1//===- ConstantRange.h - Represent a range ----------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Represent a range of possible values that may occur when the program is run
10// for an integral value.  This keeps track of a lower and upper bound for the
11// constant, which MAY wrap around the end of the numeric range.  To do this, it
12// keeps track of a [lower, upper) bound, which specifies an interval just like
13// STL iterators.  When used with boolean values, the following are important
14// ranges: :
15//
16//  [F, F) = {}     = Empty set
17//  [T, F) = {T}
18//  [F, T) = {F}
19//  [T, T) = {F, T} = Full set
20//
21// The other integral ranges use min/max values for special range values. For
22// example, for 8-bit types, it uses:
23// [0, 0)     = {}       = Empty set
24// [255, 255) = {0..255} = Full Set
25//
26// Note that ConstantRange can be used to represent either signed or
27// unsigned ranges.
28//
29//===----------------------------------------------------------------------===//
30
31#ifndef LLVM_IR_CONSTANTRANGE_H
32#define LLVM_IR_CONSTANTRANGE_H
33
34#include "llvm/ADT/APInt.h"
35#include "llvm/IR/InstrTypes.h"
36#include "llvm/IR/Instruction.h"
37#include "llvm/Support/Compiler.h"
38#include <cstdint>
39
40namespace llvm {
41
42class MDNode;
43class raw_ostream;
44struct KnownBits;
45
46/// This class represents a range of values.
47class [[nodiscard]] ConstantRange {
48  APInt Lower, Upper;
49
50  /// Create empty constant range with same bitwidth.
51  ConstantRange getEmpty() const {
52    return ConstantRange(getBitWidth(), false);
53  }
54
55  /// Create full constant range with same bitwidth.
56  ConstantRange getFull() const {
57    return ConstantRange(getBitWidth(), true);
58  }
59
60public:
61  /// Initialize a full or empty set for the specified bit width.
62  explicit ConstantRange(uint32_t BitWidth, bool isFullSet);
63
64  /// Initialize a range to hold the single specified value.
65  ConstantRange(APInt Value);
66
67  /// Initialize a range of values explicitly. This will assert out if
68  /// Lower==Upper and Lower != Min or Max value for its type. It will also
69  /// assert out if the two APInt's are not the same bit width.
70  ConstantRange(APInt Lower, APInt Upper);
71
72  /// Create empty constant range with the given bit width.
73  static ConstantRange getEmpty(uint32_t BitWidth) {
74    return ConstantRange(BitWidth, false);
75  }
76
77  /// Create full constant range with the given bit width.
78  static ConstantRange getFull(uint32_t BitWidth) {
79    return ConstantRange(BitWidth, true);
80  }
81
82  /// Create non-empty constant range with the given bounds. If Lower and
83  /// Upper are the same, a full range is returned.
84  static ConstantRange getNonEmpty(APInt Lower, APInt Upper) {
85    if (Lower == Upper)
86      return getFull(Lower.getBitWidth());
87    return ConstantRange(std::move(Lower), std::move(Upper));
88  }
89
90  /// Initialize a range based on a known bits constraint. The IsSigned flag
91  /// indicates whether the constant range should not wrap in the signed or
92  /// unsigned domain.
93  static ConstantRange fromKnownBits(const KnownBits &Known, bool IsSigned);
94
95  /// Produce the smallest range such that all values that may satisfy the given
96  /// predicate with any value contained within Other is contained in the
97  /// returned range.  Formally, this returns a superset of
98  /// 'union over all y in Other . { x : icmp op x y is true }'.  If the exact
99  /// answer is not representable as a ConstantRange, the return value will be a
100  /// proper superset of the above.
101  ///
102  /// Example: Pred = ult and Other = i8 [2, 5) returns Result = [0, 4)
103  static ConstantRange makeAllowedICmpRegion(CmpInst::Predicate Pred,
104                                             const ConstantRange &Other);
105
106  /// Produce the largest range such that all values in the returned range
107  /// satisfy the given predicate with all values contained within Other.
108  /// Formally, this returns a subset of
109  /// 'intersection over all y in Other . { x : icmp op x y is true }'.  If the
110  /// exact answer is not representable as a ConstantRange, the return value
111  /// will be a proper subset of the above.
112  ///
113  /// Example: Pred = ult and Other = i8 [2, 5) returns [0, 2)
114  static ConstantRange makeSatisfyingICmpRegion(CmpInst::Predicate Pred,
115                                                const ConstantRange &Other);
116
117  /// Produce the exact range such that all values in the returned range satisfy
118  /// the given predicate with any value contained within Other. Formally, this
119  /// returns the exact answer when the superset of 'union over all y in Other
120  /// is exactly same as the subset of intersection over all y in Other.
121  /// { x : icmp op x y is true}'.
122  ///
123  /// Example: Pred = ult and Other = i8 3 returns [0, 3)
124  static ConstantRange makeExactICmpRegion(CmpInst::Predicate Pred,
125                                           const APInt &Other);
126
127  /// Does the predicate \p Pred hold between ranges this and \p Other?
128  /// NOTE: false does not mean that inverse predicate holds!
129  bool icmp(CmpInst::Predicate Pred, const ConstantRange &Other) const;
130
131  /// Return true iff CR1 ult CR2 is equivalent to CR1 slt CR2.
132  /// Does not depend on strictness/direction of the predicate.
133  static bool
134  areInsensitiveToSignednessOfICmpPredicate(const ConstantRange &CR1,
135                                            const ConstantRange &CR2);
136
137  /// Return true iff CR1 ult CR2 is equivalent to CR1 sge CR2.
138  /// Does not depend on strictness/direction of the predicate.
139  static bool
140  areInsensitiveToSignednessOfInvertedICmpPredicate(const ConstantRange &CR1,
141                                                    const ConstantRange &CR2);
142
143  /// If the comparison between constant ranges this and Other
144  /// is insensitive to the signedness of the comparison predicate,
145  /// return a predicate equivalent to \p Pred, with flipped signedness
146  /// (i.e. unsigned instead of signed or vice versa), and maybe inverted,
147  /// otherwise returns CmpInst::Predicate::BAD_ICMP_PREDICATE.
148  static CmpInst::Predicate
149  getEquivalentPredWithFlippedSignedness(CmpInst::Predicate Pred,
150                                         const ConstantRange &CR1,
151                                         const ConstantRange &CR2);
152
153  /// Produce the largest range containing all X such that "X BinOp Y" is
154  /// guaranteed not to wrap (overflow) for *all* Y in Other. However, there may
155  /// be *some* Y in Other for which additional X not contained in the result
156  /// also do not overflow.
157  ///
158  /// NoWrapKind must be one of OBO::NoUnsignedWrap or OBO::NoSignedWrap.
159  ///
160  /// Examples:
161  ///  typedef OverflowingBinaryOperator OBO;
162  ///  #define MGNR makeGuaranteedNoWrapRegion
163  ///  MGNR(Add, [i8 1, 2), OBO::NoSignedWrap) == [-128, 127)
164  ///  MGNR(Add, [i8 1, 2), OBO::NoUnsignedWrap) == [0, -1)
165  ///  MGNR(Add, [i8 0, 1), OBO::NoUnsignedWrap) == Full Set
166  ///  MGNR(Add, [i8 -1, 6), OBO::NoSignedWrap) == [INT_MIN+1, INT_MAX-4)
167  ///  MGNR(Sub, [i8 1, 2), OBO::NoSignedWrap) == [-127, 128)
168  ///  MGNR(Sub, [i8 1, 2), OBO::NoUnsignedWrap) == [1, 0)
169  static ConstantRange makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp,
170                                                  const ConstantRange &Other,
171                                                  unsigned NoWrapKind);
172
173  /// Produce the range that contains X if and only if "X BinOp Other" does
174  /// not wrap.
175  static ConstantRange makeExactNoWrapRegion(Instruction::BinaryOps BinOp,
176                                             const APInt &Other,
177                                             unsigned NoWrapKind);
178
179  /// Returns true if ConstantRange calculations are supported for intrinsic
180  /// with \p IntrinsicID.
181  static bool isIntrinsicSupported(Intrinsic::ID IntrinsicID);
182
183  /// Compute range of intrinsic result for the given operand ranges.
184  static ConstantRange intrinsic(Intrinsic::ID IntrinsicID,
185                                 ArrayRef<ConstantRange> Ops);
186
187  /// Set up \p Pred and \p RHS such that
188  /// ConstantRange::makeExactICmpRegion(Pred, RHS) == *this.  Return true if
189  /// successful.
190  bool getEquivalentICmp(CmpInst::Predicate &Pred, APInt &RHS) const;
191
192  /// Set up \p Pred, \p RHS and \p Offset such that (V + Offset) Pred RHS
193  /// is true iff V is in the range. Prefers using Offset == 0 if possible.
194  void
195  getEquivalentICmp(CmpInst::Predicate &Pred, APInt &RHS, APInt &Offset) const;
196
197  /// Return the lower value for this range.
198  const APInt &getLower() const { return Lower; }
199
200  /// Return the upper value for this range.
201  const APInt &getUpper() const { return Upper; }
202
203  /// Get the bit width of this ConstantRange.
204  uint32_t getBitWidth() const { return Lower.getBitWidth(); }
205
206  /// Return true if this set contains all of the elements possible
207  /// for this data-type.
208  bool isFullSet() const;
209
210  /// Return true if this set contains no members.
211  bool isEmptySet() const;
212
213  /// Return true if this set wraps around the unsigned domain. Special cases:
214  ///  * Empty set: Not wrapped.
215  ///  * Full set: Not wrapped.
216  ///  * [X, 0) == [X, Max]: Not wrapped.
217  bool isWrappedSet() const;
218
219  /// Return true if the exclusive upper bound wraps around the unsigned
220  /// domain. Special cases:
221  ///  * Empty set: Not wrapped.
222  ///  * Full set: Not wrapped.
223  ///  * [X, 0): Wrapped.
224  bool isUpperWrapped() const;
225
226  /// Return true if this set wraps around the signed domain. Special cases:
227  ///  * Empty set: Not wrapped.
228  ///  * Full set: Not wrapped.
229  ///  * [X, SignedMin) == [X, SignedMax]: Not wrapped.
230  bool isSignWrappedSet() const;
231
232  /// Return true if the (exclusive) upper bound wraps around the signed
233  /// domain. Special cases:
234  ///  * Empty set: Not wrapped.
235  ///  * Full set: Not wrapped.
236  ///  * [X, SignedMin): Wrapped.
237  bool isUpperSignWrapped() const;
238
239  /// Return true if the specified value is in the set.
240  bool contains(const APInt &Val) const;
241
242  /// Return true if the other range is a subset of this one.
243  bool contains(const ConstantRange &CR) const;
244
245  /// If this set contains a single element, return it, otherwise return null.
246  const APInt *getSingleElement() const {
247    if (Upper == Lower + 1)
248      return &Lower;
249    return nullptr;
250  }
251
252  /// If this set contains all but a single element, return it, otherwise return
253  /// null.
254  const APInt *getSingleMissingElement() const {
255    if (Lower == Upper + 1)
256      return &Upper;
257    return nullptr;
258  }
259
260  /// Return true if this set contains exactly one member.
261  bool isSingleElement() const { return getSingleElement() != nullptr; }
262
263  /// Compare set size of this range with the range CR.
264  bool isSizeStrictlySmallerThan(const ConstantRange &CR) const;
265
266  /// Compare set size of this range with Value.
267  bool isSizeLargerThan(uint64_t MaxSize) const;
268
269  /// Return true if all values in this range are negative.
270  bool isAllNegative() const;
271
272  /// Return true if all values in this range are non-negative.
273  bool isAllNonNegative() const;
274
275  /// Return the largest unsigned value contained in the ConstantRange.
276  APInt getUnsignedMax() const;
277
278  /// Return the smallest unsigned value contained in the ConstantRange.
279  APInt getUnsignedMin() const;
280
281  /// Return the largest signed value contained in the ConstantRange.
282  APInt getSignedMax() const;
283
284  /// Return the smallest signed value contained in the ConstantRange.
285  APInt getSignedMin() const;
286
287  /// Return true if this range is equal to another range.
288  bool operator==(const ConstantRange &CR) const {
289    return Lower == CR.Lower && Upper == CR.Upper;
290  }
291  bool operator!=(const ConstantRange &CR) const {
292    return !operator==(CR);
293  }
294
295  /// Compute the maximal number of active bits needed to represent every value
296  /// in this range.
297  unsigned getActiveBits() const;
298
299  /// Compute the maximal number of bits needed to represent every value
300  /// in this signed range.
301  unsigned getMinSignedBits() const;
302
303  /// Subtract the specified constant from the endpoints of this constant range.
304  ConstantRange subtract(const APInt &CI) const;
305
306  /// Subtract the specified range from this range (aka relative complement of
307  /// the sets).
308  ConstantRange difference(const ConstantRange &CR) const;
309
310  /// If represented precisely, the result of some range operations may consist
311  /// of multiple disjoint ranges. As only a single range may be returned, any
312  /// range covering these disjoint ranges constitutes a valid result, but some
313  /// may be more useful than others depending on context. The preferred range
314  /// type specifies whether a range that is non-wrapping in the unsigned or
315  /// signed domain, or has the smallest size, is preferred. If a signedness is
316  /// preferred but all ranges are non-wrapping or all wrapping, then the
317  /// smallest set size is preferred. If there are multiple smallest sets, any
318  /// one of them may be returned.
319  enum PreferredRangeType { Smallest, Unsigned, Signed };
320
321  /// Return the range that results from the intersection of this range with
322  /// another range. If the intersection is disjoint, such that two results
323  /// are possible, the preferred range is determined by the PreferredRangeType.
324  ConstantRange intersectWith(const ConstantRange &CR,
325                              PreferredRangeType Type = Smallest) const;
326
327  /// Return the range that results from the union of this range
328  /// with another range.  The resultant range is guaranteed to include the
329  /// elements of both sets, but may contain more.  For example, [3, 9) union
330  /// [12,15) is [3, 15), which includes 9, 10, and 11, which were not included
331  /// in either set before.
332  ConstantRange unionWith(const ConstantRange &CR,
333                          PreferredRangeType Type = Smallest) const;
334
335  /// Intersect the two ranges and return the result if it can be represented
336  /// exactly, otherwise return std::nullopt.
337  std::optional<ConstantRange>
338  exactIntersectWith(const ConstantRange &CR) const;
339
340  /// Union the two ranges and return the result if it can be represented
341  /// exactly, otherwise return std::nullopt.
342  std::optional<ConstantRange> exactUnionWith(const ConstantRange &CR) const;
343
344  /// Return a new range representing the possible values resulting
345  /// from an application of the specified cast operator to this range. \p
346  /// BitWidth is the target bitwidth of the cast.  For casts which don't
347  /// change bitwidth, it must be the same as the source bitwidth.  For casts
348  /// which do change bitwidth, the bitwidth must be consistent with the
349  /// requested cast and source bitwidth.
350  ConstantRange castOp(Instruction::CastOps CastOp,
351                       uint32_t BitWidth) const;
352
353  /// Return a new range in the specified integer type, which must
354  /// be strictly larger than the current type.  The returned range will
355  /// correspond to the possible range of values if the source range had been
356  /// zero extended to BitWidth.
357  ConstantRange zeroExtend(uint32_t BitWidth) const;
358
359  /// Return a new range in the specified integer type, which must
360  /// be strictly larger than the current type.  The returned range will
361  /// correspond to the possible range of values if the source range had been
362  /// sign extended to BitWidth.
363  ConstantRange signExtend(uint32_t BitWidth) const;
364
365  /// Return a new range in the specified integer type, which must be
366  /// strictly smaller than the current type.  The returned range will
367  /// correspond to the possible range of values if the source range had been
368  /// truncated to the specified type.
369  ConstantRange truncate(uint32_t BitWidth) const;
370
371  /// Make this range have the bit width given by \p BitWidth. The
372  /// value is zero extended, truncated, or left alone to make it that width.
373  ConstantRange zextOrTrunc(uint32_t BitWidth) const;
374
375  /// Make this range have the bit width given by \p BitWidth. The
376  /// value is sign extended, truncated, or left alone to make it that width.
377  ConstantRange sextOrTrunc(uint32_t BitWidth) const;
378
379  /// Return a new range representing the possible values resulting
380  /// from an application of the specified binary operator to an left hand side
381  /// of this range and a right hand side of \p Other.
382  ConstantRange binaryOp(Instruction::BinaryOps BinOp,
383                         const ConstantRange &Other) const;
384
385  /// Return a new range representing the possible values resulting
386  /// from an application of the specified overflowing binary operator to a
387  /// left hand side of this range and a right hand side of \p Other given
388  /// the provided knowledge about lack of wrapping \p NoWrapKind.
389  ConstantRange overflowingBinaryOp(Instruction::BinaryOps BinOp,
390                                    const ConstantRange &Other,
391                                    unsigned NoWrapKind) const;
392
393  /// Return a new range representing the possible values resulting
394  /// from an addition of a value in this range and a value in \p Other.
395  ConstantRange add(const ConstantRange &Other) const;
396
397  /// Return a new range representing the possible values resulting
398  /// from an addition with wrap type \p NoWrapKind of a value in this
399  /// range and a value in \p Other.
400  /// If the result range is disjoint, the preferred range is determined by the
401  /// \p PreferredRangeType.
402  ConstantRange addWithNoWrap(const ConstantRange &Other, unsigned NoWrapKind,
403                              PreferredRangeType RangeType = Smallest) const;
404
405  /// Return a new range representing the possible values resulting
406  /// from a subtraction of a value in this range and a value in \p Other.
407  ConstantRange sub(const ConstantRange &Other) const;
408
409  /// Return a new range representing the possible values resulting
410  /// from an subtraction with wrap type \p NoWrapKind of a value in this
411  /// range and a value in \p Other.
412  /// If the result range is disjoint, the preferred range is determined by the
413  /// \p PreferredRangeType.
414  ConstantRange subWithNoWrap(const ConstantRange &Other, unsigned NoWrapKind,
415                              PreferredRangeType RangeType = Smallest) const;
416
417  /// Return a new range representing the possible values resulting
418  /// from a multiplication of a value in this range and a value in \p Other,
419  /// treating both this and \p Other as unsigned ranges.
420  ConstantRange multiply(const ConstantRange &Other) const;
421
422  /// Return range of possible values for a signed multiplication of this and
423  /// \p Other. However, if overflow is possible always return a full range
424  /// rather than trying to determine a more precise result.
425  ConstantRange smul_fast(const ConstantRange &Other) const;
426
427  /// Return a new range representing the possible values resulting
428  /// from a signed maximum of a value in this range and a value in \p Other.
429  ConstantRange smax(const ConstantRange &Other) const;
430
431  /// Return a new range representing the possible values resulting
432  /// from an unsigned maximum of a value in this range and a value in \p Other.
433  ConstantRange umax(const ConstantRange &Other) const;
434
435  /// Return a new range representing the possible values resulting
436  /// from a signed minimum of a value in this range and a value in \p Other.
437  ConstantRange smin(const ConstantRange &Other) const;
438
439  /// Return a new range representing the possible values resulting
440  /// from an unsigned minimum of a value in this range and a value in \p Other.
441  ConstantRange umin(const ConstantRange &Other) const;
442
443  /// Return a new range representing the possible values resulting
444  /// from an unsigned division of a value in this range and a value in
445  /// \p Other.
446  ConstantRange udiv(const ConstantRange &Other) const;
447
448  /// Return a new range representing the possible values resulting
449  /// from a signed division of a value in this range and a value in
450  /// \p Other. Division by zero and division of SignedMin by -1 are considered
451  /// undefined behavior, in line with IR, and do not contribute towards the
452  /// result.
453  ConstantRange sdiv(const ConstantRange &Other) const;
454
455  /// Return a new range representing the possible values resulting
456  /// from an unsigned remainder operation of a value in this range and a
457  /// value in \p Other.
458  ConstantRange urem(const ConstantRange &Other) const;
459
460  /// Return a new range representing the possible values resulting
461  /// from a signed remainder operation of a value in this range and a
462  /// value in \p Other.
463  ConstantRange srem(const ConstantRange &Other) const;
464
465  /// Return a new range representing the possible values resulting from
466  /// a binary-xor of a value in this range by an all-one value,
467  /// aka bitwise complement operation.
468  ConstantRange binaryNot() const;
469
470  /// Return a new range representing the possible values resulting
471  /// from a binary-and of a value in this range by a value in \p Other.
472  ConstantRange binaryAnd(const ConstantRange &Other) const;
473
474  /// Return a new range representing the possible values resulting
475  /// from a binary-or of a value in this range by a value in \p Other.
476  ConstantRange binaryOr(const ConstantRange &Other) const;
477
478  /// Return a new range representing the possible values resulting
479  /// from a binary-xor of a value in this range by a value in \p Other.
480  ConstantRange binaryXor(const ConstantRange &Other) const;
481
482  /// Return a new range representing the possible values resulting
483  /// from a left shift of a value in this range by a value in \p Other.
484  /// TODO: This isn't fully implemented yet.
485  ConstantRange shl(const ConstantRange &Other) const;
486
487  /// Return a new range representing the possible values resulting from a
488  /// logical right shift of a value in this range and a value in \p Other.
489  ConstantRange lshr(const ConstantRange &Other) const;
490
491  /// Return a new range representing the possible values resulting from a
492  /// arithmetic right shift of a value in this range and a value in \p Other.
493  ConstantRange ashr(const ConstantRange &Other) const;
494
495  /// Perform an unsigned saturating addition of two constant ranges.
496  ConstantRange uadd_sat(const ConstantRange &Other) const;
497
498  /// Perform a signed saturating addition of two constant ranges.
499  ConstantRange sadd_sat(const ConstantRange &Other) const;
500
501  /// Perform an unsigned saturating subtraction of two constant ranges.
502  ConstantRange usub_sat(const ConstantRange &Other) const;
503
504  /// Perform a signed saturating subtraction of two constant ranges.
505  ConstantRange ssub_sat(const ConstantRange &Other) const;
506
507  /// Perform an unsigned saturating multiplication of two constant ranges.
508  ConstantRange umul_sat(const ConstantRange &Other) const;
509
510  /// Perform a signed saturating multiplication of two constant ranges.
511  ConstantRange smul_sat(const ConstantRange &Other) const;
512
513  /// Perform an unsigned saturating left shift of this constant range by a
514  /// value in \p Other.
515  ConstantRange ushl_sat(const ConstantRange &Other) const;
516
517  /// Perform a signed saturating left shift of this constant range by a
518  /// value in \p Other.
519  ConstantRange sshl_sat(const ConstantRange &Other) const;
520
521  /// Return a new range that is the logical not of the current set.
522  ConstantRange inverse() const;
523
524  /// Calculate absolute value range. If the original range contains signed
525  /// min, then the resulting range will contain signed min if and only if
526  /// \p IntMinIsPoison is false.
527  ConstantRange abs(bool IntMinIsPoison = false) const;
528
529  /// Calculate ctlz range. If \p ZeroIsPoison is set, the range is computed
530  /// ignoring a possible zero value contained in the input range.
531  ConstantRange ctlz(bool ZeroIsPoison = false) const;
532
533  /// Calculate cttz range. If \p ZeroIsPoison is set, the range is computed
534  /// ignoring a possible zero value contained in the input range.
535  ConstantRange cttz(bool ZeroIsPoison = false) const;
536
537  /// Calculate ctpop range.
538  ConstantRange ctpop() const;
539
540  /// Represents whether an operation on the given constant range is known to
541  /// always or never overflow.
542  enum class OverflowResult {
543    /// Always overflows in the direction of signed/unsigned min value.
544    AlwaysOverflowsLow,
545    /// Always overflows in the direction of signed/unsigned max value.
546    AlwaysOverflowsHigh,
547    /// May or may not overflow.
548    MayOverflow,
549    /// Never overflows.
550    NeverOverflows,
551  };
552
553  /// Return whether unsigned add of the two ranges always/never overflows.
554  OverflowResult unsignedAddMayOverflow(const ConstantRange &Other) const;
555
556  /// Return whether signed add of the two ranges always/never overflows.
557  OverflowResult signedAddMayOverflow(const ConstantRange &Other) const;
558
559  /// Return whether unsigned sub of the two ranges always/never overflows.
560  OverflowResult unsignedSubMayOverflow(const ConstantRange &Other) const;
561
562  /// Return whether signed sub of the two ranges always/never overflows.
563  OverflowResult signedSubMayOverflow(const ConstantRange &Other) const;
564
565  /// Return whether unsigned mul of the two ranges always/never overflows.
566  OverflowResult unsignedMulMayOverflow(const ConstantRange &Other) const;
567
568  /// Return known bits for values in this range.
569  KnownBits toKnownBits() const;
570
571  /// Print out the bounds to a stream.
572  void print(raw_ostream &OS) const;
573
574  /// Allow printing from a debugger easily.
575  void dump() const;
576};
577
578inline raw_ostream &operator<<(raw_ostream &OS, const ConstantRange &CR) {
579  CR.print(OS);
580  return OS;
581}
582
583/// Parse out a conservative ConstantRange from !range metadata.
584///
585/// E.g. if RangeMD is !{i32 0, i32 10, i32 15, i32 20} then return [0, 20).
586ConstantRange getConstantRangeFromMetadata(const MDNode &RangeMD);
587
588} // end namespace llvm
589
590#endif // LLVM_IR_CONSTANTRANGE_H
591