1//===-- llvm/CodeGen/DIEHash.cpp - Dwarf Hashing Framework ----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains support for DWARF4 hashing of DIEs.
10//
11//===----------------------------------------------------------------------===//
12
13#include "DIEHash.h"
14#include "ByteStreamer.h"
15#include "DwarfCompileUnit.h"
16#include "DwarfDebug.h"
17#include "llvm/ADT/ArrayRef.h"
18#include "llvm/ADT/StringRef.h"
19#include "llvm/BinaryFormat/Dwarf.h"
20#include "llvm/CodeGen/AsmPrinter.h"
21#include "llvm/Support/Debug.h"
22#include "llvm/Support/raw_ostream.h"
23
24using namespace llvm;
25
26#define DEBUG_TYPE "dwarfdebug"
27
28/// Grabs the string in whichever attribute is passed in and returns
29/// a reference to it.
30static StringRef getDIEStringAttr(const DIE &Die, uint16_t Attr) {
31  // Iterate through all the attributes until we find the one we're
32  // looking for, if we can't find it return an empty string.
33  for (const auto &V : Die.values())
34    if (V.getAttribute() == Attr)
35      return V.getDIEString().getString();
36
37  return StringRef("");
38}
39
40/// Adds the string in \p Str to the hash. This also hashes
41/// a trailing NULL with the string.
42void DIEHash::addString(StringRef Str) {
43  LLVM_DEBUG(dbgs() << "Adding string " << Str << " to hash.\n");
44  Hash.update(Str);
45  Hash.update(ArrayRef((uint8_t)'\0'));
46}
47
48// FIXME: The LEB128 routines are copied and only slightly modified out of
49// LEB128.h.
50
51/// Adds the unsigned in \p Value to the hash encoded as a ULEB128.
52void DIEHash::addULEB128(uint64_t Value) {
53  LLVM_DEBUG(dbgs() << "Adding ULEB128 " << Value << " to hash.\n");
54  do {
55    uint8_t Byte = Value & 0x7f;
56    Value >>= 7;
57    if (Value != 0)
58      Byte |= 0x80; // Mark this byte to show that more bytes will follow.
59    Hash.update(Byte);
60  } while (Value != 0);
61}
62
63void DIEHash::addSLEB128(int64_t Value) {
64  LLVM_DEBUG(dbgs() << "Adding ULEB128 " << Value << " to hash.\n");
65  bool More;
66  do {
67    uint8_t Byte = Value & 0x7f;
68    Value >>= 7;
69    More = !((((Value == 0) && ((Byte & 0x40) == 0)) ||
70              ((Value == -1) && ((Byte & 0x40) != 0))));
71    if (More)
72      Byte |= 0x80; // Mark this byte to show that more bytes will follow.
73    Hash.update(Byte);
74  } while (More);
75}
76
77/// Including \p Parent adds the context of Parent to the hash..
78void DIEHash::addParentContext(const DIE &Parent) {
79
80  LLVM_DEBUG(dbgs() << "Adding parent context to hash...\n");
81
82  // [7.27.2] For each surrounding type or namespace beginning with the
83  // outermost such construct...
84  SmallVector<const DIE *, 1> Parents;
85  const DIE *Cur = &Parent;
86  while (Cur->getParent()) {
87    Parents.push_back(Cur);
88    Cur = Cur->getParent();
89  }
90  assert(Cur->getTag() == dwarf::DW_TAG_compile_unit ||
91         Cur->getTag() == dwarf::DW_TAG_type_unit);
92
93  // Reverse iterate over our list to go from the outermost construct to the
94  // innermost.
95  for (const DIE *Die : llvm::reverse(Parents)) {
96    // ... Append the letter "C" to the sequence...
97    addULEB128('C');
98
99    // ... Followed by the DWARF tag of the construct...
100    addULEB128(Die->getTag());
101
102    // ... Then the name, taken from the DW_AT_name attribute.
103    StringRef Name = getDIEStringAttr(*Die, dwarf::DW_AT_name);
104    LLVM_DEBUG(dbgs() << "... adding context: " << Name << "\n");
105    if (!Name.empty())
106      addString(Name);
107  }
108}
109
110// Collect all of the attributes for a particular DIE in single structure.
111void DIEHash::collectAttributes(const DIE &Die, DIEAttrs &Attrs) {
112
113  for (const auto &V : Die.values()) {
114    LLVM_DEBUG(dbgs() << "Attribute: "
115                      << dwarf::AttributeString(V.getAttribute())
116                      << " added.\n");
117    switch (V.getAttribute()) {
118#define HANDLE_DIE_HASH_ATTR(NAME)                                             \
119  case dwarf::NAME:                                                            \
120    Attrs.NAME = V;                                                            \
121    break;
122#include "DIEHashAttributes.def"
123    default:
124      break;
125    }
126  }
127}
128
129void DIEHash::hashShallowTypeReference(dwarf::Attribute Attribute,
130                                       const DIE &Entry, StringRef Name) {
131  // append the letter 'N'
132  addULEB128('N');
133
134  // the DWARF attribute code (DW_AT_type or DW_AT_friend),
135  addULEB128(Attribute);
136
137  // the context of the tag,
138  if (const DIE *Parent = Entry.getParent())
139    addParentContext(*Parent);
140
141  // the letter 'E',
142  addULEB128('E');
143
144  // and the name of the type.
145  addString(Name);
146
147  // Currently DW_TAG_friends are not used by Clang, but if they do become so,
148  // here's the relevant spec text to implement:
149  //
150  // For DW_TAG_friend, if the referenced entry is the DW_TAG_subprogram,
151  // the context is omitted and the name to be used is the ABI-specific name
152  // of the subprogram (e.g., the mangled linker name).
153}
154
155void DIEHash::hashRepeatedTypeReference(dwarf::Attribute Attribute,
156                                        unsigned DieNumber) {
157  // a) If T is in the list of [previously hashed types], use the letter
158  // 'R' as the marker
159  addULEB128('R');
160
161  addULEB128(Attribute);
162
163  // and use the unsigned LEB128 encoding of [the index of T in the
164  // list] as the attribute value;
165  addULEB128(DieNumber);
166}
167
168void DIEHash::hashDIEEntry(dwarf::Attribute Attribute, dwarf::Tag Tag,
169                           const DIE &Entry) {
170  assert(Tag != dwarf::DW_TAG_friend && "No current LLVM clients emit friend "
171                                        "tags. Add support here when there's "
172                                        "a use case");
173  // Step 5
174  // If the tag in Step 3 is one of [the below tags]
175  if ((Tag == dwarf::DW_TAG_pointer_type ||
176       Tag == dwarf::DW_TAG_reference_type ||
177       Tag == dwarf::DW_TAG_rvalue_reference_type ||
178       Tag == dwarf::DW_TAG_ptr_to_member_type) &&
179      // and the referenced type (via the [below attributes])
180      // FIXME: This seems overly restrictive, and causes hash mismatches
181      // there's a decl/def difference in the containing type of a
182      // ptr_to_member_type, but it's what DWARF says, for some reason.
183      Attribute == dwarf::DW_AT_type) {
184    // ... has a DW_AT_name attribute,
185    StringRef Name = getDIEStringAttr(Entry, dwarf::DW_AT_name);
186    if (!Name.empty()) {
187      hashShallowTypeReference(Attribute, Entry, Name);
188      return;
189    }
190  }
191
192  unsigned &DieNumber = Numbering[&Entry];
193  if (DieNumber) {
194    hashRepeatedTypeReference(Attribute, DieNumber);
195    return;
196  }
197
198  // otherwise, b) use the letter 'T' as the marker, ...
199  addULEB128('T');
200
201  addULEB128(Attribute);
202
203  // ... process the type T recursively by performing Steps 2 through 7, and
204  // use the result as the attribute value.
205  DieNumber = Numbering.size();
206  computeHash(Entry);
207}
208
209void DIEHash::hashRawTypeReference(const DIE &Entry) {
210  unsigned &DieNumber = Numbering[&Entry];
211  if (DieNumber) {
212    addULEB128('R');
213    addULEB128(DieNumber);
214    return;
215  }
216  DieNumber = Numbering.size();
217  addULEB128('T');
218  computeHash(Entry);
219}
220
221// Hash all of the values in a block like set of values. This assumes that
222// all of the data is going to be added as integers.
223void DIEHash::hashBlockData(const DIE::const_value_range &Values) {
224  for (const auto &V : Values)
225    if (V.getType() == DIEValue::isBaseTypeRef) {
226      const DIE &C =
227          *CU->ExprRefedBaseTypes[V.getDIEBaseTypeRef().getIndex()].Die;
228      StringRef Name = getDIEStringAttr(C, dwarf::DW_AT_name);
229      assert(!Name.empty() &&
230             "Base types referenced from DW_OP_convert should have a name");
231      hashNestedType(C, Name);
232    } else
233      Hash.update((uint64_t)V.getDIEInteger().getValue());
234}
235
236// Hash the contents of a loclistptr class.
237void DIEHash::hashLocList(const DIELocList &LocList) {
238  HashingByteStreamer Streamer(*this);
239  DwarfDebug &DD = *AP->getDwarfDebug();
240  const DebugLocStream &Locs = DD.getDebugLocs();
241  const DebugLocStream::List &List = Locs.getList(LocList.getValue());
242  for (const DebugLocStream::Entry &Entry : Locs.getEntries(List))
243    DD.emitDebugLocEntry(Streamer, Entry, List.CU);
244}
245
246// Hash an individual attribute \param Attr based on the type of attribute and
247// the form.
248void DIEHash::hashAttribute(const DIEValue &Value, dwarf::Tag Tag) {
249  dwarf::Attribute Attribute = Value.getAttribute();
250
251  // Other attribute values use the letter 'A' as the marker, and the value
252  // consists of the form code (encoded as an unsigned LEB128 value) followed by
253  // the encoding of the value according to the form code. To ensure
254  // reproducibility of the signature, the set of forms used in the signature
255  // computation is limited to the following: DW_FORM_sdata, DW_FORM_flag,
256  // DW_FORM_string, and DW_FORM_block.
257
258  switch (Value.getType()) {
259  case DIEValue::isNone:
260    llvm_unreachable("Expected valid DIEValue");
261
262    // 7.27 Step 3
263    // ... An attribute that refers to another type entry T is processed as
264    // follows:
265  case DIEValue::isEntry:
266    hashDIEEntry(Attribute, Tag, Value.getDIEEntry().getEntry());
267    break;
268  case DIEValue::isInteger: {
269    addULEB128('A');
270    addULEB128(Attribute);
271    switch (Value.getForm()) {
272    case dwarf::DW_FORM_data1:
273    case dwarf::DW_FORM_data2:
274    case dwarf::DW_FORM_data4:
275    case dwarf::DW_FORM_data8:
276    case dwarf::DW_FORM_udata:
277    case dwarf::DW_FORM_sdata:
278      addULEB128(dwarf::DW_FORM_sdata);
279      addSLEB128((int64_t)Value.getDIEInteger().getValue());
280      break;
281    // DW_FORM_flag_present is just flag with a value of one. We still give it a
282    // value so just use the value.
283    case dwarf::DW_FORM_flag_present:
284    case dwarf::DW_FORM_flag:
285      addULEB128(dwarf::DW_FORM_flag);
286      addULEB128((int64_t)Value.getDIEInteger().getValue());
287      break;
288    default:
289      llvm_unreachable("Unknown integer form!");
290    }
291    break;
292  }
293  case DIEValue::isString:
294    addULEB128('A');
295    addULEB128(Attribute);
296    addULEB128(dwarf::DW_FORM_string);
297    addString(Value.getDIEString().getString());
298    break;
299  case DIEValue::isInlineString:
300    addULEB128('A');
301    addULEB128(Attribute);
302    addULEB128(dwarf::DW_FORM_string);
303    addString(Value.getDIEInlineString().getString());
304    break;
305  case DIEValue::isBlock:
306  case DIEValue::isLoc:
307  case DIEValue::isLocList:
308    addULEB128('A');
309    addULEB128(Attribute);
310    addULEB128(dwarf::DW_FORM_block);
311    if (Value.getType() == DIEValue::isBlock) {
312      addULEB128(Value.getDIEBlock().computeSize(AP->getDwarfFormParams()));
313      hashBlockData(Value.getDIEBlock().values());
314    } else if (Value.getType() == DIEValue::isLoc) {
315      addULEB128(Value.getDIELoc().computeSize(AP->getDwarfFormParams()));
316      hashBlockData(Value.getDIELoc().values());
317    } else {
318      // We could add the block length, but that would take
319      // a bit of work and not add a lot of uniqueness
320      // to the hash in some way we could test.
321      hashLocList(Value.getDIELocList());
322    }
323    break;
324    // FIXME: It's uncertain whether or not we should handle this at the moment.
325  case DIEValue::isExpr:
326  case DIEValue::isLabel:
327  case DIEValue::isBaseTypeRef:
328  case DIEValue::isDelta:
329  case DIEValue::isAddrOffset:
330    llvm_unreachable("Add support for additional value types.");
331  }
332}
333
334// Go through the attributes from \param Attrs in the order specified in 7.27.4
335// and hash them.
336void DIEHash::hashAttributes(const DIEAttrs &Attrs, dwarf::Tag Tag) {
337#define HANDLE_DIE_HASH_ATTR(NAME)                                             \
338  {                                                                            \
339    if (Attrs.NAME)                                                           \
340      hashAttribute(Attrs.NAME, Tag);                                         \
341  }
342#include "DIEHashAttributes.def"
343  // FIXME: Add the extended attributes.
344}
345
346// Add all of the attributes for \param Die to the hash.
347void DIEHash::addAttributes(const DIE &Die) {
348  DIEAttrs Attrs = {};
349  collectAttributes(Die, Attrs);
350  hashAttributes(Attrs, Die.getTag());
351}
352
353void DIEHash::hashNestedType(const DIE &Die, StringRef Name) {
354  // 7.27 Step 7
355  // ... append the letter 'S',
356  addULEB128('S');
357
358  // the tag of C,
359  addULEB128(Die.getTag());
360
361  // and the name.
362  addString(Name);
363}
364
365// Compute the hash of a DIE. This is based on the type signature computation
366// given in section 7.27 of the DWARF4 standard. It is the md5 hash of a
367// flattened description of the DIE.
368void DIEHash::computeHash(const DIE &Die) {
369  // Append the letter 'D', followed by the DWARF tag of the DIE.
370  addULEB128('D');
371  addULEB128(Die.getTag());
372
373  // Add each of the attributes of the DIE.
374  addAttributes(Die);
375
376  // Then hash each of the children of the DIE.
377  for (const auto &C : Die.children()) {
378    // 7.27 Step 7
379    // If C is a nested type entry or a member function entry, ...
380    if (isType(C.getTag()) || (C.getTag() == dwarf::DW_TAG_subprogram && isType(C.getParent()->getTag()))) {
381      StringRef Name = getDIEStringAttr(C, dwarf::DW_AT_name);
382      // ... and has a DW_AT_name attribute
383      if (!Name.empty()) {
384        hashNestedType(C, Name);
385        continue;
386      }
387    }
388    computeHash(C);
389  }
390
391  // Following the last (or if there are no children), append a zero byte.
392  Hash.update(ArrayRef((uint8_t)'\0'));
393}
394
395/// This is based on the type signature computation given in section 7.27 of the
396/// DWARF4 standard. It is an md5 hash of the flattened description of the DIE
397/// with the inclusion of the full CU and all top level CU entities.
398// TODO: Initialize the type chain at 0 instead of 1 for CU signatures.
399uint64_t DIEHash::computeCUSignature(StringRef DWOName, const DIE &Die) {
400  Numbering.clear();
401  Numbering[&Die] = 1;
402
403  if (!DWOName.empty())
404    Hash.update(DWOName);
405  // Hash the DIE.
406  computeHash(Die);
407
408  // Now return the result.
409  MD5::MD5Result Result;
410  Hash.final(Result);
411
412  // ... take the least significant 8 bytes and return those. Our MD5
413  // implementation always returns its results in little endian, so we actually
414  // need the "high" word.
415  return Result.high();
416}
417
418/// This is based on the type signature computation given in section 7.27 of the
419/// DWARF4 standard. It is an md5 hash of the flattened description of the DIE
420/// with the inclusion of additional forms not specifically called out in the
421/// standard.
422uint64_t DIEHash::computeTypeSignature(const DIE &Die) {
423  Numbering.clear();
424  Numbering[&Die] = 1;
425
426  if (const DIE *Parent = Die.getParent())
427    addParentContext(*Parent);
428
429  // Hash the DIE.
430  computeHash(Die);
431
432  // Now return the result.
433  MD5::MD5Result Result;
434  Hash.final(Result);
435
436  // ... take the least significant 8 bytes and return those. Our MD5
437  // implementation always returns its results in little endian, so we actually
438  // need the "high" word.
439  return Result.high();
440}
441