1//===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Bitcode writer implementation.
10//
11//===----------------------------------------------------------------------===//
12
13#include "llvm/Bitcode/BitcodeWriter.h"
14#include "ValueEnumerator.h"
15#include "llvm/ADT/APFloat.h"
16#include "llvm/ADT/APInt.h"
17#include "llvm/ADT/ArrayRef.h"
18#include "llvm/ADT/DenseMap.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/SetVector.h"
21#include "llvm/ADT/SmallPtrSet.h"
22#include "llvm/ADT/SmallString.h"
23#include "llvm/ADT/SmallVector.h"
24#include "llvm/ADT/StringMap.h"
25#include "llvm/ADT/StringRef.h"
26#include "llvm/Bitcode/BitcodeCommon.h"
27#include "llvm/Bitcode/BitcodeReader.h"
28#include "llvm/Bitcode/LLVMBitCodes.h"
29#include "llvm/Bitstream/BitCodes.h"
30#include "llvm/Bitstream/BitstreamWriter.h"
31#include "llvm/Config/llvm-config.h"
32#include "llvm/IR/Attributes.h"
33#include "llvm/IR/BasicBlock.h"
34#include "llvm/IR/Comdat.h"
35#include "llvm/IR/Constant.h"
36#include "llvm/IR/Constants.h"
37#include "llvm/IR/DebugInfoMetadata.h"
38#include "llvm/IR/DebugLoc.h"
39#include "llvm/IR/DerivedTypes.h"
40#include "llvm/IR/Function.h"
41#include "llvm/IR/GlobalAlias.h"
42#include "llvm/IR/GlobalIFunc.h"
43#include "llvm/IR/GlobalObject.h"
44#include "llvm/IR/GlobalValue.h"
45#include "llvm/IR/GlobalVariable.h"
46#include "llvm/IR/InlineAsm.h"
47#include "llvm/IR/InstrTypes.h"
48#include "llvm/IR/Instruction.h"
49#include "llvm/IR/Instructions.h"
50#include "llvm/IR/LLVMContext.h"
51#include "llvm/IR/Metadata.h"
52#include "llvm/IR/Module.h"
53#include "llvm/IR/ModuleSummaryIndex.h"
54#include "llvm/IR/Operator.h"
55#include "llvm/IR/Type.h"
56#include "llvm/IR/UseListOrder.h"
57#include "llvm/IR/Value.h"
58#include "llvm/IR/ValueSymbolTable.h"
59#include "llvm/MC/StringTableBuilder.h"
60#include "llvm/MC/TargetRegistry.h"
61#include "llvm/Object/IRSymtab.h"
62#include "llvm/Support/AtomicOrdering.h"
63#include "llvm/Support/Casting.h"
64#include "llvm/Support/CommandLine.h"
65#include "llvm/Support/Endian.h"
66#include "llvm/Support/Error.h"
67#include "llvm/Support/ErrorHandling.h"
68#include "llvm/Support/MathExtras.h"
69#include "llvm/Support/SHA1.h"
70#include "llvm/Support/raw_ostream.h"
71#include "llvm/TargetParser/Triple.h"
72#include <algorithm>
73#include <cassert>
74#include <cstddef>
75#include <cstdint>
76#include <iterator>
77#include <map>
78#include <memory>
79#include <optional>
80#include <string>
81#include <utility>
82#include <vector>
83
84using namespace llvm;
85
86static cl::opt<unsigned>
87    IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25),
88                   cl::desc("Number of metadatas above which we emit an index "
89                            "to enable lazy-loading"));
90static cl::opt<uint32_t> FlushThreshold(
91    "bitcode-flush-threshold", cl::Hidden, cl::init(512),
92    cl::desc("The threshold (unit M) for flushing LLVM bitcode."));
93
94static cl::opt<bool> WriteRelBFToSummary(
95    "write-relbf-to-summary", cl::Hidden, cl::init(false),
96    cl::desc("Write relative block frequency to function summary "));
97
98namespace llvm {
99extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold;
100}
101
102namespace {
103
104/// These are manifest constants used by the bitcode writer. They do not need to
105/// be kept in sync with the reader, but need to be consistent within this file.
106enum {
107  // VALUE_SYMTAB_BLOCK abbrev id's.
108  VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
109  VST_ENTRY_7_ABBREV,
110  VST_ENTRY_6_ABBREV,
111  VST_BBENTRY_6_ABBREV,
112
113  // CONSTANTS_BLOCK abbrev id's.
114  CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
115  CONSTANTS_INTEGER_ABBREV,
116  CONSTANTS_CE_CAST_Abbrev,
117  CONSTANTS_NULL_Abbrev,
118
119  // FUNCTION_BLOCK abbrev id's.
120  FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
121  FUNCTION_INST_UNOP_ABBREV,
122  FUNCTION_INST_UNOP_FLAGS_ABBREV,
123  FUNCTION_INST_BINOP_ABBREV,
124  FUNCTION_INST_BINOP_FLAGS_ABBREV,
125  FUNCTION_INST_CAST_ABBREV,
126  FUNCTION_INST_CAST_FLAGS_ABBREV,
127  FUNCTION_INST_RET_VOID_ABBREV,
128  FUNCTION_INST_RET_VAL_ABBREV,
129  FUNCTION_INST_UNREACHABLE_ABBREV,
130  FUNCTION_INST_GEP_ABBREV,
131};
132
133/// Abstract class to manage the bitcode writing, subclassed for each bitcode
134/// file type.
135class BitcodeWriterBase {
136protected:
137  /// The stream created and owned by the client.
138  BitstreamWriter &Stream;
139
140  StringTableBuilder &StrtabBuilder;
141
142public:
143  /// Constructs a BitcodeWriterBase object that writes to the provided
144  /// \p Stream.
145  BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder)
146      : Stream(Stream), StrtabBuilder(StrtabBuilder) {}
147
148protected:
149  void writeModuleVersion();
150};
151
152void BitcodeWriterBase::writeModuleVersion() {
153  // VERSION: [version#]
154  Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2});
155}
156
157/// Base class to manage the module bitcode writing, currently subclassed for
158/// ModuleBitcodeWriter and ThinLinkBitcodeWriter.
159class ModuleBitcodeWriterBase : public BitcodeWriterBase {
160protected:
161  /// The Module to write to bitcode.
162  const Module &M;
163
164  /// Enumerates ids for all values in the module.
165  ValueEnumerator VE;
166
167  /// Optional per-module index to write for ThinLTO.
168  const ModuleSummaryIndex *Index;
169
170  /// Map that holds the correspondence between GUIDs in the summary index,
171  /// that came from indirect call profiles, and a value id generated by this
172  /// class to use in the VST and summary block records.
173  std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
174
175  /// Tracks the last value id recorded in the GUIDToValueMap.
176  unsigned GlobalValueId;
177
178  /// Saves the offset of the VSTOffset record that must eventually be
179  /// backpatched with the offset of the actual VST.
180  uint64_t VSTOffsetPlaceholder = 0;
181
182public:
183  /// Constructs a ModuleBitcodeWriterBase object for the given Module,
184  /// writing to the provided \p Buffer.
185  ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder,
186                          BitstreamWriter &Stream,
187                          bool ShouldPreserveUseListOrder,
188                          const ModuleSummaryIndex *Index)
189      : BitcodeWriterBase(Stream, StrtabBuilder), M(M),
190        VE(M, ShouldPreserveUseListOrder), Index(Index) {
191    // Assign ValueIds to any callee values in the index that came from
192    // indirect call profiles and were recorded as a GUID not a Value*
193    // (which would have been assigned an ID by the ValueEnumerator).
194    // The starting ValueId is just after the number of values in the
195    // ValueEnumerator, so that they can be emitted in the VST.
196    GlobalValueId = VE.getValues().size();
197    if (!Index)
198      return;
199    for (const auto &GUIDSummaryLists : *Index)
200      // Examine all summaries for this GUID.
201      for (auto &Summary : GUIDSummaryLists.second.SummaryList)
202        if (auto FS = dyn_cast<FunctionSummary>(Summary.get()))
203          // For each call in the function summary, see if the call
204          // is to a GUID (which means it is for an indirect call,
205          // otherwise we would have a Value for it). If so, synthesize
206          // a value id.
207          for (auto &CallEdge : FS->calls())
208            if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue())
209              assignValueId(CallEdge.first.getGUID());
210  }
211
212protected:
213  void writePerModuleGlobalValueSummary();
214
215private:
216  void writePerModuleFunctionSummaryRecord(
217      SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary,
218      unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev,
219      unsigned CallsiteAbbrev, unsigned AllocAbbrev, const Function &F);
220  void writeModuleLevelReferences(const GlobalVariable &V,
221                                  SmallVector<uint64_t, 64> &NameVals,
222                                  unsigned FSModRefsAbbrev,
223                                  unsigned FSModVTableRefsAbbrev);
224
225  void assignValueId(GlobalValue::GUID ValGUID) {
226    GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
227  }
228
229  unsigned getValueId(GlobalValue::GUID ValGUID) {
230    const auto &VMI = GUIDToValueIdMap.find(ValGUID);
231    // Expect that any GUID value had a value Id assigned by an
232    // earlier call to assignValueId.
233    assert(VMI != GUIDToValueIdMap.end() &&
234           "GUID does not have assigned value Id");
235    return VMI->second;
236  }
237
238  // Helper to get the valueId for the type of value recorded in VI.
239  unsigned getValueId(ValueInfo VI) {
240    if (!VI.haveGVs() || !VI.getValue())
241      return getValueId(VI.getGUID());
242    return VE.getValueID(VI.getValue());
243  }
244
245  std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
246};
247
248/// Class to manage the bitcode writing for a module.
249class ModuleBitcodeWriter : public ModuleBitcodeWriterBase {
250  /// Pointer to the buffer allocated by caller for bitcode writing.
251  const SmallVectorImpl<char> &Buffer;
252
253  /// True if a module hash record should be written.
254  bool GenerateHash;
255
256  /// If non-null, when GenerateHash is true, the resulting hash is written
257  /// into ModHash.
258  ModuleHash *ModHash;
259
260  SHA1 Hasher;
261
262  /// The start bit of the identification block.
263  uint64_t BitcodeStartBit;
264
265public:
266  /// Constructs a ModuleBitcodeWriter object for the given Module,
267  /// writing to the provided \p Buffer.
268  ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer,
269                      StringTableBuilder &StrtabBuilder,
270                      BitstreamWriter &Stream, bool ShouldPreserveUseListOrder,
271                      const ModuleSummaryIndex *Index, bool GenerateHash,
272                      ModuleHash *ModHash = nullptr)
273      : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
274                                ShouldPreserveUseListOrder, Index),
275        Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash),
276        BitcodeStartBit(Stream.GetCurrentBitNo()) {}
277
278  /// Emit the current module to the bitstream.
279  void write();
280
281private:
282  uint64_t bitcodeStartBit() { return BitcodeStartBit; }
283
284  size_t addToStrtab(StringRef Str);
285
286  void writeAttributeGroupTable();
287  void writeAttributeTable();
288  void writeTypeTable();
289  void writeComdats();
290  void writeValueSymbolTableForwardDecl();
291  void writeModuleInfo();
292  void writeValueAsMetadata(const ValueAsMetadata *MD,
293                            SmallVectorImpl<uint64_t> &Record);
294  void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record,
295                    unsigned Abbrev);
296  unsigned createDILocationAbbrev();
297  void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record,
298                       unsigned &Abbrev);
299  unsigned createGenericDINodeAbbrev();
300  void writeGenericDINode(const GenericDINode *N,
301                          SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev);
302  void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record,
303                       unsigned Abbrev);
304  void writeDIGenericSubrange(const DIGenericSubrange *N,
305                              SmallVectorImpl<uint64_t> &Record,
306                              unsigned Abbrev);
307  void writeDIEnumerator(const DIEnumerator *N,
308                         SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
309  void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record,
310                        unsigned Abbrev);
311  void writeDIStringType(const DIStringType *N,
312                         SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
313  void writeDIDerivedType(const DIDerivedType *N,
314                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
315  void writeDICompositeType(const DICompositeType *N,
316                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
317  void writeDISubroutineType(const DISubroutineType *N,
318                             SmallVectorImpl<uint64_t> &Record,
319                             unsigned Abbrev);
320  void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record,
321                   unsigned Abbrev);
322  void writeDICompileUnit(const DICompileUnit *N,
323                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
324  void writeDISubprogram(const DISubprogram *N,
325                         SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
326  void writeDILexicalBlock(const DILexicalBlock *N,
327                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
328  void writeDILexicalBlockFile(const DILexicalBlockFile *N,
329                               SmallVectorImpl<uint64_t> &Record,
330                               unsigned Abbrev);
331  void writeDICommonBlock(const DICommonBlock *N,
332                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
333  void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record,
334                        unsigned Abbrev);
335  void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record,
336                    unsigned Abbrev);
337  void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record,
338                        unsigned Abbrev);
339  void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record);
340  void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record,
341                     unsigned Abbrev);
342  void writeDIAssignID(const DIAssignID *N, SmallVectorImpl<uint64_t> &Record,
343                       unsigned Abbrev);
344  void writeDITemplateTypeParameter(const DITemplateTypeParameter *N,
345                                    SmallVectorImpl<uint64_t> &Record,
346                                    unsigned Abbrev);
347  void writeDITemplateValueParameter(const DITemplateValueParameter *N,
348                                     SmallVectorImpl<uint64_t> &Record,
349                                     unsigned Abbrev);
350  void writeDIGlobalVariable(const DIGlobalVariable *N,
351                             SmallVectorImpl<uint64_t> &Record,
352                             unsigned Abbrev);
353  void writeDILocalVariable(const DILocalVariable *N,
354                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
355  void writeDILabel(const DILabel *N,
356                    SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
357  void writeDIExpression(const DIExpression *N,
358                         SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
359  void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N,
360                                       SmallVectorImpl<uint64_t> &Record,
361                                       unsigned Abbrev);
362  void writeDIObjCProperty(const DIObjCProperty *N,
363                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
364  void writeDIImportedEntity(const DIImportedEntity *N,
365                             SmallVectorImpl<uint64_t> &Record,
366                             unsigned Abbrev);
367  unsigned createNamedMetadataAbbrev();
368  void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record);
369  unsigned createMetadataStringsAbbrev();
370  void writeMetadataStrings(ArrayRef<const Metadata *> Strings,
371                            SmallVectorImpl<uint64_t> &Record);
372  void writeMetadataRecords(ArrayRef<const Metadata *> MDs,
373                            SmallVectorImpl<uint64_t> &Record,
374                            std::vector<unsigned> *MDAbbrevs = nullptr,
375                            std::vector<uint64_t> *IndexPos = nullptr);
376  void writeModuleMetadata();
377  void writeFunctionMetadata(const Function &F);
378  void writeFunctionMetadataAttachment(const Function &F);
379  void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record,
380                                    const GlobalObject &GO);
381  void writeModuleMetadataKinds();
382  void writeOperandBundleTags();
383  void writeSyncScopeNames();
384  void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal);
385  void writeModuleConstants();
386  bool pushValueAndType(const Value *V, unsigned InstID,
387                        SmallVectorImpl<unsigned> &Vals);
388  void writeOperandBundles(const CallBase &CB, unsigned InstID);
389  void pushValue(const Value *V, unsigned InstID,
390                 SmallVectorImpl<unsigned> &Vals);
391  void pushValueSigned(const Value *V, unsigned InstID,
392                       SmallVectorImpl<uint64_t> &Vals);
393  void writeInstruction(const Instruction &I, unsigned InstID,
394                        SmallVectorImpl<unsigned> &Vals);
395  void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST);
396  void writeGlobalValueSymbolTable(
397      DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
398  void writeUseList(UseListOrder &&Order);
399  void writeUseListBlock(const Function *F);
400  void
401  writeFunction(const Function &F,
402                DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
403  void writeBlockInfo();
404  void writeModuleHash(size_t BlockStartPos);
405
406  unsigned getEncodedSyncScopeID(SyncScope::ID SSID) {
407    return unsigned(SSID);
408  }
409
410  unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); }
411};
412
413/// Class to manage the bitcode writing for a combined index.
414class IndexBitcodeWriter : public BitcodeWriterBase {
415  /// The combined index to write to bitcode.
416  const ModuleSummaryIndex &Index;
417
418  /// When writing a subset of the index for distributed backends, client
419  /// provides a map of modules to the corresponding GUIDs/summaries to write.
420  const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex;
421
422  /// Map that holds the correspondence between the GUID used in the combined
423  /// index and a value id generated by this class to use in references.
424  std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
425
426  // The sorted stack id indices actually used in the summary entries being
427  // written, which will be a subset of those in the full index in the case of
428  // distributed indexes.
429  std::vector<unsigned> StackIdIndices;
430
431  /// Tracks the last value id recorded in the GUIDToValueMap.
432  unsigned GlobalValueId = 0;
433
434  /// Tracks the assignment of module paths in the module path string table to
435  /// an id assigned for use in summary references to the module path.
436  DenseMap<StringRef, uint64_t> ModuleIdMap;
437
438public:
439  /// Constructs a IndexBitcodeWriter object for the given combined index,
440  /// writing to the provided \p Buffer. When writing a subset of the index
441  /// for a distributed backend, provide a \p ModuleToSummariesForIndex map.
442  IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder,
443                     const ModuleSummaryIndex &Index,
444                     const std::map<std::string, GVSummaryMapTy>
445                         *ModuleToSummariesForIndex = nullptr)
446      : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index),
447        ModuleToSummariesForIndex(ModuleToSummariesForIndex) {
448    // Assign unique value ids to all summaries to be written, for use
449    // in writing out the call graph edges. Save the mapping from GUID
450    // to the new global value id to use when writing those edges, which
451    // are currently saved in the index in terms of GUID.
452    forEachSummary([&](GVInfo I, bool IsAliasee) {
453      GUIDToValueIdMap[I.first] = ++GlobalValueId;
454      if (IsAliasee)
455        return;
456      auto *FS = dyn_cast<FunctionSummary>(I.second);
457      if (!FS)
458        return;
459      // Record all stack id indices actually used in the summary entries being
460      // written, so that we can compact them in the case of distributed ThinLTO
461      // indexes.
462      for (auto &CI : FS->callsites()) {
463        // If the stack id list is empty, this callsite info was synthesized for
464        // a missing tail call frame. Ensure that the callee's GUID gets a value
465        // id. Normally we only generate these for defined summaries, which in
466        // the case of distributed ThinLTO is only the functions already defined
467        // in the module or that we want to import. We don't bother to include
468        // all the callee symbols as they aren't normally needed in the backend.
469        // However, for the synthesized callsite infos we do need the callee
470        // GUID in the backend so that we can correlate the identified callee
471        // with this callsite info (which for non-tail calls is done by the
472        // ordering of the callsite infos and verified via stack ids).
473        if (CI.StackIdIndices.empty()) {
474          GUIDToValueIdMap[CI.Callee.getGUID()] = ++GlobalValueId;
475          continue;
476        }
477        for (auto Idx : CI.StackIdIndices)
478          StackIdIndices.push_back(Idx);
479      }
480      for (auto &AI : FS->allocs())
481        for (auto &MIB : AI.MIBs)
482          for (auto Idx : MIB.StackIdIndices)
483            StackIdIndices.push_back(Idx);
484    });
485    llvm::sort(StackIdIndices);
486    StackIdIndices.erase(
487        std::unique(StackIdIndices.begin(), StackIdIndices.end()),
488        StackIdIndices.end());
489  }
490
491  /// The below iterator returns the GUID and associated summary.
492  using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>;
493
494  /// Calls the callback for each value GUID and summary to be written to
495  /// bitcode. This hides the details of whether they are being pulled from the
496  /// entire index or just those in a provided ModuleToSummariesForIndex map.
497  template<typename Functor>
498  void forEachSummary(Functor Callback) {
499    if (ModuleToSummariesForIndex) {
500      for (auto &M : *ModuleToSummariesForIndex)
501        for (auto &Summary : M.second) {
502          Callback(Summary, false);
503          // Ensure aliasee is handled, e.g. for assigning a valueId,
504          // even if we are not importing the aliasee directly (the
505          // imported alias will contain a copy of aliasee).
506          if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond()))
507            Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true);
508        }
509    } else {
510      for (auto &Summaries : Index)
511        for (auto &Summary : Summaries.second.SummaryList)
512          Callback({Summaries.first, Summary.get()}, false);
513    }
514  }
515
516  /// Calls the callback for each entry in the modulePaths StringMap that
517  /// should be written to the module path string table. This hides the details
518  /// of whether they are being pulled from the entire index or just those in a
519  /// provided ModuleToSummariesForIndex map.
520  template <typename Functor> void forEachModule(Functor Callback) {
521    if (ModuleToSummariesForIndex) {
522      for (const auto &M : *ModuleToSummariesForIndex) {
523        const auto &MPI = Index.modulePaths().find(M.first);
524        if (MPI == Index.modulePaths().end()) {
525          // This should only happen if the bitcode file was empty, in which
526          // case we shouldn't be importing (the ModuleToSummariesForIndex
527          // would only include the module we are writing and index for).
528          assert(ModuleToSummariesForIndex->size() == 1);
529          continue;
530        }
531        Callback(*MPI);
532      }
533    } else {
534      // Since StringMap iteration order isn't guaranteed, order by path string
535      // first.
536      // FIXME: Make this a vector of StringMapEntry instead to avoid the later
537      // map lookup.
538      std::vector<StringRef> ModulePaths;
539      for (auto &[ModPath, _] : Index.modulePaths())
540        ModulePaths.push_back(ModPath);
541      llvm::sort(ModulePaths.begin(), ModulePaths.end());
542      for (auto &ModPath : ModulePaths)
543        Callback(*Index.modulePaths().find(ModPath));
544    }
545  }
546
547  /// Main entry point for writing a combined index to bitcode.
548  void write();
549
550private:
551  void writeModStrings();
552  void writeCombinedGlobalValueSummary();
553
554  std::optional<unsigned> getValueId(GlobalValue::GUID ValGUID) {
555    auto VMI = GUIDToValueIdMap.find(ValGUID);
556    if (VMI == GUIDToValueIdMap.end())
557      return std::nullopt;
558    return VMI->second;
559  }
560
561  std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
562};
563
564} // end anonymous namespace
565
566static unsigned getEncodedCastOpcode(unsigned Opcode) {
567  switch (Opcode) {
568  default: llvm_unreachable("Unknown cast instruction!");
569  case Instruction::Trunc   : return bitc::CAST_TRUNC;
570  case Instruction::ZExt    : return bitc::CAST_ZEXT;
571  case Instruction::SExt    : return bitc::CAST_SEXT;
572  case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
573  case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
574  case Instruction::UIToFP  : return bitc::CAST_UITOFP;
575  case Instruction::SIToFP  : return bitc::CAST_SITOFP;
576  case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
577  case Instruction::FPExt   : return bitc::CAST_FPEXT;
578  case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
579  case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
580  case Instruction::BitCast : return bitc::CAST_BITCAST;
581  case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
582  }
583}
584
585static unsigned getEncodedUnaryOpcode(unsigned Opcode) {
586  switch (Opcode) {
587  default: llvm_unreachable("Unknown binary instruction!");
588  case Instruction::FNeg: return bitc::UNOP_FNEG;
589  }
590}
591
592static unsigned getEncodedBinaryOpcode(unsigned Opcode) {
593  switch (Opcode) {
594  default: llvm_unreachable("Unknown binary instruction!");
595  case Instruction::Add:
596  case Instruction::FAdd: return bitc::BINOP_ADD;
597  case Instruction::Sub:
598  case Instruction::FSub: return bitc::BINOP_SUB;
599  case Instruction::Mul:
600  case Instruction::FMul: return bitc::BINOP_MUL;
601  case Instruction::UDiv: return bitc::BINOP_UDIV;
602  case Instruction::FDiv:
603  case Instruction::SDiv: return bitc::BINOP_SDIV;
604  case Instruction::URem: return bitc::BINOP_UREM;
605  case Instruction::FRem:
606  case Instruction::SRem: return bitc::BINOP_SREM;
607  case Instruction::Shl:  return bitc::BINOP_SHL;
608  case Instruction::LShr: return bitc::BINOP_LSHR;
609  case Instruction::AShr: return bitc::BINOP_ASHR;
610  case Instruction::And:  return bitc::BINOP_AND;
611  case Instruction::Or:   return bitc::BINOP_OR;
612  case Instruction::Xor:  return bitc::BINOP_XOR;
613  }
614}
615
616static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
617  switch (Op) {
618  default: llvm_unreachable("Unknown RMW operation!");
619  case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
620  case AtomicRMWInst::Add: return bitc::RMW_ADD;
621  case AtomicRMWInst::Sub: return bitc::RMW_SUB;
622  case AtomicRMWInst::And: return bitc::RMW_AND;
623  case AtomicRMWInst::Nand: return bitc::RMW_NAND;
624  case AtomicRMWInst::Or: return bitc::RMW_OR;
625  case AtomicRMWInst::Xor: return bitc::RMW_XOR;
626  case AtomicRMWInst::Max: return bitc::RMW_MAX;
627  case AtomicRMWInst::Min: return bitc::RMW_MIN;
628  case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
629  case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
630  case AtomicRMWInst::FAdd: return bitc::RMW_FADD;
631  case AtomicRMWInst::FSub: return bitc::RMW_FSUB;
632  case AtomicRMWInst::FMax: return bitc::RMW_FMAX;
633  case AtomicRMWInst::FMin: return bitc::RMW_FMIN;
634  case AtomicRMWInst::UIncWrap:
635    return bitc::RMW_UINC_WRAP;
636  case AtomicRMWInst::UDecWrap:
637    return bitc::RMW_UDEC_WRAP;
638  }
639}
640
641static unsigned getEncodedOrdering(AtomicOrdering Ordering) {
642  switch (Ordering) {
643  case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC;
644  case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED;
645  case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC;
646  case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE;
647  case AtomicOrdering::Release: return bitc::ORDERING_RELEASE;
648  case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL;
649  case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST;
650  }
651  llvm_unreachable("Invalid ordering");
652}
653
654static void writeStringRecord(BitstreamWriter &Stream, unsigned Code,
655                              StringRef Str, unsigned AbbrevToUse) {
656  SmallVector<unsigned, 64> Vals;
657
658  // Code: [strchar x N]
659  for (char C : Str) {
660    if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C))
661      AbbrevToUse = 0;
662    Vals.push_back(C);
663  }
664
665  // Emit the finished record.
666  Stream.EmitRecord(Code, Vals, AbbrevToUse);
667}
668
669static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
670  switch (Kind) {
671  case Attribute::Alignment:
672    return bitc::ATTR_KIND_ALIGNMENT;
673  case Attribute::AllocAlign:
674    return bitc::ATTR_KIND_ALLOC_ALIGN;
675  case Attribute::AllocSize:
676    return bitc::ATTR_KIND_ALLOC_SIZE;
677  case Attribute::AlwaysInline:
678    return bitc::ATTR_KIND_ALWAYS_INLINE;
679  case Attribute::Builtin:
680    return bitc::ATTR_KIND_BUILTIN;
681  case Attribute::ByVal:
682    return bitc::ATTR_KIND_BY_VAL;
683  case Attribute::Convergent:
684    return bitc::ATTR_KIND_CONVERGENT;
685  case Attribute::InAlloca:
686    return bitc::ATTR_KIND_IN_ALLOCA;
687  case Attribute::Cold:
688    return bitc::ATTR_KIND_COLD;
689  case Attribute::DisableSanitizerInstrumentation:
690    return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION;
691  case Attribute::FnRetThunkExtern:
692    return bitc::ATTR_KIND_FNRETTHUNK_EXTERN;
693  case Attribute::Hot:
694    return bitc::ATTR_KIND_HOT;
695  case Attribute::ElementType:
696    return bitc::ATTR_KIND_ELEMENTTYPE;
697  case Attribute::InlineHint:
698    return bitc::ATTR_KIND_INLINE_HINT;
699  case Attribute::InReg:
700    return bitc::ATTR_KIND_IN_REG;
701  case Attribute::JumpTable:
702    return bitc::ATTR_KIND_JUMP_TABLE;
703  case Attribute::MinSize:
704    return bitc::ATTR_KIND_MIN_SIZE;
705  case Attribute::AllocatedPointer:
706    return bitc::ATTR_KIND_ALLOCATED_POINTER;
707  case Attribute::AllocKind:
708    return bitc::ATTR_KIND_ALLOC_KIND;
709  case Attribute::Memory:
710    return bitc::ATTR_KIND_MEMORY;
711  case Attribute::NoFPClass:
712    return bitc::ATTR_KIND_NOFPCLASS;
713  case Attribute::Naked:
714    return bitc::ATTR_KIND_NAKED;
715  case Attribute::Nest:
716    return bitc::ATTR_KIND_NEST;
717  case Attribute::NoAlias:
718    return bitc::ATTR_KIND_NO_ALIAS;
719  case Attribute::NoBuiltin:
720    return bitc::ATTR_KIND_NO_BUILTIN;
721  case Attribute::NoCallback:
722    return bitc::ATTR_KIND_NO_CALLBACK;
723  case Attribute::NoCapture:
724    return bitc::ATTR_KIND_NO_CAPTURE;
725  case Attribute::NoDuplicate:
726    return bitc::ATTR_KIND_NO_DUPLICATE;
727  case Attribute::NoFree:
728    return bitc::ATTR_KIND_NOFREE;
729  case Attribute::NoImplicitFloat:
730    return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
731  case Attribute::NoInline:
732    return bitc::ATTR_KIND_NO_INLINE;
733  case Attribute::NoRecurse:
734    return bitc::ATTR_KIND_NO_RECURSE;
735  case Attribute::NoMerge:
736    return bitc::ATTR_KIND_NO_MERGE;
737  case Attribute::NonLazyBind:
738    return bitc::ATTR_KIND_NON_LAZY_BIND;
739  case Attribute::NonNull:
740    return bitc::ATTR_KIND_NON_NULL;
741  case Attribute::Dereferenceable:
742    return bitc::ATTR_KIND_DEREFERENCEABLE;
743  case Attribute::DereferenceableOrNull:
744    return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
745  case Attribute::NoRedZone:
746    return bitc::ATTR_KIND_NO_RED_ZONE;
747  case Attribute::NoReturn:
748    return bitc::ATTR_KIND_NO_RETURN;
749  case Attribute::NoSync:
750    return bitc::ATTR_KIND_NOSYNC;
751  case Attribute::NoCfCheck:
752    return bitc::ATTR_KIND_NOCF_CHECK;
753  case Attribute::NoProfile:
754    return bitc::ATTR_KIND_NO_PROFILE;
755  case Attribute::SkipProfile:
756    return bitc::ATTR_KIND_SKIP_PROFILE;
757  case Attribute::NoUnwind:
758    return bitc::ATTR_KIND_NO_UNWIND;
759  case Attribute::NoSanitizeBounds:
760    return bitc::ATTR_KIND_NO_SANITIZE_BOUNDS;
761  case Attribute::NoSanitizeCoverage:
762    return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE;
763  case Attribute::NullPointerIsValid:
764    return bitc::ATTR_KIND_NULL_POINTER_IS_VALID;
765  case Attribute::OptimizeForDebugging:
766    return bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING;
767  case Attribute::OptForFuzzing:
768    return bitc::ATTR_KIND_OPT_FOR_FUZZING;
769  case Attribute::OptimizeForSize:
770    return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
771  case Attribute::OptimizeNone:
772    return bitc::ATTR_KIND_OPTIMIZE_NONE;
773  case Attribute::ReadNone:
774    return bitc::ATTR_KIND_READ_NONE;
775  case Attribute::ReadOnly:
776    return bitc::ATTR_KIND_READ_ONLY;
777  case Attribute::Returned:
778    return bitc::ATTR_KIND_RETURNED;
779  case Attribute::ReturnsTwice:
780    return bitc::ATTR_KIND_RETURNS_TWICE;
781  case Attribute::SExt:
782    return bitc::ATTR_KIND_S_EXT;
783  case Attribute::Speculatable:
784    return bitc::ATTR_KIND_SPECULATABLE;
785  case Attribute::StackAlignment:
786    return bitc::ATTR_KIND_STACK_ALIGNMENT;
787  case Attribute::StackProtect:
788    return bitc::ATTR_KIND_STACK_PROTECT;
789  case Attribute::StackProtectReq:
790    return bitc::ATTR_KIND_STACK_PROTECT_REQ;
791  case Attribute::StackProtectStrong:
792    return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
793  case Attribute::SafeStack:
794    return bitc::ATTR_KIND_SAFESTACK;
795  case Attribute::ShadowCallStack:
796    return bitc::ATTR_KIND_SHADOWCALLSTACK;
797  case Attribute::StrictFP:
798    return bitc::ATTR_KIND_STRICT_FP;
799  case Attribute::StructRet:
800    return bitc::ATTR_KIND_STRUCT_RET;
801  case Attribute::SanitizeAddress:
802    return bitc::ATTR_KIND_SANITIZE_ADDRESS;
803  case Attribute::SanitizeHWAddress:
804    return bitc::ATTR_KIND_SANITIZE_HWADDRESS;
805  case Attribute::SanitizeThread:
806    return bitc::ATTR_KIND_SANITIZE_THREAD;
807  case Attribute::SanitizeMemory:
808    return bitc::ATTR_KIND_SANITIZE_MEMORY;
809  case Attribute::SpeculativeLoadHardening:
810    return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING;
811  case Attribute::SwiftError:
812    return bitc::ATTR_KIND_SWIFT_ERROR;
813  case Attribute::SwiftSelf:
814    return bitc::ATTR_KIND_SWIFT_SELF;
815  case Attribute::SwiftAsync:
816    return bitc::ATTR_KIND_SWIFT_ASYNC;
817  case Attribute::UWTable:
818    return bitc::ATTR_KIND_UW_TABLE;
819  case Attribute::VScaleRange:
820    return bitc::ATTR_KIND_VSCALE_RANGE;
821  case Attribute::WillReturn:
822    return bitc::ATTR_KIND_WILLRETURN;
823  case Attribute::WriteOnly:
824    return bitc::ATTR_KIND_WRITEONLY;
825  case Attribute::ZExt:
826    return bitc::ATTR_KIND_Z_EXT;
827  case Attribute::ImmArg:
828    return bitc::ATTR_KIND_IMMARG;
829  case Attribute::SanitizeMemTag:
830    return bitc::ATTR_KIND_SANITIZE_MEMTAG;
831  case Attribute::Preallocated:
832    return bitc::ATTR_KIND_PREALLOCATED;
833  case Attribute::NoUndef:
834    return bitc::ATTR_KIND_NOUNDEF;
835  case Attribute::ByRef:
836    return bitc::ATTR_KIND_BYREF;
837  case Attribute::MustProgress:
838    return bitc::ATTR_KIND_MUSTPROGRESS;
839  case Attribute::PresplitCoroutine:
840    return bitc::ATTR_KIND_PRESPLIT_COROUTINE;
841  case Attribute::Writable:
842    return bitc::ATTR_KIND_WRITABLE;
843  case Attribute::CoroDestroyOnlyWhenComplete:
844    return bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE;
845  case Attribute::DeadOnUnwind:
846    return bitc::ATTR_KIND_DEAD_ON_UNWIND;
847  case Attribute::EndAttrKinds:
848    llvm_unreachable("Can not encode end-attribute kinds marker.");
849  case Attribute::None:
850    llvm_unreachable("Can not encode none-attribute.");
851  case Attribute::EmptyKey:
852  case Attribute::TombstoneKey:
853    llvm_unreachable("Trying to encode EmptyKey/TombstoneKey");
854  }
855
856  llvm_unreachable("Trying to encode unknown attribute");
857}
858
859void ModuleBitcodeWriter::writeAttributeGroupTable() {
860  const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps =
861      VE.getAttributeGroups();
862  if (AttrGrps.empty()) return;
863
864  Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
865
866  SmallVector<uint64_t, 64> Record;
867  for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) {
868    unsigned AttrListIndex = Pair.first;
869    AttributeSet AS = Pair.second;
870    Record.push_back(VE.getAttributeGroupID(Pair));
871    Record.push_back(AttrListIndex);
872
873    for (Attribute Attr : AS) {
874      if (Attr.isEnumAttribute()) {
875        Record.push_back(0);
876        Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
877      } else if (Attr.isIntAttribute()) {
878        Record.push_back(1);
879        Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
880        Record.push_back(Attr.getValueAsInt());
881      } else if (Attr.isStringAttribute()) {
882        StringRef Kind = Attr.getKindAsString();
883        StringRef Val = Attr.getValueAsString();
884
885        Record.push_back(Val.empty() ? 3 : 4);
886        Record.append(Kind.begin(), Kind.end());
887        Record.push_back(0);
888        if (!Val.empty()) {
889          Record.append(Val.begin(), Val.end());
890          Record.push_back(0);
891        }
892      } else {
893        assert(Attr.isTypeAttribute());
894        Type *Ty = Attr.getValueAsType();
895        Record.push_back(Ty ? 6 : 5);
896        Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
897        if (Ty)
898          Record.push_back(VE.getTypeID(Attr.getValueAsType()));
899      }
900    }
901
902    Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
903    Record.clear();
904  }
905
906  Stream.ExitBlock();
907}
908
909void ModuleBitcodeWriter::writeAttributeTable() {
910  const std::vector<AttributeList> &Attrs = VE.getAttributeLists();
911  if (Attrs.empty()) return;
912
913  Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
914
915  SmallVector<uint64_t, 64> Record;
916  for (const AttributeList &AL : Attrs) {
917    for (unsigned i : AL.indexes()) {
918      AttributeSet AS = AL.getAttributes(i);
919      if (AS.hasAttributes())
920        Record.push_back(VE.getAttributeGroupID({i, AS}));
921    }
922
923    Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
924    Record.clear();
925  }
926
927  Stream.ExitBlock();
928}
929
930/// WriteTypeTable - Write out the type table for a module.
931void ModuleBitcodeWriter::writeTypeTable() {
932  const ValueEnumerator::TypeList &TypeList = VE.getTypes();
933
934  Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
935  SmallVector<uint64_t, 64> TypeVals;
936
937  uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies();
938
939  // Abbrev for TYPE_CODE_OPAQUE_POINTER.
940  auto Abbv = std::make_shared<BitCodeAbbrev>();
941  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER));
942  Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
943  unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv));
944
945  // Abbrev for TYPE_CODE_FUNCTION.
946  Abbv = std::make_shared<BitCodeAbbrev>();
947  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
948  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
949  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
950  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
951  unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv));
952
953  // Abbrev for TYPE_CODE_STRUCT_ANON.
954  Abbv = std::make_shared<BitCodeAbbrev>();
955  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
956  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
957  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
958  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
959  unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv));
960
961  // Abbrev for TYPE_CODE_STRUCT_NAME.
962  Abbv = std::make_shared<BitCodeAbbrev>();
963  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
964  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
965  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
966  unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
967
968  // Abbrev for TYPE_CODE_STRUCT_NAMED.
969  Abbv = std::make_shared<BitCodeAbbrev>();
970  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
971  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
972  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
973  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
974  unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv));
975
976  // Abbrev for TYPE_CODE_ARRAY.
977  Abbv = std::make_shared<BitCodeAbbrev>();
978  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
979  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
980  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
981  unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv));
982
983  // Emit an entry count so the reader can reserve space.
984  TypeVals.push_back(TypeList.size());
985  Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
986  TypeVals.clear();
987
988  // Loop over all of the types, emitting each in turn.
989  for (Type *T : TypeList) {
990    int AbbrevToUse = 0;
991    unsigned Code = 0;
992
993    switch (T->getTypeID()) {
994    case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;      break;
995    case Type::HalfTyID:      Code = bitc::TYPE_CODE_HALF;      break;
996    case Type::BFloatTyID:    Code = bitc::TYPE_CODE_BFLOAT;    break;
997    case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;     break;
998    case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE;    break;
999    case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80;  break;
1000    case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128;     break;
1001    case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
1002    case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;     break;
1003    case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA;  break;
1004    case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX;   break;
1005    case Type::X86_AMXTyID:   Code = bitc::TYPE_CODE_X86_AMX;   break;
1006    case Type::TokenTyID:     Code = bitc::TYPE_CODE_TOKEN;     break;
1007    case Type::IntegerTyID:
1008      // INTEGER: [width]
1009      Code = bitc::TYPE_CODE_INTEGER;
1010      TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
1011      break;
1012    case Type::PointerTyID: {
1013      PointerType *PTy = cast<PointerType>(T);
1014      unsigned AddressSpace = PTy->getAddressSpace();
1015      // OPAQUE_POINTER: [address space]
1016      Code = bitc::TYPE_CODE_OPAQUE_POINTER;
1017      TypeVals.push_back(AddressSpace);
1018      if (AddressSpace == 0)
1019        AbbrevToUse = OpaquePtrAbbrev;
1020      break;
1021    }
1022    case Type::FunctionTyID: {
1023      FunctionType *FT = cast<FunctionType>(T);
1024      // FUNCTION: [isvararg, retty, paramty x N]
1025      Code = bitc::TYPE_CODE_FUNCTION;
1026      TypeVals.push_back(FT->isVarArg());
1027      TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
1028      for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
1029        TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
1030      AbbrevToUse = FunctionAbbrev;
1031      break;
1032    }
1033    case Type::StructTyID: {
1034      StructType *ST = cast<StructType>(T);
1035      // STRUCT: [ispacked, eltty x N]
1036      TypeVals.push_back(ST->isPacked());
1037      // Output all of the element types.
1038      for (Type *ET : ST->elements())
1039        TypeVals.push_back(VE.getTypeID(ET));
1040
1041      if (ST->isLiteral()) {
1042        Code = bitc::TYPE_CODE_STRUCT_ANON;
1043        AbbrevToUse = StructAnonAbbrev;
1044      } else {
1045        if (ST->isOpaque()) {
1046          Code = bitc::TYPE_CODE_OPAQUE;
1047        } else {
1048          Code = bitc::TYPE_CODE_STRUCT_NAMED;
1049          AbbrevToUse = StructNamedAbbrev;
1050        }
1051
1052        // Emit the name if it is present.
1053        if (!ST->getName().empty())
1054          writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
1055                            StructNameAbbrev);
1056      }
1057      break;
1058    }
1059    case Type::ArrayTyID: {
1060      ArrayType *AT = cast<ArrayType>(T);
1061      // ARRAY: [numelts, eltty]
1062      Code = bitc::TYPE_CODE_ARRAY;
1063      TypeVals.push_back(AT->getNumElements());
1064      TypeVals.push_back(VE.getTypeID(AT->getElementType()));
1065      AbbrevToUse = ArrayAbbrev;
1066      break;
1067    }
1068    case Type::FixedVectorTyID:
1069    case Type::ScalableVectorTyID: {
1070      VectorType *VT = cast<VectorType>(T);
1071      // VECTOR [numelts, eltty] or
1072      //        [numelts, eltty, scalable]
1073      Code = bitc::TYPE_CODE_VECTOR;
1074      TypeVals.push_back(VT->getElementCount().getKnownMinValue());
1075      TypeVals.push_back(VE.getTypeID(VT->getElementType()));
1076      if (isa<ScalableVectorType>(VT))
1077        TypeVals.push_back(true);
1078      break;
1079    }
1080    case Type::TargetExtTyID: {
1081      TargetExtType *TET = cast<TargetExtType>(T);
1082      Code = bitc::TYPE_CODE_TARGET_TYPE;
1083      writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, TET->getName(),
1084                        StructNameAbbrev);
1085      TypeVals.push_back(TET->getNumTypeParameters());
1086      for (Type *InnerTy : TET->type_params())
1087        TypeVals.push_back(VE.getTypeID(InnerTy));
1088      for (unsigned IntParam : TET->int_params())
1089        TypeVals.push_back(IntParam);
1090      break;
1091    }
1092    case Type::TypedPointerTyID:
1093      llvm_unreachable("Typed pointers cannot be added to IR modules");
1094    }
1095
1096    // Emit the finished record.
1097    Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
1098    TypeVals.clear();
1099  }
1100
1101  Stream.ExitBlock();
1102}
1103
1104static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
1105  switch (Linkage) {
1106  case GlobalValue::ExternalLinkage:
1107    return 0;
1108  case GlobalValue::WeakAnyLinkage:
1109    return 16;
1110  case GlobalValue::AppendingLinkage:
1111    return 2;
1112  case GlobalValue::InternalLinkage:
1113    return 3;
1114  case GlobalValue::LinkOnceAnyLinkage:
1115    return 18;
1116  case GlobalValue::ExternalWeakLinkage:
1117    return 7;
1118  case GlobalValue::CommonLinkage:
1119    return 8;
1120  case GlobalValue::PrivateLinkage:
1121    return 9;
1122  case GlobalValue::WeakODRLinkage:
1123    return 17;
1124  case GlobalValue::LinkOnceODRLinkage:
1125    return 19;
1126  case GlobalValue::AvailableExternallyLinkage:
1127    return 12;
1128  }
1129  llvm_unreachable("Invalid linkage");
1130}
1131
1132static unsigned getEncodedLinkage(const GlobalValue &GV) {
1133  return getEncodedLinkage(GV.getLinkage());
1134}
1135
1136static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) {
1137  uint64_t RawFlags = 0;
1138  RawFlags |= Flags.ReadNone;
1139  RawFlags |= (Flags.ReadOnly << 1);
1140  RawFlags |= (Flags.NoRecurse << 2);
1141  RawFlags |= (Flags.ReturnDoesNotAlias << 3);
1142  RawFlags |= (Flags.NoInline << 4);
1143  RawFlags |= (Flags.AlwaysInline << 5);
1144  RawFlags |= (Flags.NoUnwind << 6);
1145  RawFlags |= (Flags.MayThrow << 7);
1146  RawFlags |= (Flags.HasUnknownCall << 8);
1147  RawFlags |= (Flags.MustBeUnreachable << 9);
1148  return RawFlags;
1149}
1150
1151// Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags
1152// in BitcodeReader.cpp.
1153static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) {
1154  uint64_t RawFlags = 0;
1155
1156  RawFlags |= Flags.NotEligibleToImport; // bool
1157  RawFlags |= (Flags.Live << 1);
1158  RawFlags |= (Flags.DSOLocal << 2);
1159  RawFlags |= (Flags.CanAutoHide << 3);
1160
1161  // Linkage don't need to be remapped at that time for the summary. Any future
1162  // change to the getEncodedLinkage() function will need to be taken into
1163  // account here as well.
1164  RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits
1165
1166  RawFlags |= (Flags.Visibility << 8); // 2 bits
1167
1168  return RawFlags;
1169}
1170
1171static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) {
1172  uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) |
1173                      (Flags.Constant << 2) | Flags.VCallVisibility << 3;
1174  return RawFlags;
1175}
1176
1177static uint64_t getEncodedHotnessCallEdgeInfo(const CalleeInfo &CI) {
1178  uint64_t RawFlags = 0;
1179
1180  RawFlags |= CI.Hotness;            // 3 bits
1181  RawFlags |= (CI.HasTailCall << 3); // 1 bit
1182
1183  return RawFlags;
1184}
1185
1186static uint64_t getEncodedRelBFCallEdgeInfo(const CalleeInfo &CI) {
1187  uint64_t RawFlags = 0;
1188
1189  RawFlags |= CI.RelBlockFreq; // CalleeInfo::RelBlockFreqBits bits
1190  RawFlags |= (CI.HasTailCall << CalleeInfo::RelBlockFreqBits); // 1 bit
1191
1192  return RawFlags;
1193}
1194
1195static unsigned getEncodedVisibility(const GlobalValue &GV) {
1196  switch (GV.getVisibility()) {
1197  case GlobalValue::DefaultVisibility:   return 0;
1198  case GlobalValue::HiddenVisibility:    return 1;
1199  case GlobalValue::ProtectedVisibility: return 2;
1200  }
1201  llvm_unreachable("Invalid visibility");
1202}
1203
1204static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
1205  switch (GV.getDLLStorageClass()) {
1206  case GlobalValue::DefaultStorageClass:   return 0;
1207  case GlobalValue::DLLImportStorageClass: return 1;
1208  case GlobalValue::DLLExportStorageClass: return 2;
1209  }
1210  llvm_unreachable("Invalid DLL storage class");
1211}
1212
1213static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
1214  switch (GV.getThreadLocalMode()) {
1215    case GlobalVariable::NotThreadLocal:         return 0;
1216    case GlobalVariable::GeneralDynamicTLSModel: return 1;
1217    case GlobalVariable::LocalDynamicTLSModel:   return 2;
1218    case GlobalVariable::InitialExecTLSModel:    return 3;
1219    case GlobalVariable::LocalExecTLSModel:      return 4;
1220  }
1221  llvm_unreachable("Invalid TLS model");
1222}
1223
1224static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
1225  switch (C.getSelectionKind()) {
1226  case Comdat::Any:
1227    return bitc::COMDAT_SELECTION_KIND_ANY;
1228  case Comdat::ExactMatch:
1229    return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
1230  case Comdat::Largest:
1231    return bitc::COMDAT_SELECTION_KIND_LARGEST;
1232  case Comdat::NoDeduplicate:
1233    return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
1234  case Comdat::SameSize:
1235    return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
1236  }
1237  llvm_unreachable("Invalid selection kind");
1238}
1239
1240static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) {
1241  switch (GV.getUnnamedAddr()) {
1242  case GlobalValue::UnnamedAddr::None:   return 0;
1243  case GlobalValue::UnnamedAddr::Local:  return 2;
1244  case GlobalValue::UnnamedAddr::Global: return 1;
1245  }
1246  llvm_unreachable("Invalid unnamed_addr");
1247}
1248
1249size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) {
1250  if (GenerateHash)
1251    Hasher.update(Str);
1252  return StrtabBuilder.add(Str);
1253}
1254
1255void ModuleBitcodeWriter::writeComdats() {
1256  SmallVector<unsigned, 64> Vals;
1257  for (const Comdat *C : VE.getComdats()) {
1258    // COMDAT: [strtab offset, strtab size, selection_kind]
1259    Vals.push_back(addToStrtab(C->getName()));
1260    Vals.push_back(C->getName().size());
1261    Vals.push_back(getEncodedComdatSelectionKind(*C));
1262    Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
1263    Vals.clear();
1264  }
1265}
1266
1267/// Write a record that will eventually hold the word offset of the
1268/// module-level VST. For now the offset is 0, which will be backpatched
1269/// after the real VST is written. Saves the bit offset to backpatch.
1270void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() {
1271  // Write a placeholder value in for the offset of the real VST,
1272  // which is written after the function blocks so that it can include
1273  // the offset of each function. The placeholder offset will be
1274  // updated when the real VST is written.
1275  auto Abbv = std::make_shared<BitCodeAbbrev>();
1276  Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET));
1277  // Blocks are 32-bit aligned, so we can use a 32-bit word offset to
1278  // hold the real VST offset. Must use fixed instead of VBR as we don't
1279  // know how many VBR chunks to reserve ahead of time.
1280  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
1281  unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1282
1283  // Emit the placeholder
1284  uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0};
1285  Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals);
1286
1287  // Compute and save the bit offset to the placeholder, which will be
1288  // patched when the real VST is written. We can simply subtract the 32-bit
1289  // fixed size from the current bit number to get the location to backpatch.
1290  VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32;
1291}
1292
1293enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 };
1294
1295/// Determine the encoding to use for the given string name and length.
1296static StringEncoding getStringEncoding(StringRef Str) {
1297  bool isChar6 = true;
1298  for (char C : Str) {
1299    if (isChar6)
1300      isChar6 = BitCodeAbbrevOp::isChar6(C);
1301    if ((unsigned char)C & 128)
1302      // don't bother scanning the rest.
1303      return SE_Fixed8;
1304  }
1305  if (isChar6)
1306    return SE_Char6;
1307  return SE_Fixed7;
1308}
1309
1310static_assert(sizeof(GlobalValue::SanitizerMetadata) <= sizeof(unsigned),
1311              "Sanitizer Metadata is too large for naive serialization.");
1312static unsigned
1313serializeSanitizerMetadata(const GlobalValue::SanitizerMetadata &Meta) {
1314  return Meta.NoAddress | (Meta.NoHWAddress << 1) |
1315         (Meta.Memtag << 2) | (Meta.IsDynInit << 3);
1316}
1317
1318/// Emit top-level description of module, including target triple, inline asm,
1319/// descriptors for global variables, and function prototype info.
1320/// Returns the bit offset to backpatch with the location of the real VST.
1321void ModuleBitcodeWriter::writeModuleInfo() {
1322  // Emit various pieces of data attached to a module.
1323  if (!M.getTargetTriple().empty())
1324    writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(),
1325                      0 /*TODO*/);
1326  const std::string &DL = M.getDataLayoutStr();
1327  if (!DL.empty())
1328    writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/);
1329  if (!M.getModuleInlineAsm().empty())
1330    writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(),
1331                      0 /*TODO*/);
1332
1333  // Emit information about sections and GC, computing how many there are. Also
1334  // compute the maximum alignment value.
1335  std::map<std::string, unsigned> SectionMap;
1336  std::map<std::string, unsigned> GCMap;
1337  MaybeAlign MaxAlignment;
1338  unsigned MaxGlobalType = 0;
1339  const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) {
1340    if (A)
1341      MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A);
1342  };
1343  for (const GlobalVariable &GV : M.globals()) {
1344    UpdateMaxAlignment(GV.getAlign());
1345    MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType()));
1346    if (GV.hasSection()) {
1347      // Give section names unique ID's.
1348      unsigned &Entry = SectionMap[std::string(GV.getSection())];
1349      if (!Entry) {
1350        writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
1351                          0 /*TODO*/);
1352        Entry = SectionMap.size();
1353      }
1354    }
1355  }
1356  for (const Function &F : M) {
1357    UpdateMaxAlignment(F.getAlign());
1358    if (F.hasSection()) {
1359      // Give section names unique ID's.
1360      unsigned &Entry = SectionMap[std::string(F.getSection())];
1361      if (!Entry) {
1362        writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
1363                          0 /*TODO*/);
1364        Entry = SectionMap.size();
1365      }
1366    }
1367    if (F.hasGC()) {
1368      // Same for GC names.
1369      unsigned &Entry = GCMap[F.getGC()];
1370      if (!Entry) {
1371        writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(),
1372                          0 /*TODO*/);
1373        Entry = GCMap.size();
1374      }
1375    }
1376  }
1377
1378  // Emit abbrev for globals, now that we know # sections and max alignment.
1379  unsigned SimpleGVarAbbrev = 0;
1380  if (!M.global_empty()) {
1381    // Add an abbrev for common globals with no visibility or thread localness.
1382    auto Abbv = std::make_shared<BitCodeAbbrev>();
1383    Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
1384    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1385    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1386    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1387                              Log2_32_Ceil(MaxGlobalType+1)));
1388    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // AddrSpace << 2
1389                                                           //| explicitType << 1
1390                                                           //| constant
1391    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // Initializer.
1392    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
1393    if (!MaxAlignment)                                     // Alignment.
1394      Abbv->Add(BitCodeAbbrevOp(0));
1395    else {
1396      unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment);
1397      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1398                               Log2_32_Ceil(MaxEncAlignment+1)));
1399    }
1400    if (SectionMap.empty())                                    // Section.
1401      Abbv->Add(BitCodeAbbrevOp(0));
1402    else
1403      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1404                               Log2_32_Ceil(SectionMap.size()+1)));
1405    // Don't bother emitting vis + thread local.
1406    SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1407  }
1408
1409  SmallVector<unsigned, 64> Vals;
1410  // Emit the module's source file name.
1411  {
1412    StringEncoding Bits = getStringEncoding(M.getSourceFileName());
1413    BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
1414    if (Bits == SE_Char6)
1415      AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
1416    else if (Bits == SE_Fixed7)
1417      AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
1418
1419    // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
1420    auto Abbv = std::make_shared<BitCodeAbbrev>();
1421    Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
1422    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1423    Abbv->Add(AbbrevOpToUse);
1424    unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1425
1426    for (const auto P : M.getSourceFileName())
1427      Vals.push_back((unsigned char)P);
1428
1429    // Emit the finished record.
1430    Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
1431    Vals.clear();
1432  }
1433
1434  // Emit the global variable information.
1435  for (const GlobalVariable &GV : M.globals()) {
1436    unsigned AbbrevToUse = 0;
1437
1438    // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid,
1439    //             linkage, alignment, section, visibility, threadlocal,
1440    //             unnamed_addr, externally_initialized, dllstorageclass,
1441    //             comdat, attributes, DSO_Local, GlobalSanitizer, code_model]
1442    Vals.push_back(addToStrtab(GV.getName()));
1443    Vals.push_back(GV.getName().size());
1444    Vals.push_back(VE.getTypeID(GV.getValueType()));
1445    Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant());
1446    Vals.push_back(GV.isDeclaration() ? 0 :
1447                   (VE.getValueID(GV.getInitializer()) + 1));
1448    Vals.push_back(getEncodedLinkage(GV));
1449    Vals.push_back(getEncodedAlign(GV.getAlign()));
1450    Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())]
1451                                   : 0);
1452    if (GV.isThreadLocal() ||
1453        GV.getVisibility() != GlobalValue::DefaultVisibility ||
1454        GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None ||
1455        GV.isExternallyInitialized() ||
1456        GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
1457        GV.hasComdat() || GV.hasAttributes() || GV.isDSOLocal() ||
1458        GV.hasPartition() || GV.hasSanitizerMetadata() || GV.getCodeModel()) {
1459      Vals.push_back(getEncodedVisibility(GV));
1460      Vals.push_back(getEncodedThreadLocalMode(GV));
1461      Vals.push_back(getEncodedUnnamedAddr(GV));
1462      Vals.push_back(GV.isExternallyInitialized());
1463      Vals.push_back(getEncodedDLLStorageClass(GV));
1464      Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
1465
1466      auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex);
1467      Vals.push_back(VE.getAttributeListID(AL));
1468
1469      Vals.push_back(GV.isDSOLocal());
1470      Vals.push_back(addToStrtab(GV.getPartition()));
1471      Vals.push_back(GV.getPartition().size());
1472
1473      Vals.push_back((GV.hasSanitizerMetadata() ? serializeSanitizerMetadata(
1474                                                      GV.getSanitizerMetadata())
1475                                                : 0));
1476      Vals.push_back(GV.getCodeModelRaw());
1477    } else {
1478      AbbrevToUse = SimpleGVarAbbrev;
1479    }
1480
1481    Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
1482    Vals.clear();
1483  }
1484
1485  // Emit the function proto information.
1486  for (const Function &F : M) {
1487    // FUNCTION:  [strtab offset, strtab size, type, callingconv, isproto,
1488    //             linkage, paramattrs, alignment, section, visibility, gc,
1489    //             unnamed_addr, prologuedata, dllstorageclass, comdat,
1490    //             prefixdata, personalityfn, DSO_Local, addrspace]
1491    Vals.push_back(addToStrtab(F.getName()));
1492    Vals.push_back(F.getName().size());
1493    Vals.push_back(VE.getTypeID(F.getFunctionType()));
1494    Vals.push_back(F.getCallingConv());
1495    Vals.push_back(F.isDeclaration());
1496    Vals.push_back(getEncodedLinkage(F));
1497    Vals.push_back(VE.getAttributeListID(F.getAttributes()));
1498    Vals.push_back(getEncodedAlign(F.getAlign()));
1499    Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())]
1500                                  : 0);
1501    Vals.push_back(getEncodedVisibility(F));
1502    Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
1503    Vals.push_back(getEncodedUnnamedAddr(F));
1504    Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
1505                                       : 0);
1506    Vals.push_back(getEncodedDLLStorageClass(F));
1507    Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
1508    Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
1509                                     : 0);
1510    Vals.push_back(
1511        F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
1512
1513    Vals.push_back(F.isDSOLocal());
1514    Vals.push_back(F.getAddressSpace());
1515    Vals.push_back(addToStrtab(F.getPartition()));
1516    Vals.push_back(F.getPartition().size());
1517
1518    unsigned AbbrevToUse = 0;
1519    Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
1520    Vals.clear();
1521  }
1522
1523  // Emit the alias information.
1524  for (const GlobalAlias &A : M.aliases()) {
1525    // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage,
1526    //         visibility, dllstorageclass, threadlocal, unnamed_addr,
1527    //         DSO_Local]
1528    Vals.push_back(addToStrtab(A.getName()));
1529    Vals.push_back(A.getName().size());
1530    Vals.push_back(VE.getTypeID(A.getValueType()));
1531    Vals.push_back(A.getType()->getAddressSpace());
1532    Vals.push_back(VE.getValueID(A.getAliasee()));
1533    Vals.push_back(getEncodedLinkage(A));
1534    Vals.push_back(getEncodedVisibility(A));
1535    Vals.push_back(getEncodedDLLStorageClass(A));
1536    Vals.push_back(getEncodedThreadLocalMode(A));
1537    Vals.push_back(getEncodedUnnamedAddr(A));
1538    Vals.push_back(A.isDSOLocal());
1539    Vals.push_back(addToStrtab(A.getPartition()));
1540    Vals.push_back(A.getPartition().size());
1541
1542    unsigned AbbrevToUse = 0;
1543    Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
1544    Vals.clear();
1545  }
1546
1547  // Emit the ifunc information.
1548  for (const GlobalIFunc &I : M.ifuncs()) {
1549    // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver
1550    //         val#, linkage, visibility, DSO_Local]
1551    Vals.push_back(addToStrtab(I.getName()));
1552    Vals.push_back(I.getName().size());
1553    Vals.push_back(VE.getTypeID(I.getValueType()));
1554    Vals.push_back(I.getType()->getAddressSpace());
1555    Vals.push_back(VE.getValueID(I.getResolver()));
1556    Vals.push_back(getEncodedLinkage(I));
1557    Vals.push_back(getEncodedVisibility(I));
1558    Vals.push_back(I.isDSOLocal());
1559    Vals.push_back(addToStrtab(I.getPartition()));
1560    Vals.push_back(I.getPartition().size());
1561    Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
1562    Vals.clear();
1563  }
1564
1565  writeValueSymbolTableForwardDecl();
1566}
1567
1568static uint64_t getOptimizationFlags(const Value *V) {
1569  uint64_t Flags = 0;
1570
1571  if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
1572    if (OBO->hasNoSignedWrap())
1573      Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
1574    if (OBO->hasNoUnsignedWrap())
1575      Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
1576  } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
1577    if (PEO->isExact())
1578      Flags |= 1 << bitc::PEO_EXACT;
1579  } else if (const auto *PDI = dyn_cast<PossiblyDisjointInst>(V)) {
1580    if (PDI->isDisjoint())
1581      Flags |= 1 << bitc::PDI_DISJOINT;
1582  } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
1583    if (FPMO->hasAllowReassoc())
1584      Flags |= bitc::AllowReassoc;
1585    if (FPMO->hasNoNaNs())
1586      Flags |= bitc::NoNaNs;
1587    if (FPMO->hasNoInfs())
1588      Flags |= bitc::NoInfs;
1589    if (FPMO->hasNoSignedZeros())
1590      Flags |= bitc::NoSignedZeros;
1591    if (FPMO->hasAllowReciprocal())
1592      Flags |= bitc::AllowReciprocal;
1593    if (FPMO->hasAllowContract())
1594      Flags |= bitc::AllowContract;
1595    if (FPMO->hasApproxFunc())
1596      Flags |= bitc::ApproxFunc;
1597  } else if (const auto *NNI = dyn_cast<PossiblyNonNegInst>(V)) {
1598    if (NNI->hasNonNeg())
1599      Flags |= 1 << bitc::PNNI_NON_NEG;
1600  }
1601
1602  return Flags;
1603}
1604
1605void ModuleBitcodeWriter::writeValueAsMetadata(
1606    const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) {
1607  // Mimic an MDNode with a value as one operand.
1608  Value *V = MD->getValue();
1609  Record.push_back(VE.getTypeID(V->getType()));
1610  Record.push_back(VE.getValueID(V));
1611  Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
1612  Record.clear();
1613}
1614
1615void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N,
1616                                       SmallVectorImpl<uint64_t> &Record,
1617                                       unsigned Abbrev) {
1618  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1619    Metadata *MD = N->getOperand(i);
1620    assert(!(MD && isa<LocalAsMetadata>(MD)) &&
1621           "Unexpected function-local metadata");
1622    Record.push_back(VE.getMetadataOrNullID(MD));
1623  }
1624  Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
1625                                    : bitc::METADATA_NODE,
1626                    Record, Abbrev);
1627  Record.clear();
1628}
1629
1630unsigned ModuleBitcodeWriter::createDILocationAbbrev() {
1631  // Assume the column is usually under 128, and always output the inlined-at
1632  // location (it's never more expensive than building an array size 1).
1633  auto Abbv = std::make_shared<BitCodeAbbrev>();
1634  Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
1635  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1636  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1637  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1638  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1639  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1640  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1641  return Stream.EmitAbbrev(std::move(Abbv));
1642}
1643
1644void ModuleBitcodeWriter::writeDILocation(const DILocation *N,
1645                                          SmallVectorImpl<uint64_t> &Record,
1646                                          unsigned &Abbrev) {
1647  if (!Abbrev)
1648    Abbrev = createDILocationAbbrev();
1649
1650  Record.push_back(N->isDistinct());
1651  Record.push_back(N->getLine());
1652  Record.push_back(N->getColumn());
1653  Record.push_back(VE.getMetadataID(N->getScope()));
1654  Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
1655  Record.push_back(N->isImplicitCode());
1656
1657  Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
1658  Record.clear();
1659}
1660
1661unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() {
1662  // Assume the column is usually under 128, and always output the inlined-at
1663  // location (it's never more expensive than building an array size 1).
1664  auto Abbv = std::make_shared<BitCodeAbbrev>();
1665  Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
1666  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1667  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1668  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1669  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1670  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1671  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1672  return Stream.EmitAbbrev(std::move(Abbv));
1673}
1674
1675void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N,
1676                                             SmallVectorImpl<uint64_t> &Record,
1677                                             unsigned &Abbrev) {
1678  if (!Abbrev)
1679    Abbrev = createGenericDINodeAbbrev();
1680
1681  Record.push_back(N->isDistinct());
1682  Record.push_back(N->getTag());
1683  Record.push_back(0); // Per-tag version field; unused for now.
1684
1685  for (auto &I : N->operands())
1686    Record.push_back(VE.getMetadataOrNullID(I));
1687
1688  Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
1689  Record.clear();
1690}
1691
1692void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N,
1693                                          SmallVectorImpl<uint64_t> &Record,
1694                                          unsigned Abbrev) {
1695  const uint64_t Version = 2 << 1;
1696  Record.push_back((uint64_t)N->isDistinct() | Version);
1697  Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode()));
1698  Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound()));
1699  Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound()));
1700  Record.push_back(VE.getMetadataOrNullID(N->getRawStride()));
1701
1702  Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
1703  Record.clear();
1704}
1705
1706void ModuleBitcodeWriter::writeDIGenericSubrange(
1707    const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record,
1708    unsigned Abbrev) {
1709  Record.push_back((uint64_t)N->isDistinct());
1710  Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode()));
1711  Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound()));
1712  Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound()));
1713  Record.push_back(VE.getMetadataOrNullID(N->getRawStride()));
1714
1715  Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev);
1716  Record.clear();
1717}
1718
1719static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
1720  if ((int64_t)V >= 0)
1721    Vals.push_back(V << 1);
1722  else
1723    Vals.push_back((-V << 1) | 1);
1724}
1725
1726static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) {
1727  // We have an arbitrary precision integer value to write whose
1728  // bit width is > 64. However, in canonical unsigned integer
1729  // format it is likely that the high bits are going to be zero.
1730  // So, we only write the number of active words.
1731  unsigned NumWords = A.getActiveWords();
1732  const uint64_t *RawData = A.getRawData();
1733  for (unsigned i = 0; i < NumWords; i++)
1734    emitSignedInt64(Vals, RawData[i]);
1735}
1736
1737void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N,
1738                                            SmallVectorImpl<uint64_t> &Record,
1739                                            unsigned Abbrev) {
1740  const uint64_t IsBigInt = 1 << 2;
1741  Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct());
1742  Record.push_back(N->getValue().getBitWidth());
1743  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1744  emitWideAPInt(Record, N->getValue());
1745
1746  Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
1747  Record.clear();
1748}
1749
1750void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N,
1751                                           SmallVectorImpl<uint64_t> &Record,
1752                                           unsigned Abbrev) {
1753  Record.push_back(N->isDistinct());
1754  Record.push_back(N->getTag());
1755  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1756  Record.push_back(N->getSizeInBits());
1757  Record.push_back(N->getAlignInBits());
1758  Record.push_back(N->getEncoding());
1759  Record.push_back(N->getFlags());
1760
1761  Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
1762  Record.clear();
1763}
1764
1765void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N,
1766                                            SmallVectorImpl<uint64_t> &Record,
1767                                            unsigned Abbrev) {
1768  Record.push_back(N->isDistinct());
1769  Record.push_back(N->getTag());
1770  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1771  Record.push_back(VE.getMetadataOrNullID(N->getStringLength()));
1772  Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp()));
1773  Record.push_back(VE.getMetadataOrNullID(N->getStringLocationExp()));
1774  Record.push_back(N->getSizeInBits());
1775  Record.push_back(N->getAlignInBits());
1776  Record.push_back(N->getEncoding());
1777
1778  Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev);
1779  Record.clear();
1780}
1781
1782void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N,
1783                                             SmallVectorImpl<uint64_t> &Record,
1784                                             unsigned Abbrev) {
1785  Record.push_back(N->isDistinct());
1786  Record.push_back(N->getTag());
1787  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1788  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1789  Record.push_back(N->getLine());
1790  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1791  Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1792  Record.push_back(N->getSizeInBits());
1793  Record.push_back(N->getAlignInBits());
1794  Record.push_back(N->getOffsetInBits());
1795  Record.push_back(N->getFlags());
1796  Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
1797
1798  // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means
1799  // that there is no DWARF address space associated with DIDerivedType.
1800  if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
1801    Record.push_back(*DWARFAddressSpace + 1);
1802  else
1803    Record.push_back(0);
1804
1805  Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get()));
1806
1807  Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
1808  Record.clear();
1809}
1810
1811void ModuleBitcodeWriter::writeDICompositeType(
1812    const DICompositeType *N, SmallVectorImpl<uint64_t> &Record,
1813    unsigned Abbrev) {
1814  const unsigned IsNotUsedInOldTypeRef = 0x2;
1815  Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct());
1816  Record.push_back(N->getTag());
1817  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1818  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1819  Record.push_back(N->getLine());
1820  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1821  Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1822  Record.push_back(N->getSizeInBits());
1823  Record.push_back(N->getAlignInBits());
1824  Record.push_back(N->getOffsetInBits());
1825  Record.push_back(N->getFlags());
1826  Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1827  Record.push_back(N->getRuntimeLang());
1828  Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
1829  Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1830  Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
1831  Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator()));
1832  Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation()));
1833  Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated()));
1834  Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated()));
1835  Record.push_back(VE.getMetadataOrNullID(N->getRawRank()));
1836  Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get()));
1837
1838  Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
1839  Record.clear();
1840}
1841
1842void ModuleBitcodeWriter::writeDISubroutineType(
1843    const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record,
1844    unsigned Abbrev) {
1845  const unsigned HasNoOldTypeRefs = 0x2;
1846  Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct());
1847  Record.push_back(N->getFlags());
1848  Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
1849  Record.push_back(N->getCC());
1850
1851  Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
1852  Record.clear();
1853}
1854
1855void ModuleBitcodeWriter::writeDIFile(const DIFile *N,
1856                                      SmallVectorImpl<uint64_t> &Record,
1857                                      unsigned Abbrev) {
1858  Record.push_back(N->isDistinct());
1859  Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
1860  Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
1861  if (N->getRawChecksum()) {
1862    Record.push_back(N->getRawChecksum()->Kind);
1863    Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value));
1864  } else {
1865    // Maintain backwards compatibility with the old internal representation of
1866    // CSK_None in ChecksumKind by writing nulls here when Checksum is None.
1867    Record.push_back(0);
1868    Record.push_back(VE.getMetadataOrNullID(nullptr));
1869  }
1870  auto Source = N->getRawSource();
1871  if (Source)
1872    Record.push_back(VE.getMetadataOrNullID(Source));
1873
1874  Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
1875  Record.clear();
1876}
1877
1878void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N,
1879                                             SmallVectorImpl<uint64_t> &Record,
1880                                             unsigned Abbrev) {
1881  assert(N->isDistinct() && "Expected distinct compile units");
1882  Record.push_back(/* IsDistinct */ true);
1883  Record.push_back(N->getSourceLanguage());
1884  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1885  Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
1886  Record.push_back(N->isOptimized());
1887  Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
1888  Record.push_back(N->getRuntimeVersion());
1889  Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
1890  Record.push_back(N->getEmissionKind());
1891  Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
1892  Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
1893  Record.push_back(/* subprograms */ 0);
1894  Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
1895  Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
1896  Record.push_back(N->getDWOId());
1897  Record.push_back(VE.getMetadataOrNullID(N->getMacros().get()));
1898  Record.push_back(N->getSplitDebugInlining());
1899  Record.push_back(N->getDebugInfoForProfiling());
1900  Record.push_back((unsigned)N->getNameTableKind());
1901  Record.push_back(N->getRangesBaseAddress());
1902  Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot()));
1903  Record.push_back(VE.getMetadataOrNullID(N->getRawSDK()));
1904
1905  Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
1906  Record.clear();
1907}
1908
1909void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N,
1910                                            SmallVectorImpl<uint64_t> &Record,
1911                                            unsigned Abbrev) {
1912  const uint64_t HasUnitFlag = 1 << 1;
1913  const uint64_t HasSPFlagsFlag = 1 << 2;
1914  Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag);
1915  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1916  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1917  Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1918  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1919  Record.push_back(N->getLine());
1920  Record.push_back(VE.getMetadataOrNullID(N->getType()));
1921  Record.push_back(N->getScopeLine());
1922  Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
1923  Record.push_back(N->getSPFlags());
1924  Record.push_back(N->getVirtualIndex());
1925  Record.push_back(N->getFlags());
1926  Record.push_back(VE.getMetadataOrNullID(N->getRawUnit()));
1927  Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1928  Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
1929  Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get()));
1930  Record.push_back(N->getThisAdjustment());
1931  Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get()));
1932  Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get()));
1933  Record.push_back(VE.getMetadataOrNullID(N->getRawTargetFuncName()));
1934
1935  Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
1936  Record.clear();
1937}
1938
1939void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N,
1940                                              SmallVectorImpl<uint64_t> &Record,
1941                                              unsigned Abbrev) {
1942  Record.push_back(N->isDistinct());
1943  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1944  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1945  Record.push_back(N->getLine());
1946  Record.push_back(N->getColumn());
1947
1948  Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
1949  Record.clear();
1950}
1951
1952void ModuleBitcodeWriter::writeDILexicalBlockFile(
1953    const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record,
1954    unsigned Abbrev) {
1955  Record.push_back(N->isDistinct());
1956  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1957  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1958  Record.push_back(N->getDiscriminator());
1959
1960  Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
1961  Record.clear();
1962}
1963
1964void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N,
1965                                             SmallVectorImpl<uint64_t> &Record,
1966                                             unsigned Abbrev) {
1967  Record.push_back(N->isDistinct());
1968  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1969  Record.push_back(VE.getMetadataOrNullID(N->getDecl()));
1970  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1971  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1972  Record.push_back(N->getLineNo());
1973
1974  Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev);
1975  Record.clear();
1976}
1977
1978void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N,
1979                                           SmallVectorImpl<uint64_t> &Record,
1980                                           unsigned Abbrev) {
1981  Record.push_back(N->isDistinct() | N->getExportSymbols() << 1);
1982  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1983  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1984
1985  Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
1986  Record.clear();
1987}
1988
1989void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N,
1990                                       SmallVectorImpl<uint64_t> &Record,
1991                                       unsigned Abbrev) {
1992  Record.push_back(N->isDistinct());
1993  Record.push_back(N->getMacinfoType());
1994  Record.push_back(N->getLine());
1995  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1996  Record.push_back(VE.getMetadataOrNullID(N->getRawValue()));
1997
1998  Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev);
1999  Record.clear();
2000}
2001
2002void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N,
2003                                           SmallVectorImpl<uint64_t> &Record,
2004                                           unsigned Abbrev) {
2005  Record.push_back(N->isDistinct());
2006  Record.push_back(N->getMacinfoType());
2007  Record.push_back(N->getLine());
2008  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2009  Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
2010
2011  Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev);
2012  Record.clear();
2013}
2014
2015void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N,
2016                                         SmallVectorImpl<uint64_t> &Record) {
2017  Record.reserve(N->getArgs().size());
2018  for (ValueAsMetadata *MD : N->getArgs())
2019    Record.push_back(VE.getMetadataID(MD));
2020
2021  Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record);
2022  Record.clear();
2023}
2024
2025void ModuleBitcodeWriter::writeDIModule(const DIModule *N,
2026                                        SmallVectorImpl<uint64_t> &Record,
2027                                        unsigned Abbrev) {
2028  Record.push_back(N->isDistinct());
2029  for (auto &I : N->operands())
2030    Record.push_back(VE.getMetadataOrNullID(I));
2031  Record.push_back(N->getLineNo());
2032  Record.push_back(N->getIsDecl());
2033
2034  Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
2035  Record.clear();
2036}
2037
2038void ModuleBitcodeWriter::writeDIAssignID(const DIAssignID *N,
2039                                          SmallVectorImpl<uint64_t> &Record,
2040                                          unsigned Abbrev) {
2041  // There are no arguments for this metadata type.
2042  Record.push_back(N->isDistinct());
2043  Stream.EmitRecord(bitc::METADATA_ASSIGN_ID, Record, Abbrev);
2044  Record.clear();
2045}
2046
2047void ModuleBitcodeWriter::writeDITemplateTypeParameter(
2048    const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record,
2049    unsigned Abbrev) {
2050  Record.push_back(N->isDistinct());
2051  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2052  Record.push_back(VE.getMetadataOrNullID(N->getType()));
2053  Record.push_back(N->isDefault());
2054
2055  Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
2056  Record.clear();
2057}
2058
2059void ModuleBitcodeWriter::writeDITemplateValueParameter(
2060    const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record,
2061    unsigned Abbrev) {
2062  Record.push_back(N->isDistinct());
2063  Record.push_back(N->getTag());
2064  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2065  Record.push_back(VE.getMetadataOrNullID(N->getType()));
2066  Record.push_back(N->isDefault());
2067  Record.push_back(VE.getMetadataOrNullID(N->getValue()));
2068
2069  Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
2070  Record.clear();
2071}
2072
2073void ModuleBitcodeWriter::writeDIGlobalVariable(
2074    const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record,
2075    unsigned Abbrev) {
2076  const uint64_t Version = 2 << 1;
2077  Record.push_back((uint64_t)N->isDistinct() | Version);
2078  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2079  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2080  Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
2081  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2082  Record.push_back(N->getLine());
2083  Record.push_back(VE.getMetadataOrNullID(N->getType()));
2084  Record.push_back(N->isLocalToUnit());
2085  Record.push_back(N->isDefinition());
2086  Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
2087  Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams()));
2088  Record.push_back(N->getAlignInBits());
2089  Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get()));
2090
2091  Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
2092  Record.clear();
2093}
2094
2095void ModuleBitcodeWriter::writeDILocalVariable(
2096    const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record,
2097    unsigned Abbrev) {
2098  // In order to support all possible bitcode formats in BitcodeReader we need
2099  // to distinguish the following cases:
2100  // 1) Record has no artificial tag (Record[1]),
2101  //   has no obsolete inlinedAt field (Record[9]).
2102  //   In this case Record size will be 8, HasAlignment flag is false.
2103  // 2) Record has artificial tag (Record[1]),
2104  //   has no obsolete inlignedAt field (Record[9]).
2105  //   In this case Record size will be 9, HasAlignment flag is false.
2106  // 3) Record has both artificial tag (Record[1]) and
2107  //   obsolete inlignedAt field (Record[9]).
2108  //   In this case Record size will be 10, HasAlignment flag is false.
2109  // 4) Record has neither artificial tag, nor inlignedAt field, but
2110  //   HasAlignment flag is true and Record[8] contains alignment value.
2111  const uint64_t HasAlignmentFlag = 1 << 1;
2112  Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag);
2113  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2114  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2115  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2116  Record.push_back(N->getLine());
2117  Record.push_back(VE.getMetadataOrNullID(N->getType()));
2118  Record.push_back(N->getArg());
2119  Record.push_back(N->getFlags());
2120  Record.push_back(N->getAlignInBits());
2121  Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get()));
2122
2123  Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
2124  Record.clear();
2125}
2126
2127void ModuleBitcodeWriter::writeDILabel(
2128    const DILabel *N, SmallVectorImpl<uint64_t> &Record,
2129    unsigned Abbrev) {
2130  Record.push_back((uint64_t)N->isDistinct());
2131  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2132  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2133  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2134  Record.push_back(N->getLine());
2135
2136  Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev);
2137  Record.clear();
2138}
2139
2140void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N,
2141                                            SmallVectorImpl<uint64_t> &Record,
2142                                            unsigned Abbrev) {
2143  Record.reserve(N->getElements().size() + 1);
2144  const uint64_t Version = 3 << 1;
2145  Record.push_back((uint64_t)N->isDistinct() | Version);
2146  Record.append(N->elements_begin(), N->elements_end());
2147
2148  Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
2149  Record.clear();
2150}
2151
2152void ModuleBitcodeWriter::writeDIGlobalVariableExpression(
2153    const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record,
2154    unsigned Abbrev) {
2155  Record.push_back(N->isDistinct());
2156  Record.push_back(VE.getMetadataOrNullID(N->getVariable()));
2157  Record.push_back(VE.getMetadataOrNullID(N->getExpression()));
2158
2159  Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev);
2160  Record.clear();
2161}
2162
2163void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N,
2164                                              SmallVectorImpl<uint64_t> &Record,
2165                                              unsigned Abbrev) {
2166  Record.push_back(N->isDistinct());
2167  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2168  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2169  Record.push_back(N->getLine());
2170  Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName()));
2171  Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName()));
2172  Record.push_back(N->getAttributes());
2173  Record.push_back(VE.getMetadataOrNullID(N->getType()));
2174
2175  Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev);
2176  Record.clear();
2177}
2178
2179void ModuleBitcodeWriter::writeDIImportedEntity(
2180    const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record,
2181    unsigned Abbrev) {
2182  Record.push_back(N->isDistinct());
2183  Record.push_back(N->getTag());
2184  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2185  Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
2186  Record.push_back(N->getLine());
2187  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2188  Record.push_back(VE.getMetadataOrNullID(N->getRawFile()));
2189  Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
2190
2191  Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
2192  Record.clear();
2193}
2194
2195unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() {
2196  auto Abbv = std::make_shared<BitCodeAbbrev>();
2197  Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
2198  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2199  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2200  return Stream.EmitAbbrev(std::move(Abbv));
2201}
2202
2203void ModuleBitcodeWriter::writeNamedMetadata(
2204    SmallVectorImpl<uint64_t> &Record) {
2205  if (M.named_metadata_empty())
2206    return;
2207
2208  unsigned Abbrev = createNamedMetadataAbbrev();
2209  for (const NamedMDNode &NMD : M.named_metadata()) {
2210    // Write name.
2211    StringRef Str = NMD.getName();
2212    Record.append(Str.bytes_begin(), Str.bytes_end());
2213    Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev);
2214    Record.clear();
2215
2216    // Write named metadata operands.
2217    for (const MDNode *N : NMD.operands())
2218      Record.push_back(VE.getMetadataID(N));
2219    Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
2220    Record.clear();
2221  }
2222}
2223
2224unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() {
2225  auto Abbv = std::make_shared<BitCodeAbbrev>();
2226  Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS));
2227  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings
2228  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars
2229  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
2230  return Stream.EmitAbbrev(std::move(Abbv));
2231}
2232
2233/// Write out a record for MDString.
2234///
2235/// All the metadata strings in a metadata block are emitted in a single
2236/// record.  The sizes and strings themselves are shoved into a blob.
2237void ModuleBitcodeWriter::writeMetadataStrings(
2238    ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) {
2239  if (Strings.empty())
2240    return;
2241
2242  // Start the record with the number of strings.
2243  Record.push_back(bitc::METADATA_STRINGS);
2244  Record.push_back(Strings.size());
2245
2246  // Emit the sizes of the strings in the blob.
2247  SmallString<256> Blob;
2248  {
2249    BitstreamWriter W(Blob);
2250    for (const Metadata *MD : Strings)
2251      W.EmitVBR(cast<MDString>(MD)->getLength(), 6);
2252    W.FlushToWord();
2253  }
2254
2255  // Add the offset to the strings to the record.
2256  Record.push_back(Blob.size());
2257
2258  // Add the strings to the blob.
2259  for (const Metadata *MD : Strings)
2260    Blob.append(cast<MDString>(MD)->getString());
2261
2262  // Emit the final record.
2263  Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob);
2264  Record.clear();
2265}
2266
2267// Generates an enum to use as an index in the Abbrev array of Metadata record.
2268enum MetadataAbbrev : unsigned {
2269#define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID,
2270#include "llvm/IR/Metadata.def"
2271  LastPlusOne
2272};
2273
2274void ModuleBitcodeWriter::writeMetadataRecords(
2275    ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record,
2276    std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) {
2277  if (MDs.empty())
2278    return;
2279
2280  // Initialize MDNode abbreviations.
2281#define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
2282#include "llvm/IR/Metadata.def"
2283
2284  for (const Metadata *MD : MDs) {
2285    if (IndexPos)
2286      IndexPos->push_back(Stream.GetCurrentBitNo());
2287    if (const MDNode *N = dyn_cast<MDNode>(MD)) {
2288      assert(N->isResolved() && "Expected forward references to be resolved");
2289
2290      switch (N->getMetadataID()) {
2291      default:
2292        llvm_unreachable("Invalid MDNode subclass");
2293#define HANDLE_MDNODE_LEAF(CLASS)                                              \
2294  case Metadata::CLASS##Kind:                                                  \
2295    if (MDAbbrevs)                                                             \
2296      write##CLASS(cast<CLASS>(N), Record,                                     \
2297                   (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]);             \
2298    else                                                                       \
2299      write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev);                     \
2300    continue;
2301#include "llvm/IR/Metadata.def"
2302      }
2303    }
2304    if (auto *AL = dyn_cast<DIArgList>(MD)) {
2305      writeDIArgList(AL, Record);
2306      continue;
2307    }
2308    writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record);
2309  }
2310}
2311
2312void ModuleBitcodeWriter::writeModuleMetadata() {
2313  if (!VE.hasMDs() && M.named_metadata_empty())
2314    return;
2315
2316  Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4);
2317  SmallVector<uint64_t, 64> Record;
2318
2319  // Emit all abbrevs upfront, so that the reader can jump in the middle of the
2320  // block and load any metadata.
2321  std::vector<unsigned> MDAbbrevs;
2322
2323  MDAbbrevs.resize(MetadataAbbrev::LastPlusOne);
2324  MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev();
2325  MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] =
2326      createGenericDINodeAbbrev();
2327
2328  auto Abbv = std::make_shared<BitCodeAbbrev>();
2329  Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET));
2330  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
2331  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
2332  unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2333
2334  Abbv = std::make_shared<BitCodeAbbrev>();
2335  Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX));
2336  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2337  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
2338  unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2339
2340  // Emit MDStrings together upfront.
2341  writeMetadataStrings(VE.getMDStrings(), Record);
2342
2343  // We only emit an index for the metadata record if we have more than a given
2344  // (naive) threshold of metadatas, otherwise it is not worth it.
2345  if (VE.getNonMDStrings().size() > IndexThreshold) {
2346    // Write a placeholder value in for the offset of the metadata index,
2347    // which is written after the records, so that it can include
2348    // the offset of each entry. The placeholder offset will be
2349    // updated after all records are emitted.
2350    uint64_t Vals[] = {0, 0};
2351    Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev);
2352  }
2353
2354  // Compute and save the bit offset to the current position, which will be
2355  // patched when we emit the index later. We can simply subtract the 64-bit
2356  // fixed size from the current bit number to get the location to backpatch.
2357  uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo();
2358
2359  // This index will contain the bitpos for each individual record.
2360  std::vector<uint64_t> IndexPos;
2361  IndexPos.reserve(VE.getNonMDStrings().size());
2362
2363  // Write all the records
2364  writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos);
2365
2366  if (VE.getNonMDStrings().size() > IndexThreshold) {
2367    // Now that we have emitted all the records we will emit the index. But
2368    // first
2369    // backpatch the forward reference so that the reader can skip the records
2370    // efficiently.
2371    Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64,
2372                           Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos);
2373
2374    // Delta encode the index.
2375    uint64_t PreviousValue = IndexOffsetRecordBitPos;
2376    for (auto &Elt : IndexPos) {
2377      auto EltDelta = Elt - PreviousValue;
2378      PreviousValue = Elt;
2379      Elt = EltDelta;
2380    }
2381    // Emit the index record.
2382    Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev);
2383    IndexPos.clear();
2384  }
2385
2386  // Write the named metadata now.
2387  writeNamedMetadata(Record);
2388
2389  auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) {
2390    SmallVector<uint64_t, 4> Record;
2391    Record.push_back(VE.getValueID(&GO));
2392    pushGlobalMetadataAttachment(Record, GO);
2393    Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record);
2394  };
2395  for (const Function &F : M)
2396    if (F.isDeclaration() && F.hasMetadata())
2397      AddDeclAttachedMetadata(F);
2398  // FIXME: Only store metadata for declarations here, and move data for global
2399  // variable definitions to a separate block (PR28134).
2400  for (const GlobalVariable &GV : M.globals())
2401    if (GV.hasMetadata())
2402      AddDeclAttachedMetadata(GV);
2403
2404  Stream.ExitBlock();
2405}
2406
2407void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) {
2408  if (!VE.hasMDs())
2409    return;
2410
2411  Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
2412  SmallVector<uint64_t, 64> Record;
2413  writeMetadataStrings(VE.getMDStrings(), Record);
2414  writeMetadataRecords(VE.getNonMDStrings(), Record);
2415  Stream.ExitBlock();
2416}
2417
2418void ModuleBitcodeWriter::pushGlobalMetadataAttachment(
2419    SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) {
2420  // [n x [id, mdnode]]
2421  SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2422  GO.getAllMetadata(MDs);
2423  for (const auto &I : MDs) {
2424    Record.push_back(I.first);
2425    Record.push_back(VE.getMetadataID(I.second));
2426  }
2427}
2428
2429void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) {
2430  Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
2431
2432  SmallVector<uint64_t, 64> Record;
2433
2434  if (F.hasMetadata()) {
2435    pushGlobalMetadataAttachment(Record, F);
2436    Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2437    Record.clear();
2438  }
2439
2440  // Write metadata attachments
2441  // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
2442  SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2443  for (const BasicBlock &BB : F)
2444    for (const Instruction &I : BB) {
2445      MDs.clear();
2446      I.getAllMetadataOtherThanDebugLoc(MDs);
2447
2448      // If no metadata, ignore instruction.
2449      if (MDs.empty()) continue;
2450
2451      Record.push_back(VE.getInstructionID(&I));
2452
2453      for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
2454        Record.push_back(MDs[i].first);
2455        Record.push_back(VE.getMetadataID(MDs[i].second));
2456      }
2457      Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2458      Record.clear();
2459    }
2460
2461  Stream.ExitBlock();
2462}
2463
2464void ModuleBitcodeWriter::writeModuleMetadataKinds() {
2465  SmallVector<uint64_t, 64> Record;
2466
2467  // Write metadata kinds
2468  // METADATA_KIND - [n x [id, name]]
2469  SmallVector<StringRef, 8> Names;
2470  M.getMDKindNames(Names);
2471
2472  if (Names.empty()) return;
2473
2474  Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3);
2475
2476  for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
2477    Record.push_back(MDKindID);
2478    StringRef KName = Names[MDKindID];
2479    Record.append(KName.begin(), KName.end());
2480
2481    Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
2482    Record.clear();
2483  }
2484
2485  Stream.ExitBlock();
2486}
2487
2488void ModuleBitcodeWriter::writeOperandBundleTags() {
2489  // Write metadata kinds
2490  //
2491  // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG
2492  //
2493  // OPERAND_BUNDLE_TAG - [strchr x N]
2494
2495  SmallVector<StringRef, 8> Tags;
2496  M.getOperandBundleTags(Tags);
2497
2498  if (Tags.empty())
2499    return;
2500
2501  Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3);
2502
2503  SmallVector<uint64_t, 64> Record;
2504
2505  for (auto Tag : Tags) {
2506    Record.append(Tag.begin(), Tag.end());
2507
2508    Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0);
2509    Record.clear();
2510  }
2511
2512  Stream.ExitBlock();
2513}
2514
2515void ModuleBitcodeWriter::writeSyncScopeNames() {
2516  SmallVector<StringRef, 8> SSNs;
2517  M.getContext().getSyncScopeNames(SSNs);
2518  if (SSNs.empty())
2519    return;
2520
2521  Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2);
2522
2523  SmallVector<uint64_t, 64> Record;
2524  for (auto SSN : SSNs) {
2525    Record.append(SSN.begin(), SSN.end());
2526    Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0);
2527    Record.clear();
2528  }
2529
2530  Stream.ExitBlock();
2531}
2532
2533void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
2534                                         bool isGlobal) {
2535  if (FirstVal == LastVal) return;
2536
2537  Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
2538
2539  unsigned AggregateAbbrev = 0;
2540  unsigned String8Abbrev = 0;
2541  unsigned CString7Abbrev = 0;
2542  unsigned CString6Abbrev = 0;
2543  // If this is a constant pool for the module, emit module-specific abbrevs.
2544  if (isGlobal) {
2545    // Abbrev for CST_CODE_AGGREGATE.
2546    auto Abbv = std::make_shared<BitCodeAbbrev>();
2547    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
2548    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2549    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
2550    AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2551
2552    // Abbrev for CST_CODE_STRING.
2553    Abbv = std::make_shared<BitCodeAbbrev>();
2554    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
2555    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2556    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2557    String8Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2558    // Abbrev for CST_CODE_CSTRING.
2559    Abbv = std::make_shared<BitCodeAbbrev>();
2560    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2561    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2562    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2563    CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2564    // Abbrev for CST_CODE_CSTRING.
2565    Abbv = std::make_shared<BitCodeAbbrev>();
2566    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2567    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2568    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2569    CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2570  }
2571
2572  SmallVector<uint64_t, 64> Record;
2573
2574  const ValueEnumerator::ValueList &Vals = VE.getValues();
2575  Type *LastTy = nullptr;
2576  for (unsigned i = FirstVal; i != LastVal; ++i) {
2577    const Value *V = Vals[i].first;
2578    // If we need to switch types, do so now.
2579    if (V->getType() != LastTy) {
2580      LastTy = V->getType();
2581      Record.push_back(VE.getTypeID(LastTy));
2582      Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
2583                        CONSTANTS_SETTYPE_ABBREV);
2584      Record.clear();
2585    }
2586
2587    if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
2588      Record.push_back(VE.getTypeID(IA->getFunctionType()));
2589      Record.push_back(
2590          unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 |
2591          unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3);
2592
2593      // Add the asm string.
2594      const std::string &AsmStr = IA->getAsmString();
2595      Record.push_back(AsmStr.size());
2596      Record.append(AsmStr.begin(), AsmStr.end());
2597
2598      // Add the constraint string.
2599      const std::string &ConstraintStr = IA->getConstraintString();
2600      Record.push_back(ConstraintStr.size());
2601      Record.append(ConstraintStr.begin(), ConstraintStr.end());
2602      Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
2603      Record.clear();
2604      continue;
2605    }
2606    const Constant *C = cast<Constant>(V);
2607    unsigned Code = -1U;
2608    unsigned AbbrevToUse = 0;
2609    if (C->isNullValue()) {
2610      Code = bitc::CST_CODE_NULL;
2611    } else if (isa<PoisonValue>(C)) {
2612      Code = bitc::CST_CODE_POISON;
2613    } else if (isa<UndefValue>(C)) {
2614      Code = bitc::CST_CODE_UNDEF;
2615    } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
2616      if (IV->getBitWidth() <= 64) {
2617        uint64_t V = IV->getSExtValue();
2618        emitSignedInt64(Record, V);
2619        Code = bitc::CST_CODE_INTEGER;
2620        AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
2621      } else {                             // Wide integers, > 64 bits in size.
2622        emitWideAPInt(Record, IV->getValue());
2623        Code = bitc::CST_CODE_WIDE_INTEGER;
2624      }
2625    } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
2626      Code = bitc::CST_CODE_FLOAT;
2627      Type *Ty = CFP->getType();
2628      if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() ||
2629          Ty->isDoubleTy()) {
2630        Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
2631      } else if (Ty->isX86_FP80Ty()) {
2632        // api needed to prevent premature destruction
2633        // bits are not in the same order as a normal i80 APInt, compensate.
2634        APInt api = CFP->getValueAPF().bitcastToAPInt();
2635        const uint64_t *p = api.getRawData();
2636        Record.push_back((p[1] << 48) | (p[0] >> 16));
2637        Record.push_back(p[0] & 0xffffLL);
2638      } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
2639        APInt api = CFP->getValueAPF().bitcastToAPInt();
2640        const uint64_t *p = api.getRawData();
2641        Record.push_back(p[0]);
2642        Record.push_back(p[1]);
2643      } else {
2644        assert(0 && "Unknown FP type!");
2645      }
2646    } else if (isa<ConstantDataSequential>(C) &&
2647               cast<ConstantDataSequential>(C)->isString()) {
2648      const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
2649      // Emit constant strings specially.
2650      unsigned NumElts = Str->getNumElements();
2651      // If this is a null-terminated string, use the denser CSTRING encoding.
2652      if (Str->isCString()) {
2653        Code = bitc::CST_CODE_CSTRING;
2654        --NumElts;  // Don't encode the null, which isn't allowed by char6.
2655      } else {
2656        Code = bitc::CST_CODE_STRING;
2657        AbbrevToUse = String8Abbrev;
2658      }
2659      bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
2660      bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
2661      for (unsigned i = 0; i != NumElts; ++i) {
2662        unsigned char V = Str->getElementAsInteger(i);
2663        Record.push_back(V);
2664        isCStr7 &= (V & 128) == 0;
2665        if (isCStrChar6)
2666          isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
2667      }
2668
2669      if (isCStrChar6)
2670        AbbrevToUse = CString6Abbrev;
2671      else if (isCStr7)
2672        AbbrevToUse = CString7Abbrev;
2673    } else if (const ConstantDataSequential *CDS =
2674                  dyn_cast<ConstantDataSequential>(C)) {
2675      Code = bitc::CST_CODE_DATA;
2676      Type *EltTy = CDS->getElementType();
2677      if (isa<IntegerType>(EltTy)) {
2678        for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2679          Record.push_back(CDS->getElementAsInteger(i));
2680      } else {
2681        for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2682          Record.push_back(
2683              CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue());
2684      }
2685    } else if (isa<ConstantAggregate>(C)) {
2686      Code = bitc::CST_CODE_AGGREGATE;
2687      for (const Value *Op : C->operands())
2688        Record.push_back(VE.getValueID(Op));
2689      AbbrevToUse = AggregateAbbrev;
2690    } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2691      switch (CE->getOpcode()) {
2692      default:
2693        if (Instruction::isCast(CE->getOpcode())) {
2694          Code = bitc::CST_CODE_CE_CAST;
2695          Record.push_back(getEncodedCastOpcode(CE->getOpcode()));
2696          Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2697          Record.push_back(VE.getValueID(C->getOperand(0)));
2698          AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
2699        } else {
2700          assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
2701          Code = bitc::CST_CODE_CE_BINOP;
2702          Record.push_back(getEncodedBinaryOpcode(CE->getOpcode()));
2703          Record.push_back(VE.getValueID(C->getOperand(0)));
2704          Record.push_back(VE.getValueID(C->getOperand(1)));
2705          uint64_t Flags = getOptimizationFlags(CE);
2706          if (Flags != 0)
2707            Record.push_back(Flags);
2708        }
2709        break;
2710      case Instruction::FNeg: {
2711        assert(CE->getNumOperands() == 1 && "Unknown constant expr!");
2712        Code = bitc::CST_CODE_CE_UNOP;
2713        Record.push_back(getEncodedUnaryOpcode(CE->getOpcode()));
2714        Record.push_back(VE.getValueID(C->getOperand(0)));
2715        uint64_t Flags = getOptimizationFlags(CE);
2716        if (Flags != 0)
2717          Record.push_back(Flags);
2718        break;
2719      }
2720      case Instruction::GetElementPtr: {
2721        Code = bitc::CST_CODE_CE_GEP;
2722        const auto *GO = cast<GEPOperator>(C);
2723        Record.push_back(VE.getTypeID(GO->getSourceElementType()));
2724        if (std::optional<unsigned> Idx = GO->getInRangeIndex()) {
2725          Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX;
2726          Record.push_back((*Idx << 1) | GO->isInBounds());
2727        } else if (GO->isInBounds())
2728          Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
2729        for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
2730          Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
2731          Record.push_back(VE.getValueID(C->getOperand(i)));
2732        }
2733        break;
2734      }
2735      case Instruction::ExtractElement:
2736        Code = bitc::CST_CODE_CE_EXTRACTELT;
2737        Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2738        Record.push_back(VE.getValueID(C->getOperand(0)));
2739        Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
2740        Record.push_back(VE.getValueID(C->getOperand(1)));
2741        break;
2742      case Instruction::InsertElement:
2743        Code = bitc::CST_CODE_CE_INSERTELT;
2744        Record.push_back(VE.getValueID(C->getOperand(0)));
2745        Record.push_back(VE.getValueID(C->getOperand(1)));
2746        Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
2747        Record.push_back(VE.getValueID(C->getOperand(2)));
2748        break;
2749      case Instruction::ShuffleVector:
2750        // If the return type and argument types are the same, this is a
2751        // standard shufflevector instruction.  If the types are different,
2752        // then the shuffle is widening or truncating the input vectors, and
2753        // the argument type must also be encoded.
2754        if (C->getType() == C->getOperand(0)->getType()) {
2755          Code = bitc::CST_CODE_CE_SHUFFLEVEC;
2756        } else {
2757          Code = bitc::CST_CODE_CE_SHUFVEC_EX;
2758          Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2759        }
2760        Record.push_back(VE.getValueID(C->getOperand(0)));
2761        Record.push_back(VE.getValueID(C->getOperand(1)));
2762        Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode()));
2763        break;
2764      case Instruction::ICmp:
2765      case Instruction::FCmp:
2766        Code = bitc::CST_CODE_CE_CMP;
2767        Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2768        Record.push_back(VE.getValueID(C->getOperand(0)));
2769        Record.push_back(VE.getValueID(C->getOperand(1)));
2770        Record.push_back(CE->getPredicate());
2771        break;
2772      }
2773    } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
2774      Code = bitc::CST_CODE_BLOCKADDRESS;
2775      Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
2776      Record.push_back(VE.getValueID(BA->getFunction()));
2777      Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
2778    } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) {
2779      Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT;
2780      Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType()));
2781      Record.push_back(VE.getValueID(Equiv->getGlobalValue()));
2782    } else if (const auto *NC = dyn_cast<NoCFIValue>(C)) {
2783      Code = bitc::CST_CODE_NO_CFI_VALUE;
2784      Record.push_back(VE.getTypeID(NC->getGlobalValue()->getType()));
2785      Record.push_back(VE.getValueID(NC->getGlobalValue()));
2786    } else {
2787#ifndef NDEBUG
2788      C->dump();
2789#endif
2790      llvm_unreachable("Unknown constant!");
2791    }
2792    Stream.EmitRecord(Code, Record, AbbrevToUse);
2793    Record.clear();
2794  }
2795
2796  Stream.ExitBlock();
2797}
2798
2799void ModuleBitcodeWriter::writeModuleConstants() {
2800  const ValueEnumerator::ValueList &Vals = VE.getValues();
2801
2802  // Find the first constant to emit, which is the first non-globalvalue value.
2803  // We know globalvalues have been emitted by WriteModuleInfo.
2804  for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
2805    if (!isa<GlobalValue>(Vals[i].first)) {
2806      writeConstants(i, Vals.size(), true);
2807      return;
2808    }
2809  }
2810}
2811
2812/// pushValueAndType - The file has to encode both the value and type id for
2813/// many values, because we need to know what type to create for forward
2814/// references.  However, most operands are not forward references, so this type
2815/// field is not needed.
2816///
2817/// This function adds V's value ID to Vals.  If the value ID is higher than the
2818/// instruction ID, then it is a forward reference, and it also includes the
2819/// type ID.  The value ID that is written is encoded relative to the InstID.
2820bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID,
2821                                           SmallVectorImpl<unsigned> &Vals) {
2822  unsigned ValID = VE.getValueID(V);
2823  // Make encoding relative to the InstID.
2824  Vals.push_back(InstID - ValID);
2825  if (ValID >= InstID) {
2826    Vals.push_back(VE.getTypeID(V->getType()));
2827    return true;
2828  }
2829  return false;
2830}
2831
2832void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS,
2833                                              unsigned InstID) {
2834  SmallVector<unsigned, 64> Record;
2835  LLVMContext &C = CS.getContext();
2836
2837  for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
2838    const auto &Bundle = CS.getOperandBundleAt(i);
2839    Record.push_back(C.getOperandBundleTagID(Bundle.getTagName()));
2840
2841    for (auto &Input : Bundle.Inputs)
2842      pushValueAndType(Input, InstID, Record);
2843
2844    Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record);
2845    Record.clear();
2846  }
2847}
2848
2849/// pushValue - Like pushValueAndType, but where the type of the value is
2850/// omitted (perhaps it was already encoded in an earlier operand).
2851void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID,
2852                                    SmallVectorImpl<unsigned> &Vals) {
2853  unsigned ValID = VE.getValueID(V);
2854  Vals.push_back(InstID - ValID);
2855}
2856
2857void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID,
2858                                          SmallVectorImpl<uint64_t> &Vals) {
2859  unsigned ValID = VE.getValueID(V);
2860  int64_t diff = ((int32_t)InstID - (int32_t)ValID);
2861  emitSignedInt64(Vals, diff);
2862}
2863
2864/// WriteInstruction - Emit an instruction to the specified stream.
2865void ModuleBitcodeWriter::writeInstruction(const Instruction &I,
2866                                           unsigned InstID,
2867                                           SmallVectorImpl<unsigned> &Vals) {
2868  unsigned Code = 0;
2869  unsigned AbbrevToUse = 0;
2870  VE.setInstructionID(&I);
2871  switch (I.getOpcode()) {
2872  default:
2873    if (Instruction::isCast(I.getOpcode())) {
2874      Code = bitc::FUNC_CODE_INST_CAST;
2875      if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2876        AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
2877      Vals.push_back(VE.getTypeID(I.getType()));
2878      Vals.push_back(getEncodedCastOpcode(I.getOpcode()));
2879      uint64_t Flags = getOptimizationFlags(&I);
2880      if (Flags != 0) {
2881        if (AbbrevToUse == FUNCTION_INST_CAST_ABBREV)
2882          AbbrevToUse = FUNCTION_INST_CAST_FLAGS_ABBREV;
2883        Vals.push_back(Flags);
2884      }
2885    } else {
2886      assert(isa<BinaryOperator>(I) && "Unknown instruction!");
2887      Code = bitc::FUNC_CODE_INST_BINOP;
2888      if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2889        AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
2890      pushValue(I.getOperand(1), InstID, Vals);
2891      Vals.push_back(getEncodedBinaryOpcode(I.getOpcode()));
2892      uint64_t Flags = getOptimizationFlags(&I);
2893      if (Flags != 0) {
2894        if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
2895          AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
2896        Vals.push_back(Flags);
2897      }
2898    }
2899    break;
2900  case Instruction::FNeg: {
2901    Code = bitc::FUNC_CODE_INST_UNOP;
2902    if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2903      AbbrevToUse = FUNCTION_INST_UNOP_ABBREV;
2904    Vals.push_back(getEncodedUnaryOpcode(I.getOpcode()));
2905    uint64_t Flags = getOptimizationFlags(&I);
2906    if (Flags != 0) {
2907      if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV)
2908        AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV;
2909      Vals.push_back(Flags);
2910    }
2911    break;
2912  }
2913  case Instruction::GetElementPtr: {
2914    Code = bitc::FUNC_CODE_INST_GEP;
2915    AbbrevToUse = FUNCTION_INST_GEP_ABBREV;
2916    auto &GEPInst = cast<GetElementPtrInst>(I);
2917    Vals.push_back(GEPInst.isInBounds());
2918    Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType()));
2919    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
2920      pushValueAndType(I.getOperand(i), InstID, Vals);
2921    break;
2922  }
2923  case Instruction::ExtractValue: {
2924    Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
2925    pushValueAndType(I.getOperand(0), InstID, Vals);
2926    const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
2927    Vals.append(EVI->idx_begin(), EVI->idx_end());
2928    break;
2929  }
2930  case Instruction::InsertValue: {
2931    Code = bitc::FUNC_CODE_INST_INSERTVAL;
2932    pushValueAndType(I.getOperand(0), InstID, Vals);
2933    pushValueAndType(I.getOperand(1), InstID, Vals);
2934    const InsertValueInst *IVI = cast<InsertValueInst>(&I);
2935    Vals.append(IVI->idx_begin(), IVI->idx_end());
2936    break;
2937  }
2938  case Instruction::Select: {
2939    Code = bitc::FUNC_CODE_INST_VSELECT;
2940    pushValueAndType(I.getOperand(1), InstID, Vals);
2941    pushValue(I.getOperand(2), InstID, Vals);
2942    pushValueAndType(I.getOperand(0), InstID, Vals);
2943    uint64_t Flags = getOptimizationFlags(&I);
2944    if (Flags != 0)
2945      Vals.push_back(Flags);
2946    break;
2947  }
2948  case Instruction::ExtractElement:
2949    Code = bitc::FUNC_CODE_INST_EXTRACTELT;
2950    pushValueAndType(I.getOperand(0), InstID, Vals);
2951    pushValueAndType(I.getOperand(1), InstID, Vals);
2952    break;
2953  case Instruction::InsertElement:
2954    Code = bitc::FUNC_CODE_INST_INSERTELT;
2955    pushValueAndType(I.getOperand(0), InstID, Vals);
2956    pushValue(I.getOperand(1), InstID, Vals);
2957    pushValueAndType(I.getOperand(2), InstID, Vals);
2958    break;
2959  case Instruction::ShuffleVector:
2960    Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
2961    pushValueAndType(I.getOperand(0), InstID, Vals);
2962    pushValue(I.getOperand(1), InstID, Vals);
2963    pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID,
2964              Vals);
2965    break;
2966  case Instruction::ICmp:
2967  case Instruction::FCmp: {
2968    // compare returning Int1Ty or vector of Int1Ty
2969    Code = bitc::FUNC_CODE_INST_CMP2;
2970    pushValueAndType(I.getOperand(0), InstID, Vals);
2971    pushValue(I.getOperand(1), InstID, Vals);
2972    Vals.push_back(cast<CmpInst>(I).getPredicate());
2973    uint64_t Flags = getOptimizationFlags(&I);
2974    if (Flags != 0)
2975      Vals.push_back(Flags);
2976    break;
2977  }
2978
2979  case Instruction::Ret:
2980    {
2981      Code = bitc::FUNC_CODE_INST_RET;
2982      unsigned NumOperands = I.getNumOperands();
2983      if (NumOperands == 0)
2984        AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
2985      else if (NumOperands == 1) {
2986        if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2987          AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
2988      } else {
2989        for (unsigned i = 0, e = NumOperands; i != e; ++i)
2990          pushValueAndType(I.getOperand(i), InstID, Vals);
2991      }
2992    }
2993    break;
2994  case Instruction::Br:
2995    {
2996      Code = bitc::FUNC_CODE_INST_BR;
2997      const BranchInst &II = cast<BranchInst>(I);
2998      Vals.push_back(VE.getValueID(II.getSuccessor(0)));
2999      if (II.isConditional()) {
3000        Vals.push_back(VE.getValueID(II.getSuccessor(1)));
3001        pushValue(II.getCondition(), InstID, Vals);
3002      }
3003    }
3004    break;
3005  case Instruction::Switch:
3006    {
3007      Code = bitc::FUNC_CODE_INST_SWITCH;
3008      const SwitchInst &SI = cast<SwitchInst>(I);
3009      Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
3010      pushValue(SI.getCondition(), InstID, Vals);
3011      Vals.push_back(VE.getValueID(SI.getDefaultDest()));
3012      for (auto Case : SI.cases()) {
3013        Vals.push_back(VE.getValueID(Case.getCaseValue()));
3014        Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
3015      }
3016    }
3017    break;
3018  case Instruction::IndirectBr:
3019    Code = bitc::FUNC_CODE_INST_INDIRECTBR;
3020    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
3021    // Encode the address operand as relative, but not the basic blocks.
3022    pushValue(I.getOperand(0), InstID, Vals);
3023    for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
3024      Vals.push_back(VE.getValueID(I.getOperand(i)));
3025    break;
3026
3027  case Instruction::Invoke: {
3028    const InvokeInst *II = cast<InvokeInst>(&I);
3029    const Value *Callee = II->getCalledOperand();
3030    FunctionType *FTy = II->getFunctionType();
3031
3032    if (II->hasOperandBundles())
3033      writeOperandBundles(*II, InstID);
3034
3035    Code = bitc::FUNC_CODE_INST_INVOKE;
3036
3037    Vals.push_back(VE.getAttributeListID(II->getAttributes()));
3038    Vals.push_back(II->getCallingConv() | 1 << 13);
3039    Vals.push_back(VE.getValueID(II->getNormalDest()));
3040    Vals.push_back(VE.getValueID(II->getUnwindDest()));
3041    Vals.push_back(VE.getTypeID(FTy));
3042    pushValueAndType(Callee, InstID, Vals);
3043
3044    // Emit value #'s for the fixed parameters.
3045    for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
3046      pushValue(I.getOperand(i), InstID, Vals); // fixed param.
3047
3048    // Emit type/value pairs for varargs params.
3049    if (FTy->isVarArg()) {
3050      for (unsigned i = FTy->getNumParams(), e = II->arg_size(); i != e; ++i)
3051        pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
3052    }
3053    break;
3054  }
3055  case Instruction::Resume:
3056    Code = bitc::FUNC_CODE_INST_RESUME;
3057    pushValueAndType(I.getOperand(0), InstID, Vals);
3058    break;
3059  case Instruction::CleanupRet: {
3060    Code = bitc::FUNC_CODE_INST_CLEANUPRET;
3061    const auto &CRI = cast<CleanupReturnInst>(I);
3062    pushValue(CRI.getCleanupPad(), InstID, Vals);
3063    if (CRI.hasUnwindDest())
3064      Vals.push_back(VE.getValueID(CRI.getUnwindDest()));
3065    break;
3066  }
3067  case Instruction::CatchRet: {
3068    Code = bitc::FUNC_CODE_INST_CATCHRET;
3069    const auto &CRI = cast<CatchReturnInst>(I);
3070    pushValue(CRI.getCatchPad(), InstID, Vals);
3071    Vals.push_back(VE.getValueID(CRI.getSuccessor()));
3072    break;
3073  }
3074  case Instruction::CleanupPad:
3075  case Instruction::CatchPad: {
3076    const auto &FuncletPad = cast<FuncletPadInst>(I);
3077    Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD
3078                                         : bitc::FUNC_CODE_INST_CLEANUPPAD;
3079    pushValue(FuncletPad.getParentPad(), InstID, Vals);
3080
3081    unsigned NumArgOperands = FuncletPad.arg_size();
3082    Vals.push_back(NumArgOperands);
3083    for (unsigned Op = 0; Op != NumArgOperands; ++Op)
3084      pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals);
3085    break;
3086  }
3087  case Instruction::CatchSwitch: {
3088    Code = bitc::FUNC_CODE_INST_CATCHSWITCH;
3089    const auto &CatchSwitch = cast<CatchSwitchInst>(I);
3090
3091    pushValue(CatchSwitch.getParentPad(), InstID, Vals);
3092
3093    unsigned NumHandlers = CatchSwitch.getNumHandlers();
3094    Vals.push_back(NumHandlers);
3095    for (const BasicBlock *CatchPadBB : CatchSwitch.handlers())
3096      Vals.push_back(VE.getValueID(CatchPadBB));
3097
3098    if (CatchSwitch.hasUnwindDest())
3099      Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest()));
3100    break;
3101  }
3102  case Instruction::CallBr: {
3103    const CallBrInst *CBI = cast<CallBrInst>(&I);
3104    const Value *Callee = CBI->getCalledOperand();
3105    FunctionType *FTy = CBI->getFunctionType();
3106
3107    if (CBI->hasOperandBundles())
3108      writeOperandBundles(*CBI, InstID);
3109
3110    Code = bitc::FUNC_CODE_INST_CALLBR;
3111
3112    Vals.push_back(VE.getAttributeListID(CBI->getAttributes()));
3113
3114    Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV |
3115                   1 << bitc::CALL_EXPLICIT_TYPE);
3116
3117    Vals.push_back(VE.getValueID(CBI->getDefaultDest()));
3118    Vals.push_back(CBI->getNumIndirectDests());
3119    for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i)
3120      Vals.push_back(VE.getValueID(CBI->getIndirectDest(i)));
3121
3122    Vals.push_back(VE.getTypeID(FTy));
3123    pushValueAndType(Callee, InstID, Vals);
3124
3125    // Emit value #'s for the fixed parameters.
3126    for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
3127      pushValue(I.getOperand(i), InstID, Vals); // fixed param.
3128
3129    // Emit type/value pairs for varargs params.
3130    if (FTy->isVarArg()) {
3131      for (unsigned i = FTy->getNumParams(), e = CBI->arg_size(); i != e; ++i)
3132        pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
3133    }
3134    break;
3135  }
3136  case Instruction::Unreachable:
3137    Code = bitc::FUNC_CODE_INST_UNREACHABLE;
3138    AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
3139    break;
3140
3141  case Instruction::PHI: {
3142    const PHINode &PN = cast<PHINode>(I);
3143    Code = bitc::FUNC_CODE_INST_PHI;
3144    // With the newer instruction encoding, forward references could give
3145    // negative valued IDs.  This is most common for PHIs, so we use
3146    // signed VBRs.
3147    SmallVector<uint64_t, 128> Vals64;
3148    Vals64.push_back(VE.getTypeID(PN.getType()));
3149    for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
3150      pushValueSigned(PN.getIncomingValue(i), InstID, Vals64);
3151      Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
3152    }
3153
3154    uint64_t Flags = getOptimizationFlags(&I);
3155    if (Flags != 0)
3156      Vals64.push_back(Flags);
3157
3158    // Emit a Vals64 vector and exit.
3159    Stream.EmitRecord(Code, Vals64, AbbrevToUse);
3160    Vals64.clear();
3161    return;
3162  }
3163
3164  case Instruction::LandingPad: {
3165    const LandingPadInst &LP = cast<LandingPadInst>(I);
3166    Code = bitc::FUNC_CODE_INST_LANDINGPAD;
3167    Vals.push_back(VE.getTypeID(LP.getType()));
3168    Vals.push_back(LP.isCleanup());
3169    Vals.push_back(LP.getNumClauses());
3170    for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
3171      if (LP.isCatch(I))
3172        Vals.push_back(LandingPadInst::Catch);
3173      else
3174        Vals.push_back(LandingPadInst::Filter);
3175      pushValueAndType(LP.getClause(I), InstID, Vals);
3176    }
3177    break;
3178  }
3179
3180  case Instruction::Alloca: {
3181    Code = bitc::FUNC_CODE_INST_ALLOCA;
3182    const AllocaInst &AI = cast<AllocaInst>(I);
3183    Vals.push_back(VE.getTypeID(AI.getAllocatedType()));
3184    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
3185    Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
3186    using APV = AllocaPackedValues;
3187    unsigned Record = 0;
3188    unsigned EncodedAlign = getEncodedAlign(AI.getAlign());
3189    Bitfield::set<APV::AlignLower>(
3190        Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1));
3191    Bitfield::set<APV::AlignUpper>(Record,
3192                                   EncodedAlign >> APV::AlignLower::Bits);
3193    Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca());
3194    Bitfield::set<APV::ExplicitType>(Record, true);
3195    Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError());
3196    Vals.push_back(Record);
3197
3198    unsigned AS = AI.getAddressSpace();
3199    if (AS != M.getDataLayout().getAllocaAddrSpace())
3200      Vals.push_back(AS);
3201    break;
3202  }
3203
3204  case Instruction::Load:
3205    if (cast<LoadInst>(I).isAtomic()) {
3206      Code = bitc::FUNC_CODE_INST_LOADATOMIC;
3207      pushValueAndType(I.getOperand(0), InstID, Vals);
3208    } else {
3209      Code = bitc::FUNC_CODE_INST_LOAD;
3210      if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr
3211        AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
3212    }
3213    Vals.push_back(VE.getTypeID(I.getType()));
3214    Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign()));
3215    Vals.push_back(cast<LoadInst>(I).isVolatile());
3216    if (cast<LoadInst>(I).isAtomic()) {
3217      Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering()));
3218      Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID()));
3219    }
3220    break;
3221  case Instruction::Store:
3222    if (cast<StoreInst>(I).isAtomic())
3223      Code = bitc::FUNC_CODE_INST_STOREATOMIC;
3224    else
3225      Code = bitc::FUNC_CODE_INST_STORE;
3226    pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr
3227    pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val
3228    Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign()));
3229    Vals.push_back(cast<StoreInst>(I).isVolatile());
3230    if (cast<StoreInst>(I).isAtomic()) {
3231      Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering()));
3232      Vals.push_back(
3233          getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID()));
3234    }
3235    break;
3236  case Instruction::AtomicCmpXchg:
3237    Code = bitc::FUNC_CODE_INST_CMPXCHG;
3238    pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
3239    pushValueAndType(I.getOperand(1), InstID, Vals); // cmp.
3240    pushValue(I.getOperand(2), InstID, Vals);        // newval.
3241    Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
3242    Vals.push_back(
3243        getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
3244    Vals.push_back(
3245        getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID()));
3246    Vals.push_back(
3247        getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
3248    Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
3249    Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign()));
3250    break;
3251  case Instruction::AtomicRMW:
3252    Code = bitc::FUNC_CODE_INST_ATOMICRMW;
3253    pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
3254    pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val
3255    Vals.push_back(
3256        getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation()));
3257    Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
3258    Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
3259    Vals.push_back(
3260        getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID()));
3261    Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign()));
3262    break;
3263  case Instruction::Fence:
3264    Code = bitc::FUNC_CODE_INST_FENCE;
3265    Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering()));
3266    Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID()));
3267    break;
3268  case Instruction::Call: {
3269    const CallInst &CI = cast<CallInst>(I);
3270    FunctionType *FTy = CI.getFunctionType();
3271
3272    if (CI.hasOperandBundles())
3273      writeOperandBundles(CI, InstID);
3274
3275    Code = bitc::FUNC_CODE_INST_CALL;
3276
3277    Vals.push_back(VE.getAttributeListID(CI.getAttributes()));
3278
3279    unsigned Flags = getOptimizationFlags(&I);
3280    Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV |
3281                   unsigned(CI.isTailCall()) << bitc::CALL_TAIL |
3282                   unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL |
3283                   1 << bitc::CALL_EXPLICIT_TYPE |
3284                   unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL |
3285                   unsigned(Flags != 0) << bitc::CALL_FMF);
3286    if (Flags != 0)
3287      Vals.push_back(Flags);
3288
3289    Vals.push_back(VE.getTypeID(FTy));
3290    pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee
3291
3292    // Emit value #'s for the fixed parameters.
3293    for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3294      // Check for labels (can happen with asm labels).
3295      if (FTy->getParamType(i)->isLabelTy())
3296        Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
3297      else
3298        pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param.
3299    }
3300
3301    // Emit type/value pairs for varargs params.
3302    if (FTy->isVarArg()) {
3303      for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i)
3304        pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs
3305    }
3306    break;
3307  }
3308  case Instruction::VAArg:
3309    Code = bitc::FUNC_CODE_INST_VAARG;
3310    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
3311    pushValue(I.getOperand(0), InstID, Vals);                   // valist.
3312    Vals.push_back(VE.getTypeID(I.getType())); // restype.
3313    break;
3314  case Instruction::Freeze:
3315    Code = bitc::FUNC_CODE_INST_FREEZE;
3316    pushValueAndType(I.getOperand(0), InstID, Vals);
3317    break;
3318  }
3319
3320  Stream.EmitRecord(Code, Vals, AbbrevToUse);
3321  Vals.clear();
3322}
3323
3324/// Write a GlobalValue VST to the module. The purpose of this data structure is
3325/// to allow clients to efficiently find the function body.
3326void ModuleBitcodeWriter::writeGlobalValueSymbolTable(
3327  DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
3328  // Get the offset of the VST we are writing, and backpatch it into
3329  // the VST forward declaration record.
3330  uint64_t VSTOffset = Stream.GetCurrentBitNo();
3331  // The BitcodeStartBit was the stream offset of the identification block.
3332  VSTOffset -= bitcodeStartBit();
3333  assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned");
3334  // Note that we add 1 here because the offset is relative to one word
3335  // before the start of the identification block, which was historically
3336  // always the start of the regular bitcode header.
3337  Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1);
3338
3339  Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
3340
3341  auto Abbv = std::make_shared<BitCodeAbbrev>();
3342  Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
3343  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
3344  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
3345  unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3346
3347  for (const Function &F : M) {
3348    uint64_t Record[2];
3349
3350    if (F.isDeclaration())
3351      continue;
3352
3353    Record[0] = VE.getValueID(&F);
3354
3355    // Save the word offset of the function (from the start of the
3356    // actual bitcode written to the stream).
3357    uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit();
3358    assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned");
3359    // Note that we add 1 here because the offset is relative to one word
3360    // before the start of the identification block, which was historically
3361    // always the start of the regular bitcode header.
3362    Record[1] = BitcodeIndex / 32 + 1;
3363
3364    Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev);
3365  }
3366
3367  Stream.ExitBlock();
3368}
3369
3370/// Emit names for arguments, instructions and basic blocks in a function.
3371void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable(
3372    const ValueSymbolTable &VST) {
3373  if (VST.empty())
3374    return;
3375
3376  Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
3377
3378  // FIXME: Set up the abbrev, we know how many values there are!
3379  // FIXME: We know if the type names can use 7-bit ascii.
3380  SmallVector<uint64_t, 64> NameVals;
3381
3382  for (const ValueName &Name : VST) {
3383    // Figure out the encoding to use for the name.
3384    StringEncoding Bits = getStringEncoding(Name.getKey());
3385
3386    unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
3387    NameVals.push_back(VE.getValueID(Name.getValue()));
3388
3389    // VST_CODE_ENTRY:   [valueid, namechar x N]
3390    // VST_CODE_BBENTRY: [bbid, namechar x N]
3391    unsigned Code;
3392    if (isa<BasicBlock>(Name.getValue())) {
3393      Code = bitc::VST_CODE_BBENTRY;
3394      if (Bits == SE_Char6)
3395        AbbrevToUse = VST_BBENTRY_6_ABBREV;
3396    } else {
3397      Code = bitc::VST_CODE_ENTRY;
3398      if (Bits == SE_Char6)
3399        AbbrevToUse = VST_ENTRY_6_ABBREV;
3400      else if (Bits == SE_Fixed7)
3401        AbbrevToUse = VST_ENTRY_7_ABBREV;
3402    }
3403
3404    for (const auto P : Name.getKey())
3405      NameVals.push_back((unsigned char)P);
3406
3407    // Emit the finished record.
3408    Stream.EmitRecord(Code, NameVals, AbbrevToUse);
3409    NameVals.clear();
3410  }
3411
3412  Stream.ExitBlock();
3413}
3414
3415void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) {
3416  assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
3417  unsigned Code;
3418  if (isa<BasicBlock>(Order.V))
3419    Code = bitc::USELIST_CODE_BB;
3420  else
3421    Code = bitc::USELIST_CODE_DEFAULT;
3422
3423  SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
3424  Record.push_back(VE.getValueID(Order.V));
3425  Stream.EmitRecord(Code, Record);
3426}
3427
3428void ModuleBitcodeWriter::writeUseListBlock(const Function *F) {
3429  assert(VE.shouldPreserveUseListOrder() &&
3430         "Expected to be preserving use-list order");
3431
3432  auto hasMore = [&]() {
3433    return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
3434  };
3435  if (!hasMore())
3436    // Nothing to do.
3437    return;
3438
3439  Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
3440  while (hasMore()) {
3441    writeUseList(std::move(VE.UseListOrders.back()));
3442    VE.UseListOrders.pop_back();
3443  }
3444  Stream.ExitBlock();
3445}
3446
3447/// Emit a function body to the module stream.
3448void ModuleBitcodeWriter::writeFunction(
3449    const Function &F,
3450    DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
3451  // Save the bitcode index of the start of this function block for recording
3452  // in the VST.
3453  FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo();
3454
3455  Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
3456  VE.incorporateFunction(F);
3457
3458  SmallVector<unsigned, 64> Vals;
3459
3460  // Emit the number of basic blocks, so the reader can create them ahead of
3461  // time.
3462  Vals.push_back(VE.getBasicBlocks().size());
3463  Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
3464  Vals.clear();
3465
3466  // If there are function-local constants, emit them now.
3467  unsigned CstStart, CstEnd;
3468  VE.getFunctionConstantRange(CstStart, CstEnd);
3469  writeConstants(CstStart, CstEnd, false);
3470
3471  // If there is function-local metadata, emit it now.
3472  writeFunctionMetadata(F);
3473
3474  // Keep a running idea of what the instruction ID is.
3475  unsigned InstID = CstEnd;
3476
3477  bool NeedsMetadataAttachment = F.hasMetadata();
3478
3479  DILocation *LastDL = nullptr;
3480  SmallSetVector<Function *, 4> BlockAddressUsers;
3481
3482  // Finally, emit all the instructions, in order.
3483  for (const BasicBlock &BB : F) {
3484    for (const Instruction &I : BB) {
3485      writeInstruction(I, InstID, Vals);
3486
3487      if (!I.getType()->isVoidTy())
3488        ++InstID;
3489
3490      // If the instruction has metadata, write a metadata attachment later.
3491      NeedsMetadataAttachment |= I.hasMetadataOtherThanDebugLoc();
3492
3493      // If the instruction has a debug location, emit it.
3494      DILocation *DL = I.getDebugLoc();
3495      if (!DL)
3496        continue;
3497
3498      if (DL == LastDL) {
3499        // Just repeat the same debug loc as last time.
3500        Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
3501        continue;
3502      }
3503
3504      Vals.push_back(DL->getLine());
3505      Vals.push_back(DL->getColumn());
3506      Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
3507      Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
3508      Vals.push_back(DL->isImplicitCode());
3509      Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
3510      Vals.clear();
3511
3512      LastDL = DL;
3513    }
3514
3515    if (BlockAddress *BA = BlockAddress::lookup(&BB)) {
3516      SmallVector<Value *> Worklist{BA};
3517      SmallPtrSet<Value *, 8> Visited{BA};
3518      while (!Worklist.empty()) {
3519        Value *V = Worklist.pop_back_val();
3520        for (User *U : V->users()) {
3521          if (auto *I = dyn_cast<Instruction>(U)) {
3522            Function *P = I->getFunction();
3523            if (P != &F)
3524              BlockAddressUsers.insert(P);
3525          } else if (isa<Constant>(U) && !isa<GlobalValue>(U) &&
3526                     Visited.insert(U).second)
3527            Worklist.push_back(U);
3528        }
3529      }
3530    }
3531  }
3532
3533  if (!BlockAddressUsers.empty()) {
3534    Vals.resize(BlockAddressUsers.size());
3535    for (auto I : llvm::enumerate(BlockAddressUsers))
3536      Vals[I.index()] = VE.getValueID(I.value());
3537    Stream.EmitRecord(bitc::FUNC_CODE_BLOCKADDR_USERS, Vals);
3538    Vals.clear();
3539  }
3540
3541  // Emit names for all the instructions etc.
3542  if (auto *Symtab = F.getValueSymbolTable())
3543    writeFunctionLevelValueSymbolTable(*Symtab);
3544
3545  if (NeedsMetadataAttachment)
3546    writeFunctionMetadataAttachment(F);
3547  if (VE.shouldPreserveUseListOrder())
3548    writeUseListBlock(&F);
3549  VE.purgeFunction();
3550  Stream.ExitBlock();
3551}
3552
3553// Emit blockinfo, which defines the standard abbreviations etc.
3554void ModuleBitcodeWriter::writeBlockInfo() {
3555  // We only want to emit block info records for blocks that have multiple
3556  // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
3557  // Other blocks can define their abbrevs inline.
3558  Stream.EnterBlockInfoBlock();
3559
3560  { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings.
3561    auto Abbv = std::make_shared<BitCodeAbbrev>();
3562    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
3563    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3564    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3565    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3566    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3567        VST_ENTRY_8_ABBREV)
3568      llvm_unreachable("Unexpected abbrev ordering!");
3569  }
3570
3571  { // 7-bit fixed width VST_CODE_ENTRY strings.
3572    auto Abbv = std::make_shared<BitCodeAbbrev>();
3573    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3574    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3575    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3576    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3577    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3578        VST_ENTRY_7_ABBREV)
3579      llvm_unreachable("Unexpected abbrev ordering!");
3580  }
3581  { // 6-bit char6 VST_CODE_ENTRY strings.
3582    auto Abbv = std::make_shared<BitCodeAbbrev>();
3583    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3584    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3585    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3586    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3587    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3588        VST_ENTRY_6_ABBREV)
3589      llvm_unreachable("Unexpected abbrev ordering!");
3590  }
3591  { // 6-bit char6 VST_CODE_BBENTRY strings.
3592    auto Abbv = std::make_shared<BitCodeAbbrev>();
3593    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
3594    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3595    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3596    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3597    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3598        VST_BBENTRY_6_ABBREV)
3599      llvm_unreachable("Unexpected abbrev ordering!");
3600  }
3601
3602  { // SETTYPE abbrev for CONSTANTS_BLOCK.
3603    auto Abbv = std::make_shared<BitCodeAbbrev>();
3604    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
3605    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
3606                              VE.computeBitsRequiredForTypeIndicies()));
3607    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3608        CONSTANTS_SETTYPE_ABBREV)
3609      llvm_unreachable("Unexpected abbrev ordering!");
3610  }
3611
3612  { // INTEGER abbrev for CONSTANTS_BLOCK.
3613    auto Abbv = std::make_shared<BitCodeAbbrev>();
3614    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
3615    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3616    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3617        CONSTANTS_INTEGER_ABBREV)
3618      llvm_unreachable("Unexpected abbrev ordering!");
3619  }
3620
3621  { // CE_CAST abbrev for CONSTANTS_BLOCK.
3622    auto Abbv = std::make_shared<BitCodeAbbrev>();
3623    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
3624    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
3625    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
3626                              VE.computeBitsRequiredForTypeIndicies()));
3627    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
3628
3629    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3630        CONSTANTS_CE_CAST_Abbrev)
3631      llvm_unreachable("Unexpected abbrev ordering!");
3632  }
3633  { // NULL abbrev for CONSTANTS_BLOCK.
3634    auto Abbv = std::make_shared<BitCodeAbbrev>();
3635    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
3636    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3637        CONSTANTS_NULL_Abbrev)
3638      llvm_unreachable("Unexpected abbrev ordering!");
3639  }
3640
3641  // FIXME: This should only use space for first class types!
3642
3643  { // INST_LOAD abbrev for FUNCTION_BLOCK.
3644    auto Abbv = std::make_shared<BitCodeAbbrev>();
3645    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
3646    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
3647    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,    // dest ty
3648                              VE.computeBitsRequiredForTypeIndicies()));
3649    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
3650    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
3651    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3652        FUNCTION_INST_LOAD_ABBREV)
3653      llvm_unreachable("Unexpected abbrev ordering!");
3654  }
3655  { // INST_UNOP abbrev for FUNCTION_BLOCK.
3656    auto Abbv = std::make_shared<BitCodeAbbrev>();
3657    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP));
3658    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3659    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3660    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3661        FUNCTION_INST_UNOP_ABBREV)
3662      llvm_unreachable("Unexpected abbrev ordering!");
3663  }
3664  { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK.
3665    auto Abbv = std::make_shared<BitCodeAbbrev>();
3666    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP));
3667    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3668    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3669    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3670    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3671        FUNCTION_INST_UNOP_FLAGS_ABBREV)
3672      llvm_unreachable("Unexpected abbrev ordering!");
3673  }
3674  { // INST_BINOP abbrev for FUNCTION_BLOCK.
3675    auto Abbv = std::make_shared<BitCodeAbbrev>();
3676    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3677    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3678    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3679    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3680    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3681        FUNCTION_INST_BINOP_ABBREV)
3682      llvm_unreachable("Unexpected abbrev ordering!");
3683  }
3684  { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
3685    auto Abbv = std::make_shared<BitCodeAbbrev>();
3686    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3687    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3688    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3689    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3690    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3691    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3692        FUNCTION_INST_BINOP_FLAGS_ABBREV)
3693      llvm_unreachable("Unexpected abbrev ordering!");
3694  }
3695  { // INST_CAST abbrev for FUNCTION_BLOCK.
3696    auto Abbv = std::make_shared<BitCodeAbbrev>();
3697    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
3698    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
3699    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
3700                              VE.computeBitsRequiredForTypeIndicies()));
3701    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
3702    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3703        FUNCTION_INST_CAST_ABBREV)
3704      llvm_unreachable("Unexpected abbrev ordering!");
3705  }
3706  { // INST_CAST_FLAGS abbrev for FUNCTION_BLOCK.
3707    auto Abbv = std::make_shared<BitCodeAbbrev>();
3708    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
3709    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
3710    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,    // dest ty
3711                              VE.computeBitsRequiredForTypeIndicies()));
3712    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3713    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3714    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3715        FUNCTION_INST_CAST_FLAGS_ABBREV)
3716      llvm_unreachable("Unexpected abbrev ordering!");
3717  }
3718
3719  { // INST_RET abbrev for FUNCTION_BLOCK.
3720    auto Abbv = std::make_shared<BitCodeAbbrev>();
3721    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3722    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3723        FUNCTION_INST_RET_VOID_ABBREV)
3724      llvm_unreachable("Unexpected abbrev ordering!");
3725  }
3726  { // INST_RET abbrev for FUNCTION_BLOCK.
3727    auto Abbv = std::make_shared<BitCodeAbbrev>();
3728    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3729    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
3730    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3731        FUNCTION_INST_RET_VAL_ABBREV)
3732      llvm_unreachable("Unexpected abbrev ordering!");
3733  }
3734  { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
3735    auto Abbv = std::make_shared<BitCodeAbbrev>();
3736    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
3737    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3738        FUNCTION_INST_UNREACHABLE_ABBREV)
3739      llvm_unreachable("Unexpected abbrev ordering!");
3740  }
3741  {
3742    auto Abbv = std::make_shared<BitCodeAbbrev>();
3743    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
3744    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
3745    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3746                              Log2_32_Ceil(VE.getTypes().size() + 1)));
3747    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3748    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
3749    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3750        FUNCTION_INST_GEP_ABBREV)
3751      llvm_unreachable("Unexpected abbrev ordering!");
3752  }
3753
3754  Stream.ExitBlock();
3755}
3756
3757/// Write the module path strings, currently only used when generating
3758/// a combined index file.
3759void IndexBitcodeWriter::writeModStrings() {
3760  Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3);
3761
3762  // TODO: See which abbrev sizes we actually need to emit
3763
3764  // 8-bit fixed-width MST_ENTRY strings.
3765  auto Abbv = std::make_shared<BitCodeAbbrev>();
3766  Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3767  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3768  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3769  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3770  unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv));
3771
3772  // 7-bit fixed width MST_ENTRY strings.
3773  Abbv = std::make_shared<BitCodeAbbrev>();
3774  Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3775  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3776  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3777  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3778  unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv));
3779
3780  // 6-bit char6 MST_ENTRY strings.
3781  Abbv = std::make_shared<BitCodeAbbrev>();
3782  Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3783  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3784  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3785  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3786  unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv));
3787
3788  // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY.
3789  Abbv = std::make_shared<BitCodeAbbrev>();
3790  Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH));
3791  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3792  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3793  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3794  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3795  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3796  unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv));
3797
3798  SmallVector<unsigned, 64> Vals;
3799  forEachModule([&](const StringMapEntry<ModuleHash> &MPSE) {
3800    StringRef Key = MPSE.getKey();
3801    const auto &Hash = MPSE.getValue();
3802    StringEncoding Bits = getStringEncoding(Key);
3803    unsigned AbbrevToUse = Abbrev8Bit;
3804    if (Bits == SE_Char6)
3805      AbbrevToUse = Abbrev6Bit;
3806    else if (Bits == SE_Fixed7)
3807      AbbrevToUse = Abbrev7Bit;
3808
3809    auto ModuleId = ModuleIdMap.size();
3810    ModuleIdMap[Key] = ModuleId;
3811    Vals.push_back(ModuleId);
3812    Vals.append(Key.begin(), Key.end());
3813
3814    // Emit the finished record.
3815    Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse);
3816
3817    // Emit an optional hash for the module now
3818    if (llvm::any_of(Hash, [](uint32_t H) { return H; })) {
3819      Vals.assign(Hash.begin(), Hash.end());
3820      // Emit the hash record.
3821      Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash);
3822    }
3823
3824    Vals.clear();
3825  });
3826  Stream.ExitBlock();
3827}
3828
3829/// Write the function type metadata related records that need to appear before
3830/// a function summary entry (whether per-module or combined).
3831template <typename Fn>
3832static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream,
3833                                             FunctionSummary *FS,
3834                                             Fn GetValueID) {
3835  if (!FS->type_tests().empty())
3836    Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests());
3837
3838  SmallVector<uint64_t, 64> Record;
3839
3840  auto WriteVFuncIdVec = [&](uint64_t Ty,
3841                             ArrayRef<FunctionSummary::VFuncId> VFs) {
3842    if (VFs.empty())
3843      return;
3844    Record.clear();
3845    for (auto &VF : VFs) {
3846      Record.push_back(VF.GUID);
3847      Record.push_back(VF.Offset);
3848    }
3849    Stream.EmitRecord(Ty, Record);
3850  };
3851
3852  WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS,
3853                  FS->type_test_assume_vcalls());
3854  WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS,
3855                  FS->type_checked_load_vcalls());
3856
3857  auto WriteConstVCallVec = [&](uint64_t Ty,
3858                                ArrayRef<FunctionSummary::ConstVCall> VCs) {
3859    for (auto &VC : VCs) {
3860      Record.clear();
3861      Record.push_back(VC.VFunc.GUID);
3862      Record.push_back(VC.VFunc.Offset);
3863      llvm::append_range(Record, VC.Args);
3864      Stream.EmitRecord(Ty, Record);
3865    }
3866  };
3867
3868  WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL,
3869                     FS->type_test_assume_const_vcalls());
3870  WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL,
3871                     FS->type_checked_load_const_vcalls());
3872
3873  auto WriteRange = [&](ConstantRange Range) {
3874    Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth);
3875    assert(Range.getLower().getNumWords() == 1);
3876    assert(Range.getUpper().getNumWords() == 1);
3877    emitSignedInt64(Record, *Range.getLower().getRawData());
3878    emitSignedInt64(Record, *Range.getUpper().getRawData());
3879  };
3880
3881  if (!FS->paramAccesses().empty()) {
3882    Record.clear();
3883    for (auto &Arg : FS->paramAccesses()) {
3884      size_t UndoSize = Record.size();
3885      Record.push_back(Arg.ParamNo);
3886      WriteRange(Arg.Use);
3887      Record.push_back(Arg.Calls.size());
3888      for (auto &Call : Arg.Calls) {
3889        Record.push_back(Call.ParamNo);
3890        std::optional<unsigned> ValueID = GetValueID(Call.Callee);
3891        if (!ValueID) {
3892          // If ValueID is unknown we can't drop just this call, we must drop
3893          // entire parameter.
3894          Record.resize(UndoSize);
3895          break;
3896        }
3897        Record.push_back(*ValueID);
3898        WriteRange(Call.Offsets);
3899      }
3900    }
3901    if (!Record.empty())
3902      Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record);
3903  }
3904}
3905
3906/// Collect type IDs from type tests used by function.
3907static void
3908getReferencedTypeIds(FunctionSummary *FS,
3909                     std::set<GlobalValue::GUID> &ReferencedTypeIds) {
3910  if (!FS->type_tests().empty())
3911    for (auto &TT : FS->type_tests())
3912      ReferencedTypeIds.insert(TT);
3913
3914  auto GetReferencedTypesFromVFuncIdVec =
3915      [&](ArrayRef<FunctionSummary::VFuncId> VFs) {
3916        for (auto &VF : VFs)
3917          ReferencedTypeIds.insert(VF.GUID);
3918      };
3919
3920  GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls());
3921  GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls());
3922
3923  auto GetReferencedTypesFromConstVCallVec =
3924      [&](ArrayRef<FunctionSummary::ConstVCall> VCs) {
3925        for (auto &VC : VCs)
3926          ReferencedTypeIds.insert(VC.VFunc.GUID);
3927      };
3928
3929  GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls());
3930  GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls());
3931}
3932
3933static void writeWholeProgramDevirtResolutionByArg(
3934    SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args,
3935    const WholeProgramDevirtResolution::ByArg &ByArg) {
3936  NameVals.push_back(args.size());
3937  llvm::append_range(NameVals, args);
3938
3939  NameVals.push_back(ByArg.TheKind);
3940  NameVals.push_back(ByArg.Info);
3941  NameVals.push_back(ByArg.Byte);
3942  NameVals.push_back(ByArg.Bit);
3943}
3944
3945static void writeWholeProgramDevirtResolution(
3946    SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder,
3947    uint64_t Id, const WholeProgramDevirtResolution &Wpd) {
3948  NameVals.push_back(Id);
3949
3950  NameVals.push_back(Wpd.TheKind);
3951  NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName));
3952  NameVals.push_back(Wpd.SingleImplName.size());
3953
3954  NameVals.push_back(Wpd.ResByArg.size());
3955  for (auto &A : Wpd.ResByArg)
3956    writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second);
3957}
3958
3959static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
3960                                     StringTableBuilder &StrtabBuilder,
3961                                     const std::string &Id,
3962                                     const TypeIdSummary &Summary) {
3963  NameVals.push_back(StrtabBuilder.add(Id));
3964  NameVals.push_back(Id.size());
3965
3966  NameVals.push_back(Summary.TTRes.TheKind);
3967  NameVals.push_back(Summary.TTRes.SizeM1BitWidth);
3968  NameVals.push_back(Summary.TTRes.AlignLog2);
3969  NameVals.push_back(Summary.TTRes.SizeM1);
3970  NameVals.push_back(Summary.TTRes.BitMask);
3971  NameVals.push_back(Summary.TTRes.InlineBits);
3972
3973  for (auto &W : Summary.WPDRes)
3974    writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first,
3975                                      W.second);
3976}
3977
3978static void writeTypeIdCompatibleVtableSummaryRecord(
3979    SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder,
3980    const std::string &Id, const TypeIdCompatibleVtableInfo &Summary,
3981    ValueEnumerator &VE) {
3982  NameVals.push_back(StrtabBuilder.add(Id));
3983  NameVals.push_back(Id.size());
3984
3985  for (auto &P : Summary) {
3986    NameVals.push_back(P.AddressPointOffset);
3987    NameVals.push_back(VE.getValueID(P.VTableVI.getValue()));
3988  }
3989}
3990
3991static void writeFunctionHeapProfileRecords(
3992    BitstreamWriter &Stream, FunctionSummary *FS, unsigned CallsiteAbbrev,
3993    unsigned AllocAbbrev, bool PerModule,
3994    std::function<unsigned(const ValueInfo &VI)> GetValueID,
3995    std::function<unsigned(unsigned)> GetStackIndex) {
3996  SmallVector<uint64_t> Record;
3997
3998  for (auto &CI : FS->callsites()) {
3999    Record.clear();
4000    // Per module callsite clones should always have a single entry of
4001    // value 0.
4002    assert(!PerModule || (CI.Clones.size() == 1 && CI.Clones[0] == 0));
4003    Record.push_back(GetValueID(CI.Callee));
4004    if (!PerModule) {
4005      Record.push_back(CI.StackIdIndices.size());
4006      Record.push_back(CI.Clones.size());
4007    }
4008    for (auto Id : CI.StackIdIndices)
4009      Record.push_back(GetStackIndex(Id));
4010    if (!PerModule) {
4011      for (auto V : CI.Clones)
4012        Record.push_back(V);
4013    }
4014    Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_CALLSITE_INFO
4015                                : bitc::FS_COMBINED_CALLSITE_INFO,
4016                      Record, CallsiteAbbrev);
4017  }
4018
4019  for (auto &AI : FS->allocs()) {
4020    Record.clear();
4021    // Per module alloc versions should always have a single entry of
4022    // value 0.
4023    assert(!PerModule || (AI.Versions.size() == 1 && AI.Versions[0] == 0));
4024    if (!PerModule) {
4025      Record.push_back(AI.MIBs.size());
4026      Record.push_back(AI.Versions.size());
4027    }
4028    for (auto &MIB : AI.MIBs) {
4029      Record.push_back((uint8_t)MIB.AllocType);
4030      Record.push_back(MIB.StackIdIndices.size());
4031      for (auto Id : MIB.StackIdIndices)
4032        Record.push_back(GetStackIndex(Id));
4033    }
4034    if (!PerModule) {
4035      for (auto V : AI.Versions)
4036        Record.push_back(V);
4037    }
4038    Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_ALLOC_INFO
4039                                : bitc::FS_COMBINED_ALLOC_INFO,
4040                      Record, AllocAbbrev);
4041  }
4042}
4043
4044// Helper to emit a single function summary record.
4045void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord(
4046    SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary,
4047    unsigned ValueID, unsigned FSCallsRelBFAbbrev,
4048    unsigned FSCallsProfileAbbrev, unsigned CallsiteAbbrev,
4049    unsigned AllocAbbrev, const Function &F) {
4050  NameVals.push_back(ValueID);
4051
4052  FunctionSummary *FS = cast<FunctionSummary>(Summary);
4053
4054  writeFunctionTypeMetadataRecords(
4055      Stream, FS, [&](const ValueInfo &VI) -> std::optional<unsigned> {
4056        return {VE.getValueID(VI.getValue())};
4057      });
4058
4059  writeFunctionHeapProfileRecords(
4060      Stream, FS, CallsiteAbbrev, AllocAbbrev,
4061      /*PerModule*/ true,
4062      /*GetValueId*/ [&](const ValueInfo &VI) { return getValueId(VI); },
4063      /*GetStackIndex*/ [&](unsigned I) { return I; });
4064
4065  auto SpecialRefCnts = FS->specialRefCounts();
4066  NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
4067  NameVals.push_back(FS->instCount());
4068  NameVals.push_back(getEncodedFFlags(FS->fflags()));
4069  NameVals.push_back(FS->refs().size());
4070  NameVals.push_back(SpecialRefCnts.first);  // rorefcnt
4071  NameVals.push_back(SpecialRefCnts.second); // worefcnt
4072
4073  for (auto &RI : FS->refs())
4074    NameVals.push_back(VE.getValueID(RI.getValue()));
4075
4076  const bool UseRelBFRecord =
4077      WriteRelBFToSummary && !F.hasProfileData() &&
4078      ForceSummaryEdgesCold == FunctionSummary::FSHT_None;
4079  for (auto &ECI : FS->calls()) {
4080    NameVals.push_back(getValueId(ECI.first));
4081    if (UseRelBFRecord)
4082      NameVals.push_back(getEncodedRelBFCallEdgeInfo(ECI.second));
4083    else
4084      NameVals.push_back(getEncodedHotnessCallEdgeInfo(ECI.second));
4085  }
4086
4087  unsigned FSAbbrev =
4088      (UseRelBFRecord ? FSCallsRelBFAbbrev : FSCallsProfileAbbrev);
4089  unsigned Code =
4090      (UseRelBFRecord ? bitc::FS_PERMODULE_RELBF : bitc::FS_PERMODULE_PROFILE);
4091
4092  // Emit the finished record.
4093  Stream.EmitRecord(Code, NameVals, FSAbbrev);
4094  NameVals.clear();
4095}
4096
4097// Collect the global value references in the given variable's initializer,
4098// and emit them in a summary record.
4099void ModuleBitcodeWriterBase::writeModuleLevelReferences(
4100    const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals,
4101    unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) {
4102  auto VI = Index->getValueInfo(V.getGUID());
4103  if (!VI || VI.getSummaryList().empty()) {
4104    // Only declarations should not have a summary (a declaration might however
4105    // have a summary if the def was in module level asm).
4106    assert(V.isDeclaration());
4107    return;
4108  }
4109  auto *Summary = VI.getSummaryList()[0].get();
4110  NameVals.push_back(VE.getValueID(&V));
4111  GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary);
4112  NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
4113  NameVals.push_back(getEncodedGVarFlags(VS->varflags()));
4114
4115  auto VTableFuncs = VS->vTableFuncs();
4116  if (!VTableFuncs.empty())
4117    NameVals.push_back(VS->refs().size());
4118
4119  unsigned SizeBeforeRefs = NameVals.size();
4120  for (auto &RI : VS->refs())
4121    NameVals.push_back(VE.getValueID(RI.getValue()));
4122  // Sort the refs for determinism output, the vector returned by FS->refs() has
4123  // been initialized from a DenseSet.
4124  llvm::sort(drop_begin(NameVals, SizeBeforeRefs));
4125
4126  if (VTableFuncs.empty())
4127    Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals,
4128                      FSModRefsAbbrev);
4129  else {
4130    // VTableFuncs pairs should already be sorted by offset.
4131    for (auto &P : VTableFuncs) {
4132      NameVals.push_back(VE.getValueID(P.FuncVI.getValue()));
4133      NameVals.push_back(P.VTableOffset);
4134    }
4135
4136    Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals,
4137                      FSModVTableRefsAbbrev);
4138  }
4139  NameVals.clear();
4140}
4141
4142/// Emit the per-module summary section alongside the rest of
4143/// the module's bitcode.
4144void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() {
4145  // By default we compile with ThinLTO if the module has a summary, but the
4146  // client can request full LTO with a module flag.
4147  bool IsThinLTO = true;
4148  if (auto *MD =
4149          mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO")))
4150    IsThinLTO = MD->getZExtValue();
4151  Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID
4152                                 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID,
4153                       4);
4154
4155  Stream.EmitRecord(
4156      bitc::FS_VERSION,
4157      ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion});
4158
4159  // Write the index flags.
4160  uint64_t Flags = 0;
4161  // Bits 1-3 are set only in the combined index, skip them.
4162  if (Index->enableSplitLTOUnit())
4163    Flags |= 0x8;
4164  if (Index->hasUnifiedLTO())
4165    Flags |= 0x200;
4166
4167  Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags});
4168
4169  if (Index->begin() == Index->end()) {
4170    Stream.ExitBlock();
4171    return;
4172  }
4173
4174  for (const auto &GVI : valueIds()) {
4175    Stream.EmitRecord(bitc::FS_VALUE_GUID,
4176                      ArrayRef<uint64_t>{GVI.second, GVI.first});
4177  }
4178
4179  if (!Index->stackIds().empty()) {
4180    auto StackIdAbbv = std::make_shared<BitCodeAbbrev>();
4181    StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS));
4182    // numids x stackid
4183    StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4184    StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4185    unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv));
4186    Stream.EmitRecord(bitc::FS_STACK_IDS, Index->stackIds(), StackIdAbbvId);
4187  }
4188
4189  // Abbrev for FS_PERMODULE_PROFILE.
4190  auto Abbv = std::make_shared<BitCodeAbbrev>();
4191  Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE));
4192  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4193  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // flags
4194  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
4195  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
4196  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
4197  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // rorefcnt
4198  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // worefcnt
4199  // numrefs x valueid, n x (valueid, hotness+tailcall flags)
4200  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4201  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4202  unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4203
4204  // Abbrev for FS_PERMODULE_RELBF.
4205  Abbv = std::make_shared<BitCodeAbbrev>();
4206  Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF));
4207  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4208  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
4209  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
4210  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
4211  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
4212  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // rorefcnt
4213  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // worefcnt
4214  // numrefs x valueid, n x (valueid, rel_block_freq+tailcall])
4215  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4216  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4217  unsigned FSCallsRelBFAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4218
4219  // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS.
4220  Abbv = std::make_shared<BitCodeAbbrev>();
4221  Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS));
4222  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4223  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
4224  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));  // valueids
4225  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4226  unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4227
4228  // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS.
4229  Abbv = std::make_shared<BitCodeAbbrev>();
4230  Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS));
4231  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4232  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
4233  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
4234  // numrefs x valueid, n x (valueid , offset)
4235  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4236  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4237  unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4238
4239  // Abbrev for FS_ALIAS.
4240  Abbv = std::make_shared<BitCodeAbbrev>();
4241  Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS));
4242  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4243  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
4244  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4245  unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4246
4247  // Abbrev for FS_TYPE_ID_METADATA
4248  Abbv = std::make_shared<BitCodeAbbrev>();
4249  Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA));
4250  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index
4251  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length
4252  // n x (valueid , offset)
4253  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4254  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4255  unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4256
4257  Abbv = std::make_shared<BitCodeAbbrev>();
4258  Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_CALLSITE_INFO));
4259  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4260  // n x stackidindex
4261  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4262  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4263  unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4264
4265  Abbv = std::make_shared<BitCodeAbbrev>();
4266  Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_ALLOC_INFO));
4267  // n x (alloc type, numstackids, numstackids x stackidindex)
4268  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4269  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4270  unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4271
4272  SmallVector<uint64_t, 64> NameVals;
4273  // Iterate over the list of functions instead of the Index to
4274  // ensure the ordering is stable.
4275  for (const Function &F : M) {
4276    // Summary emission does not support anonymous functions, they have to
4277    // renamed using the anonymous function renaming pass.
4278    if (!F.hasName())
4279      report_fatal_error("Unexpected anonymous function when writing summary");
4280
4281    ValueInfo VI = Index->getValueInfo(F.getGUID());
4282    if (!VI || VI.getSummaryList().empty()) {
4283      // Only declarations should not have a summary (a declaration might
4284      // however have a summary if the def was in module level asm).
4285      assert(F.isDeclaration());
4286      continue;
4287    }
4288    auto *Summary = VI.getSummaryList()[0].get();
4289    writePerModuleFunctionSummaryRecord(
4290        NameVals, Summary, VE.getValueID(&F), FSCallsRelBFAbbrev,
4291        FSCallsProfileAbbrev, CallsiteAbbrev, AllocAbbrev, F);
4292  }
4293
4294  // Capture references from GlobalVariable initializers, which are outside
4295  // of a function scope.
4296  for (const GlobalVariable &G : M.globals())
4297    writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev,
4298                               FSModVTableRefsAbbrev);
4299
4300  for (const GlobalAlias &A : M.aliases()) {
4301    auto *Aliasee = A.getAliaseeObject();
4302    // Skip ifunc and nameless functions which don't have an entry in the
4303    // summary.
4304    if (!Aliasee->hasName() || isa<GlobalIFunc>(Aliasee))
4305      continue;
4306    auto AliasId = VE.getValueID(&A);
4307    auto AliaseeId = VE.getValueID(Aliasee);
4308    NameVals.push_back(AliasId);
4309    auto *Summary = Index->getGlobalValueSummary(A);
4310    AliasSummary *AS = cast<AliasSummary>(Summary);
4311    NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
4312    NameVals.push_back(AliaseeId);
4313    Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev);
4314    NameVals.clear();
4315  }
4316
4317  for (auto &S : Index->typeIdCompatibleVtableMap()) {
4318    writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first,
4319                                             S.second, VE);
4320    Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals,
4321                      TypeIdCompatibleVtableAbbrev);
4322    NameVals.clear();
4323  }
4324
4325  if (Index->getBlockCount())
4326    Stream.EmitRecord(bitc::FS_BLOCK_COUNT,
4327                      ArrayRef<uint64_t>{Index->getBlockCount()});
4328
4329  Stream.ExitBlock();
4330}
4331
4332/// Emit the combined summary section into the combined index file.
4333void IndexBitcodeWriter::writeCombinedGlobalValueSummary() {
4334  Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4);
4335  Stream.EmitRecord(
4336      bitc::FS_VERSION,
4337      ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion});
4338
4339  // Write the index flags.
4340  Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()});
4341
4342  for (const auto &GVI : valueIds()) {
4343    Stream.EmitRecord(bitc::FS_VALUE_GUID,
4344                      ArrayRef<uint64_t>{GVI.second, GVI.first});
4345  }
4346
4347  if (!StackIdIndices.empty()) {
4348    auto StackIdAbbv = std::make_shared<BitCodeAbbrev>();
4349    StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS));
4350    // numids x stackid
4351    StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4352    StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4353    unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv));
4354    // Write the stack ids used by this index, which will be a subset of those in
4355    // the full index in the case of distributed indexes.
4356    std::vector<uint64_t> StackIds;
4357    for (auto &I : StackIdIndices)
4358      StackIds.push_back(Index.getStackIdAtIndex(I));
4359    Stream.EmitRecord(bitc::FS_STACK_IDS, StackIds, StackIdAbbvId);
4360  }
4361
4362  // Abbrev for FS_COMBINED_PROFILE.
4363  auto Abbv = std::make_shared<BitCodeAbbrev>();
4364  Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE));
4365  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4366  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
4367  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
4368  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
4369  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
4370  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // entrycount
4371  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
4372  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // rorefcnt
4373  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // worefcnt
4374  // numrefs x valueid, n x (valueid, hotness+tailcall flags)
4375  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4376  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4377  unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4378
4379  // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS.
4380  Abbv = std::make_shared<BitCodeAbbrev>();
4381  Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS));
4382  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4383  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
4384  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
4385  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));    // valueids
4386  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4387  unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4388
4389  // Abbrev for FS_COMBINED_ALIAS.
4390  Abbv = std::make_shared<BitCodeAbbrev>();
4391  Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS));
4392  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4393  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
4394  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
4395  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4396  unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4397
4398  Abbv = std::make_shared<BitCodeAbbrev>();
4399  Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_CALLSITE_INFO));
4400  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4401  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numstackindices
4402  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver
4403  // numstackindices x stackidindex, numver x version
4404  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4405  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4406  unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4407
4408  Abbv = std::make_shared<BitCodeAbbrev>();
4409  Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALLOC_INFO));
4410  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // nummib
4411  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver
4412  // nummib x (alloc type, numstackids, numstackids x stackidindex),
4413  // numver x version
4414  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4415  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4416  unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4417
4418  // The aliases are emitted as a post-pass, and will point to the value
4419  // id of the aliasee. Save them in a vector for post-processing.
4420  SmallVector<AliasSummary *, 64> Aliases;
4421
4422  // Save the value id for each summary for alias emission.
4423  DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap;
4424
4425  SmallVector<uint64_t, 64> NameVals;
4426
4427  // Set that will be populated during call to writeFunctionTypeMetadataRecords
4428  // with the type ids referenced by this index file.
4429  std::set<GlobalValue::GUID> ReferencedTypeIds;
4430
4431  // For local linkage, we also emit the original name separately
4432  // immediately after the record.
4433  auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) {
4434    // We don't need to emit the original name if we are writing the index for
4435    // distributed backends (in which case ModuleToSummariesForIndex is
4436    // non-null). The original name is only needed during the thin link, since
4437    // for SamplePGO the indirect call targets for local functions have
4438    // have the original name annotated in profile.
4439    // Continue to emit it when writing out the entire combined index, which is
4440    // used in testing the thin link via llvm-lto.
4441    if (ModuleToSummariesForIndex || !GlobalValue::isLocalLinkage(S.linkage()))
4442      return;
4443    NameVals.push_back(S.getOriginalName());
4444    Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals);
4445    NameVals.clear();
4446  };
4447
4448  std::set<GlobalValue::GUID> DefOrUseGUIDs;
4449  forEachSummary([&](GVInfo I, bool IsAliasee) {
4450    GlobalValueSummary *S = I.second;
4451    assert(S);
4452    DefOrUseGUIDs.insert(I.first);
4453    for (const ValueInfo &VI : S->refs())
4454      DefOrUseGUIDs.insert(VI.getGUID());
4455
4456    auto ValueId = getValueId(I.first);
4457    assert(ValueId);
4458    SummaryToValueIdMap[S] = *ValueId;
4459
4460    // If this is invoked for an aliasee, we want to record the above
4461    // mapping, but then not emit a summary entry (if the aliasee is
4462    // to be imported, we will invoke this separately with IsAliasee=false).
4463    if (IsAliasee)
4464      return;
4465
4466    if (auto *AS = dyn_cast<AliasSummary>(S)) {
4467      // Will process aliases as a post-pass because the reader wants all
4468      // global to be loaded first.
4469      Aliases.push_back(AS);
4470      return;
4471    }
4472
4473    if (auto *VS = dyn_cast<GlobalVarSummary>(S)) {
4474      NameVals.push_back(*ValueId);
4475      assert(ModuleIdMap.count(VS->modulePath()));
4476      NameVals.push_back(ModuleIdMap[VS->modulePath()]);
4477      NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
4478      NameVals.push_back(getEncodedGVarFlags(VS->varflags()));
4479      for (auto &RI : VS->refs()) {
4480        auto RefValueId = getValueId(RI.getGUID());
4481        if (!RefValueId)
4482          continue;
4483        NameVals.push_back(*RefValueId);
4484      }
4485
4486      // Emit the finished record.
4487      Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals,
4488                        FSModRefsAbbrev);
4489      NameVals.clear();
4490      MaybeEmitOriginalName(*S);
4491      return;
4492    }
4493
4494    auto GetValueId = [&](const ValueInfo &VI) -> std::optional<unsigned> {
4495      if (!VI)
4496        return std::nullopt;
4497      return getValueId(VI.getGUID());
4498    };
4499
4500    auto *FS = cast<FunctionSummary>(S);
4501    writeFunctionTypeMetadataRecords(Stream, FS, GetValueId);
4502    getReferencedTypeIds(FS, ReferencedTypeIds);
4503
4504    writeFunctionHeapProfileRecords(
4505        Stream, FS, CallsiteAbbrev, AllocAbbrev,
4506        /*PerModule*/ false,
4507        /*GetValueId*/ [&](const ValueInfo &VI) -> unsigned {
4508          std::optional<unsigned> ValueID = GetValueId(VI);
4509          // This can happen in shared index files for distributed ThinLTO if
4510          // the callee function summary is not included. Record 0 which we
4511          // will have to deal with conservatively when doing any kind of
4512          // validation in the ThinLTO backends.
4513          if (!ValueID)
4514            return 0;
4515          return *ValueID;
4516        },
4517        /*GetStackIndex*/ [&](unsigned I) {
4518          // Get the corresponding index into the list of StackIdIndices
4519          // actually being written for this combined index (which may be a
4520          // subset in the case of distributed indexes).
4521          auto Lower = llvm::lower_bound(StackIdIndices, I);
4522          return std::distance(StackIdIndices.begin(), Lower);
4523        });
4524
4525    NameVals.push_back(*ValueId);
4526    assert(ModuleIdMap.count(FS->modulePath()));
4527    NameVals.push_back(ModuleIdMap[FS->modulePath()]);
4528    NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
4529    NameVals.push_back(FS->instCount());
4530    NameVals.push_back(getEncodedFFlags(FS->fflags()));
4531    NameVals.push_back(FS->entryCount());
4532
4533    // Fill in below
4534    NameVals.push_back(0); // numrefs
4535    NameVals.push_back(0); // rorefcnt
4536    NameVals.push_back(0); // worefcnt
4537
4538    unsigned Count = 0, RORefCnt = 0, WORefCnt = 0;
4539    for (auto &RI : FS->refs()) {
4540      auto RefValueId = getValueId(RI.getGUID());
4541      if (!RefValueId)
4542        continue;
4543      NameVals.push_back(*RefValueId);
4544      if (RI.isReadOnly())
4545        RORefCnt++;
4546      else if (RI.isWriteOnly())
4547        WORefCnt++;
4548      Count++;
4549    }
4550    NameVals[6] = Count;
4551    NameVals[7] = RORefCnt;
4552    NameVals[8] = WORefCnt;
4553
4554    for (auto &EI : FS->calls()) {
4555      // If this GUID doesn't have a value id, it doesn't have a function
4556      // summary and we don't need to record any calls to it.
4557      std::optional<unsigned> CallValueId = GetValueId(EI.first);
4558      if (!CallValueId)
4559        continue;
4560      NameVals.push_back(*CallValueId);
4561      NameVals.push_back(getEncodedHotnessCallEdgeInfo(EI.second));
4562    }
4563
4564    // Emit the finished record.
4565    Stream.EmitRecord(bitc::FS_COMBINED_PROFILE, NameVals,
4566                      FSCallsProfileAbbrev);
4567    NameVals.clear();
4568    MaybeEmitOriginalName(*S);
4569  });
4570
4571  for (auto *AS : Aliases) {
4572    auto AliasValueId = SummaryToValueIdMap[AS];
4573    assert(AliasValueId);
4574    NameVals.push_back(AliasValueId);
4575    assert(ModuleIdMap.count(AS->modulePath()));
4576    NameVals.push_back(ModuleIdMap[AS->modulePath()]);
4577    NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
4578    auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()];
4579    assert(AliaseeValueId);
4580    NameVals.push_back(AliaseeValueId);
4581
4582    // Emit the finished record.
4583    Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev);
4584    NameVals.clear();
4585    MaybeEmitOriginalName(*AS);
4586
4587    if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee()))
4588      getReferencedTypeIds(FS, ReferencedTypeIds);
4589  }
4590
4591  if (!Index.cfiFunctionDefs().empty()) {
4592    for (auto &S : Index.cfiFunctionDefs()) {
4593      if (DefOrUseGUIDs.count(
4594              GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) {
4595        NameVals.push_back(StrtabBuilder.add(S));
4596        NameVals.push_back(S.size());
4597      }
4598    }
4599    if (!NameVals.empty()) {
4600      Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals);
4601      NameVals.clear();
4602    }
4603  }
4604
4605  if (!Index.cfiFunctionDecls().empty()) {
4606    for (auto &S : Index.cfiFunctionDecls()) {
4607      if (DefOrUseGUIDs.count(
4608              GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) {
4609        NameVals.push_back(StrtabBuilder.add(S));
4610        NameVals.push_back(S.size());
4611      }
4612    }
4613    if (!NameVals.empty()) {
4614      Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals);
4615      NameVals.clear();
4616    }
4617  }
4618
4619  // Walk the GUIDs that were referenced, and write the
4620  // corresponding type id records.
4621  for (auto &T : ReferencedTypeIds) {
4622    auto TidIter = Index.typeIds().equal_range(T);
4623    for (auto It = TidIter.first; It != TidIter.second; ++It) {
4624      writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first,
4625                               It->second.second);
4626      Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals);
4627      NameVals.clear();
4628    }
4629  }
4630
4631  if (Index.getBlockCount())
4632    Stream.EmitRecord(bitc::FS_BLOCK_COUNT,
4633                      ArrayRef<uint64_t>{Index.getBlockCount()});
4634
4635  Stream.ExitBlock();
4636}
4637
4638/// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the
4639/// current llvm version, and a record for the epoch number.
4640static void writeIdentificationBlock(BitstreamWriter &Stream) {
4641  Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5);
4642
4643  // Write the "user readable" string identifying the bitcode producer
4644  auto Abbv = std::make_shared<BitCodeAbbrev>();
4645  Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING));
4646  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4647  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
4648  auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4649  writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING,
4650                    "LLVM" LLVM_VERSION_STRING, StringAbbrev);
4651
4652  // Write the epoch version
4653  Abbv = std::make_shared<BitCodeAbbrev>();
4654  Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH));
4655  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
4656  auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4657  constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}};
4658  Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev);
4659  Stream.ExitBlock();
4660}
4661
4662void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) {
4663  // Emit the module's hash.
4664  // MODULE_CODE_HASH: [5*i32]
4665  if (GenerateHash) {
4666    uint32_t Vals[5];
4667    Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos],
4668                                    Buffer.size() - BlockStartPos));
4669    std::array<uint8_t, 20> Hash = Hasher.result();
4670    for (int Pos = 0; Pos < 20; Pos += 4) {
4671      Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos);
4672    }
4673
4674    // Emit the finished record.
4675    Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals);
4676
4677    if (ModHash)
4678      // Save the written hash value.
4679      llvm::copy(Vals, std::begin(*ModHash));
4680  }
4681}
4682
4683void ModuleBitcodeWriter::write() {
4684  writeIdentificationBlock(Stream);
4685
4686  Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4687  size_t BlockStartPos = Buffer.size();
4688
4689  writeModuleVersion();
4690
4691  // Emit blockinfo, which defines the standard abbreviations etc.
4692  writeBlockInfo();
4693
4694  // Emit information describing all of the types in the module.
4695  writeTypeTable();
4696
4697  // Emit information about attribute groups.
4698  writeAttributeGroupTable();
4699
4700  // Emit information about parameter attributes.
4701  writeAttributeTable();
4702
4703  writeComdats();
4704
4705  // Emit top-level description of module, including target triple, inline asm,
4706  // descriptors for global variables, and function prototype info.
4707  writeModuleInfo();
4708
4709  // Emit constants.
4710  writeModuleConstants();
4711
4712  // Emit metadata kind names.
4713  writeModuleMetadataKinds();
4714
4715  // Emit metadata.
4716  writeModuleMetadata();
4717
4718  // Emit module-level use-lists.
4719  if (VE.shouldPreserveUseListOrder())
4720    writeUseListBlock(nullptr);
4721
4722  writeOperandBundleTags();
4723  writeSyncScopeNames();
4724
4725  // Emit function bodies.
4726  DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex;
4727  for (const Function &F : M)
4728    if (!F.isDeclaration())
4729      writeFunction(F, FunctionToBitcodeIndex);
4730
4731  // Need to write after the above call to WriteFunction which populates
4732  // the summary information in the index.
4733  if (Index)
4734    writePerModuleGlobalValueSummary();
4735
4736  writeGlobalValueSymbolTable(FunctionToBitcodeIndex);
4737
4738  writeModuleHash(BlockStartPos);
4739
4740  Stream.ExitBlock();
4741}
4742
4743static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
4744                               uint32_t &Position) {
4745  support::endian::write32le(&Buffer[Position], Value);
4746  Position += 4;
4747}
4748
4749/// If generating a bc file on darwin, we have to emit a
4750/// header and trailer to make it compatible with the system archiver.  To do
4751/// this we emit the following header, and then emit a trailer that pads the
4752/// file out to be a multiple of 16 bytes.
4753///
4754/// struct bc_header {
4755///   uint32_t Magic;         // 0x0B17C0DE
4756///   uint32_t Version;       // Version, currently always 0.
4757///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
4758///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
4759///   uint32_t CPUType;       // CPU specifier.
4760///   ... potentially more later ...
4761/// };
4762static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
4763                                         const Triple &TT) {
4764  unsigned CPUType = ~0U;
4765
4766  // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
4767  // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
4768  // number from /usr/include/mach/machine.h.  It is ok to reproduce the
4769  // specific constants here because they are implicitly part of the Darwin ABI.
4770  enum {
4771    DARWIN_CPU_ARCH_ABI64      = 0x01000000,
4772    DARWIN_CPU_TYPE_X86        = 7,
4773    DARWIN_CPU_TYPE_ARM        = 12,
4774    DARWIN_CPU_TYPE_POWERPC    = 18
4775  };
4776
4777  Triple::ArchType Arch = TT.getArch();
4778  if (Arch == Triple::x86_64)
4779    CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
4780  else if (Arch == Triple::x86)
4781    CPUType = DARWIN_CPU_TYPE_X86;
4782  else if (Arch == Triple::ppc)
4783    CPUType = DARWIN_CPU_TYPE_POWERPC;
4784  else if (Arch == Triple::ppc64)
4785    CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
4786  else if (Arch == Triple::arm || Arch == Triple::thumb)
4787    CPUType = DARWIN_CPU_TYPE_ARM;
4788
4789  // Traditional Bitcode starts after header.
4790  assert(Buffer.size() >= BWH_HeaderSize &&
4791         "Expected header size to be reserved");
4792  unsigned BCOffset = BWH_HeaderSize;
4793  unsigned BCSize = Buffer.size() - BWH_HeaderSize;
4794
4795  // Write the magic and version.
4796  unsigned Position = 0;
4797  writeInt32ToBuffer(0x0B17C0DE, Buffer, Position);
4798  writeInt32ToBuffer(0, Buffer, Position); // Version.
4799  writeInt32ToBuffer(BCOffset, Buffer, Position);
4800  writeInt32ToBuffer(BCSize, Buffer, Position);
4801  writeInt32ToBuffer(CPUType, Buffer, Position);
4802
4803  // If the file is not a multiple of 16 bytes, insert dummy padding.
4804  while (Buffer.size() & 15)
4805    Buffer.push_back(0);
4806}
4807
4808/// Helper to write the header common to all bitcode files.
4809static void writeBitcodeHeader(BitstreamWriter &Stream) {
4810  // Emit the file header.
4811  Stream.Emit((unsigned)'B', 8);
4812  Stream.Emit((unsigned)'C', 8);
4813  Stream.Emit(0x0, 4);
4814  Stream.Emit(0xC, 4);
4815  Stream.Emit(0xE, 4);
4816  Stream.Emit(0xD, 4);
4817}
4818
4819BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, raw_fd_stream *FS)
4820    : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, FlushThreshold)) {
4821  writeBitcodeHeader(*Stream);
4822}
4823
4824BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); }
4825
4826void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) {
4827  Stream->EnterSubblock(Block, 3);
4828
4829  auto Abbv = std::make_shared<BitCodeAbbrev>();
4830  Abbv->Add(BitCodeAbbrevOp(Record));
4831  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
4832  auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv));
4833
4834  Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob);
4835
4836  Stream->ExitBlock();
4837}
4838
4839void BitcodeWriter::writeSymtab() {
4840  assert(!WroteStrtab && !WroteSymtab);
4841
4842  // If any module has module-level inline asm, we will require a registered asm
4843  // parser for the target so that we can create an accurate symbol table for
4844  // the module.
4845  for (Module *M : Mods) {
4846    if (M->getModuleInlineAsm().empty())
4847      continue;
4848
4849    std::string Err;
4850    const Triple TT(M->getTargetTriple());
4851    const Target *T = TargetRegistry::lookupTarget(TT.str(), Err);
4852    if (!T || !T->hasMCAsmParser())
4853      return;
4854  }
4855
4856  WroteSymtab = true;
4857  SmallVector<char, 0> Symtab;
4858  // The irsymtab::build function may be unable to create a symbol table if the
4859  // module is malformed (e.g. it contains an invalid alias). Writing a symbol
4860  // table is not required for correctness, but we still want to be able to
4861  // write malformed modules to bitcode files, so swallow the error.
4862  if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) {
4863    consumeError(std::move(E));
4864    return;
4865  }
4866
4867  writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB,
4868            {Symtab.data(), Symtab.size()});
4869}
4870
4871void BitcodeWriter::writeStrtab() {
4872  assert(!WroteStrtab);
4873
4874  std::vector<char> Strtab;
4875  StrtabBuilder.finalizeInOrder();
4876  Strtab.resize(StrtabBuilder.getSize());
4877  StrtabBuilder.write((uint8_t *)Strtab.data());
4878
4879  writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB,
4880            {Strtab.data(), Strtab.size()});
4881
4882  WroteStrtab = true;
4883}
4884
4885void BitcodeWriter::copyStrtab(StringRef Strtab) {
4886  writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab);
4887  WroteStrtab = true;
4888}
4889
4890void BitcodeWriter::writeModule(const Module &M,
4891                                bool ShouldPreserveUseListOrder,
4892                                const ModuleSummaryIndex *Index,
4893                                bool GenerateHash, ModuleHash *ModHash) {
4894  assert(!WroteStrtab);
4895
4896  // The Mods vector is used by irsymtab::build, which requires non-const
4897  // Modules in case it needs to materialize metadata. But the bitcode writer
4898  // requires that the module is materialized, so we can cast to non-const here,
4899  // after checking that it is in fact materialized.
4900  assert(M.isMaterialized());
4901  Mods.push_back(const_cast<Module *>(&M));
4902
4903  ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream,
4904                                   ShouldPreserveUseListOrder, Index,
4905                                   GenerateHash, ModHash);
4906  ModuleWriter.write();
4907}
4908
4909void BitcodeWriter::writeIndex(
4910    const ModuleSummaryIndex *Index,
4911    const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
4912  IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index,
4913                                 ModuleToSummariesForIndex);
4914  IndexWriter.write();
4915}
4916
4917/// Write the specified module to the specified output stream.
4918void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out,
4919                              bool ShouldPreserveUseListOrder,
4920                              const ModuleSummaryIndex *Index,
4921                              bool GenerateHash, ModuleHash *ModHash) {
4922  SmallVector<char, 0> Buffer;
4923  Buffer.reserve(256*1024);
4924
4925  // If this is darwin or another generic macho target, reserve space for the
4926  // header.
4927  Triple TT(M.getTargetTriple());
4928  if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
4929    Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0);
4930
4931  BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out));
4932  Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash,
4933                     ModHash);
4934  Writer.writeSymtab();
4935  Writer.writeStrtab();
4936
4937  if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
4938    emitDarwinBCHeaderAndTrailer(Buffer, TT);
4939
4940  // Write the generated bitstream to "Out".
4941  if (!Buffer.empty())
4942    Out.write((char *)&Buffer.front(), Buffer.size());
4943}
4944
4945void IndexBitcodeWriter::write() {
4946  Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4947
4948  writeModuleVersion();
4949
4950  // Write the module paths in the combined index.
4951  writeModStrings();
4952
4953  // Write the summary combined index records.
4954  writeCombinedGlobalValueSummary();
4955
4956  Stream.ExitBlock();
4957}
4958
4959// Write the specified module summary index to the given raw output stream,
4960// where it will be written in a new bitcode block. This is used when
4961// writing the combined index file for ThinLTO. When writing a subset of the
4962// index for a distributed backend, provide a \p ModuleToSummariesForIndex map.
4963void llvm::writeIndexToFile(
4964    const ModuleSummaryIndex &Index, raw_ostream &Out,
4965    const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
4966  SmallVector<char, 0> Buffer;
4967  Buffer.reserve(256 * 1024);
4968
4969  BitcodeWriter Writer(Buffer);
4970  Writer.writeIndex(&Index, ModuleToSummariesForIndex);
4971  Writer.writeStrtab();
4972
4973  Out.write((char *)&Buffer.front(), Buffer.size());
4974}
4975
4976namespace {
4977
4978/// Class to manage the bitcode writing for a thin link bitcode file.
4979class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase {
4980  /// ModHash is for use in ThinLTO incremental build, generated while writing
4981  /// the module bitcode file.
4982  const ModuleHash *ModHash;
4983
4984public:
4985  ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder,
4986                        BitstreamWriter &Stream,
4987                        const ModuleSummaryIndex &Index,
4988                        const ModuleHash &ModHash)
4989      : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
4990                                /*ShouldPreserveUseListOrder=*/false, &Index),
4991        ModHash(&ModHash) {}
4992
4993  void write();
4994
4995private:
4996  void writeSimplifiedModuleInfo();
4997};
4998
4999} // end anonymous namespace
5000
5001// This function writes a simpilified module info for thin link bitcode file.
5002// It only contains the source file name along with the name(the offset and
5003// size in strtab) and linkage for global values. For the global value info
5004// entry, in order to keep linkage at offset 5, there are three zeros used
5005// as padding.
5006void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() {
5007  SmallVector<unsigned, 64> Vals;
5008  // Emit the module's source file name.
5009  {
5010    StringEncoding Bits = getStringEncoding(M.getSourceFileName());
5011    BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
5012    if (Bits == SE_Char6)
5013      AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
5014    else if (Bits == SE_Fixed7)
5015      AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
5016
5017    // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5018    auto Abbv = std::make_shared<BitCodeAbbrev>();
5019    Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
5020    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
5021    Abbv->Add(AbbrevOpToUse);
5022    unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
5023
5024    for (const auto P : M.getSourceFileName())
5025      Vals.push_back((unsigned char)P);
5026
5027    Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
5028    Vals.clear();
5029  }
5030
5031  // Emit the global variable information.
5032  for (const GlobalVariable &GV : M.globals()) {
5033    // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage]
5034    Vals.push_back(StrtabBuilder.add(GV.getName()));
5035    Vals.push_back(GV.getName().size());
5036    Vals.push_back(0);
5037    Vals.push_back(0);
5038    Vals.push_back(0);
5039    Vals.push_back(getEncodedLinkage(GV));
5040
5041    Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals);
5042    Vals.clear();
5043  }
5044
5045  // Emit the function proto information.
5046  for (const Function &F : M) {
5047    // FUNCTION:  [strtab offset, strtab size, 0, 0, 0, linkage]
5048    Vals.push_back(StrtabBuilder.add(F.getName()));
5049    Vals.push_back(F.getName().size());
5050    Vals.push_back(0);
5051    Vals.push_back(0);
5052    Vals.push_back(0);
5053    Vals.push_back(getEncodedLinkage(F));
5054
5055    Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals);
5056    Vals.clear();
5057  }
5058
5059  // Emit the alias information.
5060  for (const GlobalAlias &A : M.aliases()) {
5061    // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage]
5062    Vals.push_back(StrtabBuilder.add(A.getName()));
5063    Vals.push_back(A.getName().size());
5064    Vals.push_back(0);
5065    Vals.push_back(0);
5066    Vals.push_back(0);
5067    Vals.push_back(getEncodedLinkage(A));
5068
5069    Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals);
5070    Vals.clear();
5071  }
5072
5073  // Emit the ifunc information.
5074  for (const GlobalIFunc &I : M.ifuncs()) {
5075    // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage]
5076    Vals.push_back(StrtabBuilder.add(I.getName()));
5077    Vals.push_back(I.getName().size());
5078    Vals.push_back(0);
5079    Vals.push_back(0);
5080    Vals.push_back(0);
5081    Vals.push_back(getEncodedLinkage(I));
5082
5083    Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
5084    Vals.clear();
5085  }
5086}
5087
5088void ThinLinkBitcodeWriter::write() {
5089  Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
5090
5091  writeModuleVersion();
5092
5093  writeSimplifiedModuleInfo();
5094
5095  writePerModuleGlobalValueSummary();
5096
5097  // Write module hash.
5098  Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash));
5099
5100  Stream.ExitBlock();
5101}
5102
5103void BitcodeWriter::writeThinLinkBitcode(const Module &M,
5104                                         const ModuleSummaryIndex &Index,
5105                                         const ModuleHash &ModHash) {
5106  assert(!WroteStrtab);
5107
5108  // The Mods vector is used by irsymtab::build, which requires non-const
5109  // Modules in case it needs to materialize metadata. But the bitcode writer
5110  // requires that the module is materialized, so we can cast to non-const here,
5111  // after checking that it is in fact materialized.
5112  assert(M.isMaterialized());
5113  Mods.push_back(const_cast<Module *>(&M));
5114
5115  ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index,
5116                                       ModHash);
5117  ThinLinkWriter.write();
5118}
5119
5120// Write the specified thin link bitcode file to the given raw output stream,
5121// where it will be written in a new bitcode block. This is used when
5122// writing the per-module index file for ThinLTO.
5123void llvm::writeThinLinkBitcodeToFile(const Module &M, raw_ostream &Out,
5124                                      const ModuleSummaryIndex &Index,
5125                                      const ModuleHash &ModHash) {
5126  SmallVector<char, 0> Buffer;
5127  Buffer.reserve(256 * 1024);
5128
5129  BitcodeWriter Writer(Buffer);
5130  Writer.writeThinLinkBitcode(M, Index, ModHash);
5131  Writer.writeSymtab();
5132  Writer.writeStrtab();
5133
5134  Out.write((char *)&Buffer.front(), Buffer.size());
5135}
5136
5137static const char *getSectionNameForBitcode(const Triple &T) {
5138  switch (T.getObjectFormat()) {
5139  case Triple::MachO:
5140    return "__LLVM,__bitcode";
5141  case Triple::COFF:
5142  case Triple::ELF:
5143  case Triple::Wasm:
5144  case Triple::UnknownObjectFormat:
5145    return ".llvmbc";
5146  case Triple::GOFF:
5147    llvm_unreachable("GOFF is not yet implemented");
5148    break;
5149  case Triple::SPIRV:
5150    llvm_unreachable("SPIRV is not yet implemented");
5151    break;
5152  case Triple::XCOFF:
5153    llvm_unreachable("XCOFF is not yet implemented");
5154    break;
5155  case Triple::DXContainer:
5156    llvm_unreachable("DXContainer is not yet implemented");
5157    break;
5158  }
5159  llvm_unreachable("Unimplemented ObjectFormatType");
5160}
5161
5162static const char *getSectionNameForCommandline(const Triple &T) {
5163  switch (T.getObjectFormat()) {
5164  case Triple::MachO:
5165    return "__LLVM,__cmdline";
5166  case Triple::COFF:
5167  case Triple::ELF:
5168  case Triple::Wasm:
5169  case Triple::UnknownObjectFormat:
5170    return ".llvmcmd";
5171  case Triple::GOFF:
5172    llvm_unreachable("GOFF is not yet implemented");
5173    break;
5174  case Triple::SPIRV:
5175    llvm_unreachable("SPIRV is not yet implemented");
5176    break;
5177  case Triple::XCOFF:
5178    llvm_unreachable("XCOFF is not yet implemented");
5179    break;
5180  case Triple::DXContainer:
5181    llvm_unreachable("DXC is not yet implemented");
5182    break;
5183  }
5184  llvm_unreachable("Unimplemented ObjectFormatType");
5185}
5186
5187void llvm::embedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf,
5188                                bool EmbedBitcode, bool EmbedCmdline,
5189                                const std::vector<uint8_t> &CmdArgs) {
5190  // Save llvm.compiler.used and remove it.
5191  SmallVector<Constant *, 2> UsedArray;
5192  SmallVector<GlobalValue *, 4> UsedGlobals;
5193  Type *UsedElementType = PointerType::getUnqual(M.getContext());
5194  GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true);
5195  for (auto *GV : UsedGlobals) {
5196    if (GV->getName() != "llvm.embedded.module" &&
5197        GV->getName() != "llvm.cmdline")
5198      UsedArray.push_back(
5199          ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
5200  }
5201  if (Used)
5202    Used->eraseFromParent();
5203
5204  // Embed the bitcode for the llvm module.
5205  std::string Data;
5206  ArrayRef<uint8_t> ModuleData;
5207  Triple T(M.getTargetTriple());
5208
5209  if (EmbedBitcode) {
5210    if (Buf.getBufferSize() == 0 ||
5211        !isBitcode((const unsigned char *)Buf.getBufferStart(),
5212                   (const unsigned char *)Buf.getBufferEnd())) {
5213      // If the input is LLVM Assembly, bitcode is produced by serializing
5214      // the module. Use-lists order need to be preserved in this case.
5215      llvm::raw_string_ostream OS(Data);
5216      llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true);
5217      ModuleData =
5218          ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size());
5219    } else
5220      // If the input is LLVM bitcode, write the input byte stream directly.
5221      ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(),
5222                                     Buf.getBufferSize());
5223  }
5224  llvm::Constant *ModuleConstant =
5225      llvm::ConstantDataArray::get(M.getContext(), ModuleData);
5226  llvm::GlobalVariable *GV = new llvm::GlobalVariable(
5227      M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage,
5228      ModuleConstant);
5229  GV->setSection(getSectionNameForBitcode(T));
5230  // Set alignment to 1 to prevent padding between two contributions from input
5231  // sections after linking.
5232  GV->setAlignment(Align(1));
5233  UsedArray.push_back(
5234      ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
5235  if (llvm::GlobalVariable *Old =
5236          M.getGlobalVariable("llvm.embedded.module", true)) {
5237    assert(Old->hasZeroLiveUses() &&
5238           "llvm.embedded.module can only be used once in llvm.compiler.used");
5239    GV->takeName(Old);
5240    Old->eraseFromParent();
5241  } else {
5242    GV->setName("llvm.embedded.module");
5243  }
5244
5245  // Skip if only bitcode needs to be embedded.
5246  if (EmbedCmdline) {
5247    // Embed command-line options.
5248    ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()),
5249                              CmdArgs.size());
5250    llvm::Constant *CmdConstant =
5251        llvm::ConstantDataArray::get(M.getContext(), CmdData);
5252    GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true,
5253                                  llvm::GlobalValue::PrivateLinkage,
5254                                  CmdConstant);
5255    GV->setSection(getSectionNameForCommandline(T));
5256    GV->setAlignment(Align(1));
5257    UsedArray.push_back(
5258        ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
5259    if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) {
5260      assert(Old->hasZeroLiveUses() &&
5261             "llvm.cmdline can only be used once in llvm.compiler.used");
5262      GV->takeName(Old);
5263      Old->eraseFromParent();
5264    } else {
5265      GV->setName("llvm.cmdline");
5266    }
5267  }
5268
5269  if (UsedArray.empty())
5270    return;
5271
5272  // Recreate llvm.compiler.used.
5273  ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size());
5274  auto *NewUsed = new GlobalVariable(
5275      M, ATy, false, llvm::GlobalValue::AppendingLinkage,
5276      llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used");
5277  NewUsed->setSection("llvm.metadata");
5278}
5279