the relocation or produce an error if that is not
892        // possible.
893        // Allow constant expressions.
894        if (!A && !B)
895          return true;
896        // Allows aliases with zero offset.
897        if (Res.getConstant() == 0 && (!A || !B))
898          return true;
899      }
900    }
901
902    Res = MCValue::get(SRE, nullptr, 0);
903    return true;
904  }
905
906  case Unary: {
907    const MCUnaryExpr *AUE = cast<MCUnaryExpr>(this);
908    MCValue Value;
909
910    if (!AUE->getSubExpr()->evaluateAsRelocatableImpl(Value, Asm, Layout, Fixup,
911                                                      Addrs, InSet))
912      return false;
913
914    switch (AUE->getOpcode()) {
915    case MCUnaryExpr::LNot:
916      if (!Value.isAbsolute())
917        return false;
918      Res = MCValue::get(!Value.getConstant());
919      break;
920    case MCUnaryExpr::Minus:
921      /// -(a - b + const) ==> (b - a - const)
922      if (Value.getSymA() && !Value.getSymB())
923        return false;
924
925      // The cast avoids undefined behavior if the constant is INT64_MIN.
926      Res = MCValue::get(Value.getSymB(), Value.getSymA(),
927                         -(uint64_t)Value.getConstant());
928      break;
929    case MCUnaryExpr::Not:
930      if (!Value.isAbsolute())
931        return false;
932      Res = MCValue::get(~Value.getConstant());
933      break;
934    case MCUnaryExpr::Plus:
935      Res = Value;
936      break;
937    }
938
939    return true;
940  }
941
942  case Binary: {
943    const MCBinaryExpr *ABE = cast<MCBinaryExpr>(this);
944    MCValue LHSValue, RHSValue;
945
946    if (!ABE->getLHS()->evaluateAsRelocatableImpl(LHSValue, Asm, Layout, Fixup,
947                                                  Addrs, InSet) ||
948        !ABE->getRHS()->evaluateAsRelocatableImpl(RHSValue, Asm, Layout, Fixup,
949                                                  Addrs, InSet)) {
950      // Check if both are Target Expressions, see if we can compare them.
951      if (const MCTargetExpr *L = dyn_cast<MCTargetExpr>(ABE->getLHS())) {
952        if (const MCTargetExpr *R = dyn_cast<MCTargetExpr>(ABE->getRHS())) {
953          switch (ABE->getOpcode()) {
954          case MCBinaryExpr::EQ:
955            Res = MCValue::get(L->isEqualTo(R) ? -1 : 0);
956            return true;
957          case MCBinaryExpr::NE:
958            Res = MCValue::get(L->isEqualTo(R) ? 0 : -1);
959            return true;
960          default:
961            break;
962          }
963        }
964      }
965      return false;
966    }
967
968    // We only support a few operations on non-constant expressions, handle
969    // those first.
970    if (!LHSValue.isAbsolute() || !RHSValue.isAbsolute()) {
971      switch (ABE->getOpcode()) {
972      default:
973        return false;
974      case MCBinaryExpr::Sub:
975        // Negate RHS and add.
976        // The cast avoids undefined behavior if the constant is INT64_MIN.
977        return EvaluateSymbolicAdd(
978            Asm, Layout, Addrs, InSet, LHSValue,
979            MCValue::get(RHSValue.getSymB(), RHSValue.getSymA(),
980                         -(uint64_t)RHSValue.getConstant(),
981                         RHSValue.getRefKind()),
982            Res);
983
984      case MCBinaryExpr::Add:
985        return EvaluateSymbolicAdd(
986            Asm, Layout, Addrs, InSet, LHSValue,
987            MCValue::get(RHSValue.getSymA(), RHSValue.getSymB(),
988                         RHSValue.getConstant(), RHSValue.getRefKind()),
989            Res);
990      }
991    }
992
993    // FIXME: We need target hooks for the evaluation. It may be limited in
994    // width, and gas defines the result of comparisons differently from
995    // Apple as.
996    int64_t LHS = LHSValue.getConstant(), RHS = RHSValue.getConstant();
997    int64_t Result = 0;
998    auto Op = ABE->getOpcode();
999    switch (Op) {
1000    case MCBinaryExpr::AShr: Result = LHS >> RHS; break;
1001    case MCBinaryExpr::Add:  Result = LHS + RHS; break;
1002    case MCBinaryExpr::And:  Result = LHS & RHS; break;
1003    case MCBinaryExpr::Div:
1004    case MCBinaryExpr::Mod:
1005      // Handle division by zero. gas just emits a warning and keeps going,
1006      // we try to be stricter.
1007      // FIXME: Currently the caller of this function has no way to understand
1008      // we're bailing out because of 'division by zero'. Therefore, it will
1009      // emit a 'expected relocatable expression' error. It would be nice to
1010      // change this code to emit a better diagnostic.
1011      if (RHS == 0)
1012        return false;
1013      if (ABE->getOpcode() == MCBinaryExpr::Div)
1014        Result = LHS / RHS;
1015      else
1016        Result = LHS % RHS;
1017      break;
1018    case MCBinaryExpr::EQ:   Result = LHS == RHS; break;
1019    case MCBinaryExpr::GT:   Result = LHS > RHS; break;
1020    case MCBinaryExpr::GTE:  Result = LHS >= RHS; break;
1021    case MCBinaryExpr::LAnd: Result = LHS && RHS; break;
1022    case MCBinaryExpr::LOr:  Result = LHS || RHS; break;
1023    case MCBinaryExpr::LShr: Result = uint64_t(LHS) >> uint64_t(RHS); break;
1024    case MCBinaryExpr::LT:   Result = LHS < RHS; break;
1025    case MCBinaryExpr::LTE:  Result = LHS <= RHS; break;
1026    case MCBinaryExpr::Mul:  Result = LHS * RHS; break;
1027    case MCBinaryExpr::NE:   Result = LHS != RHS; break;
1028    case MCBinaryExpr::Or:   Result = LHS | RHS; break;
1029    case MCBinaryExpr::OrNot: Result = LHS | ~RHS; break;
1030    case MCBinaryExpr::Shl:  Result = uint64_t(LHS) << uint64_t(RHS); break;
1031    case MCBinaryExpr::Sub:  Result = LHS - RHS; break;
1032    case MCBinaryExpr::Xor:  Result = LHS ^ RHS; break;
1033    }
1034
1035    switch (Op) {
1036    default:
1037      Res = MCValue::get(Result);
1038      break;
1039    case MCBinaryExpr::EQ:
1040    case MCBinaryExpr::GT:
1041    case MCBinaryExpr::GTE:
1042    case MCBinaryExpr::LT:
1043    case MCBinaryExpr::LTE:
1044    case MCBinaryExpr::NE:
1045      // A comparison operator returns a -1 if true and 0 if false.
1046      Res = MCValue::get(Result ? -1 : 0);
1047      break;
1048    }
1049
1050    return true;
1051  }
1052  }
1053
1054  llvm_unreachable("Invalid assembly expression kind!");
1055}
1056
1057MCFragment *MCExpr::findAssociatedFragment() const {
1058  switch (getKind()) {
1059  case Target:
1060    // We never look through target specific expressions.
1061    return cast<MCTargetExpr>(this)->findAssociatedFragment();
1062
1063  case Constant:
1064    return MCSymbol::AbsolutePseudoFragment;
1065
1066  case SymbolRef: {
1067    const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(this);
1068    const MCSymbol &Sym = SRE->getSymbol();
1069    return Sym.getFragment();
1070  }
1071
1072  case Unary:
1073    return cast<MCUnaryExpr>(this)->getSubExpr()->findAssociatedFragment();
1074
1075  case Binary: {
1076    const MCBinaryExpr *BE = cast<MCBinaryExpr>(this);
1077    MCFragment *LHS_F = BE->getLHS()->findAssociatedFragment();
1078    MCFragment *RHS_F = BE->getRHS()->findAssociatedFragment();
1079
1080    // If either is absolute, return the other.
1081    if (LHS_F == MCSymbol::AbsolutePseudoFragment)
1082      return RHS_F;
1083    if (RHS_F == MCSymbol::AbsolutePseudoFragment)
1084      return LHS_F;
1085
1086    // Not always correct, but probably the best we can do without more context.
1087    if (BE->getOpcode() == MCBinaryExpr::Sub)
1088      return MCSymbol::AbsolutePseudoFragment;
1089
1090    // Otherwise, return the first non-null fragment.
1091    return LHS_F ? LHS_F : RHS_F;
1092  }
1093  }
1094
1095  llvm_unreachable("Invalid assembly expression kind!");
1096}
1097