1//===- StackColoring.cpp --------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass implements the stack-coloring optimization that looks for
10// lifetime markers machine instructions (LIFETIME_START and LIFETIME_END),
11// which represent the possible lifetime of stack slots. It attempts to
12// merge disjoint stack slots and reduce the used stack space.
13// NOTE: This pass is not StackSlotColoring, which optimizes spill slots.
14//
15// TODO: In the future we plan to improve stack coloring in the following ways:
16// 1. Allow merging multiple small slots into a single larger slot at different
17//    offsets.
18// 2. Merge this pass with StackSlotColoring and allow merging of allocas with
19//    spill slots.
20//
21//===----------------------------------------------------------------------===//
22
23#include "llvm/ADT/BitVector.h"
24#include "llvm/ADT/DenseMap.h"
25#include "llvm/ADT/DepthFirstIterator.h"
26#include "llvm/ADT/SmallPtrSet.h"
27#include "llvm/ADT/SmallVector.h"
28#include "llvm/ADT/Statistic.h"
29#include "llvm/Analysis/ValueTracking.h"
30#include "llvm/CodeGen/LiveInterval.h"
31#include "llvm/CodeGen/MachineBasicBlock.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineFunctionPass.h"
35#include "llvm/CodeGen/MachineInstr.h"
36#include "llvm/CodeGen/MachineMemOperand.h"
37#include "llvm/CodeGen/MachineOperand.h"
38#include "llvm/CodeGen/Passes.h"
39#include "llvm/CodeGen/PseudoSourceValueManager.h"
40#include "llvm/CodeGen/SlotIndexes.h"
41#include "llvm/CodeGen/TargetOpcodes.h"
42#include "llvm/CodeGen/WinEHFuncInfo.h"
43#include "llvm/Config/llvm-config.h"
44#include "llvm/IR/Constants.h"
45#include "llvm/IR/DebugInfoMetadata.h"
46#include "llvm/IR/Instructions.h"
47#include "llvm/IR/Metadata.h"
48#include "llvm/IR/Use.h"
49#include "llvm/IR/Value.h"
50#include "llvm/InitializePasses.h"
51#include "llvm/Pass.h"
52#include "llvm/Support/Casting.h"
53#include "llvm/Support/CommandLine.h"
54#include "llvm/Support/Compiler.h"
55#include "llvm/Support/Debug.h"
56#include "llvm/Support/raw_ostream.h"
57#include <algorithm>
58#include <cassert>
59#include <limits>
60#include <memory>
61#include <utility>
62
63using namespace llvm;
64
65#define DEBUG_TYPE "stack-coloring"
66
67static cl::opt<bool>
68DisableColoring("no-stack-coloring",
69        cl::init(false), cl::Hidden,
70        cl::desc("Disable stack coloring"));
71
72/// The user may write code that uses allocas outside of the declared lifetime
73/// zone. This can happen when the user returns a reference to a local
74/// data-structure. We can detect these cases and decide not to optimize the
75/// code. If this flag is enabled, we try to save the user. This option
76/// is treated as overriding LifetimeStartOnFirstUse below.
77static cl::opt<bool>
78ProtectFromEscapedAllocas("protect-from-escaped-allocas",
79                          cl::init(false), cl::Hidden,
80                          cl::desc("Do not optimize lifetime zones that "
81                                   "are broken"));
82
83/// Enable enhanced dataflow scheme for lifetime analysis (treat first
84/// use of stack slot as start of slot lifetime, as opposed to looking
85/// for LIFETIME_START marker). See "Implementation notes" below for
86/// more info.
87static cl::opt<bool>
88LifetimeStartOnFirstUse("stackcoloring-lifetime-start-on-first-use",
89        cl::init(true), cl::Hidden,
90        cl::desc("Treat stack lifetimes as starting on first use, not on START marker."));
91
92
93STATISTIC(NumMarkerSeen,  "Number of lifetime markers found.");
94STATISTIC(StackSpaceSaved, "Number of bytes saved due to merging slots.");
95STATISTIC(StackSlotMerged, "Number of stack slot merged.");
96STATISTIC(EscapedAllocas, "Number of allocas that escaped the lifetime region");
97
98//===----------------------------------------------------------------------===//
99//                           StackColoring Pass
100//===----------------------------------------------------------------------===//
101//
102// Stack Coloring reduces stack usage by merging stack slots when they
103// can't be used together. For example, consider the following C program:
104//
105//     void bar(char *, int);
106//     void foo(bool var) {
107//         A: {
108//             char z[4096];
109//             bar(z, 0);
110//         }
111//
112//         char *p;
113//         char x[4096];
114//         char y[4096];
115//         if (var) {
116//             p = x;
117//         } else {
118//             bar(y, 1);
119//             p = y + 1024;
120//         }
121//     B:
122//         bar(p, 2);
123//     }
124//
125// Naively-compiled, this program would use 12k of stack space. However, the
126// stack slot corresponding to `z` is always destroyed before either of the
127// stack slots for `x` or `y` are used, and then `x` is only used if `var`
128// is true, while `y` is only used if `var` is false. So in no time are 2
129// of the stack slots used together, and therefore we can merge them,
130// compiling the function using only a single 4k alloca:
131//
132//     void foo(bool var) { // equivalent
133//         char x[4096];
134//         char *p;
135//         bar(x, 0);
136//         if (var) {
137//             p = x;
138//         } else {
139//             bar(x, 1);
140//             p = x + 1024;
141//         }
142//         bar(p, 2);
143//     }
144//
145// This is an important optimization if we want stack space to be under
146// control in large functions, both open-coded ones and ones created by
147// inlining.
148//
149// Implementation Notes:
150// ---------------------
151//
152// An important part of the above reasoning is that `z` can't be accessed
153// while the latter 2 calls to `bar` are running. This is justified because
154// `z`'s lifetime is over after we exit from block `A:`, so any further
155// accesses to it would be UB. The way we represent this information
156// in LLVM is by having frontends delimit blocks with `lifetime.start`
157// and `lifetime.end` intrinsics.
158//
159// The effect of these intrinsics seems to be as follows (maybe I should
160// specify this in the reference?):
161//
162//   L1) at start, each stack-slot is marked as *out-of-scope*, unless no
163//   lifetime intrinsic refers to that stack slot, in which case
164//   it is marked as *in-scope*.
165//   L2) on a `lifetime.start`, a stack slot is marked as *in-scope* and
166//   the stack slot is overwritten with `undef`.
167//   L3) on a `lifetime.end`, a stack slot is marked as *out-of-scope*.
168//   L4) on function exit, all stack slots are marked as *out-of-scope*.
169//   L5) `lifetime.end` is a no-op when called on a slot that is already
170//   *out-of-scope*.
171//   L6) memory accesses to *out-of-scope* stack slots are UB.
172//   L7) when a stack-slot is marked as *out-of-scope*, all pointers to it
173//   are invalidated, unless the slot is "degenerate". This is used to
174//   justify not marking slots as in-use until the pointer to them is
175//   used, but feels a bit hacky in the presence of things like LICM. See
176//   the "Degenerate Slots" section for more details.
177//
178// Now, let's ground stack coloring on these rules. We'll define a slot
179// as *in-use* at a (dynamic) point in execution if it either can be
180// written to at that point, or if it has a live and non-undef content
181// at that point.
182//
183// Obviously, slots that are never *in-use* together can be merged, and
184// in our example `foo`, the slots for `x`, `y` and `z` are never
185// in-use together (of course, sometimes slots that *are* in-use together
186// might still be mergable, but we don't care about that here).
187//
188// In this implementation, we successively merge pairs of slots that are
189// not *in-use* together. We could be smarter - for example, we could merge
190// a single large slot with 2 small slots, or we could construct the
191// interference graph and run a "smart" graph coloring algorithm, but with
192// that aside, how do we find out whether a pair of slots might be *in-use*
193// together?
194//
195// From our rules, we see that *out-of-scope* slots are never *in-use*,
196// and from (L7) we see that "non-degenerate" slots remain non-*in-use*
197// until their address is taken. Therefore, we can approximate slot activity
198// using dataflow.
199//
200// A subtle point: naively, we might try to figure out which pairs of
201// stack-slots interfere by propagating `S in-use` through the CFG for every
202// stack-slot `S`, and having `S` and `T` interfere if there is a CFG point in
203// which they are both *in-use*.
204//
205// That is sound, but overly conservative in some cases: in our (artificial)
206// example `foo`, either `x` or `y` might be in use at the label `B:`, but
207// as `x` is only in use if we came in from the `var` edge and `y` only
208// if we came from the `!var` edge, they still can't be in use together.
209// See PR32488 for an important real-life case.
210//
211// If we wanted to find all points of interference precisely, we could
212// propagate `S in-use` and `S&T in-use` predicates through the CFG. That
213// would be precise, but requires propagating `O(n^2)` dataflow facts.
214//
215// However, we aren't interested in the *set* of points of interference
216// between 2 stack slots, only *whether* there *is* such a point. So we
217// can rely on a little trick: for `S` and `T` to be in-use together,
218// one of them needs to become in-use while the other is in-use (or
219// they might both become in use simultaneously). We can check this
220// by also keeping track of the points at which a stack slot might *start*
221// being in-use.
222//
223// Exact first use:
224// ----------------
225//
226// Consider the following motivating example:
227//
228//     int foo() {
229//       char b1[1024], b2[1024];
230//       if (...) {
231//         char b3[1024];
232//         <uses of b1, b3>;
233//         return x;
234//       } else {
235//         char b4[1024], b5[1024];
236//         <uses of b2, b4, b5>;
237//         return y;
238//       }
239//     }
240//
241// In the code above, "b3" and "b4" are declared in distinct lexical
242// scopes, meaning that it is easy to prove that they can share the
243// same stack slot. Variables "b1" and "b2" are declared in the same
244// scope, meaning that from a lexical point of view, their lifetimes
245// overlap. From a control flow pointer of view, however, the two
246// variables are accessed in disjoint regions of the CFG, thus it
247// should be possible for them to share the same stack slot. An ideal
248// stack allocation for the function above would look like:
249//
250//     slot 0: b1, b2
251//     slot 1: b3, b4
252//     slot 2: b5
253//
254// Achieving this allocation is tricky, however, due to the way
255// lifetime markers are inserted. Here is a simplified view of the
256// control flow graph for the code above:
257//
258//                +------  block 0 -------+
259//               0| LIFETIME_START b1, b2 |
260//               1| <test 'if' condition> |
261//                +-----------------------+
262//                   ./              \.
263//   +------  block 1 -------+   +------  block 2 -------+
264//  2| LIFETIME_START b3     |  5| LIFETIME_START b4, b5 |
265//  3| <uses of b1, b3>      |  6| <uses of b2, b4, b5>  |
266//  4| LIFETIME_END b3       |  7| LIFETIME_END b4, b5   |
267//   +-----------------------+   +-----------------------+
268//                   \.              /.
269//                +------  block 3 -------+
270//               8| <cleanupcode>         |
271//               9| LIFETIME_END b1, b2   |
272//              10| return                |
273//                +-----------------------+
274//
275// If we create live intervals for the variables above strictly based
276// on the lifetime markers, we'll get the set of intervals on the
277// left. If we ignore the lifetime start markers and instead treat a
278// variable's lifetime as beginning with the first reference to the
279// var, then we get the intervals on the right.
280//
281//            LIFETIME_START      First Use
282//     b1:    [0,9]               [3,4] [8,9]
283//     b2:    [0,9]               [6,9]
284//     b3:    [2,4]               [3,4]
285//     b4:    [5,7]               [6,7]
286//     b5:    [5,7]               [6,7]
287//
288// For the intervals on the left, the best we can do is overlap two
289// variables (b3 and b4, for example); this gives us a stack size of
290// 4*1024 bytes, not ideal. When treating first-use as the start of a
291// lifetime, we can additionally overlap b1 and b5, giving us a 3*1024
292// byte stack (better).
293//
294// Degenerate Slots:
295// -----------------
296//
297// Relying entirely on first-use of stack slots is problematic,
298// however, due to the fact that optimizations can sometimes migrate
299// uses of a variable outside of its lifetime start/end region. Here
300// is an example:
301//
302//     int bar() {
303//       char b1[1024], b2[1024];
304//       if (...) {
305//         <uses of b2>
306//         return y;
307//       } else {
308//         <uses of b1>
309//         while (...) {
310//           char b3[1024];
311//           <uses of b3>
312//         }
313//       }
314//     }
315//
316// Before optimization, the control flow graph for the code above
317// might look like the following:
318//
319//                +------  block 0 -------+
320//               0| LIFETIME_START b1, b2 |
321//               1| <test 'if' condition> |
322//                +-----------------------+
323//                   ./              \.
324//   +------  block 1 -------+    +------- block 2 -------+
325//  2| <uses of b2>          |   3| <uses of b1>          |
326//   +-----------------------+    +-----------------------+
327//              |                            |
328//              |                 +------- block 3 -------+ <-\.
329//              |                4| <while condition>     |    |
330//              |                 +-----------------------+    |
331//              |               /          |                   |
332//              |              /  +------- block 4 -------+
333//              \             /  5| LIFETIME_START b3     |    |
334//               \           /   6| <uses of b3>          |    |
335//                \         /    7| LIFETIME_END b3       |    |
336//                 \        |    +------------------------+    |
337//                  \       |                 \                /
338//                +------  block 5 -----+      \---------------
339//               8| <cleanupcode>       |
340//               9| LIFETIME_END b1, b2 |
341//              10| return              |
342//                +---------------------+
343//
344// During optimization, however, it can happen that an instruction
345// computing an address in "b3" (for example, a loop-invariant GEP) is
346// hoisted up out of the loop from block 4 to block 2.  [Note that
347// this is not an actual load from the stack, only an instruction that
348// computes the address to be loaded]. If this happens, there is now a
349// path leading from the first use of b3 to the return instruction
350// that does not encounter the b3 LIFETIME_END, hence b3's lifetime is
351// now larger than if we were computing live intervals strictly based
352// on lifetime markers. In the example above, this lengthened lifetime
353// would mean that it would appear illegal to overlap b3 with b2.
354//
355// To deal with this such cases, the code in ::collectMarkers() below
356// tries to identify "degenerate" slots -- those slots where on a single
357// forward pass through the CFG we encounter a first reference to slot
358// K before we hit the slot K lifetime start marker. For such slots,
359// we fall back on using the lifetime start marker as the beginning of
360// the variable's lifetime.  NB: with this implementation, slots can
361// appear degenerate in cases where there is unstructured control flow:
362//
363//    if (q) goto mid;
364//    if (x > 9) {
365//         int b[100];
366//         memcpy(&b[0], ...);
367//    mid: b[k] = ...;
368//         abc(&b);
369//    }
370//
371// If in RPO ordering chosen to walk the CFG  we happen to visit the b[k]
372// before visiting the memcpy block (which will contain the lifetime start
373// for "b" then it will appear that 'b' has a degenerate lifetime.
374
375namespace {
376
377/// StackColoring - A machine pass for merging disjoint stack allocations,
378/// marked by the LIFETIME_START and LIFETIME_END pseudo instructions.
379class StackColoring : public MachineFunctionPass {
380  MachineFrameInfo *MFI = nullptr;
381  MachineFunction *MF = nullptr;
382
383  /// A class representing liveness information for a single basic block.
384  /// Each bit in the BitVector represents the liveness property
385  /// for a different stack slot.
386  struct BlockLifetimeInfo {
387    /// Which slots BEGINs in each basic block.
388    BitVector Begin;
389
390    /// Which slots ENDs in each basic block.
391    BitVector End;
392
393    /// Which slots are marked as LIVE_IN, coming into each basic block.
394    BitVector LiveIn;
395
396    /// Which slots are marked as LIVE_OUT, coming out of each basic block.
397    BitVector LiveOut;
398  };
399
400  /// Maps active slots (per bit) for each basic block.
401  using LivenessMap = DenseMap<const MachineBasicBlock *, BlockLifetimeInfo>;
402  LivenessMap BlockLiveness;
403
404  /// Maps serial numbers to basic blocks.
405  DenseMap<const MachineBasicBlock *, int> BasicBlocks;
406
407  /// Maps basic blocks to a serial number.
408  SmallVector<const MachineBasicBlock *, 8> BasicBlockNumbering;
409
410  /// Maps slots to their use interval. Outside of this interval, slots
411  /// values are either dead or `undef` and they will not be written to.
412  SmallVector<std::unique_ptr<LiveInterval>, 16> Intervals;
413
414  /// Maps slots to the points where they can become in-use.
415  SmallVector<SmallVector<SlotIndex, 4>, 16> LiveStarts;
416
417  /// VNInfo is used for the construction of LiveIntervals.
418  VNInfo::Allocator VNInfoAllocator;
419
420  /// SlotIndex analysis object.
421  SlotIndexes *Indexes = nullptr;
422
423  /// The list of lifetime markers found. These markers are to be removed
424  /// once the coloring is done.
425  SmallVector<MachineInstr*, 8> Markers;
426
427  /// Record the FI slots for which we have seen some sort of
428  /// lifetime marker (either start or end).
429  BitVector InterestingSlots;
430
431  /// FI slots that need to be handled conservatively (for these
432  /// slots lifetime-start-on-first-use is disabled).
433  BitVector ConservativeSlots;
434
435  /// Number of iterations taken during data flow analysis.
436  unsigned NumIterations;
437
438public:
439  static char ID;
440
441  StackColoring() : MachineFunctionPass(ID) {
442    initializeStackColoringPass(*PassRegistry::getPassRegistry());
443  }
444
445  void getAnalysisUsage(AnalysisUsage &AU) const override;
446  bool runOnMachineFunction(MachineFunction &Func) override;
447
448private:
449  /// Used in collectMarkers
450  using BlockBitVecMap = DenseMap<const MachineBasicBlock *, BitVector>;
451
452  /// Debug.
453  void dump() const;
454  void dumpIntervals() const;
455  void dumpBB(MachineBasicBlock *MBB) const;
456  void dumpBV(const char *tag, const BitVector &BV) const;
457
458  /// Removes all of the lifetime marker instructions from the function.
459  /// \returns true if any markers were removed.
460  bool removeAllMarkers();
461
462  /// Scan the machine function and find all of the lifetime markers.
463  /// Record the findings in the BEGIN and END vectors.
464  /// \returns the number of markers found.
465  unsigned collectMarkers(unsigned NumSlot);
466
467  /// Perform the dataflow calculation and calculate the lifetime for each of
468  /// the slots, based on the BEGIN/END vectors. Set the LifetimeLIVE_IN and
469  /// LifetimeLIVE_OUT maps that represent which stack slots are live coming
470  /// in and out blocks.
471  void calculateLocalLiveness();
472
473  /// Returns TRUE if we're using the first-use-begins-lifetime method for
474  /// this slot (if FALSE, then the start marker is treated as start of lifetime).
475  bool applyFirstUse(int Slot) {
476    if (!LifetimeStartOnFirstUse || ProtectFromEscapedAllocas)
477      return false;
478    if (ConservativeSlots.test(Slot))
479      return false;
480    return true;
481  }
482
483  /// Examines the specified instruction and returns TRUE if the instruction
484  /// represents the start or end of an interesting lifetime. The slot or slots
485  /// starting or ending are added to the vector "slots" and "isStart" is set
486  /// accordingly.
487  /// \returns True if inst contains a lifetime start or end
488  bool isLifetimeStartOrEnd(const MachineInstr &MI,
489                            SmallVector<int, 4> &slots,
490                            bool &isStart);
491
492  /// Construct the LiveIntervals for the slots.
493  void calculateLiveIntervals(unsigned NumSlots);
494
495  /// Go over the machine function and change instructions which use stack
496  /// slots to use the joint slots.
497  void remapInstructions(DenseMap<int, int> &SlotRemap);
498
499  /// The input program may contain instructions which are not inside lifetime
500  /// markers. This can happen due to a bug in the compiler or due to a bug in
501  /// user code (for example, returning a reference to a local variable).
502  /// This procedure checks all of the instructions in the function and
503  /// invalidates lifetime ranges which do not contain all of the instructions
504  /// which access that frame slot.
505  void removeInvalidSlotRanges();
506
507  /// Map entries which point to other entries to their destination.
508  ///   A->B->C becomes A->C.
509  void expungeSlotMap(DenseMap<int, int> &SlotRemap, unsigned NumSlots);
510};
511
512} // end anonymous namespace
513
514char StackColoring::ID = 0;
515
516char &llvm::StackColoringID = StackColoring::ID;
517
518INITIALIZE_PASS_BEGIN(StackColoring, DEBUG_TYPE,
519                      "Merge disjoint stack slots", false, false)
520INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
521INITIALIZE_PASS_END(StackColoring, DEBUG_TYPE,
522                    "Merge disjoint stack slots", false, false)
523
524void StackColoring::getAnalysisUsage(AnalysisUsage &AU) const {
525  AU.addRequired<SlotIndexes>();
526  MachineFunctionPass::getAnalysisUsage(AU);
527}
528
529#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
530LLVM_DUMP_METHOD void StackColoring::dumpBV(const char *tag,
531                                            const BitVector &BV) const {
532  dbgs() << tag << " : { ";
533  for (unsigned I = 0, E = BV.size(); I != E; ++I)
534    dbgs() << BV.test(I) << " ";
535  dbgs() << "}\n";
536}
537
538LLVM_DUMP_METHOD void StackColoring::dumpBB(MachineBasicBlock *MBB) const {
539  LivenessMap::const_iterator BI = BlockLiveness.find(MBB);
540  assert(BI != BlockLiveness.end() && "Block not found");
541  const BlockLifetimeInfo &BlockInfo = BI->second;
542
543  dumpBV("BEGIN", BlockInfo.Begin);
544  dumpBV("END", BlockInfo.End);
545  dumpBV("LIVE_IN", BlockInfo.LiveIn);
546  dumpBV("LIVE_OUT", BlockInfo.LiveOut);
547}
548
549LLVM_DUMP_METHOD void StackColoring::dump() const {
550  for (MachineBasicBlock *MBB : depth_first(MF)) {
551    dbgs() << "Inspecting block #" << MBB->getNumber() << " ["
552           << MBB->getName() << "]\n";
553    dumpBB(MBB);
554  }
555}
556
557LLVM_DUMP_METHOD void StackColoring::dumpIntervals() const {
558  for (unsigned I = 0, E = Intervals.size(); I != E; ++I) {
559    dbgs() << "Interval[" << I << "]:\n";
560    Intervals[I]->dump();
561  }
562}
563#endif
564
565static inline int getStartOrEndSlot(const MachineInstr &MI)
566{
567  assert((MI.getOpcode() == TargetOpcode::LIFETIME_START ||
568          MI.getOpcode() == TargetOpcode::LIFETIME_END) &&
569         "Expected LIFETIME_START or LIFETIME_END op");
570  const MachineOperand &MO = MI.getOperand(0);
571  int Slot = MO.getIndex();
572  if (Slot >= 0)
573    return Slot;
574  return -1;
575}
576
577// At the moment the only way to end a variable lifetime is with
578// a VARIABLE_LIFETIME op (which can't contain a start). If things
579// change and the IR allows for a single inst that both begins
580// and ends lifetime(s), this interface will need to be reworked.
581bool StackColoring::isLifetimeStartOrEnd(const MachineInstr &MI,
582                                         SmallVector<int, 4> &slots,
583                                         bool &isStart) {
584  if (MI.getOpcode() == TargetOpcode::LIFETIME_START ||
585      MI.getOpcode() == TargetOpcode::LIFETIME_END) {
586    int Slot = getStartOrEndSlot(MI);
587    if (Slot < 0)
588      return false;
589    if (!InterestingSlots.test(Slot))
590      return false;
591    slots.push_back(Slot);
592    if (MI.getOpcode() == TargetOpcode::LIFETIME_END) {
593      isStart = false;
594      return true;
595    }
596    if (!applyFirstUse(Slot)) {
597      isStart = true;
598      return true;
599    }
600  } else if (LifetimeStartOnFirstUse && !ProtectFromEscapedAllocas) {
601    if (!MI.isDebugInstr()) {
602      bool found = false;
603      for (const MachineOperand &MO : MI.operands()) {
604        if (!MO.isFI())
605          continue;
606        int Slot = MO.getIndex();
607        if (Slot<0)
608          continue;
609        if (InterestingSlots.test(Slot) && applyFirstUse(Slot)) {
610          slots.push_back(Slot);
611          found = true;
612        }
613      }
614      if (found) {
615        isStart = true;
616        return true;
617      }
618    }
619  }
620  return false;
621}
622
623unsigned StackColoring::collectMarkers(unsigned NumSlot) {
624  unsigned MarkersFound = 0;
625  BlockBitVecMap SeenStartMap;
626  InterestingSlots.clear();
627  InterestingSlots.resize(NumSlot);
628  ConservativeSlots.clear();
629  ConservativeSlots.resize(NumSlot);
630
631  // number of start and end lifetime ops for each slot
632  SmallVector<int, 8> NumStartLifetimes(NumSlot, 0);
633  SmallVector<int, 8> NumEndLifetimes(NumSlot, 0);
634
635  // Step 1: collect markers and populate the "InterestingSlots"
636  // and "ConservativeSlots" sets.
637  for (MachineBasicBlock *MBB : depth_first(MF)) {
638    // Compute the set of slots for which we've seen a START marker but have
639    // not yet seen an END marker at this point in the walk (e.g. on entry
640    // to this bb).
641    BitVector BetweenStartEnd;
642    BetweenStartEnd.resize(NumSlot);
643    for (const MachineBasicBlock *Pred : MBB->predecessors()) {
644      BlockBitVecMap::const_iterator I = SeenStartMap.find(Pred);
645      if (I != SeenStartMap.end()) {
646        BetweenStartEnd |= I->second;
647      }
648    }
649
650    // Walk the instructions in the block to look for start/end ops.
651    for (MachineInstr &MI : *MBB) {
652      if (MI.isDebugInstr())
653        continue;
654      if (MI.getOpcode() == TargetOpcode::LIFETIME_START ||
655          MI.getOpcode() == TargetOpcode::LIFETIME_END) {
656        int Slot = getStartOrEndSlot(MI);
657        if (Slot < 0)
658          continue;
659        InterestingSlots.set(Slot);
660        if (MI.getOpcode() == TargetOpcode::LIFETIME_START) {
661          BetweenStartEnd.set(Slot);
662          NumStartLifetimes[Slot] += 1;
663        } else {
664          BetweenStartEnd.reset(Slot);
665          NumEndLifetimes[Slot] += 1;
666        }
667        const AllocaInst *Allocation = MFI->getObjectAllocation(Slot);
668        if (Allocation) {
669          LLVM_DEBUG(dbgs() << "Found a lifetime ");
670          LLVM_DEBUG(dbgs() << (MI.getOpcode() == TargetOpcode::LIFETIME_START
671                                    ? "start"
672                                    : "end"));
673          LLVM_DEBUG(dbgs() << " marker for slot #" << Slot);
674          LLVM_DEBUG(dbgs()
675                     << " with allocation: " << Allocation->getName() << "\n");
676        }
677        Markers.push_back(&MI);
678        MarkersFound += 1;
679      } else {
680        for (const MachineOperand &MO : MI.operands()) {
681          if (!MO.isFI())
682            continue;
683          int Slot = MO.getIndex();
684          if (Slot < 0)
685            continue;
686          if (! BetweenStartEnd.test(Slot)) {
687            ConservativeSlots.set(Slot);
688          }
689        }
690      }
691    }
692    BitVector &SeenStart = SeenStartMap[MBB];
693    SeenStart |= BetweenStartEnd;
694  }
695  if (!MarkersFound) {
696    return 0;
697  }
698
699  // PR27903: slots with multiple start or end lifetime ops are not
700  // safe to enable for "lifetime-start-on-first-use".
701  for (unsigned slot = 0; slot < NumSlot; ++slot) {
702    if (NumStartLifetimes[slot] > 1 || NumEndLifetimes[slot] > 1)
703      ConservativeSlots.set(slot);
704  }
705
706  // The write to the catch object by the personality function is not propely
707  // modeled in IR: It happens before any cleanuppads are executed, even if the
708  // first mention of the catch object is in a catchpad. As such, mark catch
709  // object slots as conservative, so they are excluded from first-use analysis.
710  if (WinEHFuncInfo *EHInfo = MF->getWinEHFuncInfo())
711    for (WinEHTryBlockMapEntry &TBME : EHInfo->TryBlockMap)
712      for (WinEHHandlerType &H : TBME.HandlerArray)
713        if (H.CatchObj.FrameIndex != std::numeric_limits<int>::max() &&
714            H.CatchObj.FrameIndex >= 0)
715          ConservativeSlots.set(H.CatchObj.FrameIndex);
716
717  LLVM_DEBUG(dumpBV("Conservative slots", ConservativeSlots));
718
719  // Step 2: compute begin/end sets for each block
720
721  // NOTE: We use a depth-first iteration to ensure that we obtain a
722  // deterministic numbering.
723  for (MachineBasicBlock *MBB : depth_first(MF)) {
724    // Assign a serial number to this basic block.
725    BasicBlocks[MBB] = BasicBlockNumbering.size();
726    BasicBlockNumbering.push_back(MBB);
727
728    // Keep a reference to avoid repeated lookups.
729    BlockLifetimeInfo &BlockInfo = BlockLiveness[MBB];
730
731    BlockInfo.Begin.resize(NumSlot);
732    BlockInfo.End.resize(NumSlot);
733
734    SmallVector<int, 4> slots;
735    for (MachineInstr &MI : *MBB) {
736      bool isStart = false;
737      slots.clear();
738      if (isLifetimeStartOrEnd(MI, slots, isStart)) {
739        if (!isStart) {
740          assert(slots.size() == 1 && "unexpected: MI ends multiple slots");
741          int Slot = slots[0];
742          if (BlockInfo.Begin.test(Slot)) {
743            BlockInfo.Begin.reset(Slot);
744          }
745          BlockInfo.End.set(Slot);
746        } else {
747          for (auto Slot : slots) {
748            LLVM_DEBUG(dbgs() << "Found a use of slot #" << Slot);
749            LLVM_DEBUG(dbgs()
750                       << " at " << printMBBReference(*MBB) << " index ");
751            LLVM_DEBUG(Indexes->getInstructionIndex(MI).print(dbgs()));
752            const AllocaInst *Allocation = MFI->getObjectAllocation(Slot);
753            if (Allocation) {
754              LLVM_DEBUG(dbgs()
755                         << " with allocation: " << Allocation->getName());
756            }
757            LLVM_DEBUG(dbgs() << "\n");
758            if (BlockInfo.End.test(Slot)) {
759              BlockInfo.End.reset(Slot);
760            }
761            BlockInfo.Begin.set(Slot);
762          }
763        }
764      }
765    }
766  }
767
768  // Update statistics.
769  NumMarkerSeen += MarkersFound;
770  return MarkersFound;
771}
772
773void StackColoring::calculateLocalLiveness() {
774  unsigned NumIters = 0;
775  bool changed = true;
776  while (changed) {
777    changed = false;
778    ++NumIters;
779
780    for (const MachineBasicBlock *BB : BasicBlockNumbering) {
781      // Use an iterator to avoid repeated lookups.
782      LivenessMap::iterator BI = BlockLiveness.find(BB);
783      assert(BI != BlockLiveness.end() && "Block not found");
784      BlockLifetimeInfo &BlockInfo = BI->second;
785
786      // Compute LiveIn by unioning together the LiveOut sets of all preds.
787      BitVector LocalLiveIn;
788      for (MachineBasicBlock *Pred : BB->predecessors()) {
789        LivenessMap::const_iterator I = BlockLiveness.find(Pred);
790        // PR37130: transformations prior to stack coloring can
791        // sometimes leave behind statically unreachable blocks; these
792        // can be safely skipped here.
793        if (I != BlockLiveness.end())
794          LocalLiveIn |= I->second.LiveOut;
795      }
796
797      // Compute LiveOut by subtracting out lifetimes that end in this
798      // block, then adding in lifetimes that begin in this block.  If
799      // we have both BEGIN and END markers in the same basic block
800      // then we know that the BEGIN marker comes after the END,
801      // because we already handle the case where the BEGIN comes
802      // before the END when collecting the markers (and building the
803      // BEGIN/END vectors).
804      BitVector LocalLiveOut = LocalLiveIn;
805      LocalLiveOut.reset(BlockInfo.End);
806      LocalLiveOut |= BlockInfo.Begin;
807
808      // Update block LiveIn set, noting whether it has changed.
809      if (LocalLiveIn.test(BlockInfo.LiveIn)) {
810        changed = true;
811        BlockInfo.LiveIn |= LocalLiveIn;
812      }
813
814      // Update block LiveOut set, noting whether it has changed.
815      if (LocalLiveOut.test(BlockInfo.LiveOut)) {
816        changed = true;
817        BlockInfo.LiveOut |= LocalLiveOut;
818      }
819    }
820  } // while changed.
821
822  NumIterations = NumIters;
823}
824
825void StackColoring::calculateLiveIntervals(unsigned NumSlots) {
826  SmallVector<SlotIndex, 16> Starts;
827  SmallVector<bool, 16> DefinitelyInUse;
828
829  // For each block, find which slots are active within this block
830  // and update the live intervals.
831  for (const MachineBasicBlock &MBB : *MF) {
832    Starts.clear();
833    Starts.resize(NumSlots);
834    DefinitelyInUse.clear();
835    DefinitelyInUse.resize(NumSlots);
836
837    // Start the interval of the slots that we previously found to be 'in-use'.
838    BlockLifetimeInfo &MBBLiveness = BlockLiveness[&MBB];
839    for (int pos = MBBLiveness.LiveIn.find_first(); pos != -1;
840         pos = MBBLiveness.LiveIn.find_next(pos)) {
841      Starts[pos] = Indexes->getMBBStartIdx(&MBB);
842    }
843
844    // Create the interval for the basic blocks containing lifetime begin/end.
845    for (const MachineInstr &MI : MBB) {
846      SmallVector<int, 4> slots;
847      bool IsStart = false;
848      if (!isLifetimeStartOrEnd(MI, slots, IsStart))
849        continue;
850      SlotIndex ThisIndex = Indexes->getInstructionIndex(MI);
851      for (auto Slot : slots) {
852        if (IsStart) {
853          // If a slot is already definitely in use, we don't have to emit
854          // a new start marker because there is already a pre-existing
855          // one.
856          if (!DefinitelyInUse[Slot]) {
857            LiveStarts[Slot].push_back(ThisIndex);
858            DefinitelyInUse[Slot] = true;
859          }
860          if (!Starts[Slot].isValid())
861            Starts[Slot] = ThisIndex;
862        } else {
863          if (Starts[Slot].isValid()) {
864            VNInfo *VNI = Intervals[Slot]->getValNumInfo(0);
865            Intervals[Slot]->addSegment(
866                LiveInterval::Segment(Starts[Slot], ThisIndex, VNI));
867            Starts[Slot] = SlotIndex(); // Invalidate the start index
868            DefinitelyInUse[Slot] = false;
869          }
870        }
871      }
872    }
873
874    // Finish up started segments
875    for (unsigned i = 0; i < NumSlots; ++i) {
876      if (!Starts[i].isValid())
877        continue;
878
879      SlotIndex EndIdx = Indexes->getMBBEndIdx(&MBB);
880      VNInfo *VNI = Intervals[i]->getValNumInfo(0);
881      Intervals[i]->addSegment(LiveInterval::Segment(Starts[i], EndIdx, VNI));
882    }
883  }
884}
885
886bool StackColoring::removeAllMarkers() {
887  unsigned Count = 0;
888  for (MachineInstr *MI : Markers) {
889    MI->eraseFromParent();
890    Count++;
891  }
892  Markers.clear();
893
894  LLVM_DEBUG(dbgs() << "Removed " << Count << " markers.\n");
895  return Count;
896}
897
898void StackColoring::remapInstructions(DenseMap<int, int> &SlotRemap) {
899  unsigned FixedInstr = 0;
900  unsigned FixedMemOp = 0;
901  unsigned FixedDbg = 0;
902
903  // Remap debug information that refers to stack slots.
904  for (auto &VI : MF->getVariableDbgInfo()) {
905    if (!VI.Var || !VI.inStackSlot())
906      continue;
907    int Slot = VI.getStackSlot();
908    if (SlotRemap.count(Slot)) {
909      LLVM_DEBUG(dbgs() << "Remapping debug info for ["
910                        << cast<DILocalVariable>(VI.Var)->getName() << "].\n");
911      VI.updateStackSlot(SlotRemap[Slot]);
912      FixedDbg++;
913    }
914  }
915
916  // Keep a list of *allocas* which need to be remapped.
917  DenseMap<const AllocaInst*, const AllocaInst*> Allocas;
918
919  // Keep a list of allocas which has been affected by the remap.
920  SmallPtrSet<const AllocaInst*, 32> MergedAllocas;
921
922  for (const std::pair<int, int> &SI : SlotRemap) {
923    const AllocaInst *From = MFI->getObjectAllocation(SI.first);
924    const AllocaInst *To = MFI->getObjectAllocation(SI.second);
925    assert(To && From && "Invalid allocation object");
926    Allocas[From] = To;
927
928    // If From is before wo, its possible that there is a use of From between
929    // them.
930    if (From->comesBefore(To))
931      const_cast<AllocaInst*>(To)->moveBefore(const_cast<AllocaInst*>(From));
932
933    // AA might be used later for instruction scheduling, and we need it to be
934    // able to deduce the correct aliasing releationships between pointers
935    // derived from the alloca being remapped and the target of that remapping.
936    // The only safe way, without directly informing AA about the remapping
937    // somehow, is to directly update the IR to reflect the change being made
938    // here.
939    Instruction *Inst = const_cast<AllocaInst *>(To);
940    if (From->getType() != To->getType()) {
941      BitCastInst *Cast = new BitCastInst(Inst, From->getType());
942      Cast->insertAfter(Inst);
943      Inst = Cast;
944    }
945
946    // We keep both slots to maintain AliasAnalysis metadata later.
947    MergedAllocas.insert(From);
948    MergedAllocas.insert(To);
949
950    // Transfer the stack protector layout tag, but make sure that SSPLK_AddrOf
951    // does not overwrite SSPLK_SmallArray or SSPLK_LargeArray, and make sure
952    // that SSPLK_SmallArray does not overwrite SSPLK_LargeArray.
953    MachineFrameInfo::SSPLayoutKind FromKind
954        = MFI->getObjectSSPLayout(SI.first);
955    MachineFrameInfo::SSPLayoutKind ToKind = MFI->getObjectSSPLayout(SI.second);
956    if (FromKind != MachineFrameInfo::SSPLK_None &&
957        (ToKind == MachineFrameInfo::SSPLK_None ||
958         (ToKind != MachineFrameInfo::SSPLK_LargeArray &&
959          FromKind != MachineFrameInfo::SSPLK_AddrOf)))
960      MFI->setObjectSSPLayout(SI.second, FromKind);
961
962    // The new alloca might not be valid in a llvm.dbg.declare for this
963    // variable, so undef out the use to make the verifier happy.
964    AllocaInst *FromAI = const_cast<AllocaInst *>(From);
965    if (FromAI->isUsedByMetadata())
966      ValueAsMetadata::handleRAUW(FromAI, UndefValue::get(FromAI->getType()));
967    for (auto &Use : FromAI->uses()) {
968      if (BitCastInst *BCI = dyn_cast<BitCastInst>(Use.get()))
969        if (BCI->isUsedByMetadata())
970          ValueAsMetadata::handleRAUW(BCI, UndefValue::get(BCI->getType()));
971    }
972
973    // Note that this will not replace uses in MMOs (which we'll update below),
974    // or anywhere else (which is why we won't delete the original
975    // instruction).
976    FromAI->replaceAllUsesWith(Inst);
977  }
978
979  // Remap all instructions to the new stack slots.
980  std::vector<std::vector<MachineMemOperand *>> SSRefs(
981      MFI->getObjectIndexEnd());
982  for (MachineBasicBlock &BB : *MF)
983    for (MachineInstr &I : BB) {
984      // Skip lifetime markers. We'll remove them soon.
985      if (I.getOpcode() == TargetOpcode::LIFETIME_START ||
986          I.getOpcode() == TargetOpcode::LIFETIME_END)
987        continue;
988
989      // Update the MachineMemOperand to use the new alloca.
990      for (MachineMemOperand *MMO : I.memoperands()) {
991        // We've replaced IR-level uses of the remapped allocas, so we only
992        // need to replace direct uses here.
993        const AllocaInst *AI = dyn_cast_or_null<AllocaInst>(MMO->getValue());
994        if (!AI)
995          continue;
996
997        if (!Allocas.count(AI))
998          continue;
999
1000        MMO->setValue(Allocas[AI]);
1001        FixedMemOp++;
1002      }
1003
1004      // Update all of the machine instruction operands.
1005      for (MachineOperand &MO : I.operands()) {
1006        if (!MO.isFI())
1007          continue;
1008        int FromSlot = MO.getIndex();
1009
1010        // Don't touch arguments.
1011        if (FromSlot<0)
1012          continue;
1013
1014        // Only look at mapped slots.
1015        if (!SlotRemap.count(FromSlot))
1016          continue;
1017
1018        // In a debug build, check that the instruction that we are modifying is
1019        // inside the expected live range. If the instruction is not inside
1020        // the calculated range then it means that the alloca usage moved
1021        // outside of the lifetime markers, or that the user has a bug.
1022        // NOTE: Alloca address calculations which happen outside the lifetime
1023        // zone are okay, despite the fact that we don't have a good way
1024        // for validating all of the usages of the calculation.
1025#ifndef NDEBUG
1026        bool TouchesMemory = I.mayLoadOrStore();
1027        // If we *don't* protect the user from escaped allocas, don't bother
1028        // validating the instructions.
1029        if (!I.isDebugInstr() && TouchesMemory && ProtectFromEscapedAllocas) {
1030          SlotIndex Index = Indexes->getInstructionIndex(I);
1031          const LiveInterval *Interval = &*Intervals[FromSlot];
1032          assert(Interval->find(Index) != Interval->end() &&
1033                 "Found instruction usage outside of live range.");
1034        }
1035#endif
1036
1037        // Fix the machine instructions.
1038        int ToSlot = SlotRemap[FromSlot];
1039        MO.setIndex(ToSlot);
1040        FixedInstr++;
1041      }
1042
1043      // We adjust AliasAnalysis information for merged stack slots.
1044      SmallVector<MachineMemOperand *, 2> NewMMOs;
1045      bool ReplaceMemOps = false;
1046      for (MachineMemOperand *MMO : I.memoperands()) {
1047        // Collect MachineMemOperands which reference
1048        // FixedStackPseudoSourceValues with old frame indices.
1049        if (const auto *FSV = dyn_cast_or_null<FixedStackPseudoSourceValue>(
1050                MMO->getPseudoValue())) {
1051          int FI = FSV->getFrameIndex();
1052          auto To = SlotRemap.find(FI);
1053          if (To != SlotRemap.end())
1054            SSRefs[FI].push_back(MMO);
1055        }
1056
1057        // If this memory location can be a slot remapped here,
1058        // we remove AA information.
1059        bool MayHaveConflictingAAMD = false;
1060        if (MMO->getAAInfo()) {
1061          if (const Value *MMOV = MMO->getValue()) {
1062            SmallVector<Value *, 4> Objs;
1063            getUnderlyingObjectsForCodeGen(MMOV, Objs);
1064
1065            if (Objs.empty())
1066              MayHaveConflictingAAMD = true;
1067            else
1068              for (Value *V : Objs) {
1069                // If this memory location comes from a known stack slot
1070                // that is not remapped, we continue checking.
1071                // Otherwise, we need to invalidate AA infomation.
1072                const AllocaInst *AI = dyn_cast_or_null<AllocaInst>(V);
1073                if (AI && MergedAllocas.count(AI)) {
1074                  MayHaveConflictingAAMD = true;
1075                  break;
1076                }
1077              }
1078          }
1079        }
1080        if (MayHaveConflictingAAMD) {
1081          NewMMOs.push_back(MF->getMachineMemOperand(MMO, AAMDNodes()));
1082          ReplaceMemOps = true;
1083        } else {
1084          NewMMOs.push_back(MMO);
1085        }
1086      }
1087
1088      // If any memory operand is updated, set memory references of
1089      // this instruction.
1090      if (ReplaceMemOps)
1091        I.setMemRefs(*MF, NewMMOs);
1092    }
1093
1094  // Rewrite MachineMemOperands that reference old frame indices.
1095  for (auto E : enumerate(SSRefs))
1096    if (!E.value().empty()) {
1097      const PseudoSourceValue *NewSV =
1098          MF->getPSVManager().getFixedStack(SlotRemap.find(E.index())->second);
1099      for (MachineMemOperand *Ref : E.value())
1100        Ref->setValue(NewSV);
1101    }
1102
1103  // Update the location of C++ catch objects for the MSVC personality routine.
1104  if (WinEHFuncInfo *EHInfo = MF->getWinEHFuncInfo())
1105    for (WinEHTryBlockMapEntry &TBME : EHInfo->TryBlockMap)
1106      for (WinEHHandlerType &H : TBME.HandlerArray)
1107        if (H.CatchObj.FrameIndex != std::numeric_limits<int>::max() &&
1108            SlotRemap.count(H.CatchObj.FrameIndex))
1109          H.CatchObj.FrameIndex = SlotRemap[H.CatchObj.FrameIndex];
1110
1111  LLVM_DEBUG(dbgs() << "Fixed " << FixedMemOp << " machine memory operands.\n");
1112  LLVM_DEBUG(dbgs() << "Fixed " << FixedDbg << " debug locations.\n");
1113  LLVM_DEBUG(dbgs() << "Fixed " << FixedInstr << " machine instructions.\n");
1114  (void) FixedMemOp;
1115  (void) FixedDbg;
1116  (void) FixedInstr;
1117}
1118
1119void StackColoring::removeInvalidSlotRanges() {
1120  for (MachineBasicBlock &BB : *MF)
1121    for (MachineInstr &I : BB) {
1122      if (I.getOpcode() == TargetOpcode::LIFETIME_START ||
1123          I.getOpcode() == TargetOpcode::LIFETIME_END || I.isDebugInstr())
1124        continue;
1125
1126      // Some intervals are suspicious! In some cases we find address
1127      // calculations outside of the lifetime zone, but not actual memory
1128      // read or write. Memory accesses outside of the lifetime zone are a clear
1129      // violation, but address calculations are okay. This can happen when
1130      // GEPs are hoisted outside of the lifetime zone.
1131      // So, in here we only check instructions which can read or write memory.
1132      if (!I.mayLoad() && !I.mayStore())
1133        continue;
1134
1135      // Check all of the machine operands.
1136      for (const MachineOperand &MO : I.operands()) {
1137        if (!MO.isFI())
1138          continue;
1139
1140        int Slot = MO.getIndex();
1141
1142        if (Slot<0)
1143          continue;
1144
1145        if (Intervals[Slot]->empty())
1146          continue;
1147
1148        // Check that the used slot is inside the calculated lifetime range.
1149        // If it is not, warn about it and invalidate the range.
1150        LiveInterval *Interval = &*Intervals[Slot];
1151        SlotIndex Index = Indexes->getInstructionIndex(I);
1152        if (Interval->find(Index) == Interval->end()) {
1153          Interval->clear();
1154          LLVM_DEBUG(dbgs() << "Invalidating range #" << Slot << "\n");
1155          EscapedAllocas++;
1156        }
1157      }
1158    }
1159}
1160
1161void StackColoring::expungeSlotMap(DenseMap<int, int> &SlotRemap,
1162                                   unsigned NumSlots) {
1163  // Expunge slot remap map.
1164  for (unsigned i=0; i < NumSlots; ++i) {
1165    // If we are remapping i
1166    if (SlotRemap.count(i)) {
1167      int Target = SlotRemap[i];
1168      // As long as our target is mapped to something else, follow it.
1169      while (SlotRemap.count(Target)) {
1170        Target = SlotRemap[Target];
1171        SlotRemap[i] = Target;
1172      }
1173    }
1174  }
1175}
1176
1177bool StackColoring::runOnMachineFunction(MachineFunction &Func) {
1178  LLVM_DEBUG(dbgs() << "********** Stack Coloring **********\n"
1179                    << "********** Function: " << Func.getName() << '\n');
1180  MF = &Func;
1181  MFI = &MF->getFrameInfo();
1182  Indexes = &getAnalysis<SlotIndexes>();
1183  BlockLiveness.clear();
1184  BasicBlocks.clear();
1185  BasicBlockNumbering.clear();
1186  Markers.clear();
1187  Intervals.clear();
1188  LiveStarts.clear();
1189  VNInfoAllocator.Reset();
1190
1191  unsigned NumSlots = MFI->getObjectIndexEnd();
1192
1193  // If there are no stack slots then there are no markers to remove.
1194  if (!NumSlots)
1195    return false;
1196
1197  SmallVector<int, 8> SortedSlots;
1198  SortedSlots.reserve(NumSlots);
1199  Intervals.reserve(NumSlots);
1200  LiveStarts.resize(NumSlots);
1201
1202  unsigned NumMarkers = collectMarkers(NumSlots);
1203
1204  unsigned TotalSize = 0;
1205  LLVM_DEBUG(dbgs() << "Found " << NumMarkers << " markers and " << NumSlots
1206                    << " slots\n");
1207  LLVM_DEBUG(dbgs() << "Slot structure:\n");
1208
1209  for (int i=0; i < MFI->getObjectIndexEnd(); ++i) {
1210    LLVM_DEBUG(dbgs() << "Slot #" << i << " - " << MFI->getObjectSize(i)
1211                      << " bytes.\n");
1212    TotalSize += MFI->getObjectSize(i);
1213  }
1214
1215  LLVM_DEBUG(dbgs() << "Total Stack size: " << TotalSize << " bytes\n\n");
1216
1217  // Don't continue because there are not enough lifetime markers, or the
1218  // stack is too small, or we are told not to optimize the slots.
1219  if (NumMarkers < 2 || TotalSize < 16 || DisableColoring ||
1220      skipFunction(Func.getFunction())) {
1221    LLVM_DEBUG(dbgs() << "Will not try to merge slots.\n");
1222    return removeAllMarkers();
1223  }
1224
1225  for (unsigned i=0; i < NumSlots; ++i) {
1226    std::unique_ptr<LiveInterval> LI(new LiveInterval(i, 0));
1227    LI->getNextValue(Indexes->getZeroIndex(), VNInfoAllocator);
1228    Intervals.push_back(std::move(LI));
1229    SortedSlots.push_back(i);
1230  }
1231
1232  // Calculate the liveness of each block.
1233  calculateLocalLiveness();
1234  LLVM_DEBUG(dbgs() << "Dataflow iterations: " << NumIterations << "\n");
1235  LLVM_DEBUG(dump());
1236
1237  // Propagate the liveness information.
1238  calculateLiveIntervals(NumSlots);
1239  LLVM_DEBUG(dumpIntervals());
1240
1241  // Search for allocas which are used outside of the declared lifetime
1242  // markers.
1243  if (ProtectFromEscapedAllocas)
1244    removeInvalidSlotRanges();
1245
1246  // Maps old slots to new slots.
1247  DenseMap<int, int> SlotRemap;
1248  unsigned RemovedSlots = 0;
1249  unsigned ReducedSize = 0;
1250
1251  // Do not bother looking at empty intervals.
1252  for (unsigned I = 0; I < NumSlots; ++I) {
1253    if (Intervals[SortedSlots[I]]->empty())
1254      SortedSlots[I] = -1;
1255  }
1256
1257  // This is a simple greedy algorithm for merging allocas. First, sort the
1258  // slots, placing the largest slots first. Next, perform an n^2 scan and look
1259  // for disjoint slots. When you find disjoint slots, merge the smaller one
1260  // into the bigger one and update the live interval. Remove the small alloca
1261  // and continue.
1262
1263  // Sort the slots according to their size. Place unused slots at the end.
1264  // Use stable sort to guarantee deterministic code generation.
1265  llvm::stable_sort(SortedSlots, [this](int LHS, int RHS) {
1266    // We use -1 to denote a uninteresting slot. Place these slots at the end.
1267    if (LHS == -1)
1268      return false;
1269    if (RHS == -1)
1270      return true;
1271    // Sort according to size.
1272    return MFI->getObjectSize(LHS) > MFI->getObjectSize(RHS);
1273  });
1274
1275  for (auto &s : LiveStarts)
1276    llvm::sort(s);
1277
1278  bool Changed = true;
1279  while (Changed) {
1280    Changed = false;
1281    for (unsigned I = 0; I < NumSlots; ++I) {
1282      if (SortedSlots[I] == -1)
1283        continue;
1284
1285      for (unsigned J=I+1; J < NumSlots; ++J) {
1286        if (SortedSlots[J] == -1)
1287          continue;
1288
1289        int FirstSlot = SortedSlots[I];
1290        int SecondSlot = SortedSlots[J];
1291
1292        // Objects with different stack IDs cannot be merged.
1293        if (MFI->getStackID(FirstSlot) != MFI->getStackID(SecondSlot))
1294          continue;
1295
1296        LiveInterval *First = &*Intervals[FirstSlot];
1297        LiveInterval *Second = &*Intervals[SecondSlot];
1298        auto &FirstS = LiveStarts[FirstSlot];
1299        auto &SecondS = LiveStarts[SecondSlot];
1300        assert(!First->empty() && !Second->empty() && "Found an empty range");
1301
1302        // Merge disjoint slots. This is a little bit tricky - see the
1303        // Implementation Notes section for an explanation.
1304        if (!First->isLiveAtIndexes(SecondS) &&
1305            !Second->isLiveAtIndexes(FirstS)) {
1306          Changed = true;
1307          First->MergeSegmentsInAsValue(*Second, First->getValNumInfo(0));
1308
1309          int OldSize = FirstS.size();
1310          FirstS.append(SecondS.begin(), SecondS.end());
1311          auto Mid = FirstS.begin() + OldSize;
1312          std::inplace_merge(FirstS.begin(), Mid, FirstS.end());
1313
1314          SlotRemap[SecondSlot] = FirstSlot;
1315          SortedSlots[J] = -1;
1316          LLVM_DEBUG(dbgs() << "Merging #" << FirstSlot << " and slots #"
1317                            << SecondSlot << " together.\n");
1318          Align MaxAlignment = std::max(MFI->getObjectAlign(FirstSlot),
1319                                        MFI->getObjectAlign(SecondSlot));
1320
1321          assert(MFI->getObjectSize(FirstSlot) >=
1322                 MFI->getObjectSize(SecondSlot) &&
1323                 "Merging a small object into a larger one");
1324
1325          RemovedSlots+=1;
1326          ReducedSize += MFI->getObjectSize(SecondSlot);
1327          MFI->setObjectAlignment(FirstSlot, MaxAlignment);
1328          MFI->RemoveStackObject(SecondSlot);
1329        }
1330      }
1331    }
1332  }// While changed.
1333
1334  // Record statistics.
1335  StackSpaceSaved += ReducedSize;
1336  StackSlotMerged += RemovedSlots;
1337  LLVM_DEBUG(dbgs() << "Merge " << RemovedSlots << " slots. Saved "
1338                    << ReducedSize << " bytes\n");
1339
1340  // Scan the entire function and update all machine operands that use frame
1341  // indices to use the remapped frame index.
1342  if (!SlotRemap.empty()) {
1343    expungeSlotMap(SlotRemap, NumSlots);
1344    remapInstructions(SlotRemap);
1345  }
1346
1347  return removeAllMarkers();
1348}
1349