1//===- InlineSpiller.cpp - Insert spills and restores inline --------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// The inline spiller modifies the machine function directly instead of
10// inserting spills and restores in VirtRegMap.
11//
12//===----------------------------------------------------------------------===//
13
14#include "SplitKit.h"
15#include "llvm/ADT/ArrayRef.h"
16#include "llvm/ADT/DenseMap.h"
17#include "llvm/ADT/MapVector.h"
18#include "llvm/ADT/STLExtras.h"
19#include "llvm/ADT/SetVector.h"
20#include "llvm/ADT/SmallPtrSet.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/Analysis/AliasAnalysis.h"
24#include "llvm/CodeGen/LiveInterval.h"
25#include "llvm/CodeGen/LiveIntervals.h"
26#include "llvm/CodeGen/LiveRangeEdit.h"
27#include "llvm/CodeGen/LiveStacks.h"
28#include "llvm/CodeGen/MachineBasicBlock.h"
29#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
30#include "llvm/CodeGen/MachineDominators.h"
31#include "llvm/CodeGen/MachineFunction.h"
32#include "llvm/CodeGen/MachineFunctionPass.h"
33#include "llvm/CodeGen/MachineInstr.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineInstrBundle.h"
36#include "llvm/CodeGen/MachineOperand.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/CodeGen/SlotIndexes.h"
39#include "llvm/CodeGen/Spiller.h"
40#include "llvm/CodeGen/StackMaps.h"
41#include "llvm/CodeGen/TargetInstrInfo.h"
42#include "llvm/CodeGen/TargetOpcodes.h"
43#include "llvm/CodeGen/TargetRegisterInfo.h"
44#include "llvm/CodeGen/TargetSubtargetInfo.h"
45#include "llvm/CodeGen/VirtRegMap.h"
46#include "llvm/Config/llvm-config.h"
47#include "llvm/Support/BlockFrequency.h"
48#include "llvm/Support/BranchProbability.h"
49#include "llvm/Support/CommandLine.h"
50#include "llvm/Support/Compiler.h"
51#include "llvm/Support/Debug.h"
52#include "llvm/Support/ErrorHandling.h"
53#include "llvm/Support/raw_ostream.h"
54#include <cassert>
55#include <iterator>
56#include <tuple>
57#include <utility>
58
59using namespace llvm;
60
61#define DEBUG_TYPE "regalloc"
62
63STATISTIC(NumSpilledRanges,   "Number of spilled live ranges");
64STATISTIC(NumSnippets,        "Number of spilled snippets");
65STATISTIC(NumSpills,          "Number of spills inserted");
66STATISTIC(NumSpillsRemoved,   "Number of spills removed");
67STATISTIC(NumReloads,         "Number of reloads inserted");
68STATISTIC(NumReloadsRemoved,  "Number of reloads removed");
69STATISTIC(NumFolded,          "Number of folded stack accesses");
70STATISTIC(NumFoldedLoads,     "Number of folded loads");
71STATISTIC(NumRemats,          "Number of rematerialized defs for spilling");
72
73static cl::opt<bool> DisableHoisting("disable-spill-hoist", cl::Hidden,
74                                     cl::desc("Disable inline spill hoisting"));
75static cl::opt<bool>
76RestrictStatepointRemat("restrict-statepoint-remat",
77                       cl::init(false), cl::Hidden,
78                       cl::desc("Restrict remat for statepoint operands"));
79
80namespace {
81
82class HoistSpillHelper : private LiveRangeEdit::Delegate {
83  MachineFunction &MF;
84  LiveIntervals &LIS;
85  LiveStacks &LSS;
86  MachineDominatorTree &MDT;
87  VirtRegMap &VRM;
88  MachineRegisterInfo &MRI;
89  const TargetInstrInfo &TII;
90  const TargetRegisterInfo &TRI;
91  const MachineBlockFrequencyInfo &MBFI;
92
93  InsertPointAnalysis IPA;
94
95  // Map from StackSlot to the LiveInterval of the original register.
96  // Note the LiveInterval of the original register may have been deleted
97  // after it is spilled. We keep a copy here to track the range where
98  // spills can be moved.
99  DenseMap<int, std::unique_ptr<LiveInterval>> StackSlotToOrigLI;
100
101  // Map from pair of (StackSlot and Original VNI) to a set of spills which
102  // have the same stackslot and have equal values defined by Original VNI.
103  // These spills are mergeable and are hoist candidates.
104  using MergeableSpillsMap =
105      MapVector<std::pair<int, VNInfo *>, SmallPtrSet<MachineInstr *, 16>>;
106  MergeableSpillsMap MergeableSpills;
107
108  /// This is the map from original register to a set containing all its
109  /// siblings. To hoist a spill to another BB, we need to find out a live
110  /// sibling there and use it as the source of the new spill.
111  DenseMap<Register, SmallSetVector<Register, 16>> Virt2SiblingsMap;
112
113  bool isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI,
114                     MachineBasicBlock &BB, Register &LiveReg);
115
116  void rmRedundantSpills(
117      SmallPtrSet<MachineInstr *, 16> &Spills,
118      SmallVectorImpl<MachineInstr *> &SpillsToRm,
119      DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill);
120
121  void getVisitOrders(
122      MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills,
123      SmallVectorImpl<MachineDomTreeNode *> &Orders,
124      SmallVectorImpl<MachineInstr *> &SpillsToRm,
125      DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep,
126      DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill);
127
128  void runHoistSpills(LiveInterval &OrigLI, VNInfo &OrigVNI,
129                      SmallPtrSet<MachineInstr *, 16> &Spills,
130                      SmallVectorImpl<MachineInstr *> &SpillsToRm,
131                      DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns);
132
133public:
134  HoistSpillHelper(MachineFunctionPass &pass, MachineFunction &mf,
135                   VirtRegMap &vrm)
136      : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()),
137        LSS(pass.getAnalysis<LiveStacks>()),
138        MDT(pass.getAnalysis<MachineDominatorTree>()), VRM(vrm),
139        MRI(mf.getRegInfo()), TII(*mf.getSubtarget().getInstrInfo()),
140        TRI(*mf.getSubtarget().getRegisterInfo()),
141        MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()),
142        IPA(LIS, mf.getNumBlockIDs()) {}
143
144  void addToMergeableSpills(MachineInstr &Spill, int StackSlot,
145                            unsigned Original);
146  bool rmFromMergeableSpills(MachineInstr &Spill, int StackSlot);
147  void hoistAllSpills();
148  void LRE_DidCloneVirtReg(Register, Register) override;
149};
150
151class InlineSpiller : public Spiller {
152  MachineFunction &MF;
153  LiveIntervals &LIS;
154  LiveStacks &LSS;
155  MachineDominatorTree &MDT;
156  VirtRegMap &VRM;
157  MachineRegisterInfo &MRI;
158  const TargetInstrInfo &TII;
159  const TargetRegisterInfo &TRI;
160  const MachineBlockFrequencyInfo &MBFI;
161
162  // Variables that are valid during spill(), but used by multiple methods.
163  LiveRangeEdit *Edit = nullptr;
164  LiveInterval *StackInt = nullptr;
165  int StackSlot;
166  Register Original;
167
168  // All registers to spill to StackSlot, including the main register.
169  SmallVector<Register, 8> RegsToSpill;
170
171  // All COPY instructions to/from snippets.
172  // They are ignored since both operands refer to the same stack slot.
173  // For bundled copies, this will only include the first header copy.
174  SmallPtrSet<MachineInstr*, 8> SnippetCopies;
175
176  // Values that failed to remat at some point.
177  SmallPtrSet<VNInfo*, 8> UsedValues;
178
179  // Dead defs generated during spilling.
180  SmallVector<MachineInstr*, 8> DeadDefs;
181
182  // Object records spills information and does the hoisting.
183  HoistSpillHelper HSpiller;
184
185  // Live range weight calculator.
186  VirtRegAuxInfo &VRAI;
187
188  ~InlineSpiller() override = default;
189
190public:
191  InlineSpiller(MachineFunctionPass &Pass, MachineFunction &MF, VirtRegMap &VRM,
192                VirtRegAuxInfo &VRAI)
193      : MF(MF), LIS(Pass.getAnalysis<LiveIntervals>()),
194        LSS(Pass.getAnalysis<LiveStacks>()),
195        MDT(Pass.getAnalysis<MachineDominatorTree>()), VRM(VRM),
196        MRI(MF.getRegInfo()), TII(*MF.getSubtarget().getInstrInfo()),
197        TRI(*MF.getSubtarget().getRegisterInfo()),
198        MBFI(Pass.getAnalysis<MachineBlockFrequencyInfo>()),
199        HSpiller(Pass, MF, VRM), VRAI(VRAI) {}
200
201  void spill(LiveRangeEdit &) override;
202  void postOptimization() override;
203
204private:
205  bool isSnippet(const LiveInterval &SnipLI);
206  void collectRegsToSpill();
207
208  bool isRegToSpill(Register Reg) { return is_contained(RegsToSpill, Reg); }
209
210  bool isSibling(Register Reg);
211  bool hoistSpillInsideBB(LiveInterval &SpillLI, MachineInstr &CopyMI);
212  void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI);
213
214  void markValueUsed(LiveInterval*, VNInfo*);
215  bool canGuaranteeAssignmentAfterRemat(Register VReg, MachineInstr &MI);
216  bool reMaterializeFor(LiveInterval &, MachineInstr &MI);
217  void reMaterializeAll();
218
219  bool coalesceStackAccess(MachineInstr *MI, Register Reg);
220  bool foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>>,
221                         MachineInstr *LoadMI = nullptr);
222  void insertReload(Register VReg, SlotIndex, MachineBasicBlock::iterator MI);
223  void insertSpill(Register VReg, bool isKill, MachineBasicBlock::iterator MI);
224
225  void spillAroundUses(Register Reg);
226  void spillAll();
227};
228
229} // end anonymous namespace
230
231Spiller::~Spiller() = default;
232
233void Spiller::anchor() {}
234
235Spiller *llvm::createInlineSpiller(MachineFunctionPass &Pass,
236                                   MachineFunction &MF, VirtRegMap &VRM,
237                                   VirtRegAuxInfo &VRAI) {
238  return new InlineSpiller(Pass, MF, VRM, VRAI);
239}
240
241//===----------------------------------------------------------------------===//
242//                                Snippets
243//===----------------------------------------------------------------------===//
244
245// When spilling a virtual register, we also spill any snippets it is connected
246// to. The snippets are small live ranges that only have a single real use,
247// leftovers from live range splitting. Spilling them enables memory operand
248// folding or tightens the live range around the single use.
249//
250// This minimizes register pressure and maximizes the store-to-load distance for
251// spill slots which can be important in tight loops.
252
253/// isFullCopyOf - If MI is a COPY to or from Reg, return the other register,
254/// otherwise return 0.
255static Register isCopyOf(const MachineInstr &MI, Register Reg,
256                         const TargetInstrInfo &TII) {
257  if (!TII.isCopyInstr(MI))
258    return Register();
259
260  const MachineOperand &DstOp = MI.getOperand(0);
261  const MachineOperand &SrcOp = MI.getOperand(1);
262
263  // TODO: Probably only worth allowing subreg copies with undef dests.
264  if (DstOp.getSubReg() != SrcOp.getSubReg())
265    return Register();
266  if (DstOp.getReg() == Reg)
267    return SrcOp.getReg();
268  if (SrcOp.getReg() == Reg)
269    return DstOp.getReg();
270  return Register();
271}
272
273/// Check for a copy bundle as formed by SplitKit.
274static Register isCopyOfBundle(const MachineInstr &FirstMI, Register Reg,
275                               const TargetInstrInfo &TII) {
276  if (!FirstMI.isBundled())
277    return isCopyOf(FirstMI, Reg, TII);
278
279  assert(!FirstMI.isBundledWithPred() && FirstMI.isBundledWithSucc() &&
280         "expected to see first instruction in bundle");
281
282  Register SnipReg;
283  MachineBasicBlock::const_instr_iterator I = FirstMI.getIterator();
284  while (I->isBundledWithSucc()) {
285    const MachineInstr &MI = *I;
286    auto CopyInst = TII.isCopyInstr(MI);
287    if (!CopyInst)
288      return Register();
289
290    const MachineOperand &DstOp = *CopyInst->Destination;
291    const MachineOperand &SrcOp = *CopyInst->Source;
292    if (DstOp.getReg() == Reg) {
293      if (!SnipReg)
294        SnipReg = SrcOp.getReg();
295      else if (SnipReg != SrcOp.getReg())
296        return Register();
297    } else if (SrcOp.getReg() == Reg) {
298      if (!SnipReg)
299        SnipReg = DstOp.getReg();
300      else if (SnipReg != DstOp.getReg())
301        return Register();
302    }
303
304    ++I;
305  }
306
307  return Register();
308}
309
310static void getVDefInterval(const MachineInstr &MI, LiveIntervals &LIS) {
311  for (const MachineOperand &MO : MI.all_defs())
312    if (MO.getReg().isVirtual())
313      LIS.getInterval(MO.getReg());
314}
315
316/// isSnippet - Identify if a live interval is a snippet that should be spilled.
317/// It is assumed that SnipLI is a virtual register with the same original as
318/// Edit->getReg().
319bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) {
320  Register Reg = Edit->getReg();
321
322  // A snippet is a tiny live range with only a single instruction using it
323  // besides copies to/from Reg or spills/fills.
324  // Exception is done for statepoint instructions which will fold fills
325  // into their operands.
326  // We accept:
327  //
328  //   %snip = COPY %Reg / FILL fi#
329  //   %snip = USE %snip
330  //   %snip = STATEPOINT %snip in var arg area
331  //   %Reg = COPY %snip / SPILL %snip, fi#
332  //
333  if (!LIS.intervalIsInOneMBB(SnipLI))
334    return false;
335
336  // Number of defs should not exceed 2 not accounting defs coming from
337  // statepoint instructions.
338  unsigned NumValNums = SnipLI.getNumValNums();
339  for (auto *VNI : SnipLI.vnis()) {
340    MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
341    if (MI->getOpcode() == TargetOpcode::STATEPOINT)
342      --NumValNums;
343  }
344  if (NumValNums > 2)
345    return false;
346
347  MachineInstr *UseMI = nullptr;
348
349  // Check that all uses satisfy our criteria.
350  for (MachineRegisterInfo::reg_bundle_nodbg_iterator
351           RI = MRI.reg_bundle_nodbg_begin(SnipLI.reg()),
352           E = MRI.reg_bundle_nodbg_end();
353       RI != E;) {
354    MachineInstr &MI = *RI++;
355
356    // Allow copies to/from Reg.
357    if (isCopyOfBundle(MI, Reg, TII))
358      continue;
359
360    // Allow stack slot loads.
361    int FI;
362    if (SnipLI.reg() == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot)
363      continue;
364
365    // Allow stack slot stores.
366    if (SnipLI.reg() == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot)
367      continue;
368
369    if (StatepointOpers::isFoldableReg(&MI, SnipLI.reg()))
370      continue;
371
372    // Allow a single additional instruction.
373    if (UseMI && &MI != UseMI)
374      return false;
375    UseMI = &MI;
376  }
377  return true;
378}
379
380/// collectRegsToSpill - Collect live range snippets that only have a single
381/// real use.
382void InlineSpiller::collectRegsToSpill() {
383  Register Reg = Edit->getReg();
384
385  // Main register always spills.
386  RegsToSpill.assign(1, Reg);
387  SnippetCopies.clear();
388
389  // Snippets all have the same original, so there can't be any for an original
390  // register.
391  if (Original == Reg)
392    return;
393
394  for (MachineInstr &MI : llvm::make_early_inc_range(MRI.reg_bundles(Reg))) {
395    Register SnipReg = isCopyOfBundle(MI, Reg, TII);
396    if (!isSibling(SnipReg))
397      continue;
398    LiveInterval &SnipLI = LIS.getInterval(SnipReg);
399    if (!isSnippet(SnipLI))
400      continue;
401    SnippetCopies.insert(&MI);
402    if (isRegToSpill(SnipReg))
403      continue;
404    RegsToSpill.push_back(SnipReg);
405    LLVM_DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n');
406    ++NumSnippets;
407  }
408}
409
410bool InlineSpiller::isSibling(Register Reg) {
411  return Reg.isVirtual() && VRM.getOriginal(Reg) == Original;
412}
413
414/// It is beneficial to spill to earlier place in the same BB in case
415/// as follows:
416/// There is an alternative def earlier in the same MBB.
417/// Hoist the spill as far as possible in SpillMBB. This can ease
418/// register pressure:
419///
420///   x = def
421///   y = use x
422///   s = copy x
423///
424/// Hoisting the spill of s to immediately after the def removes the
425/// interference between x and y:
426///
427///   x = def
428///   spill x
429///   y = use killed x
430///
431/// This hoist only helps when the copy kills its source.
432///
433bool InlineSpiller::hoistSpillInsideBB(LiveInterval &SpillLI,
434                                       MachineInstr &CopyMI) {
435  SlotIndex Idx = LIS.getInstructionIndex(CopyMI);
436#ifndef NDEBUG
437  VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot());
438  assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy");
439#endif
440
441  Register SrcReg = CopyMI.getOperand(1).getReg();
442  LiveInterval &SrcLI = LIS.getInterval(SrcReg);
443  VNInfo *SrcVNI = SrcLI.getVNInfoAt(Idx);
444  LiveQueryResult SrcQ = SrcLI.Query(Idx);
445  MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(SrcVNI->def);
446  if (DefMBB != CopyMI.getParent() || !SrcQ.isKill())
447    return false;
448
449  // Conservatively extend the stack slot range to the range of the original
450  // value. We may be able to do better with stack slot coloring by being more
451  // careful here.
452  assert(StackInt && "No stack slot assigned yet.");
453  LiveInterval &OrigLI = LIS.getInterval(Original);
454  VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx);
455  StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0));
456  LLVM_DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": "
457                    << *StackInt << '\n');
458
459  // We are going to spill SrcVNI immediately after its def, so clear out
460  // any later spills of the same value.
461  eliminateRedundantSpills(SrcLI, SrcVNI);
462
463  MachineBasicBlock *MBB = LIS.getMBBFromIndex(SrcVNI->def);
464  MachineBasicBlock::iterator MII;
465  if (SrcVNI->isPHIDef())
466    MII = MBB->SkipPHIsLabelsAndDebug(MBB->begin(), SrcReg);
467  else {
468    MachineInstr *DefMI = LIS.getInstructionFromIndex(SrcVNI->def);
469    assert(DefMI && "Defining instruction disappeared");
470    MII = DefMI;
471    ++MII;
472  }
473  MachineInstrSpan MIS(MII, MBB);
474  // Insert spill without kill flag immediately after def.
475  TII.storeRegToStackSlot(*MBB, MII, SrcReg, false, StackSlot,
476                          MRI.getRegClass(SrcReg), &TRI, Register());
477  LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MII);
478  for (const MachineInstr &MI : make_range(MIS.begin(), MII))
479    getVDefInterval(MI, LIS);
480  --MII; // Point to store instruction.
481  LLVM_DEBUG(dbgs() << "\thoisted: " << SrcVNI->def << '\t' << *MII);
482
483  // If there is only 1 store instruction is required for spill, add it
484  // to mergeable list. In X86 AMX, 2 intructions are required to store.
485  // We disable the merge for this case.
486  if (MIS.begin() == MII)
487    HSpiller.addToMergeableSpills(*MII, StackSlot, Original);
488  ++NumSpills;
489  return true;
490}
491
492/// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any
493/// redundant spills of this value in SLI.reg and sibling copies.
494void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) {
495  assert(VNI && "Missing value");
496  SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
497  WorkList.push_back(std::make_pair(&SLI, VNI));
498  assert(StackInt && "No stack slot assigned yet.");
499
500  do {
501    LiveInterval *LI;
502    std::tie(LI, VNI) = WorkList.pop_back_val();
503    Register Reg = LI->reg();
504    LLVM_DEBUG(dbgs() << "Checking redundant spills for " << VNI->id << '@'
505                      << VNI->def << " in " << *LI << '\n');
506
507    // Regs to spill are taken care of.
508    if (isRegToSpill(Reg))
509      continue;
510
511    // Add all of VNI's live range to StackInt.
512    StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0));
513    LLVM_DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n');
514
515    // Find all spills and copies of VNI.
516    for (MachineInstr &MI :
517         llvm::make_early_inc_range(MRI.use_nodbg_bundles(Reg))) {
518      if (!MI.mayStore() && !TII.isCopyInstr(MI))
519        continue;
520      SlotIndex Idx = LIS.getInstructionIndex(MI);
521      if (LI->getVNInfoAt(Idx) != VNI)
522        continue;
523
524      // Follow sibling copies down the dominator tree.
525      if (Register DstReg = isCopyOfBundle(MI, Reg, TII)) {
526        if (isSibling(DstReg)) {
527          LiveInterval &DstLI = LIS.getInterval(DstReg);
528          VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getRegSlot());
529          assert(DstVNI && "Missing defined value");
530          assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot");
531
532          WorkList.push_back(std::make_pair(&DstLI, DstVNI));
533        }
534        continue;
535      }
536
537      // Erase spills.
538      int FI;
539      if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) {
540        LLVM_DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << MI);
541        // eliminateDeadDefs won't normally remove stores, so switch opcode.
542        MI.setDesc(TII.get(TargetOpcode::KILL));
543        DeadDefs.push_back(&MI);
544        ++NumSpillsRemoved;
545        if (HSpiller.rmFromMergeableSpills(MI, StackSlot))
546          --NumSpills;
547      }
548    }
549  } while (!WorkList.empty());
550}
551
552//===----------------------------------------------------------------------===//
553//                            Rematerialization
554//===----------------------------------------------------------------------===//
555
556/// markValueUsed - Remember that VNI failed to rematerialize, so its defining
557/// instruction cannot be eliminated. See through snippet copies
558void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) {
559  SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
560  WorkList.push_back(std::make_pair(LI, VNI));
561  do {
562    std::tie(LI, VNI) = WorkList.pop_back_val();
563    if (!UsedValues.insert(VNI).second)
564      continue;
565
566    if (VNI->isPHIDef()) {
567      MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
568      for (MachineBasicBlock *P : MBB->predecessors()) {
569        VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(P));
570        if (PVNI)
571          WorkList.push_back(std::make_pair(LI, PVNI));
572      }
573      continue;
574    }
575
576    // Follow snippet copies.
577    MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
578    if (!SnippetCopies.count(MI))
579      continue;
580    LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg());
581    assert(isRegToSpill(SnipLI.reg()) && "Unexpected register in copy");
582    VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getRegSlot(true));
583    assert(SnipVNI && "Snippet undefined before copy");
584    WorkList.push_back(std::make_pair(&SnipLI, SnipVNI));
585  } while (!WorkList.empty());
586}
587
588bool InlineSpiller::canGuaranteeAssignmentAfterRemat(Register VReg,
589                                                     MachineInstr &MI) {
590  if (!RestrictStatepointRemat)
591    return true;
592  // Here's a quick explanation of the problem we're trying to handle here:
593  // * There are some pseudo instructions with more vreg uses than there are
594  //   physical registers on the machine.
595  // * This is normally handled by spilling the vreg, and folding the reload
596  //   into the user instruction.  (Thus decreasing the number of used vregs
597  //   until the remainder can be assigned to physregs.)
598  // * However, since we may try to spill vregs in any order, we can end up
599  //   trying to spill each operand to the instruction, and then rematting it
600  //   instead.  When that happens, the new live intervals (for the remats) are
601  //   expected to be trivially assignable (i.e. RS_Done).  However, since we
602  //   may have more remats than physregs, we're guaranteed to fail to assign
603  //   one.
604  // At the moment, we only handle this for STATEPOINTs since they're the only
605  // pseudo op where we've seen this.  If we start seeing other instructions
606  // with the same problem, we need to revisit this.
607  if (MI.getOpcode() != TargetOpcode::STATEPOINT)
608    return true;
609  // For STATEPOINTs we allow re-materialization for fixed arguments only hoping
610  // that number of physical registers is enough to cover all fixed arguments.
611  // If it is not true we need to revisit it.
612  for (unsigned Idx = StatepointOpers(&MI).getVarIdx(),
613                EndIdx = MI.getNumOperands();
614       Idx < EndIdx; ++Idx) {
615    MachineOperand &MO = MI.getOperand(Idx);
616    if (MO.isReg() && MO.getReg() == VReg)
617      return false;
618  }
619  return true;
620}
621
622/// reMaterializeFor - Attempt to rematerialize before MI instead of reloading.
623bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg, MachineInstr &MI) {
624  // Analyze instruction
625  SmallVector<std::pair<MachineInstr *, unsigned>, 8> Ops;
626  VirtRegInfo RI = AnalyzeVirtRegInBundle(MI, VirtReg.reg(), &Ops);
627
628  if (!RI.Reads)
629    return false;
630
631  SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true);
632  VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex());
633
634  if (!ParentVNI) {
635    LLVM_DEBUG(dbgs() << "\tadding <undef> flags: ");
636    for (MachineOperand &MO : MI.all_uses())
637      if (MO.getReg() == VirtReg.reg())
638        MO.setIsUndef();
639    LLVM_DEBUG(dbgs() << UseIdx << '\t' << MI);
640    return true;
641  }
642
643  if (SnippetCopies.count(&MI))
644    return false;
645
646  LiveInterval &OrigLI = LIS.getInterval(Original);
647  VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx);
648  LiveRangeEdit::Remat RM(ParentVNI);
649  RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def);
650
651  if (!Edit->canRematerializeAt(RM, OrigVNI, UseIdx, false)) {
652    markValueUsed(&VirtReg, ParentVNI);
653    LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI);
654    return false;
655  }
656
657  // If the instruction also writes VirtReg.reg, it had better not require the
658  // same register for uses and defs.
659  if (RI.Tied) {
660    markValueUsed(&VirtReg, ParentVNI);
661    LLVM_DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << MI);
662    return false;
663  }
664
665  // Before rematerializing into a register for a single instruction, try to
666  // fold a load into the instruction. That avoids allocating a new register.
667  if (RM.OrigMI->canFoldAsLoad() &&
668      foldMemoryOperand(Ops, RM.OrigMI)) {
669    Edit->markRematerialized(RM.ParentVNI);
670    ++NumFoldedLoads;
671    return true;
672  }
673
674  // If we can't guarantee that we'll be able to actually assign the new vreg,
675  // we can't remat.
676  if (!canGuaranteeAssignmentAfterRemat(VirtReg.reg(), MI)) {
677    markValueUsed(&VirtReg, ParentVNI);
678    LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI);
679    return false;
680  }
681
682  // Allocate a new register for the remat.
683  Register NewVReg = Edit->createFrom(Original);
684
685  // Finally we can rematerialize OrigMI before MI.
686  SlotIndex DefIdx =
687      Edit->rematerializeAt(*MI.getParent(), MI, NewVReg, RM, TRI);
688
689  // We take the DebugLoc from MI, since OrigMI may be attributed to a
690  // different source location.
691  auto *NewMI = LIS.getInstructionFromIndex(DefIdx);
692  NewMI->setDebugLoc(MI.getDebugLoc());
693
694  (void)DefIdx;
695  LLVM_DEBUG(dbgs() << "\tremat:  " << DefIdx << '\t'
696                    << *LIS.getInstructionFromIndex(DefIdx));
697
698  // Replace operands
699  for (const auto &OpPair : Ops) {
700    MachineOperand &MO = OpPair.first->getOperand(OpPair.second);
701    if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg()) {
702      MO.setReg(NewVReg);
703      MO.setIsKill();
704    }
705  }
706  LLVM_DEBUG(dbgs() << "\t        " << UseIdx << '\t' << MI << '\n');
707
708  ++NumRemats;
709  return true;
710}
711
712/// reMaterializeAll - Try to rematerialize as many uses as possible,
713/// and trim the live ranges after.
714void InlineSpiller::reMaterializeAll() {
715  if (!Edit->anyRematerializable())
716    return;
717
718  UsedValues.clear();
719
720  // Try to remat before all uses of snippets.
721  bool anyRemat = false;
722  for (Register Reg : RegsToSpill) {
723    LiveInterval &LI = LIS.getInterval(Reg);
724    for (MachineInstr &MI : llvm::make_early_inc_range(MRI.reg_bundles(Reg))) {
725      // Debug values are not allowed to affect codegen.
726      if (MI.isDebugValue())
727        continue;
728
729      assert(!MI.isDebugInstr() && "Did not expect to find a use in debug "
730             "instruction that isn't a DBG_VALUE");
731
732      anyRemat |= reMaterializeFor(LI, MI);
733    }
734  }
735  if (!anyRemat)
736    return;
737
738  // Remove any values that were completely rematted.
739  for (Register Reg : RegsToSpill) {
740    LiveInterval &LI = LIS.getInterval(Reg);
741    for (VNInfo *VNI : LI.vnis()) {
742      if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI))
743        continue;
744      MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
745      MI->addRegisterDead(Reg, &TRI);
746      if (!MI->allDefsAreDead())
747        continue;
748      LLVM_DEBUG(dbgs() << "All defs dead: " << *MI);
749      DeadDefs.push_back(MI);
750      // If MI is a bundle header, also try removing copies inside the bundle,
751      // otherwise the verifier would complain "live range continues after dead
752      // def flag".
753      if (MI->isBundledWithSucc() && !MI->isBundledWithPred()) {
754        MachineBasicBlock::instr_iterator BeginIt = MI->getIterator(),
755                                          EndIt = MI->getParent()->instr_end();
756        ++BeginIt; // Skip MI that was already handled.
757
758        bool OnlyDeadCopies = true;
759        for (MachineBasicBlock::instr_iterator It = BeginIt;
760             It != EndIt && It->isBundledWithPred(); ++It) {
761
762          auto DestSrc = TII.isCopyInstr(*It);
763          bool IsCopyToDeadReg =
764              DestSrc && DestSrc->Destination->getReg() == Reg;
765          if (!IsCopyToDeadReg) {
766            OnlyDeadCopies = false;
767            break;
768          }
769        }
770        if (OnlyDeadCopies) {
771          for (MachineBasicBlock::instr_iterator It = BeginIt;
772               It != EndIt && It->isBundledWithPred(); ++It) {
773            It->addRegisterDead(Reg, &TRI);
774            LLVM_DEBUG(dbgs() << "All defs dead: " << *It);
775            DeadDefs.push_back(&*It);
776          }
777        }
778      }
779    }
780  }
781
782  // Eliminate dead code after remat. Note that some snippet copies may be
783  // deleted here.
784  if (DeadDefs.empty())
785    return;
786  LLVM_DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n");
787  Edit->eliminateDeadDefs(DeadDefs, RegsToSpill);
788
789  // LiveRangeEdit::eliminateDeadDef is used to remove dead define instructions
790  // after rematerialization.  To remove a VNI for a vreg from its LiveInterval,
791  // LiveIntervals::removeVRegDefAt is used. However, after non-PHI VNIs are all
792  // removed, PHI VNI are still left in the LiveInterval.
793  // So to get rid of unused reg, we need to check whether it has non-dbg
794  // reference instead of whether it has non-empty interval.
795  unsigned ResultPos = 0;
796  for (Register Reg : RegsToSpill) {
797    if (MRI.reg_nodbg_empty(Reg)) {
798      Edit->eraseVirtReg(Reg);
799      continue;
800    }
801
802    assert(LIS.hasInterval(Reg) &&
803           (!LIS.getInterval(Reg).empty() || !MRI.reg_nodbg_empty(Reg)) &&
804           "Empty and not used live-range?!");
805
806    RegsToSpill[ResultPos++] = Reg;
807  }
808  RegsToSpill.erase(RegsToSpill.begin() + ResultPos, RegsToSpill.end());
809  LLVM_DEBUG(dbgs() << RegsToSpill.size()
810                    << " registers to spill after remat.\n");
811}
812
813//===----------------------------------------------------------------------===//
814//                                 Spilling
815//===----------------------------------------------------------------------===//
816
817/// If MI is a load or store of StackSlot, it can be removed.
818bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, Register Reg) {
819  int FI = 0;
820  Register InstrReg = TII.isLoadFromStackSlot(*MI, FI);
821  bool IsLoad = InstrReg;
822  if (!IsLoad)
823    InstrReg = TII.isStoreToStackSlot(*MI, FI);
824
825  // We have a stack access. Is it the right register and slot?
826  if (InstrReg != Reg || FI != StackSlot)
827    return false;
828
829  if (!IsLoad)
830    HSpiller.rmFromMergeableSpills(*MI, StackSlot);
831
832  LLVM_DEBUG(dbgs() << "Coalescing stack access: " << *MI);
833  LIS.RemoveMachineInstrFromMaps(*MI);
834  MI->eraseFromParent();
835
836  if (IsLoad) {
837    ++NumReloadsRemoved;
838    --NumReloads;
839  } else {
840    ++NumSpillsRemoved;
841    --NumSpills;
842  }
843
844  return true;
845}
846
847#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
848LLVM_DUMP_METHOD
849// Dump the range of instructions from B to E with their slot indexes.
850static void dumpMachineInstrRangeWithSlotIndex(MachineBasicBlock::iterator B,
851                                               MachineBasicBlock::iterator E,
852                                               LiveIntervals const &LIS,
853                                               const char *const header,
854                                               Register VReg = Register()) {
855  char NextLine = '\n';
856  char SlotIndent = '\t';
857
858  if (std::next(B) == E) {
859    NextLine = ' ';
860    SlotIndent = ' ';
861  }
862
863  dbgs() << '\t' << header << ": " << NextLine;
864
865  for (MachineBasicBlock::iterator I = B; I != E; ++I) {
866    SlotIndex Idx = LIS.getInstructionIndex(*I).getRegSlot();
867
868    // If a register was passed in and this instruction has it as a
869    // destination that is marked as an early clobber, print the
870    // early-clobber slot index.
871    if (VReg) {
872      MachineOperand *MO = I->findRegisterDefOperand(VReg);
873      if (MO && MO->isEarlyClobber())
874        Idx = Idx.getRegSlot(true);
875    }
876
877    dbgs() << SlotIndent << Idx << '\t' << *I;
878  }
879}
880#endif
881
882/// foldMemoryOperand - Try folding stack slot references in Ops into their
883/// instructions.
884///
885/// @param Ops    Operand indices from AnalyzeVirtRegInBundle().
886/// @param LoadMI Load instruction to use instead of stack slot when non-null.
887/// @return       True on success.
888bool InlineSpiller::
889foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>> Ops,
890                  MachineInstr *LoadMI) {
891  if (Ops.empty())
892    return false;
893  // Don't attempt folding in bundles.
894  MachineInstr *MI = Ops.front().first;
895  if (Ops.back().first != MI || MI->isBundled())
896    return false;
897
898  bool WasCopy = TII.isCopyInstr(*MI).has_value();
899  Register ImpReg;
900
901  // TII::foldMemoryOperand will do what we need here for statepoint
902  // (fold load into use and remove corresponding def). We will replace
903  // uses of removed def with loads (spillAroundUses).
904  // For that to work we need to untie def and use to pass it through
905  // foldMemoryOperand and signal foldPatchpoint that it is allowed to
906  // fold them.
907  bool UntieRegs = MI->getOpcode() == TargetOpcode::STATEPOINT;
908
909  // Spill subregs if the target allows it.
910  // We always want to spill subregs for stackmap/patchpoint pseudos.
911  bool SpillSubRegs = TII.isSubregFoldable() ||
912                      MI->getOpcode() == TargetOpcode::STATEPOINT ||
913                      MI->getOpcode() == TargetOpcode::PATCHPOINT ||
914                      MI->getOpcode() == TargetOpcode::STACKMAP;
915
916  // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied
917  // operands.
918  SmallVector<unsigned, 8> FoldOps;
919  for (const auto &OpPair : Ops) {
920    unsigned Idx = OpPair.second;
921    assert(MI == OpPair.first && "Instruction conflict during operand folding");
922    MachineOperand &MO = MI->getOperand(Idx);
923
924    // No point restoring an undef read, and we'll produce an invalid live
925    // interval.
926    // TODO: Is this really the correct way to handle undef tied uses?
927    if (MO.isUse() && !MO.readsReg() && !MO.isTied())
928      continue;
929
930    if (MO.isImplicit()) {
931      ImpReg = MO.getReg();
932      continue;
933    }
934
935    if (!SpillSubRegs && MO.getSubReg())
936      return false;
937    // We cannot fold a load instruction into a def.
938    if (LoadMI && MO.isDef())
939      return false;
940    // Tied use operands should not be passed to foldMemoryOperand.
941    if (UntieRegs || !MI->isRegTiedToDefOperand(Idx))
942      FoldOps.push_back(Idx);
943  }
944
945  // If we only have implicit uses, we won't be able to fold that.
946  // Moreover, TargetInstrInfo::foldMemoryOperand will assert if we try!
947  if (FoldOps.empty())
948    return false;
949
950  MachineInstrSpan MIS(MI, MI->getParent());
951
952  SmallVector<std::pair<unsigned, unsigned> > TiedOps;
953  if (UntieRegs)
954    for (unsigned Idx : FoldOps) {
955      MachineOperand &MO = MI->getOperand(Idx);
956      if (!MO.isTied())
957        continue;
958      unsigned Tied = MI->findTiedOperandIdx(Idx);
959      if (MO.isUse())
960        TiedOps.emplace_back(Tied, Idx);
961      else {
962        assert(MO.isDef() && "Tied to not use and def?");
963        TiedOps.emplace_back(Idx, Tied);
964      }
965      MI->untieRegOperand(Idx);
966    }
967
968  MachineInstr *FoldMI =
969      LoadMI ? TII.foldMemoryOperand(*MI, FoldOps, *LoadMI, &LIS)
970             : TII.foldMemoryOperand(*MI, FoldOps, StackSlot, &LIS, &VRM);
971  if (!FoldMI) {
972    // Re-tie operands.
973    for (auto Tied : TiedOps)
974      MI->tieOperands(Tied.first, Tied.second);
975    return false;
976  }
977
978  // Remove LIS for any dead defs in the original MI not in FoldMI.
979  for (MIBundleOperands MO(*MI); MO.isValid(); ++MO) {
980    if (!MO->isReg())
981      continue;
982    Register Reg = MO->getReg();
983    if (!Reg || Reg.isVirtual() || MRI.isReserved(Reg)) {
984      continue;
985    }
986    // Skip non-Defs, including undef uses and internal reads.
987    if (MO->isUse())
988      continue;
989    PhysRegInfo RI = AnalyzePhysRegInBundle(*FoldMI, Reg, &TRI);
990    if (RI.FullyDefined)
991      continue;
992    // FoldMI does not define this physreg. Remove the LI segment.
993    assert(MO->isDead() && "Cannot fold physreg def");
994    SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot();
995    LIS.removePhysRegDefAt(Reg.asMCReg(), Idx);
996  }
997
998  int FI;
999  if (TII.isStoreToStackSlot(*MI, FI) &&
1000      HSpiller.rmFromMergeableSpills(*MI, FI))
1001    --NumSpills;
1002  LIS.ReplaceMachineInstrInMaps(*MI, *FoldMI);
1003  // Update the call site info.
1004  if (MI->isCandidateForCallSiteEntry())
1005    MI->getMF()->moveCallSiteInfo(MI, FoldMI);
1006
1007  // If we've folded a store into an instruction labelled with debug-info,
1008  // record a substitution from the old operand to the memory operand. Handle
1009  // the simple common case where operand 0 is the one being folded, plus when
1010  // the destination operand is also a tied def. More values could be
1011  // substituted / preserved with more analysis.
1012  if (MI->peekDebugInstrNum() && Ops[0].second == 0) {
1013    // Helper lambda.
1014    auto MakeSubstitution = [this,FoldMI,MI,&Ops]() {
1015      // Substitute old operand zero to the new instructions memory operand.
1016      unsigned OldOperandNum = Ops[0].second;
1017      unsigned NewNum = FoldMI->getDebugInstrNum();
1018      unsigned OldNum = MI->getDebugInstrNum();
1019      MF.makeDebugValueSubstitution({OldNum, OldOperandNum},
1020                         {NewNum, MachineFunction::DebugOperandMemNumber});
1021    };
1022
1023    const MachineOperand &Op0 = MI->getOperand(Ops[0].second);
1024    if (Ops.size() == 1 && Op0.isDef()) {
1025      MakeSubstitution();
1026    } else if (Ops.size() == 2 && Op0.isDef() && MI->getOperand(1).isTied() &&
1027               Op0.getReg() == MI->getOperand(1).getReg()) {
1028      MakeSubstitution();
1029    }
1030  } else if (MI->peekDebugInstrNum()) {
1031    // This is a debug-labelled instruction, but the operand being folded isn't
1032    // at operand zero. Most likely this means it's a load being folded in.
1033    // Substitute any register defs from operand zero up to the one being
1034    // folded -- past that point, we don't know what the new operand indexes
1035    // will be.
1036    MF.substituteDebugValuesForInst(*MI, *FoldMI, Ops[0].second);
1037  }
1038
1039  MI->eraseFromParent();
1040
1041  // Insert any new instructions other than FoldMI into the LIS maps.
1042  assert(!MIS.empty() && "Unexpected empty span of instructions!");
1043  for (MachineInstr &MI : MIS)
1044    if (&MI != FoldMI)
1045      LIS.InsertMachineInstrInMaps(MI);
1046
1047  // TII.foldMemoryOperand may have left some implicit operands on the
1048  // instruction.  Strip them.
1049  if (ImpReg)
1050    for (unsigned i = FoldMI->getNumOperands(); i; --i) {
1051      MachineOperand &MO = FoldMI->getOperand(i - 1);
1052      if (!MO.isReg() || !MO.isImplicit())
1053        break;
1054      if (MO.getReg() == ImpReg)
1055        FoldMI->removeOperand(i - 1);
1056    }
1057
1058  LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MIS.end(), LIS,
1059                                                "folded"));
1060
1061  if (!WasCopy)
1062    ++NumFolded;
1063  else if (Ops.front().second == 0) {
1064    ++NumSpills;
1065    // If there is only 1 store instruction is required for spill, add it
1066    // to mergeable list. In X86 AMX, 2 intructions are required to store.
1067    // We disable the merge for this case.
1068    if (std::distance(MIS.begin(), MIS.end()) <= 1)
1069      HSpiller.addToMergeableSpills(*FoldMI, StackSlot, Original);
1070  } else
1071    ++NumReloads;
1072  return true;
1073}
1074
1075void InlineSpiller::insertReload(Register NewVReg,
1076                                 SlotIndex Idx,
1077                                 MachineBasicBlock::iterator MI) {
1078  MachineBasicBlock &MBB = *MI->getParent();
1079
1080  MachineInstrSpan MIS(MI, &MBB);
1081  TII.loadRegFromStackSlot(MBB, MI, NewVReg, StackSlot,
1082                           MRI.getRegClass(NewVReg), &TRI, Register());
1083
1084  LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MI);
1085
1086  LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MI, LIS, "reload",
1087                                                NewVReg));
1088  ++NumReloads;
1089}
1090
1091/// Check if \p Def fully defines a VReg with an undefined value.
1092/// If that's the case, that means the value of VReg is actually
1093/// not relevant.
1094static bool isRealSpill(const MachineInstr &Def) {
1095  if (!Def.isImplicitDef())
1096    return true;
1097
1098  // We can say that the VReg defined by Def is undef, only if it is
1099  // fully defined by Def. Otherwise, some of the lanes may not be
1100  // undef and the value of the VReg matters.
1101  return Def.getOperand(0).getSubReg();
1102}
1103
1104/// insertSpill - Insert a spill of NewVReg after MI.
1105void InlineSpiller::insertSpill(Register NewVReg, bool isKill,
1106                                 MachineBasicBlock::iterator MI) {
1107  // Spill are not terminators, so inserting spills after terminators will
1108  // violate invariants in MachineVerifier.
1109  assert(!MI->isTerminator() && "Inserting a spill after a terminator");
1110  MachineBasicBlock &MBB = *MI->getParent();
1111
1112  MachineInstrSpan MIS(MI, &MBB);
1113  MachineBasicBlock::iterator SpillBefore = std::next(MI);
1114  bool IsRealSpill = isRealSpill(*MI);
1115
1116  if (IsRealSpill)
1117    TII.storeRegToStackSlot(MBB, SpillBefore, NewVReg, isKill, StackSlot,
1118                            MRI.getRegClass(NewVReg), &TRI, Register());
1119  else
1120    // Don't spill undef value.
1121    // Anything works for undef, in particular keeping the memory
1122    // uninitialized is a viable option and it saves code size and
1123    // run time.
1124    BuildMI(MBB, SpillBefore, MI->getDebugLoc(), TII.get(TargetOpcode::KILL))
1125        .addReg(NewVReg, getKillRegState(isKill));
1126
1127  MachineBasicBlock::iterator Spill = std::next(MI);
1128  LIS.InsertMachineInstrRangeInMaps(Spill, MIS.end());
1129  for (const MachineInstr &MI : make_range(Spill, MIS.end()))
1130    getVDefInterval(MI, LIS);
1131
1132  LLVM_DEBUG(
1133      dumpMachineInstrRangeWithSlotIndex(Spill, MIS.end(), LIS, "spill"));
1134  ++NumSpills;
1135  // If there is only 1 store instruction is required for spill, add it
1136  // to mergeable list. In X86 AMX, 2 intructions are required to store.
1137  // We disable the merge for this case.
1138  if (IsRealSpill && std::distance(Spill, MIS.end()) <= 1)
1139    HSpiller.addToMergeableSpills(*Spill, StackSlot, Original);
1140}
1141
1142/// spillAroundUses - insert spill code around each use of Reg.
1143void InlineSpiller::spillAroundUses(Register Reg) {
1144  LLVM_DEBUG(dbgs() << "spillAroundUses " << printReg(Reg) << '\n');
1145  LiveInterval &OldLI = LIS.getInterval(Reg);
1146
1147  // Iterate over instructions using Reg.
1148  for (MachineInstr &MI : llvm::make_early_inc_range(MRI.reg_bundles(Reg))) {
1149    // Debug values are not allowed to affect codegen.
1150    if (MI.isDebugValue()) {
1151      // Modify DBG_VALUE now that the value is in a spill slot.
1152      MachineBasicBlock *MBB = MI.getParent();
1153      LLVM_DEBUG(dbgs() << "Modifying debug info due to spill:\t" << MI);
1154      buildDbgValueForSpill(*MBB, &MI, MI, StackSlot, Reg);
1155      MBB->erase(MI);
1156      continue;
1157    }
1158
1159    assert(!MI.isDebugInstr() && "Did not expect to find a use in debug "
1160           "instruction that isn't a DBG_VALUE");
1161
1162    // Ignore copies to/from snippets. We'll delete them.
1163    if (SnippetCopies.count(&MI))
1164      continue;
1165
1166    // Stack slot accesses may coalesce away.
1167    if (coalesceStackAccess(&MI, Reg))
1168      continue;
1169
1170    // Analyze instruction.
1171    SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops;
1172    VirtRegInfo RI = AnalyzeVirtRegInBundle(MI, Reg, &Ops);
1173
1174    // Find the slot index where this instruction reads and writes OldLI.
1175    // This is usually the def slot, except for tied early clobbers.
1176    SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot();
1177    if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getRegSlot(true)))
1178      if (SlotIndex::isSameInstr(Idx, VNI->def))
1179        Idx = VNI->def;
1180
1181    // Check for a sibling copy.
1182    Register SibReg = isCopyOfBundle(MI, Reg, TII);
1183    if (SibReg && isSibling(SibReg)) {
1184      // This may actually be a copy between snippets.
1185      if (isRegToSpill(SibReg)) {
1186        LLVM_DEBUG(dbgs() << "Found new snippet copy: " << MI);
1187        SnippetCopies.insert(&MI);
1188        continue;
1189      }
1190      if (RI.Writes) {
1191        if (hoistSpillInsideBB(OldLI, MI)) {
1192          // This COPY is now dead, the value is already in the stack slot.
1193          MI.getOperand(0).setIsDead();
1194          DeadDefs.push_back(&MI);
1195          continue;
1196        }
1197      } else {
1198        // This is a reload for a sib-reg copy. Drop spills downstream.
1199        LiveInterval &SibLI = LIS.getInterval(SibReg);
1200        eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx));
1201        // The COPY will fold to a reload below.
1202      }
1203    }
1204
1205    // Attempt to fold memory ops.
1206    if (foldMemoryOperand(Ops))
1207      continue;
1208
1209    // Create a new virtual register for spill/fill.
1210    // FIXME: Infer regclass from instruction alone.
1211    Register NewVReg = Edit->createFrom(Reg);
1212
1213    if (RI.Reads)
1214      insertReload(NewVReg, Idx, &MI);
1215
1216    // Rewrite instruction operands.
1217    bool hasLiveDef = false;
1218    for (const auto &OpPair : Ops) {
1219      MachineOperand &MO = OpPair.first->getOperand(OpPair.second);
1220      MO.setReg(NewVReg);
1221      if (MO.isUse()) {
1222        if (!OpPair.first->isRegTiedToDefOperand(OpPair.second))
1223          MO.setIsKill();
1224      } else {
1225        if (!MO.isDead())
1226          hasLiveDef = true;
1227      }
1228    }
1229    LLVM_DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << MI << '\n');
1230
1231    // FIXME: Use a second vreg if instruction has no tied ops.
1232    if (RI.Writes)
1233      if (hasLiveDef)
1234        insertSpill(NewVReg, true, &MI);
1235  }
1236}
1237
1238/// spillAll - Spill all registers remaining after rematerialization.
1239void InlineSpiller::spillAll() {
1240  // Update LiveStacks now that we are committed to spilling.
1241  if (StackSlot == VirtRegMap::NO_STACK_SLOT) {
1242    StackSlot = VRM.assignVirt2StackSlot(Original);
1243    StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original));
1244    StackInt->getNextValue(SlotIndex(), LSS.getVNInfoAllocator());
1245  } else
1246    StackInt = &LSS.getInterval(StackSlot);
1247
1248  if (Original != Edit->getReg())
1249    VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot);
1250
1251  assert(StackInt->getNumValNums() == 1 && "Bad stack interval values");
1252  for (Register Reg : RegsToSpill)
1253    StackInt->MergeSegmentsInAsValue(LIS.getInterval(Reg),
1254                                     StackInt->getValNumInfo(0));
1255  LLVM_DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n');
1256
1257  // Spill around uses of all RegsToSpill.
1258  for (Register Reg : RegsToSpill)
1259    spillAroundUses(Reg);
1260
1261  // Hoisted spills may cause dead code.
1262  if (!DeadDefs.empty()) {
1263    LLVM_DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n");
1264    Edit->eliminateDeadDefs(DeadDefs, RegsToSpill);
1265  }
1266
1267  // Finally delete the SnippetCopies.
1268  for (Register Reg : RegsToSpill) {
1269    for (MachineInstr &MI :
1270         llvm::make_early_inc_range(MRI.reg_instructions(Reg))) {
1271      assert(SnippetCopies.count(&MI) && "Remaining use wasn't a snippet copy");
1272      // FIXME: Do this with a LiveRangeEdit callback.
1273      LIS.getSlotIndexes()->removeSingleMachineInstrFromMaps(MI);
1274      MI.eraseFromBundle();
1275    }
1276  }
1277
1278  // Delete all spilled registers.
1279  for (Register Reg : RegsToSpill)
1280    Edit->eraseVirtReg(Reg);
1281}
1282
1283void InlineSpiller::spill(LiveRangeEdit &edit) {
1284  ++NumSpilledRanges;
1285  Edit = &edit;
1286  assert(!Register::isStackSlot(edit.getReg()) &&
1287         "Trying to spill a stack slot.");
1288  // Share a stack slot among all descendants of Original.
1289  Original = VRM.getOriginal(edit.getReg());
1290  StackSlot = VRM.getStackSlot(Original);
1291  StackInt = nullptr;
1292
1293  LLVM_DEBUG(dbgs() << "Inline spilling "
1294                    << TRI.getRegClassName(MRI.getRegClass(edit.getReg()))
1295                    << ':' << edit.getParent() << "\nFrom original "
1296                    << printReg(Original) << '\n');
1297  assert(edit.getParent().isSpillable() &&
1298         "Attempting to spill already spilled value.");
1299  assert(DeadDefs.empty() && "Previous spill didn't remove dead defs");
1300
1301  collectRegsToSpill();
1302  reMaterializeAll();
1303
1304  // Remat may handle everything.
1305  if (!RegsToSpill.empty())
1306    spillAll();
1307
1308  Edit->calculateRegClassAndHint(MF, VRAI);
1309}
1310
1311/// Optimizations after all the reg selections and spills are done.
1312void InlineSpiller::postOptimization() { HSpiller.hoistAllSpills(); }
1313
1314/// When a spill is inserted, add the spill to MergeableSpills map.
1315void HoistSpillHelper::addToMergeableSpills(MachineInstr &Spill, int StackSlot,
1316                                            unsigned Original) {
1317  BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
1318  LiveInterval &OrigLI = LIS.getInterval(Original);
1319  // save a copy of LiveInterval in StackSlotToOrigLI because the original
1320  // LiveInterval may be cleared after all its references are spilled.
1321  if (!StackSlotToOrigLI.contains(StackSlot)) {
1322    auto LI = std::make_unique<LiveInterval>(OrigLI.reg(), OrigLI.weight());
1323    LI->assign(OrigLI, Allocator);
1324    StackSlotToOrigLI[StackSlot] = std::move(LI);
1325  }
1326  SlotIndex Idx = LIS.getInstructionIndex(Spill);
1327  VNInfo *OrigVNI = StackSlotToOrigLI[StackSlot]->getVNInfoAt(Idx.getRegSlot());
1328  std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI);
1329  MergeableSpills[MIdx].insert(&Spill);
1330}
1331
1332/// When a spill is removed, remove the spill from MergeableSpills map.
1333/// Return true if the spill is removed successfully.
1334bool HoistSpillHelper::rmFromMergeableSpills(MachineInstr &Spill,
1335                                             int StackSlot) {
1336  auto It = StackSlotToOrigLI.find(StackSlot);
1337  if (It == StackSlotToOrigLI.end())
1338    return false;
1339  SlotIndex Idx = LIS.getInstructionIndex(Spill);
1340  VNInfo *OrigVNI = It->second->getVNInfoAt(Idx.getRegSlot());
1341  std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI);
1342  return MergeableSpills[MIdx].erase(&Spill);
1343}
1344
1345/// Check BB to see if it is a possible target BB to place a hoisted spill,
1346/// i.e., there should be a living sibling of OrigReg at the insert point.
1347bool HoistSpillHelper::isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI,
1348                                     MachineBasicBlock &BB, Register &LiveReg) {
1349  SlotIndex Idx = IPA.getLastInsertPoint(OrigLI, BB);
1350  // The original def could be after the last insert point in the root block,
1351  // we can't hoist to here.
1352  if (Idx < OrigVNI.def) {
1353    // TODO: We could be better here. If LI is not alive in landing pad
1354    // we could hoist spill after LIP.
1355    LLVM_DEBUG(dbgs() << "can't spill in root block - def after LIP\n");
1356    return false;
1357  }
1358  Register OrigReg = OrigLI.reg();
1359  SmallSetVector<Register, 16> &Siblings = Virt2SiblingsMap[OrigReg];
1360  assert(OrigLI.getVNInfoAt(Idx) == &OrigVNI && "Unexpected VNI");
1361
1362  for (const Register &SibReg : Siblings) {
1363    LiveInterval &LI = LIS.getInterval(SibReg);
1364    VNInfo *VNI = LI.getVNInfoAt(Idx);
1365    if (VNI) {
1366      LiveReg = SibReg;
1367      return true;
1368    }
1369  }
1370  return false;
1371}
1372
1373/// Remove redundant spills in the same BB. Save those redundant spills in
1374/// SpillsToRm, and save the spill to keep and its BB in SpillBBToSpill map.
1375void HoistSpillHelper::rmRedundantSpills(
1376    SmallPtrSet<MachineInstr *, 16> &Spills,
1377    SmallVectorImpl<MachineInstr *> &SpillsToRm,
1378    DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) {
1379  // For each spill saw, check SpillBBToSpill[] and see if its BB already has
1380  // another spill inside. If a BB contains more than one spill, only keep the
1381  // earlier spill with smaller SlotIndex.
1382  for (auto *const CurrentSpill : Spills) {
1383    MachineBasicBlock *Block = CurrentSpill->getParent();
1384    MachineDomTreeNode *Node = MDT.getBase().getNode(Block);
1385    MachineInstr *PrevSpill = SpillBBToSpill[Node];
1386    if (PrevSpill) {
1387      SlotIndex PIdx = LIS.getInstructionIndex(*PrevSpill);
1388      SlotIndex CIdx = LIS.getInstructionIndex(*CurrentSpill);
1389      MachineInstr *SpillToRm = (CIdx > PIdx) ? CurrentSpill : PrevSpill;
1390      MachineInstr *SpillToKeep = (CIdx > PIdx) ? PrevSpill : CurrentSpill;
1391      SpillsToRm.push_back(SpillToRm);
1392      SpillBBToSpill[MDT.getBase().getNode(Block)] = SpillToKeep;
1393    } else {
1394      SpillBBToSpill[MDT.getBase().getNode(Block)] = CurrentSpill;
1395    }
1396  }
1397  for (auto *const SpillToRm : SpillsToRm)
1398    Spills.erase(SpillToRm);
1399}
1400
1401/// Starting from \p Root find a top-down traversal order of the dominator
1402/// tree to visit all basic blocks containing the elements of \p Spills.
1403/// Redundant spills will be found and put into \p SpillsToRm at the same
1404/// time. \p SpillBBToSpill will be populated as part of the process and
1405/// maps a basic block to the first store occurring in the basic block.
1406/// \post SpillsToRm.union(Spills\@post) == Spills\@pre
1407void HoistSpillHelper::getVisitOrders(
1408    MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills,
1409    SmallVectorImpl<MachineDomTreeNode *> &Orders,
1410    SmallVectorImpl<MachineInstr *> &SpillsToRm,
1411    DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep,
1412    DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) {
1413  // The set contains all the possible BB nodes to which we may hoist
1414  // original spills.
1415  SmallPtrSet<MachineDomTreeNode *, 8> WorkSet;
1416  // Save the BB nodes on the path from the first BB node containing
1417  // non-redundant spill to the Root node.
1418  SmallPtrSet<MachineDomTreeNode *, 8> NodesOnPath;
1419  // All the spills to be hoisted must originate from a single def instruction
1420  // to the OrigReg. It means the def instruction should dominate all the spills
1421  // to be hoisted. We choose the BB where the def instruction is located as
1422  // the Root.
1423  MachineDomTreeNode *RootIDomNode = MDT[Root]->getIDom();
1424  // For every node on the dominator tree with spill, walk up on the dominator
1425  // tree towards the Root node until it is reached. If there is other node
1426  // containing spill in the middle of the path, the previous spill saw will
1427  // be redundant and the node containing it will be removed. All the nodes on
1428  // the path starting from the first node with non-redundant spill to the Root
1429  // node will be added to the WorkSet, which will contain all the possible
1430  // locations where spills may be hoisted to after the loop below is done.
1431  for (auto *const Spill : Spills) {
1432    MachineBasicBlock *Block = Spill->getParent();
1433    MachineDomTreeNode *Node = MDT[Block];
1434    MachineInstr *SpillToRm = nullptr;
1435    while (Node != RootIDomNode) {
1436      // If Node dominates Block, and it already contains a spill, the spill in
1437      // Block will be redundant.
1438      if (Node != MDT[Block] && SpillBBToSpill[Node]) {
1439        SpillToRm = SpillBBToSpill[MDT[Block]];
1440        break;
1441        /// If we see the Node already in WorkSet, the path from the Node to
1442        /// the Root node must already be traversed by another spill.
1443        /// Then no need to repeat.
1444      } else if (WorkSet.count(Node)) {
1445        break;
1446      } else {
1447        NodesOnPath.insert(Node);
1448      }
1449      Node = Node->getIDom();
1450    }
1451    if (SpillToRm) {
1452      SpillsToRm.push_back(SpillToRm);
1453    } else {
1454      // Add a BB containing the original spills to SpillsToKeep -- i.e.,
1455      // set the initial status before hoisting start. The value of BBs
1456      // containing original spills is set to 0, in order to descriminate
1457      // with BBs containing hoisted spills which will be inserted to
1458      // SpillsToKeep later during hoisting.
1459      SpillsToKeep[MDT[Block]] = 0;
1460      WorkSet.insert(NodesOnPath.begin(), NodesOnPath.end());
1461    }
1462    NodesOnPath.clear();
1463  }
1464
1465  // Sort the nodes in WorkSet in top-down order and save the nodes
1466  // in Orders. Orders will be used for hoisting in runHoistSpills.
1467  unsigned idx = 0;
1468  Orders.push_back(MDT.getBase().getNode(Root));
1469  do {
1470    MachineDomTreeNode *Node = Orders[idx++];
1471    for (MachineDomTreeNode *Child : Node->children()) {
1472      if (WorkSet.count(Child))
1473        Orders.push_back(Child);
1474    }
1475  } while (idx != Orders.size());
1476  assert(Orders.size() == WorkSet.size() &&
1477         "Orders have different size with WorkSet");
1478
1479#ifndef NDEBUG
1480  LLVM_DEBUG(dbgs() << "Orders size is " << Orders.size() << "\n");
1481  SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin();
1482  for (; RIt != Orders.rend(); RIt++)
1483    LLVM_DEBUG(dbgs() << "BB" << (*RIt)->getBlock()->getNumber() << ",");
1484  LLVM_DEBUG(dbgs() << "\n");
1485#endif
1486}
1487
1488/// Try to hoist spills according to BB hotness. The spills to removed will
1489/// be saved in \p SpillsToRm. The spills to be inserted will be saved in
1490/// \p SpillsToIns.
1491void HoistSpillHelper::runHoistSpills(
1492    LiveInterval &OrigLI, VNInfo &OrigVNI,
1493    SmallPtrSet<MachineInstr *, 16> &Spills,
1494    SmallVectorImpl<MachineInstr *> &SpillsToRm,
1495    DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns) {
1496  // Visit order of dominator tree nodes.
1497  SmallVector<MachineDomTreeNode *, 32> Orders;
1498  // SpillsToKeep contains all the nodes where spills are to be inserted
1499  // during hoisting. If the spill to be inserted is an original spill
1500  // (not a hoisted one), the value of the map entry is 0. If the spill
1501  // is a hoisted spill, the value of the map entry is the VReg to be used
1502  // as the source of the spill.
1503  DenseMap<MachineDomTreeNode *, unsigned> SpillsToKeep;
1504  // Map from BB to the first spill inside of it.
1505  DenseMap<MachineDomTreeNode *, MachineInstr *> SpillBBToSpill;
1506
1507  rmRedundantSpills(Spills, SpillsToRm, SpillBBToSpill);
1508
1509  MachineBasicBlock *Root = LIS.getMBBFromIndex(OrigVNI.def);
1510  getVisitOrders(Root, Spills, Orders, SpillsToRm, SpillsToKeep,
1511                 SpillBBToSpill);
1512
1513  // SpillsInSubTreeMap keeps the map from a dom tree node to a pair of
1514  // nodes set and the cost of all the spills inside those nodes.
1515  // The nodes set are the locations where spills are to be inserted
1516  // in the subtree of current node.
1517  using NodesCostPair =
1518      std::pair<SmallPtrSet<MachineDomTreeNode *, 16>, BlockFrequency>;
1519  DenseMap<MachineDomTreeNode *, NodesCostPair> SpillsInSubTreeMap;
1520
1521  // Iterate Orders set in reverse order, which will be a bottom-up order
1522  // in the dominator tree. Once we visit a dom tree node, we know its
1523  // children have already been visited and the spill locations in the
1524  // subtrees of all the children have been determined.
1525  SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin();
1526  for (; RIt != Orders.rend(); RIt++) {
1527    MachineBasicBlock *Block = (*RIt)->getBlock();
1528
1529    // If Block contains an original spill, simply continue.
1530    if (SpillsToKeep.contains(*RIt) && !SpillsToKeep[*RIt]) {
1531      SpillsInSubTreeMap[*RIt].first.insert(*RIt);
1532      // SpillsInSubTreeMap[*RIt].second contains the cost of spill.
1533      SpillsInSubTreeMap[*RIt].second = MBFI.getBlockFreq(Block);
1534      continue;
1535    }
1536
1537    // Collect spills in subtree of current node (*RIt) to
1538    // SpillsInSubTreeMap[*RIt].first.
1539    for (MachineDomTreeNode *Child : (*RIt)->children()) {
1540      if (!SpillsInSubTreeMap.contains(Child))
1541        continue;
1542      // The stmt "SpillsInSubTree = SpillsInSubTreeMap[*RIt].first" below
1543      // should be placed before getting the begin and end iterators of
1544      // SpillsInSubTreeMap[Child].first, or else the iterators may be
1545      // invalidated when SpillsInSubTreeMap[*RIt] is seen the first time
1546      // and the map grows and then the original buckets in the map are moved.
1547      SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree =
1548          SpillsInSubTreeMap[*RIt].first;
1549      BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second;
1550      SubTreeCost += SpillsInSubTreeMap[Child].second;
1551      auto BI = SpillsInSubTreeMap[Child].first.begin();
1552      auto EI = SpillsInSubTreeMap[Child].first.end();
1553      SpillsInSubTree.insert(BI, EI);
1554      SpillsInSubTreeMap.erase(Child);
1555    }
1556
1557    SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree =
1558          SpillsInSubTreeMap[*RIt].first;
1559    BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second;
1560    // No spills in subtree, simply continue.
1561    if (SpillsInSubTree.empty())
1562      continue;
1563
1564    // Check whether Block is a possible candidate to insert spill.
1565    Register LiveReg;
1566    if (!isSpillCandBB(OrigLI, OrigVNI, *Block, LiveReg))
1567      continue;
1568
1569    // If there are multiple spills that could be merged, bias a little
1570    // to hoist the spill.
1571    BranchProbability MarginProb = (SpillsInSubTree.size() > 1)
1572                                       ? BranchProbability(9, 10)
1573                                       : BranchProbability(1, 1);
1574    if (SubTreeCost > MBFI.getBlockFreq(Block) * MarginProb) {
1575      // Hoist: Move spills to current Block.
1576      for (auto *const SpillBB : SpillsInSubTree) {
1577        // When SpillBB is a BB contains original spill, insert the spill
1578        // to SpillsToRm.
1579        if (SpillsToKeep.contains(SpillBB) && !SpillsToKeep[SpillBB]) {
1580          MachineInstr *SpillToRm = SpillBBToSpill[SpillBB];
1581          SpillsToRm.push_back(SpillToRm);
1582        }
1583        // SpillBB will not contain spill anymore, remove it from SpillsToKeep.
1584        SpillsToKeep.erase(SpillBB);
1585      }
1586      // Current Block is the BB containing the new hoisted spill. Add it to
1587      // SpillsToKeep. LiveReg is the source of the new spill.
1588      SpillsToKeep[*RIt] = LiveReg;
1589      LLVM_DEBUG({
1590        dbgs() << "spills in BB: ";
1591        for (const auto Rspill : SpillsInSubTree)
1592          dbgs() << Rspill->getBlock()->getNumber() << " ";
1593        dbgs() << "were promoted to BB" << (*RIt)->getBlock()->getNumber()
1594               << "\n";
1595      });
1596      SpillsInSubTree.clear();
1597      SpillsInSubTree.insert(*RIt);
1598      SubTreeCost = MBFI.getBlockFreq(Block);
1599    }
1600  }
1601  // For spills in SpillsToKeep with LiveReg set (i.e., not original spill),
1602  // save them to SpillsToIns.
1603  for (const auto &Ent : SpillsToKeep) {
1604    if (Ent.second)
1605      SpillsToIns[Ent.first->getBlock()] = Ent.second;
1606  }
1607}
1608
1609/// For spills with equal values, remove redundant spills and hoist those left
1610/// to less hot spots.
1611///
1612/// Spills with equal values will be collected into the same set in
1613/// MergeableSpills when spill is inserted. These equal spills are originated
1614/// from the same defining instruction and are dominated by the instruction.
1615/// Before hoisting all the equal spills, redundant spills inside in the same
1616/// BB are first marked to be deleted. Then starting from the spills left, walk
1617/// up on the dominator tree towards the Root node where the define instruction
1618/// is located, mark the dominated spills to be deleted along the way and
1619/// collect the BB nodes on the path from non-dominated spills to the define
1620/// instruction into a WorkSet. The nodes in WorkSet are the candidate places
1621/// where we are considering to hoist the spills. We iterate the WorkSet in
1622/// bottom-up order, and for each node, we will decide whether to hoist spills
1623/// inside its subtree to that node. In this way, we can get benefit locally
1624/// even if hoisting all the equal spills to one cold place is impossible.
1625void HoistSpillHelper::hoistAllSpills() {
1626  SmallVector<Register, 4> NewVRegs;
1627  LiveRangeEdit Edit(nullptr, NewVRegs, MF, LIS, &VRM, this);
1628
1629  for (unsigned i = 0, e = MRI.getNumVirtRegs(); i != e; ++i) {
1630    Register Reg = Register::index2VirtReg(i);
1631    Register Original = VRM.getPreSplitReg(Reg);
1632    if (!MRI.def_empty(Reg))
1633      Virt2SiblingsMap[Original].insert(Reg);
1634  }
1635
1636  // Each entry in MergeableSpills contains a spill set with equal values.
1637  for (auto &Ent : MergeableSpills) {
1638    int Slot = Ent.first.first;
1639    LiveInterval &OrigLI = *StackSlotToOrigLI[Slot];
1640    VNInfo *OrigVNI = Ent.first.second;
1641    SmallPtrSet<MachineInstr *, 16> &EqValSpills = Ent.second;
1642    if (Ent.second.empty())
1643      continue;
1644
1645    LLVM_DEBUG({
1646      dbgs() << "\nFor Slot" << Slot << " and VN" << OrigVNI->id << ":\n"
1647             << "Equal spills in BB: ";
1648      for (const auto spill : EqValSpills)
1649        dbgs() << spill->getParent()->getNumber() << " ";
1650      dbgs() << "\n";
1651    });
1652
1653    // SpillsToRm is the spill set to be removed from EqValSpills.
1654    SmallVector<MachineInstr *, 16> SpillsToRm;
1655    // SpillsToIns is the spill set to be newly inserted after hoisting.
1656    DenseMap<MachineBasicBlock *, unsigned> SpillsToIns;
1657
1658    runHoistSpills(OrigLI, *OrigVNI, EqValSpills, SpillsToRm, SpillsToIns);
1659
1660    LLVM_DEBUG({
1661      dbgs() << "Finally inserted spills in BB: ";
1662      for (const auto &Ispill : SpillsToIns)
1663        dbgs() << Ispill.first->getNumber() << " ";
1664      dbgs() << "\nFinally removed spills in BB: ";
1665      for (const auto Rspill : SpillsToRm)
1666        dbgs() << Rspill->getParent()->getNumber() << " ";
1667      dbgs() << "\n";
1668    });
1669
1670    // Stack live range update.
1671    LiveInterval &StackIntvl = LSS.getInterval(Slot);
1672    if (!SpillsToIns.empty() || !SpillsToRm.empty())
1673      StackIntvl.MergeValueInAsValue(OrigLI, OrigVNI,
1674                                     StackIntvl.getValNumInfo(0));
1675
1676    // Insert hoisted spills.
1677    for (auto const &Insert : SpillsToIns) {
1678      MachineBasicBlock *BB = Insert.first;
1679      Register LiveReg = Insert.second;
1680      MachineBasicBlock::iterator MII = IPA.getLastInsertPointIter(OrigLI, *BB);
1681      MachineInstrSpan MIS(MII, BB);
1682      TII.storeRegToStackSlot(*BB, MII, LiveReg, false, Slot,
1683                              MRI.getRegClass(LiveReg), &TRI, Register());
1684      LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MII);
1685      for (const MachineInstr &MI : make_range(MIS.begin(), MII))
1686        getVDefInterval(MI, LIS);
1687      ++NumSpills;
1688    }
1689
1690    // Remove redundant spills or change them to dead instructions.
1691    NumSpills -= SpillsToRm.size();
1692    for (auto *const RMEnt : SpillsToRm) {
1693      RMEnt->setDesc(TII.get(TargetOpcode::KILL));
1694      for (unsigned i = RMEnt->getNumOperands(); i; --i) {
1695        MachineOperand &MO = RMEnt->getOperand(i - 1);
1696        if (MO.isReg() && MO.isImplicit() && MO.isDef() && !MO.isDead())
1697          RMEnt->removeOperand(i - 1);
1698      }
1699    }
1700    Edit.eliminateDeadDefs(SpillsToRm, std::nullopt);
1701  }
1702}
1703
1704/// For VirtReg clone, the \p New register should have the same physreg or
1705/// stackslot as the \p old register.
1706void HoistSpillHelper::LRE_DidCloneVirtReg(Register New, Register Old) {
1707  if (VRM.hasPhys(Old))
1708    VRM.assignVirt2Phys(New, VRM.getPhys(Old));
1709  else if (VRM.getStackSlot(Old) != VirtRegMap::NO_STACK_SLOT)
1710    VRM.assignVirt2StackSlot(New, VRM.getStackSlot(Old));
1711  else
1712    llvm_unreachable("VReg should be assigned either physreg or stackslot");
1713  if (VRM.hasShape(Old))
1714    VRM.assignVirt2Shape(New, VRM.getShape(Old));
1715}
1716