1//===- GenericLoopInfo - Generic Loop Info for graphs -----------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the LoopInfoBase class that is used to identify natural
10// loops and determine the loop depth of various nodes in a generic graph of
11// blocks.  A natural loop has exactly one entry-point, which is called the
12// header. Note that natural loops may actually be several loops that share the
13// same header node.
14//
15// This analysis calculates the nesting structure of loops in a function.  For
16// each natural loop identified, this analysis identifies natural loops
17// contained entirely within the loop and the basic blocks that make up the
18// loop.
19//
20// It can calculate on the fly various bits of information, for example:
21//
22//  * whether there is a preheader for the loop
23//  * the number of back edges to the header
24//  * whether or not a particular block branches out of the loop
25//  * the successor blocks of the loop
26//  * the loop depth
27//  * etc...
28//
29// Note that this analysis specifically identifies *Loops* not cycles or SCCs
30// in the graph.  There can be strongly connected components in the graph which
31// this analysis will not recognize and that will not be represented by a Loop
32// instance.  In particular, a Loop might be inside such a non-loop SCC, or a
33// non-loop SCC might contain a sub-SCC which is a Loop.
34//
35// For an overview of terminology used in this API (and thus all of our loop
36// analyses or transforms), see docs/LoopTerminology.rst.
37//
38//===----------------------------------------------------------------------===//
39
40#ifndef LLVM_SUPPORT_GENERICLOOPINFO_H
41#define LLVM_SUPPORT_GENERICLOOPINFO_H
42
43#include "llvm/ADT/DenseSet.h"
44#include "llvm/ADT/PostOrderIterator.h"
45#include "llvm/ADT/STLExtras.h"
46#include "llvm/ADT/SetOperations.h"
47#include "llvm/Support/Allocator.h"
48#include "llvm/Support/GenericDomTree.h"
49
50namespace llvm {
51
52template <class N, class M> class LoopInfoBase;
53template <class N, class M> class LoopBase;
54
55//===----------------------------------------------------------------------===//
56/// Instances of this class are used to represent loops that are detected in the
57/// flow graph.
58///
59template <class BlockT, class LoopT> class LoopBase {
60  LoopT *ParentLoop;
61  // Loops contained entirely within this one.
62  std::vector<LoopT *> SubLoops;
63
64  // The list of blocks in this loop. First entry is the header node.
65  std::vector<BlockT *> Blocks;
66
67  SmallPtrSet<const BlockT *, 8> DenseBlockSet;
68
69#if LLVM_ENABLE_ABI_BREAKING_CHECKS
70  /// Indicator that this loop is no longer a valid loop.
71  bool IsInvalid = false;
72#endif
73
74  LoopBase(const LoopBase<BlockT, LoopT> &) = delete;
75  const LoopBase<BlockT, LoopT> &
76  operator=(const LoopBase<BlockT, LoopT> &) = delete;
77
78public:
79  /// Return the nesting level of this loop.  An outer-most loop has depth 1,
80  /// for consistency with loop depth values used for basic blocks, where depth
81  /// 0 is used for blocks not inside any loops.
82  unsigned getLoopDepth() const {
83    assert(!isInvalid() && "Loop not in a valid state!");
84    unsigned D = 1;
85    for (const LoopT *CurLoop = ParentLoop; CurLoop;
86         CurLoop = CurLoop->ParentLoop)
87      ++D;
88    return D;
89  }
90  BlockT *getHeader() const { return getBlocks().front(); }
91  /// Return the parent loop if it exists or nullptr for top
92  /// level loops.
93
94  /// A loop is either top-level in a function (that is, it is not
95  /// contained in any other loop) or it is entirely enclosed in
96  /// some other loop.
97  /// If a loop is top-level, it has no parent, otherwise its
98  /// parent is the innermost loop in which it is enclosed.
99  LoopT *getParentLoop() const { return ParentLoop; }
100
101  /// Get the outermost loop in which this loop is contained.
102  /// This may be the loop itself, if it already is the outermost loop.
103  const LoopT *getOutermostLoop() const {
104    const LoopT *L = static_cast<const LoopT *>(this);
105    while (L->ParentLoop)
106      L = L->ParentLoop;
107    return L;
108  }
109
110  LoopT *getOutermostLoop() {
111    LoopT *L = static_cast<LoopT *>(this);
112    while (L->ParentLoop)
113      L = L->ParentLoop;
114    return L;
115  }
116
117  /// This is a raw interface for bypassing addChildLoop.
118  void setParentLoop(LoopT *L) {
119    assert(!isInvalid() && "Loop not in a valid state!");
120    ParentLoop = L;
121  }
122
123  /// Return true if the specified loop is contained within in this loop.
124  bool contains(const LoopT *L) const {
125    assert(!isInvalid() && "Loop not in a valid state!");
126    if (L == this)
127      return true;
128    if (!L)
129      return false;
130    return contains(L->getParentLoop());
131  }
132
133  /// Return true if the specified basic block is in this loop.
134  bool contains(const BlockT *BB) const {
135    assert(!isInvalid() && "Loop not in a valid state!");
136    return DenseBlockSet.count(BB);
137  }
138
139  /// Return true if the specified instruction is in this loop.
140  template <class InstT> bool contains(const InstT *Inst) const {
141    return contains(Inst->getParent());
142  }
143
144  /// Return the loops contained entirely within this loop.
145  const std::vector<LoopT *> &getSubLoops() const {
146    assert(!isInvalid() && "Loop not in a valid state!");
147    return SubLoops;
148  }
149  std::vector<LoopT *> &getSubLoopsVector() {
150    assert(!isInvalid() && "Loop not in a valid state!");
151    return SubLoops;
152  }
153  typedef typename std::vector<LoopT *>::const_iterator iterator;
154  typedef
155      typename std::vector<LoopT *>::const_reverse_iterator reverse_iterator;
156  iterator begin() const { return getSubLoops().begin(); }
157  iterator end() const { return getSubLoops().end(); }
158  reverse_iterator rbegin() const { return getSubLoops().rbegin(); }
159  reverse_iterator rend() const { return getSubLoops().rend(); }
160
161  // LoopInfo does not detect irreducible control flow, just natural
162  // loops. That is, it is possible that there is cyclic control
163  // flow within the "innermost loop" or around the "outermost
164  // loop".
165
166  /// Return true if the loop does not contain any (natural) loops.
167  bool isInnermost() const { return getSubLoops().empty(); }
168  /// Return true if the loop does not have a parent (natural) loop
169  // (i.e. it is outermost, which is the same as top-level).
170  bool isOutermost() const { return getParentLoop() == nullptr; }
171
172  /// Get a list of the basic blocks which make up this loop.
173  ArrayRef<BlockT *> getBlocks() const {
174    assert(!isInvalid() && "Loop not in a valid state!");
175    return Blocks;
176  }
177  typedef typename ArrayRef<BlockT *>::const_iterator block_iterator;
178  block_iterator block_begin() const { return getBlocks().begin(); }
179  block_iterator block_end() const { return getBlocks().end(); }
180  inline iterator_range<block_iterator> blocks() const {
181    assert(!isInvalid() && "Loop not in a valid state!");
182    return make_range(block_begin(), block_end());
183  }
184
185  /// Get the number of blocks in this loop in constant time.
186  /// Invalidate the loop, indicating that it is no longer a loop.
187  unsigned getNumBlocks() const {
188    assert(!isInvalid() && "Loop not in a valid state!");
189    return Blocks.size();
190  }
191
192  /// Return a direct, mutable handle to the blocks vector so that we can
193  /// mutate it efficiently with techniques like `std::remove`.
194  std::vector<BlockT *> &getBlocksVector() {
195    assert(!isInvalid() && "Loop not in a valid state!");
196    return Blocks;
197  }
198  /// Return a direct, mutable handle to the blocks set so that we can
199  /// mutate it efficiently.
200  SmallPtrSetImpl<const BlockT *> &getBlocksSet() {
201    assert(!isInvalid() && "Loop not in a valid state!");
202    return DenseBlockSet;
203  }
204
205  /// Return a direct, immutable handle to the blocks set.
206  const SmallPtrSetImpl<const BlockT *> &getBlocksSet() const {
207    assert(!isInvalid() && "Loop not in a valid state!");
208    return DenseBlockSet;
209  }
210
211  /// Return true if this loop is no longer valid.  The only valid use of this
212  /// helper is "assert(L.isInvalid())" or equivalent, since IsInvalid is set to
213  /// true by the destructor.  In other words, if this accessor returns true,
214  /// the caller has already triggered UB by calling this accessor; and so it
215  /// can only be called in a context where a return value of true indicates a
216  /// programmer error.
217  bool isInvalid() const {
218#if LLVM_ENABLE_ABI_BREAKING_CHECKS
219    return IsInvalid;
220#else
221    return false;
222#endif
223  }
224
225  /// True if terminator in the block can branch to another block that is
226  /// outside of the current loop. \p BB must be inside the loop.
227  bool isLoopExiting(const BlockT *BB) const {
228    assert(!isInvalid() && "Loop not in a valid state!");
229    assert(contains(BB) && "Exiting block must be part of the loop");
230    for (const auto *Succ : children<const BlockT *>(BB)) {
231      if (!contains(Succ))
232        return true;
233    }
234    return false;
235  }
236
237  /// Returns true if \p BB is a loop-latch.
238  /// A latch block is a block that contains a branch back to the header.
239  /// This function is useful when there are multiple latches in a loop
240  /// because \fn getLoopLatch will return nullptr in that case.
241  bool isLoopLatch(const BlockT *BB) const {
242    assert(!isInvalid() && "Loop not in a valid state!");
243    assert(contains(BB) && "block does not belong to the loop");
244    return llvm::is_contained(inverse_children<BlockT *>(getHeader()), BB);
245  }
246
247  /// Calculate the number of back edges to the loop header.
248  unsigned getNumBackEdges() const {
249    assert(!isInvalid() && "Loop not in a valid state!");
250    return llvm::count_if(inverse_children<BlockT *>(getHeader()),
251                          [&](BlockT *Pred) { return contains(Pred); });
252  }
253
254  //===--------------------------------------------------------------------===//
255  // APIs for simple analysis of the loop.
256  //
257  // Note that all of these methods can fail on general loops (ie, there may not
258  // be a preheader, etc).  For best success, the loop simplification and
259  // induction variable canonicalization pass should be used to normalize loops
260  // for easy analysis.  These methods assume canonical loops.
261
262  /// Return all blocks inside the loop that have successors outside of the
263  /// loop. These are the blocks _inside of the current loop_ which branch out.
264  /// The returned list is always unique.
265  void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const;
266
267  /// If getExitingBlocks would return exactly one block, return that block.
268  /// Otherwise return null.
269  BlockT *getExitingBlock() const;
270
271  /// Return all of the successor blocks of this loop. These are the blocks
272  /// _outside of the current loop_ which are branched to.
273  void getExitBlocks(SmallVectorImpl<BlockT *> &ExitBlocks) const;
274
275  /// If getExitBlocks would return exactly one block, return that block.
276  /// Otherwise return null.
277  BlockT *getExitBlock() const;
278
279  /// Return true if no exit block for the loop has a predecessor that is
280  /// outside the loop.
281  bool hasDedicatedExits() const;
282
283  /// Return all unique successor blocks of this loop.
284  /// These are the blocks _outside of the current loop_ which are branched to.
285  void getUniqueExitBlocks(SmallVectorImpl<BlockT *> &ExitBlocks) const;
286
287  /// Return all unique successor blocks of this loop except successors from
288  /// Latch block are not considered. If the exit comes from Latch has also
289  /// non Latch predecessor in a loop it will be added to ExitBlocks.
290  /// These are the blocks _outside of the current loop_ which are branched to.
291  void getUniqueNonLatchExitBlocks(SmallVectorImpl<BlockT *> &ExitBlocks) const;
292
293  /// If getUniqueExitBlocks would return exactly one block, return that block.
294  /// Otherwise return null.
295  BlockT *getUniqueExitBlock() const;
296
297  /// Return true if this loop does not have any exit blocks.
298  bool hasNoExitBlocks() const;
299
300  /// Edge type.
301  typedef std::pair<BlockT *, BlockT *> Edge;
302
303  /// Return all pairs of (_inside_block_,_outside_block_).
304  void getExitEdges(SmallVectorImpl<Edge> &ExitEdges) const;
305
306  /// If there is a preheader for this loop, return it. A loop has a preheader
307  /// if there is only one edge to the header of the loop from outside of the
308  /// loop. If this is the case, the block branching to the header of the loop
309  /// is the preheader node.
310  ///
311  /// This method returns null if there is no preheader for the loop.
312  BlockT *getLoopPreheader() const;
313
314  /// If the given loop's header has exactly one unique predecessor outside the
315  /// loop, return it. Otherwise return null.
316  ///  This is less strict that the loop "preheader" concept, which requires
317  /// the predecessor to have exactly one successor.
318  BlockT *getLoopPredecessor() const;
319
320  /// If there is a single latch block for this loop, return it.
321  /// A latch block is a block that contains a branch back to the header.
322  BlockT *getLoopLatch() const;
323
324  /// Return all loop latch blocks of this loop. A latch block is a block that
325  /// contains a branch back to the header.
326  void getLoopLatches(SmallVectorImpl<BlockT *> &LoopLatches) const {
327    assert(!isInvalid() && "Loop not in a valid state!");
328    BlockT *H = getHeader();
329    for (const auto Pred : inverse_children<BlockT *>(H))
330      if (contains(Pred))
331        LoopLatches.push_back(Pred);
332  }
333
334  /// Return all inner loops in the loop nest rooted by the loop in preorder,
335  /// with siblings in forward program order.
336  template <class Type>
337  static void getInnerLoopsInPreorder(const LoopT &L,
338                                      SmallVectorImpl<Type> &PreOrderLoops) {
339    SmallVector<LoopT *, 4> PreOrderWorklist;
340    PreOrderWorklist.append(L.rbegin(), L.rend());
341
342    while (!PreOrderWorklist.empty()) {
343      LoopT *L = PreOrderWorklist.pop_back_val();
344      // Sub-loops are stored in forward program order, but will process the
345      // worklist backwards so append them in reverse order.
346      PreOrderWorklist.append(L->rbegin(), L->rend());
347      PreOrderLoops.push_back(L);
348    }
349  }
350
351  /// Return all loops in the loop nest rooted by the loop in preorder, with
352  /// siblings in forward program order.
353  SmallVector<const LoopT *, 4> getLoopsInPreorder() const {
354    SmallVector<const LoopT *, 4> PreOrderLoops;
355    const LoopT *CurLoop = static_cast<const LoopT *>(this);
356    PreOrderLoops.push_back(CurLoop);
357    getInnerLoopsInPreorder(*CurLoop, PreOrderLoops);
358    return PreOrderLoops;
359  }
360  SmallVector<LoopT *, 4> getLoopsInPreorder() {
361    SmallVector<LoopT *, 4> PreOrderLoops;
362    LoopT *CurLoop = static_cast<LoopT *>(this);
363    PreOrderLoops.push_back(CurLoop);
364    getInnerLoopsInPreorder(*CurLoop, PreOrderLoops);
365    return PreOrderLoops;
366  }
367
368  //===--------------------------------------------------------------------===//
369  // APIs for updating loop information after changing the CFG
370  //
371
372  /// This method is used by other analyses to update loop information.
373  /// NewBB is set to be a new member of the current loop.
374  /// Because of this, it is added as a member of all parent loops, and is added
375  /// to the specified LoopInfo object as being in the current basic block.  It
376  /// is not valid to replace the loop header with this method.
377  void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LI);
378
379  /// This is used when splitting loops up. It replaces the OldChild entry in
380  /// our children list with NewChild, and updates the parent pointer of
381  /// OldChild to be null and the NewChild to be this loop.
382  /// This updates the loop depth of the new child.
383  void replaceChildLoopWith(LoopT *OldChild, LoopT *NewChild);
384
385  /// Add the specified loop to be a child of this loop.
386  /// This updates the loop depth of the new child.
387  void addChildLoop(LoopT *NewChild) {
388    assert(!isInvalid() && "Loop not in a valid state!");
389    assert(!NewChild->ParentLoop && "NewChild already has a parent!");
390    NewChild->ParentLoop = static_cast<LoopT *>(this);
391    SubLoops.push_back(NewChild);
392  }
393
394  /// This removes the specified child from being a subloop of this loop. The
395  /// loop is not deleted, as it will presumably be inserted into another loop.
396  LoopT *removeChildLoop(iterator I) {
397    assert(!isInvalid() && "Loop not in a valid state!");
398    assert(I != SubLoops.end() && "Cannot remove end iterator!");
399    LoopT *Child = *I;
400    assert(Child->ParentLoop == this && "Child is not a child of this loop!");
401    SubLoops.erase(SubLoops.begin() + (I - begin()));
402    Child->ParentLoop = nullptr;
403    return Child;
404  }
405
406  /// This removes the specified child from being a subloop of this loop. The
407  /// loop is not deleted, as it will presumably be inserted into another loop.
408  LoopT *removeChildLoop(LoopT *Child) {
409    return removeChildLoop(llvm::find(*this, Child));
410  }
411
412  /// This adds a basic block directly to the basic block list.
413  /// This should only be used by transformations that create new loops.  Other
414  /// transformations should use addBasicBlockToLoop.
415  void addBlockEntry(BlockT *BB) {
416    assert(!isInvalid() && "Loop not in a valid state!");
417    Blocks.push_back(BB);
418    DenseBlockSet.insert(BB);
419  }
420
421  /// interface to reverse Blocks[from, end of loop] in this loop
422  void reverseBlock(unsigned from) {
423    assert(!isInvalid() && "Loop not in a valid state!");
424    std::reverse(Blocks.begin() + from, Blocks.end());
425  }
426
427  /// interface to do reserve() for Blocks
428  void reserveBlocks(unsigned size) {
429    assert(!isInvalid() && "Loop not in a valid state!");
430    Blocks.reserve(size);
431  }
432
433  /// This method is used to move BB (which must be part of this loop) to be the
434  /// loop header of the loop (the block that dominates all others).
435  void moveToHeader(BlockT *BB) {
436    assert(!isInvalid() && "Loop not in a valid state!");
437    if (Blocks[0] == BB)
438      return;
439    for (unsigned i = 0;; ++i) {
440      assert(i != Blocks.size() && "Loop does not contain BB!");
441      if (Blocks[i] == BB) {
442        Blocks[i] = Blocks[0];
443        Blocks[0] = BB;
444        return;
445      }
446    }
447  }
448
449  /// This removes the specified basic block from the current loop, updating the
450  /// Blocks as appropriate. This does not update the mapping in the LoopInfo
451  /// class.
452  void removeBlockFromLoop(BlockT *BB) {
453    assert(!isInvalid() && "Loop not in a valid state!");
454    auto I = find(Blocks, BB);
455    assert(I != Blocks.end() && "N is not in this list!");
456    Blocks.erase(I);
457
458    DenseBlockSet.erase(BB);
459  }
460
461  /// Verify loop structure
462  void verifyLoop() const;
463
464  /// Verify loop structure of this loop and all nested loops.
465  void verifyLoopNest(DenseSet<const LoopT *> *Loops) const;
466
467  /// Returns true if the loop is annotated parallel.
468  ///
469  /// Derived classes can override this method using static template
470  /// polymorphism.
471  bool isAnnotatedParallel() const { return false; }
472
473  /// Print loop with all the BBs inside it.
474  void print(raw_ostream &OS, bool Verbose = false, bool PrintNested = true,
475             unsigned Depth = 0) const;
476
477protected:
478  friend class LoopInfoBase<BlockT, LoopT>;
479
480  /// This creates an empty loop.
481  LoopBase() : ParentLoop(nullptr) {}
482
483  explicit LoopBase(BlockT *BB) : ParentLoop(nullptr) {
484    Blocks.push_back(BB);
485    DenseBlockSet.insert(BB);
486  }
487
488  // Since loop passes like SCEV are allowed to key analysis results off of
489  // `Loop` pointers, we cannot re-use pointers within a loop pass manager.
490  // This means loop passes should not be `delete` ing `Loop` objects directly
491  // (and risk a later `Loop` allocation re-using the address of a previous one)
492  // but should be using LoopInfo::markAsRemoved, which keeps around the `Loop`
493  // pointer till the end of the lifetime of the `LoopInfo` object.
494  //
495  // To make it easier to follow this rule, we mark the destructor as
496  // non-public.
497  ~LoopBase() {
498    for (auto *SubLoop : SubLoops)
499      SubLoop->~LoopT();
500
501#if LLVM_ENABLE_ABI_BREAKING_CHECKS
502    IsInvalid = true;
503#endif
504    SubLoops.clear();
505    Blocks.clear();
506    DenseBlockSet.clear();
507    ParentLoop = nullptr;
508  }
509};
510
511template <class BlockT, class LoopT>
512raw_ostream &operator<<(raw_ostream &OS, const LoopBase<BlockT, LoopT> &Loop) {
513  Loop.print(OS);
514  return OS;
515}
516
517//===----------------------------------------------------------------------===//
518/// This class builds and contains all of the top-level loop
519/// structures in the specified function.
520///
521
522template <class BlockT, class LoopT> class LoopInfoBase {
523  // BBMap - Mapping of basic blocks to the inner most loop they occur in
524  DenseMap<const BlockT *, LoopT *> BBMap;
525  std::vector<LoopT *> TopLevelLoops;
526  BumpPtrAllocator LoopAllocator;
527
528  friend class LoopBase<BlockT, LoopT>;
529  friend class LoopInfo;
530
531  void operator=(const LoopInfoBase &) = delete;
532  LoopInfoBase(const LoopInfoBase &) = delete;
533
534public:
535  LoopInfoBase() = default;
536  ~LoopInfoBase() { releaseMemory(); }
537
538  LoopInfoBase(LoopInfoBase &&Arg)
539      : BBMap(std::move(Arg.BBMap)),
540        TopLevelLoops(std::move(Arg.TopLevelLoops)),
541        LoopAllocator(std::move(Arg.LoopAllocator)) {
542    // We have to clear the arguments top level loops as we've taken ownership.
543    Arg.TopLevelLoops.clear();
544  }
545  LoopInfoBase &operator=(LoopInfoBase &&RHS) {
546    BBMap = std::move(RHS.BBMap);
547
548    for (auto *L : TopLevelLoops)
549      L->~LoopT();
550
551    TopLevelLoops = std::move(RHS.TopLevelLoops);
552    LoopAllocator = std::move(RHS.LoopAllocator);
553    RHS.TopLevelLoops.clear();
554    return *this;
555  }
556
557  void releaseMemory() {
558    BBMap.clear();
559
560    for (auto *L : TopLevelLoops)
561      L->~LoopT();
562    TopLevelLoops.clear();
563    LoopAllocator.Reset();
564  }
565
566  template <typename... ArgsTy> LoopT *AllocateLoop(ArgsTy &&...Args) {
567    LoopT *Storage = LoopAllocator.Allocate<LoopT>();
568    return new (Storage) LoopT(std::forward<ArgsTy>(Args)...);
569  }
570
571  /// iterator/begin/end - The interface to the top-level loops in the current
572  /// function.
573  ///
574  typedef typename std::vector<LoopT *>::const_iterator iterator;
575  typedef
576      typename std::vector<LoopT *>::const_reverse_iterator reverse_iterator;
577  iterator begin() const { return TopLevelLoops.begin(); }
578  iterator end() const { return TopLevelLoops.end(); }
579  reverse_iterator rbegin() const { return TopLevelLoops.rbegin(); }
580  reverse_iterator rend() const { return TopLevelLoops.rend(); }
581  bool empty() const { return TopLevelLoops.empty(); }
582
583  /// Return all of the loops in the function in preorder across the loop
584  /// nests, with siblings in forward program order.
585  ///
586  /// Note that because loops form a forest of trees, preorder is equivalent to
587  /// reverse postorder.
588  SmallVector<LoopT *, 4> getLoopsInPreorder() const;
589
590  /// Return all of the loops in the function in preorder across the loop
591  /// nests, with siblings in *reverse* program order.
592  ///
593  /// Note that because loops form a forest of trees, preorder is equivalent to
594  /// reverse postorder.
595  ///
596  /// Also note that this is *not* a reverse preorder. Only the siblings are in
597  /// reverse program order.
598  SmallVector<LoopT *, 4> getLoopsInReverseSiblingPreorder() const;
599
600  /// Return the inner most loop that BB lives in. If a basic block is in no
601  /// loop (for example the entry node), null is returned.
602  LoopT *getLoopFor(const BlockT *BB) const { return BBMap.lookup(BB); }
603
604  /// Same as getLoopFor.
605  const LoopT *operator[](const BlockT *BB) const { return getLoopFor(BB); }
606
607  /// Return the loop nesting level of the specified block. A depth of 0 means
608  /// the block is not inside any loop.
609  unsigned getLoopDepth(const BlockT *BB) const {
610    const LoopT *L = getLoopFor(BB);
611    return L ? L->getLoopDepth() : 0;
612  }
613
614  // True if the block is a loop header node
615  bool isLoopHeader(const BlockT *BB) const {
616    const LoopT *L = getLoopFor(BB);
617    return L && L->getHeader() == BB;
618  }
619
620  /// Return the top-level loops.
621  const std::vector<LoopT *> &getTopLevelLoops() const { return TopLevelLoops; }
622
623  /// Return the top-level loops.
624  std::vector<LoopT *> &getTopLevelLoopsVector() { return TopLevelLoops; }
625
626  /// This removes the specified top-level loop from this loop info object.
627  /// The loop is not deleted, as it will presumably be inserted into
628  /// another loop.
629  LoopT *removeLoop(iterator I) {
630    assert(I != end() && "Cannot remove end iterator!");
631    LoopT *L = *I;
632    assert(L->isOutermost() && "Not a top-level loop!");
633    TopLevelLoops.erase(TopLevelLoops.begin() + (I - begin()));
634    return L;
635  }
636
637  /// Change the top-level loop that contains BB to the specified loop.
638  /// This should be used by transformations that restructure the loop hierarchy
639  /// tree.
640  void changeLoopFor(BlockT *BB, LoopT *L) {
641    if (!L) {
642      BBMap.erase(BB);
643      return;
644    }
645    BBMap[BB] = L;
646  }
647
648  /// Replace the specified loop in the top-level loops list with the indicated
649  /// loop.
650  void changeTopLevelLoop(LoopT *OldLoop, LoopT *NewLoop) {
651    auto I = find(TopLevelLoops, OldLoop);
652    assert(I != TopLevelLoops.end() && "Old loop not at top level!");
653    *I = NewLoop;
654    assert(!NewLoop->ParentLoop && !OldLoop->ParentLoop &&
655           "Loops already embedded into a subloop!");
656  }
657
658  /// This adds the specified loop to the collection of top-level loops.
659  void addTopLevelLoop(LoopT *New) {
660    assert(New->isOutermost() && "Loop already in subloop!");
661    TopLevelLoops.push_back(New);
662  }
663
664  /// This method completely removes BB from all data structures,
665  /// including all of the Loop objects it is nested in and our mapping from
666  /// BasicBlocks to loops.
667  void removeBlock(BlockT *BB) {
668    auto I = BBMap.find(BB);
669    if (I != BBMap.end()) {
670      for (LoopT *L = I->second; L; L = L->getParentLoop())
671        L->removeBlockFromLoop(BB);
672
673      BBMap.erase(I);
674    }
675  }
676
677  // Internals
678
679  static bool isNotAlreadyContainedIn(const LoopT *SubLoop,
680                                      const LoopT *ParentLoop) {
681    if (!SubLoop)
682      return true;
683    if (SubLoop == ParentLoop)
684      return false;
685    return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop);
686  }
687
688  /// Create the loop forest using a stable algorithm.
689  void analyze(const DominatorTreeBase<BlockT, false> &DomTree);
690
691  // Debugging
692  void print(raw_ostream &OS) const;
693
694  void verify(const DominatorTreeBase<BlockT, false> &DomTree) const;
695
696  /// Destroy a loop that has been removed from the `LoopInfo` nest.
697  ///
698  /// This runs the destructor of the loop object making it invalid to
699  /// reference afterward. The memory is retained so that the *pointer* to the
700  /// loop remains valid.
701  ///
702  /// The caller is responsible for removing this loop from the loop nest and
703  /// otherwise disconnecting it from the broader `LoopInfo` data structures.
704  /// Callers that don't naturally handle this themselves should probably call
705  /// `erase' instead.
706  void destroy(LoopT *L) {
707    L->~LoopT();
708
709    // Since LoopAllocator is a BumpPtrAllocator, this Deallocate only poisons
710    // \c L, but the pointer remains valid for non-dereferencing uses.
711    LoopAllocator.Deallocate(L);
712  }
713};
714
715} // namespace llvm
716
717#endif // LLVM_SUPPORT_GENERICLOOPINFO_H
718