1//===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This simple pass provides alias and mod/ref information for global values
10// that do not have their address taken, and keeps track of whether functions
11// read or write memory (are "pure").  For this simple (but very common) case,
12// we can provide pretty accurate and useful information.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Analysis/GlobalsModRef.h"
17#include "llvm/ADT/SCCIterator.h"
18#include "llvm/ADT/SmallPtrSet.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/Analysis/CallGraph.h"
21#include "llvm/Analysis/MemoryBuiltins.h"
22#include "llvm/Analysis/TargetLibraryInfo.h"
23#include "llvm/Analysis/ValueTracking.h"
24#include "llvm/IR/InstIterator.h"
25#include "llvm/IR/Instructions.h"
26#include "llvm/IR/Module.h"
27#include "llvm/IR/PassManager.h"
28#include "llvm/InitializePasses.h"
29#include "llvm/Pass.h"
30#include "llvm/Support/CommandLine.h"
31
32using namespace llvm;
33
34#define DEBUG_TYPE "globalsmodref-aa"
35
36STATISTIC(NumNonAddrTakenGlobalVars,
37          "Number of global vars without address taken");
38STATISTIC(NumNonAddrTakenFunctions,"Number of functions without address taken");
39STATISTIC(NumNoMemFunctions, "Number of functions that do not access memory");
40STATISTIC(NumReadMemFunctions, "Number of functions that only read memory");
41STATISTIC(NumIndirectGlobalVars, "Number of indirect global objects");
42
43// An option to enable unsafe alias results from the GlobalsModRef analysis.
44// When enabled, GlobalsModRef will provide no-alias results which in extremely
45// rare cases may not be conservatively correct. In particular, in the face of
46// transforms which cause asymmetry between how effective getUnderlyingObject
47// is for two pointers, it may produce incorrect results.
48//
49// These unsafe results have been returned by GMR for many years without
50// causing significant issues in the wild and so we provide a mechanism to
51// re-enable them for users of LLVM that have a particular performance
52// sensitivity and no known issues. The option also makes it easy to evaluate
53// the performance impact of these results.
54static cl::opt<bool> EnableUnsafeGlobalsModRefAliasResults(
55    "enable-unsafe-globalsmodref-alias-results", cl::init(false), cl::Hidden);
56
57/// The mod/ref information collected for a particular function.
58///
59/// We collect information about mod/ref behavior of a function here, both in
60/// general and as pertains to specific globals. We only have this detailed
61/// information when we know *something* useful about the behavior. If we
62/// saturate to fully general mod/ref, we remove the info for the function.
63class GlobalsAAResult::FunctionInfo {
64  typedef SmallDenseMap<const GlobalValue *, ModRefInfo, 16> GlobalInfoMapType;
65
66  /// Build a wrapper struct that has 8-byte alignment. All heap allocations
67  /// should provide this much alignment at least, but this makes it clear we
68  /// specifically rely on this amount of alignment.
69  struct alignas(8) AlignedMap {
70    AlignedMap() = default;
71    AlignedMap(const AlignedMap &Arg) = default;
72    GlobalInfoMapType Map;
73  };
74
75  /// Pointer traits for our aligned map.
76  struct AlignedMapPointerTraits {
77    static inline void *getAsVoidPointer(AlignedMap *P) { return P; }
78    static inline AlignedMap *getFromVoidPointer(void *P) {
79      return (AlignedMap *)P;
80    }
81    static constexpr int NumLowBitsAvailable = 3;
82    static_assert(alignof(AlignedMap) >= (1 << NumLowBitsAvailable),
83                  "AlignedMap insufficiently aligned to have enough low bits.");
84  };
85
86  /// The bit that flags that this function may read any global. This is
87  /// chosen to mix together with ModRefInfo bits.
88  /// FIXME: This assumes ModRefInfo lattice will remain 4 bits!
89  /// FunctionInfo.getModRefInfo() masks out everything except ModRef so
90  /// this remains correct.
91  enum { MayReadAnyGlobal = 4 };
92
93  /// Checks to document the invariants of the bit packing here.
94  static_assert((MayReadAnyGlobal & static_cast<int>(ModRefInfo::ModRef)) == 0,
95                "ModRef and the MayReadAnyGlobal flag bits overlap.");
96  static_assert(((MayReadAnyGlobal | static_cast<int>(ModRefInfo::ModRef)) >>
97                 AlignedMapPointerTraits::NumLowBitsAvailable) == 0,
98                "Insufficient low bits to store our flag and ModRef info.");
99
100public:
101  FunctionInfo() = default;
102  ~FunctionInfo() {
103    delete Info.getPointer();
104  }
105  // Spell out the copy ond move constructors and assignment operators to get
106  // deep copy semantics and correct move semantics in the face of the
107  // pointer-int pair.
108  FunctionInfo(const FunctionInfo &Arg)
109      : Info(nullptr, Arg.Info.getInt()) {
110    if (const auto *ArgPtr = Arg.Info.getPointer())
111      Info.setPointer(new AlignedMap(*ArgPtr));
112  }
113  FunctionInfo(FunctionInfo &&Arg)
114      : Info(Arg.Info.getPointer(), Arg.Info.getInt()) {
115    Arg.Info.setPointerAndInt(nullptr, 0);
116  }
117  FunctionInfo &operator=(const FunctionInfo &RHS) {
118    delete Info.getPointer();
119    Info.setPointerAndInt(nullptr, RHS.Info.getInt());
120    if (const auto *RHSPtr = RHS.Info.getPointer())
121      Info.setPointer(new AlignedMap(*RHSPtr));
122    return *this;
123  }
124  FunctionInfo &operator=(FunctionInfo &&RHS) {
125    delete Info.getPointer();
126    Info.setPointerAndInt(RHS.Info.getPointer(), RHS.Info.getInt());
127    RHS.Info.setPointerAndInt(nullptr, 0);
128    return *this;
129  }
130
131  /// This method clears MayReadAnyGlobal bit added by GlobalsAAResult to return
132  /// the corresponding ModRefInfo.
133  ModRefInfo globalClearMayReadAnyGlobal(int I) const {
134    return ModRefInfo(I & static_cast<int>(ModRefInfo::ModRef));
135  }
136
137  /// Returns the \c ModRefInfo info for this function.
138  ModRefInfo getModRefInfo() const {
139    return globalClearMayReadAnyGlobal(Info.getInt());
140  }
141
142  /// Adds new \c ModRefInfo for this function to its state.
143  void addModRefInfo(ModRefInfo NewMRI) {
144    Info.setInt(Info.getInt() | static_cast<int>(NewMRI));
145  }
146
147  /// Returns whether this function may read any global variable, and we don't
148  /// know which global.
149  bool mayReadAnyGlobal() const { return Info.getInt() & MayReadAnyGlobal; }
150
151  /// Sets this function as potentially reading from any global.
152  void setMayReadAnyGlobal() { Info.setInt(Info.getInt() | MayReadAnyGlobal); }
153
154  /// Returns the \c ModRefInfo info for this function w.r.t. a particular
155  /// global, which may be more precise than the general information above.
156  ModRefInfo getModRefInfoForGlobal(const GlobalValue &GV) const {
157    ModRefInfo GlobalMRI =
158        mayReadAnyGlobal() ? ModRefInfo::Ref : ModRefInfo::NoModRef;
159    if (AlignedMap *P = Info.getPointer()) {
160      auto I = P->Map.find(&GV);
161      if (I != P->Map.end())
162        GlobalMRI |= I->second;
163    }
164    return GlobalMRI;
165  }
166
167  /// Add mod/ref info from another function into ours, saturating towards
168  /// ModRef.
169  void addFunctionInfo(const FunctionInfo &FI) {
170    addModRefInfo(FI.getModRefInfo());
171
172    if (FI.mayReadAnyGlobal())
173      setMayReadAnyGlobal();
174
175    if (AlignedMap *P = FI.Info.getPointer())
176      for (const auto &G : P->Map)
177        addModRefInfoForGlobal(*G.first, G.second);
178  }
179
180  void addModRefInfoForGlobal(const GlobalValue &GV, ModRefInfo NewMRI) {
181    AlignedMap *P = Info.getPointer();
182    if (!P) {
183      P = new AlignedMap();
184      Info.setPointer(P);
185    }
186    auto &GlobalMRI = P->Map[&GV];
187    GlobalMRI |= NewMRI;
188  }
189
190  /// Clear a global's ModRef info. Should be used when a global is being
191  /// deleted.
192  void eraseModRefInfoForGlobal(const GlobalValue &GV) {
193    if (AlignedMap *P = Info.getPointer())
194      P->Map.erase(&GV);
195  }
196
197private:
198  /// All of the information is encoded into a single pointer, with a three bit
199  /// integer in the low three bits. The high bit provides a flag for when this
200  /// function may read any global. The low two bits are the ModRefInfo. And
201  /// the pointer, when non-null, points to a map from GlobalValue to
202  /// ModRefInfo specific to that GlobalValue.
203  PointerIntPair<AlignedMap *, 3, unsigned, AlignedMapPointerTraits> Info;
204};
205
206void GlobalsAAResult::DeletionCallbackHandle::deleted() {
207  Value *V = getValPtr();
208  if (auto *F = dyn_cast<Function>(V))
209    GAR->FunctionInfos.erase(F);
210
211  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
212    if (GAR->NonAddressTakenGlobals.erase(GV)) {
213      // This global might be an indirect global.  If so, remove it and
214      // remove any AllocRelatedValues for it.
215      if (GAR->IndirectGlobals.erase(GV)) {
216        // Remove any entries in AllocsForIndirectGlobals for this global.
217        for (auto I = GAR->AllocsForIndirectGlobals.begin(),
218                  E = GAR->AllocsForIndirectGlobals.end();
219             I != E; ++I)
220          if (I->second == GV)
221            GAR->AllocsForIndirectGlobals.erase(I);
222      }
223
224      // Scan the function info we have collected and remove this global
225      // from all of them.
226      for (auto &FIPair : GAR->FunctionInfos)
227        FIPair.second.eraseModRefInfoForGlobal(*GV);
228    }
229  }
230
231  // If this is an allocation related to an indirect global, remove it.
232  GAR->AllocsForIndirectGlobals.erase(V);
233
234  // And clear out the handle.
235  setValPtr(nullptr);
236  GAR->Handles.erase(I);
237  // This object is now destroyed!
238}
239
240MemoryEffects GlobalsAAResult::getMemoryEffects(const Function *F) {
241  if (FunctionInfo *FI = getFunctionInfo(F))
242    return MemoryEffects(FI->getModRefInfo());
243
244  return MemoryEffects::unknown();
245}
246
247/// Returns the function info for the function, or null if we don't have
248/// anything useful to say about it.
249GlobalsAAResult::FunctionInfo *
250GlobalsAAResult::getFunctionInfo(const Function *F) {
251  auto I = FunctionInfos.find(F);
252  if (I != FunctionInfos.end())
253    return &I->second;
254  return nullptr;
255}
256
257/// AnalyzeGlobals - Scan through the users of all of the internal
258/// GlobalValue's in the program.  If none of them have their "address taken"
259/// (really, their address passed to something nontrivial), record this fact,
260/// and record the functions that they are used directly in.
261void GlobalsAAResult::AnalyzeGlobals(Module &M) {
262  SmallPtrSet<Function *, 32> TrackedFunctions;
263  for (Function &F : M)
264    if (F.hasLocalLinkage()) {
265      if (!AnalyzeUsesOfPointer(&F)) {
266        // Remember that we are tracking this global.
267        NonAddressTakenGlobals.insert(&F);
268        TrackedFunctions.insert(&F);
269        Handles.emplace_front(*this, &F);
270        Handles.front().I = Handles.begin();
271        ++NumNonAddrTakenFunctions;
272      } else
273        UnknownFunctionsWithLocalLinkage = true;
274    }
275
276  SmallPtrSet<Function *, 16> Readers, Writers;
277  for (GlobalVariable &GV : M.globals())
278    if (GV.hasLocalLinkage()) {
279      if (!AnalyzeUsesOfPointer(&GV, &Readers,
280                                GV.isConstant() ? nullptr : &Writers)) {
281        // Remember that we are tracking this global, and the mod/ref fns
282        NonAddressTakenGlobals.insert(&GV);
283        Handles.emplace_front(*this, &GV);
284        Handles.front().I = Handles.begin();
285
286        for (Function *Reader : Readers) {
287          if (TrackedFunctions.insert(Reader).second) {
288            Handles.emplace_front(*this, Reader);
289            Handles.front().I = Handles.begin();
290          }
291          FunctionInfos[Reader].addModRefInfoForGlobal(GV, ModRefInfo::Ref);
292        }
293
294        if (!GV.isConstant()) // No need to keep track of writers to constants
295          for (Function *Writer : Writers) {
296            if (TrackedFunctions.insert(Writer).second) {
297              Handles.emplace_front(*this, Writer);
298              Handles.front().I = Handles.begin();
299            }
300            FunctionInfos[Writer].addModRefInfoForGlobal(GV, ModRefInfo::Mod);
301          }
302        ++NumNonAddrTakenGlobalVars;
303
304        // If this global holds a pointer type, see if it is an indirect global.
305        if (GV.getValueType()->isPointerTy() &&
306            AnalyzeIndirectGlobalMemory(&GV))
307          ++NumIndirectGlobalVars;
308      }
309      Readers.clear();
310      Writers.clear();
311    }
312}
313
314/// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer.
315/// If this is used by anything complex (i.e., the address escapes), return
316/// true.  Also, while we are at it, keep track of those functions that read and
317/// write to the value.
318///
319/// If OkayStoreDest is non-null, stores into this global are allowed.
320bool GlobalsAAResult::AnalyzeUsesOfPointer(Value *V,
321                                           SmallPtrSetImpl<Function *> *Readers,
322                                           SmallPtrSetImpl<Function *> *Writers,
323                                           GlobalValue *OkayStoreDest) {
324  if (!V->getType()->isPointerTy())
325    return true;
326
327  for (Use &U : V->uses()) {
328    User *I = U.getUser();
329    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
330      if (Readers)
331        Readers->insert(LI->getParent()->getParent());
332    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
333      if (V == SI->getOperand(1)) {
334        if (Writers)
335          Writers->insert(SI->getParent()->getParent());
336      } else if (SI->getOperand(1) != OkayStoreDest) {
337        return true; // Storing the pointer
338      }
339    } else if (Operator::getOpcode(I) == Instruction::GetElementPtr) {
340      if (AnalyzeUsesOfPointer(I, Readers, Writers))
341        return true;
342    } else if (Operator::getOpcode(I) == Instruction::BitCast ||
343               Operator::getOpcode(I) == Instruction::AddrSpaceCast) {
344      if (AnalyzeUsesOfPointer(I, Readers, Writers, OkayStoreDest))
345        return true;
346    } else if (auto *Call = dyn_cast<CallBase>(I)) {
347      // Make sure that this is just the function being called, not that it is
348      // passing into the function.
349      if (Call->isDataOperand(&U)) {
350        // Detect calls to free.
351        if (Call->isArgOperand(&U) &&
352            getFreedOperand(Call, &GetTLI(*Call->getFunction())) == U) {
353          if (Writers)
354            Writers->insert(Call->getParent()->getParent());
355        } else {
356          // In general, we return true for unknown calls, but there are
357          // some simple checks that we can do for functions that
358          // will never call back into the module.
359          auto *F = Call->getCalledFunction();
360          // TODO: we should be able to remove isDeclaration() check
361          // and let the function body analysis check for captures,
362          // and collect the mod-ref effects. This information will
363          // be later propagated via the call graph.
364          if (!F || !F->isDeclaration())
365            return true;
366          // Note that the NoCallback check here is a little bit too
367          // conservative. If there are no captures of the global
368          // in the module, then this call may not be a capture even
369          // if it does not have NoCallback.
370          if (!Call->hasFnAttr(Attribute::NoCallback) ||
371              !Call->isArgOperand(&U) ||
372              !Call->doesNotCapture(Call->getArgOperandNo(&U)))
373            return true;
374
375          // Conservatively, assume the call reads and writes the global.
376          // We could use memory attributes to make it more precise.
377          if (Readers)
378            Readers->insert(Call->getParent()->getParent());
379          if (Writers)
380            Writers->insert(Call->getParent()->getParent());
381        }
382      }
383    } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) {
384      if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
385        return true; // Allow comparison against null.
386    } else if (Constant *C = dyn_cast<Constant>(I)) {
387      // Ignore constants which don't have any live uses.
388      if (isa<GlobalValue>(C) || C->isConstantUsed())
389        return true;
390    } else {
391      return true;
392    }
393  }
394
395  return false;
396}
397
398/// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable
399/// which holds a pointer type.  See if the global always points to non-aliased
400/// heap memory: that is, all initializers of the globals store a value known
401/// to be obtained via a noalias return function call which have no other use.
402/// Further, all loads out of GV must directly use the memory, not store the
403/// pointer somewhere.  If this is true, we consider the memory pointed to by
404/// GV to be owned by GV and can disambiguate other pointers from it.
405bool GlobalsAAResult::AnalyzeIndirectGlobalMemory(GlobalVariable *GV) {
406  // Keep track of values related to the allocation of the memory, f.e. the
407  // value produced by the noalias call and any casts.
408  std::vector<Value *> AllocRelatedValues;
409
410  // If the initializer is a valid pointer, bail.
411  if (Constant *C = GV->getInitializer())
412    if (!C->isNullValue())
413      return false;
414
415  // Walk the user list of the global.  If we find anything other than a direct
416  // load or store, bail out.
417  for (User *U : GV->users()) {
418    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
419      // The pointer loaded from the global can only be used in simple ways:
420      // we allow addressing of it and loading storing to it.  We do *not* allow
421      // storing the loaded pointer somewhere else or passing to a function.
422      if (AnalyzeUsesOfPointer(LI))
423        return false; // Loaded pointer escapes.
424      // TODO: Could try some IP mod/ref of the loaded pointer.
425    } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
426      // Storing the global itself.
427      if (SI->getOperand(0) == GV)
428        return false;
429
430      // If storing the null pointer, ignore it.
431      if (isa<ConstantPointerNull>(SI->getOperand(0)))
432        continue;
433
434      // Check the value being stored.
435      Value *Ptr = getUnderlyingObject(SI->getOperand(0));
436
437      if (!isNoAliasCall(Ptr))
438        return false; // Too hard to analyze.
439
440      // Analyze all uses of the allocation.  If any of them are used in a
441      // non-simple way (e.g. stored to another global) bail out.
442      if (AnalyzeUsesOfPointer(Ptr, /*Readers*/ nullptr, /*Writers*/ nullptr,
443                               GV))
444        return false; // Loaded pointer escapes.
445
446      // Remember that this allocation is related to the indirect global.
447      AllocRelatedValues.push_back(Ptr);
448    } else {
449      // Something complex, bail out.
450      return false;
451    }
452  }
453
454  // Okay, this is an indirect global.  Remember all of the allocations for
455  // this global in AllocsForIndirectGlobals.
456  while (!AllocRelatedValues.empty()) {
457    AllocsForIndirectGlobals[AllocRelatedValues.back()] = GV;
458    Handles.emplace_front(*this, AllocRelatedValues.back());
459    Handles.front().I = Handles.begin();
460    AllocRelatedValues.pop_back();
461  }
462  IndirectGlobals.insert(GV);
463  Handles.emplace_front(*this, GV);
464  Handles.front().I = Handles.begin();
465  return true;
466}
467
468void GlobalsAAResult::CollectSCCMembership(CallGraph &CG) {
469  // We do a bottom-up SCC traversal of the call graph.  In other words, we
470  // visit all callees before callers (leaf-first).
471  unsigned SCCID = 0;
472  for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
473    const std::vector<CallGraphNode *> &SCC = *I;
474    assert(!SCC.empty() && "SCC with no functions?");
475
476    for (auto *CGN : SCC)
477      if (Function *F = CGN->getFunction())
478        FunctionToSCCMap[F] = SCCID;
479    ++SCCID;
480  }
481}
482
483/// AnalyzeCallGraph - At this point, we know the functions where globals are
484/// immediately stored to and read from.  Propagate this information up the call
485/// graph to all callers and compute the mod/ref info for all memory for each
486/// function.
487void GlobalsAAResult::AnalyzeCallGraph(CallGraph &CG, Module &M) {
488  // We do a bottom-up SCC traversal of the call graph.  In other words, we
489  // visit all callees before callers (leaf-first).
490  for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
491    const std::vector<CallGraphNode *> &SCC = *I;
492    assert(!SCC.empty() && "SCC with no functions?");
493
494    Function *F = SCC[0]->getFunction();
495
496    if (!F || !F->isDefinitionExact()) {
497      // Calls externally or not exact - can't say anything useful. Remove any
498      // existing function records (may have been created when scanning
499      // globals).
500      for (auto *Node : SCC)
501        FunctionInfos.erase(Node->getFunction());
502      continue;
503    }
504
505    FunctionInfo &FI = FunctionInfos[F];
506    Handles.emplace_front(*this, F);
507    Handles.front().I = Handles.begin();
508    bool KnowNothing = false;
509
510    // Intrinsics, like any other synchronizing function, can make effects
511    // of other threads visible. Without nosync we know nothing really.
512    // Similarly, if `nocallback` is missing the function, or intrinsic,
513    // can call into the module arbitrarily. If both are set the function
514    // has an effect but will not interact with accesses of internal
515    // globals inside the module. We are conservative here for optnone
516    // functions, might not be necessary.
517    auto MaySyncOrCallIntoModule = [](const Function &F) {
518      return !F.isDeclaration() || !F.hasNoSync() ||
519             !F.hasFnAttribute(Attribute::NoCallback);
520    };
521
522    // Collect the mod/ref properties due to called functions.  We only compute
523    // one mod-ref set.
524    for (unsigned i = 0, e = SCC.size(); i != e && !KnowNothing; ++i) {
525      if (!F) {
526        KnowNothing = true;
527        break;
528      }
529
530      if (F->isDeclaration() || F->hasOptNone()) {
531        // Try to get mod/ref behaviour from function attributes.
532        if (F->doesNotAccessMemory()) {
533          // Can't do better than that!
534        } else if (F->onlyReadsMemory()) {
535          FI.addModRefInfo(ModRefInfo::Ref);
536          if (!F->onlyAccessesArgMemory() && MaySyncOrCallIntoModule(*F))
537            // This function might call back into the module and read a global -
538            // consider every global as possibly being read by this function.
539            FI.setMayReadAnyGlobal();
540        } else {
541          FI.addModRefInfo(ModRefInfo::ModRef);
542          if (!F->onlyAccessesArgMemory())
543            FI.setMayReadAnyGlobal();
544          if (MaySyncOrCallIntoModule(*F)) {
545            KnowNothing = true;
546            break;
547          }
548        }
549        continue;
550      }
551
552      for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end();
553           CI != E && !KnowNothing; ++CI)
554        if (Function *Callee = CI->second->getFunction()) {
555          if (FunctionInfo *CalleeFI = getFunctionInfo(Callee)) {
556            // Propagate function effect up.
557            FI.addFunctionInfo(*CalleeFI);
558          } else {
559            // Can't say anything about it.  However, if it is inside our SCC,
560            // then nothing needs to be done.
561            CallGraphNode *CalleeNode = CG[Callee];
562            if (!is_contained(SCC, CalleeNode))
563              KnowNothing = true;
564          }
565        } else {
566          KnowNothing = true;
567        }
568    }
569
570    // If we can't say anything useful about this SCC, remove all SCC functions
571    // from the FunctionInfos map.
572    if (KnowNothing) {
573      for (auto *Node : SCC)
574        FunctionInfos.erase(Node->getFunction());
575      continue;
576    }
577
578    // Scan the function bodies for explicit loads or stores.
579    for (auto *Node : SCC) {
580      if (isModAndRefSet(FI.getModRefInfo()))
581        break; // The mod/ref lattice saturates here.
582
583      // Don't prove any properties based on the implementation of an optnone
584      // function. Function attributes were already used as a best approximation
585      // above.
586      if (Node->getFunction()->hasOptNone())
587        continue;
588
589      for (Instruction &I : instructions(Node->getFunction())) {
590        if (isModAndRefSet(FI.getModRefInfo()))
591          break; // The mod/ref lattice saturates here.
592
593        // We handle calls specially because the graph-relevant aspects are
594        // handled above.
595        if (isa<CallBase>(&I))
596          continue;
597
598        // All non-call instructions we use the primary predicates for whether
599        // they read or write memory.
600        if (I.mayReadFromMemory())
601          FI.addModRefInfo(ModRefInfo::Ref);
602        if (I.mayWriteToMemory())
603          FI.addModRefInfo(ModRefInfo::Mod);
604      }
605    }
606
607    if (!isModSet(FI.getModRefInfo()))
608      ++NumReadMemFunctions;
609    if (!isModOrRefSet(FI.getModRefInfo()))
610      ++NumNoMemFunctions;
611
612    // Finally, now that we know the full effect on this SCC, clone the
613    // information to each function in the SCC.
614    // FI is a reference into FunctionInfos, so copy it now so that it doesn't
615    // get invalidated if DenseMap decides to re-hash.
616    FunctionInfo CachedFI = FI;
617    for (unsigned i = 1, e = SCC.size(); i != e; ++i)
618      FunctionInfos[SCC[i]->getFunction()] = CachedFI;
619  }
620}
621
622// GV is a non-escaping global. V is a pointer address that has been loaded from.
623// If we can prove that V must escape, we can conclude that a load from V cannot
624// alias GV.
625static bool isNonEscapingGlobalNoAliasWithLoad(const GlobalValue *GV,
626                                               const Value *V,
627                                               int &Depth,
628                                               const DataLayout &DL) {
629  SmallPtrSet<const Value *, 8> Visited;
630  SmallVector<const Value *, 8> Inputs;
631  Visited.insert(V);
632  Inputs.push_back(V);
633  do {
634    const Value *Input = Inputs.pop_back_val();
635
636    if (isa<GlobalValue>(Input) || isa<Argument>(Input) || isa<CallInst>(Input) ||
637        isa<InvokeInst>(Input))
638      // Arguments to functions or returns from functions are inherently
639      // escaping, so we can immediately classify those as not aliasing any
640      // non-addr-taken globals.
641      //
642      // (Transitive) loads from a global are also safe - if this aliased
643      // another global, its address would escape, so no alias.
644      continue;
645
646    // Recurse through a limited number of selects, loads and PHIs. This is an
647    // arbitrary depth of 4, lower numbers could be used to fix compile time
648    // issues if needed, but this is generally expected to be only be important
649    // for small depths.
650    if (++Depth > 4)
651      return false;
652
653    if (auto *LI = dyn_cast<LoadInst>(Input)) {
654      Inputs.push_back(getUnderlyingObject(LI->getPointerOperand()));
655      continue;
656    }
657    if (auto *SI = dyn_cast<SelectInst>(Input)) {
658      const Value *LHS = getUnderlyingObject(SI->getTrueValue());
659      const Value *RHS = getUnderlyingObject(SI->getFalseValue());
660      if (Visited.insert(LHS).second)
661        Inputs.push_back(LHS);
662      if (Visited.insert(RHS).second)
663        Inputs.push_back(RHS);
664      continue;
665    }
666    if (auto *PN = dyn_cast<PHINode>(Input)) {
667      for (const Value *Op : PN->incoming_values()) {
668        Op = getUnderlyingObject(Op);
669        if (Visited.insert(Op).second)
670          Inputs.push_back(Op);
671      }
672      continue;
673    }
674
675    return false;
676  } while (!Inputs.empty());
677
678  // All inputs were known to be no-alias.
679  return true;
680}
681
682// There are particular cases where we can conclude no-alias between
683// a non-addr-taken global and some other underlying object. Specifically,
684// a non-addr-taken global is known to not be escaped from any function. It is
685// also incorrect for a transformation to introduce an escape of a global in
686// a way that is observable when it was not there previously. One function
687// being transformed to introduce an escape which could possibly be observed
688// (via loading from a global or the return value for example) within another
689// function is never safe. If the observation is made through non-atomic
690// operations on different threads, it is a data-race and UB. If the
691// observation is well defined, by being observed the transformation would have
692// changed program behavior by introducing the observed escape, making it an
693// invalid transform.
694//
695// This property does require that transformations which *temporarily* escape
696// a global that was not previously escaped, prior to restoring it, cannot rely
697// on the results of GMR::alias. This seems a reasonable restriction, although
698// currently there is no way to enforce it. There is also no realistic
699// optimization pass that would make this mistake. The closest example is
700// a transformation pass which does reg2mem of SSA values but stores them into
701// global variables temporarily before restoring the global variable's value.
702// This could be useful to expose "benign" races for example. However, it seems
703// reasonable to require that a pass which introduces escapes of global
704// variables in this way to either not trust AA results while the escape is
705// active, or to be forced to operate as a module pass that cannot co-exist
706// with an alias analysis such as GMR.
707bool GlobalsAAResult::isNonEscapingGlobalNoAlias(const GlobalValue *GV,
708                                                 const Value *V) {
709  // In order to know that the underlying object cannot alias the
710  // non-addr-taken global, we must know that it would have to be an escape.
711  // Thus if the underlying object is a function argument, a load from
712  // a global, or the return of a function, it cannot alias. We can also
713  // recurse through PHI nodes and select nodes provided all of their inputs
714  // resolve to one of these known-escaping roots.
715  SmallPtrSet<const Value *, 8> Visited;
716  SmallVector<const Value *, 8> Inputs;
717  Visited.insert(V);
718  Inputs.push_back(V);
719  int Depth = 0;
720  do {
721    const Value *Input = Inputs.pop_back_val();
722
723    if (auto *InputGV = dyn_cast<GlobalValue>(Input)) {
724      // If one input is the very global we're querying against, then we can't
725      // conclude no-alias.
726      if (InputGV == GV)
727        return false;
728
729      // Distinct GlobalVariables never alias, unless overriden or zero-sized.
730      // FIXME: The condition can be refined, but be conservative for now.
731      auto *GVar = dyn_cast<GlobalVariable>(GV);
732      auto *InputGVar = dyn_cast<GlobalVariable>(InputGV);
733      if (GVar && InputGVar &&
734          !GVar->isDeclaration() && !InputGVar->isDeclaration() &&
735          !GVar->isInterposable() && !InputGVar->isInterposable()) {
736        Type *GVType = GVar->getInitializer()->getType();
737        Type *InputGVType = InputGVar->getInitializer()->getType();
738        if (GVType->isSized() && InputGVType->isSized() &&
739            (DL.getTypeAllocSize(GVType) > 0) &&
740            (DL.getTypeAllocSize(InputGVType) > 0))
741          continue;
742      }
743
744      // Conservatively return false, even though we could be smarter
745      // (e.g. look through GlobalAliases).
746      return false;
747    }
748
749    if (isa<Argument>(Input) || isa<CallInst>(Input) ||
750        isa<InvokeInst>(Input)) {
751      // Arguments to functions or returns from functions are inherently
752      // escaping, so we can immediately classify those as not aliasing any
753      // non-addr-taken globals.
754      continue;
755    }
756
757    // Recurse through a limited number of selects, loads and PHIs. This is an
758    // arbitrary depth of 4, lower numbers could be used to fix compile time
759    // issues if needed, but this is generally expected to be only be important
760    // for small depths.
761    if (++Depth > 4)
762      return false;
763
764    if (auto *LI = dyn_cast<LoadInst>(Input)) {
765      // A pointer loaded from a global would have been captured, and we know
766      // that the global is non-escaping, so no alias.
767      const Value *Ptr = getUnderlyingObject(LI->getPointerOperand());
768      if (isNonEscapingGlobalNoAliasWithLoad(GV, Ptr, Depth, DL))
769        // The load does not alias with GV.
770        continue;
771      // Otherwise, a load could come from anywhere, so bail.
772      return false;
773    }
774    if (auto *SI = dyn_cast<SelectInst>(Input)) {
775      const Value *LHS = getUnderlyingObject(SI->getTrueValue());
776      const Value *RHS = getUnderlyingObject(SI->getFalseValue());
777      if (Visited.insert(LHS).second)
778        Inputs.push_back(LHS);
779      if (Visited.insert(RHS).second)
780        Inputs.push_back(RHS);
781      continue;
782    }
783    if (auto *PN = dyn_cast<PHINode>(Input)) {
784      for (const Value *Op : PN->incoming_values()) {
785        Op = getUnderlyingObject(Op);
786        if (Visited.insert(Op).second)
787          Inputs.push_back(Op);
788      }
789      continue;
790    }
791
792    // FIXME: It would be good to handle other obvious no-alias cases here, but
793    // it isn't clear how to do so reasonably without building a small version
794    // of BasicAA into this code.
795    return false;
796  } while (!Inputs.empty());
797
798  // If all the inputs to V were definitively no-alias, then V is no-alias.
799  return true;
800}
801
802bool GlobalsAAResult::invalidate(Module &, const PreservedAnalyses &PA,
803                                 ModuleAnalysisManager::Invalidator &) {
804  // Check whether the analysis has been explicitly invalidated. Otherwise, it's
805  // stateless and remains preserved.
806  auto PAC = PA.getChecker<GlobalsAA>();
807  return !PAC.preservedWhenStateless();
808}
809
810/// alias - If one of the pointers is to a global that we are tracking, and the
811/// other is some random pointer, we know there cannot be an alias, because the
812/// address of the global isn't taken.
813AliasResult GlobalsAAResult::alias(const MemoryLocation &LocA,
814                                   const MemoryLocation &LocB,
815                                   AAQueryInfo &AAQI, const Instruction *) {
816  // Get the base object these pointers point to.
817  const Value *UV1 =
818      getUnderlyingObject(LocA.Ptr->stripPointerCastsForAliasAnalysis());
819  const Value *UV2 =
820      getUnderlyingObject(LocB.Ptr->stripPointerCastsForAliasAnalysis());
821
822  // If either of the underlying values is a global, they may be non-addr-taken
823  // globals, which we can answer queries about.
824  const GlobalValue *GV1 = dyn_cast<GlobalValue>(UV1);
825  const GlobalValue *GV2 = dyn_cast<GlobalValue>(UV2);
826  if (GV1 || GV2) {
827    // If the global's address is taken, pretend we don't know it's a pointer to
828    // the global.
829    if (GV1 && !NonAddressTakenGlobals.count(GV1))
830      GV1 = nullptr;
831    if (GV2 && !NonAddressTakenGlobals.count(GV2))
832      GV2 = nullptr;
833
834    // If the two pointers are derived from two different non-addr-taken
835    // globals we know these can't alias.
836    if (GV1 && GV2 && GV1 != GV2)
837      return AliasResult::NoAlias;
838
839    // If one is and the other isn't, it isn't strictly safe but we can fake
840    // this result if necessary for performance. This does not appear to be
841    // a common problem in practice.
842    if (EnableUnsafeGlobalsModRefAliasResults)
843      if ((GV1 || GV2) && GV1 != GV2)
844        return AliasResult::NoAlias;
845
846    // Check for a special case where a non-escaping global can be used to
847    // conclude no-alias.
848    if ((GV1 || GV2) && GV1 != GV2) {
849      const GlobalValue *GV = GV1 ? GV1 : GV2;
850      const Value *UV = GV1 ? UV2 : UV1;
851      if (isNonEscapingGlobalNoAlias(GV, UV))
852        return AliasResult::NoAlias;
853    }
854
855    // Otherwise if they are both derived from the same addr-taken global, we
856    // can't know the two accesses don't overlap.
857  }
858
859  // These pointers may be based on the memory owned by an indirect global.  If
860  // so, we may be able to handle this.  First check to see if the base pointer
861  // is a direct load from an indirect global.
862  GV1 = GV2 = nullptr;
863  if (const LoadInst *LI = dyn_cast<LoadInst>(UV1))
864    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
865      if (IndirectGlobals.count(GV))
866        GV1 = GV;
867  if (const LoadInst *LI = dyn_cast<LoadInst>(UV2))
868    if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
869      if (IndirectGlobals.count(GV))
870        GV2 = GV;
871
872  // These pointers may also be from an allocation for the indirect global.  If
873  // so, also handle them.
874  if (!GV1)
875    GV1 = AllocsForIndirectGlobals.lookup(UV1);
876  if (!GV2)
877    GV2 = AllocsForIndirectGlobals.lookup(UV2);
878
879  // Now that we know whether the two pointers are related to indirect globals,
880  // use this to disambiguate the pointers. If the pointers are based on
881  // different indirect globals they cannot alias.
882  if (GV1 && GV2 && GV1 != GV2)
883    return AliasResult::NoAlias;
884
885  // If one is based on an indirect global and the other isn't, it isn't
886  // strictly safe but we can fake this result if necessary for performance.
887  // This does not appear to be a common problem in practice.
888  if (EnableUnsafeGlobalsModRefAliasResults)
889    if ((GV1 || GV2) && GV1 != GV2)
890      return AliasResult::NoAlias;
891
892  return AliasResult::MayAlias;
893}
894
895ModRefInfo GlobalsAAResult::getModRefInfoForArgument(const CallBase *Call,
896                                                     const GlobalValue *GV,
897                                                     AAQueryInfo &AAQI) {
898  if (Call->doesNotAccessMemory())
899    return ModRefInfo::NoModRef;
900  ModRefInfo ConservativeResult =
901      Call->onlyReadsMemory() ? ModRefInfo::Ref : ModRefInfo::ModRef;
902
903  // Iterate through all the arguments to the called function. If any argument
904  // is based on GV, return the conservative result.
905  for (const auto &A : Call->args()) {
906    SmallVector<const Value*, 4> Objects;
907    getUnderlyingObjects(A, Objects);
908
909    // All objects must be identified.
910    if (!all_of(Objects, isIdentifiedObject) &&
911        // Try ::alias to see if all objects are known not to alias GV.
912        !all_of(Objects, [&](const Value *V) {
913          return this->alias(MemoryLocation::getBeforeOrAfter(V),
914                             MemoryLocation::getBeforeOrAfter(GV), AAQI,
915                             nullptr) == AliasResult::NoAlias;
916        }))
917      return ConservativeResult;
918
919    if (is_contained(Objects, GV))
920      return ConservativeResult;
921  }
922
923  // We identified all objects in the argument list, and none of them were GV.
924  return ModRefInfo::NoModRef;
925}
926
927ModRefInfo GlobalsAAResult::getModRefInfo(const CallBase *Call,
928                                          const MemoryLocation &Loc,
929                                          AAQueryInfo &AAQI) {
930  ModRefInfo Known = ModRefInfo::ModRef;
931
932  // If we are asking for mod/ref info of a direct call with a pointer to a
933  // global we are tracking, return information if we have it.
934  if (const GlobalValue *GV =
935          dyn_cast<GlobalValue>(getUnderlyingObject(Loc.Ptr)))
936    // If GV is internal to this IR and there is no function with local linkage
937    // that has had their address taken, keep looking for a tighter ModRefInfo.
938    if (GV->hasLocalLinkage() && !UnknownFunctionsWithLocalLinkage)
939      if (const Function *F = Call->getCalledFunction())
940        if (NonAddressTakenGlobals.count(GV))
941          if (const FunctionInfo *FI = getFunctionInfo(F))
942            Known = FI->getModRefInfoForGlobal(*GV) |
943                    getModRefInfoForArgument(Call, GV, AAQI);
944
945  return Known;
946}
947
948GlobalsAAResult::GlobalsAAResult(
949    const DataLayout &DL,
950    std::function<const TargetLibraryInfo &(Function &F)> GetTLI)
951    : DL(DL), GetTLI(std::move(GetTLI)) {}
952
953GlobalsAAResult::GlobalsAAResult(GlobalsAAResult &&Arg)
954    : AAResultBase(std::move(Arg)), DL(Arg.DL), GetTLI(std::move(Arg.GetTLI)),
955      NonAddressTakenGlobals(std::move(Arg.NonAddressTakenGlobals)),
956      IndirectGlobals(std::move(Arg.IndirectGlobals)),
957      AllocsForIndirectGlobals(std::move(Arg.AllocsForIndirectGlobals)),
958      FunctionInfos(std::move(Arg.FunctionInfos)),
959      Handles(std::move(Arg.Handles)) {
960  // Update the parent for each DeletionCallbackHandle.
961  for (auto &H : Handles) {
962    assert(H.GAR == &Arg);
963    H.GAR = this;
964  }
965}
966
967GlobalsAAResult::~GlobalsAAResult() = default;
968
969/*static*/ GlobalsAAResult GlobalsAAResult::analyzeModule(
970    Module &M, std::function<const TargetLibraryInfo &(Function &F)> GetTLI,
971    CallGraph &CG) {
972  GlobalsAAResult Result(M.getDataLayout(), GetTLI);
973
974  // Discover which functions aren't recursive, to feed into AnalyzeGlobals.
975  Result.CollectSCCMembership(CG);
976
977  // Find non-addr taken globals.
978  Result.AnalyzeGlobals(M);
979
980  // Propagate on CG.
981  Result.AnalyzeCallGraph(CG, M);
982
983  return Result;
984}
985
986AnalysisKey GlobalsAA::Key;
987
988GlobalsAAResult GlobalsAA::run(Module &M, ModuleAnalysisManager &AM) {
989  FunctionAnalysisManager &FAM =
990      AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
991  auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & {
992    return FAM.getResult<TargetLibraryAnalysis>(F);
993  };
994  return GlobalsAAResult::analyzeModule(M, GetTLI,
995                                        AM.getResult<CallGraphAnalysis>(M));
996}
997
998PreservedAnalyses RecomputeGlobalsAAPass::run(Module &M,
999                                              ModuleAnalysisManager &AM) {
1000  if (auto *G = AM.getCachedResult<GlobalsAA>(M)) {
1001    auto &CG = AM.getResult<CallGraphAnalysis>(M);
1002    G->NonAddressTakenGlobals.clear();
1003    G->UnknownFunctionsWithLocalLinkage = false;
1004    G->IndirectGlobals.clear();
1005    G->AllocsForIndirectGlobals.clear();
1006    G->FunctionInfos.clear();
1007    G->FunctionToSCCMap.clear();
1008    G->Handles.clear();
1009    G->CollectSCCMembership(CG);
1010    G->AnalyzeGlobals(M);
1011    G->AnalyzeCallGraph(CG, M);
1012  }
1013  return PreservedAnalyses::all();
1014}
1015
1016char GlobalsAAWrapperPass::ID = 0;
1017INITIALIZE_PASS_BEGIN(GlobalsAAWrapperPass, "globals-aa",
1018                      "Globals Alias Analysis", false, true)
1019INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
1020INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1021INITIALIZE_PASS_END(GlobalsAAWrapperPass, "globals-aa",
1022                    "Globals Alias Analysis", false, true)
1023
1024ModulePass *llvm::createGlobalsAAWrapperPass() {
1025  return new GlobalsAAWrapperPass();
1026}
1027
1028GlobalsAAWrapperPass::GlobalsAAWrapperPass() : ModulePass(ID) {
1029  initializeGlobalsAAWrapperPassPass(*PassRegistry::getPassRegistry());
1030}
1031
1032bool GlobalsAAWrapperPass::runOnModule(Module &M) {
1033  auto GetTLI = [this](Function &F) -> TargetLibraryInfo & {
1034    return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1035  };
1036  Result.reset(new GlobalsAAResult(GlobalsAAResult::analyzeModule(
1037      M, GetTLI, getAnalysis<CallGraphWrapperPass>().getCallGraph())));
1038  return false;
1039}
1040
1041bool GlobalsAAWrapperPass::doFinalization(Module &M) {
1042  Result.reset();
1043  return false;
1044}
1045
1046void GlobalsAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1047  AU.setPreservesAll();
1048  AU.addRequired<CallGraphWrapperPass>();
1049  AU.addRequired<TargetLibraryInfoWrapperPass>();
1050}
1051