1//===- DemandedBits.cpp - Determine demanded bits -------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass implements a demanded bits analysis. A demanded bit is one that
10// contributes to a result; bits that are not demanded can be either zero or
11// one without affecting control or data flow. For example in this sequence:
12//
13//   %1 = add i32 %x, %y
14//   %2 = trunc i32 %1 to i16
15//
16// Only the lowest 16 bits of %1 are demanded; the rest are removed by the
17// trunc.
18//
19//===----------------------------------------------------------------------===//
20
21#include "llvm/Analysis/DemandedBits.h"
22#include "llvm/ADT/APInt.h"
23#include "llvm/ADT/SetVector.h"
24#include "llvm/Analysis/AssumptionCache.h"
25#include "llvm/Analysis/ValueTracking.h"
26#include "llvm/IR/DataLayout.h"
27#include "llvm/IR/Dominators.h"
28#include "llvm/IR/InstIterator.h"
29#include "llvm/IR/Instruction.h"
30#include "llvm/IR/IntrinsicInst.h"
31#include "llvm/IR/Module.h"
32#include "llvm/IR/Operator.h"
33#include "llvm/IR/PassManager.h"
34#include "llvm/IR/PatternMatch.h"
35#include "llvm/IR/Type.h"
36#include "llvm/IR/Use.h"
37#include "llvm/Support/Casting.h"
38#include "llvm/Support/Debug.h"
39#include "llvm/Support/KnownBits.h"
40#include "llvm/Support/raw_ostream.h"
41#include <algorithm>
42#include <cstdint>
43
44using namespace llvm;
45using namespace llvm::PatternMatch;
46
47#define DEBUG_TYPE "demanded-bits"
48
49static bool isAlwaysLive(Instruction *I) {
50  return I->isTerminator() || isa<DbgInfoIntrinsic>(I) || I->isEHPad() ||
51         I->mayHaveSideEffects();
52}
53
54void DemandedBits::determineLiveOperandBits(
55    const Instruction *UserI, const Value *Val, unsigned OperandNo,
56    const APInt &AOut, APInt &AB, KnownBits &Known, KnownBits &Known2,
57    bool &KnownBitsComputed) {
58  unsigned BitWidth = AB.getBitWidth();
59
60  // We're called once per operand, but for some instructions, we need to
61  // compute known bits of both operands in order to determine the live bits of
62  // either (when both operands are instructions themselves). We don't,
63  // however, want to do this twice, so we cache the result in APInts that live
64  // in the caller. For the two-relevant-operands case, both operand values are
65  // provided here.
66  auto ComputeKnownBits =
67      [&](unsigned BitWidth, const Value *V1, const Value *V2) {
68        if (KnownBitsComputed)
69          return;
70        KnownBitsComputed = true;
71
72        const DataLayout &DL = UserI->getModule()->getDataLayout();
73        Known = KnownBits(BitWidth);
74        computeKnownBits(V1, Known, DL, 0, &AC, UserI, &DT);
75
76        if (V2) {
77          Known2 = KnownBits(BitWidth);
78          computeKnownBits(V2, Known2, DL, 0, &AC, UserI, &DT);
79        }
80      };
81
82  switch (UserI->getOpcode()) {
83  default: break;
84  case Instruction::Call:
85  case Instruction::Invoke:
86    if (const auto *II = dyn_cast<IntrinsicInst>(UserI)) {
87      switch (II->getIntrinsicID()) {
88      default: break;
89      case Intrinsic::bswap:
90        // The alive bits of the input are the swapped alive bits of
91        // the output.
92        AB = AOut.byteSwap();
93        break;
94      case Intrinsic::bitreverse:
95        // The alive bits of the input are the reversed alive bits of
96        // the output.
97        AB = AOut.reverseBits();
98        break;
99      case Intrinsic::ctlz:
100        if (OperandNo == 0) {
101          // We need some output bits, so we need all bits of the
102          // input to the left of, and including, the leftmost bit
103          // known to be one.
104          ComputeKnownBits(BitWidth, Val, nullptr);
105          AB = APInt::getHighBitsSet(BitWidth,
106                 std::min(BitWidth, Known.countMaxLeadingZeros()+1));
107        }
108        break;
109      case Intrinsic::cttz:
110        if (OperandNo == 0) {
111          // We need some output bits, so we need all bits of the
112          // input to the right of, and including, the rightmost bit
113          // known to be one.
114          ComputeKnownBits(BitWidth, Val, nullptr);
115          AB = APInt::getLowBitsSet(BitWidth,
116                 std::min(BitWidth, Known.countMaxTrailingZeros()+1));
117        }
118        break;
119      case Intrinsic::fshl:
120      case Intrinsic::fshr: {
121        const APInt *SA;
122        if (OperandNo == 2) {
123          // Shift amount is modulo the bitwidth. For powers of two we have
124          // SA % BW == SA & (BW - 1).
125          if (isPowerOf2_32(BitWidth))
126            AB = BitWidth - 1;
127        } else if (match(II->getOperand(2), m_APInt(SA))) {
128          // Normalize to funnel shift left. APInt shifts of BitWidth are well-
129          // defined, so no need to special-case zero shifts here.
130          uint64_t ShiftAmt = SA->urem(BitWidth);
131          if (II->getIntrinsicID() == Intrinsic::fshr)
132            ShiftAmt = BitWidth - ShiftAmt;
133
134          if (OperandNo == 0)
135            AB = AOut.lshr(ShiftAmt);
136          else if (OperandNo == 1)
137            AB = AOut.shl(BitWidth - ShiftAmt);
138        }
139        break;
140      }
141      case Intrinsic::umax:
142      case Intrinsic::umin:
143      case Intrinsic::smax:
144      case Intrinsic::smin:
145        // If low bits of result are not demanded, they are also not demanded
146        // for the min/max operands.
147        AB = APInt::getBitsSetFrom(BitWidth, AOut.countr_zero());
148        break;
149      }
150    }
151    break;
152  case Instruction::Add:
153    if (AOut.isMask()) {
154      AB = AOut;
155    } else {
156      ComputeKnownBits(BitWidth, UserI->getOperand(0), UserI->getOperand(1));
157      AB = determineLiveOperandBitsAdd(OperandNo, AOut, Known, Known2);
158    }
159    break;
160  case Instruction::Sub:
161    if (AOut.isMask()) {
162      AB = AOut;
163    } else {
164      ComputeKnownBits(BitWidth, UserI->getOperand(0), UserI->getOperand(1));
165      AB = determineLiveOperandBitsSub(OperandNo, AOut, Known, Known2);
166    }
167    break;
168  case Instruction::Mul:
169    // Find the highest live output bit. We don't need any more input
170    // bits than that (adds, and thus subtracts, ripple only to the
171    // left).
172    AB = APInt::getLowBitsSet(BitWidth, AOut.getActiveBits());
173    break;
174  case Instruction::Shl:
175    if (OperandNo == 0) {
176      const APInt *ShiftAmtC;
177      if (match(UserI->getOperand(1), m_APInt(ShiftAmtC))) {
178        uint64_t ShiftAmt = ShiftAmtC->getLimitedValue(BitWidth - 1);
179        AB = AOut.lshr(ShiftAmt);
180
181        // If the shift is nuw/nsw, then the high bits are not dead
182        // (because we've promised that they *must* be zero).
183        const auto *S = cast<ShlOperator>(UserI);
184        if (S->hasNoSignedWrap())
185          AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1);
186        else if (S->hasNoUnsignedWrap())
187          AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
188      }
189    }
190    break;
191  case Instruction::LShr:
192    if (OperandNo == 0) {
193      const APInt *ShiftAmtC;
194      if (match(UserI->getOperand(1), m_APInt(ShiftAmtC))) {
195        uint64_t ShiftAmt = ShiftAmtC->getLimitedValue(BitWidth - 1);
196        AB = AOut.shl(ShiftAmt);
197
198        // If the shift is exact, then the low bits are not dead
199        // (they must be zero).
200        if (cast<LShrOperator>(UserI)->isExact())
201          AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
202      }
203    }
204    break;
205  case Instruction::AShr:
206    if (OperandNo == 0) {
207      const APInt *ShiftAmtC;
208      if (match(UserI->getOperand(1), m_APInt(ShiftAmtC))) {
209        uint64_t ShiftAmt = ShiftAmtC->getLimitedValue(BitWidth - 1);
210        AB = AOut.shl(ShiftAmt);
211        // Because the high input bit is replicated into the
212        // high-order bits of the result, if we need any of those
213        // bits, then we must keep the highest input bit.
214        if ((AOut & APInt::getHighBitsSet(BitWidth, ShiftAmt))
215            .getBoolValue())
216          AB.setSignBit();
217
218        // If the shift is exact, then the low bits are not dead
219        // (they must be zero).
220        if (cast<AShrOperator>(UserI)->isExact())
221          AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
222      }
223    }
224    break;
225  case Instruction::And:
226    AB = AOut;
227
228    // For bits that are known zero, the corresponding bits in the
229    // other operand are dead (unless they're both zero, in which
230    // case they can't both be dead, so just mark the LHS bits as
231    // dead).
232    ComputeKnownBits(BitWidth, UserI->getOperand(0), UserI->getOperand(1));
233    if (OperandNo == 0)
234      AB &= ~Known2.Zero;
235    else
236      AB &= ~(Known.Zero & ~Known2.Zero);
237    break;
238  case Instruction::Or:
239    AB = AOut;
240
241    // For bits that are known one, the corresponding bits in the
242    // other operand are dead (unless they're both one, in which
243    // case they can't both be dead, so just mark the LHS bits as
244    // dead).
245    ComputeKnownBits(BitWidth, UserI->getOperand(0), UserI->getOperand(1));
246    if (OperandNo == 0)
247      AB &= ~Known2.One;
248    else
249      AB &= ~(Known.One & ~Known2.One);
250    break;
251  case Instruction::Xor:
252  case Instruction::PHI:
253    AB = AOut;
254    break;
255  case Instruction::Trunc:
256    AB = AOut.zext(BitWidth);
257    break;
258  case Instruction::ZExt:
259    AB = AOut.trunc(BitWidth);
260    break;
261  case Instruction::SExt:
262    AB = AOut.trunc(BitWidth);
263    // Because the high input bit is replicated into the
264    // high-order bits of the result, if we need any of those
265    // bits, then we must keep the highest input bit.
266    if ((AOut & APInt::getHighBitsSet(AOut.getBitWidth(),
267                                      AOut.getBitWidth() - BitWidth))
268        .getBoolValue())
269      AB.setSignBit();
270    break;
271  case Instruction::Select:
272    if (OperandNo != 0)
273      AB = AOut;
274    break;
275  case Instruction::ExtractElement:
276    if (OperandNo == 0)
277      AB = AOut;
278    break;
279  case Instruction::InsertElement:
280  case Instruction::ShuffleVector:
281    if (OperandNo == 0 || OperandNo == 1)
282      AB = AOut;
283    break;
284  }
285}
286
287void DemandedBits::performAnalysis() {
288  if (Analyzed)
289    // Analysis already completed for this function.
290    return;
291  Analyzed = true;
292
293  Visited.clear();
294  AliveBits.clear();
295  DeadUses.clear();
296
297  SmallSetVector<Instruction*, 16> Worklist;
298
299  // Collect the set of "root" instructions that are known live.
300  for (Instruction &I : instructions(F)) {
301    if (!isAlwaysLive(&I))
302      continue;
303
304    LLVM_DEBUG(dbgs() << "DemandedBits: Root: " << I << "\n");
305    // For integer-valued instructions, set up an initial empty set of alive
306    // bits and add the instruction to the work list. For other instructions
307    // add their operands to the work list (for integer values operands, mark
308    // all bits as live).
309    Type *T = I.getType();
310    if (T->isIntOrIntVectorTy()) {
311      if (AliveBits.try_emplace(&I, T->getScalarSizeInBits(), 0).second)
312        Worklist.insert(&I);
313
314      continue;
315    }
316
317    // Non-integer-typed instructions...
318    for (Use &OI : I.operands()) {
319      if (auto *J = dyn_cast<Instruction>(OI)) {
320        Type *T = J->getType();
321        if (T->isIntOrIntVectorTy())
322          AliveBits[J] = APInt::getAllOnes(T->getScalarSizeInBits());
323        else
324          Visited.insert(J);
325        Worklist.insert(J);
326      }
327    }
328    // To save memory, we don't add I to the Visited set here. Instead, we
329    // check isAlwaysLive on every instruction when searching for dead
330    // instructions later (we need to check isAlwaysLive for the
331    // integer-typed instructions anyway).
332  }
333
334  // Propagate liveness backwards to operands.
335  while (!Worklist.empty()) {
336    Instruction *UserI = Worklist.pop_back_val();
337
338    LLVM_DEBUG(dbgs() << "DemandedBits: Visiting: " << *UserI);
339    APInt AOut;
340    bool InputIsKnownDead = false;
341    if (UserI->getType()->isIntOrIntVectorTy()) {
342      AOut = AliveBits[UserI];
343      LLVM_DEBUG(dbgs() << " Alive Out: 0x"
344                        << Twine::utohexstr(AOut.getLimitedValue()));
345
346      // If all bits of the output are dead, then all bits of the input
347      // are also dead.
348      InputIsKnownDead = !AOut && !isAlwaysLive(UserI);
349    }
350    LLVM_DEBUG(dbgs() << "\n");
351
352    KnownBits Known, Known2;
353    bool KnownBitsComputed = false;
354    // Compute the set of alive bits for each operand. These are anded into the
355    // existing set, if any, and if that changes the set of alive bits, the
356    // operand is added to the work-list.
357    for (Use &OI : UserI->operands()) {
358      // We also want to detect dead uses of arguments, but will only store
359      // demanded bits for instructions.
360      auto *I = dyn_cast<Instruction>(OI);
361      if (!I && !isa<Argument>(OI))
362        continue;
363
364      Type *T = OI->getType();
365      if (T->isIntOrIntVectorTy()) {
366        unsigned BitWidth = T->getScalarSizeInBits();
367        APInt AB = APInt::getAllOnes(BitWidth);
368        if (InputIsKnownDead) {
369          AB = APInt(BitWidth, 0);
370        } else {
371          // Bits of each operand that are used to compute alive bits of the
372          // output are alive, all others are dead.
373          determineLiveOperandBits(UserI, OI, OI.getOperandNo(), AOut, AB,
374                                   Known, Known2, KnownBitsComputed);
375
376          // Keep track of uses which have no demanded bits.
377          if (AB.isZero())
378            DeadUses.insert(&OI);
379          else
380            DeadUses.erase(&OI);
381        }
382
383        if (I) {
384          // If we've added to the set of alive bits (or the operand has not
385          // been previously visited), then re-queue the operand to be visited
386          // again.
387          auto Res = AliveBits.try_emplace(I);
388          if (Res.second || (AB |= Res.first->second) != Res.first->second) {
389            Res.first->second = std::move(AB);
390            Worklist.insert(I);
391          }
392        }
393      } else if (I && Visited.insert(I).second) {
394        Worklist.insert(I);
395      }
396    }
397  }
398}
399
400APInt DemandedBits::getDemandedBits(Instruction *I) {
401  performAnalysis();
402
403  auto Found = AliveBits.find(I);
404  if (Found != AliveBits.end())
405    return Found->second;
406
407  const DataLayout &DL = I->getModule()->getDataLayout();
408  return APInt::getAllOnes(DL.getTypeSizeInBits(I->getType()->getScalarType()));
409}
410
411APInt DemandedBits::getDemandedBits(Use *U) {
412  Type *T = (*U)->getType();
413  auto *UserI = cast<Instruction>(U->getUser());
414  const DataLayout &DL = UserI->getModule()->getDataLayout();
415  unsigned BitWidth = DL.getTypeSizeInBits(T->getScalarType());
416
417  // We only track integer uses, everything else produces a mask with all bits
418  // set
419  if (!T->isIntOrIntVectorTy())
420    return APInt::getAllOnes(BitWidth);
421
422  if (isUseDead(U))
423    return APInt(BitWidth, 0);
424
425  performAnalysis();
426
427  APInt AOut = getDemandedBits(UserI);
428  APInt AB = APInt::getAllOnes(BitWidth);
429  KnownBits Known, Known2;
430  bool KnownBitsComputed = false;
431
432  determineLiveOperandBits(UserI, *U, U->getOperandNo(), AOut, AB, Known,
433                           Known2, KnownBitsComputed);
434
435  return AB;
436}
437
438bool DemandedBits::isInstructionDead(Instruction *I) {
439  performAnalysis();
440
441  return !Visited.count(I) && !AliveBits.contains(I) && !isAlwaysLive(I);
442}
443
444bool DemandedBits::isUseDead(Use *U) {
445  // We only track integer uses, everything else is assumed live.
446  if (!(*U)->getType()->isIntOrIntVectorTy())
447    return false;
448
449  // Uses by always-live instructions are never dead.
450  auto *UserI = cast<Instruction>(U->getUser());
451  if (isAlwaysLive(UserI))
452    return false;
453
454  performAnalysis();
455  if (DeadUses.count(U))
456    return true;
457
458  // If no output bits are demanded, no input bits are demanded and the use
459  // is dead. These uses might not be explicitly present in the DeadUses map.
460  if (UserI->getType()->isIntOrIntVectorTy()) {
461    auto Found = AliveBits.find(UserI);
462    if (Found != AliveBits.end() && Found->second.isZero())
463      return true;
464  }
465
466  return false;
467}
468
469void DemandedBits::print(raw_ostream &OS) {
470  auto PrintDB = [&](const Instruction *I, const APInt &A, Value *V = nullptr) {
471    OS << "DemandedBits: 0x" << Twine::utohexstr(A.getLimitedValue())
472       << " for ";
473    if (V) {
474      V->printAsOperand(OS, false);
475      OS << " in ";
476    }
477    OS << *I << '\n';
478  };
479
480  OS << "Printing analysis 'Demanded Bits Analysis' for function '" << F.getName() << "':\n";
481  performAnalysis();
482  for (auto &KV : AliveBits) {
483    Instruction *I = KV.first;
484    PrintDB(I, KV.second);
485
486    for (Use &OI : I->operands()) {
487      PrintDB(I, getDemandedBits(&OI), OI);
488    }
489  }
490}
491
492static APInt determineLiveOperandBitsAddCarry(unsigned OperandNo,
493                                              const APInt &AOut,
494                                              const KnownBits &LHS,
495                                              const KnownBits &RHS,
496                                              bool CarryZero, bool CarryOne) {
497  assert(!(CarryZero && CarryOne) &&
498         "Carry can't be zero and one at the same time");
499
500  // The following check should be done by the caller, as it also indicates
501  // that LHS and RHS don't need to be computed.
502  //
503  // if (AOut.isMask())
504  //   return AOut;
505
506  // Boundary bits' carry out is unaffected by their carry in.
507  APInt Bound = (LHS.Zero & RHS.Zero) | (LHS.One & RHS.One);
508
509  // First, the alive carry bits are determined from the alive output bits:
510  // Let demand ripple to the right but only up to any set bit in Bound.
511  //   AOut         = -1----
512  //   Bound        = ----1-
513  //   ACarry&~AOut = --111-
514  APInt RBound = Bound.reverseBits();
515  APInt RAOut = AOut.reverseBits();
516  APInt RProp = RAOut + (RAOut | ~RBound);
517  APInt RACarry = RProp ^ ~RBound;
518  APInt ACarry = RACarry.reverseBits();
519
520  // Then, the alive input bits are determined from the alive carry bits:
521  APInt NeededToMaintainCarryZero;
522  APInt NeededToMaintainCarryOne;
523  if (OperandNo == 0) {
524    NeededToMaintainCarryZero = LHS.Zero | ~RHS.Zero;
525    NeededToMaintainCarryOne = LHS.One | ~RHS.One;
526  } else {
527    NeededToMaintainCarryZero = RHS.Zero | ~LHS.Zero;
528    NeededToMaintainCarryOne = RHS.One | ~LHS.One;
529  }
530
531  // As in computeForAddCarry
532  APInt PossibleSumZero = ~LHS.Zero + ~RHS.Zero + !CarryZero;
533  APInt PossibleSumOne = LHS.One + RHS.One + CarryOne;
534
535  // The below is simplified from
536  //
537  // APInt CarryKnownZero = ~(PossibleSumZero ^ LHS.Zero ^ RHS.Zero);
538  // APInt CarryKnownOne = PossibleSumOne ^ LHS.One ^ RHS.One;
539  // APInt CarryUnknown = ~(CarryKnownZero | CarryKnownOne);
540  //
541  // APInt NeededToMaintainCarry =
542  //   (CarryKnownZero & NeededToMaintainCarryZero) |
543  //   (CarryKnownOne  & NeededToMaintainCarryOne) |
544  //   CarryUnknown;
545
546  APInt NeededToMaintainCarry = (~PossibleSumZero | NeededToMaintainCarryZero) &
547                                (PossibleSumOne | NeededToMaintainCarryOne);
548
549  APInt AB = AOut | (ACarry & NeededToMaintainCarry);
550  return AB;
551}
552
553APInt DemandedBits::determineLiveOperandBitsAdd(unsigned OperandNo,
554                                                const APInt &AOut,
555                                                const KnownBits &LHS,
556                                                const KnownBits &RHS) {
557  return determineLiveOperandBitsAddCarry(OperandNo, AOut, LHS, RHS, true,
558                                          false);
559}
560
561APInt DemandedBits::determineLiveOperandBitsSub(unsigned OperandNo,
562                                                const APInt &AOut,
563                                                const KnownBits &LHS,
564                                                const KnownBits &RHS) {
565  KnownBits NRHS;
566  NRHS.Zero = RHS.One;
567  NRHS.One = RHS.Zero;
568  return determineLiveOperandBitsAddCarry(OperandNo, AOut, LHS, NRHS, false,
569                                          true);
570}
571
572AnalysisKey DemandedBitsAnalysis::Key;
573
574DemandedBits DemandedBitsAnalysis::run(Function &F,
575                                             FunctionAnalysisManager &AM) {
576  auto &AC = AM.getResult<AssumptionAnalysis>(F);
577  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
578  return DemandedBits(F, AC, DT);
579}
580
581PreservedAnalyses DemandedBitsPrinterPass::run(Function &F,
582                                               FunctionAnalysisManager &AM) {
583  AM.getResult<DemandedBitsAnalysis>(F).print(OS);
584  return PreservedAnalyses::all();
585}
586