1//===-- Execution.cpp - Implement code to simulate the program ------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9//  This file contains the actual instruction interpreter.
10//
11//===----------------------------------------------------------------------===//
12
13#include "Interpreter.h"
14#include "llvm/ADT/APInt.h"
15#include "llvm/ADT/Statistic.h"
16#include "llvm/CodeGen/IntrinsicLowering.h"
17#include "llvm/IR/Constants.h"
18#include "llvm/IR/DerivedTypes.h"
19#include "llvm/IR/GetElementPtrTypeIterator.h"
20#include "llvm/IR/Instructions.h"
21#include "llvm/Support/CommandLine.h"
22#include "llvm/Support/Debug.h"
23#include "llvm/Support/ErrorHandling.h"
24#include "llvm/Support/MathExtras.h"
25#include "llvm/Support/raw_ostream.h"
26#include <algorithm>
27#include <cmath>
28using namespace llvm;
29
30#define DEBUG_TYPE "interpreter"
31
32STATISTIC(NumDynamicInsts, "Number of dynamic instructions executed");
33
34static cl::opt<bool> PrintVolatile("interpreter-print-volatile", cl::Hidden,
35          cl::desc("make the interpreter print every volatile load and store"));
36
37//===----------------------------------------------------------------------===//
38//                     Various Helper Functions
39//===----------------------------------------------------------------------===//
40
41static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) {
42  SF.Values[V] = Val;
43}
44
45//===----------------------------------------------------------------------===//
46//                    Unary Instruction Implementations
47//===----------------------------------------------------------------------===//
48
49static void executeFNegInst(GenericValue &Dest, GenericValue Src, Type *Ty) {
50  switch (Ty->getTypeID()) {
51  case Type::FloatTyID:
52    Dest.FloatVal = -Src.FloatVal;
53    break;
54  case Type::DoubleTyID:
55    Dest.DoubleVal = -Src.DoubleVal;
56    break;
57  default:
58    llvm_unreachable("Unhandled type for FNeg instruction");
59  }
60}
61
62void Interpreter::visitUnaryOperator(UnaryOperator &I) {
63  ExecutionContext &SF = ECStack.back();
64  Type *Ty = I.getOperand(0)->getType();
65  GenericValue Src = getOperandValue(I.getOperand(0), SF);
66  GenericValue R; // Result
67
68  // First process vector operation
69  if (Ty->isVectorTy()) {
70    R.AggregateVal.resize(Src.AggregateVal.size());
71
72    switch(I.getOpcode()) {
73    default:
74      llvm_unreachable("Don't know how to handle this unary operator");
75      break;
76    case Instruction::FNeg:
77      if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) {
78        for (unsigned i = 0; i < R.AggregateVal.size(); ++i)
79          R.AggregateVal[i].FloatVal = -Src.AggregateVal[i].FloatVal;
80      } else if (cast<VectorType>(Ty)->getElementType()->isDoubleTy()) {
81        for (unsigned i = 0; i < R.AggregateVal.size(); ++i)
82          R.AggregateVal[i].DoubleVal = -Src.AggregateVal[i].DoubleVal;
83      } else {
84        llvm_unreachable("Unhandled type for FNeg instruction");
85      }
86      break;
87    }
88  } else {
89    switch (I.getOpcode()) {
90    default:
91      llvm_unreachable("Don't know how to handle this unary operator");
92      break;
93    case Instruction::FNeg: executeFNegInst(R, Src, Ty); break;
94    }
95  }
96  SetValue(&I, R, SF);
97}
98
99//===----------------------------------------------------------------------===//
100//                    Binary Instruction Implementations
101//===----------------------------------------------------------------------===//
102
103#define IMPLEMENT_BINARY_OPERATOR(OP, TY) \
104   case Type::TY##TyID: \
105     Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; \
106     break
107
108static void executeFAddInst(GenericValue &Dest, GenericValue Src1,
109                            GenericValue Src2, Type *Ty) {
110  switch (Ty->getTypeID()) {
111    IMPLEMENT_BINARY_OPERATOR(+, Float);
112    IMPLEMENT_BINARY_OPERATOR(+, Double);
113  default:
114    dbgs() << "Unhandled type for FAdd instruction: " << *Ty << "\n";
115    llvm_unreachable(nullptr);
116  }
117}
118
119static void executeFSubInst(GenericValue &Dest, GenericValue Src1,
120                            GenericValue Src2, Type *Ty) {
121  switch (Ty->getTypeID()) {
122    IMPLEMENT_BINARY_OPERATOR(-, Float);
123    IMPLEMENT_BINARY_OPERATOR(-, Double);
124  default:
125    dbgs() << "Unhandled type for FSub instruction: " << *Ty << "\n";
126    llvm_unreachable(nullptr);
127  }
128}
129
130static void executeFMulInst(GenericValue &Dest, GenericValue Src1,
131                            GenericValue Src2, Type *Ty) {
132  switch (Ty->getTypeID()) {
133    IMPLEMENT_BINARY_OPERATOR(*, Float);
134    IMPLEMENT_BINARY_OPERATOR(*, Double);
135  default:
136    dbgs() << "Unhandled type for FMul instruction: " << *Ty << "\n";
137    llvm_unreachable(nullptr);
138  }
139}
140
141static void executeFDivInst(GenericValue &Dest, GenericValue Src1,
142                            GenericValue Src2, Type *Ty) {
143  switch (Ty->getTypeID()) {
144    IMPLEMENT_BINARY_OPERATOR(/, Float);
145    IMPLEMENT_BINARY_OPERATOR(/, Double);
146  default:
147    dbgs() << "Unhandled type for FDiv instruction: " << *Ty << "\n";
148    llvm_unreachable(nullptr);
149  }
150}
151
152static void executeFRemInst(GenericValue &Dest, GenericValue Src1,
153                            GenericValue Src2, Type *Ty) {
154  switch (Ty->getTypeID()) {
155  case Type::FloatTyID:
156    Dest.FloatVal = fmod(Src1.FloatVal, Src2.FloatVal);
157    break;
158  case Type::DoubleTyID:
159    Dest.DoubleVal = fmod(Src1.DoubleVal, Src2.DoubleVal);
160    break;
161  default:
162    dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n";
163    llvm_unreachable(nullptr);
164  }
165}
166
167#define IMPLEMENT_INTEGER_ICMP(OP, TY) \
168   case Type::IntegerTyID:  \
169      Dest.IntVal = APInt(1,Src1.IntVal.OP(Src2.IntVal)); \
170      break;
171
172#define IMPLEMENT_VECTOR_INTEGER_ICMP(OP, TY)                                  \
173  case Type::FixedVectorTyID:                                                  \
174  case Type::ScalableVectorTyID: {                                             \
175    assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());              \
176    Dest.AggregateVal.resize(Src1.AggregateVal.size());                        \
177    for (uint32_t _i = 0; _i < Src1.AggregateVal.size(); _i++)                 \
178      Dest.AggregateVal[_i].IntVal = APInt(                                    \
179          1, Src1.AggregateVal[_i].IntVal.OP(Src2.AggregateVal[_i].IntVal));   \
180  } break;
181
182// Handle pointers specially because they must be compared with only as much
183// width as the host has.  We _do not_ want to be comparing 64 bit values when
184// running on a 32-bit target, otherwise the upper 32 bits might mess up
185// comparisons if they contain garbage.
186#define IMPLEMENT_POINTER_ICMP(OP) \
187   case Type::PointerTyID: \
188      Dest.IntVal = APInt(1,(void*)(intptr_t)Src1.PointerVal OP \
189                            (void*)(intptr_t)Src2.PointerVal); \
190      break;
191
192static GenericValue executeICMP_EQ(GenericValue Src1, GenericValue Src2,
193                                   Type *Ty) {
194  GenericValue Dest;
195  switch (Ty->getTypeID()) {
196    IMPLEMENT_INTEGER_ICMP(eq,Ty);
197    IMPLEMENT_VECTOR_INTEGER_ICMP(eq,Ty);
198    IMPLEMENT_POINTER_ICMP(==);
199  default:
200    dbgs() << "Unhandled type for ICMP_EQ predicate: " << *Ty << "\n";
201    llvm_unreachable(nullptr);
202  }
203  return Dest;
204}
205
206static GenericValue executeICMP_NE(GenericValue Src1, GenericValue Src2,
207                                   Type *Ty) {
208  GenericValue Dest;
209  switch (Ty->getTypeID()) {
210    IMPLEMENT_INTEGER_ICMP(ne,Ty);
211    IMPLEMENT_VECTOR_INTEGER_ICMP(ne,Ty);
212    IMPLEMENT_POINTER_ICMP(!=);
213  default:
214    dbgs() << "Unhandled type for ICMP_NE predicate: " << *Ty << "\n";
215    llvm_unreachable(nullptr);
216  }
217  return Dest;
218}
219
220static GenericValue executeICMP_ULT(GenericValue Src1, GenericValue Src2,
221                                    Type *Ty) {
222  GenericValue Dest;
223  switch (Ty->getTypeID()) {
224    IMPLEMENT_INTEGER_ICMP(ult,Ty);
225    IMPLEMENT_VECTOR_INTEGER_ICMP(ult,Ty);
226    IMPLEMENT_POINTER_ICMP(<);
227  default:
228    dbgs() << "Unhandled type for ICMP_ULT predicate: " << *Ty << "\n";
229    llvm_unreachable(nullptr);
230  }
231  return Dest;
232}
233
234static GenericValue executeICMP_SLT(GenericValue Src1, GenericValue Src2,
235                                    Type *Ty) {
236  GenericValue Dest;
237  switch (Ty->getTypeID()) {
238    IMPLEMENT_INTEGER_ICMP(slt,Ty);
239    IMPLEMENT_VECTOR_INTEGER_ICMP(slt,Ty);
240    IMPLEMENT_POINTER_ICMP(<);
241  default:
242    dbgs() << "Unhandled type for ICMP_SLT predicate: " << *Ty << "\n";
243    llvm_unreachable(nullptr);
244  }
245  return Dest;
246}
247
248static GenericValue executeICMP_UGT(GenericValue Src1, GenericValue Src2,
249                                    Type *Ty) {
250  GenericValue Dest;
251  switch (Ty->getTypeID()) {
252    IMPLEMENT_INTEGER_ICMP(ugt,Ty);
253    IMPLEMENT_VECTOR_INTEGER_ICMP(ugt,Ty);
254    IMPLEMENT_POINTER_ICMP(>);
255  default:
256    dbgs() << "Unhandled type for ICMP_UGT predicate: " << *Ty << "\n";
257    llvm_unreachable(nullptr);
258  }
259  return Dest;
260}
261
262static GenericValue executeICMP_SGT(GenericValue Src1, GenericValue Src2,
263                                    Type *Ty) {
264  GenericValue Dest;
265  switch (Ty->getTypeID()) {
266    IMPLEMENT_INTEGER_ICMP(sgt,Ty);
267    IMPLEMENT_VECTOR_INTEGER_ICMP(sgt,Ty);
268    IMPLEMENT_POINTER_ICMP(>);
269  default:
270    dbgs() << "Unhandled type for ICMP_SGT predicate: " << *Ty << "\n";
271    llvm_unreachable(nullptr);
272  }
273  return Dest;
274}
275
276static GenericValue executeICMP_ULE(GenericValue Src1, GenericValue Src2,
277                                    Type *Ty) {
278  GenericValue Dest;
279  switch (Ty->getTypeID()) {
280    IMPLEMENT_INTEGER_ICMP(ule,Ty);
281    IMPLEMENT_VECTOR_INTEGER_ICMP(ule,Ty);
282    IMPLEMENT_POINTER_ICMP(<=);
283  default:
284    dbgs() << "Unhandled type for ICMP_ULE predicate: " << *Ty << "\n";
285    llvm_unreachable(nullptr);
286  }
287  return Dest;
288}
289
290static GenericValue executeICMP_SLE(GenericValue Src1, GenericValue Src2,
291                                    Type *Ty) {
292  GenericValue Dest;
293  switch (Ty->getTypeID()) {
294    IMPLEMENT_INTEGER_ICMP(sle,Ty);
295    IMPLEMENT_VECTOR_INTEGER_ICMP(sle,Ty);
296    IMPLEMENT_POINTER_ICMP(<=);
297  default:
298    dbgs() << "Unhandled type for ICMP_SLE predicate: " << *Ty << "\n";
299    llvm_unreachable(nullptr);
300  }
301  return Dest;
302}
303
304static GenericValue executeICMP_UGE(GenericValue Src1, GenericValue Src2,
305                                    Type *Ty) {
306  GenericValue Dest;
307  switch (Ty->getTypeID()) {
308    IMPLEMENT_INTEGER_ICMP(uge,Ty);
309    IMPLEMENT_VECTOR_INTEGER_ICMP(uge,Ty);
310    IMPLEMENT_POINTER_ICMP(>=);
311  default:
312    dbgs() << "Unhandled type for ICMP_UGE predicate: " << *Ty << "\n";
313    llvm_unreachable(nullptr);
314  }
315  return Dest;
316}
317
318static GenericValue executeICMP_SGE(GenericValue Src1, GenericValue Src2,
319                                    Type *Ty) {
320  GenericValue Dest;
321  switch (Ty->getTypeID()) {
322    IMPLEMENT_INTEGER_ICMP(sge,Ty);
323    IMPLEMENT_VECTOR_INTEGER_ICMP(sge,Ty);
324    IMPLEMENT_POINTER_ICMP(>=);
325  default:
326    dbgs() << "Unhandled type for ICMP_SGE predicate: " << *Ty << "\n";
327    llvm_unreachable(nullptr);
328  }
329  return Dest;
330}
331
332void Interpreter::visitICmpInst(ICmpInst &I) {
333  ExecutionContext &SF = ECStack.back();
334  Type *Ty    = I.getOperand(0)->getType();
335  GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
336  GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
337  GenericValue R;   // Result
338
339  switch (I.getPredicate()) {
340  case ICmpInst::ICMP_EQ:  R = executeICMP_EQ(Src1,  Src2, Ty); break;
341  case ICmpInst::ICMP_NE:  R = executeICMP_NE(Src1,  Src2, Ty); break;
342  case ICmpInst::ICMP_ULT: R = executeICMP_ULT(Src1, Src2, Ty); break;
343  case ICmpInst::ICMP_SLT: R = executeICMP_SLT(Src1, Src2, Ty); break;
344  case ICmpInst::ICMP_UGT: R = executeICMP_UGT(Src1, Src2, Ty); break;
345  case ICmpInst::ICMP_SGT: R = executeICMP_SGT(Src1, Src2, Ty); break;
346  case ICmpInst::ICMP_ULE: R = executeICMP_ULE(Src1, Src2, Ty); break;
347  case ICmpInst::ICMP_SLE: R = executeICMP_SLE(Src1, Src2, Ty); break;
348  case ICmpInst::ICMP_UGE: R = executeICMP_UGE(Src1, Src2, Ty); break;
349  case ICmpInst::ICMP_SGE: R = executeICMP_SGE(Src1, Src2, Ty); break;
350  default:
351    dbgs() << "Don't know how to handle this ICmp predicate!\n-->" << I;
352    llvm_unreachable(nullptr);
353  }
354
355  SetValue(&I, R, SF);
356}
357
358#define IMPLEMENT_FCMP(OP, TY) \
359   case Type::TY##TyID: \
360     Dest.IntVal = APInt(1,Src1.TY##Val OP Src2.TY##Val); \
361     break
362
363#define IMPLEMENT_VECTOR_FCMP_T(OP, TY)                             \
364  assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());     \
365  Dest.AggregateVal.resize( Src1.AggregateVal.size() );             \
366  for( uint32_t _i=0;_i<Src1.AggregateVal.size();_i++)              \
367    Dest.AggregateVal[_i].IntVal = APInt(1,                         \
368    Src1.AggregateVal[_i].TY##Val OP Src2.AggregateVal[_i].TY##Val);\
369  break;
370
371#define IMPLEMENT_VECTOR_FCMP(OP)                                              \
372  case Type::FixedVectorTyID:                                                  \
373  case Type::ScalableVectorTyID:                                               \
374    if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) {                 \
375      IMPLEMENT_VECTOR_FCMP_T(OP, Float);                                      \
376    } else {                                                                   \
377      IMPLEMENT_VECTOR_FCMP_T(OP, Double);                                     \
378    }
379
380static GenericValue executeFCMP_OEQ(GenericValue Src1, GenericValue Src2,
381                                   Type *Ty) {
382  GenericValue Dest;
383  switch (Ty->getTypeID()) {
384    IMPLEMENT_FCMP(==, Float);
385    IMPLEMENT_FCMP(==, Double);
386    IMPLEMENT_VECTOR_FCMP(==);
387  default:
388    dbgs() << "Unhandled type for FCmp EQ instruction: " << *Ty << "\n";
389    llvm_unreachable(nullptr);
390  }
391  return Dest;
392}
393
394#define IMPLEMENT_SCALAR_NANS(TY, X,Y)                                      \
395  if (TY->isFloatTy()) {                                                    \
396    if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) {             \
397      Dest.IntVal = APInt(1,false);                                         \
398      return Dest;                                                          \
399    }                                                                       \
400  } else {                                                                  \
401    if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) {         \
402      Dest.IntVal = APInt(1,false);                                         \
403      return Dest;                                                          \
404    }                                                                       \
405  }
406
407#define MASK_VECTOR_NANS_T(X,Y, TZ, FLAG)                                   \
408  assert(X.AggregateVal.size() == Y.AggregateVal.size());                   \
409  Dest.AggregateVal.resize( X.AggregateVal.size() );                        \
410  for( uint32_t _i=0;_i<X.AggregateVal.size();_i++) {                       \
411    if (X.AggregateVal[_i].TZ##Val != X.AggregateVal[_i].TZ##Val ||         \
412        Y.AggregateVal[_i].TZ##Val != Y.AggregateVal[_i].TZ##Val)           \
413      Dest.AggregateVal[_i].IntVal = APInt(1,FLAG);                         \
414    else  {                                                                 \
415      Dest.AggregateVal[_i].IntVal = APInt(1,!FLAG);                        \
416    }                                                                       \
417  }
418
419#define MASK_VECTOR_NANS(TY, X,Y, FLAG)                                     \
420  if (TY->isVectorTy()) {                                                   \
421    if (cast<VectorType>(TY)->getElementType()->isFloatTy()) {              \
422      MASK_VECTOR_NANS_T(X, Y, Float, FLAG)                                 \
423    } else {                                                                \
424      MASK_VECTOR_NANS_T(X, Y, Double, FLAG)                                \
425    }                                                                       \
426  }                                                                         \
427
428
429
430static GenericValue executeFCMP_ONE(GenericValue Src1, GenericValue Src2,
431                                    Type *Ty)
432{
433  GenericValue Dest;
434  // if input is scalar value and Src1 or Src2 is NaN return false
435  IMPLEMENT_SCALAR_NANS(Ty, Src1, Src2)
436  // if vector input detect NaNs and fill mask
437  MASK_VECTOR_NANS(Ty, Src1, Src2, false)
438  GenericValue DestMask = Dest;
439  switch (Ty->getTypeID()) {
440    IMPLEMENT_FCMP(!=, Float);
441    IMPLEMENT_FCMP(!=, Double);
442    IMPLEMENT_VECTOR_FCMP(!=);
443    default:
444      dbgs() << "Unhandled type for FCmp NE instruction: " << *Ty << "\n";
445      llvm_unreachable(nullptr);
446  }
447  // in vector case mask out NaN elements
448  if (Ty->isVectorTy())
449    for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++)
450      if (DestMask.AggregateVal[_i].IntVal == false)
451        Dest.AggregateVal[_i].IntVal = APInt(1,false);
452
453  return Dest;
454}
455
456static GenericValue executeFCMP_OLE(GenericValue Src1, GenericValue Src2,
457                                   Type *Ty) {
458  GenericValue Dest;
459  switch (Ty->getTypeID()) {
460    IMPLEMENT_FCMP(<=, Float);
461    IMPLEMENT_FCMP(<=, Double);
462    IMPLEMENT_VECTOR_FCMP(<=);
463  default:
464    dbgs() << "Unhandled type for FCmp LE instruction: " << *Ty << "\n";
465    llvm_unreachable(nullptr);
466  }
467  return Dest;
468}
469
470static GenericValue executeFCMP_OGE(GenericValue Src1, GenericValue Src2,
471                                   Type *Ty) {
472  GenericValue Dest;
473  switch (Ty->getTypeID()) {
474    IMPLEMENT_FCMP(>=, Float);
475    IMPLEMENT_FCMP(>=, Double);
476    IMPLEMENT_VECTOR_FCMP(>=);
477  default:
478    dbgs() << "Unhandled type for FCmp GE instruction: " << *Ty << "\n";
479    llvm_unreachable(nullptr);
480  }
481  return Dest;
482}
483
484static GenericValue executeFCMP_OLT(GenericValue Src1, GenericValue Src2,
485                                   Type *Ty) {
486  GenericValue Dest;
487  switch (Ty->getTypeID()) {
488    IMPLEMENT_FCMP(<, Float);
489    IMPLEMENT_FCMP(<, Double);
490    IMPLEMENT_VECTOR_FCMP(<);
491  default:
492    dbgs() << "Unhandled type for FCmp LT instruction: " << *Ty << "\n";
493    llvm_unreachable(nullptr);
494  }
495  return Dest;
496}
497
498static GenericValue executeFCMP_OGT(GenericValue Src1, GenericValue Src2,
499                                     Type *Ty) {
500  GenericValue Dest;
501  switch (Ty->getTypeID()) {
502    IMPLEMENT_FCMP(>, Float);
503    IMPLEMENT_FCMP(>, Double);
504    IMPLEMENT_VECTOR_FCMP(>);
505  default:
506    dbgs() << "Unhandled type for FCmp GT instruction: " << *Ty << "\n";
507    llvm_unreachable(nullptr);
508  }
509  return Dest;
510}
511
512#define IMPLEMENT_UNORDERED(TY, X,Y)                                     \
513  if (TY->isFloatTy()) {                                                 \
514    if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) {          \
515      Dest.IntVal = APInt(1,true);                                       \
516      return Dest;                                                       \
517    }                                                                    \
518  } else if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \
519    Dest.IntVal = APInt(1,true);                                         \
520    return Dest;                                                         \
521  }
522
523#define IMPLEMENT_VECTOR_UNORDERED(TY, X, Y, FUNC)                             \
524  if (TY->isVectorTy()) {                                                      \
525    GenericValue DestMask = Dest;                                              \
526    Dest = FUNC(Src1, Src2, Ty);                                               \
527    for (size_t _i = 0; _i < Src1.AggregateVal.size(); _i++)                   \
528      if (DestMask.AggregateVal[_i].IntVal == true)                            \
529        Dest.AggregateVal[_i].IntVal = APInt(1, true);                         \
530    return Dest;                                                               \
531  }
532
533static GenericValue executeFCMP_UEQ(GenericValue Src1, GenericValue Src2,
534                                   Type *Ty) {
535  GenericValue Dest;
536  IMPLEMENT_UNORDERED(Ty, Src1, Src2)
537  MASK_VECTOR_NANS(Ty, Src1, Src2, true)
538  IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OEQ)
539  return executeFCMP_OEQ(Src1, Src2, Ty);
540
541}
542
543static GenericValue executeFCMP_UNE(GenericValue Src1, GenericValue Src2,
544                                   Type *Ty) {
545  GenericValue Dest;
546  IMPLEMENT_UNORDERED(Ty, Src1, Src2)
547  MASK_VECTOR_NANS(Ty, Src1, Src2, true)
548  IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_ONE)
549  return executeFCMP_ONE(Src1, Src2, Ty);
550}
551
552static GenericValue executeFCMP_ULE(GenericValue Src1, GenericValue Src2,
553                                   Type *Ty) {
554  GenericValue Dest;
555  IMPLEMENT_UNORDERED(Ty, Src1, Src2)
556  MASK_VECTOR_NANS(Ty, Src1, Src2, true)
557  IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OLE)
558  return executeFCMP_OLE(Src1, Src2, Ty);
559}
560
561static GenericValue executeFCMP_UGE(GenericValue Src1, GenericValue Src2,
562                                   Type *Ty) {
563  GenericValue Dest;
564  IMPLEMENT_UNORDERED(Ty, Src1, Src2)
565  MASK_VECTOR_NANS(Ty, Src1, Src2, true)
566  IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OGE)
567  return executeFCMP_OGE(Src1, Src2, Ty);
568}
569
570static GenericValue executeFCMP_ULT(GenericValue Src1, GenericValue Src2,
571                                   Type *Ty) {
572  GenericValue Dest;
573  IMPLEMENT_UNORDERED(Ty, Src1, Src2)
574  MASK_VECTOR_NANS(Ty, Src1, Src2, true)
575  IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OLT)
576  return executeFCMP_OLT(Src1, Src2, Ty);
577}
578
579static GenericValue executeFCMP_UGT(GenericValue Src1, GenericValue Src2,
580                                     Type *Ty) {
581  GenericValue Dest;
582  IMPLEMENT_UNORDERED(Ty, Src1, Src2)
583  MASK_VECTOR_NANS(Ty, Src1, Src2, true)
584  IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OGT)
585  return executeFCMP_OGT(Src1, Src2, Ty);
586}
587
588static GenericValue executeFCMP_ORD(GenericValue Src1, GenericValue Src2,
589                                     Type *Ty) {
590  GenericValue Dest;
591  if(Ty->isVectorTy()) {
592    assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
593    Dest.AggregateVal.resize( Src1.AggregateVal.size() );
594    if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) {
595      for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
596        Dest.AggregateVal[_i].IntVal = APInt(1,
597        ( (Src1.AggregateVal[_i].FloatVal ==
598        Src1.AggregateVal[_i].FloatVal) &&
599        (Src2.AggregateVal[_i].FloatVal ==
600        Src2.AggregateVal[_i].FloatVal)));
601    } else {
602      for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
603        Dest.AggregateVal[_i].IntVal = APInt(1,
604        ( (Src1.AggregateVal[_i].DoubleVal ==
605        Src1.AggregateVal[_i].DoubleVal) &&
606        (Src2.AggregateVal[_i].DoubleVal ==
607        Src2.AggregateVal[_i].DoubleVal)));
608    }
609  } else if (Ty->isFloatTy())
610    Dest.IntVal = APInt(1,(Src1.FloatVal == Src1.FloatVal &&
611                           Src2.FloatVal == Src2.FloatVal));
612  else {
613    Dest.IntVal = APInt(1,(Src1.DoubleVal == Src1.DoubleVal &&
614                           Src2.DoubleVal == Src2.DoubleVal));
615  }
616  return Dest;
617}
618
619static GenericValue executeFCMP_UNO(GenericValue Src1, GenericValue Src2,
620                                     Type *Ty) {
621  GenericValue Dest;
622  if(Ty->isVectorTy()) {
623    assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
624    Dest.AggregateVal.resize( Src1.AggregateVal.size() );
625    if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) {
626      for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
627        Dest.AggregateVal[_i].IntVal = APInt(1,
628        ( (Src1.AggregateVal[_i].FloatVal !=
629           Src1.AggregateVal[_i].FloatVal) ||
630          (Src2.AggregateVal[_i].FloatVal !=
631           Src2.AggregateVal[_i].FloatVal)));
632      } else {
633        for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
634          Dest.AggregateVal[_i].IntVal = APInt(1,
635          ( (Src1.AggregateVal[_i].DoubleVal !=
636             Src1.AggregateVal[_i].DoubleVal) ||
637            (Src2.AggregateVal[_i].DoubleVal !=
638             Src2.AggregateVal[_i].DoubleVal)));
639      }
640  } else if (Ty->isFloatTy())
641    Dest.IntVal = APInt(1,(Src1.FloatVal != Src1.FloatVal ||
642                           Src2.FloatVal != Src2.FloatVal));
643  else {
644    Dest.IntVal = APInt(1,(Src1.DoubleVal != Src1.DoubleVal ||
645                           Src2.DoubleVal != Src2.DoubleVal));
646  }
647  return Dest;
648}
649
650static GenericValue executeFCMP_BOOL(GenericValue Src1, GenericValue Src2,
651                                     Type *Ty, const bool val) {
652  GenericValue Dest;
653    if(Ty->isVectorTy()) {
654      assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
655      Dest.AggregateVal.resize( Src1.AggregateVal.size() );
656      for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++)
657        Dest.AggregateVal[_i].IntVal = APInt(1,val);
658    } else {
659      Dest.IntVal = APInt(1, val);
660    }
661
662    return Dest;
663}
664
665void Interpreter::visitFCmpInst(FCmpInst &I) {
666  ExecutionContext &SF = ECStack.back();
667  Type *Ty    = I.getOperand(0)->getType();
668  GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
669  GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
670  GenericValue R;   // Result
671
672  switch (I.getPredicate()) {
673  default:
674    dbgs() << "Don't know how to handle this FCmp predicate!\n-->" << I;
675    llvm_unreachable(nullptr);
676  break;
677  case FCmpInst::FCMP_FALSE: R = executeFCMP_BOOL(Src1, Src2, Ty, false);
678  break;
679  case FCmpInst::FCMP_TRUE:  R = executeFCMP_BOOL(Src1, Src2, Ty, true);
680  break;
681  case FCmpInst::FCMP_ORD:   R = executeFCMP_ORD(Src1, Src2, Ty); break;
682  case FCmpInst::FCMP_UNO:   R = executeFCMP_UNO(Src1, Src2, Ty); break;
683  case FCmpInst::FCMP_UEQ:   R = executeFCMP_UEQ(Src1, Src2, Ty); break;
684  case FCmpInst::FCMP_OEQ:   R = executeFCMP_OEQ(Src1, Src2, Ty); break;
685  case FCmpInst::FCMP_UNE:   R = executeFCMP_UNE(Src1, Src2, Ty); break;
686  case FCmpInst::FCMP_ONE:   R = executeFCMP_ONE(Src1, Src2, Ty); break;
687  case FCmpInst::FCMP_ULT:   R = executeFCMP_ULT(Src1, Src2, Ty); break;
688  case FCmpInst::FCMP_OLT:   R = executeFCMP_OLT(Src1, Src2, Ty); break;
689  case FCmpInst::FCMP_UGT:   R = executeFCMP_UGT(Src1, Src2, Ty); break;
690  case FCmpInst::FCMP_OGT:   R = executeFCMP_OGT(Src1, Src2, Ty); break;
691  case FCmpInst::FCMP_ULE:   R = executeFCMP_ULE(Src1, Src2, Ty); break;
692  case FCmpInst::FCMP_OLE:   R = executeFCMP_OLE(Src1, Src2, Ty); break;
693  case FCmpInst::FCMP_UGE:   R = executeFCMP_UGE(Src1, Src2, Ty); break;
694  case FCmpInst::FCMP_OGE:   R = executeFCMP_OGE(Src1, Src2, Ty); break;
695  }
696
697  SetValue(&I, R, SF);
698}
699
700static GenericValue executeCmpInst(unsigned predicate, GenericValue Src1,
701                                   GenericValue Src2, Type *Ty) {
702  GenericValue Result;
703  switch (predicate) {
704  case ICmpInst::ICMP_EQ:    return executeICMP_EQ(Src1, Src2, Ty);
705  case ICmpInst::ICMP_NE:    return executeICMP_NE(Src1, Src2, Ty);
706  case ICmpInst::ICMP_UGT:   return executeICMP_UGT(Src1, Src2, Ty);
707  case ICmpInst::ICMP_SGT:   return executeICMP_SGT(Src1, Src2, Ty);
708  case ICmpInst::ICMP_ULT:   return executeICMP_ULT(Src1, Src2, Ty);
709  case ICmpInst::ICMP_SLT:   return executeICMP_SLT(Src1, Src2, Ty);
710  case ICmpInst::ICMP_UGE:   return executeICMP_UGE(Src1, Src2, Ty);
711  case ICmpInst::ICMP_SGE:   return executeICMP_SGE(Src1, Src2, Ty);
712  case ICmpInst::ICMP_ULE:   return executeICMP_ULE(Src1, Src2, Ty);
713  case ICmpInst::ICMP_SLE:   return executeICMP_SLE(Src1, Src2, Ty);
714  case FCmpInst::FCMP_ORD:   return executeFCMP_ORD(Src1, Src2, Ty);
715  case FCmpInst::FCMP_UNO:   return executeFCMP_UNO(Src1, Src2, Ty);
716  case FCmpInst::FCMP_OEQ:   return executeFCMP_OEQ(Src1, Src2, Ty);
717  case FCmpInst::FCMP_UEQ:   return executeFCMP_UEQ(Src1, Src2, Ty);
718  case FCmpInst::FCMP_ONE:   return executeFCMP_ONE(Src1, Src2, Ty);
719  case FCmpInst::FCMP_UNE:   return executeFCMP_UNE(Src1, Src2, Ty);
720  case FCmpInst::FCMP_OLT:   return executeFCMP_OLT(Src1, Src2, Ty);
721  case FCmpInst::FCMP_ULT:   return executeFCMP_ULT(Src1, Src2, Ty);
722  case FCmpInst::FCMP_OGT:   return executeFCMP_OGT(Src1, Src2, Ty);
723  case FCmpInst::FCMP_UGT:   return executeFCMP_UGT(Src1, Src2, Ty);
724  case FCmpInst::FCMP_OLE:   return executeFCMP_OLE(Src1, Src2, Ty);
725  case FCmpInst::FCMP_ULE:   return executeFCMP_ULE(Src1, Src2, Ty);
726  case FCmpInst::FCMP_OGE:   return executeFCMP_OGE(Src1, Src2, Ty);
727  case FCmpInst::FCMP_UGE:   return executeFCMP_UGE(Src1, Src2, Ty);
728  case FCmpInst::FCMP_FALSE: return executeFCMP_BOOL(Src1, Src2, Ty, false);
729  case FCmpInst::FCMP_TRUE:  return executeFCMP_BOOL(Src1, Src2, Ty, true);
730  default:
731    dbgs() << "Unhandled Cmp predicate\n";
732    llvm_unreachable(nullptr);
733  }
734}
735
736void Interpreter::visitBinaryOperator(BinaryOperator &I) {
737  ExecutionContext &SF = ECStack.back();
738  Type *Ty    = I.getOperand(0)->getType();
739  GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
740  GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
741  GenericValue R;   // Result
742
743  // First process vector operation
744  if (Ty->isVectorTy()) {
745    assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
746    R.AggregateVal.resize(Src1.AggregateVal.size());
747
748    // Macros to execute binary operation 'OP' over integer vectors
749#define INTEGER_VECTOR_OPERATION(OP)                               \
750    for (unsigned i = 0; i < R.AggregateVal.size(); ++i)           \
751      R.AggregateVal[i].IntVal =                                   \
752      Src1.AggregateVal[i].IntVal OP Src2.AggregateVal[i].IntVal;
753
754    // Additional macros to execute binary operations udiv/sdiv/urem/srem since
755    // they have different notation.
756#define INTEGER_VECTOR_FUNCTION(OP)                                \
757    for (unsigned i = 0; i < R.AggregateVal.size(); ++i)           \
758      R.AggregateVal[i].IntVal =                                   \
759      Src1.AggregateVal[i].IntVal.OP(Src2.AggregateVal[i].IntVal);
760
761    // Macros to execute binary operation 'OP' over floating point type TY
762    // (float or double) vectors
763#define FLOAT_VECTOR_FUNCTION(OP, TY)                               \
764      for (unsigned i = 0; i < R.AggregateVal.size(); ++i)          \
765        R.AggregateVal[i].TY =                                      \
766        Src1.AggregateVal[i].TY OP Src2.AggregateVal[i].TY;
767
768    // Macros to choose appropriate TY: float or double and run operation
769    // execution
770#define FLOAT_VECTOR_OP(OP) {                                         \
771  if (cast<VectorType>(Ty)->getElementType()->isFloatTy())            \
772    FLOAT_VECTOR_FUNCTION(OP, FloatVal)                               \
773  else {                                                              \
774    if (cast<VectorType>(Ty)->getElementType()->isDoubleTy())         \
775      FLOAT_VECTOR_FUNCTION(OP, DoubleVal)                            \
776    else {                                                            \
777      dbgs() << "Unhandled type for OP instruction: " << *Ty << "\n"; \
778      llvm_unreachable(0);                                            \
779    }                                                                 \
780  }                                                                   \
781}
782
783    switch(I.getOpcode()){
784    default:
785      dbgs() << "Don't know how to handle this binary operator!\n-->" << I;
786      llvm_unreachable(nullptr);
787      break;
788    case Instruction::Add:   INTEGER_VECTOR_OPERATION(+) break;
789    case Instruction::Sub:   INTEGER_VECTOR_OPERATION(-) break;
790    case Instruction::Mul:   INTEGER_VECTOR_OPERATION(*) break;
791    case Instruction::UDiv:  INTEGER_VECTOR_FUNCTION(udiv) break;
792    case Instruction::SDiv:  INTEGER_VECTOR_FUNCTION(sdiv) break;
793    case Instruction::URem:  INTEGER_VECTOR_FUNCTION(urem) break;
794    case Instruction::SRem:  INTEGER_VECTOR_FUNCTION(srem) break;
795    case Instruction::And:   INTEGER_VECTOR_OPERATION(&) break;
796    case Instruction::Or:    INTEGER_VECTOR_OPERATION(|) break;
797    case Instruction::Xor:   INTEGER_VECTOR_OPERATION(^) break;
798    case Instruction::FAdd:  FLOAT_VECTOR_OP(+) break;
799    case Instruction::FSub:  FLOAT_VECTOR_OP(-) break;
800    case Instruction::FMul:  FLOAT_VECTOR_OP(*) break;
801    case Instruction::FDiv:  FLOAT_VECTOR_OP(/) break;
802    case Instruction::FRem:
803      if (cast<VectorType>(Ty)->getElementType()->isFloatTy())
804        for (unsigned i = 0; i < R.AggregateVal.size(); ++i)
805          R.AggregateVal[i].FloatVal =
806          fmod(Src1.AggregateVal[i].FloatVal, Src2.AggregateVal[i].FloatVal);
807      else {
808        if (cast<VectorType>(Ty)->getElementType()->isDoubleTy())
809          for (unsigned i = 0; i < R.AggregateVal.size(); ++i)
810            R.AggregateVal[i].DoubleVal =
811            fmod(Src1.AggregateVal[i].DoubleVal, Src2.AggregateVal[i].DoubleVal);
812        else {
813          dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n";
814          llvm_unreachable(nullptr);
815        }
816      }
817      break;
818    }
819  } else {
820    switch (I.getOpcode()) {
821    default:
822      dbgs() << "Don't know how to handle this binary operator!\n-->" << I;
823      llvm_unreachable(nullptr);
824      break;
825    case Instruction::Add:   R.IntVal = Src1.IntVal + Src2.IntVal; break;
826    case Instruction::Sub:   R.IntVal = Src1.IntVal - Src2.IntVal; break;
827    case Instruction::Mul:   R.IntVal = Src1.IntVal * Src2.IntVal; break;
828    case Instruction::FAdd:  executeFAddInst(R, Src1, Src2, Ty); break;
829    case Instruction::FSub:  executeFSubInst(R, Src1, Src2, Ty); break;
830    case Instruction::FMul:  executeFMulInst(R, Src1, Src2, Ty); break;
831    case Instruction::FDiv:  executeFDivInst(R, Src1, Src2, Ty); break;
832    case Instruction::FRem:  executeFRemInst(R, Src1, Src2, Ty); break;
833    case Instruction::UDiv:  R.IntVal = Src1.IntVal.udiv(Src2.IntVal); break;
834    case Instruction::SDiv:  R.IntVal = Src1.IntVal.sdiv(Src2.IntVal); break;
835    case Instruction::URem:  R.IntVal = Src1.IntVal.urem(Src2.IntVal); break;
836    case Instruction::SRem:  R.IntVal = Src1.IntVal.srem(Src2.IntVal); break;
837    case Instruction::And:   R.IntVal = Src1.IntVal & Src2.IntVal; break;
838    case Instruction::Or:    R.IntVal = Src1.IntVal | Src2.IntVal; break;
839    case Instruction::Xor:   R.IntVal = Src1.IntVal ^ Src2.IntVal; break;
840    }
841  }
842  SetValue(&I, R, SF);
843}
844
845static GenericValue executeSelectInst(GenericValue Src1, GenericValue Src2,
846                                      GenericValue Src3, Type *Ty) {
847    GenericValue Dest;
848    if(Ty->isVectorTy()) {
849      assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
850      assert(Src2.AggregateVal.size() == Src3.AggregateVal.size());
851      Dest.AggregateVal.resize( Src1.AggregateVal.size() );
852      for (size_t i = 0; i < Src1.AggregateVal.size(); ++i)
853        Dest.AggregateVal[i] = (Src1.AggregateVal[i].IntVal == 0) ?
854          Src3.AggregateVal[i] : Src2.AggregateVal[i];
855    } else {
856      Dest = (Src1.IntVal == 0) ? Src3 : Src2;
857    }
858    return Dest;
859}
860
861void Interpreter::visitSelectInst(SelectInst &I) {
862  ExecutionContext &SF = ECStack.back();
863  Type * Ty = I.getOperand(0)->getType();
864  GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
865  GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
866  GenericValue Src3 = getOperandValue(I.getOperand(2), SF);
867  GenericValue R = executeSelectInst(Src1, Src2, Src3, Ty);
868  SetValue(&I, R, SF);
869}
870
871//===----------------------------------------------------------------------===//
872//                     Terminator Instruction Implementations
873//===----------------------------------------------------------------------===//
874
875void Interpreter::exitCalled(GenericValue GV) {
876  // runAtExitHandlers() assumes there are no stack frames, but
877  // if exit() was called, then it had a stack frame. Blow away
878  // the stack before interpreting atexit handlers.
879  ECStack.clear();
880  runAtExitHandlers();
881  exit(GV.IntVal.zextOrTrunc(32).getZExtValue());
882}
883
884/// Pop the last stack frame off of ECStack and then copy the result
885/// back into the result variable if we are not returning void. The
886/// result variable may be the ExitValue, or the Value of the calling
887/// CallInst if there was a previous stack frame. This method may
888/// invalidate any ECStack iterators you have. This method also takes
889/// care of switching to the normal destination BB, if we are returning
890/// from an invoke.
891///
892void Interpreter::popStackAndReturnValueToCaller(Type *RetTy,
893                                                 GenericValue Result) {
894  // Pop the current stack frame.
895  ECStack.pop_back();
896
897  if (ECStack.empty()) {  // Finished main.  Put result into exit code...
898    if (RetTy && !RetTy->isVoidTy()) {          // Nonvoid return type?
899      ExitValue = Result;   // Capture the exit value of the program
900    } else {
901      memset(&ExitValue.Untyped, 0, sizeof(ExitValue.Untyped));
902    }
903  } else {
904    // If we have a previous stack frame, and we have a previous call,
905    // fill in the return value...
906    ExecutionContext &CallingSF = ECStack.back();
907    if (CallingSF.Caller) {
908      // Save result...
909      if (!CallingSF.Caller->getType()->isVoidTy())
910        SetValue(CallingSF.Caller, Result, CallingSF);
911      if (InvokeInst *II = dyn_cast<InvokeInst>(CallingSF.Caller))
912        SwitchToNewBasicBlock (II->getNormalDest (), CallingSF);
913      CallingSF.Caller = nullptr;             // We returned from the call...
914    }
915  }
916}
917
918void Interpreter::visitReturnInst(ReturnInst &I) {
919  ExecutionContext &SF = ECStack.back();
920  Type *RetTy = Type::getVoidTy(I.getContext());
921  GenericValue Result;
922
923  // Save away the return value... (if we are not 'ret void')
924  if (I.getNumOperands()) {
925    RetTy  = I.getReturnValue()->getType();
926    Result = getOperandValue(I.getReturnValue(), SF);
927  }
928
929  popStackAndReturnValueToCaller(RetTy, Result);
930}
931
932void Interpreter::visitUnreachableInst(UnreachableInst &I) {
933  report_fatal_error("Program executed an 'unreachable' instruction!");
934}
935
936void Interpreter::visitBranchInst(BranchInst &I) {
937  ExecutionContext &SF = ECStack.back();
938  BasicBlock *Dest;
939
940  Dest = I.getSuccessor(0);          // Uncond branches have a fixed dest...
941  if (!I.isUnconditional()) {
942    Value *Cond = I.getCondition();
943    if (getOperandValue(Cond, SF).IntVal == 0) // If false cond...
944      Dest = I.getSuccessor(1);
945  }
946  SwitchToNewBasicBlock(Dest, SF);
947}
948
949void Interpreter::visitSwitchInst(SwitchInst &I) {
950  ExecutionContext &SF = ECStack.back();
951  Value* Cond = I.getCondition();
952  Type *ElTy = Cond->getType();
953  GenericValue CondVal = getOperandValue(Cond, SF);
954
955  // Check to see if any of the cases match...
956  BasicBlock *Dest = nullptr;
957  for (auto Case : I.cases()) {
958    GenericValue CaseVal = getOperandValue(Case.getCaseValue(), SF);
959    if (executeICMP_EQ(CondVal, CaseVal, ElTy).IntVal != 0) {
960      Dest = cast<BasicBlock>(Case.getCaseSuccessor());
961      break;
962    }
963  }
964  if (!Dest) Dest = I.getDefaultDest();   // No cases matched: use default
965  SwitchToNewBasicBlock(Dest, SF);
966}
967
968void Interpreter::visitIndirectBrInst(IndirectBrInst &I) {
969  ExecutionContext &SF = ECStack.back();
970  void *Dest = GVTOP(getOperandValue(I.getAddress(), SF));
971  SwitchToNewBasicBlock((BasicBlock*)Dest, SF);
972}
973
974
975// SwitchToNewBasicBlock - This method is used to jump to a new basic block.
976// This function handles the actual updating of block and instruction iterators
977// as well as execution of all of the PHI nodes in the destination block.
978//
979// This method does this because all of the PHI nodes must be executed
980// atomically, reading their inputs before any of the results are updated.  Not
981// doing this can cause problems if the PHI nodes depend on other PHI nodes for
982// their inputs.  If the input PHI node is updated before it is read, incorrect
983// results can happen.  Thus we use a two phase approach.
984//
985void Interpreter::SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF){
986  BasicBlock *PrevBB = SF.CurBB;      // Remember where we came from...
987  SF.CurBB   = Dest;                  // Update CurBB to branch destination
988  SF.CurInst = SF.CurBB->begin();     // Update new instruction ptr...
989
990  if (!isa<PHINode>(SF.CurInst)) return;  // Nothing fancy to do
991
992  // Loop over all of the PHI nodes in the current block, reading their inputs.
993  std::vector<GenericValue> ResultValues;
994
995  for (; PHINode *PN = dyn_cast<PHINode>(SF.CurInst); ++SF.CurInst) {
996    // Search for the value corresponding to this previous bb...
997    int i = PN->getBasicBlockIndex(PrevBB);
998    assert(i != -1 && "PHINode doesn't contain entry for predecessor??");
999    Value *IncomingValue = PN->getIncomingValue(i);
1000
1001    // Save the incoming value for this PHI node...
1002    ResultValues.push_back(getOperandValue(IncomingValue, SF));
1003  }
1004
1005  // Now loop over all of the PHI nodes setting their values...
1006  SF.CurInst = SF.CurBB->begin();
1007  for (unsigned i = 0; isa<PHINode>(SF.CurInst); ++SF.CurInst, ++i) {
1008    PHINode *PN = cast<PHINode>(SF.CurInst);
1009    SetValue(PN, ResultValues[i], SF);
1010  }
1011}
1012
1013//===----------------------------------------------------------------------===//
1014//                     Memory Instruction Implementations
1015//===----------------------------------------------------------------------===//
1016
1017void Interpreter::visitAllocaInst(AllocaInst &I) {
1018  ExecutionContext &SF = ECStack.back();
1019
1020  Type *Ty = I.getAllocatedType(); // Type to be allocated
1021
1022  // Get the number of elements being allocated by the array...
1023  unsigned NumElements =
1024    getOperandValue(I.getOperand(0), SF).IntVal.getZExtValue();
1025
1026  unsigned TypeSize = (size_t)getDataLayout().getTypeAllocSize(Ty);
1027
1028  // Avoid malloc-ing zero bytes, use max()...
1029  unsigned MemToAlloc = std::max(1U, NumElements * TypeSize);
1030
1031  // Allocate enough memory to hold the type...
1032  void *Memory = safe_malloc(MemToAlloc);
1033
1034  LLVM_DEBUG(dbgs() << "Allocated Type: " << *Ty << " (" << TypeSize
1035                    << " bytes) x " << NumElements << " (Total: " << MemToAlloc
1036                    << ") at " << uintptr_t(Memory) << '\n');
1037
1038  GenericValue Result = PTOGV(Memory);
1039  assert(Result.PointerVal && "Null pointer returned by malloc!");
1040  SetValue(&I, Result, SF);
1041
1042  if (I.getOpcode() == Instruction::Alloca)
1043    ECStack.back().Allocas.add(Memory);
1044}
1045
1046// getElementOffset - The workhorse for getelementptr.
1047//
1048GenericValue Interpreter::executeGEPOperation(Value *Ptr, gep_type_iterator I,
1049                                              gep_type_iterator E,
1050                                              ExecutionContext &SF) {
1051  assert(Ptr->getType()->isPointerTy() &&
1052         "Cannot getElementOffset of a nonpointer type!");
1053
1054  uint64_t Total = 0;
1055
1056  for (; I != E; ++I) {
1057    if (StructType *STy = I.getStructTypeOrNull()) {
1058      const StructLayout *SLO = getDataLayout().getStructLayout(STy);
1059
1060      const ConstantInt *CPU = cast<ConstantInt>(I.getOperand());
1061      unsigned Index = unsigned(CPU->getZExtValue());
1062
1063      Total += SLO->getElementOffset(Index);
1064    } else {
1065      // Get the index number for the array... which must be long type...
1066      GenericValue IdxGV = getOperandValue(I.getOperand(), SF);
1067
1068      int64_t Idx;
1069      unsigned BitWidth =
1070        cast<IntegerType>(I.getOperand()->getType())->getBitWidth();
1071      if (BitWidth == 32)
1072        Idx = (int64_t)(int32_t)IdxGV.IntVal.getZExtValue();
1073      else {
1074        assert(BitWidth == 64 && "Invalid index type for getelementptr");
1075        Idx = (int64_t)IdxGV.IntVal.getZExtValue();
1076      }
1077      Total += I.getSequentialElementStride(getDataLayout()) * Idx;
1078    }
1079  }
1080
1081  GenericValue Result;
1082  Result.PointerVal = ((char*)getOperandValue(Ptr, SF).PointerVal) + Total;
1083  LLVM_DEBUG(dbgs() << "GEP Index " << Total << " bytes.\n");
1084  return Result;
1085}
1086
1087void Interpreter::visitGetElementPtrInst(GetElementPtrInst &I) {
1088  ExecutionContext &SF = ECStack.back();
1089  SetValue(&I, executeGEPOperation(I.getPointerOperand(),
1090                                   gep_type_begin(I), gep_type_end(I), SF), SF);
1091}
1092
1093void Interpreter::visitLoadInst(LoadInst &I) {
1094  ExecutionContext &SF = ECStack.back();
1095  GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
1096  GenericValue *Ptr = (GenericValue*)GVTOP(SRC);
1097  GenericValue Result;
1098  LoadValueFromMemory(Result, Ptr, I.getType());
1099  SetValue(&I, Result, SF);
1100  if (I.isVolatile() && PrintVolatile)
1101    dbgs() << "Volatile load " << I;
1102}
1103
1104void Interpreter::visitStoreInst(StoreInst &I) {
1105  ExecutionContext &SF = ECStack.back();
1106  GenericValue Val = getOperandValue(I.getOperand(0), SF);
1107  GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
1108  StoreValueToMemory(Val, (GenericValue *)GVTOP(SRC),
1109                     I.getOperand(0)->getType());
1110  if (I.isVolatile() && PrintVolatile)
1111    dbgs() << "Volatile store: " << I;
1112}
1113
1114//===----------------------------------------------------------------------===//
1115//                 Miscellaneous Instruction Implementations
1116//===----------------------------------------------------------------------===//
1117
1118void Interpreter::visitVAStartInst(VAStartInst &I) {
1119  ExecutionContext &SF = ECStack.back();
1120  GenericValue ArgIndex;
1121  ArgIndex.UIntPairVal.first = ECStack.size() - 1;
1122  ArgIndex.UIntPairVal.second = 0;
1123  SetValue(&I, ArgIndex, SF);
1124}
1125
1126void Interpreter::visitVAEndInst(VAEndInst &I) {
1127  // va_end is a noop for the interpreter
1128}
1129
1130void Interpreter::visitVACopyInst(VACopyInst &I) {
1131  ExecutionContext &SF = ECStack.back();
1132  SetValue(&I, getOperandValue(*I.arg_begin(), SF), SF);
1133}
1134
1135void Interpreter::visitIntrinsicInst(IntrinsicInst &I) {
1136  ExecutionContext &SF = ECStack.back();
1137
1138  // If it is an unknown intrinsic function, use the intrinsic lowering
1139  // class to transform it into hopefully tasty LLVM code.
1140  //
1141  BasicBlock::iterator Me(&I);
1142  BasicBlock *Parent = I.getParent();
1143  bool atBegin(Parent->begin() == Me);
1144  if (!atBegin)
1145    --Me;
1146  IL->LowerIntrinsicCall(&I);
1147
1148  // Restore the CurInst pointer to the first instruction newly inserted, if
1149  // any.
1150  if (atBegin) {
1151    SF.CurInst = Parent->begin();
1152  } else {
1153    SF.CurInst = Me;
1154    ++SF.CurInst;
1155  }
1156}
1157
1158void Interpreter::visitCallBase(CallBase &I) {
1159  ExecutionContext &SF = ECStack.back();
1160
1161  SF.Caller = &I;
1162  std::vector<GenericValue> ArgVals;
1163  const unsigned NumArgs = SF.Caller->arg_size();
1164  ArgVals.reserve(NumArgs);
1165  for (Value *V : SF.Caller->args())
1166    ArgVals.push_back(getOperandValue(V, SF));
1167
1168  // To handle indirect calls, we must get the pointer value from the argument
1169  // and treat it as a function pointer.
1170  GenericValue SRC = getOperandValue(SF.Caller->getCalledOperand(), SF);
1171  callFunction((Function*)GVTOP(SRC), ArgVals);
1172}
1173
1174// auxiliary function for shift operations
1175static unsigned getShiftAmount(uint64_t orgShiftAmount,
1176                               llvm::APInt valueToShift) {
1177  unsigned valueWidth = valueToShift.getBitWidth();
1178  if (orgShiftAmount < (uint64_t)valueWidth)
1179    return orgShiftAmount;
1180  // according to the llvm documentation, if orgShiftAmount > valueWidth,
1181  // the result is undfeined. but we do shift by this rule:
1182  return (NextPowerOf2(valueWidth-1) - 1) & orgShiftAmount;
1183}
1184
1185
1186void Interpreter::visitShl(BinaryOperator &I) {
1187  ExecutionContext &SF = ECStack.back();
1188  GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
1189  GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1190  GenericValue Dest;
1191  Type *Ty = I.getType();
1192
1193  if (Ty->isVectorTy()) {
1194    uint32_t src1Size = uint32_t(Src1.AggregateVal.size());
1195    assert(src1Size == Src2.AggregateVal.size());
1196    for (unsigned i = 0; i < src1Size; i++) {
1197      GenericValue Result;
1198      uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue();
1199      llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal;
1200      Result.IntVal = valueToShift.shl(getShiftAmount(shiftAmount, valueToShift));
1201      Dest.AggregateVal.push_back(Result);
1202    }
1203  } else {
1204    // scalar
1205    uint64_t shiftAmount = Src2.IntVal.getZExtValue();
1206    llvm::APInt valueToShift = Src1.IntVal;
1207    Dest.IntVal = valueToShift.shl(getShiftAmount(shiftAmount, valueToShift));
1208  }
1209
1210  SetValue(&I, Dest, SF);
1211}
1212
1213void Interpreter::visitLShr(BinaryOperator &I) {
1214  ExecutionContext &SF = ECStack.back();
1215  GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
1216  GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1217  GenericValue Dest;
1218  Type *Ty = I.getType();
1219
1220  if (Ty->isVectorTy()) {
1221    uint32_t src1Size = uint32_t(Src1.AggregateVal.size());
1222    assert(src1Size == Src2.AggregateVal.size());
1223    for (unsigned i = 0; i < src1Size; i++) {
1224      GenericValue Result;
1225      uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue();
1226      llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal;
1227      Result.IntVal = valueToShift.lshr(getShiftAmount(shiftAmount, valueToShift));
1228      Dest.AggregateVal.push_back(Result);
1229    }
1230  } else {
1231    // scalar
1232    uint64_t shiftAmount = Src2.IntVal.getZExtValue();
1233    llvm::APInt valueToShift = Src1.IntVal;
1234    Dest.IntVal = valueToShift.lshr(getShiftAmount(shiftAmount, valueToShift));
1235  }
1236
1237  SetValue(&I, Dest, SF);
1238}
1239
1240void Interpreter::visitAShr(BinaryOperator &I) {
1241  ExecutionContext &SF = ECStack.back();
1242  GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
1243  GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1244  GenericValue Dest;
1245  Type *Ty = I.getType();
1246
1247  if (Ty->isVectorTy()) {
1248    size_t src1Size = Src1.AggregateVal.size();
1249    assert(src1Size == Src2.AggregateVal.size());
1250    for (unsigned i = 0; i < src1Size; i++) {
1251      GenericValue Result;
1252      uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue();
1253      llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal;
1254      Result.IntVal = valueToShift.ashr(getShiftAmount(shiftAmount, valueToShift));
1255      Dest.AggregateVal.push_back(Result);
1256    }
1257  } else {
1258    // scalar
1259    uint64_t shiftAmount = Src2.IntVal.getZExtValue();
1260    llvm::APInt valueToShift = Src1.IntVal;
1261    Dest.IntVal = valueToShift.ashr(getShiftAmount(shiftAmount, valueToShift));
1262  }
1263
1264  SetValue(&I, Dest, SF);
1265}
1266
1267GenericValue Interpreter::executeTruncInst(Value *SrcVal, Type *DstTy,
1268                                           ExecutionContext &SF) {
1269  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1270  Type *SrcTy = SrcVal->getType();
1271  if (SrcTy->isVectorTy()) {
1272    Type *DstVecTy = DstTy->getScalarType();
1273    unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
1274    unsigned NumElts = Src.AggregateVal.size();
1275    // the sizes of src and dst vectors must be equal
1276    Dest.AggregateVal.resize(NumElts);
1277    for (unsigned i = 0; i < NumElts; i++)
1278      Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.trunc(DBitWidth);
1279  } else {
1280    IntegerType *DITy = cast<IntegerType>(DstTy);
1281    unsigned DBitWidth = DITy->getBitWidth();
1282    Dest.IntVal = Src.IntVal.trunc(DBitWidth);
1283  }
1284  return Dest;
1285}
1286
1287GenericValue Interpreter::executeSExtInst(Value *SrcVal, Type *DstTy,
1288                                          ExecutionContext &SF) {
1289  Type *SrcTy = SrcVal->getType();
1290  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1291  if (SrcTy->isVectorTy()) {
1292    Type *DstVecTy = DstTy->getScalarType();
1293    unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
1294    unsigned size = Src.AggregateVal.size();
1295    // the sizes of src and dst vectors must be equal.
1296    Dest.AggregateVal.resize(size);
1297    for (unsigned i = 0; i < size; i++)
1298      Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.sext(DBitWidth);
1299  } else {
1300    auto *DITy = cast<IntegerType>(DstTy);
1301    unsigned DBitWidth = DITy->getBitWidth();
1302    Dest.IntVal = Src.IntVal.sext(DBitWidth);
1303  }
1304  return Dest;
1305}
1306
1307GenericValue Interpreter::executeZExtInst(Value *SrcVal, Type *DstTy,
1308                                          ExecutionContext &SF) {
1309  Type *SrcTy = SrcVal->getType();
1310  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1311  if (SrcTy->isVectorTy()) {
1312    Type *DstVecTy = DstTy->getScalarType();
1313    unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
1314
1315    unsigned size = Src.AggregateVal.size();
1316    // the sizes of src and dst vectors must be equal.
1317    Dest.AggregateVal.resize(size);
1318    for (unsigned i = 0; i < size; i++)
1319      Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.zext(DBitWidth);
1320  } else {
1321    auto *DITy = cast<IntegerType>(DstTy);
1322    unsigned DBitWidth = DITy->getBitWidth();
1323    Dest.IntVal = Src.IntVal.zext(DBitWidth);
1324  }
1325  return Dest;
1326}
1327
1328GenericValue Interpreter::executeFPTruncInst(Value *SrcVal, Type *DstTy,
1329                                             ExecutionContext &SF) {
1330  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1331
1332  if (isa<VectorType>(SrcVal->getType())) {
1333    assert(SrcVal->getType()->getScalarType()->isDoubleTy() &&
1334           DstTy->getScalarType()->isFloatTy() &&
1335           "Invalid FPTrunc instruction");
1336
1337    unsigned size = Src.AggregateVal.size();
1338    // the sizes of src and dst vectors must be equal.
1339    Dest.AggregateVal.resize(size);
1340    for (unsigned i = 0; i < size; i++)
1341      Dest.AggregateVal[i].FloatVal = (float)Src.AggregateVal[i].DoubleVal;
1342  } else {
1343    assert(SrcVal->getType()->isDoubleTy() && DstTy->isFloatTy() &&
1344           "Invalid FPTrunc instruction");
1345    Dest.FloatVal = (float)Src.DoubleVal;
1346  }
1347
1348  return Dest;
1349}
1350
1351GenericValue Interpreter::executeFPExtInst(Value *SrcVal, Type *DstTy,
1352                                           ExecutionContext &SF) {
1353  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1354
1355  if (isa<VectorType>(SrcVal->getType())) {
1356    assert(SrcVal->getType()->getScalarType()->isFloatTy() &&
1357           DstTy->getScalarType()->isDoubleTy() && "Invalid FPExt instruction");
1358
1359    unsigned size = Src.AggregateVal.size();
1360    // the sizes of src and dst vectors must be equal.
1361    Dest.AggregateVal.resize(size);
1362    for (unsigned i = 0; i < size; i++)
1363      Dest.AggregateVal[i].DoubleVal = (double)Src.AggregateVal[i].FloatVal;
1364  } else {
1365    assert(SrcVal->getType()->isFloatTy() && DstTy->isDoubleTy() &&
1366           "Invalid FPExt instruction");
1367    Dest.DoubleVal = (double)Src.FloatVal;
1368  }
1369
1370  return Dest;
1371}
1372
1373GenericValue Interpreter::executeFPToUIInst(Value *SrcVal, Type *DstTy,
1374                                            ExecutionContext &SF) {
1375  Type *SrcTy = SrcVal->getType();
1376  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1377
1378  if (isa<VectorType>(SrcTy)) {
1379    Type *DstVecTy = DstTy->getScalarType();
1380    Type *SrcVecTy = SrcTy->getScalarType();
1381    uint32_t DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
1382    unsigned size = Src.AggregateVal.size();
1383    // the sizes of src and dst vectors must be equal.
1384    Dest.AggregateVal.resize(size);
1385
1386    if (SrcVecTy->getTypeID() == Type::FloatTyID) {
1387      assert(SrcVecTy->isFloatingPointTy() && "Invalid FPToUI instruction");
1388      for (unsigned i = 0; i < size; i++)
1389        Dest.AggregateVal[i].IntVal = APIntOps::RoundFloatToAPInt(
1390            Src.AggregateVal[i].FloatVal, DBitWidth);
1391    } else {
1392      for (unsigned i = 0; i < size; i++)
1393        Dest.AggregateVal[i].IntVal = APIntOps::RoundDoubleToAPInt(
1394            Src.AggregateVal[i].DoubleVal, DBitWidth);
1395    }
1396  } else {
1397    // scalar
1398    uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
1399    assert(SrcTy->isFloatingPointTy() && "Invalid FPToUI instruction");
1400
1401    if (SrcTy->getTypeID() == Type::FloatTyID)
1402      Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth);
1403    else {
1404      Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth);
1405    }
1406  }
1407
1408  return Dest;
1409}
1410
1411GenericValue Interpreter::executeFPToSIInst(Value *SrcVal, Type *DstTy,
1412                                            ExecutionContext &SF) {
1413  Type *SrcTy = SrcVal->getType();
1414  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1415
1416  if (isa<VectorType>(SrcTy)) {
1417    Type *DstVecTy = DstTy->getScalarType();
1418    Type *SrcVecTy = SrcTy->getScalarType();
1419    uint32_t DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
1420    unsigned size = Src.AggregateVal.size();
1421    // the sizes of src and dst vectors must be equal
1422    Dest.AggregateVal.resize(size);
1423
1424    if (SrcVecTy->getTypeID() == Type::FloatTyID) {
1425      assert(SrcVecTy->isFloatingPointTy() && "Invalid FPToSI instruction");
1426      for (unsigned i = 0; i < size; i++)
1427        Dest.AggregateVal[i].IntVal = APIntOps::RoundFloatToAPInt(
1428            Src.AggregateVal[i].FloatVal, DBitWidth);
1429    } else {
1430      for (unsigned i = 0; i < size; i++)
1431        Dest.AggregateVal[i].IntVal = APIntOps::RoundDoubleToAPInt(
1432            Src.AggregateVal[i].DoubleVal, DBitWidth);
1433    }
1434  } else {
1435    // scalar
1436    unsigned DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
1437    assert(SrcTy->isFloatingPointTy() && "Invalid FPToSI instruction");
1438
1439    if (SrcTy->getTypeID() == Type::FloatTyID)
1440      Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth);
1441    else {
1442      Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth);
1443    }
1444  }
1445  return Dest;
1446}
1447
1448GenericValue Interpreter::executeUIToFPInst(Value *SrcVal, Type *DstTy,
1449                                            ExecutionContext &SF) {
1450  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1451
1452  if (isa<VectorType>(SrcVal->getType())) {
1453    Type *DstVecTy = DstTy->getScalarType();
1454    unsigned size = Src.AggregateVal.size();
1455    // the sizes of src and dst vectors must be equal
1456    Dest.AggregateVal.resize(size);
1457
1458    if (DstVecTy->getTypeID() == Type::FloatTyID) {
1459      assert(DstVecTy->isFloatingPointTy() && "Invalid UIToFP instruction");
1460      for (unsigned i = 0; i < size; i++)
1461        Dest.AggregateVal[i].FloatVal =
1462            APIntOps::RoundAPIntToFloat(Src.AggregateVal[i].IntVal);
1463    } else {
1464      for (unsigned i = 0; i < size; i++)
1465        Dest.AggregateVal[i].DoubleVal =
1466            APIntOps::RoundAPIntToDouble(Src.AggregateVal[i].IntVal);
1467    }
1468  } else {
1469    // scalar
1470    assert(DstTy->isFloatingPointTy() && "Invalid UIToFP instruction");
1471    if (DstTy->getTypeID() == Type::FloatTyID)
1472      Dest.FloatVal = APIntOps::RoundAPIntToFloat(Src.IntVal);
1473    else {
1474      Dest.DoubleVal = APIntOps::RoundAPIntToDouble(Src.IntVal);
1475    }
1476  }
1477  return Dest;
1478}
1479
1480GenericValue Interpreter::executeSIToFPInst(Value *SrcVal, Type *DstTy,
1481                                            ExecutionContext &SF) {
1482  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1483
1484  if (isa<VectorType>(SrcVal->getType())) {
1485    Type *DstVecTy = DstTy->getScalarType();
1486    unsigned size = Src.AggregateVal.size();
1487    // the sizes of src and dst vectors must be equal
1488    Dest.AggregateVal.resize(size);
1489
1490    if (DstVecTy->getTypeID() == Type::FloatTyID) {
1491      assert(DstVecTy->isFloatingPointTy() && "Invalid SIToFP instruction");
1492      for (unsigned i = 0; i < size; i++)
1493        Dest.AggregateVal[i].FloatVal =
1494            APIntOps::RoundSignedAPIntToFloat(Src.AggregateVal[i].IntVal);
1495    } else {
1496      for (unsigned i = 0; i < size; i++)
1497        Dest.AggregateVal[i].DoubleVal =
1498            APIntOps::RoundSignedAPIntToDouble(Src.AggregateVal[i].IntVal);
1499    }
1500  } else {
1501    // scalar
1502    assert(DstTy->isFloatingPointTy() && "Invalid SIToFP instruction");
1503
1504    if (DstTy->getTypeID() == Type::FloatTyID)
1505      Dest.FloatVal = APIntOps::RoundSignedAPIntToFloat(Src.IntVal);
1506    else {
1507      Dest.DoubleVal = APIntOps::RoundSignedAPIntToDouble(Src.IntVal);
1508    }
1509  }
1510
1511  return Dest;
1512}
1513
1514GenericValue Interpreter::executePtrToIntInst(Value *SrcVal, Type *DstTy,
1515                                              ExecutionContext &SF) {
1516  uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
1517  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1518  assert(SrcVal->getType()->isPointerTy() && "Invalid PtrToInt instruction");
1519
1520  Dest.IntVal = APInt(DBitWidth, (intptr_t) Src.PointerVal);
1521  return Dest;
1522}
1523
1524GenericValue Interpreter::executeIntToPtrInst(Value *SrcVal, Type *DstTy,
1525                                              ExecutionContext &SF) {
1526  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1527  assert(DstTy->isPointerTy() && "Invalid PtrToInt instruction");
1528
1529  uint32_t PtrSize = getDataLayout().getPointerSizeInBits();
1530  if (PtrSize != Src.IntVal.getBitWidth())
1531    Src.IntVal = Src.IntVal.zextOrTrunc(PtrSize);
1532
1533  Dest.PointerVal = PointerTy(intptr_t(Src.IntVal.getZExtValue()));
1534  return Dest;
1535}
1536
1537GenericValue Interpreter::executeBitCastInst(Value *SrcVal, Type *DstTy,
1538                                             ExecutionContext &SF) {
1539
1540  // This instruction supports bitwise conversion of vectors to integers and
1541  // to vectors of other types (as long as they have the same size)
1542  Type *SrcTy = SrcVal->getType();
1543  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1544
1545  if (isa<VectorType>(SrcTy) || isa<VectorType>(DstTy)) {
1546    // vector src bitcast to vector dst or vector src bitcast to scalar dst or
1547    // scalar src bitcast to vector dst
1548    bool isLittleEndian = getDataLayout().isLittleEndian();
1549    GenericValue TempDst, TempSrc, SrcVec;
1550    Type *SrcElemTy;
1551    Type *DstElemTy;
1552    unsigned SrcBitSize;
1553    unsigned DstBitSize;
1554    unsigned SrcNum;
1555    unsigned DstNum;
1556
1557    if (isa<VectorType>(SrcTy)) {
1558      SrcElemTy = SrcTy->getScalarType();
1559      SrcBitSize = SrcTy->getScalarSizeInBits();
1560      SrcNum = Src.AggregateVal.size();
1561      SrcVec = Src;
1562    } else {
1563      // if src is scalar value, make it vector <1 x type>
1564      SrcElemTy = SrcTy;
1565      SrcBitSize = SrcTy->getPrimitiveSizeInBits();
1566      SrcNum = 1;
1567      SrcVec.AggregateVal.push_back(Src);
1568    }
1569
1570    if (isa<VectorType>(DstTy)) {
1571      DstElemTy = DstTy->getScalarType();
1572      DstBitSize = DstTy->getScalarSizeInBits();
1573      DstNum = (SrcNum * SrcBitSize) / DstBitSize;
1574    } else {
1575      DstElemTy = DstTy;
1576      DstBitSize = DstTy->getPrimitiveSizeInBits();
1577      DstNum = 1;
1578    }
1579
1580    if (SrcNum * SrcBitSize != DstNum * DstBitSize)
1581      llvm_unreachable("Invalid BitCast");
1582
1583    // If src is floating point, cast to integer first.
1584    TempSrc.AggregateVal.resize(SrcNum);
1585    if (SrcElemTy->isFloatTy()) {
1586      for (unsigned i = 0; i < SrcNum; i++)
1587        TempSrc.AggregateVal[i].IntVal =
1588            APInt::floatToBits(SrcVec.AggregateVal[i].FloatVal);
1589
1590    } else if (SrcElemTy->isDoubleTy()) {
1591      for (unsigned i = 0; i < SrcNum; i++)
1592        TempSrc.AggregateVal[i].IntVal =
1593            APInt::doubleToBits(SrcVec.AggregateVal[i].DoubleVal);
1594    } else if (SrcElemTy->isIntegerTy()) {
1595      for (unsigned i = 0; i < SrcNum; i++)
1596        TempSrc.AggregateVal[i].IntVal = SrcVec.AggregateVal[i].IntVal;
1597    } else {
1598      // Pointers are not allowed as the element type of vector.
1599      llvm_unreachable("Invalid Bitcast");
1600    }
1601
1602    // now TempSrc is integer type vector
1603    if (DstNum < SrcNum) {
1604      // Example: bitcast <4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>
1605      unsigned Ratio = SrcNum / DstNum;
1606      unsigned SrcElt = 0;
1607      for (unsigned i = 0; i < DstNum; i++) {
1608        GenericValue Elt;
1609        Elt.IntVal = 0;
1610        Elt.IntVal = Elt.IntVal.zext(DstBitSize);
1611        unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize * (Ratio - 1);
1612        for (unsigned j = 0; j < Ratio; j++) {
1613          APInt Tmp;
1614          Tmp = Tmp.zext(SrcBitSize);
1615          Tmp = TempSrc.AggregateVal[SrcElt++].IntVal;
1616          Tmp = Tmp.zext(DstBitSize);
1617          Tmp <<= ShiftAmt;
1618          ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
1619          Elt.IntVal |= Tmp;
1620        }
1621        TempDst.AggregateVal.push_back(Elt);
1622      }
1623    } else {
1624      // Example: bitcast <2 x i64> <i64 0, i64 1> to <4 x i32>
1625      unsigned Ratio = DstNum / SrcNum;
1626      for (unsigned i = 0; i < SrcNum; i++) {
1627        unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize * (Ratio - 1);
1628        for (unsigned j = 0; j < Ratio; j++) {
1629          GenericValue Elt;
1630          Elt.IntVal = Elt.IntVal.zext(SrcBitSize);
1631          Elt.IntVal = TempSrc.AggregateVal[i].IntVal;
1632          Elt.IntVal.lshrInPlace(ShiftAmt);
1633          // it could be DstBitSize == SrcBitSize, so check it
1634          if (DstBitSize < SrcBitSize)
1635            Elt.IntVal = Elt.IntVal.trunc(DstBitSize);
1636          ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
1637          TempDst.AggregateVal.push_back(Elt);
1638        }
1639      }
1640    }
1641
1642    // convert result from integer to specified type
1643    if (isa<VectorType>(DstTy)) {
1644      if (DstElemTy->isDoubleTy()) {
1645        Dest.AggregateVal.resize(DstNum);
1646        for (unsigned i = 0; i < DstNum; i++)
1647          Dest.AggregateVal[i].DoubleVal =
1648              TempDst.AggregateVal[i].IntVal.bitsToDouble();
1649      } else if (DstElemTy->isFloatTy()) {
1650        Dest.AggregateVal.resize(DstNum);
1651        for (unsigned i = 0; i < DstNum; i++)
1652          Dest.AggregateVal[i].FloatVal =
1653              TempDst.AggregateVal[i].IntVal.bitsToFloat();
1654      } else {
1655        Dest = TempDst;
1656      }
1657    } else {
1658      if (DstElemTy->isDoubleTy())
1659        Dest.DoubleVal = TempDst.AggregateVal[0].IntVal.bitsToDouble();
1660      else if (DstElemTy->isFloatTy()) {
1661        Dest.FloatVal = TempDst.AggregateVal[0].IntVal.bitsToFloat();
1662      } else {
1663        Dest.IntVal = TempDst.AggregateVal[0].IntVal;
1664      }
1665    }
1666  } else { //  if (isa<VectorType>(SrcTy)) || isa<VectorType>(DstTy))
1667
1668    // scalar src bitcast to scalar dst
1669    if (DstTy->isPointerTy()) {
1670      assert(SrcTy->isPointerTy() && "Invalid BitCast");
1671      Dest.PointerVal = Src.PointerVal;
1672    } else if (DstTy->isIntegerTy()) {
1673      if (SrcTy->isFloatTy())
1674        Dest.IntVal = APInt::floatToBits(Src.FloatVal);
1675      else if (SrcTy->isDoubleTy()) {
1676        Dest.IntVal = APInt::doubleToBits(Src.DoubleVal);
1677      } else if (SrcTy->isIntegerTy()) {
1678        Dest.IntVal = Src.IntVal;
1679      } else {
1680        llvm_unreachable("Invalid BitCast");
1681      }
1682    } else if (DstTy->isFloatTy()) {
1683      if (SrcTy->isIntegerTy())
1684        Dest.FloatVal = Src.IntVal.bitsToFloat();
1685      else {
1686        Dest.FloatVal = Src.FloatVal;
1687      }
1688    } else if (DstTy->isDoubleTy()) {
1689      if (SrcTy->isIntegerTy())
1690        Dest.DoubleVal = Src.IntVal.bitsToDouble();
1691      else {
1692        Dest.DoubleVal = Src.DoubleVal;
1693      }
1694    } else {
1695      llvm_unreachable("Invalid Bitcast");
1696    }
1697  }
1698
1699  return Dest;
1700}
1701
1702void Interpreter::visitTruncInst(TruncInst &I) {
1703  ExecutionContext &SF = ECStack.back();
1704  SetValue(&I, executeTruncInst(I.getOperand(0), I.getType(), SF), SF);
1705}
1706
1707void Interpreter::visitSExtInst(SExtInst &I) {
1708  ExecutionContext &SF = ECStack.back();
1709  SetValue(&I, executeSExtInst(I.getOperand(0), I.getType(), SF), SF);
1710}
1711
1712void Interpreter::visitZExtInst(ZExtInst &I) {
1713  ExecutionContext &SF = ECStack.back();
1714  SetValue(&I, executeZExtInst(I.getOperand(0), I.getType(), SF), SF);
1715}
1716
1717void Interpreter::visitFPTruncInst(FPTruncInst &I) {
1718  ExecutionContext &SF = ECStack.back();
1719  SetValue(&I, executeFPTruncInst(I.getOperand(0), I.getType(), SF), SF);
1720}
1721
1722void Interpreter::visitFPExtInst(FPExtInst &I) {
1723  ExecutionContext &SF = ECStack.back();
1724  SetValue(&I, executeFPExtInst(I.getOperand(0), I.getType(), SF), SF);
1725}
1726
1727void Interpreter::visitUIToFPInst(UIToFPInst &I) {
1728  ExecutionContext &SF = ECStack.back();
1729  SetValue(&I, executeUIToFPInst(I.getOperand(0), I.getType(), SF), SF);
1730}
1731
1732void Interpreter::visitSIToFPInst(SIToFPInst &I) {
1733  ExecutionContext &SF = ECStack.back();
1734  SetValue(&I, executeSIToFPInst(I.getOperand(0), I.getType(), SF), SF);
1735}
1736
1737void Interpreter::visitFPToUIInst(FPToUIInst &I) {
1738  ExecutionContext &SF = ECStack.back();
1739  SetValue(&I, executeFPToUIInst(I.getOperand(0), I.getType(), SF), SF);
1740}
1741
1742void Interpreter::visitFPToSIInst(FPToSIInst &I) {
1743  ExecutionContext &SF = ECStack.back();
1744  SetValue(&I, executeFPToSIInst(I.getOperand(0), I.getType(), SF), SF);
1745}
1746
1747void Interpreter::visitPtrToIntInst(PtrToIntInst &I) {
1748  ExecutionContext &SF = ECStack.back();
1749  SetValue(&I, executePtrToIntInst(I.getOperand(0), I.getType(), SF), SF);
1750}
1751
1752void Interpreter::visitIntToPtrInst(IntToPtrInst &I) {
1753  ExecutionContext &SF = ECStack.back();
1754  SetValue(&I, executeIntToPtrInst(I.getOperand(0), I.getType(), SF), SF);
1755}
1756
1757void Interpreter::visitBitCastInst(BitCastInst &I) {
1758  ExecutionContext &SF = ECStack.back();
1759  SetValue(&I, executeBitCastInst(I.getOperand(0), I.getType(), SF), SF);
1760}
1761
1762#define IMPLEMENT_VAARG(TY) \
1763   case Type::TY##TyID: Dest.TY##Val = Src.TY##Val; break
1764
1765void Interpreter::visitVAArgInst(VAArgInst &I) {
1766  ExecutionContext &SF = ECStack.back();
1767
1768  // Get the incoming valist parameter.  LLI treats the valist as a
1769  // (ec-stack-depth var-arg-index) pair.
1770  GenericValue VAList = getOperandValue(I.getOperand(0), SF);
1771  GenericValue Dest;
1772  GenericValue Src = ECStack[VAList.UIntPairVal.first]
1773                      .VarArgs[VAList.UIntPairVal.second];
1774  Type *Ty = I.getType();
1775  switch (Ty->getTypeID()) {
1776  case Type::IntegerTyID:
1777    Dest.IntVal = Src.IntVal;
1778    break;
1779  IMPLEMENT_VAARG(Pointer);
1780  IMPLEMENT_VAARG(Float);
1781  IMPLEMENT_VAARG(Double);
1782  default:
1783    dbgs() << "Unhandled dest type for vaarg instruction: " << *Ty << "\n";
1784    llvm_unreachable(nullptr);
1785  }
1786
1787  // Set the Value of this Instruction.
1788  SetValue(&I, Dest, SF);
1789
1790  // Move the pointer to the next vararg.
1791  ++VAList.UIntPairVal.second;
1792}
1793
1794void Interpreter::visitExtractElementInst(ExtractElementInst &I) {
1795  ExecutionContext &SF = ECStack.back();
1796  GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
1797  GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1798  GenericValue Dest;
1799
1800  Type *Ty = I.getType();
1801  const unsigned indx = unsigned(Src2.IntVal.getZExtValue());
1802
1803  if(Src1.AggregateVal.size() > indx) {
1804    switch (Ty->getTypeID()) {
1805    default:
1806      dbgs() << "Unhandled destination type for extractelement instruction: "
1807      << *Ty << "\n";
1808      llvm_unreachable(nullptr);
1809      break;
1810    case Type::IntegerTyID:
1811      Dest.IntVal = Src1.AggregateVal[indx].IntVal;
1812      break;
1813    case Type::FloatTyID:
1814      Dest.FloatVal = Src1.AggregateVal[indx].FloatVal;
1815      break;
1816    case Type::DoubleTyID:
1817      Dest.DoubleVal = Src1.AggregateVal[indx].DoubleVal;
1818      break;
1819    }
1820  } else {
1821    dbgs() << "Invalid index in extractelement instruction\n";
1822  }
1823
1824  SetValue(&I, Dest, SF);
1825}
1826
1827void Interpreter::visitInsertElementInst(InsertElementInst &I) {
1828  ExecutionContext &SF = ECStack.back();
1829  VectorType *Ty = cast<VectorType>(I.getType());
1830
1831  GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
1832  GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1833  GenericValue Src3 = getOperandValue(I.getOperand(2), SF);
1834  GenericValue Dest;
1835
1836  Type *TyContained = Ty->getElementType();
1837
1838  const unsigned indx = unsigned(Src3.IntVal.getZExtValue());
1839  Dest.AggregateVal = Src1.AggregateVal;
1840
1841  if(Src1.AggregateVal.size() <= indx)
1842      llvm_unreachable("Invalid index in insertelement instruction");
1843  switch (TyContained->getTypeID()) {
1844    default:
1845      llvm_unreachable("Unhandled dest type for insertelement instruction");
1846    case Type::IntegerTyID:
1847      Dest.AggregateVal[indx].IntVal = Src2.IntVal;
1848      break;
1849    case Type::FloatTyID:
1850      Dest.AggregateVal[indx].FloatVal = Src2.FloatVal;
1851      break;
1852    case Type::DoubleTyID:
1853      Dest.AggregateVal[indx].DoubleVal = Src2.DoubleVal;
1854      break;
1855  }
1856  SetValue(&I, Dest, SF);
1857}
1858
1859void Interpreter::visitShuffleVectorInst(ShuffleVectorInst &I){
1860  ExecutionContext &SF = ECStack.back();
1861
1862  VectorType *Ty = cast<VectorType>(I.getType());
1863
1864  GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
1865  GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1866  GenericValue Dest;
1867
1868  // There is no need to check types of src1 and src2, because the compiled
1869  // bytecode can't contain different types for src1 and src2 for a
1870  // shufflevector instruction.
1871
1872  Type *TyContained = Ty->getElementType();
1873  unsigned src1Size = (unsigned)Src1.AggregateVal.size();
1874  unsigned src2Size = (unsigned)Src2.AggregateVal.size();
1875  unsigned src3Size = I.getShuffleMask().size();
1876
1877  Dest.AggregateVal.resize(src3Size);
1878
1879  switch (TyContained->getTypeID()) {
1880    default:
1881      llvm_unreachable("Unhandled dest type for insertelement instruction");
1882      break;
1883    case Type::IntegerTyID:
1884      for( unsigned i=0; i<src3Size; i++) {
1885        unsigned j = std::max(0, I.getMaskValue(i));
1886        if(j < src1Size)
1887          Dest.AggregateVal[i].IntVal = Src1.AggregateVal[j].IntVal;
1888        else if(j < src1Size + src2Size)
1889          Dest.AggregateVal[i].IntVal = Src2.AggregateVal[j-src1Size].IntVal;
1890        else
1891          // The selector may not be greater than sum of lengths of first and
1892          // second operands and llasm should not allow situation like
1893          // %tmp = shufflevector <2 x i32> <i32 3, i32 4>, <2 x i32> undef,
1894          //                      <2 x i32> < i32 0, i32 5 >,
1895          // where i32 5 is invalid, but let it be additional check here:
1896          llvm_unreachable("Invalid mask in shufflevector instruction");
1897      }
1898      break;
1899    case Type::FloatTyID:
1900      for( unsigned i=0; i<src3Size; i++) {
1901        unsigned j = std::max(0, I.getMaskValue(i));
1902        if(j < src1Size)
1903          Dest.AggregateVal[i].FloatVal = Src1.AggregateVal[j].FloatVal;
1904        else if(j < src1Size + src2Size)
1905          Dest.AggregateVal[i].FloatVal = Src2.AggregateVal[j-src1Size].FloatVal;
1906        else
1907          llvm_unreachable("Invalid mask in shufflevector instruction");
1908        }
1909      break;
1910    case Type::DoubleTyID:
1911      for( unsigned i=0; i<src3Size; i++) {
1912        unsigned j = std::max(0, I.getMaskValue(i));
1913        if(j < src1Size)
1914          Dest.AggregateVal[i].DoubleVal = Src1.AggregateVal[j].DoubleVal;
1915        else if(j < src1Size + src2Size)
1916          Dest.AggregateVal[i].DoubleVal =
1917            Src2.AggregateVal[j-src1Size].DoubleVal;
1918        else
1919          llvm_unreachable("Invalid mask in shufflevector instruction");
1920      }
1921      break;
1922  }
1923  SetValue(&I, Dest, SF);
1924}
1925
1926void Interpreter::visitExtractValueInst(ExtractValueInst &I) {
1927  ExecutionContext &SF = ECStack.back();
1928  Value *Agg = I.getAggregateOperand();
1929  GenericValue Dest;
1930  GenericValue Src = getOperandValue(Agg, SF);
1931
1932  ExtractValueInst::idx_iterator IdxBegin = I.idx_begin();
1933  unsigned Num = I.getNumIndices();
1934  GenericValue *pSrc = &Src;
1935
1936  for (unsigned i = 0 ; i < Num; ++i) {
1937    pSrc = &pSrc->AggregateVal[*IdxBegin];
1938    ++IdxBegin;
1939  }
1940
1941  Type *IndexedType = ExtractValueInst::getIndexedType(Agg->getType(), I.getIndices());
1942  switch (IndexedType->getTypeID()) {
1943    default:
1944      llvm_unreachable("Unhandled dest type for extractelement instruction");
1945    break;
1946    case Type::IntegerTyID:
1947      Dest.IntVal = pSrc->IntVal;
1948    break;
1949    case Type::FloatTyID:
1950      Dest.FloatVal = pSrc->FloatVal;
1951    break;
1952    case Type::DoubleTyID:
1953      Dest.DoubleVal = pSrc->DoubleVal;
1954    break;
1955    case Type::ArrayTyID:
1956    case Type::StructTyID:
1957    case Type::FixedVectorTyID:
1958    case Type::ScalableVectorTyID:
1959      Dest.AggregateVal = pSrc->AggregateVal;
1960    break;
1961    case Type::PointerTyID:
1962      Dest.PointerVal = pSrc->PointerVal;
1963    break;
1964  }
1965
1966  SetValue(&I, Dest, SF);
1967}
1968
1969void Interpreter::visitInsertValueInst(InsertValueInst &I) {
1970
1971  ExecutionContext &SF = ECStack.back();
1972  Value *Agg = I.getAggregateOperand();
1973
1974  GenericValue Src1 = getOperandValue(Agg, SF);
1975  GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1976  GenericValue Dest = Src1; // Dest is a slightly changed Src1
1977
1978  ExtractValueInst::idx_iterator IdxBegin = I.idx_begin();
1979  unsigned Num = I.getNumIndices();
1980
1981  GenericValue *pDest = &Dest;
1982  for (unsigned i = 0 ; i < Num; ++i) {
1983    pDest = &pDest->AggregateVal[*IdxBegin];
1984    ++IdxBegin;
1985  }
1986  // pDest points to the target value in the Dest now
1987
1988  Type *IndexedType = ExtractValueInst::getIndexedType(Agg->getType(), I.getIndices());
1989
1990  switch (IndexedType->getTypeID()) {
1991    default:
1992      llvm_unreachable("Unhandled dest type for insertelement instruction");
1993    break;
1994    case Type::IntegerTyID:
1995      pDest->IntVal = Src2.IntVal;
1996    break;
1997    case Type::FloatTyID:
1998      pDest->FloatVal = Src2.FloatVal;
1999    break;
2000    case Type::DoubleTyID:
2001      pDest->DoubleVal = Src2.DoubleVal;
2002    break;
2003    case Type::ArrayTyID:
2004    case Type::StructTyID:
2005    case Type::FixedVectorTyID:
2006    case Type::ScalableVectorTyID:
2007      pDest->AggregateVal = Src2.AggregateVal;
2008    break;
2009    case Type::PointerTyID:
2010      pDest->PointerVal = Src2.PointerVal;
2011    break;
2012  }
2013
2014  SetValue(&I, Dest, SF);
2015}
2016
2017GenericValue Interpreter::getConstantExprValue (ConstantExpr *CE,
2018                                                ExecutionContext &SF) {
2019  switch (CE->getOpcode()) {
2020  case Instruction::Trunc:
2021      return executeTruncInst(CE->getOperand(0), CE->getType(), SF);
2022  case Instruction::ZExt:
2023      return executeZExtInst(CE->getOperand(0), CE->getType(), SF);
2024  case Instruction::SExt:
2025      return executeSExtInst(CE->getOperand(0), CE->getType(), SF);
2026  case Instruction::FPTrunc:
2027      return executeFPTruncInst(CE->getOperand(0), CE->getType(), SF);
2028  case Instruction::FPExt:
2029      return executeFPExtInst(CE->getOperand(0), CE->getType(), SF);
2030  case Instruction::UIToFP:
2031      return executeUIToFPInst(CE->getOperand(0), CE->getType(), SF);
2032  case Instruction::SIToFP:
2033      return executeSIToFPInst(CE->getOperand(0), CE->getType(), SF);
2034  case Instruction::FPToUI:
2035      return executeFPToUIInst(CE->getOperand(0), CE->getType(), SF);
2036  case Instruction::FPToSI:
2037      return executeFPToSIInst(CE->getOperand(0), CE->getType(), SF);
2038  case Instruction::PtrToInt:
2039      return executePtrToIntInst(CE->getOperand(0), CE->getType(), SF);
2040  case Instruction::IntToPtr:
2041      return executeIntToPtrInst(CE->getOperand(0), CE->getType(), SF);
2042  case Instruction::BitCast:
2043      return executeBitCastInst(CE->getOperand(0), CE->getType(), SF);
2044  case Instruction::GetElementPtr:
2045    return executeGEPOperation(CE->getOperand(0), gep_type_begin(CE),
2046                               gep_type_end(CE), SF);
2047  case Instruction::FCmp:
2048  case Instruction::ICmp:
2049    return executeCmpInst(CE->getPredicate(),
2050                          getOperandValue(CE->getOperand(0), SF),
2051                          getOperandValue(CE->getOperand(1), SF),
2052                          CE->getOperand(0)->getType());
2053  case Instruction::Select:
2054    return executeSelectInst(getOperandValue(CE->getOperand(0), SF),
2055                             getOperandValue(CE->getOperand(1), SF),
2056                             getOperandValue(CE->getOperand(2), SF),
2057                             CE->getOperand(0)->getType());
2058  default :
2059    break;
2060  }
2061
2062  // The cases below here require a GenericValue parameter for the result
2063  // so we initialize one, compute it and then return it.
2064  GenericValue Op0 = getOperandValue(CE->getOperand(0), SF);
2065  GenericValue Op1 = getOperandValue(CE->getOperand(1), SF);
2066  GenericValue Dest;
2067  Type * Ty = CE->getOperand(0)->getType();
2068  switch (CE->getOpcode()) {
2069  case Instruction::Add:  Dest.IntVal = Op0.IntVal + Op1.IntVal; break;
2070  case Instruction::Sub:  Dest.IntVal = Op0.IntVal - Op1.IntVal; break;
2071  case Instruction::Mul:  Dest.IntVal = Op0.IntVal * Op1.IntVal; break;
2072  case Instruction::FAdd: executeFAddInst(Dest, Op0, Op1, Ty); break;
2073  case Instruction::FSub: executeFSubInst(Dest, Op0, Op1, Ty); break;
2074  case Instruction::FMul: executeFMulInst(Dest, Op0, Op1, Ty); break;
2075  case Instruction::FDiv: executeFDivInst(Dest, Op0, Op1, Ty); break;
2076  case Instruction::FRem: executeFRemInst(Dest, Op0, Op1, Ty); break;
2077  case Instruction::SDiv: Dest.IntVal = Op0.IntVal.sdiv(Op1.IntVal); break;
2078  case Instruction::UDiv: Dest.IntVal = Op0.IntVal.udiv(Op1.IntVal); break;
2079  case Instruction::URem: Dest.IntVal = Op0.IntVal.urem(Op1.IntVal); break;
2080  case Instruction::SRem: Dest.IntVal = Op0.IntVal.srem(Op1.IntVal); break;
2081  case Instruction::And:  Dest.IntVal = Op0.IntVal & Op1.IntVal; break;
2082  case Instruction::Or:   Dest.IntVal = Op0.IntVal | Op1.IntVal; break;
2083  case Instruction::Xor:  Dest.IntVal = Op0.IntVal ^ Op1.IntVal; break;
2084  case Instruction::Shl:
2085    Dest.IntVal = Op0.IntVal.shl(Op1.IntVal.getZExtValue());
2086    break;
2087  case Instruction::LShr:
2088    Dest.IntVal = Op0.IntVal.lshr(Op1.IntVal.getZExtValue());
2089    break;
2090  case Instruction::AShr:
2091    Dest.IntVal = Op0.IntVal.ashr(Op1.IntVal.getZExtValue());
2092    break;
2093  default:
2094    dbgs() << "Unhandled ConstantExpr: " << *CE << "\n";
2095    llvm_unreachable("Unhandled ConstantExpr");
2096  }
2097  return Dest;
2098}
2099
2100GenericValue Interpreter::getOperandValue(Value *V, ExecutionContext &SF) {
2101  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
2102    return getConstantExprValue(CE, SF);
2103  } else if (Constant *CPV = dyn_cast<Constant>(V)) {
2104    return getConstantValue(CPV);
2105  } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2106    return PTOGV(getPointerToGlobal(GV));
2107  } else {
2108    return SF.Values[V];
2109  }
2110}
2111
2112//===----------------------------------------------------------------------===//
2113//                        Dispatch and Execution Code
2114//===----------------------------------------------------------------------===//
2115
2116//===----------------------------------------------------------------------===//
2117// callFunction - Execute the specified function...
2118//
2119void Interpreter::callFunction(Function *F, ArrayRef<GenericValue> ArgVals) {
2120  assert((ECStack.empty() || !ECStack.back().Caller ||
2121          ECStack.back().Caller->arg_size() == ArgVals.size()) &&
2122         "Incorrect number of arguments passed into function call!");
2123  // Make a new stack frame... and fill it in.
2124  ECStack.emplace_back();
2125  ExecutionContext &StackFrame = ECStack.back();
2126  StackFrame.CurFunction = F;
2127
2128  // Special handling for external functions.
2129  if (F->isDeclaration()) {
2130    GenericValue Result = callExternalFunction (F, ArgVals);
2131    // Simulate a 'ret' instruction of the appropriate type.
2132    popStackAndReturnValueToCaller (F->getReturnType (), Result);
2133    return;
2134  }
2135
2136  // Get pointers to first LLVM BB & Instruction in function.
2137  StackFrame.CurBB     = &F->front();
2138  StackFrame.CurInst   = StackFrame.CurBB->begin();
2139
2140  // Run through the function arguments and initialize their values...
2141  assert((ArgVals.size() == F->arg_size() ||
2142         (ArgVals.size() > F->arg_size() && F->getFunctionType()->isVarArg()))&&
2143         "Invalid number of values passed to function invocation!");
2144
2145  // Handle non-varargs arguments...
2146  unsigned i = 0;
2147  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
2148       AI != E; ++AI, ++i)
2149    SetValue(&*AI, ArgVals[i], StackFrame);
2150
2151  // Handle varargs arguments...
2152  StackFrame.VarArgs.assign(ArgVals.begin()+i, ArgVals.end());
2153}
2154
2155
2156void Interpreter::run() {
2157  while (!ECStack.empty()) {
2158    // Interpret a single instruction & increment the "PC".
2159    ExecutionContext &SF = ECStack.back();  // Current stack frame
2160    Instruction &I = *SF.CurInst++;         // Increment before execute
2161
2162    // Track the number of dynamic instructions executed.
2163    ++NumDynamicInsts;
2164
2165    LLVM_DEBUG(dbgs() << "About to interpret: " << I << "\n");
2166    visit(I);   // Dispatch to one of the visit* methods...
2167  }
2168}
2169