1//===- llvm/Analysis/ValueTracking.h - Walk computations --------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains routines that help analyze properties that chains of
10// computations have.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_ANALYSIS_VALUETRACKING_H
15#define LLVM_ANALYSIS_VALUETRACKING_H
16
17#include "llvm/ADT/ArrayRef.h"
18#include "llvm/Analysis/SimplifyQuery.h"
19#include "llvm/Analysis/WithCache.h"
20#include "llvm/IR/Constants.h"
21#include "llvm/IR/DataLayout.h"
22#include "llvm/IR/FMF.h"
23#include "llvm/IR/InstrTypes.h"
24#include "llvm/IR/Intrinsics.h"
25#include <cassert>
26#include <cstdint>
27
28namespace llvm {
29
30class Operator;
31class AddOperator;
32class AllocaInst;
33class APInt;
34class AssumptionCache;
35class DominatorTree;
36class GEPOperator;
37class LoadInst;
38class WithOverflowInst;
39struct KnownBits;
40class Loop;
41class LoopInfo;
42class MDNode;
43class StringRef;
44class TargetLibraryInfo;
45class Value;
46
47constexpr unsigned MaxAnalysisRecursionDepth = 6;
48
49/// Determine which bits of V are known to be either zero or one and return
50/// them in the KnownZero/KnownOne bit sets.
51///
52/// This function is defined on values with integer type, values with pointer
53/// type, and vectors of integers.  In the case
54/// where V is a vector, the known zero and known one values are the
55/// same width as the vector element, and the bit is set only if it is true
56/// for all of the elements in the vector.
57void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL,
58                      unsigned Depth = 0, AssumptionCache *AC = nullptr,
59                      const Instruction *CxtI = nullptr,
60                      const DominatorTree *DT = nullptr,
61                      bool UseInstrInfo = true);
62
63/// Returns the known bits rather than passing by reference.
64KnownBits computeKnownBits(const Value *V, const DataLayout &DL,
65                           unsigned Depth = 0, AssumptionCache *AC = nullptr,
66                           const Instruction *CxtI = nullptr,
67                           const DominatorTree *DT = nullptr,
68                           bool UseInstrInfo = true);
69
70/// Returns the known bits rather than passing by reference.
71KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
72                           const DataLayout &DL, unsigned Depth = 0,
73                           AssumptionCache *AC = nullptr,
74                           const Instruction *CxtI = nullptr,
75                           const DominatorTree *DT = nullptr,
76                           bool UseInstrInfo = true);
77
78KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
79                           unsigned Depth, const SimplifyQuery &Q);
80
81KnownBits computeKnownBits(const Value *V, unsigned Depth,
82                           const SimplifyQuery &Q);
83
84void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
85                      const SimplifyQuery &Q);
86
87/// Compute known bits from the range metadata.
88/// \p KnownZero the set of bits that are known to be zero
89/// \p KnownOne the set of bits that are known to be one
90void computeKnownBitsFromRangeMetadata(const MDNode &Ranges, KnownBits &Known);
91
92/// Merge bits known from context-dependent facts into Known.
93void computeKnownBitsFromContext(const Value *V, KnownBits &Known,
94                                 unsigned Depth, const SimplifyQuery &Q);
95
96/// Using KnownBits LHS/RHS produce the known bits for logic op (and/xor/or).
97KnownBits analyzeKnownBitsFromAndXorOr(const Operator *I,
98                                       const KnownBits &KnownLHS,
99                                       const KnownBits &KnownRHS,
100                                       unsigned Depth, const SimplifyQuery &SQ);
101
102/// Return true if LHS and RHS have no common bits set.
103bool haveNoCommonBitsSet(const WithCache<const Value *> &LHSCache,
104                         const WithCache<const Value *> &RHSCache,
105                         const SimplifyQuery &SQ);
106
107/// Return true if the given value is known to have exactly one bit set when
108/// defined. For vectors return true if every element is known to be a power
109/// of two when defined. Supports values with integer or pointer type and
110/// vectors of integers. If 'OrZero' is set, then return true if the given
111/// value is either a power of two or zero.
112bool isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
113                            bool OrZero = false, unsigned Depth = 0,
114                            AssumptionCache *AC = nullptr,
115                            const Instruction *CxtI = nullptr,
116                            const DominatorTree *DT = nullptr,
117                            bool UseInstrInfo = true);
118
119bool isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI);
120
121/// Return true if the given value is known to be non-zero when defined. For
122/// vectors, return true if every element is known to be non-zero when
123/// defined. For pointers, if the context instruction and dominator tree are
124/// specified, perform context-sensitive analysis and return true if the
125/// pointer couldn't possibly be null at the specified instruction.
126/// Supports values with integer or pointer type and vectors of integers.
127bool isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth = 0,
128                    AssumptionCache *AC = nullptr,
129                    const Instruction *CxtI = nullptr,
130                    const DominatorTree *DT = nullptr,
131                    bool UseInstrInfo = true);
132
133/// Return true if the two given values are negation.
134/// Currently can recoginze Value pair:
135/// 1: <X, Y> if X = sub (0, Y) or Y = sub (0, X)
136/// 2: <X, Y> if X = sub (A, B) and Y = sub (B, A)
137bool isKnownNegation(const Value *X, const Value *Y, bool NeedNSW = false);
138
139/// Returns true if the give value is known to be non-negative.
140bool isKnownNonNegative(const Value *V, const SimplifyQuery &SQ,
141                        unsigned Depth = 0);
142
143/// Returns true if the given value is known be positive (i.e. non-negative
144/// and non-zero).
145bool isKnownPositive(const Value *V, const SimplifyQuery &SQ,
146                     unsigned Depth = 0);
147
148/// Returns true if the given value is known be negative (i.e. non-positive
149/// and non-zero).
150bool isKnownNegative(const Value *V, const SimplifyQuery &DL,
151                     unsigned Depth = 0);
152
153/// Return true if the given values are known to be non-equal when defined.
154/// Supports scalar integer types only.
155bool isKnownNonEqual(const Value *V1, const Value *V2, const DataLayout &DL,
156                     AssumptionCache *AC = nullptr,
157                     const Instruction *CxtI = nullptr,
158                     const DominatorTree *DT = nullptr,
159                     bool UseInstrInfo = true);
160
161/// Return true if 'V & Mask' is known to be zero. We use this predicate to
162/// simplify operations downstream. Mask is known to be zero for bits that V
163/// cannot have.
164///
165/// This function is defined on values with integer type, values with pointer
166/// type, and vectors of integers.  In the case
167/// where V is a vector, the mask, known zero, and known one values are the
168/// same width as the vector element, and the bit is set only if it is true
169/// for all of the elements in the vector.
170bool MaskedValueIsZero(const Value *V, const APInt &Mask,
171                       const SimplifyQuery &DL, unsigned Depth = 0);
172
173/// Return the number of times the sign bit of the register is replicated into
174/// the other bits. We know that at least 1 bit is always equal to the sign
175/// bit (itself), but other cases can give us information. For example,
176/// immediately after an "ashr X, 2", we know that the top 3 bits are all
177/// equal to each other, so we return 3. For vectors, return the number of
178/// sign bits for the vector element with the mininum number of known sign
179/// bits.
180unsigned ComputeNumSignBits(const Value *Op, const DataLayout &DL,
181                            unsigned Depth = 0, AssumptionCache *AC = nullptr,
182                            const Instruction *CxtI = nullptr,
183                            const DominatorTree *DT = nullptr,
184                            bool UseInstrInfo = true);
185
186/// Get the upper bound on bit size for this Value \p Op as a signed integer.
187/// i.e.  x == sext(trunc(x to MaxSignificantBits) to bitwidth(x)).
188/// Similar to the APInt::getSignificantBits function.
189unsigned ComputeMaxSignificantBits(const Value *Op, const DataLayout &DL,
190                                   unsigned Depth = 0,
191                                   AssumptionCache *AC = nullptr,
192                                   const Instruction *CxtI = nullptr,
193                                   const DominatorTree *DT = nullptr);
194
195/// Map a call instruction to an intrinsic ID.  Libcalls which have equivalent
196/// intrinsics are treated as-if they were intrinsics.
197Intrinsic::ID getIntrinsicForCallSite(const CallBase &CB,
198                                      const TargetLibraryInfo *TLI);
199
200/// Returns a pair of values, which if passed to llvm.is.fpclass, returns the
201/// same result as an fcmp with the given operands.
202///
203/// If \p LookThroughSrc is true, consider the input value when computing the
204/// mask.
205///
206/// If \p LookThroughSrc is false, ignore the source value (i.e. the first pair
207/// element will always be LHS.
208std::pair<Value *, FPClassTest> fcmpToClassTest(CmpInst::Predicate Pred,
209                                                const Function &F, Value *LHS,
210                                                Value *RHS,
211                                                bool LookThroughSrc = true);
212std::pair<Value *, FPClassTest> fcmpToClassTest(CmpInst::Predicate Pred,
213                                                const Function &F, Value *LHS,
214                                                const APFloat *ConstRHS,
215                                                bool LookThroughSrc = true);
216
217struct KnownFPClass {
218  /// Floating-point classes the value could be one of.
219  FPClassTest KnownFPClasses = fcAllFlags;
220
221  /// std::nullopt if the sign bit is unknown, true if the sign bit is
222  /// definitely set or false if the sign bit is definitely unset.
223  std::optional<bool> SignBit;
224
225  /// Return true if it's known this can never be one of the mask entries.
226  bool isKnownNever(FPClassTest Mask) const {
227    return (KnownFPClasses & Mask) == fcNone;
228  }
229
230  bool isUnknown() const {
231    return KnownFPClasses == fcAllFlags && !SignBit;
232  }
233
234  /// Return true if it's known this can never be a nan.
235  bool isKnownNeverNaN() const {
236    return isKnownNever(fcNan);
237  }
238
239  /// Return true if it's known this can never be an infinity.
240  bool isKnownNeverInfinity() const {
241    return isKnownNever(fcInf);
242  }
243
244  /// Return true if it's known this can never be +infinity.
245  bool isKnownNeverPosInfinity() const {
246    return isKnownNever(fcPosInf);
247  }
248
249  /// Return true if it's known this can never be -infinity.
250  bool isKnownNeverNegInfinity() const {
251    return isKnownNever(fcNegInf);
252  }
253
254  /// Return true if it's known this can never be a subnormal
255  bool isKnownNeverSubnormal() const {
256    return isKnownNever(fcSubnormal);
257  }
258
259  /// Return true if it's known this can never be a positive subnormal
260  bool isKnownNeverPosSubnormal() const {
261    return isKnownNever(fcPosSubnormal);
262  }
263
264  /// Return true if it's known this can never be a negative subnormal
265  bool isKnownNeverNegSubnormal() const {
266    return isKnownNever(fcNegSubnormal);
267  }
268
269  /// Return true if it's known this can never be a zero. This means a literal
270  /// [+-]0, and does not include denormal inputs implicitly treated as [+-]0.
271  bool isKnownNeverZero() const {
272    return isKnownNever(fcZero);
273  }
274
275  /// Return true if it's known this can never be a literal positive zero.
276  bool isKnownNeverPosZero() const {
277    return isKnownNever(fcPosZero);
278  }
279
280  /// Return true if it's known this can never be a negative zero. This means a
281  /// literal -0 and does not include denormal inputs implicitly treated as -0.
282  bool isKnownNeverNegZero() const {
283    return isKnownNever(fcNegZero);
284  }
285
286  /// Return true if it's know this can never be interpreted as a zero. This
287  /// extends isKnownNeverZero to cover the case where the assumed
288  /// floating-point mode for the function interprets denormals as zero.
289  bool isKnownNeverLogicalZero(const Function &F, Type *Ty) const;
290
291  /// Return true if it's know this can never be interpreted as a negative zero.
292  bool isKnownNeverLogicalNegZero(const Function &F, Type *Ty) const;
293
294  /// Return true if it's know this can never be interpreted as a positive zero.
295  bool isKnownNeverLogicalPosZero(const Function &F, Type *Ty) const;
296
297  static constexpr FPClassTest OrderedLessThanZeroMask =
298      fcNegSubnormal | fcNegNormal | fcNegInf;
299  static constexpr FPClassTest OrderedGreaterThanZeroMask =
300      fcPosSubnormal | fcPosNormal | fcPosInf;
301
302  /// Return true if we can prove that the analyzed floating-point value is
303  /// either NaN or never less than -0.0.
304  ///
305  ///      NaN --> true
306  ///       +0 --> true
307  ///       -0 --> true
308  ///   x > +0 --> true
309  ///   x < -0 --> false
310  bool cannotBeOrderedLessThanZero() const {
311    return isKnownNever(OrderedLessThanZeroMask);
312  }
313
314  /// Return true if we can prove that the analyzed floating-point value is
315  /// either NaN or never greater than -0.0.
316  ///      NaN --> true
317  ///       +0 --> true
318  ///       -0 --> true
319  ///   x > +0 --> false
320  ///   x < -0 --> true
321  bool cannotBeOrderedGreaterThanZero() const {
322    return isKnownNever(OrderedGreaterThanZeroMask);
323  }
324
325  KnownFPClass &operator|=(const KnownFPClass &RHS) {
326    KnownFPClasses = KnownFPClasses | RHS.KnownFPClasses;
327
328    if (SignBit != RHS.SignBit)
329      SignBit = std::nullopt;
330    return *this;
331  }
332
333  void knownNot(FPClassTest RuleOut) {
334    KnownFPClasses = KnownFPClasses & ~RuleOut;
335  }
336
337  void fneg() {
338    KnownFPClasses = llvm::fneg(KnownFPClasses);
339    if (SignBit)
340      SignBit = !*SignBit;
341  }
342
343  void fabs() {
344    if (KnownFPClasses & fcNegZero)
345      KnownFPClasses |= fcPosZero;
346
347    if (KnownFPClasses & fcNegInf)
348      KnownFPClasses |= fcPosInf;
349
350    if (KnownFPClasses & fcNegSubnormal)
351      KnownFPClasses |= fcPosSubnormal;
352
353    if (KnownFPClasses & fcNegNormal)
354      KnownFPClasses |= fcPosNormal;
355
356    signBitMustBeZero();
357  }
358
359  /// Return true if the sign bit must be 0, ignoring the sign of nans.
360  bool signBitIsZeroOrNaN() const {
361    return isKnownNever(fcNegative);
362  }
363
364  /// Assume the sign bit is zero.
365  void signBitMustBeZero() {
366    KnownFPClasses &= (fcPositive | fcNan);
367    SignBit = false;
368  }
369
370  void copysign(const KnownFPClass &Sign) {
371    // Don't know anything about the sign of the source. Expand the possible set
372    // to its opposite sign pair.
373    if (KnownFPClasses & fcZero)
374      KnownFPClasses |= fcZero;
375    if (KnownFPClasses & fcSubnormal)
376      KnownFPClasses |= fcSubnormal;
377    if (KnownFPClasses & fcNormal)
378      KnownFPClasses |= fcNormal;
379    if (KnownFPClasses & fcInf)
380      KnownFPClasses |= fcInf;
381
382    // Sign bit is exactly preserved even for nans.
383    SignBit = Sign.SignBit;
384
385    // Clear sign bits based on the input sign mask.
386    if (Sign.isKnownNever(fcPositive | fcNan) || (SignBit && *SignBit))
387      KnownFPClasses &= (fcNegative | fcNan);
388    if (Sign.isKnownNever(fcNegative | fcNan) || (SignBit && !*SignBit))
389      KnownFPClasses &= (fcPositive | fcNan);
390  }
391
392  // Propagate knowledge that a non-NaN source implies the result can also not
393  // be a NaN. For unconstrained operations, signaling nans are not guaranteed
394  // to be quieted but cannot be introduced.
395  void propagateNaN(const KnownFPClass &Src, bool PreserveSign = false) {
396    if (Src.isKnownNever(fcNan)) {
397      knownNot(fcNan);
398      if (PreserveSign)
399        SignBit = Src.SignBit;
400    } else if (Src.isKnownNever(fcSNan))
401      knownNot(fcSNan);
402  }
403
404  /// Propagate knowledge from a source value that could be a denormal or
405  /// zero. We have to be conservative since output flushing is not guaranteed,
406  /// so known-never-zero may not hold.
407  ///
408  /// This assumes a copy-like operation and will replace any currently known
409  /// information.
410  void propagateDenormal(const KnownFPClass &Src, const Function &F, Type *Ty);
411
412  /// Report known classes if \p Src is evaluated through a potentially
413  /// canonicalizing operation. We can assume signaling nans will not be
414  /// introduced, but cannot assume a denormal will be flushed under FTZ/DAZ.
415  ///
416  /// This assumes a copy-like operation and will replace any currently known
417  /// information.
418  void propagateCanonicalizingSrc(const KnownFPClass &Src, const Function &F,
419                                  Type *Ty);
420
421  void resetAll() { *this = KnownFPClass(); }
422};
423
424inline KnownFPClass operator|(KnownFPClass LHS, const KnownFPClass &RHS) {
425  LHS |= RHS;
426  return LHS;
427}
428
429inline KnownFPClass operator|(const KnownFPClass &LHS, KnownFPClass &&RHS) {
430  RHS |= LHS;
431  return std::move(RHS);
432}
433
434/// Determine which floating-point classes are valid for \p V, and return them
435/// in KnownFPClass bit sets.
436///
437/// This function is defined on values with floating-point type, values vectors
438/// of floating-point type, and arrays of floating-point type.
439
440/// \p InterestedClasses is a compile time optimization hint for which floating
441/// point classes should be queried. Queries not specified in \p
442/// InterestedClasses should be reliable if they are determined during the
443/// query.
444KnownFPClass computeKnownFPClass(
445    const Value *V, const APInt &DemandedElts, const DataLayout &DL,
446    FPClassTest InterestedClasses = fcAllFlags, unsigned Depth = 0,
447    const TargetLibraryInfo *TLI = nullptr, AssumptionCache *AC = nullptr,
448    const Instruction *CxtI = nullptr, const DominatorTree *DT = nullptr,
449    bool UseInstrInfo = true);
450
451KnownFPClass computeKnownFPClass(
452    const Value *V, const DataLayout &DL,
453    FPClassTest InterestedClasses = fcAllFlags, unsigned Depth = 0,
454    const TargetLibraryInfo *TLI = nullptr, AssumptionCache *AC = nullptr,
455    const Instruction *CxtI = nullptr, const DominatorTree *DT = nullptr,
456    bool UseInstrInfo = true);
457
458/// Wrapper to account for known fast math flags at the use instruction.
459inline KnownFPClass computeKnownFPClass(
460    const Value *V, FastMathFlags FMF, const DataLayout &DL,
461    FPClassTest InterestedClasses = fcAllFlags, unsigned Depth = 0,
462    const TargetLibraryInfo *TLI = nullptr, AssumptionCache *AC = nullptr,
463    const Instruction *CxtI = nullptr, const DominatorTree *DT = nullptr,
464    bool UseInstrInfo = true) {
465  if (FMF.noNaNs())
466    InterestedClasses &= ~fcNan;
467  if (FMF.noInfs())
468    InterestedClasses &= ~fcInf;
469
470  KnownFPClass Result = computeKnownFPClass(V, DL, InterestedClasses, Depth,
471                                            TLI, AC, CxtI, DT, UseInstrInfo);
472
473  if (FMF.noNaNs())
474    Result.KnownFPClasses &= ~fcNan;
475  if (FMF.noInfs())
476    Result.KnownFPClasses &= ~fcInf;
477  return Result;
478}
479
480/// Return true if we can prove that the specified FP value is never equal to
481/// -0.0. Users should use caution when considering PreserveSign
482/// denormal-fp-math.
483inline bool cannotBeNegativeZero(const Value *V, const DataLayout &DL,
484                                 const TargetLibraryInfo *TLI = nullptr,
485                                 unsigned Depth = 0,
486                                 AssumptionCache *AC = nullptr,
487                                 const Instruction *CtxI = nullptr,
488                                 const DominatorTree *DT = nullptr,
489                                 bool UseInstrInfo = true) {
490  KnownFPClass Known = computeKnownFPClass(V, DL, fcNegZero, Depth, TLI, AC,
491                                           CtxI, DT, UseInstrInfo);
492  return Known.isKnownNeverNegZero();
493}
494
495/// Return true if we can prove that the specified FP value is either NaN or
496/// never less than -0.0.
497///
498///      NaN --> true
499///       +0 --> true
500///       -0 --> true
501///   x > +0 --> true
502///   x < -0 --> false
503inline bool cannotBeOrderedLessThanZero(const Value *V, const DataLayout &DL,
504                                        const TargetLibraryInfo *TLI = nullptr,
505                                        unsigned Depth = 0,
506                                        AssumptionCache *AC = nullptr,
507                                        const Instruction *CtxI = nullptr,
508                                        const DominatorTree *DT = nullptr,
509                                        bool UseInstrInfo = true) {
510  KnownFPClass Known =
511      computeKnownFPClass(V, DL, KnownFPClass::OrderedLessThanZeroMask, Depth,
512                          TLI, AC, CtxI, DT, UseInstrInfo);
513  return Known.cannotBeOrderedLessThanZero();
514}
515
516/// Return true if the floating-point scalar value is not an infinity or if
517/// the floating-point vector value has no infinities. Return false if a value
518/// could ever be infinity.
519inline bool isKnownNeverInfinity(const Value *V, const DataLayout &DL,
520                                 const TargetLibraryInfo *TLI = nullptr,
521                                 unsigned Depth = 0,
522                                 AssumptionCache *AC = nullptr,
523                                 const Instruction *CtxI = nullptr,
524                                 const DominatorTree *DT = nullptr,
525                                 bool UseInstrInfo = true) {
526  KnownFPClass Known = computeKnownFPClass(V, DL, fcInf, Depth, TLI, AC, CtxI,
527                                           DT, UseInstrInfo);
528  return Known.isKnownNeverInfinity();
529}
530
531/// Return true if the floating-point value can never contain a NaN or infinity.
532inline bool isKnownNeverInfOrNaN(
533    const Value *V, const DataLayout &DL, const TargetLibraryInfo *TLI,
534    unsigned Depth = 0, AssumptionCache *AC = nullptr,
535    const Instruction *CtxI = nullptr, const DominatorTree *DT = nullptr,
536    bool UseInstrInfo = true) {
537  KnownFPClass Known = computeKnownFPClass(V, DL, fcInf | fcNan, Depth, TLI, AC,
538                                           CtxI, DT, UseInstrInfo);
539  return Known.isKnownNeverNaN() && Known.isKnownNeverInfinity();
540}
541
542/// Return true if the floating-point scalar value is not a NaN or if the
543/// floating-point vector value has no NaN elements. Return false if a value
544/// could ever be NaN.
545inline bool isKnownNeverNaN(const Value *V, const DataLayout &DL,
546                            const TargetLibraryInfo *TLI, unsigned Depth = 0,
547                            AssumptionCache *AC = nullptr,
548                            const Instruction *CtxI = nullptr,
549                            const DominatorTree *DT = nullptr,
550                            bool UseInstrInfo = true) {
551  KnownFPClass Known = computeKnownFPClass(V, DL, fcNan, Depth, TLI, AC, CtxI,
552                                           DT, UseInstrInfo);
553  return Known.isKnownNeverNaN();
554}
555
556/// Return true if we can prove that the specified FP value's sign bit is 0.
557///
558///      NaN --> true/false (depending on the NaN's sign bit)
559///       +0 --> true
560///       -0 --> false
561///   x > +0 --> true
562///   x < -0 --> false
563bool SignBitMustBeZero(const Value *V, const DataLayout &DL,
564                       const TargetLibraryInfo *TLI);
565
566/// If the specified value can be set by repeating the same byte in memory,
567/// return the i8 value that it is represented with. This is true for all i8
568/// values obviously, but is also true for i32 0, i32 -1, i16 0xF0F0, double
569/// 0.0 etc. If the value can't be handled with a repeated byte store (e.g.
570/// i16 0x1234), return null. If the value is entirely undef and padding,
571/// return undef.
572Value *isBytewiseValue(Value *V, const DataLayout &DL);
573
574/// Given an aggregate and an sequence of indices, see if the scalar value
575/// indexed is already around as a register, for example if it were inserted
576/// directly into the aggregate.
577///
578/// If InsertBefore is not null, this function will duplicate (modified)
579/// insertvalues when a part of a nested struct is extracted.
580Value *FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
581                         Instruction *InsertBefore = nullptr);
582
583/// Analyze the specified pointer to see if it can be expressed as a base
584/// pointer plus a constant offset. Return the base and offset to the caller.
585///
586/// This is a wrapper around Value::stripAndAccumulateConstantOffsets that
587/// creates and later unpacks the required APInt.
588inline Value *GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
589                                               const DataLayout &DL,
590                                               bool AllowNonInbounds = true) {
591  APInt OffsetAPInt(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
592  Value *Base =
593      Ptr->stripAndAccumulateConstantOffsets(DL, OffsetAPInt, AllowNonInbounds);
594
595  Offset = OffsetAPInt.getSExtValue();
596  return Base;
597}
598inline const Value *
599GetPointerBaseWithConstantOffset(const Value *Ptr, int64_t &Offset,
600                                 const DataLayout &DL,
601                                 bool AllowNonInbounds = true) {
602  return GetPointerBaseWithConstantOffset(const_cast<Value *>(Ptr), Offset, DL,
603                                          AllowNonInbounds);
604}
605
606/// Returns true if the GEP is based on a pointer to a string (array of
607// \p CharSize integers) and is indexing into this string.
608bool isGEPBasedOnPointerToString(const GEPOperator *GEP, unsigned CharSize = 8);
609
610/// Represents offset+length into a ConstantDataArray.
611struct ConstantDataArraySlice {
612  /// ConstantDataArray pointer. nullptr indicates a zeroinitializer (a valid
613  /// initializer, it just doesn't fit the ConstantDataArray interface).
614  const ConstantDataArray *Array;
615
616  /// Slice starts at this Offset.
617  uint64_t Offset;
618
619  /// Length of the slice.
620  uint64_t Length;
621
622  /// Moves the Offset and adjusts Length accordingly.
623  void move(uint64_t Delta) {
624    assert(Delta < Length);
625    Offset += Delta;
626    Length -= Delta;
627  }
628
629  /// Convenience accessor for elements in the slice.
630  uint64_t operator[](unsigned I) const {
631    return Array == nullptr ? 0 : Array->getElementAsInteger(I + Offset);
632  }
633};
634
635/// Returns true if the value \p V is a pointer into a ConstantDataArray.
636/// If successful \p Slice will point to a ConstantDataArray info object
637/// with an appropriate offset.
638bool getConstantDataArrayInfo(const Value *V, ConstantDataArraySlice &Slice,
639                              unsigned ElementSize, uint64_t Offset = 0);
640
641/// This function computes the length of a null-terminated C string pointed to
642/// by V. If successful, it returns true and returns the string in Str. If
643/// unsuccessful, it returns false. This does not include the trailing null
644/// character by default. If TrimAtNul is set to false, then this returns any
645/// trailing null characters as well as any other characters that come after
646/// it.
647bool getConstantStringInfo(const Value *V, StringRef &Str,
648                           bool TrimAtNul = true);
649
650/// If we can compute the length of the string pointed to by the specified
651/// pointer, return 'len+1'.  If we can't, return 0.
652uint64_t GetStringLength(const Value *V, unsigned CharSize = 8);
653
654/// This function returns call pointer argument that is considered the same by
655/// aliasing rules. You CAN'T use it to replace one value with another. If
656/// \p MustPreserveNullness is true, the call must preserve the nullness of
657/// the pointer.
658const Value *getArgumentAliasingToReturnedPointer(const CallBase *Call,
659                                                  bool MustPreserveNullness);
660inline Value *getArgumentAliasingToReturnedPointer(CallBase *Call,
661                                                   bool MustPreserveNullness) {
662  return const_cast<Value *>(getArgumentAliasingToReturnedPointer(
663      const_cast<const CallBase *>(Call), MustPreserveNullness));
664}
665
666/// {launder,strip}.invariant.group returns pointer that aliases its argument,
667/// and it only captures pointer by returning it.
668/// These intrinsics are not marked as nocapture, because returning is
669/// considered as capture. The arguments are not marked as returned neither,
670/// because it would make it useless. If \p MustPreserveNullness is true,
671/// the intrinsic must preserve the nullness of the pointer.
672bool isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
673    const CallBase *Call, bool MustPreserveNullness);
674
675/// This method strips off any GEP address adjustments and pointer casts from
676/// the specified value, returning the original object being addressed. Note
677/// that the returned value has pointer type if the specified value does. If
678/// the MaxLookup value is non-zero, it limits the number of instructions to
679/// be stripped off.
680const Value *getUnderlyingObject(const Value *V, unsigned MaxLookup = 6);
681inline Value *getUnderlyingObject(Value *V, unsigned MaxLookup = 6) {
682  // Force const to avoid infinite recursion.
683  const Value *VConst = V;
684  return const_cast<Value *>(getUnderlyingObject(VConst, MaxLookup));
685}
686
687/// This method is similar to getUnderlyingObject except that it can
688/// look through phi and select instructions and return multiple objects.
689///
690/// If LoopInfo is passed, loop phis are further analyzed.  If a pointer
691/// accesses different objects in each iteration, we don't look through the
692/// phi node. E.g. consider this loop nest:
693///
694///   int **A;
695///   for (i)
696///     for (j) {
697///        A[i][j] = A[i-1][j] * B[j]
698///     }
699///
700/// This is transformed by Load-PRE to stash away A[i] for the next iteration
701/// of the outer loop:
702///
703///   Curr = A[0];          // Prev_0
704///   for (i: 1..N) {
705///     Prev = Curr;        // Prev = PHI (Prev_0, Curr)
706///     Curr = A[i];
707///     for (j: 0..N) {
708///        Curr[j] = Prev[j] * B[j]
709///     }
710///   }
711///
712/// Since A[i] and A[i-1] are independent pointers, getUnderlyingObjects
713/// should not assume that Curr and Prev share the same underlying object thus
714/// it shouldn't look through the phi above.
715void getUnderlyingObjects(const Value *V,
716                          SmallVectorImpl<const Value *> &Objects,
717                          LoopInfo *LI = nullptr, unsigned MaxLookup = 6);
718
719/// This is a wrapper around getUnderlyingObjects and adds support for basic
720/// ptrtoint+arithmetic+inttoptr sequences.
721bool getUnderlyingObjectsForCodeGen(const Value *V,
722                                    SmallVectorImpl<Value *> &Objects);
723
724/// Returns unique alloca where the value comes from, or nullptr.
725/// If OffsetZero is true check that V points to the begining of the alloca.
726AllocaInst *findAllocaForValue(Value *V, bool OffsetZero = false);
727inline const AllocaInst *findAllocaForValue(const Value *V,
728                                            bool OffsetZero = false) {
729  return findAllocaForValue(const_cast<Value *>(V), OffsetZero);
730}
731
732/// Return true if the only users of this pointer are lifetime markers.
733bool onlyUsedByLifetimeMarkers(const Value *V);
734
735/// Return true if the only users of this pointer are lifetime markers or
736/// droppable instructions.
737bool onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V);
738
739/// Return true if speculation of the given load must be suppressed to avoid
740/// ordering or interfering with an active sanitizer.  If not suppressed,
741/// dereferenceability and alignment must be proven separately.  Note: This
742/// is only needed for raw reasoning; if you use the interface below
743/// (isSafeToSpeculativelyExecute), this is handled internally.
744bool mustSuppressSpeculation(const LoadInst &LI);
745
746/// Return true if the instruction does not have any effects besides
747/// calculating the result and does not have undefined behavior.
748///
749/// This method never returns true for an instruction that returns true for
750/// mayHaveSideEffects; however, this method also does some other checks in
751/// addition. It checks for undefined behavior, like dividing by zero or
752/// loading from an invalid pointer (but not for undefined results, like a
753/// shift with a shift amount larger than the width of the result). It checks
754/// for malloc and alloca because speculatively executing them might cause a
755/// memory leak. It also returns false for instructions related to control
756/// flow, specifically terminators and PHI nodes.
757///
758/// If the CtxI is specified this method performs context-sensitive analysis
759/// and returns true if it is safe to execute the instruction immediately
760/// before the CtxI.
761///
762/// If the CtxI is NOT specified this method only looks at the instruction
763/// itself and its operands, so if this method returns true, it is safe to
764/// move the instruction as long as the correct dominance relationships for
765/// the operands and users hold.
766///
767/// This method can return true for instructions that read memory;
768/// for such instructions, moving them may change the resulting value.
769bool isSafeToSpeculativelyExecute(const Instruction *I,
770                                  const Instruction *CtxI = nullptr,
771                                  AssumptionCache *AC = nullptr,
772                                  const DominatorTree *DT = nullptr,
773                                  const TargetLibraryInfo *TLI = nullptr);
774
775/// This returns the same result as isSafeToSpeculativelyExecute if Opcode is
776/// the actual opcode of Inst. If the provided and actual opcode differ, the
777/// function (virtually) overrides the opcode of Inst with the provided
778/// Opcode. There are come constraints in this case:
779/// * If Opcode has a fixed number of operands (eg, as binary operators do),
780///   then Inst has to have at least as many leading operands. The function
781///   will ignore all trailing operands beyond that number.
782/// * If Opcode allows for an arbitrary number of operands (eg, as CallInsts
783///   do), then all operands are considered.
784/// * The virtual instruction has to satisfy all typing rules of the provided
785///   Opcode.
786/// * This function is pessimistic in the following sense: If one actually
787///   materialized the virtual instruction, then isSafeToSpeculativelyExecute
788///   may say that the materialized instruction is speculatable whereas this
789///   function may have said that the instruction wouldn't be speculatable.
790///   This behavior is a shortcoming in the current implementation and not
791///   intentional.
792bool isSafeToSpeculativelyExecuteWithOpcode(
793    unsigned Opcode, const Instruction *Inst, const Instruction *CtxI = nullptr,
794    AssumptionCache *AC = nullptr, const DominatorTree *DT = nullptr,
795    const TargetLibraryInfo *TLI = nullptr);
796
797/// Returns true if the result or effects of the given instructions \p I
798/// depend values not reachable through the def use graph.
799/// * Memory dependence arises for example if the instruction reads from
800///   memory or may produce effects or undefined behaviour. Memory dependent
801///   instructions generally cannot be reorderd with respect to other memory
802///   dependent instructions.
803/// * Control dependence arises for example if the instruction may fault
804///   if lifted above a throwing call or infinite loop.
805bool mayHaveNonDefUseDependency(const Instruction &I);
806
807/// Return true if it is an intrinsic that cannot be speculated but also
808/// cannot trap.
809bool isAssumeLikeIntrinsic(const Instruction *I);
810
811/// Return true if it is valid to use the assumptions provided by an
812/// assume intrinsic, I, at the point in the control-flow identified by the
813/// context instruction, CxtI. By default, ephemeral values of the assumption
814/// are treated as an invalid context, to prevent the assumption from being used
815/// to optimize away its argument. If the caller can ensure that this won't
816/// happen, it can call with AllowEphemerals set to true to get more valid
817/// assumptions.
818bool isValidAssumeForContext(const Instruction *I, const Instruction *CxtI,
819                             const DominatorTree *DT = nullptr,
820                             bool AllowEphemerals = false);
821
822enum class OverflowResult {
823  /// Always overflows in the direction of signed/unsigned min value.
824  AlwaysOverflowsLow,
825  /// Always overflows in the direction of signed/unsigned max value.
826  AlwaysOverflowsHigh,
827  /// May or may not overflow.
828  MayOverflow,
829  /// Never overflows.
830  NeverOverflows,
831};
832
833OverflowResult computeOverflowForUnsignedMul(const Value *LHS, const Value *RHS,
834                                             const SimplifyQuery &SQ);
835OverflowResult computeOverflowForSignedMul(const Value *LHS, const Value *RHS,
836                                           const SimplifyQuery &SQ);
837OverflowResult
838computeOverflowForUnsignedAdd(const WithCache<const Value *> &LHS,
839                              const WithCache<const Value *> &RHS,
840                              const SimplifyQuery &SQ);
841OverflowResult computeOverflowForSignedAdd(const WithCache<const Value *> &LHS,
842                                           const WithCache<const Value *> &RHS,
843                                           const SimplifyQuery &SQ);
844/// This version also leverages the sign bit of Add if known.
845OverflowResult computeOverflowForSignedAdd(const AddOperator *Add,
846                                           const SimplifyQuery &SQ);
847OverflowResult computeOverflowForUnsignedSub(const Value *LHS, const Value *RHS,
848                                             const SimplifyQuery &SQ);
849OverflowResult computeOverflowForSignedSub(const Value *LHS, const Value *RHS,
850                                           const SimplifyQuery &SQ);
851
852/// Returns true if the arithmetic part of the \p WO 's result is
853/// used only along the paths control dependent on the computation
854/// not overflowing, \p WO being an <op>.with.overflow intrinsic.
855bool isOverflowIntrinsicNoWrap(const WithOverflowInst *WO,
856                               const DominatorTree &DT);
857
858/// Determine the possible constant range of vscale with the given bit width,
859/// based on the vscale_range function attribute.
860ConstantRange getVScaleRange(const Function *F, unsigned BitWidth);
861
862/// Determine the possible constant range of an integer or vector of integer
863/// value. This is intended as a cheap, non-recursive check.
864ConstantRange computeConstantRange(const Value *V, bool ForSigned,
865                                   bool UseInstrInfo = true,
866                                   AssumptionCache *AC = nullptr,
867                                   const Instruction *CtxI = nullptr,
868                                   const DominatorTree *DT = nullptr,
869                                   unsigned Depth = 0);
870
871/// Combine constant ranges from computeConstantRange() and computeKnownBits().
872ConstantRange
873computeConstantRangeIncludingKnownBits(const WithCache<const Value *> &V,
874                                       bool ForSigned, const SimplifyQuery &SQ);
875
876/// Return true if this function can prove that the instruction I will
877/// always transfer execution to one of its successors (including the next
878/// instruction that follows within a basic block). E.g. this is not
879/// guaranteed for function calls that could loop infinitely.
880///
881/// In other words, this function returns false for instructions that may
882/// transfer execution or fail to transfer execution in a way that is not
883/// captured in the CFG nor in the sequence of instructions within a basic
884/// block.
885///
886/// Undefined behavior is assumed not to happen, so e.g. division is
887/// guaranteed to transfer execution to the following instruction even
888/// though division by zero might cause undefined behavior.
889bool isGuaranteedToTransferExecutionToSuccessor(const Instruction *I);
890
891/// Returns true if this block does not contain a potential implicit exit.
892/// This is equivelent to saying that all instructions within the basic block
893/// are guaranteed to transfer execution to their successor within the basic
894/// block. This has the same assumptions w.r.t. undefined behavior as the
895/// instruction variant of this function.
896bool isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB);
897
898/// Return true if every instruction in the range (Begin, End) is
899/// guaranteed to transfer execution to its static successor. \p ScanLimit
900/// bounds the search to avoid scanning huge blocks.
901bool isGuaranteedToTransferExecutionToSuccessor(
902    BasicBlock::const_iterator Begin, BasicBlock::const_iterator End,
903    unsigned ScanLimit = 32);
904
905/// Same as previous, but with range expressed via iterator_range.
906bool isGuaranteedToTransferExecutionToSuccessor(
907    iterator_range<BasicBlock::const_iterator> Range, unsigned ScanLimit = 32);
908
909/// Return true if this function can prove that the instruction I
910/// is executed for every iteration of the loop L.
911///
912/// Note that this currently only considers the loop header.
913bool isGuaranteedToExecuteForEveryIteration(const Instruction *I,
914                                            const Loop *L);
915
916/// Return true if \p PoisonOp's user yields poison or raises UB if its
917/// operand \p PoisonOp is poison.
918///
919/// If \p PoisonOp is a vector or an aggregate and the operation's result is a
920/// single value, any poison element in /p PoisonOp should make the result
921/// poison or raise UB.
922///
923/// To filter out operands that raise UB on poison, you can use
924/// getGuaranteedNonPoisonOp.
925bool propagatesPoison(const Use &PoisonOp);
926
927/// Insert operands of I into Ops such that I will trigger undefined behavior
928/// if I is executed and that operand has a poison value.
929void getGuaranteedNonPoisonOps(const Instruction *I,
930                               SmallVectorImpl<const Value *> &Ops);
931
932/// Insert operands of I into Ops such that I will trigger undefined behavior
933/// if I is executed and that operand is not a well-defined value
934/// (i.e. has undef bits or poison).
935void getGuaranteedWellDefinedOps(const Instruction *I,
936                                 SmallVectorImpl<const Value *> &Ops);
937
938/// Return true if the given instruction must trigger undefined behavior
939/// when I is executed with any operands which appear in KnownPoison holding
940/// a poison value at the point of execution.
941bool mustTriggerUB(const Instruction *I,
942                   const SmallPtrSetImpl<const Value *> &KnownPoison);
943
944/// Return true if this function can prove that if Inst is executed
945/// and yields a poison value or undef bits, then that will trigger
946/// undefined behavior.
947///
948/// Note that this currently only considers the basic block that is
949/// the parent of Inst.
950bool programUndefinedIfUndefOrPoison(const Instruction *Inst);
951bool programUndefinedIfPoison(const Instruction *Inst);
952
953/// canCreateUndefOrPoison returns true if Op can create undef or poison from
954/// non-undef & non-poison operands.
955/// For vectors, canCreateUndefOrPoison returns true if there is potential
956/// poison or undef in any element of the result when vectors without
957/// undef/poison poison are given as operands.
958/// For example, given `Op = shl <2 x i32> %x, <0, 32>`, this function returns
959/// true. If Op raises immediate UB but never creates poison or undef
960/// (e.g. sdiv I, 0), canCreatePoison returns false.
961///
962/// \p ConsiderFlagsAndMetadata controls whether poison producing flags and
963/// metadata on the instruction are considered.  This can be used to see if the
964/// instruction could still introduce undef or poison even without poison
965/// generating flags and metadata which might be on the instruction.
966/// (i.e. could the result of Op->dropPoisonGeneratingFlags() still create
967/// poison or undef)
968///
969/// canCreatePoison returns true if Op can create poison from non-poison
970/// operands.
971bool canCreateUndefOrPoison(const Operator *Op,
972                            bool ConsiderFlagsAndMetadata = true);
973bool canCreatePoison(const Operator *Op, bool ConsiderFlagsAndMetadata = true);
974
975/// Return true if V is poison given that ValAssumedPoison is already poison.
976/// For example, if ValAssumedPoison is `icmp X, 10` and V is `icmp X, 5`,
977/// impliesPoison returns true.
978bool impliesPoison(const Value *ValAssumedPoison, const Value *V);
979
980/// Return true if this function can prove that V does not have undef bits
981/// and is never poison. If V is an aggregate value or vector, check whether
982/// all elements (except padding) are not undef or poison.
983/// Note that this is different from canCreateUndefOrPoison because the
984/// function assumes Op's operands are not poison/undef.
985///
986/// If CtxI and DT are specified this method performs flow-sensitive analysis
987/// and returns true if it is guaranteed to be never undef or poison
988/// immediately before the CtxI.
989bool isGuaranteedNotToBeUndefOrPoison(const Value *V,
990                                      AssumptionCache *AC = nullptr,
991                                      const Instruction *CtxI = nullptr,
992                                      const DominatorTree *DT = nullptr,
993                                      unsigned Depth = 0);
994
995/// Returns true if V cannot be poison, but may be undef.
996bool isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC = nullptr,
997                               const Instruction *CtxI = nullptr,
998                               const DominatorTree *DT = nullptr,
999                               unsigned Depth = 0);
1000
1001/// Returns true if V cannot be undef, but may be poison.
1002bool isGuaranteedNotToBeUndef(const Value *V, AssumptionCache *AC = nullptr,
1003                              const Instruction *CtxI = nullptr,
1004                              const DominatorTree *DT = nullptr,
1005                              unsigned Depth = 0);
1006
1007/// Return true if undefined behavior would provable be executed on the path to
1008/// OnPathTo if Root produced a posion result.  Note that this doesn't say
1009/// anything about whether OnPathTo is actually executed or whether Root is
1010/// actually poison.  This can be used to assess whether a new use of Root can
1011/// be added at a location which is control equivalent with OnPathTo (such as
1012/// immediately before it) without introducing UB which didn't previously
1013/// exist.  Note that a false result conveys no information.
1014bool mustExecuteUBIfPoisonOnPathTo(Instruction *Root,
1015                                   Instruction *OnPathTo,
1016                                   DominatorTree *DT);
1017
1018/// Specific patterns of select instructions we can match.
1019enum SelectPatternFlavor {
1020  SPF_UNKNOWN = 0,
1021  SPF_SMIN,    /// Signed minimum
1022  SPF_UMIN,    /// Unsigned minimum
1023  SPF_SMAX,    /// Signed maximum
1024  SPF_UMAX,    /// Unsigned maximum
1025  SPF_FMINNUM, /// Floating point minnum
1026  SPF_FMAXNUM, /// Floating point maxnum
1027  SPF_ABS,     /// Absolute value
1028  SPF_NABS     /// Negated absolute value
1029};
1030
1031/// Behavior when a floating point min/max is given one NaN and one
1032/// non-NaN as input.
1033enum SelectPatternNaNBehavior {
1034  SPNB_NA = 0,        /// NaN behavior not applicable.
1035  SPNB_RETURNS_NAN,   /// Given one NaN input, returns the NaN.
1036  SPNB_RETURNS_OTHER, /// Given one NaN input, returns the non-NaN.
1037  SPNB_RETURNS_ANY    /// Given one NaN input, can return either (or
1038                      /// it has been determined that no operands can
1039                      /// be NaN).
1040};
1041
1042struct SelectPatternResult {
1043  SelectPatternFlavor Flavor;
1044  SelectPatternNaNBehavior NaNBehavior; /// Only applicable if Flavor is
1045                                        /// SPF_FMINNUM or SPF_FMAXNUM.
1046  bool Ordered; /// When implementing this min/max pattern as
1047                /// fcmp; select, does the fcmp have to be
1048                /// ordered?
1049
1050  /// Return true if \p SPF is a min or a max pattern.
1051  static bool isMinOrMax(SelectPatternFlavor SPF) {
1052    return SPF != SPF_UNKNOWN && SPF != SPF_ABS && SPF != SPF_NABS;
1053  }
1054};
1055
1056/// Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind
1057/// and providing the out parameter results if we successfully match.
1058///
1059/// For ABS/NABS, LHS will be set to the input to the abs idiom. RHS will be
1060/// the negation instruction from the idiom.
1061///
1062/// If CastOp is not nullptr, also match MIN/MAX idioms where the type does
1063/// not match that of the original select. If this is the case, the cast
1064/// operation (one of Trunc,SExt,Zext) that must be done to transform the
1065/// type of LHS and RHS into the type of V is returned in CastOp.
1066///
1067/// For example:
1068///   %1 = icmp slt i32 %a, i32 4
1069///   %2 = sext i32 %a to i64
1070///   %3 = select i1 %1, i64 %2, i64 4
1071///
1072/// -> LHS = %a, RHS = i32 4, *CastOp = Instruction::SExt
1073///
1074SelectPatternResult matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
1075                                       Instruction::CastOps *CastOp = nullptr,
1076                                       unsigned Depth = 0);
1077
1078inline SelectPatternResult matchSelectPattern(const Value *V, const Value *&LHS,
1079                                              const Value *&RHS) {
1080  Value *L = const_cast<Value *>(LHS);
1081  Value *R = const_cast<Value *>(RHS);
1082  auto Result = matchSelectPattern(const_cast<Value *>(V), L, R);
1083  LHS = L;
1084  RHS = R;
1085  return Result;
1086}
1087
1088/// Determine the pattern that a select with the given compare as its
1089/// predicate and given values as its true/false operands would match.
1090SelectPatternResult matchDecomposedSelectPattern(
1091    CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS,
1092    Instruction::CastOps *CastOp = nullptr, unsigned Depth = 0);
1093
1094/// Return the canonical comparison predicate for the specified
1095/// minimum/maximum flavor.
1096CmpInst::Predicate getMinMaxPred(SelectPatternFlavor SPF, bool Ordered = false);
1097
1098/// Return the inverse minimum/maximum flavor of the specified flavor.
1099/// For example, signed minimum is the inverse of signed maximum.
1100SelectPatternFlavor getInverseMinMaxFlavor(SelectPatternFlavor SPF);
1101
1102Intrinsic::ID getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID);
1103
1104/// Return the minimum or maximum constant value for the specified integer
1105/// min/max flavor and type.
1106APInt getMinMaxLimit(SelectPatternFlavor SPF, unsigned BitWidth);
1107
1108/// Check if the values in \p VL are select instructions that can be converted
1109/// to a min or max (vector) intrinsic. Returns the intrinsic ID, if such a
1110/// conversion is possible, together with a bool indicating whether all select
1111/// conditions are only used by the selects. Otherwise return
1112/// Intrinsic::not_intrinsic.
1113std::pair<Intrinsic::ID, bool>
1114canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL);
1115
1116/// Attempt to match a simple first order recurrence cycle of the form:
1117///   %iv = phi Ty [%Start, %Entry], [%Inc, %backedge]
1118///   %inc = binop %iv, %step
1119/// OR
1120///   %iv = phi Ty [%Start, %Entry], [%Inc, %backedge]
1121///   %inc = binop %step, %iv
1122///
1123/// A first order recurrence is a formula with the form: X_n = f(X_(n-1))
1124///
1125/// A couple of notes on subtleties in that definition:
1126/// * The Step does not have to be loop invariant.  In math terms, it can
1127///   be a free variable.  We allow recurrences with both constant and
1128///   variable coefficients. Callers may wish to filter cases where Step
1129///   does not dominate P.
1130/// * For non-commutative operators, we will match both forms.  This
1131///   results in some odd recurrence structures.  Callers may wish to filter
1132///   out recurrences where the phi is not the LHS of the returned operator.
1133/// * Because of the structure matched, the caller can assume as a post
1134///   condition of the match the presence of a Loop with P's parent as it's
1135///   header *except* in unreachable code.  (Dominance decays in unreachable
1136///   code.)
1137///
1138/// NOTE: This is intentional simple.  If you want the ability to analyze
1139/// non-trivial loop conditons, see ScalarEvolution instead.
1140bool matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, Value *&Start,
1141                           Value *&Step);
1142
1143/// Analogous to the above, but starting from the binary operator
1144bool matchSimpleRecurrence(const BinaryOperator *I, PHINode *&P, Value *&Start,
1145                           Value *&Step);
1146
1147/// Return true if RHS is known to be implied true by LHS.  Return false if
1148/// RHS is known to be implied false by LHS.  Otherwise, return std::nullopt if
1149/// no implication can be made. A & B must be i1 (boolean) values or a vector of
1150/// such values. Note that the truth table for implication is the same as <=u on
1151/// i1 values (but not
1152/// <=s!).  The truth table for both is:
1153///    | T | F (B)
1154///  T | T | F
1155///  F | T | T
1156/// (A)
1157std::optional<bool> isImpliedCondition(const Value *LHS, const Value *RHS,
1158                                       const DataLayout &DL,
1159                                       bool LHSIsTrue = true,
1160                                       unsigned Depth = 0);
1161std::optional<bool> isImpliedCondition(const Value *LHS,
1162                                       CmpInst::Predicate RHSPred,
1163                                       const Value *RHSOp0, const Value *RHSOp1,
1164                                       const DataLayout &DL,
1165                                       bool LHSIsTrue = true,
1166                                       unsigned Depth = 0);
1167
1168/// Return the boolean condition value in the context of the given instruction
1169/// if it is known based on dominating conditions.
1170std::optional<bool> isImpliedByDomCondition(const Value *Cond,
1171                                            const Instruction *ContextI,
1172                                            const DataLayout &DL);
1173std::optional<bool> isImpliedByDomCondition(CmpInst::Predicate Pred,
1174                                            const Value *LHS, const Value *RHS,
1175                                            const Instruction *ContextI,
1176                                            const DataLayout &DL);
1177} // end namespace llvm
1178
1179#endif // LLVM_ANALYSIS_VALUETRACKING_H
1180