1//===- llvm/Analysis/IVDescriptors.cpp - IndVar Descriptors -----*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file "describes" induction and recurrence variables.
10//
11//===----------------------------------------------------------------------===//
12
13#include "llvm/Analysis/IVDescriptors.h"
14#include "llvm/Analysis/DemandedBits.h"
15#include "llvm/Analysis/LoopInfo.h"
16#include "llvm/Analysis/ScalarEvolution.h"
17#include "llvm/Analysis/ScalarEvolutionExpressions.h"
18#include "llvm/Analysis/ValueTracking.h"
19#include "llvm/IR/Dominators.h"
20#include "llvm/IR/Instructions.h"
21#include "llvm/IR/Module.h"
22#include "llvm/IR/PatternMatch.h"
23#include "llvm/IR/ValueHandle.h"
24#include "llvm/Support/Debug.h"
25#include "llvm/Support/KnownBits.h"
26
27using namespace llvm;
28using namespace llvm::PatternMatch;
29
30#define DEBUG_TYPE "iv-descriptors"
31
32bool RecurrenceDescriptor::areAllUsesIn(Instruction *I,
33                                        SmallPtrSetImpl<Instruction *> &Set) {
34  for (const Use &Use : I->operands())
35    if (!Set.count(dyn_cast<Instruction>(Use)))
36      return false;
37  return true;
38}
39
40bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurKind Kind) {
41  switch (Kind) {
42  default:
43    break;
44  case RecurKind::Add:
45  case RecurKind::Mul:
46  case RecurKind::Or:
47  case RecurKind::And:
48  case RecurKind::Xor:
49  case RecurKind::SMax:
50  case RecurKind::SMin:
51  case RecurKind::UMax:
52  case RecurKind::UMin:
53  case RecurKind::IAnyOf:
54  case RecurKind::FAnyOf:
55    return true;
56  }
57  return false;
58}
59
60bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurKind Kind) {
61  return (Kind != RecurKind::None) && !isIntegerRecurrenceKind(Kind);
62}
63
64/// Determines if Phi may have been type-promoted. If Phi has a single user
65/// that ANDs the Phi with a type mask, return the user. RT is updated to
66/// account for the narrower bit width represented by the mask, and the AND
67/// instruction is added to CI.
68static Instruction *lookThroughAnd(PHINode *Phi, Type *&RT,
69                                   SmallPtrSetImpl<Instruction *> &Visited,
70                                   SmallPtrSetImpl<Instruction *> &CI) {
71  if (!Phi->hasOneUse())
72    return Phi;
73
74  const APInt *M = nullptr;
75  Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser());
76
77  // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT
78  // with a new integer type of the corresponding bit width.
79  if (match(J, m_c_And(m_Instruction(I), m_APInt(M)))) {
80    int32_t Bits = (*M + 1).exactLogBase2();
81    if (Bits > 0) {
82      RT = IntegerType::get(Phi->getContext(), Bits);
83      Visited.insert(Phi);
84      CI.insert(J);
85      return J;
86    }
87  }
88  return Phi;
89}
90
91/// Compute the minimal bit width needed to represent a reduction whose exit
92/// instruction is given by Exit.
93static std::pair<Type *, bool> computeRecurrenceType(Instruction *Exit,
94                                                     DemandedBits *DB,
95                                                     AssumptionCache *AC,
96                                                     DominatorTree *DT) {
97  bool IsSigned = false;
98  const DataLayout &DL = Exit->getModule()->getDataLayout();
99  uint64_t MaxBitWidth = DL.getTypeSizeInBits(Exit->getType());
100
101  if (DB) {
102    // Use the demanded bits analysis to determine the bits that are live out
103    // of the exit instruction, rounding up to the nearest power of two. If the
104    // use of demanded bits results in a smaller bit width, we know the value
105    // must be positive (i.e., IsSigned = false), because if this were not the
106    // case, the sign bit would have been demanded.
107    auto Mask = DB->getDemandedBits(Exit);
108    MaxBitWidth = Mask.getBitWidth() - Mask.countl_zero();
109  }
110
111  if (MaxBitWidth == DL.getTypeSizeInBits(Exit->getType()) && AC && DT) {
112    // If demanded bits wasn't able to limit the bit width, we can try to use
113    // value tracking instead. This can be the case, for example, if the value
114    // may be negative.
115    auto NumSignBits = ComputeNumSignBits(Exit, DL, 0, AC, nullptr, DT);
116    auto NumTypeBits = DL.getTypeSizeInBits(Exit->getType());
117    MaxBitWidth = NumTypeBits - NumSignBits;
118    KnownBits Bits = computeKnownBits(Exit, DL);
119    if (!Bits.isNonNegative()) {
120      // If the value is not known to be non-negative, we set IsSigned to true,
121      // meaning that we will use sext instructions instead of zext
122      // instructions to restore the original type.
123      IsSigned = true;
124      // Make sure at least one sign bit is included in the result, so it
125      // will get properly sign-extended.
126      ++MaxBitWidth;
127    }
128  }
129  MaxBitWidth = llvm::bit_ceil(MaxBitWidth);
130
131  return std::make_pair(Type::getIntNTy(Exit->getContext(), MaxBitWidth),
132                        IsSigned);
133}
134
135/// Collect cast instructions that can be ignored in the vectorizer's cost
136/// model, given a reduction exit value and the minimal type in which the
137// reduction can be represented. Also search casts to the recurrence type
138// to find the minimum width used by the recurrence.
139static void collectCastInstrs(Loop *TheLoop, Instruction *Exit,
140                              Type *RecurrenceType,
141                              SmallPtrSetImpl<Instruction *> &Casts,
142                              unsigned &MinWidthCastToRecurTy) {
143
144  SmallVector<Instruction *, 8> Worklist;
145  SmallPtrSet<Instruction *, 8> Visited;
146  Worklist.push_back(Exit);
147  MinWidthCastToRecurTy = -1U;
148
149  while (!Worklist.empty()) {
150    Instruction *Val = Worklist.pop_back_val();
151    Visited.insert(Val);
152    if (auto *Cast = dyn_cast<CastInst>(Val)) {
153      if (Cast->getSrcTy() == RecurrenceType) {
154        // If the source type of a cast instruction is equal to the recurrence
155        // type, it will be eliminated, and should be ignored in the vectorizer
156        // cost model.
157        Casts.insert(Cast);
158        continue;
159      }
160      if (Cast->getDestTy() == RecurrenceType) {
161        // The minimum width used by the recurrence is found by checking for
162        // casts on its operands. The minimum width is used by the vectorizer
163        // when finding the widest type for in-loop reductions without any
164        // loads/stores.
165        MinWidthCastToRecurTy = std::min<unsigned>(
166            MinWidthCastToRecurTy, Cast->getSrcTy()->getScalarSizeInBits());
167        continue;
168      }
169    }
170    // Add all operands to the work list if they are loop-varying values that
171    // we haven't yet visited.
172    for (Value *O : cast<User>(Val)->operands())
173      if (auto *I = dyn_cast<Instruction>(O))
174        if (TheLoop->contains(I) && !Visited.count(I))
175          Worklist.push_back(I);
176  }
177}
178
179// Check if a given Phi node can be recognized as an ordered reduction for
180// vectorizing floating point operations without unsafe math.
181static bool checkOrderedReduction(RecurKind Kind, Instruction *ExactFPMathInst,
182                                  Instruction *Exit, PHINode *Phi) {
183  // Currently only FAdd and FMulAdd are supported.
184  if (Kind != RecurKind::FAdd && Kind != RecurKind::FMulAdd)
185    return false;
186
187  if (Kind == RecurKind::FAdd && Exit->getOpcode() != Instruction::FAdd)
188    return false;
189
190  if (Kind == RecurKind::FMulAdd &&
191      !RecurrenceDescriptor::isFMulAddIntrinsic(Exit))
192    return false;
193
194  // Ensure the exit instruction has only one user other than the reduction PHI
195  if (Exit != ExactFPMathInst || Exit->hasNUsesOrMore(3))
196    return false;
197
198  // The only pattern accepted is the one in which the reduction PHI
199  // is used as one of the operands of the exit instruction
200  auto *Op0 = Exit->getOperand(0);
201  auto *Op1 = Exit->getOperand(1);
202  if (Kind == RecurKind::FAdd && Op0 != Phi && Op1 != Phi)
203    return false;
204  if (Kind == RecurKind::FMulAdd && Exit->getOperand(2) != Phi)
205    return false;
206
207  LLVM_DEBUG(dbgs() << "LV: Found an ordered reduction: Phi: " << *Phi
208                    << ", ExitInst: " << *Exit << "\n");
209
210  return true;
211}
212
213bool RecurrenceDescriptor::AddReductionVar(
214    PHINode *Phi, RecurKind Kind, Loop *TheLoop, FastMathFlags FuncFMF,
215    RecurrenceDescriptor &RedDes, DemandedBits *DB, AssumptionCache *AC,
216    DominatorTree *DT, ScalarEvolution *SE) {
217  if (Phi->getNumIncomingValues() != 2)
218    return false;
219
220  // Reduction variables are only found in the loop header block.
221  if (Phi->getParent() != TheLoop->getHeader())
222    return false;
223
224  // Obtain the reduction start value from the value that comes from the loop
225  // preheader.
226  Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
227
228  // ExitInstruction is the single value which is used outside the loop.
229  // We only allow for a single reduction value to be used outside the loop.
230  // This includes users of the reduction, variables (which form a cycle
231  // which ends in the phi node).
232  Instruction *ExitInstruction = nullptr;
233
234  // Variable to keep last visited store instruction. By the end of the
235  // algorithm this variable will be either empty or having intermediate
236  // reduction value stored in invariant address.
237  StoreInst *IntermediateStore = nullptr;
238
239  // Indicates that we found a reduction operation in our scan.
240  bool FoundReduxOp = false;
241
242  // We start with the PHI node and scan for all of the users of this
243  // instruction. All users must be instructions that can be used as reduction
244  // variables (such as ADD). We must have a single out-of-block user. The cycle
245  // must include the original PHI.
246  bool FoundStartPHI = false;
247
248  // To recognize min/max patterns formed by a icmp select sequence, we store
249  // the number of instruction we saw from the recognized min/max pattern,
250  //  to make sure we only see exactly the two instructions.
251  unsigned NumCmpSelectPatternInst = 0;
252  InstDesc ReduxDesc(false, nullptr);
253
254  // Data used for determining if the recurrence has been type-promoted.
255  Type *RecurrenceType = Phi->getType();
256  SmallPtrSet<Instruction *, 4> CastInsts;
257  unsigned MinWidthCastToRecurrenceType;
258  Instruction *Start = Phi;
259  bool IsSigned = false;
260
261  SmallPtrSet<Instruction *, 8> VisitedInsts;
262  SmallVector<Instruction *, 8> Worklist;
263
264  // Return early if the recurrence kind does not match the type of Phi. If the
265  // recurrence kind is arithmetic, we attempt to look through AND operations
266  // resulting from the type promotion performed by InstCombine.  Vector
267  // operations are not limited to the legal integer widths, so we may be able
268  // to evaluate the reduction in the narrower width.
269  if (RecurrenceType->isFloatingPointTy()) {
270    if (!isFloatingPointRecurrenceKind(Kind))
271      return false;
272  } else if (RecurrenceType->isIntegerTy()) {
273    if (!isIntegerRecurrenceKind(Kind))
274      return false;
275    if (!isMinMaxRecurrenceKind(Kind))
276      Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts);
277  } else {
278    // Pointer min/max may exist, but it is not supported as a reduction op.
279    return false;
280  }
281
282  Worklist.push_back(Start);
283  VisitedInsts.insert(Start);
284
285  // Start with all flags set because we will intersect this with the reduction
286  // flags from all the reduction operations.
287  FastMathFlags FMF = FastMathFlags::getFast();
288
289  // The first instruction in the use-def chain of the Phi node that requires
290  // exact floating point operations.
291  Instruction *ExactFPMathInst = nullptr;
292
293  // A value in the reduction can be used:
294  //  - By the reduction:
295  //      - Reduction operation:
296  //        - One use of reduction value (safe).
297  //        - Multiple use of reduction value (not safe).
298  //      - PHI:
299  //        - All uses of the PHI must be the reduction (safe).
300  //        - Otherwise, not safe.
301  //  - By instructions outside of the loop (safe).
302  //      * One value may have several outside users, but all outside
303  //        uses must be of the same value.
304  //  - By store instructions with a loop invariant address (safe with
305  //    the following restrictions):
306  //      * If there are several stores, all must have the same address.
307  //      * Final value should be stored in that loop invariant address.
308  //  - By an instruction that is not part of the reduction (not safe).
309  //    This is either:
310  //      * An instruction type other than PHI or the reduction operation.
311  //      * A PHI in the header other than the initial PHI.
312  while (!Worklist.empty()) {
313    Instruction *Cur = Worklist.pop_back_val();
314
315    // Store instructions are allowed iff it is the store of the reduction
316    // value to the same loop invariant memory location.
317    if (auto *SI = dyn_cast<StoreInst>(Cur)) {
318      if (!SE) {
319        LLVM_DEBUG(dbgs() << "Store instructions are not processed without "
320                          << "Scalar Evolution Analysis\n");
321        return false;
322      }
323
324      const SCEV *PtrScev = SE->getSCEV(SI->getPointerOperand());
325      // Check it is the same address as previous stores
326      if (IntermediateStore) {
327        const SCEV *OtherScev =
328            SE->getSCEV(IntermediateStore->getPointerOperand());
329
330        if (OtherScev != PtrScev) {
331          LLVM_DEBUG(dbgs() << "Storing reduction value to different addresses "
332                            << "inside the loop: " << *SI->getPointerOperand()
333                            << " and "
334                            << *IntermediateStore->getPointerOperand() << '\n');
335          return false;
336        }
337      }
338
339      // Check the pointer is loop invariant
340      if (!SE->isLoopInvariant(PtrScev, TheLoop)) {
341        LLVM_DEBUG(dbgs() << "Storing reduction value to non-uniform address "
342                          << "inside the loop: " << *SI->getPointerOperand()
343                          << '\n');
344        return false;
345      }
346
347      // IntermediateStore is always the last store in the loop.
348      IntermediateStore = SI;
349      continue;
350    }
351
352    // No Users.
353    // If the instruction has no users then this is a broken chain and can't be
354    // a reduction variable.
355    if (Cur->use_empty())
356      return false;
357
358    bool IsAPhi = isa<PHINode>(Cur);
359
360    // A header PHI use other than the original PHI.
361    if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
362      return false;
363
364    // Reductions of instructions such as Div, and Sub is only possible if the
365    // LHS is the reduction variable.
366    if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
367        !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
368        !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
369      return false;
370
371    // Any reduction instruction must be of one of the allowed kinds. We ignore
372    // the starting value (the Phi or an AND instruction if the Phi has been
373    // type-promoted).
374    if (Cur != Start) {
375      ReduxDesc =
376          isRecurrenceInstr(TheLoop, Phi, Cur, Kind, ReduxDesc, FuncFMF);
377      ExactFPMathInst = ExactFPMathInst == nullptr
378                            ? ReduxDesc.getExactFPMathInst()
379                            : ExactFPMathInst;
380      if (!ReduxDesc.isRecurrence())
381        return false;
382      // FIXME: FMF is allowed on phi, but propagation is not handled correctly.
383      if (isa<FPMathOperator>(ReduxDesc.getPatternInst()) && !IsAPhi) {
384        FastMathFlags CurFMF = ReduxDesc.getPatternInst()->getFastMathFlags();
385        if (auto *Sel = dyn_cast<SelectInst>(ReduxDesc.getPatternInst())) {
386          // Accept FMF on either fcmp or select of a min/max idiom.
387          // TODO: This is a hack to work-around the fact that FMF may not be
388          //       assigned/propagated correctly. If that problem is fixed or we
389          //       standardize on fmin/fmax via intrinsics, this can be removed.
390          if (auto *FCmp = dyn_cast<FCmpInst>(Sel->getCondition()))
391            CurFMF |= FCmp->getFastMathFlags();
392        }
393        FMF &= CurFMF;
394      }
395      // Update this reduction kind if we matched a new instruction.
396      // TODO: Can we eliminate the need for a 2nd InstDesc by keeping 'Kind'
397      //       state accurate while processing the worklist?
398      if (ReduxDesc.getRecKind() != RecurKind::None)
399        Kind = ReduxDesc.getRecKind();
400    }
401
402    bool IsASelect = isa<SelectInst>(Cur);
403
404    // A conditional reduction operation must only have 2 or less uses in
405    // VisitedInsts.
406    if (IsASelect && (Kind == RecurKind::FAdd || Kind == RecurKind::FMul) &&
407        hasMultipleUsesOf(Cur, VisitedInsts, 2))
408      return false;
409
410    // A reduction operation must only have one use of the reduction value.
411    if (!IsAPhi && !IsASelect && !isMinMaxRecurrenceKind(Kind) &&
412        !isAnyOfRecurrenceKind(Kind) && hasMultipleUsesOf(Cur, VisitedInsts, 1))
413      return false;
414
415    // All inputs to a PHI node must be a reduction value.
416    if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
417      return false;
418
419    if ((isIntMinMaxRecurrenceKind(Kind) || Kind == RecurKind::IAnyOf) &&
420        (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur)))
421      ++NumCmpSelectPatternInst;
422    if ((isFPMinMaxRecurrenceKind(Kind) || Kind == RecurKind::FAnyOf) &&
423        (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur)))
424      ++NumCmpSelectPatternInst;
425
426    // Check  whether we found a reduction operator.
427    FoundReduxOp |= !IsAPhi && Cur != Start;
428
429    // Process users of current instruction. Push non-PHI nodes after PHI nodes
430    // onto the stack. This way we are going to have seen all inputs to PHI
431    // nodes once we get to them.
432    SmallVector<Instruction *, 8> NonPHIs;
433    SmallVector<Instruction *, 8> PHIs;
434    for (User *U : Cur->users()) {
435      Instruction *UI = cast<Instruction>(U);
436
437      // If the user is a call to llvm.fmuladd then the instruction can only be
438      // the final operand.
439      if (isFMulAddIntrinsic(UI))
440        if (Cur == UI->getOperand(0) || Cur == UI->getOperand(1))
441          return false;
442
443      // Check if we found the exit user.
444      BasicBlock *Parent = UI->getParent();
445      if (!TheLoop->contains(Parent)) {
446        // If we already know this instruction is used externally, move on to
447        // the next user.
448        if (ExitInstruction == Cur)
449          continue;
450
451        // Exit if you find multiple values used outside or if the header phi
452        // node is being used. In this case the user uses the value of the
453        // previous iteration, in which case we would loose "VF-1" iterations of
454        // the reduction operation if we vectorize.
455        if (ExitInstruction != nullptr || Cur == Phi)
456          return false;
457
458        // The instruction used by an outside user must be the last instruction
459        // before we feed back to the reduction phi. Otherwise, we loose VF-1
460        // operations on the value.
461        if (!is_contained(Phi->operands(), Cur))
462          return false;
463
464        ExitInstruction = Cur;
465        continue;
466      }
467
468      // Process instructions only once (termination). Each reduction cycle
469      // value must only be used once, except by phi nodes and min/max
470      // reductions which are represented as a cmp followed by a select.
471      InstDesc IgnoredVal(false, nullptr);
472      if (VisitedInsts.insert(UI).second) {
473        if (isa<PHINode>(UI)) {
474          PHIs.push_back(UI);
475        } else {
476          StoreInst *SI = dyn_cast<StoreInst>(UI);
477          if (SI && SI->getPointerOperand() == Cur) {
478            // Reduction variable chain can only be stored somewhere but it
479            // can't be used as an address.
480            return false;
481          }
482          NonPHIs.push_back(UI);
483        }
484      } else if (!isa<PHINode>(UI) &&
485                 ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) &&
486                   !isa<SelectInst>(UI)) ||
487                  (!isConditionalRdxPattern(Kind, UI).isRecurrence() &&
488                   !isAnyOfPattern(TheLoop, Phi, UI, IgnoredVal)
489                        .isRecurrence() &&
490                   !isMinMaxPattern(UI, Kind, IgnoredVal).isRecurrence())))
491        return false;
492
493      // Remember that we completed the cycle.
494      if (UI == Phi)
495        FoundStartPHI = true;
496    }
497    Worklist.append(PHIs.begin(), PHIs.end());
498    Worklist.append(NonPHIs.begin(), NonPHIs.end());
499  }
500
501  // This means we have seen one but not the other instruction of the
502  // pattern or more than just a select and cmp. Zero implies that we saw a
503  // llvm.min/max intrinsic, which is always OK.
504  if (isMinMaxRecurrenceKind(Kind) && NumCmpSelectPatternInst != 2 &&
505      NumCmpSelectPatternInst != 0)
506    return false;
507
508  if (isAnyOfRecurrenceKind(Kind) && NumCmpSelectPatternInst != 1)
509    return false;
510
511  if (IntermediateStore) {
512    // Check that stored value goes to the phi node again. This way we make sure
513    // that the value stored in IntermediateStore is indeed the final reduction
514    // value.
515    if (!is_contained(Phi->operands(), IntermediateStore->getValueOperand())) {
516      LLVM_DEBUG(dbgs() << "Not a final reduction value stored: "
517                        << *IntermediateStore << '\n');
518      return false;
519    }
520
521    // If there is an exit instruction it's value should be stored in
522    // IntermediateStore
523    if (ExitInstruction &&
524        IntermediateStore->getValueOperand() != ExitInstruction) {
525      LLVM_DEBUG(dbgs() << "Last store Instruction of reduction value does not "
526                           "store last calculated value of the reduction: "
527                        << *IntermediateStore << '\n');
528      return false;
529    }
530
531    // If all uses are inside the loop (intermediate stores), then the
532    // reduction value after the loop will be the one used in the last store.
533    if (!ExitInstruction)
534      ExitInstruction = cast<Instruction>(IntermediateStore->getValueOperand());
535  }
536
537  if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
538    return false;
539
540  const bool IsOrdered =
541      checkOrderedReduction(Kind, ExactFPMathInst, ExitInstruction, Phi);
542
543  if (Start != Phi) {
544    // If the starting value is not the same as the phi node, we speculatively
545    // looked through an 'and' instruction when evaluating a potential
546    // arithmetic reduction to determine if it may have been type-promoted.
547    //
548    // We now compute the minimal bit width that is required to represent the
549    // reduction. If this is the same width that was indicated by the 'and', we
550    // can represent the reduction in the smaller type. The 'and' instruction
551    // will be eliminated since it will essentially be a cast instruction that
552    // can be ignore in the cost model. If we compute a different type than we
553    // did when evaluating the 'and', the 'and' will not be eliminated, and we
554    // will end up with different kinds of operations in the recurrence
555    // expression (e.g., IntegerAND, IntegerADD). We give up if this is
556    // the case.
557    //
558    // The vectorizer relies on InstCombine to perform the actual
559    // type-shrinking. It does this by inserting instructions to truncate the
560    // exit value of the reduction to the width indicated by RecurrenceType and
561    // then extend this value back to the original width. If IsSigned is false,
562    // a 'zext' instruction will be generated; otherwise, a 'sext' will be
563    // used.
564    //
565    // TODO: We should not rely on InstCombine to rewrite the reduction in the
566    //       smaller type. We should just generate a correctly typed expression
567    //       to begin with.
568    Type *ComputedType;
569    std::tie(ComputedType, IsSigned) =
570        computeRecurrenceType(ExitInstruction, DB, AC, DT);
571    if (ComputedType != RecurrenceType)
572      return false;
573  }
574
575  // Collect cast instructions and the minimum width used by the recurrence.
576  // If the starting value is not the same as the phi node and the computed
577  // recurrence type is equal to the recurrence type, the recurrence expression
578  // will be represented in a narrower or wider type. If there are any cast
579  // instructions that will be unnecessary, collect them in CastsFromRecurTy.
580  // Note that the 'and' instruction was already included in this list.
581  //
582  // TODO: A better way to represent this may be to tag in some way all the
583  //       instructions that are a part of the reduction. The vectorizer cost
584  //       model could then apply the recurrence type to these instructions,
585  //       without needing a white list of instructions to ignore.
586  //       This may also be useful for the inloop reductions, if it can be
587  //       kept simple enough.
588  collectCastInstrs(TheLoop, ExitInstruction, RecurrenceType, CastInsts,
589                    MinWidthCastToRecurrenceType);
590
591  // We found a reduction var if we have reached the original phi node and we
592  // only have a single instruction with out-of-loop users.
593
594  // The ExitInstruction(Instruction which is allowed to have out-of-loop users)
595  // is saved as part of the RecurrenceDescriptor.
596
597  // Save the description of this reduction variable.
598  RecurrenceDescriptor RD(RdxStart, ExitInstruction, IntermediateStore, Kind,
599                          FMF, ExactFPMathInst, RecurrenceType, IsSigned,
600                          IsOrdered, CastInsts, MinWidthCastToRecurrenceType);
601  RedDes = RD;
602
603  return true;
604}
605
606// We are looking for loops that do something like this:
607//   int r = 0;
608//   for (int i = 0; i < n; i++) {
609//     if (src[i] > 3)
610//       r = 3;
611//   }
612// where the reduction value (r) only has two states, in this example 0 or 3.
613// The generated LLVM IR for this type of loop will be like this:
614//   for.body:
615//     %r = phi i32 [ %spec.select, %for.body ], [ 0, %entry ]
616//     ...
617//     %cmp = icmp sgt i32 %5, 3
618//     %spec.select = select i1 %cmp, i32 3, i32 %r
619//     ...
620// In general we can support vectorization of loops where 'r' flips between
621// any two non-constants, provided they are loop invariant. The only thing
622// we actually care about at the end of the loop is whether or not any lane
623// in the selected vector is different from the start value. The final
624// across-vector reduction after the loop simply involves choosing the start
625// value if nothing changed (0 in the example above) or the other selected
626// value (3 in the example above).
627RecurrenceDescriptor::InstDesc
628RecurrenceDescriptor::isAnyOfPattern(Loop *Loop, PHINode *OrigPhi,
629                                     Instruction *I, InstDesc &Prev) {
630  // We must handle the select(cmp(),x,y) as a single instruction. Advance to
631  // the select.
632  CmpInst::Predicate Pred;
633  if (match(I, m_OneUse(m_Cmp(Pred, m_Value(), m_Value())))) {
634    if (auto *Select = dyn_cast<SelectInst>(*I->user_begin()))
635      return InstDesc(Select, Prev.getRecKind());
636  }
637
638  // Only match select with single use cmp condition.
639  if (!match(I, m_Select(m_OneUse(m_Cmp(Pred, m_Value(), m_Value())), m_Value(),
640                         m_Value())))
641    return InstDesc(false, I);
642
643  SelectInst *SI = cast<SelectInst>(I);
644  Value *NonPhi = nullptr;
645
646  if (OrigPhi == dyn_cast<PHINode>(SI->getTrueValue()))
647    NonPhi = SI->getFalseValue();
648  else if (OrigPhi == dyn_cast<PHINode>(SI->getFalseValue()))
649    NonPhi = SI->getTrueValue();
650  else
651    return InstDesc(false, I);
652
653  // We are looking for selects of the form:
654  //   select(cmp(), phi, loop_invariant) or
655  //   select(cmp(), loop_invariant, phi)
656  if (!Loop->isLoopInvariant(NonPhi))
657    return InstDesc(false, I);
658
659  return InstDesc(I, isa<ICmpInst>(I->getOperand(0)) ? RecurKind::IAnyOf
660                                                     : RecurKind::FAnyOf);
661}
662
663RecurrenceDescriptor::InstDesc
664RecurrenceDescriptor::isMinMaxPattern(Instruction *I, RecurKind Kind,
665                                      const InstDesc &Prev) {
666  assert((isa<CmpInst>(I) || isa<SelectInst>(I) || isa<CallInst>(I)) &&
667         "Expected a cmp or select or call instruction");
668  if (!isMinMaxRecurrenceKind(Kind))
669    return InstDesc(false, I);
670
671  // We must handle the select(cmp()) as a single instruction. Advance to the
672  // select.
673  CmpInst::Predicate Pred;
674  if (match(I, m_OneUse(m_Cmp(Pred, m_Value(), m_Value())))) {
675    if (auto *Select = dyn_cast<SelectInst>(*I->user_begin()))
676      return InstDesc(Select, Prev.getRecKind());
677  }
678
679  // Only match select with single use cmp condition, or a min/max intrinsic.
680  if (!isa<IntrinsicInst>(I) &&
681      !match(I, m_Select(m_OneUse(m_Cmp(Pred, m_Value(), m_Value())), m_Value(),
682                         m_Value())))
683    return InstDesc(false, I);
684
685  // Look for a min/max pattern.
686  if (match(I, m_UMin(m_Value(), m_Value())))
687    return InstDesc(Kind == RecurKind::UMin, I);
688  if (match(I, m_UMax(m_Value(), m_Value())))
689    return InstDesc(Kind == RecurKind::UMax, I);
690  if (match(I, m_SMax(m_Value(), m_Value())))
691    return InstDesc(Kind == RecurKind::SMax, I);
692  if (match(I, m_SMin(m_Value(), m_Value())))
693    return InstDesc(Kind == RecurKind::SMin, I);
694  if (match(I, m_OrdFMin(m_Value(), m_Value())))
695    return InstDesc(Kind == RecurKind::FMin, I);
696  if (match(I, m_OrdFMax(m_Value(), m_Value())))
697    return InstDesc(Kind == RecurKind::FMax, I);
698  if (match(I, m_UnordFMin(m_Value(), m_Value())))
699    return InstDesc(Kind == RecurKind::FMin, I);
700  if (match(I, m_UnordFMax(m_Value(), m_Value())))
701    return InstDesc(Kind == RecurKind::FMax, I);
702  if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value())))
703    return InstDesc(Kind == RecurKind::FMin, I);
704  if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value())))
705    return InstDesc(Kind == RecurKind::FMax, I);
706  if (match(I, m_Intrinsic<Intrinsic::minimum>(m_Value(), m_Value())))
707    return InstDesc(Kind == RecurKind::FMinimum, I);
708  if (match(I, m_Intrinsic<Intrinsic::maximum>(m_Value(), m_Value())))
709    return InstDesc(Kind == RecurKind::FMaximum, I);
710
711  return InstDesc(false, I);
712}
713
714/// Returns true if the select instruction has users in the compare-and-add
715/// reduction pattern below. The select instruction argument is the last one
716/// in the sequence.
717///
718/// %sum.1 = phi ...
719/// ...
720/// %cmp = fcmp pred %0, %CFP
721/// %add = fadd %0, %sum.1
722/// %sum.2 = select %cmp, %add, %sum.1
723RecurrenceDescriptor::InstDesc
724RecurrenceDescriptor::isConditionalRdxPattern(RecurKind Kind, Instruction *I) {
725  SelectInst *SI = dyn_cast<SelectInst>(I);
726  if (!SI)
727    return InstDesc(false, I);
728
729  CmpInst *CI = dyn_cast<CmpInst>(SI->getCondition());
730  // Only handle single use cases for now.
731  if (!CI || !CI->hasOneUse())
732    return InstDesc(false, I);
733
734  Value *TrueVal = SI->getTrueValue();
735  Value *FalseVal = SI->getFalseValue();
736  // Handle only when either of operands of select instruction is a PHI
737  // node for now.
738  if ((isa<PHINode>(*TrueVal) && isa<PHINode>(*FalseVal)) ||
739      (!isa<PHINode>(*TrueVal) && !isa<PHINode>(*FalseVal)))
740    return InstDesc(false, I);
741
742  Instruction *I1 =
743      isa<PHINode>(*TrueVal) ? dyn_cast<Instruction>(FalseVal)
744                             : dyn_cast<Instruction>(TrueVal);
745  if (!I1 || !I1->isBinaryOp())
746    return InstDesc(false, I);
747
748  Value *Op1, *Op2;
749  if (!(((m_FAdd(m_Value(Op1), m_Value(Op2)).match(I1) ||
750          m_FSub(m_Value(Op1), m_Value(Op2)).match(I1)) &&
751         I1->isFast()) ||
752        (m_FMul(m_Value(Op1), m_Value(Op2)).match(I1) && (I1->isFast())) ||
753        ((m_Add(m_Value(Op1), m_Value(Op2)).match(I1) ||
754          m_Sub(m_Value(Op1), m_Value(Op2)).match(I1))) ||
755        (m_Mul(m_Value(Op1), m_Value(Op2)).match(I1))))
756    return InstDesc(false, I);
757
758  Instruction *IPhi = isa<PHINode>(*Op1) ? dyn_cast<Instruction>(Op1)
759                                         : dyn_cast<Instruction>(Op2);
760  if (!IPhi || IPhi != FalseVal)
761    return InstDesc(false, I);
762
763  return InstDesc(true, SI);
764}
765
766RecurrenceDescriptor::InstDesc
767RecurrenceDescriptor::isRecurrenceInstr(Loop *L, PHINode *OrigPhi,
768                                        Instruction *I, RecurKind Kind,
769                                        InstDesc &Prev, FastMathFlags FuncFMF) {
770  assert(Prev.getRecKind() == RecurKind::None || Prev.getRecKind() == Kind);
771  switch (I->getOpcode()) {
772  default:
773    return InstDesc(false, I);
774  case Instruction::PHI:
775    return InstDesc(I, Prev.getRecKind(), Prev.getExactFPMathInst());
776  case Instruction::Sub:
777  case Instruction::Add:
778    return InstDesc(Kind == RecurKind::Add, I);
779  case Instruction::Mul:
780    return InstDesc(Kind == RecurKind::Mul, I);
781  case Instruction::And:
782    return InstDesc(Kind == RecurKind::And, I);
783  case Instruction::Or:
784    return InstDesc(Kind == RecurKind::Or, I);
785  case Instruction::Xor:
786    return InstDesc(Kind == RecurKind::Xor, I);
787  case Instruction::FDiv:
788  case Instruction::FMul:
789    return InstDesc(Kind == RecurKind::FMul, I,
790                    I->hasAllowReassoc() ? nullptr : I);
791  case Instruction::FSub:
792  case Instruction::FAdd:
793    return InstDesc(Kind == RecurKind::FAdd, I,
794                    I->hasAllowReassoc() ? nullptr : I);
795  case Instruction::Select:
796    if (Kind == RecurKind::FAdd || Kind == RecurKind::FMul ||
797        Kind == RecurKind::Add || Kind == RecurKind::Mul)
798      return isConditionalRdxPattern(Kind, I);
799    [[fallthrough]];
800  case Instruction::FCmp:
801  case Instruction::ICmp:
802  case Instruction::Call:
803    if (isAnyOfRecurrenceKind(Kind))
804      return isAnyOfPattern(L, OrigPhi, I, Prev);
805    auto HasRequiredFMF = [&]() {
806     if (FuncFMF.noNaNs() && FuncFMF.noSignedZeros())
807       return true;
808     if (isa<FPMathOperator>(I) && I->hasNoNaNs() && I->hasNoSignedZeros())
809       return true;
810     // minimum and maximum intrinsics do not require nsz and nnan flags since
811     // NaN and signed zeroes are propagated in the intrinsic implementation.
812     return match(I, m_Intrinsic<Intrinsic::minimum>(m_Value(), m_Value())) ||
813            match(I, m_Intrinsic<Intrinsic::maximum>(m_Value(), m_Value()));
814    };
815    if (isIntMinMaxRecurrenceKind(Kind) ||
816        (HasRequiredFMF() && isFPMinMaxRecurrenceKind(Kind)))
817      return isMinMaxPattern(I, Kind, Prev);
818    else if (isFMulAddIntrinsic(I))
819      return InstDesc(Kind == RecurKind::FMulAdd, I,
820                      I->hasAllowReassoc() ? nullptr : I);
821    return InstDesc(false, I);
822  }
823}
824
825bool RecurrenceDescriptor::hasMultipleUsesOf(
826    Instruction *I, SmallPtrSetImpl<Instruction *> &Insts,
827    unsigned MaxNumUses) {
828  unsigned NumUses = 0;
829  for (const Use &U : I->operands()) {
830    if (Insts.count(dyn_cast<Instruction>(U)))
831      ++NumUses;
832    if (NumUses > MaxNumUses)
833      return true;
834  }
835
836  return false;
837}
838
839bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop,
840                                          RecurrenceDescriptor &RedDes,
841                                          DemandedBits *DB, AssumptionCache *AC,
842                                          DominatorTree *DT,
843                                          ScalarEvolution *SE) {
844  BasicBlock *Header = TheLoop->getHeader();
845  Function &F = *Header->getParent();
846  FastMathFlags FMF;
847  FMF.setNoNaNs(
848      F.getFnAttribute("no-nans-fp-math").getValueAsBool());
849  FMF.setNoSignedZeros(
850      F.getFnAttribute("no-signed-zeros-fp-math").getValueAsBool());
851
852  if (AddReductionVar(Phi, RecurKind::Add, TheLoop, FMF, RedDes, DB, AC, DT,
853                      SE)) {
854    LLVM_DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n");
855    return true;
856  }
857  if (AddReductionVar(Phi, RecurKind::Mul, TheLoop, FMF, RedDes, DB, AC, DT,
858                      SE)) {
859    LLVM_DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n");
860    return true;
861  }
862  if (AddReductionVar(Phi, RecurKind::Or, TheLoop, FMF, RedDes, DB, AC, DT,
863                      SE)) {
864    LLVM_DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n");
865    return true;
866  }
867  if (AddReductionVar(Phi, RecurKind::And, TheLoop, FMF, RedDes, DB, AC, DT,
868                      SE)) {
869    LLVM_DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n");
870    return true;
871  }
872  if (AddReductionVar(Phi, RecurKind::Xor, TheLoop, FMF, RedDes, DB, AC, DT,
873                      SE)) {
874    LLVM_DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n");
875    return true;
876  }
877  if (AddReductionVar(Phi, RecurKind::SMax, TheLoop, FMF, RedDes, DB, AC, DT,
878                      SE)) {
879    LLVM_DEBUG(dbgs() << "Found a SMAX reduction PHI." << *Phi << "\n");
880    return true;
881  }
882  if (AddReductionVar(Phi, RecurKind::SMin, TheLoop, FMF, RedDes, DB, AC, DT,
883                      SE)) {
884    LLVM_DEBUG(dbgs() << "Found a SMIN reduction PHI." << *Phi << "\n");
885    return true;
886  }
887  if (AddReductionVar(Phi, RecurKind::UMax, TheLoop, FMF, RedDes, DB, AC, DT,
888                      SE)) {
889    LLVM_DEBUG(dbgs() << "Found a UMAX reduction PHI." << *Phi << "\n");
890    return true;
891  }
892  if (AddReductionVar(Phi, RecurKind::UMin, TheLoop, FMF, RedDes, DB, AC, DT,
893                      SE)) {
894    LLVM_DEBUG(dbgs() << "Found a UMIN reduction PHI." << *Phi << "\n");
895    return true;
896  }
897  if (AddReductionVar(Phi, RecurKind::IAnyOf, TheLoop, FMF, RedDes, DB, AC, DT,
898                      SE)) {
899    LLVM_DEBUG(dbgs() << "Found an integer conditional select reduction PHI."
900                      << *Phi << "\n");
901    return true;
902  }
903  if (AddReductionVar(Phi, RecurKind::FMul, TheLoop, FMF, RedDes, DB, AC, DT,
904                      SE)) {
905    LLVM_DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n");
906    return true;
907  }
908  if (AddReductionVar(Phi, RecurKind::FAdd, TheLoop, FMF, RedDes, DB, AC, DT,
909                      SE)) {
910    LLVM_DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n");
911    return true;
912  }
913  if (AddReductionVar(Phi, RecurKind::FMax, TheLoop, FMF, RedDes, DB, AC, DT,
914                      SE)) {
915    LLVM_DEBUG(dbgs() << "Found a float MAX reduction PHI." << *Phi << "\n");
916    return true;
917  }
918  if (AddReductionVar(Phi, RecurKind::FMin, TheLoop, FMF, RedDes, DB, AC, DT,
919                      SE)) {
920    LLVM_DEBUG(dbgs() << "Found a float MIN reduction PHI." << *Phi << "\n");
921    return true;
922  }
923  if (AddReductionVar(Phi, RecurKind::FAnyOf, TheLoop, FMF, RedDes, DB, AC, DT,
924                      SE)) {
925    LLVM_DEBUG(dbgs() << "Found a float conditional select reduction PHI."
926                      << " PHI." << *Phi << "\n");
927    return true;
928  }
929  if (AddReductionVar(Phi, RecurKind::FMulAdd, TheLoop, FMF, RedDes, DB, AC, DT,
930                      SE)) {
931    LLVM_DEBUG(dbgs() << "Found an FMulAdd reduction PHI." << *Phi << "\n");
932    return true;
933  }
934  if (AddReductionVar(Phi, RecurKind::FMaximum, TheLoop, FMF, RedDes, DB, AC, DT,
935                      SE)) {
936    LLVM_DEBUG(dbgs() << "Found a float MAXIMUM reduction PHI." << *Phi << "\n");
937    return true;
938  }
939  if (AddReductionVar(Phi, RecurKind::FMinimum, TheLoop, FMF, RedDes, DB, AC, DT,
940                      SE)) {
941    LLVM_DEBUG(dbgs() << "Found a float MINIMUM reduction PHI." << *Phi << "\n");
942    return true;
943  }
944  // Not a reduction of known type.
945  return false;
946}
947
948bool RecurrenceDescriptor::isFixedOrderRecurrence(PHINode *Phi, Loop *TheLoop,
949                                                  DominatorTree *DT) {
950
951  // Ensure the phi node is in the loop header and has two incoming values.
952  if (Phi->getParent() != TheLoop->getHeader() ||
953      Phi->getNumIncomingValues() != 2)
954    return false;
955
956  // Ensure the loop has a preheader and a single latch block. The loop
957  // vectorizer will need the latch to set up the next iteration of the loop.
958  auto *Preheader = TheLoop->getLoopPreheader();
959  auto *Latch = TheLoop->getLoopLatch();
960  if (!Preheader || !Latch)
961    return false;
962
963  // Ensure the phi node's incoming blocks are the loop preheader and latch.
964  if (Phi->getBasicBlockIndex(Preheader) < 0 ||
965      Phi->getBasicBlockIndex(Latch) < 0)
966    return false;
967
968  // Get the previous value. The previous value comes from the latch edge while
969  // the initial value comes from the preheader edge.
970  auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch));
971
972  // If Previous is a phi in the header, go through incoming values from the
973  // latch until we find a non-phi value. Use this as the new Previous, all uses
974  // in the header will be dominated by the original phi, but need to be moved
975  // after the non-phi previous value.
976  SmallPtrSet<PHINode *, 4> SeenPhis;
977  while (auto *PrevPhi = dyn_cast_or_null<PHINode>(Previous)) {
978    if (PrevPhi->getParent() != Phi->getParent())
979      return false;
980    if (!SeenPhis.insert(PrevPhi).second)
981      return false;
982    Previous = dyn_cast<Instruction>(PrevPhi->getIncomingValueForBlock(Latch));
983  }
984
985  if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous))
986    return false;
987
988  // Ensure every user of the phi node (recursively) is dominated by the
989  // previous value. The dominance requirement ensures the loop vectorizer will
990  // not need to vectorize the initial value prior to the first iteration of the
991  // loop.
992  // TODO: Consider extending this sinking to handle memory instructions.
993
994  SmallPtrSet<Value *, 8> Seen;
995  BasicBlock *PhiBB = Phi->getParent();
996  SmallVector<Instruction *, 8> WorkList;
997  auto TryToPushSinkCandidate = [&](Instruction *SinkCandidate) {
998    // Cyclic dependence.
999    if (Previous == SinkCandidate)
1000      return false;
1001
1002    if (!Seen.insert(SinkCandidate).second)
1003      return true;
1004    if (DT->dominates(Previous,
1005                      SinkCandidate)) // We already are good w/o sinking.
1006      return true;
1007
1008    if (SinkCandidate->getParent() != PhiBB ||
1009        SinkCandidate->mayHaveSideEffects() ||
1010        SinkCandidate->mayReadFromMemory() || SinkCandidate->isTerminator())
1011      return false;
1012
1013    // If we reach a PHI node that is not dominated by Previous, we reached a
1014    // header PHI. No need for sinking.
1015    if (isa<PHINode>(SinkCandidate))
1016      return true;
1017
1018    // Sink User tentatively and check its users
1019    WorkList.push_back(SinkCandidate);
1020    return true;
1021  };
1022
1023  WorkList.push_back(Phi);
1024  // Try to recursively sink instructions and their users after Previous.
1025  while (!WorkList.empty()) {
1026    Instruction *Current = WorkList.pop_back_val();
1027    for (User *User : Current->users()) {
1028      if (!TryToPushSinkCandidate(cast<Instruction>(User)))
1029        return false;
1030    }
1031  }
1032
1033  return true;
1034}
1035
1036/// This function returns the identity element (or neutral element) for
1037/// the operation K.
1038Value *RecurrenceDescriptor::getRecurrenceIdentity(RecurKind K, Type *Tp,
1039                                                   FastMathFlags FMF) const {
1040  switch (K) {
1041  case RecurKind::Xor:
1042  case RecurKind::Add:
1043  case RecurKind::Or:
1044    // Adding, Xoring, Oring zero to a number does not change it.
1045    return ConstantInt::get(Tp, 0);
1046  case RecurKind::Mul:
1047    // Multiplying a number by 1 does not change it.
1048    return ConstantInt::get(Tp, 1);
1049  case RecurKind::And:
1050    // AND-ing a number with an all-1 value does not change it.
1051    return ConstantInt::get(Tp, -1, true);
1052  case RecurKind::FMul:
1053    // Multiplying a number by 1 does not change it.
1054    return ConstantFP::get(Tp, 1.0L);
1055  case RecurKind::FMulAdd:
1056  case RecurKind::FAdd:
1057    // Adding zero to a number does not change it.
1058    // FIXME: Ideally we should not need to check FMF for FAdd and should always
1059    // use -0.0. However, this will currently result in mixed vectors of 0.0/-0.0.
1060    // Instead, we should ensure that 1) the FMF from FAdd are propagated to the PHI
1061    // nodes where possible, and 2) PHIs with the nsz flag + -0.0 use 0.0. This would
1062    // mean we can then remove the check for noSignedZeros() below (see D98963).
1063    if (FMF.noSignedZeros())
1064      return ConstantFP::get(Tp, 0.0L);
1065    return ConstantFP::get(Tp, -0.0L);
1066  case RecurKind::UMin:
1067    return ConstantInt::get(Tp, -1, true);
1068  case RecurKind::UMax:
1069    return ConstantInt::get(Tp, 0);
1070  case RecurKind::SMin:
1071    return ConstantInt::get(Tp,
1072                            APInt::getSignedMaxValue(Tp->getIntegerBitWidth()));
1073  case RecurKind::SMax:
1074    return ConstantInt::get(Tp,
1075                            APInt::getSignedMinValue(Tp->getIntegerBitWidth()));
1076  case RecurKind::FMin:
1077    assert((FMF.noNaNs() && FMF.noSignedZeros()) &&
1078           "nnan, nsz is expected to be set for FP min reduction.");
1079    return ConstantFP::getInfinity(Tp, false /*Negative*/);
1080  case RecurKind::FMax:
1081    assert((FMF.noNaNs() && FMF.noSignedZeros()) &&
1082           "nnan, nsz is expected to be set for FP max reduction.");
1083    return ConstantFP::getInfinity(Tp, true /*Negative*/);
1084  case RecurKind::FMinimum:
1085    return ConstantFP::getInfinity(Tp, false /*Negative*/);
1086  case RecurKind::FMaximum:
1087    return ConstantFP::getInfinity(Tp, true /*Negative*/);
1088  case RecurKind::IAnyOf:
1089  case RecurKind::FAnyOf:
1090    return getRecurrenceStartValue();
1091    break;
1092  default:
1093    llvm_unreachable("Unknown recurrence kind");
1094  }
1095}
1096
1097unsigned RecurrenceDescriptor::getOpcode(RecurKind Kind) {
1098  switch (Kind) {
1099  case RecurKind::Add:
1100    return Instruction::Add;
1101  case RecurKind::Mul:
1102    return Instruction::Mul;
1103  case RecurKind::Or:
1104    return Instruction::Or;
1105  case RecurKind::And:
1106    return Instruction::And;
1107  case RecurKind::Xor:
1108    return Instruction::Xor;
1109  case RecurKind::FMul:
1110    return Instruction::FMul;
1111  case RecurKind::FMulAdd:
1112  case RecurKind::FAdd:
1113    return Instruction::FAdd;
1114  case RecurKind::SMax:
1115  case RecurKind::SMin:
1116  case RecurKind::UMax:
1117  case RecurKind::UMin:
1118  case RecurKind::IAnyOf:
1119    return Instruction::ICmp;
1120  case RecurKind::FMax:
1121  case RecurKind::FMin:
1122  case RecurKind::FMaximum:
1123  case RecurKind::FMinimum:
1124  case RecurKind::FAnyOf:
1125    return Instruction::FCmp;
1126  default:
1127    llvm_unreachable("Unknown recurrence operation");
1128  }
1129}
1130
1131SmallVector<Instruction *, 4>
1132RecurrenceDescriptor::getReductionOpChain(PHINode *Phi, Loop *L) const {
1133  SmallVector<Instruction *, 4> ReductionOperations;
1134  unsigned RedOp = getOpcode(Kind);
1135
1136  // Search down from the Phi to the LoopExitInstr, looking for instructions
1137  // with a single user of the correct type for the reduction.
1138
1139  // Note that we check that the type of the operand is correct for each item in
1140  // the chain, including the last (the loop exit value). This can come up from
1141  // sub, which would otherwise be treated as an add reduction. MinMax also need
1142  // to check for a pair of icmp/select, for which we use getNextInstruction and
1143  // isCorrectOpcode functions to step the right number of instruction, and
1144  // check the icmp/select pair.
1145  // FIXME: We also do not attempt to look through Select's yet, which might
1146  // be part of the reduction chain, or attempt to looks through And's to find a
1147  // smaller bitwidth. Subs are also currently not allowed (which are usually
1148  // treated as part of a add reduction) as they are expected to generally be
1149  // more expensive than out-of-loop reductions, and need to be costed more
1150  // carefully.
1151  unsigned ExpectedUses = 1;
1152  if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp)
1153    ExpectedUses = 2;
1154
1155  auto getNextInstruction = [&](Instruction *Cur) -> Instruction * {
1156    for (auto *User : Cur->users()) {
1157      Instruction *UI = cast<Instruction>(User);
1158      if (isa<PHINode>(UI))
1159        continue;
1160      if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) {
1161        // We are expecting a icmp/select pair, which we go to the next select
1162        // instruction if we can. We already know that Cur has 2 uses.
1163        if (isa<SelectInst>(UI))
1164          return UI;
1165        continue;
1166      }
1167      return UI;
1168    }
1169    return nullptr;
1170  };
1171  auto isCorrectOpcode = [&](Instruction *Cur) {
1172    if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) {
1173      Value *LHS, *RHS;
1174      return SelectPatternResult::isMinOrMax(
1175          matchSelectPattern(Cur, LHS, RHS).Flavor);
1176    }
1177    // Recognize a call to the llvm.fmuladd intrinsic.
1178    if (isFMulAddIntrinsic(Cur))
1179      return true;
1180
1181    return Cur->getOpcode() == RedOp;
1182  };
1183
1184  // Attempt to look through Phis which are part of the reduction chain
1185  unsigned ExtraPhiUses = 0;
1186  Instruction *RdxInstr = LoopExitInstr;
1187  if (auto ExitPhi = dyn_cast<PHINode>(LoopExitInstr)) {
1188    if (ExitPhi->getNumIncomingValues() != 2)
1189      return {};
1190
1191    Instruction *Inc0 = dyn_cast<Instruction>(ExitPhi->getIncomingValue(0));
1192    Instruction *Inc1 = dyn_cast<Instruction>(ExitPhi->getIncomingValue(1));
1193
1194    Instruction *Chain = nullptr;
1195    if (Inc0 == Phi)
1196      Chain = Inc1;
1197    else if (Inc1 == Phi)
1198      Chain = Inc0;
1199    else
1200      return {};
1201
1202    RdxInstr = Chain;
1203    ExtraPhiUses = 1;
1204  }
1205
1206  // The loop exit instruction we check first (as a quick test) but add last. We
1207  // check the opcode is correct (and dont allow them to be Subs) and that they
1208  // have expected to have the expected number of uses. They will have one use
1209  // from the phi and one from a LCSSA value, no matter the type.
1210  if (!isCorrectOpcode(RdxInstr) || !LoopExitInstr->hasNUses(2))
1211    return {};
1212
1213  // Check that the Phi has one (or two for min/max) uses, plus an extra use
1214  // for conditional reductions.
1215  if (!Phi->hasNUses(ExpectedUses + ExtraPhiUses))
1216    return {};
1217
1218  Instruction *Cur = getNextInstruction(Phi);
1219
1220  // Each other instruction in the chain should have the expected number of uses
1221  // and be the correct opcode.
1222  while (Cur != RdxInstr) {
1223    if (!Cur || !isCorrectOpcode(Cur) || !Cur->hasNUses(ExpectedUses))
1224      return {};
1225
1226    ReductionOperations.push_back(Cur);
1227    Cur = getNextInstruction(Cur);
1228  }
1229
1230  ReductionOperations.push_back(Cur);
1231  return ReductionOperations;
1232}
1233
1234InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K,
1235                                         const SCEV *Step, BinaryOperator *BOp,
1236                                         SmallVectorImpl<Instruction *> *Casts)
1237    : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) {
1238  assert(IK != IK_NoInduction && "Not an induction");
1239
1240  // Start value type should match the induction kind and the value
1241  // itself should not be null.
1242  assert(StartValue && "StartValue is null");
1243  assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) &&
1244         "StartValue is not a pointer for pointer induction");
1245  assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) &&
1246         "StartValue is not an integer for integer induction");
1247
1248  // Check the Step Value. It should be non-zero integer value.
1249  assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) &&
1250         "Step value is zero");
1251
1252  assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) &&
1253         "StepValue is not an integer");
1254
1255  assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) &&
1256         "StepValue is not FP for FpInduction");
1257  assert((IK != IK_FpInduction ||
1258          (InductionBinOp &&
1259           (InductionBinOp->getOpcode() == Instruction::FAdd ||
1260            InductionBinOp->getOpcode() == Instruction::FSub))) &&
1261         "Binary opcode should be specified for FP induction");
1262
1263  if (Casts) {
1264    for (auto &Inst : *Casts) {
1265      RedundantCasts.push_back(Inst);
1266    }
1267  }
1268}
1269
1270ConstantInt *InductionDescriptor::getConstIntStepValue() const {
1271  if (isa<SCEVConstant>(Step))
1272    return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue());
1273  return nullptr;
1274}
1275
1276bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop,
1277                                           ScalarEvolution *SE,
1278                                           InductionDescriptor &D) {
1279
1280  // Here we only handle FP induction variables.
1281  assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type");
1282
1283  if (TheLoop->getHeader() != Phi->getParent())
1284    return false;
1285
1286  // The loop may have multiple entrances or multiple exits; we can analyze
1287  // this phi if it has a unique entry value and a unique backedge value.
1288  if (Phi->getNumIncomingValues() != 2)
1289    return false;
1290  Value *BEValue = nullptr, *StartValue = nullptr;
1291  if (TheLoop->contains(Phi->getIncomingBlock(0))) {
1292    BEValue = Phi->getIncomingValue(0);
1293    StartValue = Phi->getIncomingValue(1);
1294  } else {
1295    assert(TheLoop->contains(Phi->getIncomingBlock(1)) &&
1296           "Unexpected Phi node in the loop");
1297    BEValue = Phi->getIncomingValue(1);
1298    StartValue = Phi->getIncomingValue(0);
1299  }
1300
1301  BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue);
1302  if (!BOp)
1303    return false;
1304
1305  Value *Addend = nullptr;
1306  if (BOp->getOpcode() == Instruction::FAdd) {
1307    if (BOp->getOperand(0) == Phi)
1308      Addend = BOp->getOperand(1);
1309    else if (BOp->getOperand(1) == Phi)
1310      Addend = BOp->getOperand(0);
1311  } else if (BOp->getOpcode() == Instruction::FSub)
1312    if (BOp->getOperand(0) == Phi)
1313      Addend = BOp->getOperand(1);
1314
1315  if (!Addend)
1316    return false;
1317
1318  // The addend should be loop invariant
1319  if (auto *I = dyn_cast<Instruction>(Addend))
1320    if (TheLoop->contains(I))
1321      return false;
1322
1323  // FP Step has unknown SCEV
1324  const SCEV *Step = SE->getUnknown(Addend);
1325  D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp);
1326  return true;
1327}
1328
1329/// This function is called when we suspect that the update-chain of a phi node
1330/// (whose symbolic SCEV expression sin \p PhiScev) contains redundant casts,
1331/// that can be ignored. (This can happen when the PSCEV rewriter adds a runtime
1332/// predicate P under which the SCEV expression for the phi can be the
1333/// AddRecurrence \p AR; See createAddRecFromPHIWithCast). We want to find the
1334/// cast instructions that are involved in the update-chain of this induction.
1335/// A caller that adds the required runtime predicate can be free to drop these
1336/// cast instructions, and compute the phi using \p AR (instead of some scev
1337/// expression with casts).
1338///
1339/// For example, without a predicate the scev expression can take the following
1340/// form:
1341///      (Ext ix (Trunc iy ( Start + i*Step ) to ix) to iy)
1342///
1343/// It corresponds to the following IR sequence:
1344/// %for.body:
1345///   %x = phi i64 [ 0, %ph ], [ %add, %for.body ]
1346///   %casted_phi = "ExtTrunc i64 %x"
1347///   %add = add i64 %casted_phi, %step
1348///
1349/// where %x is given in \p PN,
1350/// PSE.getSCEV(%x) is equal to PSE.getSCEV(%casted_phi) under a predicate,
1351/// and the IR sequence that "ExtTrunc i64 %x" represents can take one of
1352/// several forms, for example, such as:
1353///   ExtTrunc1:    %casted_phi = and  %x, 2^n-1
1354/// or:
1355///   ExtTrunc2:    %t = shl %x, m
1356///                 %casted_phi = ashr %t, m
1357///
1358/// If we are able to find such sequence, we return the instructions
1359/// we found, namely %casted_phi and the instructions on its use-def chain up
1360/// to the phi (not including the phi).
1361static bool getCastsForInductionPHI(PredicatedScalarEvolution &PSE,
1362                                    const SCEVUnknown *PhiScev,
1363                                    const SCEVAddRecExpr *AR,
1364                                    SmallVectorImpl<Instruction *> &CastInsts) {
1365
1366  assert(CastInsts.empty() && "CastInsts is expected to be empty.");
1367  auto *PN = cast<PHINode>(PhiScev->getValue());
1368  assert(PSE.getSCEV(PN) == AR && "Unexpected phi node SCEV expression");
1369  const Loop *L = AR->getLoop();
1370
1371  // Find any cast instructions that participate in the def-use chain of
1372  // PhiScev in the loop.
1373  // FORNOW/TODO: We currently expect the def-use chain to include only
1374  // two-operand instructions, where one of the operands is an invariant.
1375  // createAddRecFromPHIWithCasts() currently does not support anything more
1376  // involved than that, so we keep the search simple. This can be
1377  // extended/generalized as needed.
1378
1379  auto getDef = [&](const Value *Val) -> Value * {
1380    const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val);
1381    if (!BinOp)
1382      return nullptr;
1383    Value *Op0 = BinOp->getOperand(0);
1384    Value *Op1 = BinOp->getOperand(1);
1385    Value *Def = nullptr;
1386    if (L->isLoopInvariant(Op0))
1387      Def = Op1;
1388    else if (L->isLoopInvariant(Op1))
1389      Def = Op0;
1390    return Def;
1391  };
1392
1393  // Look for the instruction that defines the induction via the
1394  // loop backedge.
1395  BasicBlock *Latch = L->getLoopLatch();
1396  if (!Latch)
1397    return false;
1398  Value *Val = PN->getIncomingValueForBlock(Latch);
1399  if (!Val)
1400    return false;
1401
1402  // Follow the def-use chain until the induction phi is reached.
1403  // If on the way we encounter a Value that has the same SCEV Expr as the
1404  // phi node, we can consider the instructions we visit from that point
1405  // as part of the cast-sequence that can be ignored.
1406  bool InCastSequence = false;
1407  auto *Inst = dyn_cast<Instruction>(Val);
1408  while (Val != PN) {
1409    // If we encountered a phi node other than PN, or if we left the loop,
1410    // we bail out.
1411    if (!Inst || !L->contains(Inst)) {
1412      return false;
1413    }
1414    auto *AddRec = dyn_cast<SCEVAddRecExpr>(PSE.getSCEV(Val));
1415    if (AddRec && PSE.areAddRecsEqualWithPreds(AddRec, AR))
1416      InCastSequence = true;
1417    if (InCastSequence) {
1418      // Only the last instruction in the cast sequence is expected to have
1419      // uses outside the induction def-use chain.
1420      if (!CastInsts.empty())
1421        if (!Inst->hasOneUse())
1422          return false;
1423      CastInsts.push_back(Inst);
1424    }
1425    Val = getDef(Val);
1426    if (!Val)
1427      return false;
1428    Inst = dyn_cast<Instruction>(Val);
1429  }
1430
1431  return InCastSequence;
1432}
1433
1434bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,
1435                                         PredicatedScalarEvolution &PSE,
1436                                         InductionDescriptor &D, bool Assume) {
1437  Type *PhiTy = Phi->getType();
1438
1439  // Handle integer and pointer inductions variables.
1440  // Now we handle also FP induction but not trying to make a
1441  // recurrent expression from the PHI node in-place.
1442
1443  if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() && !PhiTy->isFloatTy() &&
1444      !PhiTy->isDoubleTy() && !PhiTy->isHalfTy())
1445    return false;
1446
1447  if (PhiTy->isFloatingPointTy())
1448    return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D);
1449
1450  const SCEV *PhiScev = PSE.getSCEV(Phi);
1451  const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
1452
1453  // We need this expression to be an AddRecExpr.
1454  if (Assume && !AR)
1455    AR = PSE.getAsAddRec(Phi);
1456
1457  if (!AR) {
1458    LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
1459    return false;
1460  }
1461
1462  // Record any Cast instructions that participate in the induction update
1463  const auto *SymbolicPhi = dyn_cast<SCEVUnknown>(PhiScev);
1464  // If we started from an UnknownSCEV, and managed to build an addRecurrence
1465  // only after enabling Assume with PSCEV, this means we may have encountered
1466  // cast instructions that required adding a runtime check in order to
1467  // guarantee the correctness of the AddRecurrence respresentation of the
1468  // induction.
1469  if (PhiScev != AR && SymbolicPhi) {
1470    SmallVector<Instruction *, 2> Casts;
1471    if (getCastsForInductionPHI(PSE, SymbolicPhi, AR, Casts))
1472      return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR, &Casts);
1473  }
1474
1475  return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR);
1476}
1477
1478bool InductionDescriptor::isInductionPHI(
1479    PHINode *Phi, const Loop *TheLoop, ScalarEvolution *SE,
1480    InductionDescriptor &D, const SCEV *Expr,
1481    SmallVectorImpl<Instruction *> *CastsToIgnore) {
1482  Type *PhiTy = Phi->getType();
1483  // We only handle integer and pointer inductions variables.
1484  if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
1485    return false;
1486
1487  // Check that the PHI is consecutive.
1488  const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi);
1489  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
1490
1491  if (!AR) {
1492    LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
1493    return false;
1494  }
1495
1496  if (AR->getLoop() != TheLoop) {
1497    // FIXME: We should treat this as a uniform. Unfortunately, we
1498    // don't currently know how to handled uniform PHIs.
1499    LLVM_DEBUG(
1500        dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n");
1501    return false;
1502  }
1503
1504  // This function assumes that InductionPhi is called only on Phi nodes
1505  // present inside loop headers. Check for the same, and throw an assert if
1506  // the current Phi is not present inside the loop header.
1507  assert(Phi->getParent() == AR->getLoop()->getHeader()
1508    && "Invalid Phi node, not present in loop header");
1509
1510  Value *StartValue =
1511      Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader());
1512
1513  BasicBlock *Latch = AR->getLoop()->getLoopLatch();
1514  if (!Latch)
1515    return false;
1516
1517  const SCEV *Step = AR->getStepRecurrence(*SE);
1518  // Calculate the pointer stride and check if it is consecutive.
1519  // The stride may be a constant or a loop invariant integer value.
1520  const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step);
1521  if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop))
1522    return false;
1523
1524  if (PhiTy->isIntegerTy()) {
1525    BinaryOperator *BOp =
1526        dyn_cast<BinaryOperator>(Phi->getIncomingValueForBlock(Latch));
1527    D = InductionDescriptor(StartValue, IK_IntInduction, Step, BOp,
1528                            CastsToIgnore);
1529    return true;
1530  }
1531
1532  assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
1533
1534  // This allows induction variables w/non-constant steps.
1535  D = InductionDescriptor(StartValue, IK_PtrInduction, Step);
1536  return true;
1537}
1538