1//===- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains support for writing dwarf debug info into asm files.
10//
11//===----------------------------------------------------------------------===//
12
13#include "DwarfDebug.h"
14#include "ByteStreamer.h"
15#include "DIEHash.h"
16#include "DwarfCompileUnit.h"
17#include "DwarfExpression.h"
18#include "DwarfUnit.h"
19#include "llvm/ADT/APInt.h"
20#include "llvm/ADT/Statistic.h"
21#include "llvm/ADT/StringExtras.h"
22#include "llvm/ADT/Twine.h"
23#include "llvm/CodeGen/AsmPrinter.h"
24#include "llvm/CodeGen/DIE.h"
25#include "llvm/CodeGen/LexicalScopes.h"
26#include "llvm/CodeGen/MachineBasicBlock.h"
27#include "llvm/CodeGen/MachineFunction.h"
28#include "llvm/CodeGen/MachineModuleInfo.h"
29#include "llvm/CodeGen/MachineOperand.h"
30#include "llvm/CodeGen/TargetInstrInfo.h"
31#include "llvm/CodeGen/TargetLowering.h"
32#include "llvm/CodeGen/TargetRegisterInfo.h"
33#include "llvm/CodeGen/TargetSubtargetInfo.h"
34#include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h"
35#include "llvm/DebugInfo/DWARF/DWARFExpression.h"
36#include "llvm/IR/Constants.h"
37#include "llvm/IR/Function.h"
38#include "llvm/IR/GlobalVariable.h"
39#include "llvm/IR/Module.h"
40#include "llvm/MC/MCAsmInfo.h"
41#include "llvm/MC/MCContext.h"
42#include "llvm/MC/MCSection.h"
43#include "llvm/MC/MCStreamer.h"
44#include "llvm/MC/MCSymbol.h"
45#include "llvm/MC/MCTargetOptions.h"
46#include "llvm/MC/MachineLocation.h"
47#include "llvm/MC/SectionKind.h"
48#include "llvm/Support/Casting.h"
49#include "llvm/Support/CommandLine.h"
50#include "llvm/Support/Debug.h"
51#include "llvm/Support/ErrorHandling.h"
52#include "llvm/Support/MD5.h"
53#include "llvm/Support/raw_ostream.h"
54#include "llvm/Target/TargetLoweringObjectFile.h"
55#include "llvm/Target/TargetMachine.h"
56#include "llvm/TargetParser/Triple.h"
57#include <algorithm>
58#include <cstddef>
59#include <iterator>
60#include <optional>
61#include <string>
62
63using namespace llvm;
64
65#define DEBUG_TYPE "dwarfdebug"
66
67STATISTIC(NumCSParams, "Number of dbg call site params created");
68
69static cl::opt<bool> UseDwarfRangesBaseAddressSpecifier(
70    "use-dwarf-ranges-base-address-specifier", cl::Hidden,
71    cl::desc("Use base address specifiers in debug_ranges"), cl::init(false));
72
73static cl::opt<bool> GenerateARangeSection("generate-arange-section",
74                                           cl::Hidden,
75                                           cl::desc("Generate dwarf aranges"),
76                                           cl::init(false));
77
78static cl::opt<bool>
79    GenerateDwarfTypeUnits("generate-type-units", cl::Hidden,
80                           cl::desc("Generate DWARF4 type units."),
81                           cl::init(false));
82
83static cl::opt<bool> SplitDwarfCrossCuReferences(
84    "split-dwarf-cross-cu-references", cl::Hidden,
85    cl::desc("Enable cross-cu references in DWO files"), cl::init(false));
86
87enum DefaultOnOff { Default, Enable, Disable };
88
89static cl::opt<DefaultOnOff> UnknownLocations(
90    "use-unknown-locations", cl::Hidden,
91    cl::desc("Make an absence of debug location information explicit."),
92    cl::values(clEnumVal(Default, "At top of block or after label"),
93               clEnumVal(Enable, "In all cases"), clEnumVal(Disable, "Never")),
94    cl::init(Default));
95
96static cl::opt<AccelTableKind> AccelTables(
97    "accel-tables", cl::Hidden, cl::desc("Output dwarf accelerator tables."),
98    cl::values(clEnumValN(AccelTableKind::Default, "Default",
99                          "Default for platform"),
100               clEnumValN(AccelTableKind::None, "Disable", "Disabled."),
101               clEnumValN(AccelTableKind::Apple, "Apple", "Apple"),
102               clEnumValN(AccelTableKind::Dwarf, "Dwarf", "DWARF")),
103    cl::init(AccelTableKind::Default));
104
105static cl::opt<DefaultOnOff>
106DwarfInlinedStrings("dwarf-inlined-strings", cl::Hidden,
107                 cl::desc("Use inlined strings rather than string section."),
108                 cl::values(clEnumVal(Default, "Default for platform"),
109                            clEnumVal(Enable, "Enabled"),
110                            clEnumVal(Disable, "Disabled")),
111                 cl::init(Default));
112
113static cl::opt<bool>
114    NoDwarfRangesSection("no-dwarf-ranges-section", cl::Hidden,
115                         cl::desc("Disable emission .debug_ranges section."),
116                         cl::init(false));
117
118static cl::opt<DefaultOnOff> DwarfSectionsAsReferences(
119    "dwarf-sections-as-references", cl::Hidden,
120    cl::desc("Use sections+offset as references rather than labels."),
121    cl::values(clEnumVal(Default, "Default for platform"),
122               clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")),
123    cl::init(Default));
124
125static cl::opt<bool>
126    UseGNUDebugMacro("use-gnu-debug-macro", cl::Hidden,
127                     cl::desc("Emit the GNU .debug_macro format with DWARF <5"),
128                     cl::init(false));
129
130static cl::opt<DefaultOnOff> DwarfOpConvert(
131    "dwarf-op-convert", cl::Hidden,
132    cl::desc("Enable use of the DWARFv5 DW_OP_convert operator"),
133    cl::values(clEnumVal(Default, "Default for platform"),
134               clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")),
135    cl::init(Default));
136
137enum LinkageNameOption {
138  DefaultLinkageNames,
139  AllLinkageNames,
140  AbstractLinkageNames
141};
142
143static cl::opt<LinkageNameOption>
144    DwarfLinkageNames("dwarf-linkage-names", cl::Hidden,
145                      cl::desc("Which DWARF linkage-name attributes to emit."),
146                      cl::values(clEnumValN(DefaultLinkageNames, "Default",
147                                            "Default for platform"),
148                                 clEnumValN(AllLinkageNames, "All", "All"),
149                                 clEnumValN(AbstractLinkageNames, "Abstract",
150                                            "Abstract subprograms")),
151                      cl::init(DefaultLinkageNames));
152
153static cl::opt<DwarfDebug::MinimizeAddrInV5> MinimizeAddrInV5Option(
154    "minimize-addr-in-v5", cl::Hidden,
155    cl::desc("Always use DW_AT_ranges in DWARFv5 whenever it could allow more "
156             "address pool entry sharing to reduce relocations/object size"),
157    cl::values(clEnumValN(DwarfDebug::MinimizeAddrInV5::Default, "Default",
158                          "Default address minimization strategy"),
159               clEnumValN(DwarfDebug::MinimizeAddrInV5::Ranges, "Ranges",
160                          "Use rnglists for contiguous ranges if that allows "
161                          "using a pre-existing base address"),
162               clEnumValN(DwarfDebug::MinimizeAddrInV5::Expressions,
163                          "Expressions",
164                          "Use exprloc addrx+offset expressions for any "
165                          "address with a prior base address"),
166               clEnumValN(DwarfDebug::MinimizeAddrInV5::Form, "Form",
167                          "Use addrx+offset extension form for any address "
168                          "with a prior base address"),
169               clEnumValN(DwarfDebug::MinimizeAddrInV5::Disabled, "Disabled",
170                          "Stuff")),
171    cl::init(DwarfDebug::MinimizeAddrInV5::Default));
172
173static constexpr unsigned ULEB128PadSize = 4;
174
175void DebugLocDwarfExpression::emitOp(uint8_t Op, const char *Comment) {
176  getActiveStreamer().emitInt8(
177      Op, Comment ? Twine(Comment) + " " + dwarf::OperationEncodingString(Op)
178                  : dwarf::OperationEncodingString(Op));
179}
180
181void DebugLocDwarfExpression::emitSigned(int64_t Value) {
182  getActiveStreamer().emitSLEB128(Value, Twine(Value));
183}
184
185void DebugLocDwarfExpression::emitUnsigned(uint64_t Value) {
186  getActiveStreamer().emitULEB128(Value, Twine(Value));
187}
188
189void DebugLocDwarfExpression::emitData1(uint8_t Value) {
190  getActiveStreamer().emitInt8(Value, Twine(Value));
191}
192
193void DebugLocDwarfExpression::emitBaseTypeRef(uint64_t Idx) {
194  assert(Idx < (1ULL << (ULEB128PadSize * 7)) && "Idx wont fit");
195  getActiveStreamer().emitULEB128(Idx, Twine(Idx), ULEB128PadSize);
196}
197
198bool DebugLocDwarfExpression::isFrameRegister(const TargetRegisterInfo &TRI,
199                                              llvm::Register MachineReg) {
200  // This information is not available while emitting .debug_loc entries.
201  return false;
202}
203
204void DebugLocDwarfExpression::enableTemporaryBuffer() {
205  assert(!IsBuffering && "Already buffering?");
206  if (!TmpBuf)
207    TmpBuf = std::make_unique<TempBuffer>(OutBS.GenerateComments);
208  IsBuffering = true;
209}
210
211void DebugLocDwarfExpression::disableTemporaryBuffer() { IsBuffering = false; }
212
213unsigned DebugLocDwarfExpression::getTemporaryBufferSize() {
214  return TmpBuf ? TmpBuf->Bytes.size() : 0;
215}
216
217void DebugLocDwarfExpression::commitTemporaryBuffer() {
218  if (!TmpBuf)
219    return;
220  for (auto Byte : enumerate(TmpBuf->Bytes)) {
221    const char *Comment = (Byte.index() < TmpBuf->Comments.size())
222                              ? TmpBuf->Comments[Byte.index()].c_str()
223                              : "";
224    OutBS.emitInt8(Byte.value(), Comment);
225  }
226  TmpBuf->Bytes.clear();
227  TmpBuf->Comments.clear();
228}
229
230const DIType *DbgVariable::getType() const {
231  return getVariable()->getType();
232}
233
234/// Get .debug_loc entry for the instruction range starting at MI.
235static DbgValueLoc getDebugLocValue(const MachineInstr *MI) {
236  const DIExpression *Expr = MI->getDebugExpression();
237  auto SingleLocExprOpt = DIExpression::convertToNonVariadicExpression(Expr);
238  const bool IsVariadic = !SingleLocExprOpt;
239  // If we have a variadic debug value instruction that is equivalent to a
240  // non-variadic instruction, then convert it to non-variadic form here.
241  if (!IsVariadic && !MI->isNonListDebugValue()) {
242    assert(MI->getNumDebugOperands() == 1 &&
243           "Mismatched DIExpression and debug operands for debug instruction.");
244    Expr = *SingleLocExprOpt;
245  }
246  assert(MI->getNumOperands() >= 3);
247  SmallVector<DbgValueLocEntry, 4> DbgValueLocEntries;
248  for (const MachineOperand &Op : MI->debug_operands()) {
249    if (Op.isReg()) {
250      MachineLocation MLoc(Op.getReg(),
251                           MI->isNonListDebugValue() && MI->isDebugOffsetImm());
252      DbgValueLocEntries.push_back(DbgValueLocEntry(MLoc));
253    } else if (Op.isTargetIndex()) {
254      DbgValueLocEntries.push_back(
255          DbgValueLocEntry(TargetIndexLocation(Op.getIndex(), Op.getOffset())));
256    } else if (Op.isImm())
257      DbgValueLocEntries.push_back(DbgValueLocEntry(Op.getImm()));
258    else if (Op.isFPImm())
259      DbgValueLocEntries.push_back(DbgValueLocEntry(Op.getFPImm()));
260    else if (Op.isCImm())
261      DbgValueLocEntries.push_back(DbgValueLocEntry(Op.getCImm()));
262    else
263      llvm_unreachable("Unexpected debug operand in DBG_VALUE* instruction!");
264  }
265  return DbgValueLoc(Expr, DbgValueLocEntries, IsVariadic);
266}
267
268static uint64_t getFragmentOffsetInBits(const DIExpression &Expr) {
269  std::optional<DIExpression::FragmentInfo> Fragment = Expr.getFragmentInfo();
270  return Fragment ? Fragment->OffsetInBits : 0;
271}
272
273bool llvm::operator<(const FrameIndexExpr &LHS, const FrameIndexExpr &RHS) {
274  return getFragmentOffsetInBits(*LHS.Expr) <
275         getFragmentOffsetInBits(*RHS.Expr);
276}
277
278bool llvm::operator<(const EntryValueInfo &LHS, const EntryValueInfo &RHS) {
279  return getFragmentOffsetInBits(LHS.Expr) < getFragmentOffsetInBits(RHS.Expr);
280}
281
282Loc::Single::Single(DbgValueLoc ValueLoc)
283    : ValueLoc(std::make_unique<DbgValueLoc>(ValueLoc)),
284      Expr(ValueLoc.getExpression()) {
285  if (!Expr->getNumElements())
286    Expr = nullptr;
287}
288
289Loc::Single::Single(const MachineInstr *DbgValue)
290    : Single(getDebugLocValue(DbgValue)) {}
291
292const std::set<FrameIndexExpr> &Loc::MMI::getFrameIndexExprs() const {
293  return FrameIndexExprs;
294}
295
296void Loc::MMI::addFrameIndexExpr(const DIExpression *Expr, int FI) {
297  FrameIndexExprs.insert({FI, Expr});
298  assert((FrameIndexExprs.size() == 1 ||
299          llvm::all_of(FrameIndexExprs,
300                       [](const FrameIndexExpr &FIE) {
301                         return FIE.Expr && FIE.Expr->isFragment();
302                       })) &&
303         "conflicting locations for variable");
304}
305
306static AccelTableKind computeAccelTableKind(unsigned DwarfVersion,
307                                            bool GenerateTypeUnits,
308                                            DebuggerKind Tuning,
309                                            const Triple &TT) {
310  // Honor an explicit request.
311  if (AccelTables != AccelTableKind::Default)
312    return AccelTables;
313
314  // Generating DWARF5 acceleration table.
315  // Currently Split dwarf and non ELF format is not supported.
316  if (GenerateTypeUnits && (DwarfVersion < 5 || !TT.isOSBinFormatELF()))
317    return AccelTableKind::None;
318
319  // Accelerator tables get emitted if targetting DWARF v5 or LLDB.  DWARF v5
320  // always implies debug_names. For lower standard versions we use apple
321  // accelerator tables on apple platforms and debug_names elsewhere.
322  if (DwarfVersion >= 5)
323    return AccelTableKind::Dwarf;
324  if (Tuning == DebuggerKind::LLDB)
325    return TT.isOSBinFormatMachO() ? AccelTableKind::Apple
326                                   : AccelTableKind::Dwarf;
327  return AccelTableKind::None;
328}
329
330DwarfDebug::DwarfDebug(AsmPrinter *A)
331    : DebugHandlerBase(A), DebugLocs(A->OutStreamer->isVerboseAsm()),
332      InfoHolder(A, "info_string", DIEValueAllocator),
333      SkeletonHolder(A, "skel_string", DIEValueAllocator),
334      IsDarwin(A->TM.getTargetTriple().isOSDarwin()) {
335  const Triple &TT = Asm->TM.getTargetTriple();
336
337  // Make sure we know our "debugger tuning".  The target option takes
338  // precedence; fall back to triple-based defaults.
339  if (Asm->TM.Options.DebuggerTuning != DebuggerKind::Default)
340    DebuggerTuning = Asm->TM.Options.DebuggerTuning;
341  else if (IsDarwin)
342    DebuggerTuning = DebuggerKind::LLDB;
343  else if (TT.isPS())
344    DebuggerTuning = DebuggerKind::SCE;
345  else if (TT.isOSAIX())
346    DebuggerTuning = DebuggerKind::DBX;
347  else
348    DebuggerTuning = DebuggerKind::GDB;
349
350  if (DwarfInlinedStrings == Default)
351    UseInlineStrings = TT.isNVPTX() || tuneForDBX();
352  else
353    UseInlineStrings = DwarfInlinedStrings == Enable;
354
355  UseLocSection = !TT.isNVPTX();
356
357  HasAppleExtensionAttributes = tuneForLLDB();
358
359  // Handle split DWARF.
360  HasSplitDwarf = !Asm->TM.Options.MCOptions.SplitDwarfFile.empty();
361
362  // SCE defaults to linkage names only for abstract subprograms.
363  if (DwarfLinkageNames == DefaultLinkageNames)
364    UseAllLinkageNames = !tuneForSCE();
365  else
366    UseAllLinkageNames = DwarfLinkageNames == AllLinkageNames;
367
368  unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion;
369  unsigned DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber
370                                    : MMI->getModule()->getDwarfVersion();
371  // Use dwarf 4 by default if nothing is requested. For NVPTX, use dwarf 2.
372  DwarfVersion =
373      TT.isNVPTX() ? 2 : (DwarfVersion ? DwarfVersion : dwarf::DWARF_VERSION);
374
375  bool Dwarf64 = DwarfVersion >= 3 && // DWARF64 was introduced in DWARFv3.
376                 TT.isArch64Bit();    // DWARF64 requires 64-bit relocations.
377
378  // Support DWARF64
379  // 1: For ELF when requested.
380  // 2: For XCOFF64: the AIX assembler will fill in debug section lengths
381  //    according to the DWARF64 format for 64-bit assembly, so we must use
382  //    DWARF64 in the compiler too for 64-bit mode.
383  Dwarf64 &=
384      ((Asm->TM.Options.MCOptions.Dwarf64 || MMI->getModule()->isDwarf64()) &&
385       TT.isOSBinFormatELF()) ||
386      TT.isOSBinFormatXCOFF();
387
388  if (!Dwarf64 && TT.isArch64Bit() && TT.isOSBinFormatXCOFF())
389    report_fatal_error("XCOFF requires DWARF64 for 64-bit mode!");
390
391  UseRangesSection = !NoDwarfRangesSection && !TT.isNVPTX();
392
393  // Use sections as references. Force for NVPTX.
394  if (DwarfSectionsAsReferences == Default)
395    UseSectionsAsReferences = TT.isNVPTX();
396  else
397    UseSectionsAsReferences = DwarfSectionsAsReferences == Enable;
398
399  // Don't generate type units for unsupported object file formats.
400  GenerateTypeUnits = (A->TM.getTargetTriple().isOSBinFormatELF() ||
401                       A->TM.getTargetTriple().isOSBinFormatWasm()) &&
402                      GenerateDwarfTypeUnits;
403
404  TheAccelTableKind = computeAccelTableKind(
405      DwarfVersion, GenerateTypeUnits, DebuggerTuning, A->TM.getTargetTriple());
406
407  // Work around a GDB bug. GDB doesn't support the standard opcode;
408  // SCE doesn't support GNU's; LLDB prefers the standard opcode, which
409  // is defined as of DWARF 3.
410  // See GDB bug 11616 - DW_OP_form_tls_address is unimplemented
411  // https://sourceware.org/bugzilla/show_bug.cgi?id=11616
412  UseGNUTLSOpcode = tuneForGDB() || DwarfVersion < 3;
413
414  UseDWARF2Bitfields = DwarfVersion < 4;
415
416  // The DWARF v5 string offsets table has - possibly shared - contributions
417  // from each compile and type unit each preceded by a header. The string
418  // offsets table used by the pre-DWARF v5 split-DWARF implementation uses
419  // a monolithic string offsets table without any header.
420  UseSegmentedStringOffsetsTable = DwarfVersion >= 5;
421
422  // Emit call-site-param debug info for GDB and LLDB, if the target supports
423  // the debug entry values feature. It can also be enabled explicitly.
424  EmitDebugEntryValues = Asm->TM.Options.ShouldEmitDebugEntryValues();
425
426  // It is unclear if the GCC .debug_macro extension is well-specified
427  // for split DWARF. For now, do not allow LLVM to emit it.
428  UseDebugMacroSection =
429      DwarfVersion >= 5 || (UseGNUDebugMacro && !useSplitDwarf());
430  if (DwarfOpConvert == Default)
431    EnableOpConvert = !((tuneForGDB() && useSplitDwarf()) || (tuneForLLDB() && !TT.isOSBinFormatMachO()));
432  else
433    EnableOpConvert = (DwarfOpConvert == Enable);
434
435  // Split DWARF would benefit object size significantly by trading reductions
436  // in address pool usage for slightly increased range list encodings.
437  if (DwarfVersion >= 5)
438    MinimizeAddr = MinimizeAddrInV5Option;
439
440  Asm->OutStreamer->getContext().setDwarfVersion(DwarfVersion);
441  Asm->OutStreamer->getContext().setDwarfFormat(Dwarf64 ? dwarf::DWARF64
442                                                        : dwarf::DWARF32);
443}
444
445// Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h.
446DwarfDebug::~DwarfDebug() = default;
447
448static bool isObjCClass(StringRef Name) {
449  return Name.starts_with("+") || Name.starts_with("-");
450}
451
452static bool hasObjCCategory(StringRef Name) {
453  if (!isObjCClass(Name))
454    return false;
455
456  return Name.contains(") ");
457}
458
459static void getObjCClassCategory(StringRef In, StringRef &Class,
460                                 StringRef &Category) {
461  if (!hasObjCCategory(In)) {
462    Class = In.slice(In.find('[') + 1, In.find(' '));
463    Category = "";
464    return;
465  }
466
467  Class = In.slice(In.find('[') + 1, In.find('('));
468  Category = In.slice(In.find('[') + 1, In.find(' '));
469}
470
471static StringRef getObjCMethodName(StringRef In) {
472  return In.slice(In.find(' ') + 1, In.find(']'));
473}
474
475// Add the various names to the Dwarf accelerator table names.
476void DwarfDebug::addSubprogramNames(
477    const DwarfUnit &Unit,
478    const DICompileUnit::DebugNameTableKind NameTableKind,
479    const DISubprogram *SP, DIE &Die) {
480  if (getAccelTableKind() != AccelTableKind::Apple &&
481      NameTableKind != DICompileUnit::DebugNameTableKind::Apple &&
482      NameTableKind == DICompileUnit::DebugNameTableKind::None)
483    return;
484
485  if (!SP->isDefinition())
486    return;
487
488  if (SP->getName() != "")
489    addAccelName(Unit, NameTableKind, SP->getName(), Die);
490
491  // If the linkage name is different than the name, go ahead and output that as
492  // well into the name table. Only do that if we are going to actually emit
493  // that name.
494  if (SP->getLinkageName() != "" && SP->getName() != SP->getLinkageName() &&
495      (useAllLinkageNames() || InfoHolder.getAbstractScopeDIEs().lookup(SP)))
496    addAccelName(Unit, NameTableKind, SP->getLinkageName(), Die);
497
498  // If this is an Objective-C selector name add it to the ObjC accelerator
499  // too.
500  if (isObjCClass(SP->getName())) {
501    StringRef Class, Category;
502    getObjCClassCategory(SP->getName(), Class, Category);
503    addAccelObjC(Unit, NameTableKind, Class, Die);
504    if (Category != "")
505      addAccelObjC(Unit, NameTableKind, Category, Die);
506    // Also add the base method name to the name table.
507    addAccelName(Unit, NameTableKind, getObjCMethodName(SP->getName()), Die);
508  }
509}
510
511/// Check whether we should create a DIE for the given Scope, return true
512/// if we don't create a DIE (the corresponding DIE is null).
513bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) {
514  if (Scope->isAbstractScope())
515    return false;
516
517  // We don't create a DIE if there is no Range.
518  const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges();
519  if (Ranges.empty())
520    return true;
521
522  if (Ranges.size() > 1)
523    return false;
524
525  // We don't create a DIE if we have a single Range and the end label
526  // is null.
527  return !getLabelAfterInsn(Ranges.front().second);
528}
529
530template <typename Func> static void forBothCUs(DwarfCompileUnit &CU, Func F) {
531  F(CU);
532  if (auto *SkelCU = CU.getSkeleton())
533    if (CU.getCUNode()->getSplitDebugInlining())
534      F(*SkelCU);
535}
536
537bool DwarfDebug::shareAcrossDWOCUs() const {
538  return SplitDwarfCrossCuReferences;
539}
540
541void DwarfDebug::constructAbstractSubprogramScopeDIE(DwarfCompileUnit &SrcCU,
542                                                     LexicalScope *Scope) {
543  assert(Scope && Scope->getScopeNode());
544  assert(Scope->isAbstractScope());
545  assert(!Scope->getInlinedAt());
546
547  auto *SP = cast<DISubprogram>(Scope->getScopeNode());
548
549  // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram
550  // was inlined from another compile unit.
551  if (useSplitDwarf() && !shareAcrossDWOCUs() && !SP->getUnit()->getSplitDebugInlining())
552    // Avoid building the original CU if it won't be used
553    SrcCU.constructAbstractSubprogramScopeDIE(Scope);
554  else {
555    auto &CU = getOrCreateDwarfCompileUnit(SP->getUnit());
556    if (auto *SkelCU = CU.getSkeleton()) {
557      (shareAcrossDWOCUs() ? CU : SrcCU)
558          .constructAbstractSubprogramScopeDIE(Scope);
559      if (CU.getCUNode()->getSplitDebugInlining())
560        SkelCU->constructAbstractSubprogramScopeDIE(Scope);
561    } else
562      CU.constructAbstractSubprogramScopeDIE(Scope);
563  }
564}
565
566/// Represents a parameter whose call site value can be described by applying a
567/// debug expression to a register in the forwarded register worklist.
568struct FwdRegParamInfo {
569  /// The described parameter register.
570  unsigned ParamReg;
571
572  /// Debug expression that has been built up when walking through the
573  /// instruction chain that produces the parameter's value.
574  const DIExpression *Expr;
575};
576
577/// Register worklist for finding call site values.
578using FwdRegWorklist = MapVector<unsigned, SmallVector<FwdRegParamInfo, 2>>;
579/// Container for the set of registers known to be clobbered on the path to a
580/// call site.
581using ClobberedRegSet = SmallSet<Register, 16>;
582
583/// Append the expression \p Addition to \p Original and return the result.
584static const DIExpression *combineDIExpressions(const DIExpression *Original,
585                                                const DIExpression *Addition) {
586  std::vector<uint64_t> Elts = Addition->getElements().vec();
587  // Avoid multiple DW_OP_stack_values.
588  if (Original->isImplicit() && Addition->isImplicit())
589    llvm::erase(Elts, dwarf::DW_OP_stack_value);
590  const DIExpression *CombinedExpr =
591      (Elts.size() > 0) ? DIExpression::append(Original, Elts) : Original;
592  return CombinedExpr;
593}
594
595/// Emit call site parameter entries that are described by the given value and
596/// debug expression.
597template <typename ValT>
598static void finishCallSiteParams(ValT Val, const DIExpression *Expr,
599                                 ArrayRef<FwdRegParamInfo> DescribedParams,
600                                 ParamSet &Params) {
601  for (auto Param : DescribedParams) {
602    bool ShouldCombineExpressions = Expr && Param.Expr->getNumElements() > 0;
603
604    // TODO: Entry value operations can currently not be combined with any
605    // other expressions, so we can't emit call site entries in those cases.
606    if (ShouldCombineExpressions && Expr->isEntryValue())
607      continue;
608
609    // If a parameter's call site value is produced by a chain of
610    // instructions we may have already created an expression for the
611    // parameter when walking through the instructions. Append that to the
612    // base expression.
613    const DIExpression *CombinedExpr =
614        ShouldCombineExpressions ? combineDIExpressions(Expr, Param.Expr)
615                                 : Expr;
616    assert((!CombinedExpr || CombinedExpr->isValid()) &&
617           "Combined debug expression is invalid");
618
619    DbgValueLoc DbgLocVal(CombinedExpr, DbgValueLocEntry(Val));
620    DbgCallSiteParam CSParm(Param.ParamReg, DbgLocVal);
621    Params.push_back(CSParm);
622    ++NumCSParams;
623  }
624}
625
626/// Add \p Reg to the worklist, if it's not already present, and mark that the
627/// given parameter registers' values can (potentially) be described using
628/// that register and an debug expression.
629static void addToFwdRegWorklist(FwdRegWorklist &Worklist, unsigned Reg,
630                                const DIExpression *Expr,
631                                ArrayRef<FwdRegParamInfo> ParamsToAdd) {
632  auto I = Worklist.insert({Reg, {}});
633  auto &ParamsForFwdReg = I.first->second;
634  for (auto Param : ParamsToAdd) {
635    assert(none_of(ParamsForFwdReg,
636                   [Param](const FwdRegParamInfo &D) {
637                     return D.ParamReg == Param.ParamReg;
638                   }) &&
639           "Same parameter described twice by forwarding reg");
640
641    // If a parameter's call site value is produced by a chain of
642    // instructions we may have already created an expression for the
643    // parameter when walking through the instructions. Append that to the
644    // new expression.
645    const DIExpression *CombinedExpr = combineDIExpressions(Expr, Param.Expr);
646    ParamsForFwdReg.push_back({Param.ParamReg, CombinedExpr});
647  }
648}
649
650/// Interpret values loaded into registers by \p CurMI.
651static void interpretValues(const MachineInstr *CurMI,
652                            FwdRegWorklist &ForwardedRegWorklist,
653                            ParamSet &Params,
654                            ClobberedRegSet &ClobberedRegUnits) {
655
656  const MachineFunction *MF = CurMI->getMF();
657  const DIExpression *EmptyExpr =
658      DIExpression::get(MF->getFunction().getContext(), {});
659  const auto &TRI = *MF->getSubtarget().getRegisterInfo();
660  const auto &TII = *MF->getSubtarget().getInstrInfo();
661  const auto &TLI = *MF->getSubtarget().getTargetLowering();
662
663  // If an instruction defines more than one item in the worklist, we may run
664  // into situations where a worklist register's value is (potentially)
665  // described by the previous value of another register that is also defined
666  // by that instruction.
667  //
668  // This can for example occur in cases like this:
669  //
670  //   $r1 = mov 123
671  //   $r0, $r1 = mvrr $r1, 456
672  //   call @foo, $r0, $r1
673  //
674  // When describing $r1's value for the mvrr instruction, we need to make sure
675  // that we don't finalize an entry value for $r0, as that is dependent on the
676  // previous value of $r1 (123 rather than 456).
677  //
678  // In order to not have to distinguish between those cases when finalizing
679  // entry values, we simply postpone adding new parameter registers to the
680  // worklist, by first keeping them in this temporary container until the
681  // instruction has been handled.
682  FwdRegWorklist TmpWorklistItems;
683
684  // If the MI is an instruction defining one or more parameters' forwarding
685  // registers, add those defines.
686  ClobberedRegSet NewClobberedRegUnits;
687  auto getForwardingRegsDefinedByMI = [&](const MachineInstr &MI,
688                                          SmallSetVector<unsigned, 4> &Defs) {
689    if (MI.isDebugInstr())
690      return;
691
692    for (const MachineOperand &MO : MI.all_defs()) {
693      if (MO.getReg().isPhysical()) {
694        for (auto &FwdReg : ForwardedRegWorklist)
695          if (TRI.regsOverlap(FwdReg.first, MO.getReg()))
696            Defs.insert(FwdReg.first);
697        for (MCRegUnit Unit : TRI.regunits(MO.getReg()))
698          NewClobberedRegUnits.insert(Unit);
699      }
700    }
701  };
702
703  // Set of worklist registers that are defined by this instruction.
704  SmallSetVector<unsigned, 4> FwdRegDefs;
705
706  getForwardingRegsDefinedByMI(*CurMI, FwdRegDefs);
707  if (FwdRegDefs.empty()) {
708    // Any definitions by this instruction will clobber earlier reg movements.
709    ClobberedRegUnits.insert(NewClobberedRegUnits.begin(),
710                             NewClobberedRegUnits.end());
711    return;
712  }
713
714  // It's possible that we find a copy from a non-volatile register to the param
715  // register, which is clobbered in the meantime. Test for clobbered reg unit
716  // overlaps before completing.
717  auto IsRegClobberedInMeantime = [&](Register Reg) -> bool {
718    for (auto &RegUnit : ClobberedRegUnits)
719      if (TRI.hasRegUnit(Reg, RegUnit))
720        return true;
721    return false;
722  };
723
724  for (auto ParamFwdReg : FwdRegDefs) {
725    if (auto ParamValue = TII.describeLoadedValue(*CurMI, ParamFwdReg)) {
726      if (ParamValue->first.isImm()) {
727        int64_t Val = ParamValue->first.getImm();
728        finishCallSiteParams(Val, ParamValue->second,
729                             ForwardedRegWorklist[ParamFwdReg], Params);
730      } else if (ParamValue->first.isReg()) {
731        Register RegLoc = ParamValue->first.getReg();
732        Register SP = TLI.getStackPointerRegisterToSaveRestore();
733        Register FP = TRI.getFrameRegister(*MF);
734        bool IsSPorFP = (RegLoc == SP) || (RegLoc == FP);
735        if (!IsRegClobberedInMeantime(RegLoc) &&
736            (TRI.isCalleeSavedPhysReg(RegLoc, *MF) || IsSPorFP)) {
737          MachineLocation MLoc(RegLoc, /*Indirect=*/IsSPorFP);
738          finishCallSiteParams(MLoc, ParamValue->second,
739                               ForwardedRegWorklist[ParamFwdReg], Params);
740        } else {
741          // ParamFwdReg was described by the non-callee saved register
742          // RegLoc. Mark that the call site values for the parameters are
743          // dependent on that register instead of ParamFwdReg. Since RegLoc
744          // may be a register that will be handled in this iteration, we
745          // postpone adding the items to the worklist, and instead keep them
746          // in a temporary container.
747          addToFwdRegWorklist(TmpWorklistItems, RegLoc, ParamValue->second,
748                              ForwardedRegWorklist[ParamFwdReg]);
749        }
750      }
751    }
752  }
753
754  // Remove all registers that this instruction defines from the worklist.
755  for (auto ParamFwdReg : FwdRegDefs)
756    ForwardedRegWorklist.erase(ParamFwdReg);
757
758  // Any definitions by this instruction will clobber earlier reg movements.
759  ClobberedRegUnits.insert(NewClobberedRegUnits.begin(),
760                           NewClobberedRegUnits.end());
761
762  // Now that we are done handling this instruction, add items from the
763  // temporary worklist to the real one.
764  for (auto &New : TmpWorklistItems)
765    addToFwdRegWorklist(ForwardedRegWorklist, New.first, EmptyExpr, New.second);
766  TmpWorklistItems.clear();
767}
768
769static bool interpretNextInstr(const MachineInstr *CurMI,
770                               FwdRegWorklist &ForwardedRegWorklist,
771                               ParamSet &Params,
772                               ClobberedRegSet &ClobberedRegUnits) {
773  // Skip bundle headers.
774  if (CurMI->isBundle())
775    return true;
776
777  // If the next instruction is a call we can not interpret parameter's
778  // forwarding registers or we finished the interpretation of all
779  // parameters.
780  if (CurMI->isCall())
781    return false;
782
783  if (ForwardedRegWorklist.empty())
784    return false;
785
786  // Avoid NOP description.
787  if (CurMI->getNumOperands() == 0)
788    return true;
789
790  interpretValues(CurMI, ForwardedRegWorklist, Params, ClobberedRegUnits);
791
792  return true;
793}
794
795/// Try to interpret values loaded into registers that forward parameters
796/// for \p CallMI. Store parameters with interpreted value into \p Params.
797static void collectCallSiteParameters(const MachineInstr *CallMI,
798                                      ParamSet &Params) {
799  const MachineFunction *MF = CallMI->getMF();
800  const auto &CalleesMap = MF->getCallSitesInfo();
801  auto CallFwdRegsInfo = CalleesMap.find(CallMI);
802
803  // There is no information for the call instruction.
804  if (CallFwdRegsInfo == CalleesMap.end())
805    return;
806
807  const MachineBasicBlock *MBB = CallMI->getParent();
808
809  // Skip the call instruction.
810  auto I = std::next(CallMI->getReverseIterator());
811
812  FwdRegWorklist ForwardedRegWorklist;
813
814  const DIExpression *EmptyExpr =
815      DIExpression::get(MF->getFunction().getContext(), {});
816
817  // Add all the forwarding registers into the ForwardedRegWorklist.
818  for (const auto &ArgReg : CallFwdRegsInfo->second) {
819    bool InsertedReg =
820        ForwardedRegWorklist.insert({ArgReg.Reg, {{ArgReg.Reg, EmptyExpr}}})
821            .second;
822    assert(InsertedReg && "Single register used to forward two arguments?");
823    (void)InsertedReg;
824  }
825
826  // Do not emit CSInfo for undef forwarding registers.
827  for (const auto &MO : CallMI->uses())
828    if (MO.isReg() && MO.isUndef())
829      ForwardedRegWorklist.erase(MO.getReg());
830
831  // We erase, from the ForwardedRegWorklist, those forwarding registers for
832  // which we successfully describe a loaded value (by using
833  // the describeLoadedValue()). For those remaining arguments in the working
834  // list, for which we do not describe a loaded value by
835  // the describeLoadedValue(), we try to generate an entry value expression
836  // for their call site value description, if the call is within the entry MBB.
837  // TODO: Handle situations when call site parameter value can be described
838  // as the entry value within basic blocks other than the first one.
839  bool ShouldTryEmitEntryVals = MBB->getIterator() == MF->begin();
840
841  // Search for a loading value in forwarding registers inside call delay slot.
842  ClobberedRegSet ClobberedRegUnits;
843  if (CallMI->hasDelaySlot()) {
844    auto Suc = std::next(CallMI->getIterator());
845    // Only one-instruction delay slot is supported.
846    auto BundleEnd = llvm::getBundleEnd(CallMI->getIterator());
847    (void)BundleEnd;
848    assert(std::next(Suc) == BundleEnd &&
849           "More than one instruction in call delay slot");
850    // Try to interpret value loaded by instruction.
851    if (!interpretNextInstr(&*Suc, ForwardedRegWorklist, Params, ClobberedRegUnits))
852      return;
853  }
854
855  // Search for a loading value in forwarding registers.
856  for (; I != MBB->rend(); ++I) {
857    // Try to interpret values loaded by instruction.
858    if (!interpretNextInstr(&*I, ForwardedRegWorklist, Params, ClobberedRegUnits))
859      return;
860  }
861
862  // Emit the call site parameter's value as an entry value.
863  if (ShouldTryEmitEntryVals) {
864    // Create an expression where the register's entry value is used.
865    DIExpression *EntryExpr = DIExpression::get(
866        MF->getFunction().getContext(), {dwarf::DW_OP_LLVM_entry_value, 1});
867    for (auto &RegEntry : ForwardedRegWorklist) {
868      MachineLocation MLoc(RegEntry.first);
869      finishCallSiteParams(MLoc, EntryExpr, RegEntry.second, Params);
870    }
871  }
872}
873
874void DwarfDebug::constructCallSiteEntryDIEs(const DISubprogram &SP,
875                                            DwarfCompileUnit &CU, DIE &ScopeDIE,
876                                            const MachineFunction &MF) {
877  // Add a call site-related attribute (DWARF5, Sec. 3.3.1.3). Do this only if
878  // the subprogram is required to have one.
879  if (!SP.areAllCallsDescribed() || !SP.isDefinition())
880    return;
881
882  // Use DW_AT_call_all_calls to express that call site entries are present
883  // for both tail and non-tail calls. Don't use DW_AT_call_all_source_calls
884  // because one of its requirements is not met: call site entries for
885  // optimized-out calls are elided.
886  CU.addFlag(ScopeDIE, CU.getDwarf5OrGNUAttr(dwarf::DW_AT_call_all_calls));
887
888  const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
889  assert(TII && "TargetInstrInfo not found: cannot label tail calls");
890
891  // Delay slot support check.
892  auto delaySlotSupported = [&](const MachineInstr &MI) {
893    if (!MI.isBundledWithSucc())
894      return false;
895    auto Suc = std::next(MI.getIterator());
896    auto CallInstrBundle = getBundleStart(MI.getIterator());
897    (void)CallInstrBundle;
898    auto DelaySlotBundle = getBundleStart(Suc);
899    (void)DelaySlotBundle;
900    // Ensure that label after call is following delay slot instruction.
901    // Ex. CALL_INSTRUCTION {
902    //       DELAY_SLOT_INSTRUCTION }
903    //      LABEL_AFTER_CALL
904    assert(getLabelAfterInsn(&*CallInstrBundle) ==
905               getLabelAfterInsn(&*DelaySlotBundle) &&
906           "Call and its successor instruction don't have same label after.");
907    return true;
908  };
909
910  // Emit call site entries for each call or tail call in the function.
911  for (const MachineBasicBlock &MBB : MF) {
912    for (const MachineInstr &MI : MBB.instrs()) {
913      // Bundles with call in them will pass the isCall() test below but do not
914      // have callee operand information so skip them here. Iterator will
915      // eventually reach the call MI.
916      if (MI.isBundle())
917        continue;
918
919      // Skip instructions which aren't calls. Both calls and tail-calling jump
920      // instructions (e.g TAILJMPd64) are classified correctly here.
921      if (!MI.isCandidateForCallSiteEntry())
922        continue;
923
924      // Skip instructions marked as frame setup, as they are not interesting to
925      // the user.
926      if (MI.getFlag(MachineInstr::FrameSetup))
927        continue;
928
929      // Check if delay slot support is enabled.
930      if (MI.hasDelaySlot() && !delaySlotSupported(*&MI))
931        return;
932
933      // If this is a direct call, find the callee's subprogram.
934      // In the case of an indirect call find the register that holds
935      // the callee.
936      const MachineOperand &CalleeOp = TII->getCalleeOperand(MI);
937      if (!CalleeOp.isGlobal() &&
938          (!CalleeOp.isReg() || !CalleeOp.getReg().isPhysical()))
939        continue;
940
941      unsigned CallReg = 0;
942      const DISubprogram *CalleeSP = nullptr;
943      const Function *CalleeDecl = nullptr;
944      if (CalleeOp.isReg()) {
945        CallReg = CalleeOp.getReg();
946        if (!CallReg)
947          continue;
948      } else {
949        CalleeDecl = dyn_cast<Function>(CalleeOp.getGlobal());
950        if (!CalleeDecl || !CalleeDecl->getSubprogram())
951          continue;
952        CalleeSP = CalleeDecl->getSubprogram();
953      }
954
955      // TODO: Omit call site entries for runtime calls (objc_msgSend, etc).
956
957      bool IsTail = TII->isTailCall(MI);
958
959      // If MI is in a bundle, the label was created after the bundle since
960      // EmitFunctionBody iterates over top-level MIs. Get that top-level MI
961      // to search for that label below.
962      const MachineInstr *TopLevelCallMI =
963          MI.isInsideBundle() ? &*getBundleStart(MI.getIterator()) : &MI;
964
965      // For non-tail calls, the return PC is needed to disambiguate paths in
966      // the call graph which could lead to some target function. For tail
967      // calls, no return PC information is needed, unless tuning for GDB in
968      // DWARF4 mode in which case we fake a return PC for compatibility.
969      const MCSymbol *PCAddr =
970          (!IsTail || CU.useGNUAnalogForDwarf5Feature())
971              ? const_cast<MCSymbol *>(getLabelAfterInsn(TopLevelCallMI))
972              : nullptr;
973
974      // For tail calls, it's necessary to record the address of the branch
975      // instruction so that the debugger can show where the tail call occurred.
976      const MCSymbol *CallAddr =
977          IsTail ? getLabelBeforeInsn(TopLevelCallMI) : nullptr;
978
979      assert((IsTail || PCAddr) && "Non-tail call without return PC");
980
981      LLVM_DEBUG(dbgs() << "CallSiteEntry: " << MF.getName() << " -> "
982                        << (CalleeDecl ? CalleeDecl->getName()
983                                       : StringRef(MF.getSubtarget()
984                                                       .getRegisterInfo()
985                                                       ->getName(CallReg)))
986                        << (IsTail ? " [IsTail]" : "") << "\n");
987
988      DIE &CallSiteDIE = CU.constructCallSiteEntryDIE(
989          ScopeDIE, CalleeSP, IsTail, PCAddr, CallAddr, CallReg);
990
991      // Optionally emit call-site-param debug info.
992      if (emitDebugEntryValues()) {
993        ParamSet Params;
994        // Try to interpret values of call site parameters.
995        collectCallSiteParameters(&MI, Params);
996        CU.constructCallSiteParmEntryDIEs(CallSiteDIE, Params);
997      }
998    }
999  }
1000}
1001
1002void DwarfDebug::addGnuPubAttributes(DwarfCompileUnit &U, DIE &D) const {
1003  if (!U.hasDwarfPubSections())
1004    return;
1005
1006  U.addFlag(D, dwarf::DW_AT_GNU_pubnames);
1007}
1008
1009void DwarfDebug::finishUnitAttributes(const DICompileUnit *DIUnit,
1010                                      DwarfCompileUnit &NewCU) {
1011  DIE &Die = NewCU.getUnitDie();
1012  StringRef FN = DIUnit->getFilename();
1013
1014  StringRef Producer = DIUnit->getProducer();
1015  StringRef Flags = DIUnit->getFlags();
1016  if (!Flags.empty() && !useAppleExtensionAttributes()) {
1017    std::string ProducerWithFlags = Producer.str() + " " + Flags.str();
1018    NewCU.addString(Die, dwarf::DW_AT_producer, ProducerWithFlags);
1019  } else
1020    NewCU.addString(Die, dwarf::DW_AT_producer, Producer);
1021
1022  NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
1023                DIUnit->getSourceLanguage());
1024  NewCU.addString(Die, dwarf::DW_AT_name, FN);
1025  StringRef SysRoot = DIUnit->getSysRoot();
1026  if (!SysRoot.empty())
1027    NewCU.addString(Die, dwarf::DW_AT_LLVM_sysroot, SysRoot);
1028  StringRef SDK = DIUnit->getSDK();
1029  if (!SDK.empty())
1030    NewCU.addString(Die, dwarf::DW_AT_APPLE_sdk, SDK);
1031
1032  if (!useSplitDwarf()) {
1033    // Add DW_str_offsets_base to the unit DIE, except for split units.
1034    if (useSegmentedStringOffsetsTable())
1035      NewCU.addStringOffsetsStart();
1036
1037    NewCU.initStmtList();
1038
1039    // If we're using split dwarf the compilation dir is going to be in the
1040    // skeleton CU and so we don't need to duplicate it here.
1041    if (!CompilationDir.empty())
1042      NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
1043    addGnuPubAttributes(NewCU, Die);
1044  }
1045
1046  if (useAppleExtensionAttributes()) {
1047    if (DIUnit->isOptimized())
1048      NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized);
1049
1050    StringRef Flags = DIUnit->getFlags();
1051    if (!Flags.empty())
1052      NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags);
1053
1054    if (unsigned RVer = DIUnit->getRuntimeVersion())
1055      NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers,
1056                    dwarf::DW_FORM_data1, RVer);
1057  }
1058
1059  if (DIUnit->getDWOId()) {
1060    // This CU is either a clang module DWO or a skeleton CU.
1061    NewCU.addUInt(Die, dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8,
1062                  DIUnit->getDWOId());
1063    if (!DIUnit->getSplitDebugFilename().empty()) {
1064      // This is a prefabricated skeleton CU.
1065      dwarf::Attribute attrDWOName = getDwarfVersion() >= 5
1066                                         ? dwarf::DW_AT_dwo_name
1067                                         : dwarf::DW_AT_GNU_dwo_name;
1068      NewCU.addString(Die, attrDWOName, DIUnit->getSplitDebugFilename());
1069    }
1070  }
1071}
1072// Create new DwarfCompileUnit for the given metadata node with tag
1073// DW_TAG_compile_unit.
1074DwarfCompileUnit &
1075DwarfDebug::getOrCreateDwarfCompileUnit(const DICompileUnit *DIUnit) {
1076  if (auto *CU = CUMap.lookup(DIUnit))
1077    return *CU;
1078
1079  if (useSplitDwarf() &&
1080      !shareAcrossDWOCUs() &&
1081      (!DIUnit->getSplitDebugInlining() ||
1082       DIUnit->getEmissionKind() == DICompileUnit::FullDebug) &&
1083      !CUMap.empty()) {
1084    return *CUMap.begin()->second;
1085  }
1086  CompilationDir = DIUnit->getDirectory();
1087
1088  auto OwnedUnit = std::make_unique<DwarfCompileUnit>(
1089      InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder);
1090  DwarfCompileUnit &NewCU = *OwnedUnit;
1091  InfoHolder.addUnit(std::move(OwnedUnit));
1092
1093  // LTO with assembly output shares a single line table amongst multiple CUs.
1094  // To avoid the compilation directory being ambiguous, let the line table
1095  // explicitly describe the directory of all files, never relying on the
1096  // compilation directory.
1097  if (!Asm->OutStreamer->hasRawTextSupport() || SingleCU)
1098    Asm->OutStreamer->emitDwarfFile0Directive(
1099        CompilationDir, DIUnit->getFilename(), getMD5AsBytes(DIUnit->getFile()),
1100        DIUnit->getSource(), NewCU.getUniqueID());
1101
1102  if (useSplitDwarf()) {
1103    NewCU.setSkeleton(constructSkeletonCU(NewCU));
1104    NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoDWOSection());
1105  } else {
1106    finishUnitAttributes(DIUnit, NewCU);
1107    NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection());
1108  }
1109
1110  CUMap.insert({DIUnit, &NewCU});
1111  CUDieMap.insert({&NewCU.getUnitDie(), &NewCU});
1112  return NewCU;
1113}
1114
1115/// Sort and unique GVEs by comparing their fragment offset.
1116static SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &
1117sortGlobalExprs(SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &GVEs) {
1118  llvm::sort(
1119      GVEs, [](DwarfCompileUnit::GlobalExpr A, DwarfCompileUnit::GlobalExpr B) {
1120        // Sort order: first null exprs, then exprs without fragment
1121        // info, then sort by fragment offset in bits.
1122        // FIXME: Come up with a more comprehensive comparator so
1123        // the sorting isn't non-deterministic, and so the following
1124        // std::unique call works correctly.
1125        if (!A.Expr || !B.Expr)
1126          return !!B.Expr;
1127        auto FragmentA = A.Expr->getFragmentInfo();
1128        auto FragmentB = B.Expr->getFragmentInfo();
1129        if (!FragmentA || !FragmentB)
1130          return !!FragmentB;
1131        return FragmentA->OffsetInBits < FragmentB->OffsetInBits;
1132      });
1133  GVEs.erase(std::unique(GVEs.begin(), GVEs.end(),
1134                         [](DwarfCompileUnit::GlobalExpr A,
1135                            DwarfCompileUnit::GlobalExpr B) {
1136                           return A.Expr == B.Expr;
1137                         }),
1138             GVEs.end());
1139  return GVEs;
1140}
1141
1142// Emit all Dwarf sections that should come prior to the content. Create
1143// global DIEs and emit initial debug info sections. This is invoked by
1144// the target AsmPrinter.
1145void DwarfDebug::beginModule(Module *M) {
1146  DebugHandlerBase::beginModule(M);
1147
1148  if (!Asm || !MMI->hasDebugInfo())
1149    return;
1150
1151  unsigned NumDebugCUs = std::distance(M->debug_compile_units_begin(),
1152                                       M->debug_compile_units_end());
1153  assert(NumDebugCUs > 0 && "Asm unexpectedly initialized");
1154  assert(MMI->hasDebugInfo() &&
1155         "DebugInfoAvailabilty unexpectedly not initialized");
1156  SingleCU = NumDebugCUs == 1;
1157  DenseMap<DIGlobalVariable *, SmallVector<DwarfCompileUnit::GlobalExpr, 1>>
1158      GVMap;
1159  for (const GlobalVariable &Global : M->globals()) {
1160    SmallVector<DIGlobalVariableExpression *, 1> GVs;
1161    Global.getDebugInfo(GVs);
1162    for (auto *GVE : GVs)
1163      GVMap[GVE->getVariable()].push_back({&Global, GVE->getExpression()});
1164  }
1165
1166  // Create the symbol that designates the start of the unit's contribution
1167  // to the string offsets table. In a split DWARF scenario, only the skeleton
1168  // unit has the DW_AT_str_offsets_base attribute (and hence needs the symbol).
1169  if (useSegmentedStringOffsetsTable())
1170    (useSplitDwarf() ? SkeletonHolder : InfoHolder)
1171        .setStringOffsetsStartSym(Asm->createTempSymbol("str_offsets_base"));
1172
1173
1174  // Create the symbols that designates the start of the DWARF v5 range list
1175  // and locations list tables. They are located past the table headers.
1176  if (getDwarfVersion() >= 5) {
1177    DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
1178    Holder.setRnglistsTableBaseSym(
1179        Asm->createTempSymbol("rnglists_table_base"));
1180
1181    if (useSplitDwarf())
1182      InfoHolder.setRnglistsTableBaseSym(
1183          Asm->createTempSymbol("rnglists_dwo_table_base"));
1184  }
1185
1186  // Create the symbol that points to the first entry following the debug
1187  // address table (.debug_addr) header.
1188  AddrPool.setLabel(Asm->createTempSymbol("addr_table_base"));
1189  DebugLocs.setSym(Asm->createTempSymbol("loclists_table_base"));
1190
1191  for (DICompileUnit *CUNode : M->debug_compile_units()) {
1192    if (CUNode->getImportedEntities().empty() &&
1193        CUNode->getEnumTypes().empty() && CUNode->getRetainedTypes().empty() &&
1194        CUNode->getGlobalVariables().empty() && CUNode->getMacros().empty())
1195      continue;
1196
1197    DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(CUNode);
1198
1199    // Global Variables.
1200    for (auto *GVE : CUNode->getGlobalVariables()) {
1201      // Don't bother adding DIGlobalVariableExpressions listed in the CU if we
1202      // already know about the variable and it isn't adding a constant
1203      // expression.
1204      auto &GVMapEntry = GVMap[GVE->getVariable()];
1205      auto *Expr = GVE->getExpression();
1206      if (!GVMapEntry.size() || (Expr && Expr->isConstant()))
1207        GVMapEntry.push_back({nullptr, Expr});
1208    }
1209
1210    DenseSet<DIGlobalVariable *> Processed;
1211    for (auto *GVE : CUNode->getGlobalVariables()) {
1212      DIGlobalVariable *GV = GVE->getVariable();
1213      if (Processed.insert(GV).second)
1214        CU.getOrCreateGlobalVariableDIE(GV, sortGlobalExprs(GVMap[GV]));
1215    }
1216
1217    for (auto *Ty : CUNode->getEnumTypes())
1218      CU.getOrCreateTypeDIE(cast<DIType>(Ty));
1219
1220    for (auto *Ty : CUNode->getRetainedTypes()) {
1221      // The retained types array by design contains pointers to
1222      // MDNodes rather than DIRefs. Unique them here.
1223      if (DIType *RT = dyn_cast<DIType>(Ty))
1224        // There is no point in force-emitting a forward declaration.
1225        CU.getOrCreateTypeDIE(RT);
1226    }
1227  }
1228}
1229
1230void DwarfDebug::finishEntityDefinitions() {
1231  for (const auto &Entity : ConcreteEntities) {
1232    DIE *Die = Entity->getDIE();
1233    assert(Die);
1234    // FIXME: Consider the time-space tradeoff of just storing the unit pointer
1235    // in the ConcreteEntities list, rather than looking it up again here.
1236    // DIE::getUnit isn't simple - it walks parent pointers, etc.
1237    DwarfCompileUnit *Unit = CUDieMap.lookup(Die->getUnitDie());
1238    assert(Unit);
1239    Unit->finishEntityDefinition(Entity.get());
1240  }
1241}
1242
1243void DwarfDebug::finishSubprogramDefinitions() {
1244  for (const DISubprogram *SP : ProcessedSPNodes) {
1245    assert(SP->getUnit()->getEmissionKind() != DICompileUnit::NoDebug);
1246    forBothCUs(
1247        getOrCreateDwarfCompileUnit(SP->getUnit()),
1248        [&](DwarfCompileUnit &CU) { CU.finishSubprogramDefinition(SP); });
1249  }
1250}
1251
1252void DwarfDebug::finalizeModuleInfo() {
1253  const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering();
1254
1255  finishSubprogramDefinitions();
1256
1257  finishEntityDefinitions();
1258
1259  // Include the DWO file name in the hash if there's more than one CU.
1260  // This handles ThinLTO's situation where imported CUs may very easily be
1261  // duplicate with the same CU partially imported into another ThinLTO unit.
1262  StringRef DWOName;
1263  if (CUMap.size() > 1)
1264    DWOName = Asm->TM.Options.MCOptions.SplitDwarfFile;
1265
1266  bool HasEmittedSplitCU = false;
1267
1268  // Handle anything that needs to be done on a per-unit basis after
1269  // all other generation.
1270  for (const auto &P : CUMap) {
1271    auto &TheCU = *P.second;
1272    if (TheCU.getCUNode()->isDebugDirectivesOnly())
1273      continue;
1274    // Emit DW_AT_containing_type attribute to connect types with their
1275    // vtable holding type.
1276    TheCU.constructContainingTypeDIEs();
1277
1278    // Add CU specific attributes if we need to add any.
1279    // If we're splitting the dwarf out now that we've got the entire
1280    // CU then add the dwo id to it.
1281    auto *SkCU = TheCU.getSkeleton();
1282
1283    bool HasSplitUnit = SkCU && !TheCU.getUnitDie().children().empty();
1284
1285    if (HasSplitUnit) {
1286      (void)HasEmittedSplitCU;
1287      assert((shareAcrossDWOCUs() || !HasEmittedSplitCU) &&
1288             "Multiple CUs emitted into a single dwo file");
1289      HasEmittedSplitCU = true;
1290      dwarf::Attribute attrDWOName = getDwarfVersion() >= 5
1291                                         ? dwarf::DW_AT_dwo_name
1292                                         : dwarf::DW_AT_GNU_dwo_name;
1293      finishUnitAttributes(TheCU.getCUNode(), TheCU);
1294      TheCU.addString(TheCU.getUnitDie(), attrDWOName,
1295                      Asm->TM.Options.MCOptions.SplitDwarfFile);
1296      SkCU->addString(SkCU->getUnitDie(), attrDWOName,
1297                      Asm->TM.Options.MCOptions.SplitDwarfFile);
1298      // Emit a unique identifier for this CU.
1299      uint64_t ID =
1300          DIEHash(Asm, &TheCU).computeCUSignature(DWOName, TheCU.getUnitDie());
1301      if (getDwarfVersion() >= 5) {
1302        TheCU.setDWOId(ID);
1303        SkCU->setDWOId(ID);
1304      } else {
1305        TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
1306                      dwarf::DW_FORM_data8, ID);
1307        SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
1308                      dwarf::DW_FORM_data8, ID);
1309      }
1310
1311      if (getDwarfVersion() < 5 && !SkeletonHolder.getRangeLists().empty()) {
1312        const MCSymbol *Sym = TLOF.getDwarfRangesSection()->getBeginSymbol();
1313        SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base,
1314                              Sym, Sym);
1315      }
1316    } else if (SkCU) {
1317      finishUnitAttributes(SkCU->getCUNode(), *SkCU);
1318    }
1319
1320    // If we have code split among multiple sections or non-contiguous
1321    // ranges of code then emit a DW_AT_ranges attribute on the unit that will
1322    // remain in the .o file, otherwise add a DW_AT_low_pc.
1323    // FIXME: We should use ranges allow reordering of code ala
1324    // .subsections_via_symbols in mach-o. This would mean turning on
1325    // ranges for all subprogram DIEs for mach-o.
1326    DwarfCompileUnit &U = SkCU ? *SkCU : TheCU;
1327
1328    if (unsigned NumRanges = TheCU.getRanges().size()) {
1329      if (NumRanges > 1 && useRangesSection())
1330        // A DW_AT_low_pc attribute may also be specified in combination with
1331        // DW_AT_ranges to specify the default base address for use in
1332        // location lists (see Section 2.6.2) and range lists (see Section
1333        // 2.17.3).
1334        U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0);
1335      else
1336        U.setBaseAddress(TheCU.getRanges().front().Begin);
1337      U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges());
1338    }
1339
1340    // We don't keep track of which addresses are used in which CU so this
1341    // is a bit pessimistic under LTO.
1342    if ((HasSplitUnit || getDwarfVersion() >= 5) && !AddrPool.isEmpty())
1343      U.addAddrTableBase();
1344
1345    if (getDwarfVersion() >= 5) {
1346      if (U.hasRangeLists())
1347        U.addRnglistsBase();
1348
1349      if (!DebugLocs.getLists().empty() && !useSplitDwarf()) {
1350        U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_loclists_base,
1351                          DebugLocs.getSym(),
1352                          TLOF.getDwarfLoclistsSection()->getBeginSymbol());
1353      }
1354    }
1355
1356    auto *CUNode = cast<DICompileUnit>(P.first);
1357    // If compile Unit has macros, emit "DW_AT_macro_info/DW_AT_macros"
1358    // attribute.
1359    if (CUNode->getMacros()) {
1360      if (UseDebugMacroSection) {
1361        if (useSplitDwarf())
1362          TheCU.addSectionDelta(
1363              TheCU.getUnitDie(), dwarf::DW_AT_macros, U.getMacroLabelBegin(),
1364              TLOF.getDwarfMacroDWOSection()->getBeginSymbol());
1365        else {
1366          dwarf::Attribute MacrosAttr = getDwarfVersion() >= 5
1367                                            ? dwarf::DW_AT_macros
1368                                            : dwarf::DW_AT_GNU_macros;
1369          U.addSectionLabel(U.getUnitDie(), MacrosAttr, U.getMacroLabelBegin(),
1370                            TLOF.getDwarfMacroSection()->getBeginSymbol());
1371        }
1372      } else {
1373        if (useSplitDwarf())
1374          TheCU.addSectionDelta(
1375              TheCU.getUnitDie(), dwarf::DW_AT_macro_info,
1376              U.getMacroLabelBegin(),
1377              TLOF.getDwarfMacinfoDWOSection()->getBeginSymbol());
1378        else
1379          U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macro_info,
1380                            U.getMacroLabelBegin(),
1381                            TLOF.getDwarfMacinfoSection()->getBeginSymbol());
1382      }
1383    }
1384    }
1385
1386  // Emit all frontend-produced Skeleton CUs, i.e., Clang modules.
1387  for (auto *CUNode : MMI->getModule()->debug_compile_units())
1388    if (CUNode->getDWOId())
1389      getOrCreateDwarfCompileUnit(CUNode);
1390
1391  // Compute DIE offsets and sizes.
1392  InfoHolder.computeSizeAndOffsets();
1393  if (useSplitDwarf())
1394    SkeletonHolder.computeSizeAndOffsets();
1395
1396  // Now that offsets are computed, can replace DIEs in debug_names Entry with
1397  // an actual offset.
1398  AccelDebugNames.convertDieToOffset();
1399}
1400
1401// Emit all Dwarf sections that should come after the content.
1402void DwarfDebug::endModule() {
1403  // Terminate the pending line table.
1404  if (PrevCU)
1405    terminateLineTable(PrevCU);
1406  PrevCU = nullptr;
1407  assert(CurFn == nullptr);
1408  assert(CurMI == nullptr);
1409
1410  for (const auto &P : CUMap) {
1411    const auto *CUNode = cast<DICompileUnit>(P.first);
1412    DwarfCompileUnit *CU = &*P.second;
1413
1414    // Emit imported entities.
1415    for (auto *IE : CUNode->getImportedEntities()) {
1416      assert(!isa_and_nonnull<DILocalScope>(IE->getScope()) &&
1417             "Unexpected function-local entity in 'imports' CU field.");
1418      CU->getOrCreateImportedEntityDIE(IE);
1419    }
1420    for (const auto *D : CU->getDeferredLocalDecls()) {
1421      if (auto *IE = dyn_cast<DIImportedEntity>(D))
1422        CU->getOrCreateImportedEntityDIE(IE);
1423      else
1424        llvm_unreachable("Unexpected local retained node!");
1425    }
1426
1427    // Emit base types.
1428    CU->createBaseTypeDIEs();
1429  }
1430
1431  // If we aren't actually generating debug info (check beginModule -
1432  // conditionalized on the presence of the llvm.dbg.cu metadata node)
1433  if (!Asm || !MMI->hasDebugInfo())
1434    return;
1435
1436  // Finalize the debug info for the module.
1437  finalizeModuleInfo();
1438
1439  if (useSplitDwarf())
1440    // Emit debug_loc.dwo/debug_loclists.dwo section.
1441    emitDebugLocDWO();
1442  else
1443    // Emit debug_loc/debug_loclists section.
1444    emitDebugLoc();
1445
1446  // Corresponding abbreviations into a abbrev section.
1447  emitAbbreviations();
1448
1449  // Emit all the DIEs into a debug info section.
1450  emitDebugInfo();
1451
1452  // Emit info into a debug aranges section.
1453  if (GenerateARangeSection)
1454    emitDebugARanges();
1455
1456  // Emit info into a debug ranges section.
1457  emitDebugRanges();
1458
1459  if (useSplitDwarf())
1460  // Emit info into a debug macinfo.dwo section.
1461    emitDebugMacinfoDWO();
1462  else
1463    // Emit info into a debug macinfo/macro section.
1464    emitDebugMacinfo();
1465
1466  emitDebugStr();
1467
1468  if (useSplitDwarf()) {
1469    emitDebugStrDWO();
1470    emitDebugInfoDWO();
1471    emitDebugAbbrevDWO();
1472    emitDebugLineDWO();
1473    emitDebugRangesDWO();
1474  }
1475
1476  emitDebugAddr();
1477
1478  // Emit info into the dwarf accelerator table sections.
1479  switch (getAccelTableKind()) {
1480  case AccelTableKind::Apple:
1481    emitAccelNames();
1482    emitAccelObjC();
1483    emitAccelNamespaces();
1484    emitAccelTypes();
1485    break;
1486  case AccelTableKind::Dwarf:
1487    emitAccelDebugNames();
1488    break;
1489  case AccelTableKind::None:
1490    break;
1491  case AccelTableKind::Default:
1492    llvm_unreachable("Default should have already been resolved.");
1493  }
1494
1495  // Emit the pubnames and pubtypes sections if requested.
1496  emitDebugPubSections();
1497
1498  // clean up.
1499  // FIXME: AbstractVariables.clear();
1500}
1501
1502void DwarfDebug::ensureAbstractEntityIsCreatedIfScoped(DwarfCompileUnit &CU,
1503    const DINode *Node, const MDNode *ScopeNode) {
1504  if (CU.getExistingAbstractEntity(Node))
1505    return;
1506
1507  if (LexicalScope *Scope =
1508          LScopes.findAbstractScope(cast_or_null<DILocalScope>(ScopeNode)))
1509    CU.createAbstractEntity(Node, Scope);
1510}
1511
1512static const DILocalScope *getRetainedNodeScope(const MDNode *N) {
1513  const DIScope *S;
1514  if (const auto *LV = dyn_cast<DILocalVariable>(N))
1515    S = LV->getScope();
1516  else if (const auto *L = dyn_cast<DILabel>(N))
1517    S = L->getScope();
1518  else if (const auto *IE = dyn_cast<DIImportedEntity>(N))
1519    S = IE->getScope();
1520  else
1521    llvm_unreachable("Unexpected retained node!");
1522
1523  // Ensure the scope is not a DILexicalBlockFile.
1524  return cast<DILocalScope>(S)->getNonLexicalBlockFileScope();
1525}
1526
1527// Collect variable information from side table maintained by MF.
1528void DwarfDebug::collectVariableInfoFromMFTable(
1529    DwarfCompileUnit &TheCU, DenseSet<InlinedEntity> &Processed) {
1530  SmallDenseMap<InlinedEntity, DbgVariable *> MFVars;
1531  LLVM_DEBUG(dbgs() << "DwarfDebug: collecting variables from MF side table\n");
1532  for (const auto &VI : Asm->MF->getVariableDbgInfo()) {
1533    if (!VI.Var)
1534      continue;
1535    assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
1536           "Expected inlined-at fields to agree");
1537
1538    InlinedEntity Var(VI.Var, VI.Loc->getInlinedAt());
1539    Processed.insert(Var);
1540    LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
1541
1542    // If variable scope is not found then skip this variable.
1543    if (!Scope) {
1544      LLVM_DEBUG(dbgs() << "Dropping debug info for " << VI.Var->getName()
1545                        << ", no variable scope found\n");
1546      continue;
1547    }
1548
1549    ensureAbstractEntityIsCreatedIfScoped(TheCU, Var.first, Scope->getScopeNode());
1550
1551    // If we have already seen information for this variable, add to what we
1552    // already know.
1553    if (DbgVariable *PreviousLoc = MFVars.lookup(Var)) {
1554      auto *PreviousMMI = std::get_if<Loc::MMI>(PreviousLoc);
1555      auto *PreviousEntryValue = std::get_if<Loc::EntryValue>(PreviousLoc);
1556      // Previous and new locations are both stack slots (MMI).
1557      if (PreviousMMI && VI.inStackSlot())
1558        PreviousMMI->addFrameIndexExpr(VI.Expr, VI.getStackSlot());
1559      // Previous and new locations are both entry values.
1560      else if (PreviousEntryValue && VI.inEntryValueRegister())
1561        PreviousEntryValue->addExpr(VI.getEntryValueRegister(), *VI.Expr);
1562      else {
1563        // Locations differ, this should (rarely) happen in optimized async
1564        // coroutines.
1565        // Prefer whichever location has an EntryValue.
1566        if (PreviousLoc->holds<Loc::MMI>())
1567          PreviousLoc->emplace<Loc::EntryValue>(VI.getEntryValueRegister(),
1568                                                *VI.Expr);
1569        LLVM_DEBUG(dbgs() << "Dropping debug info for " << VI.Var->getName()
1570                          << ", conflicting fragment location types\n");
1571      }
1572      continue;
1573    }
1574
1575    auto RegVar = std::make_unique<DbgVariable>(
1576                    cast<DILocalVariable>(Var.first), Var.second);
1577    if (VI.inStackSlot())
1578      RegVar->emplace<Loc::MMI>(VI.Expr, VI.getStackSlot());
1579    else
1580      RegVar->emplace<Loc::EntryValue>(VI.getEntryValueRegister(), *VI.Expr);
1581    LLVM_DEBUG(dbgs() << "Created DbgVariable for " << VI.Var->getName()
1582                      << "\n");
1583    InfoHolder.addScopeVariable(Scope, RegVar.get());
1584    MFVars.insert({Var, RegVar.get()});
1585    ConcreteEntities.push_back(std::move(RegVar));
1586  }
1587}
1588
1589/// Determine whether a *singular* DBG_VALUE is valid for the entirety of its
1590/// enclosing lexical scope. The check ensures there are no other instructions
1591/// in the same lexical scope preceding the DBG_VALUE and that its range is
1592/// either open or otherwise rolls off the end of the scope.
1593static bool validThroughout(LexicalScopes &LScopes,
1594                            const MachineInstr *DbgValue,
1595                            const MachineInstr *RangeEnd,
1596                            const InstructionOrdering &Ordering) {
1597  assert(DbgValue->getDebugLoc() && "DBG_VALUE without a debug location");
1598  auto MBB = DbgValue->getParent();
1599  auto DL = DbgValue->getDebugLoc();
1600  auto *LScope = LScopes.findLexicalScope(DL);
1601  // Scope doesn't exist; this is a dead DBG_VALUE.
1602  if (!LScope)
1603    return false;
1604  auto &LSRange = LScope->getRanges();
1605  if (LSRange.size() == 0)
1606    return false;
1607
1608  const MachineInstr *LScopeBegin = LSRange.front().first;
1609  // If the scope starts before the DBG_VALUE then we may have a negative
1610  // result. Otherwise the location is live coming into the scope and we
1611  // can skip the following checks.
1612  if (!Ordering.isBefore(DbgValue, LScopeBegin)) {
1613    // Exit if the lexical scope begins outside of the current block.
1614    if (LScopeBegin->getParent() != MBB)
1615      return false;
1616
1617    MachineBasicBlock::const_reverse_iterator Pred(DbgValue);
1618    for (++Pred; Pred != MBB->rend(); ++Pred) {
1619      if (Pred->getFlag(MachineInstr::FrameSetup))
1620        break;
1621      auto PredDL = Pred->getDebugLoc();
1622      if (!PredDL || Pred->isMetaInstruction())
1623        continue;
1624      // Check whether the instruction preceding the DBG_VALUE is in the same
1625      // (sub)scope as the DBG_VALUE.
1626      if (DL->getScope() == PredDL->getScope())
1627        return false;
1628      auto *PredScope = LScopes.findLexicalScope(PredDL);
1629      if (!PredScope || LScope->dominates(PredScope))
1630        return false;
1631    }
1632  }
1633
1634  // If the range of the DBG_VALUE is open-ended, report success.
1635  if (!RangeEnd)
1636    return true;
1637
1638  // Single, constant DBG_VALUEs in the prologue are promoted to be live
1639  // throughout the function. This is a hack, presumably for DWARF v2 and not
1640  // necessarily correct. It would be much better to use a dbg.declare instead
1641  // if we know the constant is live throughout the scope.
1642  if (MBB->pred_empty() &&
1643      all_of(DbgValue->debug_operands(),
1644             [](const MachineOperand &Op) { return Op.isImm(); }))
1645    return true;
1646
1647  // Test if the location terminates before the end of the scope.
1648  const MachineInstr *LScopeEnd = LSRange.back().second;
1649  if (Ordering.isBefore(RangeEnd, LScopeEnd))
1650    return false;
1651
1652  // There's a single location which starts at the scope start, and ends at or
1653  // after the scope end.
1654  return true;
1655}
1656
1657/// Build the location list for all DBG_VALUEs in the function that
1658/// describe the same variable. The resulting DebugLocEntries will have
1659/// strict monotonically increasing begin addresses and will never
1660/// overlap. If the resulting list has only one entry that is valid
1661/// throughout variable's scope return true.
1662//
1663// See the definition of DbgValueHistoryMap::Entry for an explanation of the
1664// different kinds of history map entries. One thing to be aware of is that if
1665// a debug value is ended by another entry (rather than being valid until the
1666// end of the function), that entry's instruction may or may not be included in
1667// the range, depending on if the entry is a clobbering entry (it has an
1668// instruction that clobbers one or more preceding locations), or if it is an
1669// (overlapping) debug value entry. This distinction can be seen in the example
1670// below. The first debug value is ended by the clobbering entry 2, and the
1671// second and third debug values are ended by the overlapping debug value entry
1672// 4.
1673//
1674// Input:
1675//
1676//   History map entries [type, end index, mi]
1677//
1678// 0 |      [DbgValue, 2, DBG_VALUE $reg0, [...] (fragment 0, 32)]
1679// 1 | |    [DbgValue, 4, DBG_VALUE $reg1, [...] (fragment 32, 32)]
1680// 2 | |    [Clobber, $reg0 = [...], -, -]
1681// 3   | |  [DbgValue, 4, DBG_VALUE 123, [...] (fragment 64, 32)]
1682// 4        [DbgValue, ~0, DBG_VALUE @g, [...] (fragment 0, 96)]
1683//
1684// Output [start, end) [Value...]:
1685//
1686// [0-1)    [(reg0, fragment 0, 32)]
1687// [1-3)    [(reg0, fragment 0, 32), (reg1, fragment 32, 32)]
1688// [3-4)    [(reg1, fragment 32, 32), (123, fragment 64, 32)]
1689// [4-)     [(@g, fragment 0, 96)]
1690bool DwarfDebug::buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc,
1691                                   const DbgValueHistoryMap::Entries &Entries) {
1692  using OpenRange =
1693      std::pair<DbgValueHistoryMap::EntryIndex, DbgValueLoc>;
1694  SmallVector<OpenRange, 4> OpenRanges;
1695  bool isSafeForSingleLocation = true;
1696  const MachineInstr *StartDebugMI = nullptr;
1697  const MachineInstr *EndMI = nullptr;
1698
1699  for (auto EB = Entries.begin(), EI = EB, EE = Entries.end(); EI != EE; ++EI) {
1700    const MachineInstr *Instr = EI->getInstr();
1701
1702    // Remove all values that are no longer live.
1703    size_t Index = std::distance(EB, EI);
1704    erase_if(OpenRanges, [&](OpenRange &R) { return R.first <= Index; });
1705
1706    // If we are dealing with a clobbering entry, this iteration will result in
1707    // a location list entry starting after the clobbering instruction.
1708    const MCSymbol *StartLabel =
1709        EI->isClobber() ? getLabelAfterInsn(Instr) : getLabelBeforeInsn(Instr);
1710    assert(StartLabel &&
1711           "Forgot label before/after instruction starting a range!");
1712
1713    const MCSymbol *EndLabel;
1714    if (std::next(EI) == Entries.end()) {
1715      const MachineBasicBlock &EndMBB = Asm->MF->back();
1716      EndLabel = Asm->MBBSectionRanges[EndMBB.getSectionIDNum()].EndLabel;
1717      if (EI->isClobber())
1718        EndMI = EI->getInstr();
1719    }
1720    else if (std::next(EI)->isClobber())
1721      EndLabel = getLabelAfterInsn(std::next(EI)->getInstr());
1722    else
1723      EndLabel = getLabelBeforeInsn(std::next(EI)->getInstr());
1724    assert(EndLabel && "Forgot label after instruction ending a range!");
1725
1726    if (EI->isDbgValue())
1727      LLVM_DEBUG(dbgs() << "DotDebugLoc: " << *Instr << "\n");
1728
1729    // If this history map entry has a debug value, add that to the list of
1730    // open ranges and check if its location is valid for a single value
1731    // location.
1732    if (EI->isDbgValue()) {
1733      // Do not add undef debug values, as they are redundant information in
1734      // the location list entries. An undef debug results in an empty location
1735      // description. If there are any non-undef fragments then padding pieces
1736      // with empty location descriptions will automatically be inserted, and if
1737      // all fragments are undef then the whole location list entry is
1738      // redundant.
1739      if (!Instr->isUndefDebugValue()) {
1740        auto Value = getDebugLocValue(Instr);
1741        OpenRanges.emplace_back(EI->getEndIndex(), Value);
1742
1743        // TODO: Add support for single value fragment locations.
1744        if (Instr->getDebugExpression()->isFragment())
1745          isSafeForSingleLocation = false;
1746
1747        if (!StartDebugMI)
1748          StartDebugMI = Instr;
1749      } else {
1750        isSafeForSingleLocation = false;
1751      }
1752    }
1753
1754    // Location list entries with empty location descriptions are redundant
1755    // information in DWARF, so do not emit those.
1756    if (OpenRanges.empty())
1757      continue;
1758
1759    // Omit entries with empty ranges as they do not have any effect in DWARF.
1760    if (StartLabel == EndLabel) {
1761      LLVM_DEBUG(dbgs() << "Omitting location list entry with empty range.\n");
1762      continue;
1763    }
1764
1765    SmallVector<DbgValueLoc, 4> Values;
1766    for (auto &R : OpenRanges)
1767      Values.push_back(R.second);
1768
1769    // With Basic block sections, it is posssible that the StartLabel and the
1770    // Instr are not in the same section.  This happens when the StartLabel is
1771    // the function begin label and the dbg value appears in a basic block
1772    // that is not the entry.  In this case, the range needs to be split to
1773    // span each individual section in the range from StartLabel to EndLabel.
1774    if (Asm->MF->hasBBSections() && StartLabel == Asm->getFunctionBegin() &&
1775        !Instr->getParent()->sameSection(&Asm->MF->front())) {
1776      const MCSymbol *BeginSectionLabel = StartLabel;
1777
1778      for (const MachineBasicBlock &MBB : *Asm->MF) {
1779        if (MBB.isBeginSection() && &MBB != &Asm->MF->front())
1780          BeginSectionLabel = MBB.getSymbol();
1781
1782        if (MBB.sameSection(Instr->getParent())) {
1783          DebugLoc.emplace_back(BeginSectionLabel, EndLabel, Values);
1784          break;
1785        }
1786        if (MBB.isEndSection())
1787          DebugLoc.emplace_back(BeginSectionLabel, MBB.getEndSymbol(), Values);
1788      }
1789    } else {
1790      DebugLoc.emplace_back(StartLabel, EndLabel, Values);
1791    }
1792
1793    // Attempt to coalesce the ranges of two otherwise identical
1794    // DebugLocEntries.
1795    auto CurEntry = DebugLoc.rbegin();
1796    LLVM_DEBUG({
1797      dbgs() << CurEntry->getValues().size() << " Values:\n";
1798      for (auto &Value : CurEntry->getValues())
1799        Value.dump();
1800      dbgs() << "-----\n";
1801    });
1802
1803    auto PrevEntry = std::next(CurEntry);
1804    if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry))
1805      DebugLoc.pop_back();
1806  }
1807
1808  if (!isSafeForSingleLocation ||
1809      !validThroughout(LScopes, StartDebugMI, EndMI, getInstOrdering()))
1810    return false;
1811
1812  if (DebugLoc.size() == 1)
1813    return true;
1814
1815  if (!Asm->MF->hasBBSections())
1816    return false;
1817
1818  // Check here to see if loclist can be merged into a single range. If not,
1819  // we must keep the split loclists per section.  This does exactly what
1820  // MergeRanges does without sections.  We don't actually merge the ranges
1821  // as the split ranges must be kept intact if this cannot be collapsed
1822  // into a single range.
1823  const MachineBasicBlock *RangeMBB = nullptr;
1824  if (DebugLoc[0].getBeginSym() == Asm->getFunctionBegin())
1825    RangeMBB = &Asm->MF->front();
1826  else
1827    RangeMBB = Entries.begin()->getInstr()->getParent();
1828  auto *CurEntry = DebugLoc.begin();
1829  auto *NextEntry = std::next(CurEntry);
1830  while (NextEntry != DebugLoc.end()) {
1831    // Get the last machine basic block of this section.
1832    while (!RangeMBB->isEndSection())
1833      RangeMBB = RangeMBB->getNextNode();
1834    if (!RangeMBB->getNextNode())
1835      return false;
1836    // CurEntry should end the current section and NextEntry should start
1837    // the next section and the Values must match for these two ranges to be
1838    // merged.
1839    if (CurEntry->getEndSym() != RangeMBB->getEndSymbol() ||
1840        NextEntry->getBeginSym() != RangeMBB->getNextNode()->getSymbol() ||
1841        CurEntry->getValues() != NextEntry->getValues())
1842      return false;
1843    RangeMBB = RangeMBB->getNextNode();
1844    CurEntry = NextEntry;
1845    NextEntry = std::next(CurEntry);
1846  }
1847  return true;
1848}
1849
1850DbgEntity *DwarfDebug::createConcreteEntity(DwarfCompileUnit &TheCU,
1851                                            LexicalScope &Scope,
1852                                            const DINode *Node,
1853                                            const DILocation *Location,
1854                                            const MCSymbol *Sym) {
1855  ensureAbstractEntityIsCreatedIfScoped(TheCU, Node, Scope.getScopeNode());
1856  if (isa<const DILocalVariable>(Node)) {
1857    ConcreteEntities.push_back(
1858        std::make_unique<DbgVariable>(cast<const DILocalVariable>(Node),
1859                                       Location));
1860    InfoHolder.addScopeVariable(&Scope,
1861        cast<DbgVariable>(ConcreteEntities.back().get()));
1862  } else if (isa<const DILabel>(Node)) {
1863    ConcreteEntities.push_back(
1864        std::make_unique<DbgLabel>(cast<const DILabel>(Node),
1865                                    Location, Sym));
1866    InfoHolder.addScopeLabel(&Scope,
1867        cast<DbgLabel>(ConcreteEntities.back().get()));
1868  }
1869  return ConcreteEntities.back().get();
1870}
1871
1872// Find variables for each lexical scope.
1873void DwarfDebug::collectEntityInfo(DwarfCompileUnit &TheCU,
1874                                   const DISubprogram *SP,
1875                                   DenseSet<InlinedEntity> &Processed) {
1876  // Grab the variable info that was squirreled away in the MMI side-table.
1877  collectVariableInfoFromMFTable(TheCU, Processed);
1878
1879  for (const auto &I : DbgValues) {
1880    InlinedEntity IV = I.first;
1881    if (Processed.count(IV))
1882      continue;
1883
1884    // Instruction ranges, specifying where IV is accessible.
1885    const auto &HistoryMapEntries = I.second;
1886
1887    // Try to find any non-empty variable location. Do not create a concrete
1888    // entity if there are no locations.
1889    if (!DbgValues.hasNonEmptyLocation(HistoryMapEntries))
1890      continue;
1891
1892    LexicalScope *Scope = nullptr;
1893    const DILocalVariable *LocalVar = cast<DILocalVariable>(IV.first);
1894    if (const DILocation *IA = IV.second)
1895      Scope = LScopes.findInlinedScope(LocalVar->getScope(), IA);
1896    else
1897      Scope = LScopes.findLexicalScope(LocalVar->getScope());
1898    // If variable scope is not found then skip this variable.
1899    if (!Scope)
1900      continue;
1901
1902    Processed.insert(IV);
1903    DbgVariable *RegVar = cast<DbgVariable>(createConcreteEntity(TheCU,
1904                                            *Scope, LocalVar, IV.second));
1905
1906    const MachineInstr *MInsn = HistoryMapEntries.front().getInstr();
1907    assert(MInsn->isDebugValue() && "History must begin with debug value");
1908
1909    // Check if there is a single DBG_VALUE, valid throughout the var's scope.
1910    // If the history map contains a single debug value, there may be an
1911    // additional entry which clobbers the debug value.
1912    size_t HistSize = HistoryMapEntries.size();
1913    bool SingleValueWithClobber =
1914        HistSize == 2 && HistoryMapEntries[1].isClobber();
1915    if (HistSize == 1 || SingleValueWithClobber) {
1916      const auto *End =
1917          SingleValueWithClobber ? HistoryMapEntries[1].getInstr() : nullptr;
1918      if (validThroughout(LScopes, MInsn, End, getInstOrdering())) {
1919        RegVar->emplace<Loc::Single>(MInsn);
1920        continue;
1921      }
1922    }
1923
1924    // Do not emit location lists if .debug_loc secton is disabled.
1925    if (!useLocSection())
1926      continue;
1927
1928    // Handle multiple DBG_VALUE instructions describing one variable.
1929    DebugLocStream::ListBuilder List(DebugLocs, TheCU, *Asm, *RegVar);
1930
1931    // Build the location list for this variable.
1932    SmallVector<DebugLocEntry, 8> Entries;
1933    bool isValidSingleLocation = buildLocationList(Entries, HistoryMapEntries);
1934
1935    // Check whether buildLocationList managed to merge all locations to one
1936    // that is valid throughout the variable's scope. If so, produce single
1937    // value location.
1938    if (isValidSingleLocation) {
1939      RegVar->emplace<Loc::Single>(Entries[0].getValues()[0]);
1940      continue;
1941    }
1942
1943    // If the variable has a DIBasicType, extract it.  Basic types cannot have
1944    // unique identifiers, so don't bother resolving the type with the
1945    // identifier map.
1946    const DIBasicType *BT = dyn_cast<DIBasicType>(
1947        static_cast<const Metadata *>(LocalVar->getType()));
1948
1949    // Finalize the entry by lowering it into a DWARF bytestream.
1950    for (auto &Entry : Entries)
1951      Entry.finalize(*Asm, List, BT, TheCU);
1952  }
1953
1954  // For each InlinedEntity collected from DBG_LABEL instructions, convert to
1955  // DWARF-related DbgLabel.
1956  for (const auto &I : DbgLabels) {
1957    InlinedEntity IL = I.first;
1958    const MachineInstr *MI = I.second;
1959    if (MI == nullptr)
1960      continue;
1961
1962    LexicalScope *Scope = nullptr;
1963    const DILabel *Label = cast<DILabel>(IL.first);
1964    // The scope could have an extra lexical block file.
1965    const DILocalScope *LocalScope =
1966        Label->getScope()->getNonLexicalBlockFileScope();
1967    // Get inlined DILocation if it is inlined label.
1968    if (const DILocation *IA = IL.second)
1969      Scope = LScopes.findInlinedScope(LocalScope, IA);
1970    else
1971      Scope = LScopes.findLexicalScope(LocalScope);
1972    // If label scope is not found then skip this label.
1973    if (!Scope)
1974      continue;
1975
1976    Processed.insert(IL);
1977    /// At this point, the temporary label is created.
1978    /// Save the temporary label to DbgLabel entity to get the
1979    /// actually address when generating Dwarf DIE.
1980    MCSymbol *Sym = getLabelBeforeInsn(MI);
1981    createConcreteEntity(TheCU, *Scope, Label, IL.second, Sym);
1982  }
1983
1984  // Collect info for retained nodes.
1985  for (const DINode *DN : SP->getRetainedNodes()) {
1986    const auto *LS = getRetainedNodeScope(DN);
1987    if (isa<DILocalVariable>(DN) || isa<DILabel>(DN)) {
1988      if (!Processed.insert(InlinedEntity(DN, nullptr)).second)
1989        continue;
1990      LexicalScope *LexS = LScopes.findLexicalScope(LS);
1991      if (LexS)
1992        createConcreteEntity(TheCU, *LexS, DN, nullptr);
1993    } else {
1994      LocalDeclsPerLS[LS].insert(DN);
1995    }
1996  }
1997}
1998
1999// Process beginning of an instruction.
2000void DwarfDebug::beginInstruction(const MachineInstr *MI) {
2001  const MachineFunction &MF = *MI->getMF();
2002  const auto *SP = MF.getFunction().getSubprogram();
2003  bool NoDebug =
2004      !SP || SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug;
2005
2006  // Delay slot support check.
2007  auto delaySlotSupported = [](const MachineInstr &MI) {
2008    if (!MI.isBundledWithSucc())
2009      return false;
2010    auto Suc = std::next(MI.getIterator());
2011    (void)Suc;
2012    // Ensure that delay slot instruction is successor of the call instruction.
2013    // Ex. CALL_INSTRUCTION {
2014    //        DELAY_SLOT_INSTRUCTION }
2015    assert(Suc->isBundledWithPred() &&
2016           "Call bundle instructions are out of order");
2017    return true;
2018  };
2019
2020  // When describing calls, we need a label for the call instruction.
2021  if (!NoDebug && SP->areAllCallsDescribed() &&
2022      MI->isCandidateForCallSiteEntry(MachineInstr::AnyInBundle) &&
2023      (!MI->hasDelaySlot() || delaySlotSupported(*MI))) {
2024    const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
2025    bool IsTail = TII->isTailCall(*MI);
2026    // For tail calls, we need the address of the branch instruction for
2027    // DW_AT_call_pc.
2028    if (IsTail)
2029      requestLabelBeforeInsn(MI);
2030    // For non-tail calls, we need the return address for the call for
2031    // DW_AT_call_return_pc. Under GDB tuning, this information is needed for
2032    // tail calls as well.
2033    requestLabelAfterInsn(MI);
2034  }
2035
2036  DebugHandlerBase::beginInstruction(MI);
2037  if (!CurMI)
2038    return;
2039
2040  if (NoDebug)
2041    return;
2042
2043  // Check if source location changes, but ignore DBG_VALUE and CFI locations.
2044  // If the instruction is part of the function frame setup code, do not emit
2045  // any line record, as there is no correspondence with any user code.
2046  if (MI->isMetaInstruction() || MI->getFlag(MachineInstr::FrameSetup))
2047    return;
2048  const DebugLoc &DL = MI->getDebugLoc();
2049  unsigned Flags = 0;
2050
2051  if (MI->getFlag(MachineInstr::FrameDestroy) && DL) {
2052    const MachineBasicBlock *MBB = MI->getParent();
2053    if (MBB && (MBB != EpilogBeginBlock)) {
2054      // First time FrameDestroy has been seen in this basic block
2055      EpilogBeginBlock = MBB;
2056      Flags |= DWARF2_FLAG_EPILOGUE_BEGIN;
2057    }
2058  }
2059
2060  // When we emit a line-0 record, we don't update PrevInstLoc; so look at
2061  // the last line number actually emitted, to see if it was line 0.
2062  unsigned LastAsmLine =
2063      Asm->OutStreamer->getContext().getCurrentDwarfLoc().getLine();
2064
2065  bool PrevInstInSameSection =
2066      (!PrevInstBB ||
2067       PrevInstBB->getSectionIDNum() == MI->getParent()->getSectionIDNum());
2068  if (DL == PrevInstLoc && PrevInstInSameSection) {
2069    // If we have an ongoing unspecified location, nothing to do here.
2070    if (!DL)
2071      return;
2072    // We have an explicit location, same as the previous location.
2073    // But we might be coming back to it after a line 0 record.
2074    if ((LastAsmLine == 0 && DL.getLine() != 0) || Flags) {
2075      // Reinstate the source location but not marked as a statement.
2076      const MDNode *Scope = DL.getScope();
2077      recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags);
2078    }
2079    return;
2080  }
2081
2082  if (!DL) {
2083    // We have an unspecified location, which might want to be line 0.
2084    // If we have already emitted a line-0 record, don't repeat it.
2085    if (LastAsmLine == 0)
2086      return;
2087    // If user said Don't Do That, don't do that.
2088    if (UnknownLocations == Disable)
2089      return;
2090    // See if we have a reason to emit a line-0 record now.
2091    // Reasons to emit a line-0 record include:
2092    // - User asked for it (UnknownLocations).
2093    // - Instruction has a label, so it's referenced from somewhere else,
2094    //   possibly debug information; we want it to have a source location.
2095    // - Instruction is at the top of a block; we don't want to inherit the
2096    //   location from the physically previous (maybe unrelated) block.
2097    if (UnknownLocations == Enable || PrevLabel ||
2098        (PrevInstBB && PrevInstBB != MI->getParent())) {
2099      // Preserve the file and column numbers, if we can, to save space in
2100      // the encoded line table.
2101      // Do not update PrevInstLoc, it remembers the last non-0 line.
2102      const MDNode *Scope = nullptr;
2103      unsigned Column = 0;
2104      if (PrevInstLoc) {
2105        Scope = PrevInstLoc.getScope();
2106        Column = PrevInstLoc.getCol();
2107      }
2108      recordSourceLine(/*Line=*/0, Column, Scope, /*Flags=*/0);
2109    }
2110    return;
2111  }
2112
2113  // We have an explicit location, different from the previous location.
2114  // Don't repeat a line-0 record, but otherwise emit the new location.
2115  // (The new location might be an explicit line 0, which we do emit.)
2116  if (DL.getLine() == 0 && LastAsmLine == 0)
2117    return;
2118  if (DL == PrologEndLoc) {
2119    Flags |= DWARF2_FLAG_PROLOGUE_END | DWARF2_FLAG_IS_STMT;
2120    PrologEndLoc = DebugLoc();
2121  }
2122  // If the line changed, we call that a new statement; unless we went to
2123  // line 0 and came back, in which case it is not a new statement.
2124  unsigned OldLine = PrevInstLoc ? PrevInstLoc.getLine() : LastAsmLine;
2125  if (DL.getLine() && DL.getLine() != OldLine)
2126    Flags |= DWARF2_FLAG_IS_STMT;
2127
2128  const MDNode *Scope = DL.getScope();
2129  recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags);
2130
2131  // If we're not at line 0, remember this location.
2132  if (DL.getLine())
2133    PrevInstLoc = DL;
2134}
2135
2136static std::pair<DebugLoc, bool> findPrologueEndLoc(const MachineFunction *MF) {
2137  // First known non-DBG_VALUE and non-frame setup location marks
2138  // the beginning of the function body.
2139  DebugLoc LineZeroLoc;
2140  const Function &F = MF->getFunction();
2141
2142  // Some instructions may be inserted into prologue after this function. Must
2143  // keep prologue for these cases.
2144  bool IsEmptyPrologue =
2145      !(F.hasPrologueData() || F.getMetadata(LLVMContext::MD_func_sanitize));
2146  for (const auto &MBB : *MF) {
2147    for (const auto &MI : MBB) {
2148      if (!MI.isMetaInstruction()) {
2149        if (!MI.getFlag(MachineInstr::FrameSetup) && MI.getDebugLoc()) {
2150          // Scan forward to try to find a non-zero line number. The
2151          // prologue_end marks the first breakpoint in the function after the
2152          // frame setup, and a compiler-generated line 0 location is not a
2153          // meaningful breakpoint. If none is found, return the first
2154          // location after the frame setup.
2155          if (MI.getDebugLoc().getLine())
2156            return std::make_pair(MI.getDebugLoc(), IsEmptyPrologue);
2157
2158          LineZeroLoc = MI.getDebugLoc();
2159        }
2160        IsEmptyPrologue = false;
2161      }
2162    }
2163  }
2164  return std::make_pair(LineZeroLoc, IsEmptyPrologue);
2165}
2166
2167/// Register a source line with debug info. Returns the  unique label that was
2168/// emitted and which provides correspondence to the source line list.
2169static void recordSourceLine(AsmPrinter &Asm, unsigned Line, unsigned Col,
2170                             const MDNode *S, unsigned Flags, unsigned CUID,
2171                             uint16_t DwarfVersion,
2172                             ArrayRef<std::unique_ptr<DwarfCompileUnit>> DCUs) {
2173  StringRef Fn;
2174  unsigned FileNo = 1;
2175  unsigned Discriminator = 0;
2176  if (auto *Scope = cast_or_null<DIScope>(S)) {
2177    Fn = Scope->getFilename();
2178    if (Line != 0 && DwarfVersion >= 4)
2179      if (auto *LBF = dyn_cast<DILexicalBlockFile>(Scope))
2180        Discriminator = LBF->getDiscriminator();
2181
2182    FileNo = static_cast<DwarfCompileUnit &>(*DCUs[CUID])
2183                 .getOrCreateSourceID(Scope->getFile());
2184  }
2185  Asm.OutStreamer->emitDwarfLocDirective(FileNo, Line, Col, Flags, 0,
2186                                         Discriminator, Fn);
2187}
2188
2189DebugLoc DwarfDebug::emitInitialLocDirective(const MachineFunction &MF,
2190                                             unsigned CUID) {
2191  std::pair<DebugLoc, bool> PrologEnd = findPrologueEndLoc(&MF);
2192  DebugLoc PrologEndLoc = PrologEnd.first;
2193  bool IsEmptyPrologue = PrologEnd.second;
2194
2195  // Get beginning of function.
2196  if (PrologEndLoc) {
2197    // If the prolog is empty, no need to generate scope line for the proc.
2198    if (IsEmptyPrologue)
2199      return PrologEndLoc;
2200
2201    // Ensure the compile unit is created if the function is called before
2202    // beginFunction().
2203    (void)getOrCreateDwarfCompileUnit(
2204        MF.getFunction().getSubprogram()->getUnit());
2205    // We'd like to list the prologue as "not statements" but GDB behaves
2206    // poorly if we do that. Revisit this with caution/GDB (7.5+) testing.
2207    const DISubprogram *SP = PrologEndLoc->getInlinedAtScope()->getSubprogram();
2208    ::recordSourceLine(*Asm, SP->getScopeLine(), 0, SP, DWARF2_FLAG_IS_STMT,
2209                       CUID, getDwarfVersion(), getUnits());
2210    return PrologEndLoc;
2211  }
2212  return DebugLoc();
2213}
2214
2215// Gather pre-function debug information.  Assumes being called immediately
2216// after the function entry point has been emitted.
2217void DwarfDebug::beginFunctionImpl(const MachineFunction *MF) {
2218  CurFn = MF;
2219
2220  auto *SP = MF->getFunction().getSubprogram();
2221  assert(LScopes.empty() || SP == LScopes.getCurrentFunctionScope()->getScopeNode());
2222  if (SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug)
2223    return;
2224
2225  DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(SP->getUnit());
2226
2227  Asm->OutStreamer->getContext().setDwarfCompileUnitID(
2228      getDwarfCompileUnitIDForLineTable(CU));
2229
2230  // Record beginning of function.
2231  PrologEndLoc = emitInitialLocDirective(
2232      *MF, Asm->OutStreamer->getContext().getDwarfCompileUnitID());
2233}
2234
2235unsigned
2236DwarfDebug::getDwarfCompileUnitIDForLineTable(const DwarfCompileUnit &CU) {
2237  // Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function
2238  // belongs to so that we add to the correct per-cu line table in the
2239  // non-asm case.
2240  if (Asm->OutStreamer->hasRawTextSupport())
2241    // Use a single line table if we are generating assembly.
2242    return 0;
2243  else
2244    return CU.getUniqueID();
2245}
2246
2247void DwarfDebug::terminateLineTable(const DwarfCompileUnit *CU) {
2248  const auto &CURanges = CU->getRanges();
2249  auto &LineTable = Asm->OutStreamer->getContext().getMCDwarfLineTable(
2250      getDwarfCompileUnitIDForLineTable(*CU));
2251  // Add the last range label for the given CU.
2252  LineTable.getMCLineSections().addEndEntry(
2253      const_cast<MCSymbol *>(CURanges.back().End));
2254}
2255
2256void DwarfDebug::skippedNonDebugFunction() {
2257  // If we don't have a subprogram for this function then there will be a hole
2258  // in the range information. Keep note of this by setting the previously used
2259  // section to nullptr.
2260  // Terminate the pending line table.
2261  if (PrevCU)
2262    terminateLineTable(PrevCU);
2263  PrevCU = nullptr;
2264  CurFn = nullptr;
2265}
2266
2267// Gather and emit post-function debug information.
2268void DwarfDebug::endFunctionImpl(const MachineFunction *MF) {
2269  const DISubprogram *SP = MF->getFunction().getSubprogram();
2270
2271  assert(CurFn == MF &&
2272      "endFunction should be called with the same function as beginFunction");
2273
2274  // Set DwarfDwarfCompileUnitID in MCContext to default value.
2275  Asm->OutStreamer->getContext().setDwarfCompileUnitID(0);
2276
2277  LexicalScope *FnScope = LScopes.getCurrentFunctionScope();
2278  assert(!FnScope || SP == FnScope->getScopeNode());
2279  DwarfCompileUnit &TheCU = getOrCreateDwarfCompileUnit(SP->getUnit());
2280  if (TheCU.getCUNode()->isDebugDirectivesOnly()) {
2281    PrevLabel = nullptr;
2282    CurFn = nullptr;
2283    return;
2284  }
2285
2286  DenseSet<InlinedEntity> Processed;
2287  collectEntityInfo(TheCU, SP, Processed);
2288
2289  // Add the range of this function to the list of ranges for the CU.
2290  // With basic block sections, add ranges for all basic block sections.
2291  for (const auto &R : Asm->MBBSectionRanges)
2292    TheCU.addRange({R.second.BeginLabel, R.second.EndLabel});
2293
2294  // Under -gmlt, skip building the subprogram if there are no inlined
2295  // subroutines inside it. But with -fdebug-info-for-profiling, the subprogram
2296  // is still needed as we need its source location.
2297  if (!TheCU.getCUNode()->getDebugInfoForProfiling() &&
2298      TheCU.getCUNode()->getEmissionKind() == DICompileUnit::LineTablesOnly &&
2299      LScopes.getAbstractScopesList().empty() && !IsDarwin) {
2300    for (const auto &R : Asm->MBBSectionRanges)
2301      addArangeLabel(SymbolCU(&TheCU, R.second.BeginLabel));
2302
2303    assert(InfoHolder.getScopeVariables().empty());
2304    PrevLabel = nullptr;
2305    CurFn = nullptr;
2306    return;
2307  }
2308
2309#ifndef NDEBUG
2310  size_t NumAbstractSubprograms = LScopes.getAbstractScopesList().size();
2311#endif
2312  for (LexicalScope *AScope : LScopes.getAbstractScopesList()) {
2313    const auto *SP = cast<DISubprogram>(AScope->getScopeNode());
2314    for (const DINode *DN : SP->getRetainedNodes()) {
2315      const auto *LS = getRetainedNodeScope(DN);
2316      // Ensure LexicalScope is created for the scope of this node.
2317      auto *LexS = LScopes.getOrCreateAbstractScope(LS);
2318      assert(LexS && "Expected the LexicalScope to be created.");
2319      if (isa<DILocalVariable>(DN) || isa<DILabel>(DN)) {
2320        // Collect info for variables/labels that were optimized out.
2321        if (!Processed.insert(InlinedEntity(DN, nullptr)).second ||
2322            TheCU.getExistingAbstractEntity(DN))
2323          continue;
2324        TheCU.createAbstractEntity(DN, LexS);
2325      } else {
2326        // Remember the node if this is a local declarations.
2327        LocalDeclsPerLS[LS].insert(DN);
2328      }
2329      assert(
2330          LScopes.getAbstractScopesList().size() == NumAbstractSubprograms &&
2331          "getOrCreateAbstractScope() inserted an abstract subprogram scope");
2332    }
2333    constructAbstractSubprogramScopeDIE(TheCU, AScope);
2334  }
2335
2336  ProcessedSPNodes.insert(SP);
2337  DIE &ScopeDIE = TheCU.constructSubprogramScopeDIE(SP, FnScope);
2338  if (auto *SkelCU = TheCU.getSkeleton())
2339    if (!LScopes.getAbstractScopesList().empty() &&
2340        TheCU.getCUNode()->getSplitDebugInlining())
2341      SkelCU->constructSubprogramScopeDIE(SP, FnScope);
2342
2343  // Construct call site entries.
2344  constructCallSiteEntryDIEs(*SP, TheCU, ScopeDIE, *MF);
2345
2346  // Clear debug info
2347  // Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the
2348  // DbgVariables except those that are also in AbstractVariables (since they
2349  // can be used cross-function)
2350  InfoHolder.getScopeVariables().clear();
2351  InfoHolder.getScopeLabels().clear();
2352  LocalDeclsPerLS.clear();
2353  PrevLabel = nullptr;
2354  CurFn = nullptr;
2355}
2356
2357// Register a source line with debug info. Returns the  unique label that was
2358// emitted and which provides correspondence to the source line list.
2359void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S,
2360                                  unsigned Flags) {
2361  ::recordSourceLine(*Asm, Line, Col, S, Flags,
2362                     Asm->OutStreamer->getContext().getDwarfCompileUnitID(),
2363                     getDwarfVersion(), getUnits());
2364}
2365
2366//===----------------------------------------------------------------------===//
2367// Emit Methods
2368//===----------------------------------------------------------------------===//
2369
2370// Emit the debug info section.
2371void DwarfDebug::emitDebugInfo() {
2372  DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2373  Holder.emitUnits(/* UseOffsets */ false);
2374}
2375
2376// Emit the abbreviation section.
2377void DwarfDebug::emitAbbreviations() {
2378  DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2379
2380  Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection());
2381}
2382
2383void DwarfDebug::emitStringOffsetsTableHeader() {
2384  DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2385  Holder.getStringPool().emitStringOffsetsTableHeader(
2386      *Asm, Asm->getObjFileLowering().getDwarfStrOffSection(),
2387      Holder.getStringOffsetsStartSym());
2388}
2389
2390template <typename AccelTableT>
2391void DwarfDebug::emitAccel(AccelTableT &Accel, MCSection *Section,
2392                           StringRef TableName) {
2393  Asm->OutStreamer->switchSection(Section);
2394
2395  // Emit the full data.
2396  emitAppleAccelTable(Asm, Accel, TableName, Section->getBeginSymbol());
2397}
2398
2399void DwarfDebug::emitAccelDebugNames() {
2400  // Don't emit anything if we have no compilation units to index.
2401  if (getUnits().empty())
2402    return;
2403
2404  emitDWARF5AccelTable(Asm, AccelDebugNames, *this, getUnits());
2405}
2406
2407// Emit visible names into a hashed accelerator table section.
2408void DwarfDebug::emitAccelNames() {
2409  emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(),
2410            "Names");
2411}
2412
2413// Emit objective C classes and categories into a hashed accelerator table
2414// section.
2415void DwarfDebug::emitAccelObjC() {
2416  emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(),
2417            "ObjC");
2418}
2419
2420// Emit namespace dies into a hashed accelerator table.
2421void DwarfDebug::emitAccelNamespaces() {
2422  emitAccel(AccelNamespace,
2423            Asm->getObjFileLowering().getDwarfAccelNamespaceSection(),
2424            "namespac");
2425}
2426
2427// Emit type dies into a hashed accelerator table.
2428void DwarfDebug::emitAccelTypes() {
2429  emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(),
2430            "types");
2431}
2432
2433// Public name handling.
2434// The format for the various pubnames:
2435//
2436// dwarf pubnames - offset/name pairs where the offset is the offset into the CU
2437// for the DIE that is named.
2438//
2439// gnu pubnames - offset/index value/name tuples where the offset is the offset
2440// into the CU and the index value is computed according to the type of value
2441// for the DIE that is named.
2442//
2443// For type units the offset is the offset of the skeleton DIE. For split dwarf
2444// it's the offset within the debug_info/debug_types dwo section, however, the
2445// reference in the pubname header doesn't change.
2446
2447/// computeIndexValue - Compute the gdb index value for the DIE and CU.
2448static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU,
2449                                                        const DIE *Die) {
2450  // Entities that ended up only in a Type Unit reference the CU instead (since
2451  // the pub entry has offsets within the CU there's no real offset that can be
2452  // provided anyway). As it happens all such entities (namespaces and types,
2453  // types only in C++ at that) are rendered as TYPE+EXTERNAL. If this turns out
2454  // not to be true it would be necessary to persist this information from the
2455  // point at which the entry is added to the index data structure - since by
2456  // the time the index is built from that, the original type/namespace DIE in a
2457  // type unit has already been destroyed so it can't be queried for properties
2458  // like tag, etc.
2459  if (Die->getTag() == dwarf::DW_TAG_compile_unit)
2460    return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE,
2461                                          dwarf::GIEL_EXTERNAL);
2462  dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC;
2463
2464  // We could have a specification DIE that has our most of our knowledge,
2465  // look for that now.
2466  if (DIEValue SpecVal = Die->findAttribute(dwarf::DW_AT_specification)) {
2467    DIE &SpecDIE = SpecVal.getDIEEntry().getEntry();
2468    if (SpecDIE.findAttribute(dwarf::DW_AT_external))
2469      Linkage = dwarf::GIEL_EXTERNAL;
2470  } else if (Die->findAttribute(dwarf::DW_AT_external))
2471    Linkage = dwarf::GIEL_EXTERNAL;
2472
2473  switch (Die->getTag()) {
2474  case dwarf::DW_TAG_class_type:
2475  case dwarf::DW_TAG_structure_type:
2476  case dwarf::DW_TAG_union_type:
2477  case dwarf::DW_TAG_enumeration_type:
2478    return dwarf::PubIndexEntryDescriptor(
2479        dwarf::GIEK_TYPE,
2480        dwarf::isCPlusPlus((dwarf::SourceLanguage)CU->getLanguage())
2481            ? dwarf::GIEL_EXTERNAL
2482            : dwarf::GIEL_STATIC);
2483  case dwarf::DW_TAG_typedef:
2484  case dwarf::DW_TAG_base_type:
2485  case dwarf::DW_TAG_subrange_type:
2486    return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC);
2487  case dwarf::DW_TAG_namespace:
2488    return dwarf::GIEK_TYPE;
2489  case dwarf::DW_TAG_subprogram:
2490    return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage);
2491  case dwarf::DW_TAG_variable:
2492    return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage);
2493  case dwarf::DW_TAG_enumerator:
2494    return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE,
2495                                          dwarf::GIEL_STATIC);
2496  default:
2497    return dwarf::GIEK_NONE;
2498  }
2499}
2500
2501/// emitDebugPubSections - Emit visible names and types into debug pubnames and
2502/// pubtypes sections.
2503void DwarfDebug::emitDebugPubSections() {
2504  for (const auto &NU : CUMap) {
2505    DwarfCompileUnit *TheU = NU.second;
2506    if (!TheU->hasDwarfPubSections())
2507      continue;
2508
2509    bool GnuStyle = TheU->getCUNode()->getNameTableKind() ==
2510                    DICompileUnit::DebugNameTableKind::GNU;
2511
2512    Asm->OutStreamer->switchSection(
2513        GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection()
2514                 : Asm->getObjFileLowering().getDwarfPubNamesSection());
2515    emitDebugPubSection(GnuStyle, "Names", TheU, TheU->getGlobalNames());
2516
2517    Asm->OutStreamer->switchSection(
2518        GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection()
2519                 : Asm->getObjFileLowering().getDwarfPubTypesSection());
2520    emitDebugPubSection(GnuStyle, "Types", TheU, TheU->getGlobalTypes());
2521  }
2522}
2523
2524void DwarfDebug::emitSectionReference(const DwarfCompileUnit &CU) {
2525  if (useSectionsAsReferences())
2526    Asm->emitDwarfOffset(CU.getSection()->getBeginSymbol(),
2527                         CU.getDebugSectionOffset());
2528  else
2529    Asm->emitDwarfSymbolReference(CU.getLabelBegin());
2530}
2531
2532void DwarfDebug::emitDebugPubSection(bool GnuStyle, StringRef Name,
2533                                     DwarfCompileUnit *TheU,
2534                                     const StringMap<const DIE *> &Globals) {
2535  if (auto *Skeleton = TheU->getSkeleton())
2536    TheU = Skeleton;
2537
2538  // Emit the header.
2539  MCSymbol *EndLabel = Asm->emitDwarfUnitLength(
2540      "pub" + Name, "Length of Public " + Name + " Info");
2541
2542  Asm->OutStreamer->AddComment("DWARF Version");
2543  Asm->emitInt16(dwarf::DW_PUBNAMES_VERSION);
2544
2545  Asm->OutStreamer->AddComment("Offset of Compilation Unit Info");
2546  emitSectionReference(*TheU);
2547
2548  Asm->OutStreamer->AddComment("Compilation Unit Length");
2549  Asm->emitDwarfLengthOrOffset(TheU->getLength());
2550
2551  // Emit the pubnames for this compilation unit.
2552  SmallVector<std::pair<StringRef, const DIE *>, 0> Vec;
2553  for (const auto &GI : Globals)
2554    Vec.emplace_back(GI.first(), GI.second);
2555  llvm::sort(Vec, [](auto &A, auto &B) {
2556    return A.second->getOffset() < B.second->getOffset();
2557  });
2558  for (const auto &[Name, Entity] : Vec) {
2559    Asm->OutStreamer->AddComment("DIE offset");
2560    Asm->emitDwarfLengthOrOffset(Entity->getOffset());
2561
2562    if (GnuStyle) {
2563      dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity);
2564      Asm->OutStreamer->AddComment(
2565          Twine("Attributes: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) +
2566          ", " + dwarf::GDBIndexEntryLinkageString(Desc.Linkage));
2567      Asm->emitInt8(Desc.toBits());
2568    }
2569
2570    Asm->OutStreamer->AddComment("External Name");
2571    Asm->OutStreamer->emitBytes(StringRef(Name.data(), Name.size() + 1));
2572  }
2573
2574  Asm->OutStreamer->AddComment("End Mark");
2575  Asm->emitDwarfLengthOrOffset(0);
2576  Asm->OutStreamer->emitLabel(EndLabel);
2577}
2578
2579/// Emit null-terminated strings into a debug str section.
2580void DwarfDebug::emitDebugStr() {
2581  MCSection *StringOffsetsSection = nullptr;
2582  if (useSegmentedStringOffsetsTable()) {
2583    emitStringOffsetsTableHeader();
2584    StringOffsetsSection = Asm->getObjFileLowering().getDwarfStrOffSection();
2585  }
2586  DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2587  Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection(),
2588                     StringOffsetsSection, /* UseRelativeOffsets = */ true);
2589}
2590
2591void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer,
2592                                   const DebugLocStream::Entry &Entry,
2593                                   const DwarfCompileUnit *CU) {
2594  auto &&Comments = DebugLocs.getComments(Entry);
2595  auto Comment = Comments.begin();
2596  auto End = Comments.end();
2597
2598  // The expressions are inserted into a byte stream rather early (see
2599  // DwarfExpression::addExpression) so for those ops (e.g. DW_OP_convert) that
2600  // need to reference a base_type DIE the offset of that DIE is not yet known.
2601  // To deal with this we instead insert a placeholder early and then extract
2602  // it here and replace it with the real reference.
2603  unsigned PtrSize = Asm->MAI->getCodePointerSize();
2604  DWARFDataExtractor Data(StringRef(DebugLocs.getBytes(Entry).data(),
2605                                    DebugLocs.getBytes(Entry).size()),
2606                          Asm->getDataLayout().isLittleEndian(), PtrSize);
2607  DWARFExpression Expr(Data, PtrSize, Asm->OutContext.getDwarfFormat());
2608
2609  using Encoding = DWARFExpression::Operation::Encoding;
2610  uint64_t Offset = 0;
2611  for (const auto &Op : Expr) {
2612    assert(Op.getCode() != dwarf::DW_OP_const_type &&
2613           "3 operand ops not yet supported");
2614    assert(!Op.getSubCode() && "SubOps not yet supported");
2615    Streamer.emitInt8(Op.getCode(), Comment != End ? *(Comment++) : "");
2616    Offset++;
2617    for (unsigned I = 0; I < Op.getDescription().Op.size(); ++I) {
2618      if (Op.getDescription().Op[I] == Encoding::BaseTypeRef) {
2619        unsigned Length =
2620          Streamer.emitDIERef(*CU->ExprRefedBaseTypes[Op.getRawOperand(I)].Die);
2621        // Make sure comments stay aligned.
2622        for (unsigned J = 0; J < Length; ++J)
2623          if (Comment != End)
2624            Comment++;
2625      } else {
2626        for (uint64_t J = Offset; J < Op.getOperandEndOffset(I); ++J)
2627          Streamer.emitInt8(Data.getData()[J], Comment != End ? *(Comment++) : "");
2628      }
2629      Offset = Op.getOperandEndOffset(I);
2630    }
2631    assert(Offset == Op.getEndOffset());
2632  }
2633}
2634
2635void DwarfDebug::emitDebugLocValue(const AsmPrinter &AP, const DIBasicType *BT,
2636                                   const DbgValueLoc &Value,
2637                                   DwarfExpression &DwarfExpr) {
2638  auto *DIExpr = Value.getExpression();
2639  DIExpressionCursor ExprCursor(DIExpr);
2640  DwarfExpr.addFragmentOffset(DIExpr);
2641
2642  // If the DIExpr is an Entry Value, we want to follow the same code path
2643  // regardless of whether the DBG_VALUE is variadic or not.
2644  if (DIExpr && DIExpr->isEntryValue()) {
2645    // Entry values can only be a single register with no additional DIExpr,
2646    // so just add it directly.
2647    assert(Value.getLocEntries().size() == 1);
2648    assert(Value.getLocEntries()[0].isLocation());
2649    MachineLocation Location = Value.getLocEntries()[0].getLoc();
2650    DwarfExpr.setLocation(Location, DIExpr);
2651
2652    DwarfExpr.beginEntryValueExpression(ExprCursor);
2653
2654    const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo();
2655    if (!DwarfExpr.addMachineRegExpression(TRI, ExprCursor, Location.getReg()))
2656      return;
2657    return DwarfExpr.addExpression(std::move(ExprCursor));
2658  }
2659
2660  // Regular entry.
2661  auto EmitValueLocEntry = [&DwarfExpr, &BT,
2662                            &AP](const DbgValueLocEntry &Entry,
2663                                 DIExpressionCursor &Cursor) -> bool {
2664    if (Entry.isInt()) {
2665      if (BT && (BT->getEncoding() == dwarf::DW_ATE_signed ||
2666                 BT->getEncoding() == dwarf::DW_ATE_signed_char))
2667        DwarfExpr.addSignedConstant(Entry.getInt());
2668      else
2669        DwarfExpr.addUnsignedConstant(Entry.getInt());
2670    } else if (Entry.isLocation()) {
2671      MachineLocation Location = Entry.getLoc();
2672      if (Location.isIndirect())
2673        DwarfExpr.setMemoryLocationKind();
2674
2675      const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo();
2676      if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Location.getReg()))
2677        return false;
2678    } else if (Entry.isTargetIndexLocation()) {
2679      TargetIndexLocation Loc = Entry.getTargetIndexLocation();
2680      // TODO TargetIndexLocation is a target-independent. Currently only the
2681      // WebAssembly-specific encoding is supported.
2682      assert(AP.TM.getTargetTriple().isWasm());
2683      DwarfExpr.addWasmLocation(Loc.Index, static_cast<uint64_t>(Loc.Offset));
2684    } else if (Entry.isConstantFP()) {
2685      if (AP.getDwarfVersion() >= 4 && !AP.getDwarfDebug()->tuneForSCE() &&
2686          !Cursor) {
2687        DwarfExpr.addConstantFP(Entry.getConstantFP()->getValueAPF(), AP);
2688      } else if (Entry.getConstantFP()
2689                     ->getValueAPF()
2690                     .bitcastToAPInt()
2691                     .getBitWidth() <= 64 /*bits*/) {
2692        DwarfExpr.addUnsignedConstant(
2693            Entry.getConstantFP()->getValueAPF().bitcastToAPInt());
2694      } else {
2695        LLVM_DEBUG(
2696            dbgs() << "Skipped DwarfExpression creation for ConstantFP of size"
2697                   << Entry.getConstantFP()
2698                          ->getValueAPF()
2699                          .bitcastToAPInt()
2700                          .getBitWidth()
2701                   << " bits\n");
2702        return false;
2703      }
2704    }
2705    return true;
2706  };
2707
2708  if (!Value.isVariadic()) {
2709    if (!EmitValueLocEntry(Value.getLocEntries()[0], ExprCursor))
2710      return;
2711    DwarfExpr.addExpression(std::move(ExprCursor));
2712    return;
2713  }
2714
2715  // If any of the location entries are registers with the value 0, then the
2716  // location is undefined.
2717  if (any_of(Value.getLocEntries(), [](const DbgValueLocEntry &Entry) {
2718        return Entry.isLocation() && !Entry.getLoc().getReg();
2719      }))
2720    return;
2721
2722  DwarfExpr.addExpression(
2723      std::move(ExprCursor),
2724      [EmitValueLocEntry, &Value](unsigned Idx,
2725                                  DIExpressionCursor &Cursor) -> bool {
2726        return EmitValueLocEntry(Value.getLocEntries()[Idx], Cursor);
2727      });
2728}
2729
2730void DebugLocEntry::finalize(const AsmPrinter &AP,
2731                             DebugLocStream::ListBuilder &List,
2732                             const DIBasicType *BT,
2733                             DwarfCompileUnit &TheCU) {
2734  assert(!Values.empty() &&
2735         "location list entries without values are redundant");
2736  assert(Begin != End && "unexpected location list entry with empty range");
2737  DebugLocStream::EntryBuilder Entry(List, Begin, End);
2738  BufferByteStreamer Streamer = Entry.getStreamer();
2739  DebugLocDwarfExpression DwarfExpr(AP.getDwarfVersion(), Streamer, TheCU);
2740  const DbgValueLoc &Value = Values[0];
2741  if (Value.isFragment()) {
2742    // Emit all fragments that belong to the same variable and range.
2743    assert(llvm::all_of(Values, [](DbgValueLoc P) {
2744          return P.isFragment();
2745        }) && "all values are expected to be fragments");
2746    assert(llvm::is_sorted(Values) && "fragments are expected to be sorted");
2747
2748    for (const auto &Fragment : Values)
2749      DwarfDebug::emitDebugLocValue(AP, BT, Fragment, DwarfExpr);
2750
2751  } else {
2752    assert(Values.size() == 1 && "only fragments may have >1 value");
2753    DwarfDebug::emitDebugLocValue(AP, BT, Value, DwarfExpr);
2754  }
2755  DwarfExpr.finalize();
2756  if (DwarfExpr.TagOffset)
2757    List.setTagOffset(*DwarfExpr.TagOffset);
2758}
2759
2760void DwarfDebug::emitDebugLocEntryLocation(const DebugLocStream::Entry &Entry,
2761                                           const DwarfCompileUnit *CU) {
2762  // Emit the size.
2763  Asm->OutStreamer->AddComment("Loc expr size");
2764  if (getDwarfVersion() >= 5)
2765    Asm->emitULEB128(DebugLocs.getBytes(Entry).size());
2766  else if (DebugLocs.getBytes(Entry).size() <= std::numeric_limits<uint16_t>::max())
2767    Asm->emitInt16(DebugLocs.getBytes(Entry).size());
2768  else {
2769    // The entry is too big to fit into 16 bit, drop it as there is nothing we
2770    // can do.
2771    Asm->emitInt16(0);
2772    return;
2773  }
2774  // Emit the entry.
2775  APByteStreamer Streamer(*Asm);
2776  emitDebugLocEntry(Streamer, Entry, CU);
2777}
2778
2779// Emit the header of a DWARF 5 range list table list table. Returns the symbol
2780// that designates the end of the table for the caller to emit when the table is
2781// complete.
2782static MCSymbol *emitRnglistsTableHeader(AsmPrinter *Asm,
2783                                         const DwarfFile &Holder) {
2784  MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer);
2785
2786  Asm->OutStreamer->AddComment("Offset entry count");
2787  Asm->emitInt32(Holder.getRangeLists().size());
2788  Asm->OutStreamer->emitLabel(Holder.getRnglistsTableBaseSym());
2789
2790  for (const RangeSpanList &List : Holder.getRangeLists())
2791    Asm->emitLabelDifference(List.Label, Holder.getRnglistsTableBaseSym(),
2792                             Asm->getDwarfOffsetByteSize());
2793
2794  return TableEnd;
2795}
2796
2797// Emit the header of a DWARF 5 locations list table. Returns the symbol that
2798// designates the end of the table for the caller to emit when the table is
2799// complete.
2800static MCSymbol *emitLoclistsTableHeader(AsmPrinter *Asm,
2801                                         const DwarfDebug &DD) {
2802  MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer);
2803
2804  const auto &DebugLocs = DD.getDebugLocs();
2805
2806  Asm->OutStreamer->AddComment("Offset entry count");
2807  Asm->emitInt32(DebugLocs.getLists().size());
2808  Asm->OutStreamer->emitLabel(DebugLocs.getSym());
2809
2810  for (const auto &List : DebugLocs.getLists())
2811    Asm->emitLabelDifference(List.Label, DebugLocs.getSym(),
2812                             Asm->getDwarfOffsetByteSize());
2813
2814  return TableEnd;
2815}
2816
2817template <typename Ranges, typename PayloadEmitter>
2818static void emitRangeList(
2819    DwarfDebug &DD, AsmPrinter *Asm, MCSymbol *Sym, const Ranges &R,
2820    const DwarfCompileUnit &CU, unsigned BaseAddressx, unsigned OffsetPair,
2821    unsigned StartxLength, unsigned EndOfList,
2822    StringRef (*StringifyEnum)(unsigned),
2823    bool ShouldUseBaseAddress,
2824    PayloadEmitter EmitPayload) {
2825
2826  auto Size = Asm->MAI->getCodePointerSize();
2827  bool UseDwarf5 = DD.getDwarfVersion() >= 5;
2828
2829  // Emit our symbol so we can find the beginning of the range.
2830  Asm->OutStreamer->emitLabel(Sym);
2831
2832  // Gather all the ranges that apply to the same section so they can share
2833  // a base address entry.
2834  MapVector<const MCSection *, std::vector<decltype(&*R.begin())>> SectionRanges;
2835
2836  for (const auto &Range : R)
2837    SectionRanges[&Range.Begin->getSection()].push_back(&Range);
2838
2839  const MCSymbol *CUBase = CU.getBaseAddress();
2840  bool BaseIsSet = false;
2841  for (const auto &P : SectionRanges) {
2842    auto *Base = CUBase;
2843    if (!Base && ShouldUseBaseAddress) {
2844      const MCSymbol *Begin = P.second.front()->Begin;
2845      const MCSymbol *NewBase = DD.getSectionLabel(&Begin->getSection());
2846      if (!UseDwarf5) {
2847        Base = NewBase;
2848        BaseIsSet = true;
2849        Asm->OutStreamer->emitIntValue(-1, Size);
2850        Asm->OutStreamer->AddComment("  base address");
2851        Asm->OutStreamer->emitSymbolValue(Base, Size);
2852      } else if (NewBase != Begin || P.second.size() > 1) {
2853        // Only use a base address if
2854        //  * the existing pool address doesn't match (NewBase != Begin)
2855        //  * or, there's more than one entry to share the base address
2856        Base = NewBase;
2857        BaseIsSet = true;
2858        Asm->OutStreamer->AddComment(StringifyEnum(BaseAddressx));
2859        Asm->emitInt8(BaseAddressx);
2860        Asm->OutStreamer->AddComment("  base address index");
2861        Asm->emitULEB128(DD.getAddressPool().getIndex(Base));
2862      }
2863    } else if (BaseIsSet && !UseDwarf5) {
2864      BaseIsSet = false;
2865      assert(!Base);
2866      Asm->OutStreamer->emitIntValue(-1, Size);
2867      Asm->OutStreamer->emitIntValue(0, Size);
2868    }
2869
2870    for (const auto *RS : P.second) {
2871      const MCSymbol *Begin = RS->Begin;
2872      const MCSymbol *End = RS->End;
2873      assert(Begin && "Range without a begin symbol?");
2874      assert(End && "Range without an end symbol?");
2875      if (Base) {
2876        if (UseDwarf5) {
2877          // Emit offset_pair when we have a base.
2878          Asm->OutStreamer->AddComment(StringifyEnum(OffsetPair));
2879          Asm->emitInt8(OffsetPair);
2880          Asm->OutStreamer->AddComment("  starting offset");
2881          Asm->emitLabelDifferenceAsULEB128(Begin, Base);
2882          Asm->OutStreamer->AddComment("  ending offset");
2883          Asm->emitLabelDifferenceAsULEB128(End, Base);
2884        } else {
2885          Asm->emitLabelDifference(Begin, Base, Size);
2886          Asm->emitLabelDifference(End, Base, Size);
2887        }
2888      } else if (UseDwarf5) {
2889        Asm->OutStreamer->AddComment(StringifyEnum(StartxLength));
2890        Asm->emitInt8(StartxLength);
2891        Asm->OutStreamer->AddComment("  start index");
2892        Asm->emitULEB128(DD.getAddressPool().getIndex(Begin));
2893        Asm->OutStreamer->AddComment("  length");
2894        Asm->emitLabelDifferenceAsULEB128(End, Begin);
2895      } else {
2896        Asm->OutStreamer->emitSymbolValue(Begin, Size);
2897        Asm->OutStreamer->emitSymbolValue(End, Size);
2898      }
2899      EmitPayload(*RS);
2900    }
2901  }
2902
2903  if (UseDwarf5) {
2904    Asm->OutStreamer->AddComment(StringifyEnum(EndOfList));
2905    Asm->emitInt8(EndOfList);
2906  } else {
2907    // Terminate the list with two 0 values.
2908    Asm->OutStreamer->emitIntValue(0, Size);
2909    Asm->OutStreamer->emitIntValue(0, Size);
2910  }
2911}
2912
2913// Handles emission of both debug_loclist / debug_loclist.dwo
2914static void emitLocList(DwarfDebug &DD, AsmPrinter *Asm, const DebugLocStream::List &List) {
2915  emitRangeList(DD, Asm, List.Label, DD.getDebugLocs().getEntries(List),
2916                *List.CU, dwarf::DW_LLE_base_addressx,
2917                dwarf::DW_LLE_offset_pair, dwarf::DW_LLE_startx_length,
2918                dwarf::DW_LLE_end_of_list, llvm::dwarf::LocListEncodingString,
2919                /* ShouldUseBaseAddress */ true,
2920                [&](const DebugLocStream::Entry &E) {
2921                  DD.emitDebugLocEntryLocation(E, List.CU);
2922                });
2923}
2924
2925void DwarfDebug::emitDebugLocImpl(MCSection *Sec) {
2926  if (DebugLocs.getLists().empty())
2927    return;
2928
2929  Asm->OutStreamer->switchSection(Sec);
2930
2931  MCSymbol *TableEnd = nullptr;
2932  if (getDwarfVersion() >= 5)
2933    TableEnd = emitLoclistsTableHeader(Asm, *this);
2934
2935  for (const auto &List : DebugLocs.getLists())
2936    emitLocList(*this, Asm, List);
2937
2938  if (TableEnd)
2939    Asm->OutStreamer->emitLabel(TableEnd);
2940}
2941
2942// Emit locations into the .debug_loc/.debug_loclists section.
2943void DwarfDebug::emitDebugLoc() {
2944  emitDebugLocImpl(
2945      getDwarfVersion() >= 5
2946          ? Asm->getObjFileLowering().getDwarfLoclistsSection()
2947          : Asm->getObjFileLowering().getDwarfLocSection());
2948}
2949
2950// Emit locations into the .debug_loc.dwo/.debug_loclists.dwo section.
2951void DwarfDebug::emitDebugLocDWO() {
2952  if (getDwarfVersion() >= 5) {
2953    emitDebugLocImpl(
2954        Asm->getObjFileLowering().getDwarfLoclistsDWOSection());
2955
2956    return;
2957  }
2958
2959  for (const auto &List : DebugLocs.getLists()) {
2960    Asm->OutStreamer->switchSection(
2961        Asm->getObjFileLowering().getDwarfLocDWOSection());
2962    Asm->OutStreamer->emitLabel(List.Label);
2963
2964    for (const auto &Entry : DebugLocs.getEntries(List)) {
2965      // GDB only supports startx_length in pre-standard split-DWARF.
2966      // (in v5 standard loclists, it currently* /only/ supports base_address +
2967      // offset_pair, so the implementations can't really share much since they
2968      // need to use different representations)
2969      // * as of October 2018, at least
2970      //
2971      // In v5 (see emitLocList), this uses SectionLabels to reuse existing
2972      // addresses in the address pool to minimize object size/relocations.
2973      Asm->emitInt8(dwarf::DW_LLE_startx_length);
2974      unsigned idx = AddrPool.getIndex(Entry.Begin);
2975      Asm->emitULEB128(idx);
2976      // Also the pre-standard encoding is slightly different, emitting this as
2977      // an address-length entry here, but its a ULEB128 in DWARFv5 loclists.
2978      Asm->emitLabelDifference(Entry.End, Entry.Begin, 4);
2979      emitDebugLocEntryLocation(Entry, List.CU);
2980    }
2981    Asm->emitInt8(dwarf::DW_LLE_end_of_list);
2982  }
2983}
2984
2985struct ArangeSpan {
2986  const MCSymbol *Start, *End;
2987};
2988
2989// Emit a debug aranges section, containing a CU lookup for any
2990// address we can tie back to a CU.
2991void DwarfDebug::emitDebugARanges() {
2992  // Provides a unique id per text section.
2993  MapVector<MCSection *, SmallVector<SymbolCU, 8>> SectionMap;
2994
2995  // Filter labels by section.
2996  for (const SymbolCU &SCU : ArangeLabels) {
2997    if (SCU.Sym->isInSection()) {
2998      // Make a note of this symbol and it's section.
2999      MCSection *Section = &SCU.Sym->getSection();
3000      if (!Section->getKind().isMetadata())
3001        SectionMap[Section].push_back(SCU);
3002    } else {
3003      // Some symbols (e.g. common/bss on mach-o) can have no section but still
3004      // appear in the output. This sucks as we rely on sections to build
3005      // arange spans. We can do it without, but it's icky.
3006      SectionMap[nullptr].push_back(SCU);
3007    }
3008  }
3009
3010  DenseMap<DwarfCompileUnit *, std::vector<ArangeSpan>> Spans;
3011
3012  for (auto &I : SectionMap) {
3013    MCSection *Section = I.first;
3014    SmallVector<SymbolCU, 8> &List = I.second;
3015    if (List.size() < 1)
3016      continue;
3017
3018    // If we have no section (e.g. common), just write out
3019    // individual spans for each symbol.
3020    if (!Section) {
3021      for (const SymbolCU &Cur : List) {
3022        ArangeSpan Span;
3023        Span.Start = Cur.Sym;
3024        Span.End = nullptr;
3025        assert(Cur.CU);
3026        Spans[Cur.CU].push_back(Span);
3027      }
3028      continue;
3029    }
3030
3031    // Sort the symbols by offset within the section.
3032    llvm::stable_sort(List, [&](const SymbolCU &A, const SymbolCU &B) {
3033      unsigned IA = A.Sym ? Asm->OutStreamer->getSymbolOrder(A.Sym) : 0;
3034      unsigned IB = B.Sym ? Asm->OutStreamer->getSymbolOrder(B.Sym) : 0;
3035
3036      // Symbols with no order assigned should be placed at the end.
3037      // (e.g. section end labels)
3038      if (IA == 0)
3039        return false;
3040      if (IB == 0)
3041        return true;
3042      return IA < IB;
3043    });
3044
3045    // Insert a final terminator.
3046    List.push_back(SymbolCU(nullptr, Asm->OutStreamer->endSection(Section)));
3047
3048    // Build spans between each label.
3049    const MCSymbol *StartSym = List[0].Sym;
3050    for (size_t n = 1, e = List.size(); n < e; n++) {
3051      const SymbolCU &Prev = List[n - 1];
3052      const SymbolCU &Cur = List[n];
3053
3054      // Try and build the longest span we can within the same CU.
3055      if (Cur.CU != Prev.CU) {
3056        ArangeSpan Span;
3057        Span.Start = StartSym;
3058        Span.End = Cur.Sym;
3059        assert(Prev.CU);
3060        Spans[Prev.CU].push_back(Span);
3061        StartSym = Cur.Sym;
3062      }
3063    }
3064  }
3065
3066  // Start the dwarf aranges section.
3067  Asm->OutStreamer->switchSection(
3068      Asm->getObjFileLowering().getDwarfARangesSection());
3069
3070  unsigned PtrSize = Asm->MAI->getCodePointerSize();
3071
3072  // Build a list of CUs used.
3073  std::vector<DwarfCompileUnit *> CUs;
3074  for (const auto &it : Spans) {
3075    DwarfCompileUnit *CU = it.first;
3076    CUs.push_back(CU);
3077  }
3078
3079  // Sort the CU list (again, to ensure consistent output order).
3080  llvm::sort(CUs, [](const DwarfCompileUnit *A, const DwarfCompileUnit *B) {
3081    return A->getUniqueID() < B->getUniqueID();
3082  });
3083
3084  // Emit an arange table for each CU we used.
3085  for (DwarfCompileUnit *CU : CUs) {
3086    std::vector<ArangeSpan> &List = Spans[CU];
3087
3088    // Describe the skeleton CU's offset and length, not the dwo file's.
3089    if (auto *Skel = CU->getSkeleton())
3090      CU = Skel;
3091
3092    // Emit size of content not including length itself.
3093    unsigned ContentSize =
3094        sizeof(int16_t) +               // DWARF ARange version number
3095        Asm->getDwarfOffsetByteSize() + // Offset of CU in the .debug_info
3096                                        // section
3097        sizeof(int8_t) +                // Pointer Size (in bytes)
3098        sizeof(int8_t);                 // Segment Size (in bytes)
3099
3100    unsigned TupleSize = PtrSize * 2;
3101
3102    // 7.20 in the Dwarf specs requires the table to be aligned to a tuple.
3103    unsigned Padding = offsetToAlignment(
3104        Asm->getUnitLengthFieldByteSize() + ContentSize, Align(TupleSize));
3105
3106    ContentSize += Padding;
3107    ContentSize += (List.size() + 1) * TupleSize;
3108
3109    // For each compile unit, write the list of spans it covers.
3110    Asm->emitDwarfUnitLength(ContentSize, "Length of ARange Set");
3111    Asm->OutStreamer->AddComment("DWARF Arange version number");
3112    Asm->emitInt16(dwarf::DW_ARANGES_VERSION);
3113    Asm->OutStreamer->AddComment("Offset Into Debug Info Section");
3114    emitSectionReference(*CU);
3115    Asm->OutStreamer->AddComment("Address Size (in bytes)");
3116    Asm->emitInt8(PtrSize);
3117    Asm->OutStreamer->AddComment("Segment Size (in bytes)");
3118    Asm->emitInt8(0);
3119
3120    Asm->OutStreamer->emitFill(Padding, 0xff);
3121
3122    for (const ArangeSpan &Span : List) {
3123      Asm->emitLabelReference(Span.Start, PtrSize);
3124
3125      // Calculate the size as being from the span start to its end.
3126      //
3127      // If the size is zero, then round it up to one byte. The DWARF
3128      // specification requires that entries in this table have nonzero
3129      // lengths.
3130      auto SizeRef = SymSize.find(Span.Start);
3131      if ((SizeRef == SymSize.end() || SizeRef->second != 0) && Span.End) {
3132        Asm->emitLabelDifference(Span.End, Span.Start, PtrSize);
3133      } else {
3134        // For symbols without an end marker (e.g. common), we
3135        // write a single arange entry containing just that one symbol.
3136        uint64_t Size;
3137        if (SizeRef == SymSize.end() || SizeRef->second == 0)
3138          Size = 1;
3139        else
3140          Size = SizeRef->second;
3141
3142        Asm->OutStreamer->emitIntValue(Size, PtrSize);
3143      }
3144    }
3145
3146    Asm->OutStreamer->AddComment("ARange terminator");
3147    Asm->OutStreamer->emitIntValue(0, PtrSize);
3148    Asm->OutStreamer->emitIntValue(0, PtrSize);
3149  }
3150}
3151
3152/// Emit a single range list. We handle both DWARF v5 and earlier.
3153static void emitRangeList(DwarfDebug &DD, AsmPrinter *Asm,
3154                          const RangeSpanList &List) {
3155  emitRangeList(DD, Asm, List.Label, List.Ranges, *List.CU,
3156                dwarf::DW_RLE_base_addressx, dwarf::DW_RLE_offset_pair,
3157                dwarf::DW_RLE_startx_length, dwarf::DW_RLE_end_of_list,
3158                llvm::dwarf::RangeListEncodingString,
3159                List.CU->getCUNode()->getRangesBaseAddress() ||
3160                    DD.getDwarfVersion() >= 5,
3161                [](auto) {});
3162}
3163
3164void DwarfDebug::emitDebugRangesImpl(const DwarfFile &Holder, MCSection *Section) {
3165  if (Holder.getRangeLists().empty())
3166    return;
3167
3168  assert(useRangesSection());
3169  assert(!CUMap.empty());
3170  assert(llvm::any_of(CUMap, [](const decltype(CUMap)::value_type &Pair) {
3171    return !Pair.second->getCUNode()->isDebugDirectivesOnly();
3172  }));
3173
3174  Asm->OutStreamer->switchSection(Section);
3175
3176  MCSymbol *TableEnd = nullptr;
3177  if (getDwarfVersion() >= 5)
3178    TableEnd = emitRnglistsTableHeader(Asm, Holder);
3179
3180  for (const RangeSpanList &List : Holder.getRangeLists())
3181    emitRangeList(*this, Asm, List);
3182
3183  if (TableEnd)
3184    Asm->OutStreamer->emitLabel(TableEnd);
3185}
3186
3187/// Emit address ranges into the .debug_ranges section or into the DWARF v5
3188/// .debug_rnglists section.
3189void DwarfDebug::emitDebugRanges() {
3190  const auto &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
3191
3192  emitDebugRangesImpl(Holder,
3193                      getDwarfVersion() >= 5
3194                          ? Asm->getObjFileLowering().getDwarfRnglistsSection()
3195                          : Asm->getObjFileLowering().getDwarfRangesSection());
3196}
3197
3198void DwarfDebug::emitDebugRangesDWO() {
3199  emitDebugRangesImpl(InfoHolder,
3200                      Asm->getObjFileLowering().getDwarfRnglistsDWOSection());
3201}
3202
3203/// Emit the header of a DWARF 5 macro section, or the GNU extension for
3204/// DWARF 4.
3205static void emitMacroHeader(AsmPrinter *Asm, const DwarfDebug &DD,
3206                            const DwarfCompileUnit &CU, uint16_t DwarfVersion) {
3207  enum HeaderFlagMask {
3208#define HANDLE_MACRO_FLAG(ID, NAME) MACRO_FLAG_##NAME = ID,
3209#include "llvm/BinaryFormat/Dwarf.def"
3210  };
3211  Asm->OutStreamer->AddComment("Macro information version");
3212  Asm->emitInt16(DwarfVersion >= 5 ? DwarfVersion : 4);
3213  // We emit the line offset flag unconditionally here, since line offset should
3214  // be mostly present.
3215  if (Asm->isDwarf64()) {
3216    Asm->OutStreamer->AddComment("Flags: 64 bit, debug_line_offset present");
3217    Asm->emitInt8(MACRO_FLAG_OFFSET_SIZE | MACRO_FLAG_DEBUG_LINE_OFFSET);
3218  } else {
3219    Asm->OutStreamer->AddComment("Flags: 32 bit, debug_line_offset present");
3220    Asm->emitInt8(MACRO_FLAG_DEBUG_LINE_OFFSET);
3221  }
3222  Asm->OutStreamer->AddComment("debug_line_offset");
3223  if (DD.useSplitDwarf())
3224    Asm->emitDwarfLengthOrOffset(0);
3225  else
3226    Asm->emitDwarfSymbolReference(CU.getLineTableStartSym());
3227}
3228
3229void DwarfDebug::handleMacroNodes(DIMacroNodeArray Nodes, DwarfCompileUnit &U) {
3230  for (auto *MN : Nodes) {
3231    if (auto *M = dyn_cast<DIMacro>(MN))
3232      emitMacro(*M);
3233    else if (auto *F = dyn_cast<DIMacroFile>(MN))
3234      emitMacroFile(*F, U);
3235    else
3236      llvm_unreachable("Unexpected DI type!");
3237  }
3238}
3239
3240void DwarfDebug::emitMacro(DIMacro &M) {
3241  StringRef Name = M.getName();
3242  StringRef Value = M.getValue();
3243
3244  // There should be one space between the macro name and the macro value in
3245  // define entries. In undef entries, only the macro name is emitted.
3246  std::string Str = Value.empty() ? Name.str() : (Name + " " + Value).str();
3247
3248  if (UseDebugMacroSection) {
3249    if (getDwarfVersion() >= 5) {
3250      unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define
3251                          ? dwarf::DW_MACRO_define_strx
3252                          : dwarf::DW_MACRO_undef_strx;
3253      Asm->OutStreamer->AddComment(dwarf::MacroString(Type));
3254      Asm->emitULEB128(Type);
3255      Asm->OutStreamer->AddComment("Line Number");
3256      Asm->emitULEB128(M.getLine());
3257      Asm->OutStreamer->AddComment("Macro String");
3258      Asm->emitULEB128(
3259          InfoHolder.getStringPool().getIndexedEntry(*Asm, Str).getIndex());
3260    } else {
3261      unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define
3262                          ? dwarf::DW_MACRO_GNU_define_indirect
3263                          : dwarf::DW_MACRO_GNU_undef_indirect;
3264      Asm->OutStreamer->AddComment(dwarf::GnuMacroString(Type));
3265      Asm->emitULEB128(Type);
3266      Asm->OutStreamer->AddComment("Line Number");
3267      Asm->emitULEB128(M.getLine());
3268      Asm->OutStreamer->AddComment("Macro String");
3269      Asm->emitDwarfSymbolReference(
3270          InfoHolder.getStringPool().getEntry(*Asm, Str).getSymbol());
3271    }
3272  } else {
3273    Asm->OutStreamer->AddComment(dwarf::MacinfoString(M.getMacinfoType()));
3274    Asm->emitULEB128(M.getMacinfoType());
3275    Asm->OutStreamer->AddComment("Line Number");
3276    Asm->emitULEB128(M.getLine());
3277    Asm->OutStreamer->AddComment("Macro String");
3278    Asm->OutStreamer->emitBytes(Str);
3279    Asm->emitInt8('\0');
3280  }
3281}
3282
3283void DwarfDebug::emitMacroFileImpl(
3284    DIMacroFile &MF, DwarfCompileUnit &U, unsigned StartFile, unsigned EndFile,
3285    StringRef (*MacroFormToString)(unsigned Form)) {
3286
3287  Asm->OutStreamer->AddComment(MacroFormToString(StartFile));
3288  Asm->emitULEB128(StartFile);
3289  Asm->OutStreamer->AddComment("Line Number");
3290  Asm->emitULEB128(MF.getLine());
3291  Asm->OutStreamer->AddComment("File Number");
3292  DIFile &F = *MF.getFile();
3293  if (useSplitDwarf())
3294    Asm->emitULEB128(getDwoLineTable(U)->getFile(
3295        F.getDirectory(), F.getFilename(), getMD5AsBytes(&F),
3296        Asm->OutContext.getDwarfVersion(), F.getSource()));
3297  else
3298    Asm->emitULEB128(U.getOrCreateSourceID(&F));
3299  handleMacroNodes(MF.getElements(), U);
3300  Asm->OutStreamer->AddComment(MacroFormToString(EndFile));
3301  Asm->emitULEB128(EndFile);
3302}
3303
3304void DwarfDebug::emitMacroFile(DIMacroFile &F, DwarfCompileUnit &U) {
3305  // DWARFv5 macro and DWARFv4 macinfo share some common encodings,
3306  // so for readibility/uniformity, We are explicitly emitting those.
3307  assert(F.getMacinfoType() == dwarf::DW_MACINFO_start_file);
3308  if (UseDebugMacroSection)
3309    emitMacroFileImpl(
3310        F, U, dwarf::DW_MACRO_start_file, dwarf::DW_MACRO_end_file,
3311        (getDwarfVersion() >= 5) ? dwarf::MacroString : dwarf::GnuMacroString);
3312  else
3313    emitMacroFileImpl(F, U, dwarf::DW_MACINFO_start_file,
3314                      dwarf::DW_MACINFO_end_file, dwarf::MacinfoString);
3315}
3316
3317void DwarfDebug::emitDebugMacinfoImpl(MCSection *Section) {
3318  for (const auto &P : CUMap) {
3319    auto &TheCU = *P.second;
3320    auto *SkCU = TheCU.getSkeleton();
3321    DwarfCompileUnit &U = SkCU ? *SkCU : TheCU;
3322    auto *CUNode = cast<DICompileUnit>(P.first);
3323    DIMacroNodeArray Macros = CUNode->getMacros();
3324    if (Macros.empty())
3325      continue;
3326    Asm->OutStreamer->switchSection(Section);
3327    Asm->OutStreamer->emitLabel(U.getMacroLabelBegin());
3328    if (UseDebugMacroSection)
3329      emitMacroHeader(Asm, *this, U, getDwarfVersion());
3330    handleMacroNodes(Macros, U);
3331    Asm->OutStreamer->AddComment("End Of Macro List Mark");
3332    Asm->emitInt8(0);
3333  }
3334}
3335
3336/// Emit macros into a debug macinfo/macro section.
3337void DwarfDebug::emitDebugMacinfo() {
3338  auto &ObjLower = Asm->getObjFileLowering();
3339  emitDebugMacinfoImpl(UseDebugMacroSection
3340                           ? ObjLower.getDwarfMacroSection()
3341                           : ObjLower.getDwarfMacinfoSection());
3342}
3343
3344void DwarfDebug::emitDebugMacinfoDWO() {
3345  auto &ObjLower = Asm->getObjFileLowering();
3346  emitDebugMacinfoImpl(UseDebugMacroSection
3347                           ? ObjLower.getDwarfMacroDWOSection()
3348                           : ObjLower.getDwarfMacinfoDWOSection());
3349}
3350
3351// DWARF5 Experimental Separate Dwarf emitters.
3352
3353void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die,
3354                                  std::unique_ptr<DwarfCompileUnit> NewU) {
3355
3356  if (!CompilationDir.empty())
3357    NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
3358  addGnuPubAttributes(*NewU, Die);
3359
3360  SkeletonHolder.addUnit(std::move(NewU));
3361}
3362
3363DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) {
3364
3365  auto OwnedUnit = std::make_unique<DwarfCompileUnit>(
3366      CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder,
3367      UnitKind::Skeleton);
3368  DwarfCompileUnit &NewCU = *OwnedUnit;
3369  NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection());
3370
3371  NewCU.initStmtList();
3372
3373  if (useSegmentedStringOffsetsTable())
3374    NewCU.addStringOffsetsStart();
3375
3376  initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit));
3377
3378  return NewCU;
3379}
3380
3381// Emit the .debug_info.dwo section for separated dwarf. This contains the
3382// compile units that would normally be in debug_info.
3383void DwarfDebug::emitDebugInfoDWO() {
3384  assert(useSplitDwarf() && "No split dwarf debug info?");
3385  // Don't emit relocations into the dwo file.
3386  InfoHolder.emitUnits(/* UseOffsets */ true);
3387}
3388
3389// Emit the .debug_abbrev.dwo section for separated dwarf. This contains the
3390// abbreviations for the .debug_info.dwo section.
3391void DwarfDebug::emitDebugAbbrevDWO() {
3392  assert(useSplitDwarf() && "No split dwarf?");
3393  InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection());
3394}
3395
3396void DwarfDebug::emitDebugLineDWO() {
3397  assert(useSplitDwarf() && "No split dwarf?");
3398  SplitTypeUnitFileTable.Emit(
3399      *Asm->OutStreamer, MCDwarfLineTableParams(),
3400      Asm->getObjFileLowering().getDwarfLineDWOSection());
3401}
3402
3403void DwarfDebug::emitStringOffsetsTableHeaderDWO() {
3404  assert(useSplitDwarf() && "No split dwarf?");
3405  InfoHolder.getStringPool().emitStringOffsetsTableHeader(
3406      *Asm, Asm->getObjFileLowering().getDwarfStrOffDWOSection(),
3407      InfoHolder.getStringOffsetsStartSym());
3408}
3409
3410// Emit the .debug_str.dwo section for separated dwarf. This contains the
3411// string section and is identical in format to traditional .debug_str
3412// sections.
3413void DwarfDebug::emitDebugStrDWO() {
3414  if (useSegmentedStringOffsetsTable())
3415    emitStringOffsetsTableHeaderDWO();
3416  assert(useSplitDwarf() && "No split dwarf?");
3417  MCSection *OffSec = Asm->getObjFileLowering().getDwarfStrOffDWOSection();
3418  InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(),
3419                         OffSec, /* UseRelativeOffsets = */ false);
3420}
3421
3422// Emit address pool.
3423void DwarfDebug::emitDebugAddr() {
3424  AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection());
3425}
3426
3427MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) {
3428  if (!useSplitDwarf())
3429    return nullptr;
3430  const DICompileUnit *DIUnit = CU.getCUNode();
3431  SplitTypeUnitFileTable.maybeSetRootFile(
3432      DIUnit->getDirectory(), DIUnit->getFilename(),
3433      getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource());
3434  return &SplitTypeUnitFileTable;
3435}
3436
3437uint64_t DwarfDebug::makeTypeSignature(StringRef Identifier) {
3438  MD5 Hash;
3439  Hash.update(Identifier);
3440  // ... take the least significant 8 bytes and return those. Our MD5
3441  // implementation always returns its results in little endian, so we actually
3442  // need the "high" word.
3443  MD5::MD5Result Result;
3444  Hash.final(Result);
3445  return Result.high();
3446}
3447
3448void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU,
3449                                      StringRef Identifier, DIE &RefDie,
3450                                      const DICompositeType *CTy) {
3451  // Fast path if we're building some type units and one has already used the
3452  // address pool we know we're going to throw away all this work anyway, so
3453  // don't bother building dependent types.
3454  if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed())
3455    return;
3456
3457  auto Ins = TypeSignatures.insert(std::make_pair(CTy, 0));
3458  if (!Ins.second) {
3459    CU.addDIETypeSignature(RefDie, Ins.first->second);
3460    return;
3461  }
3462
3463  setCurrentDWARF5AccelTable(DWARF5AccelTableKind::TU);
3464  bool TopLevelType = TypeUnitsUnderConstruction.empty();
3465  AddrPool.resetUsedFlag();
3466
3467  auto OwnedUnit = std::make_unique<DwarfTypeUnit>(
3468      CU, Asm, this, &InfoHolder, NumTypeUnitsCreated++, getDwoLineTable(CU));
3469  DwarfTypeUnit &NewTU = *OwnedUnit;
3470  DIE &UnitDie = NewTU.getUnitDie();
3471  TypeUnitsUnderConstruction.emplace_back(std::move(OwnedUnit), CTy);
3472
3473  NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
3474                CU.getLanguage());
3475
3476  uint64_t Signature = makeTypeSignature(Identifier);
3477  NewTU.setTypeSignature(Signature);
3478  Ins.first->second = Signature;
3479
3480  if (useSplitDwarf()) {
3481    // Although multiple type units can have the same signature, they are not
3482    // guranteed to be bit identical. When LLDB uses .debug_names it needs to
3483    // know from which CU a type unit came from. These two attrbutes help it to
3484    // figure that out.
3485    if (getDwarfVersion() >= 5) {
3486      if (!CompilationDir.empty())
3487        NewTU.addString(UnitDie, dwarf::DW_AT_comp_dir, CompilationDir);
3488      NewTU.addString(UnitDie, dwarf::DW_AT_dwo_name,
3489                      Asm->TM.Options.MCOptions.SplitDwarfFile);
3490    }
3491    MCSection *Section =
3492        getDwarfVersion() <= 4
3493            ? Asm->getObjFileLowering().getDwarfTypesDWOSection()
3494            : Asm->getObjFileLowering().getDwarfInfoDWOSection();
3495    NewTU.setSection(Section);
3496  } else {
3497    MCSection *Section =
3498        getDwarfVersion() <= 4
3499            ? Asm->getObjFileLowering().getDwarfTypesSection(Signature)
3500            : Asm->getObjFileLowering().getDwarfInfoSection(Signature);
3501    NewTU.setSection(Section);
3502    // Non-split type units reuse the compile unit's line table.
3503    CU.applyStmtList(UnitDie);
3504  }
3505
3506  // Add DW_AT_str_offsets_base to the type unit DIE, but not for split type
3507  // units.
3508  if (useSegmentedStringOffsetsTable() && !useSplitDwarf())
3509    NewTU.addStringOffsetsStart();
3510
3511  NewTU.setType(NewTU.createTypeDIE(CTy));
3512
3513  if (TopLevelType) {
3514    auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction);
3515    TypeUnitsUnderConstruction.clear();
3516
3517    // Types referencing entries in the address table cannot be placed in type
3518    // units.
3519    if (AddrPool.hasBeenUsed()) {
3520      AccelTypeUnitsDebugNames.clear();
3521      // Remove all the types built while building this type.
3522      // This is pessimistic as some of these types might not be dependent on
3523      // the type that used an address.
3524      for (const auto &TU : TypeUnitsToAdd)
3525        TypeSignatures.erase(TU.second);
3526
3527      // Construct this type in the CU directly.
3528      // This is inefficient because all the dependent types will be rebuilt
3529      // from scratch, including building them in type units, discovering that
3530      // they depend on addresses, throwing them out and rebuilding them.
3531      setCurrentDWARF5AccelTable(DWARF5AccelTableKind::CU);
3532      CU.constructTypeDIE(RefDie, cast<DICompositeType>(CTy));
3533      return;
3534    }
3535
3536    // If the type wasn't dependent on fission addresses, finish adding the type
3537    // and all its dependent types.
3538    for (auto &TU : TypeUnitsToAdd) {
3539      InfoHolder.computeSizeAndOffsetsForUnit(TU.first.get());
3540      InfoHolder.emitUnit(TU.first.get(), useSplitDwarf());
3541      if (getDwarfVersion() >= 5 &&
3542          getAccelTableKind() == AccelTableKind::Dwarf) {
3543        if (useSplitDwarf())
3544          AccelDebugNames.addTypeUnitSignature(*TU.first);
3545        else
3546          AccelDebugNames.addTypeUnitSymbol(*TU.first);
3547      }
3548    }
3549    AccelTypeUnitsDebugNames.convertDieToOffset();
3550    AccelDebugNames.addTypeEntries(AccelTypeUnitsDebugNames);
3551    AccelTypeUnitsDebugNames.clear();
3552    setCurrentDWARF5AccelTable(DWARF5AccelTableKind::CU);
3553  }
3554  CU.addDIETypeSignature(RefDie, Signature);
3555}
3556
3557// Add the Name along with its companion DIE to the appropriate accelerator
3558// table (for AccelTableKind::Dwarf it's always AccelDebugNames, for
3559// AccelTableKind::Apple, we use the table we got as an argument). If
3560// accelerator tables are disabled, this function does nothing.
3561template <typename DataT>
3562void DwarfDebug::addAccelNameImpl(
3563    const DwarfUnit &Unit,
3564    const DICompileUnit::DebugNameTableKind NameTableKind,
3565    AccelTable<DataT> &AppleAccel, StringRef Name, const DIE &Die) {
3566  if (getAccelTableKind() == AccelTableKind::None || Name.empty())
3567    return;
3568
3569  if (getAccelTableKind() != AccelTableKind::Apple &&
3570      NameTableKind != DICompileUnit::DebugNameTableKind::Apple &&
3571      NameTableKind != DICompileUnit::DebugNameTableKind::Default)
3572    return;
3573
3574  DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
3575  DwarfStringPoolEntryRef Ref = Holder.getStringPool().getEntry(*Asm, Name);
3576
3577  switch (getAccelTableKind()) {
3578  case AccelTableKind::Apple:
3579    AppleAccel.addName(Ref, Die);
3580    break;
3581  case AccelTableKind::Dwarf: {
3582    DWARF5AccelTable &Current = getCurrentDWARF5AccelTable();
3583    assert(((&Current == &AccelTypeUnitsDebugNames) ||
3584            ((&Current == &AccelDebugNames) &&
3585             (Unit.getUnitDie().getTag() != dwarf::DW_TAG_type_unit))) &&
3586               "Kind is CU but TU is being processed.");
3587    assert(((&Current == &AccelDebugNames) ||
3588            ((&Current == &AccelTypeUnitsDebugNames) &&
3589             (Unit.getUnitDie().getTag() == dwarf::DW_TAG_type_unit))) &&
3590               "Kind is TU but CU is being processed.");
3591    // The type unit can be discarded, so need to add references to final
3592    // acceleration table once we know it's complete and we emit it.
3593    Current.addName(Ref, Die, Unit.getUniqueID());
3594    break;
3595  }
3596  case AccelTableKind::Default:
3597    llvm_unreachable("Default should have already been resolved.");
3598  case AccelTableKind::None:
3599    llvm_unreachable("None handled above");
3600  }
3601}
3602
3603void DwarfDebug::addAccelName(
3604    const DwarfUnit &Unit,
3605    const DICompileUnit::DebugNameTableKind NameTableKind, StringRef Name,
3606    const DIE &Die) {
3607  addAccelNameImpl(Unit, NameTableKind, AccelNames, Name, Die);
3608}
3609
3610void DwarfDebug::addAccelObjC(
3611    const DwarfUnit &Unit,
3612    const DICompileUnit::DebugNameTableKind NameTableKind, StringRef Name,
3613    const DIE &Die) {
3614  // ObjC names go only into the Apple accelerator tables.
3615  if (getAccelTableKind() == AccelTableKind::Apple)
3616    addAccelNameImpl(Unit, NameTableKind, AccelObjC, Name, Die);
3617}
3618
3619void DwarfDebug::addAccelNamespace(
3620    const DwarfUnit &Unit,
3621    const DICompileUnit::DebugNameTableKind NameTableKind, StringRef Name,
3622    const DIE &Die) {
3623  addAccelNameImpl(Unit, NameTableKind, AccelNamespace, Name, Die);
3624}
3625
3626void DwarfDebug::addAccelType(
3627    const DwarfUnit &Unit,
3628    const DICompileUnit::DebugNameTableKind NameTableKind, StringRef Name,
3629    const DIE &Die, char Flags) {
3630  addAccelNameImpl(Unit, NameTableKind, AccelTypes, Name, Die);
3631}
3632
3633uint16_t DwarfDebug::getDwarfVersion() const {
3634  return Asm->OutStreamer->getContext().getDwarfVersion();
3635}
3636
3637dwarf::Form DwarfDebug::getDwarfSectionOffsetForm() const {
3638  if (Asm->getDwarfVersion() >= 4)
3639    return dwarf::Form::DW_FORM_sec_offset;
3640  assert((!Asm->isDwarf64() || (Asm->getDwarfVersion() == 3)) &&
3641         "DWARF64 is not defined prior DWARFv3");
3642  return Asm->isDwarf64() ? dwarf::Form::DW_FORM_data8
3643                          : dwarf::Form::DW_FORM_data4;
3644}
3645
3646const MCSymbol *DwarfDebug::getSectionLabel(const MCSection *S) {
3647  return SectionLabels.lookup(S);
3648}
3649
3650void DwarfDebug::insertSectionLabel(const MCSymbol *S) {
3651  if (SectionLabels.insert(std::make_pair(&S->getSection(), S)).second)
3652    if (useSplitDwarf() || getDwarfVersion() >= 5)
3653      AddrPool.getIndex(S);
3654}
3655
3656std::optional<MD5::MD5Result>
3657DwarfDebug::getMD5AsBytes(const DIFile *File) const {
3658  assert(File);
3659  if (getDwarfVersion() < 5)
3660    return std::nullopt;
3661  std::optional<DIFile::ChecksumInfo<StringRef>> Checksum = File->getChecksum();
3662  if (!Checksum || Checksum->Kind != DIFile::CSK_MD5)
3663    return std::nullopt;
3664
3665  // Convert the string checksum to an MD5Result for the streamer.
3666  // The verifier validates the checksum so we assume it's okay.
3667  // An MD5 checksum is 16 bytes.
3668  std::string ChecksumString = fromHex(Checksum->Value);
3669  MD5::MD5Result CKMem;
3670  std::copy(ChecksumString.begin(), ChecksumString.end(), CKMem.data());
3671  return CKMem;
3672}
3673
3674bool DwarfDebug::alwaysUseRanges(const DwarfCompileUnit &CU) const {
3675  if (MinimizeAddr == MinimizeAddrInV5::Ranges)
3676    return true;
3677  if (MinimizeAddr != MinimizeAddrInV5::Default)
3678    return false;
3679  if (useSplitDwarf())
3680    return true;
3681  return false;
3682}
3683