1//===- llvm/ADT/IntervalMap.h - A sorted interval map -----------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This file implements a coalescing interval map for small objects.
11///
12/// KeyT objects are mapped to ValT objects. Intervals of keys that map to the
13/// same value are represented in a compressed form.
14///
15/// Iterators provide ordered access to the compressed intervals rather than the
16/// individual keys, and insert and erase operations use key intervals as well.
17///
18/// Like SmallVector, IntervalMap will store the first N intervals in the map
19/// object itself without any allocations. When space is exhausted it switches
20/// to a B+-tree representation with very small overhead for small key and
21/// value objects.
22///
23/// A Traits class specifies how keys are compared. It also allows IntervalMap
24/// to work with both closed and half-open intervals.
25///
26/// Keys and values are not stored next to each other in a std::pair, so we
27/// don't provide such a value_type. Dereferencing iterators only returns the
28/// mapped value. The interval bounds are accessible through the start() and
29/// stop() iterator methods.
30///
31/// IntervalMap is optimized for small key and value objects, 4 or 8 bytes
32/// each is the optimal size. For large objects use std::map instead.
33//
34//===----------------------------------------------------------------------===//
35//
36// Synopsis:
37//
38// template <typename KeyT, typename ValT, unsigned N, typename Traits>
39// class IntervalMap {
40// public:
41//   typedef KeyT key_type;
42//   typedef ValT mapped_type;
43//   typedef RecyclingAllocator<...> Allocator;
44//   class iterator;
45//   class const_iterator;
46//
47//   explicit IntervalMap(Allocator&);
48//   ~IntervalMap():
49//
50//   bool empty() const;
51//   KeyT start() const;
52//   KeyT stop() const;
53//   ValT lookup(KeyT x, Value NotFound = Value()) const;
54//
55//   const_iterator begin() const;
56//   const_iterator end() const;
57//   iterator begin();
58//   iterator end();
59//   const_iterator find(KeyT x) const;
60//   iterator find(KeyT x);
61//
62//   void insert(KeyT a, KeyT b, ValT y);
63//   void clear();
64// };
65//
66// template <typename KeyT, typename ValT, unsigned N, typename Traits>
67// class IntervalMap::const_iterator {
68// public:
69//   using iterator_category = std::bidirectional_iterator_tag;
70//   using value_type = ValT;
71//   using difference_type = std::ptrdiff_t;
72//   using pointer = value_type *;
73//   using reference = value_type &;
74//
75//   bool operator==(const const_iterator &) const;
76//   bool operator!=(const const_iterator &) const;
77//   bool valid() const;
78//
79//   const KeyT &start() const;
80//   const KeyT &stop() const;
81//   const ValT &value() const;
82//   const ValT &operator*() const;
83//   const ValT *operator->() const;
84//
85//   const_iterator &operator++();
86//   const_iterator &operator++(int);
87//   const_iterator &operator--();
88//   const_iterator &operator--(int);
89//   void goToBegin();
90//   void goToEnd();
91//   void find(KeyT x);
92//   void advanceTo(KeyT x);
93// };
94//
95// template <typename KeyT, typename ValT, unsigned N, typename Traits>
96// class IntervalMap::iterator : public const_iterator {
97// public:
98//   void insert(KeyT a, KeyT b, Value y);
99//   void erase();
100// };
101//
102//===----------------------------------------------------------------------===//
103
104#ifndef LLVM_ADT_INTERVALMAP_H
105#define LLVM_ADT_INTERVALMAP_H
106
107#include "llvm/ADT/PointerIntPair.h"
108#include "llvm/ADT/SmallVector.h"
109#include "llvm/Support/Allocator.h"
110#include "llvm/Support/RecyclingAllocator.h"
111#include <algorithm>
112#include <cassert>
113#include <iterator>
114#include <new>
115#include <utility>
116
117namespace llvm {
118
119//===----------------------------------------------------------------------===//
120//---                              Key traits                              ---//
121//===----------------------------------------------------------------------===//
122//
123// The IntervalMap works with closed or half-open intervals.
124// Adjacent intervals that map to the same value are coalesced.
125//
126// The IntervalMapInfo traits class is used to determine if a key is contained
127// in an interval, and if two intervals are adjacent so they can be coalesced.
128// The provided implementation works for closed integer intervals, other keys
129// probably need a specialized version.
130//
131// The point x is contained in [a;b] when !startLess(x, a) && !stopLess(b, x).
132//
133// It is assumed that (a;b] half-open intervals are not used, only [a;b) is
134// allowed. This is so that stopLess(a, b) can be used to determine if two
135// intervals overlap.
136//
137//===----------------------------------------------------------------------===//
138
139template <typename T>
140struct IntervalMapInfo {
141  /// startLess - Return true if x is not in [a;b].
142  /// This is x < a both for closed intervals and for [a;b) half-open intervals.
143  static inline bool startLess(const T &x, const T &a) {
144    return x < a;
145  }
146
147  /// stopLess - Return true if x is not in [a;b].
148  /// This is b < x for a closed interval, b <= x for [a;b) half-open intervals.
149  static inline bool stopLess(const T &b, const T &x) {
150    return b < x;
151  }
152
153  /// adjacent - Return true when the intervals [x;a] and [b;y] can coalesce.
154  /// This is a+1 == b for closed intervals, a == b for half-open intervals.
155  static inline bool adjacent(const T &a, const T &b) {
156    return a+1 == b;
157  }
158
159  /// nonEmpty - Return true if [a;b] is non-empty.
160  /// This is a <= b for a closed interval, a < b for [a;b) half-open intervals.
161  static inline bool nonEmpty(const T &a, const T &b) {
162    return a <= b;
163  }
164};
165
166template <typename T>
167struct IntervalMapHalfOpenInfo {
168  /// startLess - Return true if x is not in [a;b).
169  static inline bool startLess(const T &x, const T &a) {
170    return x < a;
171  }
172
173  /// stopLess - Return true if x is not in [a;b).
174  static inline bool stopLess(const T &b, const T &x) {
175    return b <= x;
176  }
177
178  /// adjacent - Return true when the intervals [x;a) and [b;y) can coalesce.
179  static inline bool adjacent(const T &a, const T &b) {
180    return a == b;
181  }
182
183  /// nonEmpty - Return true if [a;b) is non-empty.
184  static inline bool nonEmpty(const T &a, const T &b) {
185    return a < b;
186  }
187};
188
189/// IntervalMapImpl - Namespace used for IntervalMap implementation details.
190/// It should be considered private to the implementation.
191namespace IntervalMapImpl {
192
193using IdxPair = std::pair<unsigned,unsigned>;
194
195//===----------------------------------------------------------------------===//
196//---                    IntervalMapImpl::NodeBase                         ---//
197//===----------------------------------------------------------------------===//
198//
199// Both leaf and branch nodes store vectors of pairs.
200// Leaves store ((KeyT, KeyT), ValT) pairs, branches use (NodeRef, KeyT).
201//
202// Keys and values are stored in separate arrays to avoid padding caused by
203// different object alignments. This also helps improve locality of reference
204// when searching the keys.
205//
206// The nodes don't know how many elements they contain - that information is
207// stored elsewhere. Omitting the size field prevents padding and allows a node
208// to fill the allocated cache lines completely.
209//
210// These are typical key and value sizes, the node branching factor (N), and
211// wasted space when nodes are sized to fit in three cache lines (192 bytes):
212//
213//   T1  T2   N Waste  Used by
214//    4   4  24   0    Branch<4> (32-bit pointers)
215//    8   4  16   0    Leaf<4,4>, Branch<4>
216//    8   8  12   0    Leaf<4,8>, Branch<8>
217//   16   4   9  12    Leaf<8,4>
218//   16   8   8   0    Leaf<8,8>
219//
220//===----------------------------------------------------------------------===//
221
222template <typename T1, typename T2, unsigned N>
223class NodeBase {
224public:
225  enum { Capacity = N };
226
227  T1 first[N];
228  T2 second[N];
229
230  /// copy - Copy elements from another node.
231  /// @param Other Node elements are copied from.
232  /// @param i     Beginning of the source range in other.
233  /// @param j     Beginning of the destination range in this.
234  /// @param Count Number of elements to copy.
235  template <unsigned M>
236  void copy(const NodeBase<T1, T2, M> &Other, unsigned i,
237            unsigned j, unsigned Count) {
238    assert(i + Count <= M && "Invalid source range");
239    assert(j + Count <= N && "Invalid dest range");
240    for (unsigned e = i + Count; i != e; ++i, ++j) {
241      first[j]  = Other.first[i];
242      second[j] = Other.second[i];
243    }
244  }
245
246  /// moveLeft - Move elements to the left.
247  /// @param i     Beginning of the source range.
248  /// @param j     Beginning of the destination range.
249  /// @param Count Number of elements to copy.
250  void moveLeft(unsigned i, unsigned j, unsigned Count) {
251    assert(j <= i && "Use moveRight shift elements right");
252    copy(*this, i, j, Count);
253  }
254
255  /// moveRight - Move elements to the right.
256  /// @param i     Beginning of the source range.
257  /// @param j     Beginning of the destination range.
258  /// @param Count Number of elements to copy.
259  void moveRight(unsigned i, unsigned j, unsigned Count) {
260    assert(i <= j && "Use moveLeft shift elements left");
261    assert(j + Count <= N && "Invalid range");
262    while (Count--) {
263      first[j + Count]  = first[i + Count];
264      second[j + Count] = second[i + Count];
265    }
266  }
267
268  /// erase - Erase elements [i;j).
269  /// @param i    Beginning of the range to erase.
270  /// @param j    End of the range. (Exclusive).
271  /// @param Size Number of elements in node.
272  void erase(unsigned i, unsigned j, unsigned Size) {
273    moveLeft(j, i, Size - j);
274  }
275
276  /// erase - Erase element at i.
277  /// @param i    Index of element to erase.
278  /// @param Size Number of elements in node.
279  void erase(unsigned i, unsigned Size) {
280    erase(i, i+1, Size);
281  }
282
283  /// shift - Shift elements [i;size) 1 position to the right.
284  /// @param i    Beginning of the range to move.
285  /// @param Size Number of elements in node.
286  void shift(unsigned i, unsigned Size) {
287    moveRight(i, i + 1, Size - i);
288  }
289
290  /// transferToLeftSib - Transfer elements to a left sibling node.
291  /// @param Size  Number of elements in this.
292  /// @param Sib   Left sibling node.
293  /// @param SSize Number of elements in sib.
294  /// @param Count Number of elements to transfer.
295  void transferToLeftSib(unsigned Size, NodeBase &Sib, unsigned SSize,
296                         unsigned Count) {
297    Sib.copy(*this, 0, SSize, Count);
298    erase(0, Count, Size);
299  }
300
301  /// transferToRightSib - Transfer elements to a right sibling node.
302  /// @param Size  Number of elements in this.
303  /// @param Sib   Right sibling node.
304  /// @param SSize Number of elements in sib.
305  /// @param Count Number of elements to transfer.
306  void transferToRightSib(unsigned Size, NodeBase &Sib, unsigned SSize,
307                          unsigned Count) {
308    Sib.moveRight(0, Count, SSize);
309    Sib.copy(*this, Size-Count, 0, Count);
310  }
311
312  /// adjustFromLeftSib - Adjust the number if elements in this node by moving
313  /// elements to or from a left sibling node.
314  /// @param Size  Number of elements in this.
315  /// @param Sib   Right sibling node.
316  /// @param SSize Number of elements in sib.
317  /// @param Add   The number of elements to add to this node, possibly < 0.
318  /// @return      Number of elements added to this node, possibly negative.
319  int adjustFromLeftSib(unsigned Size, NodeBase &Sib, unsigned SSize, int Add) {
320    if (Add > 0) {
321      // We want to grow, copy from sib.
322      unsigned Count = std::min(std::min(unsigned(Add), SSize), N - Size);
323      Sib.transferToRightSib(SSize, *this, Size, Count);
324      return Count;
325    } else {
326      // We want to shrink, copy to sib.
327      unsigned Count = std::min(std::min(unsigned(-Add), Size), N - SSize);
328      transferToLeftSib(Size, Sib, SSize, Count);
329      return -Count;
330    }
331  }
332};
333
334/// IntervalMapImpl::adjustSiblingSizes - Move elements between sibling nodes.
335/// @param Node  Array of pointers to sibling nodes.
336/// @param Nodes Number of nodes.
337/// @param CurSize Array of current node sizes, will be overwritten.
338/// @param NewSize Array of desired node sizes.
339template <typename NodeT>
340void adjustSiblingSizes(NodeT *Node[], unsigned Nodes,
341                        unsigned CurSize[], const unsigned NewSize[]) {
342  // Move elements right.
343  for (int n = Nodes - 1; n; --n) {
344    if (CurSize[n] == NewSize[n])
345      continue;
346    for (int m = n - 1; m != -1; --m) {
347      int d = Node[n]->adjustFromLeftSib(CurSize[n], *Node[m], CurSize[m],
348                                         NewSize[n] - CurSize[n]);
349      CurSize[m] -= d;
350      CurSize[n] += d;
351      // Keep going if the current node was exhausted.
352      if (CurSize[n] >= NewSize[n])
353          break;
354    }
355  }
356
357  if (Nodes == 0)
358    return;
359
360  // Move elements left.
361  for (unsigned n = 0; n != Nodes - 1; ++n) {
362    if (CurSize[n] == NewSize[n])
363      continue;
364    for (unsigned m = n + 1; m != Nodes; ++m) {
365      int d = Node[m]->adjustFromLeftSib(CurSize[m], *Node[n], CurSize[n],
366                                        CurSize[n] -  NewSize[n]);
367      CurSize[m] += d;
368      CurSize[n] -= d;
369      // Keep going if the current node was exhausted.
370      if (CurSize[n] >= NewSize[n])
371          break;
372    }
373  }
374
375#ifndef NDEBUG
376  for (unsigned n = 0; n != Nodes; n++)
377    assert(CurSize[n] == NewSize[n] && "Insufficient element shuffle");
378#endif
379}
380
381/// IntervalMapImpl::distribute - Compute a new distribution of node elements
382/// after an overflow or underflow. Reserve space for a new element at Position,
383/// and compute the node that will hold Position after redistributing node
384/// elements.
385///
386/// It is required that
387///
388///   Elements == sum(CurSize), and
389///   Elements + Grow <= Nodes * Capacity.
390///
391/// NewSize[] will be filled in such that:
392///
393///   sum(NewSize) == Elements, and
394///   NewSize[i] <= Capacity.
395///
396/// The returned index is the node where Position will go, so:
397///
398///   sum(NewSize[0..idx-1]) <= Position
399///   sum(NewSize[0..idx])   >= Position
400///
401/// The last equality, sum(NewSize[0..idx]) == Position, can only happen when
402/// Grow is set and NewSize[idx] == Capacity-1. The index points to the node
403/// before the one holding the Position'th element where there is room for an
404/// insertion.
405///
406/// @param Nodes    The number of nodes.
407/// @param Elements Total elements in all nodes.
408/// @param Capacity The capacity of each node.
409/// @param CurSize  Array[Nodes] of current node sizes, or NULL.
410/// @param NewSize  Array[Nodes] to receive the new node sizes.
411/// @param Position Insert position.
412/// @param Grow     Reserve space for a new element at Position.
413/// @return         (node, offset) for Position.
414IdxPair distribute(unsigned Nodes, unsigned Elements, unsigned Capacity,
415                   const unsigned *CurSize, unsigned NewSize[],
416                   unsigned Position, bool Grow);
417
418//===----------------------------------------------------------------------===//
419//---                   IntervalMapImpl::NodeSizer                         ---//
420//===----------------------------------------------------------------------===//
421//
422// Compute node sizes from key and value types.
423//
424// The branching factors are chosen to make nodes fit in three cache lines.
425// This may not be possible if keys or values are very large. Such large objects
426// are handled correctly, but a std::map would probably give better performance.
427//
428//===----------------------------------------------------------------------===//
429
430enum {
431  // Cache line size. Most architectures have 32 or 64 byte cache lines.
432  // We use 64 bytes here because it provides good branching factors.
433  Log2CacheLine = 6,
434  CacheLineBytes = 1 << Log2CacheLine,
435  DesiredNodeBytes = 3 * CacheLineBytes
436};
437
438template <typename KeyT, typename ValT>
439struct NodeSizer {
440  enum {
441    // Compute the leaf node branching factor that makes a node fit in three
442    // cache lines. The branching factor must be at least 3, or some B+-tree
443    // balancing algorithms won't work.
444    // LeafSize can't be larger than CacheLineBytes. This is required by the
445    // PointerIntPair used by NodeRef.
446    DesiredLeafSize = DesiredNodeBytes /
447      static_cast<unsigned>(2*sizeof(KeyT)+sizeof(ValT)),
448    MinLeafSize = 3,
449    LeafSize = DesiredLeafSize > MinLeafSize ? DesiredLeafSize : MinLeafSize
450  };
451
452  using LeafBase = NodeBase<std::pair<KeyT, KeyT>, ValT, LeafSize>;
453
454  enum {
455    // Now that we have the leaf branching factor, compute the actual allocation
456    // unit size by rounding up to a whole number of cache lines.
457    AllocBytes = (sizeof(LeafBase) + CacheLineBytes-1) & ~(CacheLineBytes-1),
458
459    // Determine the branching factor for branch nodes.
460    BranchSize = AllocBytes /
461      static_cast<unsigned>(sizeof(KeyT) + sizeof(void*))
462  };
463
464  /// Allocator - The recycling allocator used for both branch and leaf nodes.
465  /// This typedef is very likely to be identical for all IntervalMaps with
466  /// reasonably sized entries, so the same allocator can be shared among
467  /// different kinds of maps.
468  using Allocator =
469      RecyclingAllocator<BumpPtrAllocator, char, AllocBytes, CacheLineBytes>;
470};
471
472//===----------------------------------------------------------------------===//
473//---                     IntervalMapImpl::NodeRef                         ---//
474//===----------------------------------------------------------------------===//
475//
476// B+-tree nodes can be leaves or branches, so we need a polymorphic node
477// pointer that can point to both kinds.
478//
479// All nodes are cache line aligned and the low 6 bits of a node pointer are
480// always 0. These bits are used to store the number of elements in the
481// referenced node. Besides saving space, placing node sizes in the parents
482// allow tree balancing algorithms to run without faulting cache lines for nodes
483// that may not need to be modified.
484//
485// A NodeRef doesn't know whether it references a leaf node or a branch node.
486// It is the responsibility of the caller to use the correct types.
487//
488// Nodes are never supposed to be empty, and it is invalid to store a node size
489// of 0 in a NodeRef. The valid range of sizes is 1-64.
490//
491//===----------------------------------------------------------------------===//
492
493class NodeRef {
494  struct CacheAlignedPointerTraits {
495    static inline void *getAsVoidPointer(void *P) { return P; }
496    static inline void *getFromVoidPointer(void *P) { return P; }
497    static constexpr int NumLowBitsAvailable = Log2CacheLine;
498  };
499  PointerIntPair<void*, Log2CacheLine, unsigned, CacheAlignedPointerTraits> pip;
500
501public:
502  /// NodeRef - Create a null ref.
503  NodeRef() = default;
504
505  /// operator bool - Detect a null ref.
506  explicit operator bool() const { return pip.getOpaqueValue(); }
507
508  /// NodeRef - Create a reference to the node p with n elements.
509  template <typename NodeT>
510  NodeRef(NodeT *p, unsigned n) : pip(p, n - 1) {
511    assert(n <= NodeT::Capacity && "Size too big for node");
512  }
513
514  /// size - Return the number of elements in the referenced node.
515  unsigned size() const { return pip.getInt() + 1; }
516
517  /// setSize - Update the node size.
518  void setSize(unsigned n) { pip.setInt(n - 1); }
519
520  /// subtree - Access the i'th subtree reference in a branch node.
521  /// This depends on branch nodes storing the NodeRef array as their first
522  /// member.
523  NodeRef &subtree(unsigned i) const {
524    return reinterpret_cast<NodeRef*>(pip.getPointer())[i];
525  }
526
527  /// get - Dereference as a NodeT reference.
528  template <typename NodeT>
529  NodeT &get() const {
530    return *reinterpret_cast<NodeT*>(pip.getPointer());
531  }
532
533  bool operator==(const NodeRef &RHS) const {
534    if (pip == RHS.pip)
535      return true;
536    assert(pip.getPointer() != RHS.pip.getPointer() && "Inconsistent NodeRefs");
537    return false;
538  }
539
540  bool operator!=(const NodeRef &RHS) const {
541    return !operator==(RHS);
542  }
543};
544
545//===----------------------------------------------------------------------===//
546//---                      IntervalMapImpl::LeafNode                       ---//
547//===----------------------------------------------------------------------===//
548//
549// Leaf nodes store up to N disjoint intervals with corresponding values.
550//
551// The intervals are kept sorted and fully coalesced so there are no adjacent
552// intervals mapping to the same value.
553//
554// These constraints are always satisfied:
555//
556// - Traits::stopLess(start(i), stop(i))    - Non-empty, sane intervals.
557//
558// - Traits::stopLess(stop(i), start(i + 1) - Sorted.
559//
560// - value(i) != value(i + 1) || !Traits::adjacent(stop(i), start(i + 1))
561//                                          - Fully coalesced.
562//
563//===----------------------------------------------------------------------===//
564
565template <typename KeyT, typename ValT, unsigned N, typename Traits>
566class LeafNode : public NodeBase<std::pair<KeyT, KeyT>, ValT, N> {
567public:
568  const KeyT &start(unsigned i) const { return this->first[i].first; }
569  const KeyT &stop(unsigned i) const { return this->first[i].second; }
570  const ValT &value(unsigned i) const { return this->second[i]; }
571
572  KeyT &start(unsigned i) { return this->first[i].first; }
573  KeyT &stop(unsigned i) { return this->first[i].second; }
574  ValT &value(unsigned i) { return this->second[i]; }
575
576  /// findFrom - Find the first interval after i that may contain x.
577  /// @param i    Starting index for the search.
578  /// @param Size Number of elements in node.
579  /// @param x    Key to search for.
580  /// @return     First index with !stopLess(key[i].stop, x), or size.
581  ///             This is the first interval that can possibly contain x.
582  unsigned findFrom(unsigned i, unsigned Size, KeyT x) const {
583    assert(i <= Size && Size <= N && "Bad indices");
584    assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
585           "Index is past the needed point");
586    while (i != Size && Traits::stopLess(stop(i), x)) ++i;
587    return i;
588  }
589
590  /// safeFind - Find an interval that is known to exist. This is the same as
591  /// findFrom except is it assumed that x is at least within range of the last
592  /// interval.
593  /// @param i Starting index for the search.
594  /// @param x Key to search for.
595  /// @return  First index with !stopLess(key[i].stop, x), never size.
596  ///          This is the first interval that can possibly contain x.
597  unsigned safeFind(unsigned i, KeyT x) const {
598    assert(i < N && "Bad index");
599    assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
600           "Index is past the needed point");
601    while (Traits::stopLess(stop(i), x)) ++i;
602    assert(i < N && "Unsafe intervals");
603    return i;
604  }
605
606  /// safeLookup - Lookup mapped value for a safe key.
607  /// It is assumed that x is within range of the last entry.
608  /// @param x        Key to search for.
609  /// @param NotFound Value to return if x is not in any interval.
610  /// @return         The mapped value at x or NotFound.
611  ValT safeLookup(KeyT x, ValT NotFound) const {
612    unsigned i = safeFind(0, x);
613    return Traits::startLess(x, start(i)) ? NotFound : value(i);
614  }
615
616  unsigned insertFrom(unsigned &Pos, unsigned Size, KeyT a, KeyT b, ValT y);
617};
618
619/// insertFrom - Add mapping of [a;b] to y if possible, coalescing as much as
620/// possible. This may cause the node to grow by 1, or it may cause the node
621/// to shrink because of coalescing.
622/// @param Pos  Starting index = insertFrom(0, size, a)
623/// @param Size Number of elements in node.
624/// @param a    Interval start.
625/// @param b    Interval stop.
626/// @param y    Value be mapped.
627/// @return     (insert position, new size), or (i, Capacity+1) on overflow.
628template <typename KeyT, typename ValT, unsigned N, typename Traits>
629unsigned LeafNode<KeyT, ValT, N, Traits>::
630insertFrom(unsigned &Pos, unsigned Size, KeyT a, KeyT b, ValT y) {
631  unsigned i = Pos;
632  assert(i <= Size && Size <= N && "Invalid index");
633  assert(!Traits::stopLess(b, a) && "Invalid interval");
634
635  // Verify the findFrom invariant.
636  assert((i == 0 || Traits::stopLess(stop(i - 1), a)));
637  assert((i == Size || !Traits::stopLess(stop(i), a)));
638  assert((i == Size || Traits::stopLess(b, start(i))) && "Overlapping insert");
639
640  // Coalesce with previous interval.
641  if (i && value(i - 1) == y && Traits::adjacent(stop(i - 1), a)) {
642    Pos = i - 1;
643    // Also coalesce with next interval?
644    if (i != Size && value(i) == y && Traits::adjacent(b, start(i))) {
645      stop(i - 1) = stop(i);
646      this->erase(i, Size);
647      return Size - 1;
648    }
649    stop(i - 1) = b;
650    return Size;
651  }
652
653  // Detect overflow.
654  if (i == N)
655    return N + 1;
656
657  // Add new interval at end.
658  if (i == Size) {
659    start(i) = a;
660    stop(i) = b;
661    value(i) = y;
662    return Size + 1;
663  }
664
665  // Try to coalesce with following interval.
666  if (value(i) == y && Traits::adjacent(b, start(i))) {
667    start(i) = a;
668    return Size;
669  }
670
671  // We must insert before i. Detect overflow.
672  if (Size == N)
673    return N + 1;
674
675  // Insert before i.
676  this->shift(i, Size);
677  start(i) = a;
678  stop(i) = b;
679  value(i) = y;
680  return Size + 1;
681}
682
683//===----------------------------------------------------------------------===//
684//---                   IntervalMapImpl::BranchNode                        ---//
685//===----------------------------------------------------------------------===//
686//
687// A branch node stores references to 1--N subtrees all of the same height.
688//
689// The key array in a branch node holds the rightmost stop key of each subtree.
690// It is redundant to store the last stop key since it can be found in the
691// parent node, but doing so makes tree balancing a lot simpler.
692//
693// It is unusual for a branch node to only have one subtree, but it can happen
694// in the root node if it is smaller than the normal nodes.
695//
696// When all of the leaf nodes from all the subtrees are concatenated, they must
697// satisfy the same constraints as a single leaf node. They must be sorted,
698// sane, and fully coalesced.
699//
700//===----------------------------------------------------------------------===//
701
702template <typename KeyT, typename ValT, unsigned N, typename Traits>
703class BranchNode : public NodeBase<NodeRef, KeyT, N> {
704public:
705  const KeyT &stop(unsigned i) const { return this->second[i]; }
706  const NodeRef &subtree(unsigned i) const { return this->first[i]; }
707
708  KeyT &stop(unsigned i) { return this->second[i]; }
709  NodeRef &subtree(unsigned i) { return this->first[i]; }
710
711  /// findFrom - Find the first subtree after i that may contain x.
712  /// @param i    Starting index for the search.
713  /// @param Size Number of elements in node.
714  /// @param x    Key to search for.
715  /// @return     First index with !stopLess(key[i], x), or size.
716  ///             This is the first subtree that can possibly contain x.
717  unsigned findFrom(unsigned i, unsigned Size, KeyT x) const {
718    assert(i <= Size && Size <= N && "Bad indices");
719    assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
720           "Index to findFrom is past the needed point");
721    while (i != Size && Traits::stopLess(stop(i), x)) ++i;
722    return i;
723  }
724
725  /// safeFind - Find a subtree that is known to exist. This is the same as
726  /// findFrom except is it assumed that x is in range.
727  /// @param i Starting index for the search.
728  /// @param x Key to search for.
729  /// @return  First index with !stopLess(key[i], x), never size.
730  ///          This is the first subtree that can possibly contain x.
731  unsigned safeFind(unsigned i, KeyT x) const {
732    assert(i < N && "Bad index");
733    assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
734           "Index is past the needed point");
735    while (Traits::stopLess(stop(i), x)) ++i;
736    assert(i < N && "Unsafe intervals");
737    return i;
738  }
739
740  /// safeLookup - Get the subtree containing x, Assuming that x is in range.
741  /// @param x Key to search for.
742  /// @return  Subtree containing x
743  NodeRef safeLookup(KeyT x) const {
744    return subtree(safeFind(0, x));
745  }
746
747  /// insert - Insert a new (subtree, stop) pair.
748  /// @param i    Insert position, following entries will be shifted.
749  /// @param Size Number of elements in node.
750  /// @param Node Subtree to insert.
751  /// @param Stop Last key in subtree.
752  void insert(unsigned i, unsigned Size, NodeRef Node, KeyT Stop) {
753    assert(Size < N && "branch node overflow");
754    assert(i <= Size && "Bad insert position");
755    this->shift(i, Size);
756    subtree(i) = Node;
757    stop(i) = Stop;
758  }
759};
760
761//===----------------------------------------------------------------------===//
762//---                         IntervalMapImpl::Path                        ---//
763//===----------------------------------------------------------------------===//
764//
765// A Path is used by iterators to represent a position in a B+-tree, and the
766// path to get there from the root.
767//
768// The Path class also contains the tree navigation code that doesn't have to
769// be templatized.
770//
771//===----------------------------------------------------------------------===//
772
773class Path {
774  /// Entry - Each step in the path is a node pointer and an offset into that
775  /// node.
776  struct Entry {
777    void *node;
778    unsigned size;
779    unsigned offset;
780
781    Entry(void *Node, unsigned Size, unsigned Offset)
782      : node(Node), size(Size), offset(Offset) {}
783
784    Entry(NodeRef Node, unsigned Offset)
785      : node(&Node.subtree(0)), size(Node.size()), offset(Offset) {}
786
787    NodeRef &subtree(unsigned i) const {
788      return reinterpret_cast<NodeRef*>(node)[i];
789    }
790  };
791
792  /// path - The path entries, path[0] is the root node, path.back() is a leaf.
793  SmallVector<Entry, 4> path;
794
795public:
796  // Node accessors.
797  template <typename NodeT> NodeT &node(unsigned Level) const {
798    return *reinterpret_cast<NodeT*>(path[Level].node);
799  }
800  unsigned size(unsigned Level) const { return path[Level].size; }
801  unsigned offset(unsigned Level) const { return path[Level].offset; }
802  unsigned &offset(unsigned Level) { return path[Level].offset; }
803
804  // Leaf accessors.
805  template <typename NodeT> NodeT &leaf() const {
806    return *reinterpret_cast<NodeT*>(path.back().node);
807  }
808  unsigned leafSize() const { return path.back().size; }
809  unsigned leafOffset() const { return path.back().offset; }
810  unsigned &leafOffset() { return path.back().offset; }
811
812  /// valid - Return true if path is at a valid node, not at end().
813  bool valid() const {
814    return !path.empty() && path.front().offset < path.front().size;
815  }
816
817  /// height - Return the height of the tree corresponding to this path.
818  /// This matches map->height in a full path.
819  unsigned height() const { return path.size() - 1; }
820
821  /// subtree - Get the subtree referenced from Level. When the path is
822  /// consistent, node(Level + 1) == subtree(Level).
823  /// @param Level 0..height-1. The leaves have no subtrees.
824  NodeRef &subtree(unsigned Level) const {
825    return path[Level].subtree(path[Level].offset);
826  }
827
828  /// reset - Reset cached information about node(Level) from subtree(Level -1).
829  /// @param Level 1..height. The node to update after parent node changed.
830  void reset(unsigned Level) {
831    path[Level] = Entry(subtree(Level - 1), offset(Level));
832  }
833
834  /// push - Add entry to path.
835  /// @param Node Node to add, should be subtree(path.size()-1).
836  /// @param Offset Offset into Node.
837  void push(NodeRef Node, unsigned Offset) {
838    path.push_back(Entry(Node, Offset));
839  }
840
841  /// pop - Remove the last path entry.
842  void pop() {
843    path.pop_back();
844  }
845
846  /// setSize - Set the size of a node both in the path and in the tree.
847  /// @param Level 0..height. Note that setting the root size won't change
848  ///              map->rootSize.
849  /// @param Size New node size.
850  void setSize(unsigned Level, unsigned Size) {
851    path[Level].size = Size;
852    if (Level)
853      subtree(Level - 1).setSize(Size);
854  }
855
856  /// setRoot - Clear the path and set a new root node.
857  /// @param Node New root node.
858  /// @param Size New root size.
859  /// @param Offset Offset into root node.
860  void setRoot(void *Node, unsigned Size, unsigned Offset) {
861    path.clear();
862    path.push_back(Entry(Node, Size, Offset));
863  }
864
865  /// replaceRoot - Replace the current root node with two new entries after the
866  /// tree height has increased.
867  /// @param Root The new root node.
868  /// @param Size Number of entries in the new root.
869  /// @param Offsets Offsets into the root and first branch nodes.
870  void replaceRoot(void *Root, unsigned Size, IdxPair Offsets);
871
872  /// getLeftSibling - Get the left sibling node at Level, or a null NodeRef.
873  /// @param Level Get the sibling to node(Level).
874  /// @return Left sibling, or NodeRef().
875  NodeRef getLeftSibling(unsigned Level) const;
876
877  /// moveLeft - Move path to the left sibling at Level. Leave nodes below Level
878  /// unaltered.
879  /// @param Level Move node(Level).
880  void moveLeft(unsigned Level);
881
882  /// fillLeft - Grow path to Height by taking leftmost branches.
883  /// @param Height The target height.
884  void fillLeft(unsigned Height) {
885    while (height() < Height)
886      push(subtree(height()), 0);
887  }
888
889  /// getLeftSibling - Get the left sibling node at Level, or a null NodeRef.
890  /// @param Level Get the sibling to node(Level).
891  /// @return Left sibling, or NodeRef().
892  NodeRef getRightSibling(unsigned Level) const;
893
894  /// moveRight - Move path to the left sibling at Level. Leave nodes below
895  /// Level unaltered.
896  /// @param Level Move node(Level).
897  void moveRight(unsigned Level);
898
899  /// atBegin - Return true if path is at begin().
900  bool atBegin() const {
901    for (unsigned i = 0, e = path.size(); i != e; ++i)
902      if (path[i].offset != 0)
903        return false;
904    return true;
905  }
906
907  /// atLastEntry - Return true if the path is at the last entry of the node at
908  /// Level.
909  /// @param Level Node to examine.
910  bool atLastEntry(unsigned Level) const {
911    return path[Level].offset == path[Level].size - 1;
912  }
913
914  /// legalizeForInsert - Prepare the path for an insertion at Level. When the
915  /// path is at end(), node(Level) may not be a legal node. legalizeForInsert
916  /// ensures that node(Level) is real by moving back to the last node at Level,
917  /// and setting offset(Level) to size(Level) if required.
918  /// @param Level The level where an insertion is about to take place.
919  void legalizeForInsert(unsigned Level) {
920    if (valid())
921      return;
922    moveLeft(Level);
923    ++path[Level].offset;
924  }
925};
926
927} // end namespace IntervalMapImpl
928
929//===----------------------------------------------------------------------===//
930//---                          IntervalMap                                ----//
931//===----------------------------------------------------------------------===//
932
933template <typename KeyT, typename ValT,
934          unsigned N = IntervalMapImpl::NodeSizer<KeyT, ValT>::LeafSize,
935          typename Traits = IntervalMapInfo<KeyT>>
936class IntervalMap {
937  using Sizer = IntervalMapImpl::NodeSizer<KeyT, ValT>;
938  using Leaf = IntervalMapImpl::LeafNode<KeyT, ValT, Sizer::LeafSize, Traits>;
939  using Branch =
940      IntervalMapImpl::BranchNode<KeyT, ValT, Sizer::BranchSize, Traits>;
941  using RootLeaf = IntervalMapImpl::LeafNode<KeyT, ValT, N, Traits>;
942  using IdxPair = IntervalMapImpl::IdxPair;
943
944  // The RootLeaf capacity is given as a template parameter. We must compute the
945  // corresponding RootBranch capacity.
946  enum {
947    DesiredRootBranchCap = (sizeof(RootLeaf) - sizeof(KeyT)) /
948      (sizeof(KeyT) + sizeof(IntervalMapImpl::NodeRef)),
949    RootBranchCap = DesiredRootBranchCap ? DesiredRootBranchCap : 1
950  };
951
952  using RootBranch =
953      IntervalMapImpl::BranchNode<KeyT, ValT, RootBranchCap, Traits>;
954
955  // When branched, we store a global start key as well as the branch node.
956  struct RootBranchData {
957    KeyT start;
958    RootBranch node;
959  };
960
961public:
962  using Allocator = typename Sizer::Allocator;
963  using KeyType = KeyT;
964  using ValueType = ValT;
965  using KeyTraits = Traits;
966
967private:
968  // The root data is either a RootLeaf or a RootBranchData instance.
969  union {
970    RootLeaf leaf;
971    RootBranchData branchData;
972  };
973
974  // Tree height.
975  // 0: Leaves in root.
976  // 1: Root points to leaf.
977  // 2: root->branch->leaf ...
978  unsigned height = 0;
979
980  // Number of entries in the root node.
981  unsigned rootSize = 0;
982
983  // Allocator used for creating external nodes.
984  Allocator *allocator = nullptr;
985
986  const RootLeaf &rootLeaf() const {
987    assert(!branched() && "Cannot acces leaf data in branched root");
988    return leaf;
989  }
990  RootLeaf &rootLeaf() {
991    assert(!branched() && "Cannot acces leaf data in branched root");
992    return leaf;
993  }
994
995  const RootBranchData &rootBranchData() const {
996    assert(branched() && "Cannot access branch data in non-branched root");
997    return branchData;
998  }
999  RootBranchData &rootBranchData() {
1000    assert(branched() && "Cannot access branch data in non-branched root");
1001    return branchData;
1002  }
1003
1004  const RootBranch &rootBranch() const { return rootBranchData().node; }
1005  RootBranch &rootBranch()             { return rootBranchData().node; }
1006  KeyT rootBranchStart() const { return rootBranchData().start; }
1007  KeyT &rootBranchStart()      { return rootBranchData().start; }
1008
1009  template <typename NodeT> NodeT *newNode() {
1010    return new (allocator->template Allocate<NodeT>()) NodeT();
1011  }
1012
1013  template <typename NodeT> void deleteNode(NodeT *P) {
1014    P->~NodeT();
1015    allocator->Deallocate(P);
1016  }
1017
1018  IdxPair branchRoot(unsigned Position);
1019  IdxPair splitRoot(unsigned Position);
1020
1021  void switchRootToBranch() {
1022    rootLeaf().~RootLeaf();
1023    height = 1;
1024    new (&rootBranchData()) RootBranchData();
1025  }
1026
1027  void switchRootToLeaf() {
1028    rootBranchData().~RootBranchData();
1029    height = 0;
1030    new(&rootLeaf()) RootLeaf();
1031  }
1032
1033  bool branched() const { return height > 0; }
1034
1035  ValT treeSafeLookup(KeyT x, ValT NotFound) const;
1036  void visitNodes(void (IntervalMap::*f)(IntervalMapImpl::NodeRef,
1037                  unsigned Level));
1038  void deleteNode(IntervalMapImpl::NodeRef Node, unsigned Level);
1039
1040public:
1041  explicit IntervalMap(Allocator &a) : allocator(&a) {
1042    new (&rootLeaf()) RootLeaf();
1043  }
1044
1045  ///@{
1046  /// NOTE: The moved-from or copied-from object's allocator needs to have a
1047  /// lifetime equal to or exceeding the moved-to or copied-to object to avoid
1048  /// undefined behaviour.
1049  IntervalMap(IntervalMap const &RHS) : IntervalMap(*RHS.allocator) {
1050    // Future-proofing assertion: this function assumes the IntervalMap
1051    // constructor doesn't add any nodes.
1052    assert(empty() && "Expected emptry tree");
1053    *this = RHS;
1054  }
1055  IntervalMap &operator=(IntervalMap const &RHS) {
1056    clear();
1057    allocator = RHS.allocator;
1058    for (auto It = RHS.begin(), End = RHS.end(); It != End; ++It)
1059      insert(It.start(), It.stop(), It.value());
1060    return *this;
1061  }
1062
1063  IntervalMap(IntervalMap &&RHS) : IntervalMap(*RHS.allocator) {
1064    // Future-proofing assertion: this function assumes the IntervalMap
1065    // constructor doesn't add any nodes.
1066    assert(empty() && "Expected emptry tree");
1067    *this = std::move(RHS);
1068  }
1069  IntervalMap &operator=(IntervalMap &&RHS) {
1070    // Calling clear deallocates memory and switches to rootLeaf.
1071    clear();
1072    // Destroy the new rootLeaf.
1073    rootLeaf().~RootLeaf();
1074
1075    height = RHS.height;
1076    rootSize = RHS.rootSize;
1077    allocator = RHS.allocator;
1078
1079    // rootLeaf and rootBranch are both uninitialized. Move RHS data into
1080    // appropriate field.
1081    if (RHS.branched()) {
1082      rootBranch() = std::move(RHS.rootBranch());
1083      // Prevent RHS deallocating memory LHS now owns by replacing RHS
1084      // rootBranch with a new rootLeaf.
1085      RHS.rootBranch().~RootBranch();
1086      RHS.height = 0;
1087      new (&RHS.rootLeaf()) RootLeaf();
1088    } else {
1089      rootLeaf() = std::move(RHS.rootLeaf());
1090    }
1091    return *this;
1092  }
1093  ///@}
1094
1095  ~IntervalMap() {
1096    clear();
1097    rootLeaf().~RootLeaf();
1098  }
1099
1100  /// empty -  Return true when no intervals are mapped.
1101  bool empty() const {
1102    return rootSize == 0;
1103  }
1104
1105  /// start - Return the smallest mapped key in a non-empty map.
1106  KeyT start() const {
1107    assert(!empty() && "Empty IntervalMap has no start");
1108    return !branched() ? rootLeaf().start(0) : rootBranchStart();
1109  }
1110
1111  /// stop - Return the largest mapped key in a non-empty map.
1112  KeyT stop() const {
1113    assert(!empty() && "Empty IntervalMap has no stop");
1114    return !branched() ? rootLeaf().stop(rootSize - 1) :
1115                         rootBranch().stop(rootSize - 1);
1116  }
1117
1118  /// lookup - Return the mapped value at x or NotFound.
1119  ValT lookup(KeyT x, ValT NotFound = ValT()) const {
1120    if (empty() || Traits::startLess(x, start()) || Traits::stopLess(stop(), x))
1121      return NotFound;
1122    return branched() ? treeSafeLookup(x, NotFound) :
1123                        rootLeaf().safeLookup(x, NotFound);
1124  }
1125
1126  /// insert - Add a mapping of [a;b] to y, coalesce with adjacent intervals.
1127  /// It is assumed that no key in the interval is mapped to another value, but
1128  /// overlapping intervals already mapped to y will be coalesced.
1129  void insert(KeyT a, KeyT b, ValT y) {
1130    if (branched() || rootSize == RootLeaf::Capacity)
1131      return find(a).insert(a, b, y);
1132
1133    // Easy insert into root leaf.
1134    unsigned p = rootLeaf().findFrom(0, rootSize, a);
1135    rootSize = rootLeaf().insertFrom(p, rootSize, a, b, y);
1136  }
1137
1138  /// clear - Remove all entries.
1139  void clear();
1140
1141  class const_iterator;
1142  class iterator;
1143  friend class const_iterator;
1144  friend class iterator;
1145
1146  const_iterator begin() const {
1147    const_iterator I(*this);
1148    I.goToBegin();
1149    return I;
1150  }
1151
1152  iterator begin() {
1153    iterator I(*this);
1154    I.goToBegin();
1155    return I;
1156  }
1157
1158  const_iterator end() const {
1159    const_iterator I(*this);
1160    I.goToEnd();
1161    return I;
1162  }
1163
1164  iterator end() {
1165    iterator I(*this);
1166    I.goToEnd();
1167    return I;
1168  }
1169
1170  /// find - Return an iterator pointing to the first interval ending at or
1171  /// after x, or end().
1172  const_iterator find(KeyT x) const {
1173    const_iterator I(*this);
1174    I.find(x);
1175    return I;
1176  }
1177
1178  iterator find(KeyT x) {
1179    iterator I(*this);
1180    I.find(x);
1181    return I;
1182  }
1183
1184  /// overlaps(a, b) - Return true if the intervals in this map overlap with the
1185  /// interval [a;b].
1186  bool overlaps(KeyT a, KeyT b) const {
1187    assert(Traits::nonEmpty(a, b));
1188    const_iterator I = find(a);
1189    if (!I.valid())
1190      return false;
1191    // [a;b] and [x;y] overlap iff x<=b and a<=y. The find() call guarantees the
1192    // second part (y = find(a).stop()), so it is sufficient to check the first
1193    // one.
1194    return !Traits::stopLess(b, I.start());
1195  }
1196};
1197
1198/// treeSafeLookup - Return the mapped value at x or NotFound, assuming a
1199/// branched root.
1200template <typename KeyT, typename ValT, unsigned N, typename Traits>
1201ValT IntervalMap<KeyT, ValT, N, Traits>::
1202treeSafeLookup(KeyT x, ValT NotFound) const {
1203  assert(branched() && "treeLookup assumes a branched root");
1204
1205  IntervalMapImpl::NodeRef NR = rootBranch().safeLookup(x);
1206  for (unsigned h = height-1; h; --h)
1207    NR = NR.get<Branch>().safeLookup(x);
1208  return NR.get<Leaf>().safeLookup(x, NotFound);
1209}
1210
1211// branchRoot - Switch from a leaf root to a branched root.
1212// Return the new (root offset, node offset) corresponding to Position.
1213template <typename KeyT, typename ValT, unsigned N, typename Traits>
1214IntervalMapImpl::IdxPair IntervalMap<KeyT, ValT, N, Traits>::
1215branchRoot(unsigned Position) {
1216  using namespace IntervalMapImpl;
1217  // How many external leaf nodes to hold RootLeaf+1?
1218  const unsigned Nodes = RootLeaf::Capacity / Leaf::Capacity + 1;
1219
1220  // Compute element distribution among new nodes.
1221  unsigned size[Nodes];
1222  IdxPair NewOffset(0, Position);
1223
1224  // It is very common for the root node to be smaller than external nodes.
1225  if (Nodes == 1)
1226    size[0] = rootSize;
1227  else
1228    NewOffset = distribute(Nodes, rootSize, Leaf::Capacity,  nullptr, size,
1229                           Position, true);
1230
1231  // Allocate new nodes.
1232  unsigned pos = 0;
1233  NodeRef node[Nodes];
1234  for (unsigned n = 0; n != Nodes; ++n) {
1235    Leaf *L = newNode<Leaf>();
1236    L->copy(rootLeaf(), pos, 0, size[n]);
1237    node[n] = NodeRef(L, size[n]);
1238    pos += size[n];
1239  }
1240
1241  // Destroy the old leaf node, construct branch node instead.
1242  switchRootToBranch();
1243  for (unsigned n = 0; n != Nodes; ++n) {
1244    rootBranch().stop(n) = node[n].template get<Leaf>().stop(size[n]-1);
1245    rootBranch().subtree(n) = node[n];
1246  }
1247  rootBranchStart() = node[0].template get<Leaf>().start(0);
1248  rootSize = Nodes;
1249  return NewOffset;
1250}
1251
1252// splitRoot - Split the current BranchRoot into multiple Branch nodes.
1253// Return the new (root offset, node offset) corresponding to Position.
1254template <typename KeyT, typename ValT, unsigned N, typename Traits>
1255IntervalMapImpl::IdxPair IntervalMap<KeyT, ValT, N, Traits>::
1256splitRoot(unsigned Position) {
1257  using namespace IntervalMapImpl;
1258  // How many external leaf nodes to hold RootBranch+1?
1259  const unsigned Nodes = RootBranch::Capacity / Branch::Capacity + 1;
1260
1261  // Compute element distribution among new nodes.
1262  unsigned Size[Nodes];
1263  IdxPair NewOffset(0, Position);
1264
1265  // It is very common for the root node to be smaller than external nodes.
1266  if (Nodes == 1)
1267    Size[0] = rootSize;
1268  else
1269    NewOffset = distribute(Nodes, rootSize, Leaf::Capacity,  nullptr, Size,
1270                           Position, true);
1271
1272  // Allocate new nodes.
1273  unsigned Pos = 0;
1274  NodeRef Node[Nodes];
1275  for (unsigned n = 0; n != Nodes; ++n) {
1276    Branch *B = newNode<Branch>();
1277    B->copy(rootBranch(), Pos, 0, Size[n]);
1278    Node[n] = NodeRef(B, Size[n]);
1279    Pos += Size[n];
1280  }
1281
1282  for (unsigned n = 0; n != Nodes; ++n) {
1283    rootBranch().stop(n) = Node[n].template get<Branch>().stop(Size[n]-1);
1284    rootBranch().subtree(n) = Node[n];
1285  }
1286  rootSize = Nodes;
1287  ++height;
1288  return NewOffset;
1289}
1290
1291/// visitNodes - Visit each external node.
1292template <typename KeyT, typename ValT, unsigned N, typename Traits>
1293void IntervalMap<KeyT, ValT, N, Traits>::
1294visitNodes(void (IntervalMap::*f)(IntervalMapImpl::NodeRef, unsigned Height)) {
1295  if (!branched())
1296    return;
1297  SmallVector<IntervalMapImpl::NodeRef, 4> Refs, NextRefs;
1298
1299  // Collect level 0 nodes from the root.
1300  for (unsigned i = 0; i != rootSize; ++i)
1301    Refs.push_back(rootBranch().subtree(i));
1302
1303  // Visit all branch nodes.
1304  for (unsigned h = height - 1; h; --h) {
1305    for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
1306      for (unsigned j = 0, s = Refs[i].size(); j != s; ++j)
1307        NextRefs.push_back(Refs[i].subtree(j));
1308      (this->*f)(Refs[i], h);
1309    }
1310    Refs.clear();
1311    Refs.swap(NextRefs);
1312  }
1313
1314  // Visit all leaf nodes.
1315  for (unsigned i = 0, e = Refs.size(); i != e; ++i)
1316    (this->*f)(Refs[i], 0);
1317}
1318
1319template <typename KeyT, typename ValT, unsigned N, typename Traits>
1320void IntervalMap<KeyT, ValT, N, Traits>::
1321deleteNode(IntervalMapImpl::NodeRef Node, unsigned Level) {
1322  if (Level)
1323    deleteNode(&Node.get<Branch>());
1324  else
1325    deleteNode(&Node.get<Leaf>());
1326}
1327
1328template <typename KeyT, typename ValT, unsigned N, typename Traits>
1329void IntervalMap<KeyT, ValT, N, Traits>::
1330clear() {
1331  if (branched()) {
1332    visitNodes(&IntervalMap::deleteNode);
1333    switchRootToLeaf();
1334  }
1335  rootSize = 0;
1336}
1337
1338//===----------------------------------------------------------------------===//
1339//---                   IntervalMap::const_iterator                       ----//
1340//===----------------------------------------------------------------------===//
1341
1342template <typename KeyT, typename ValT, unsigned N, typename Traits>
1343class IntervalMap<KeyT, ValT, N, Traits>::const_iterator {
1344  friend class IntervalMap;
1345
1346public:
1347  using iterator_category = std::bidirectional_iterator_tag;
1348  using value_type = ValT;
1349  using difference_type = std::ptrdiff_t;
1350  using pointer = value_type *;
1351  using reference = value_type &;
1352
1353protected:
1354  // The map referred to.
1355  IntervalMap *map = nullptr;
1356
1357  // We store a full path from the root to the current position.
1358  // The path may be partially filled, but never between iterator calls.
1359  IntervalMapImpl::Path path;
1360
1361  explicit const_iterator(const IntervalMap &map) :
1362    map(const_cast<IntervalMap*>(&map)) {}
1363
1364  bool branched() const {
1365    assert(map && "Invalid iterator");
1366    return map->branched();
1367  }
1368
1369  void setRoot(unsigned Offset) {
1370    if (branched())
1371      path.setRoot(&map->rootBranch(), map->rootSize, Offset);
1372    else
1373      path.setRoot(&map->rootLeaf(), map->rootSize, Offset);
1374  }
1375
1376  void pathFillFind(KeyT x);
1377  void treeFind(KeyT x);
1378  void treeAdvanceTo(KeyT x);
1379
1380  /// unsafeStart - Writable access to start() for iterator.
1381  KeyT &unsafeStart() const {
1382    assert(valid() && "Cannot access invalid iterator");
1383    return branched() ? path.leaf<Leaf>().start(path.leafOffset()) :
1384                        path.leaf<RootLeaf>().start(path.leafOffset());
1385  }
1386
1387  /// unsafeStop - Writable access to stop() for iterator.
1388  KeyT &unsafeStop() const {
1389    assert(valid() && "Cannot access invalid iterator");
1390    return branched() ? path.leaf<Leaf>().stop(path.leafOffset()) :
1391                        path.leaf<RootLeaf>().stop(path.leafOffset());
1392  }
1393
1394  /// unsafeValue - Writable access to value() for iterator.
1395  ValT &unsafeValue() const {
1396    assert(valid() && "Cannot access invalid iterator");
1397    return branched() ? path.leaf<Leaf>().value(path.leafOffset()) :
1398                        path.leaf<RootLeaf>().value(path.leafOffset());
1399  }
1400
1401public:
1402  /// const_iterator - Create an iterator that isn't pointing anywhere.
1403  const_iterator() = default;
1404
1405  /// setMap - Change the map iterated over. This call must be followed by a
1406  /// call to goToBegin(), goToEnd(), or find()
1407  void setMap(const IntervalMap &m) { map = const_cast<IntervalMap*>(&m); }
1408
1409  /// valid - Return true if the current position is valid, false for end().
1410  bool valid() const { return path.valid(); }
1411
1412  /// atBegin - Return true if the current position is the first map entry.
1413  bool atBegin() const { return path.atBegin(); }
1414
1415  /// start - Return the beginning of the current interval.
1416  const KeyT &start() const { return unsafeStart(); }
1417
1418  /// stop - Return the end of the current interval.
1419  const KeyT &stop() const { return unsafeStop(); }
1420
1421  /// value - Return the mapped value at the current interval.
1422  const ValT &value() const { return unsafeValue(); }
1423
1424  const ValT &operator*() const { return value(); }
1425
1426  bool operator==(const const_iterator &RHS) const {
1427    assert(map == RHS.map && "Cannot compare iterators from different maps");
1428    if (!valid())
1429      return !RHS.valid();
1430    if (path.leafOffset() != RHS.path.leafOffset())
1431      return false;
1432    return &path.template leaf<Leaf>() == &RHS.path.template leaf<Leaf>();
1433  }
1434
1435  bool operator!=(const const_iterator &RHS) const {
1436    return !operator==(RHS);
1437  }
1438
1439  /// goToBegin - Move to the first interval in map.
1440  void goToBegin() {
1441    setRoot(0);
1442    if (branched())
1443      path.fillLeft(map->height);
1444  }
1445
1446  /// goToEnd - Move beyond the last interval in map.
1447  void goToEnd() {
1448    setRoot(map->rootSize);
1449  }
1450
1451  /// preincrement - Move to the next interval.
1452  const_iterator &operator++() {
1453    assert(valid() && "Cannot increment end()");
1454    if (++path.leafOffset() == path.leafSize() && branched())
1455      path.moveRight(map->height);
1456    return *this;
1457  }
1458
1459  /// postincrement - Don't do that!
1460  const_iterator operator++(int) {
1461    const_iterator tmp = *this;
1462    operator++();
1463    return tmp;
1464  }
1465
1466  /// predecrement - Move to the previous interval.
1467  const_iterator &operator--() {
1468    if (path.leafOffset() && (valid() || !branched()))
1469      --path.leafOffset();
1470    else
1471      path.moveLeft(map->height);
1472    return *this;
1473  }
1474
1475  /// postdecrement - Don't do that!
1476  const_iterator operator--(int) {
1477    const_iterator tmp = *this;
1478    operator--();
1479    return tmp;
1480  }
1481
1482  /// find - Move to the first interval with stop >= x, or end().
1483  /// This is a full search from the root, the current position is ignored.
1484  void find(KeyT x) {
1485    if (branched())
1486      treeFind(x);
1487    else
1488      setRoot(map->rootLeaf().findFrom(0, map->rootSize, x));
1489  }
1490
1491  /// advanceTo - Move to the first interval with stop >= x, or end().
1492  /// The search is started from the current position, and no earlier positions
1493  /// can be found. This is much faster than find() for small moves.
1494  void advanceTo(KeyT x) {
1495    if (!valid())
1496      return;
1497    if (branched())
1498      treeAdvanceTo(x);
1499    else
1500      path.leafOffset() =
1501        map->rootLeaf().findFrom(path.leafOffset(), map->rootSize, x);
1502  }
1503};
1504
1505/// pathFillFind - Complete path by searching for x.
1506/// @param x Key to search for.
1507template <typename KeyT, typename ValT, unsigned N, typename Traits>
1508void IntervalMap<KeyT, ValT, N, Traits>::
1509const_iterator::pathFillFind(KeyT x) {
1510  IntervalMapImpl::NodeRef NR = path.subtree(path.height());
1511  for (unsigned i = map->height - path.height() - 1; i; --i) {
1512    unsigned p = NR.get<Branch>().safeFind(0, x);
1513    path.push(NR, p);
1514    NR = NR.subtree(p);
1515  }
1516  path.push(NR, NR.get<Leaf>().safeFind(0, x));
1517}
1518
1519/// treeFind - Find in a branched tree.
1520/// @param x Key to search for.
1521template <typename KeyT, typename ValT, unsigned N, typename Traits>
1522void IntervalMap<KeyT, ValT, N, Traits>::
1523const_iterator::treeFind(KeyT x) {
1524  setRoot(map->rootBranch().findFrom(0, map->rootSize, x));
1525  if (valid())
1526    pathFillFind(x);
1527}
1528
1529/// treeAdvanceTo - Find position after the current one.
1530/// @param x Key to search for.
1531template <typename KeyT, typename ValT, unsigned N, typename Traits>
1532void IntervalMap<KeyT, ValT, N, Traits>::
1533const_iterator::treeAdvanceTo(KeyT x) {
1534  // Can we stay on the same leaf node?
1535  if (!Traits::stopLess(path.leaf<Leaf>().stop(path.leafSize() - 1), x)) {
1536    path.leafOffset() = path.leaf<Leaf>().safeFind(path.leafOffset(), x);
1537    return;
1538  }
1539
1540  // Drop the current leaf.
1541  path.pop();
1542
1543  // Search towards the root for a usable subtree.
1544  if (path.height()) {
1545    for (unsigned l = path.height() - 1; l; --l) {
1546      if (!Traits::stopLess(path.node<Branch>(l).stop(path.offset(l)), x)) {
1547        // The branch node at l+1 is usable
1548        path.offset(l + 1) =
1549          path.node<Branch>(l + 1).safeFind(path.offset(l + 1), x);
1550        return pathFillFind(x);
1551      }
1552      path.pop();
1553    }
1554    // Is the level-1 Branch usable?
1555    if (!Traits::stopLess(map->rootBranch().stop(path.offset(0)), x)) {
1556      path.offset(1) = path.node<Branch>(1).safeFind(path.offset(1), x);
1557      return pathFillFind(x);
1558    }
1559  }
1560
1561  // We reached the root.
1562  setRoot(map->rootBranch().findFrom(path.offset(0), map->rootSize, x));
1563  if (valid())
1564    pathFillFind(x);
1565}
1566
1567//===----------------------------------------------------------------------===//
1568//---                       IntervalMap::iterator                         ----//
1569//===----------------------------------------------------------------------===//
1570
1571template <typename KeyT, typename ValT, unsigned N, typename Traits>
1572class IntervalMap<KeyT, ValT, N, Traits>::iterator : public const_iterator {
1573  friend class IntervalMap;
1574
1575  using IdxPair = IntervalMapImpl::IdxPair;
1576
1577  explicit iterator(IntervalMap &map) : const_iterator(map) {}
1578
1579  void setNodeStop(unsigned Level, KeyT Stop);
1580  bool insertNode(unsigned Level, IntervalMapImpl::NodeRef Node, KeyT Stop);
1581  template <typename NodeT> bool overflow(unsigned Level);
1582  void treeInsert(KeyT a, KeyT b, ValT y);
1583  void eraseNode(unsigned Level);
1584  void treeErase(bool UpdateRoot = true);
1585  bool canCoalesceLeft(KeyT Start, ValT x);
1586  bool canCoalesceRight(KeyT Stop, ValT x);
1587
1588public:
1589  /// iterator - Create null iterator.
1590  iterator() = default;
1591
1592  /// setStart - Move the start of the current interval.
1593  /// This may cause coalescing with the previous interval.
1594  /// @param a New start key, must not overlap the previous interval.
1595  void setStart(KeyT a);
1596
1597  /// setStop - Move the end of the current interval.
1598  /// This may cause coalescing with the following interval.
1599  /// @param b New stop key, must not overlap the following interval.
1600  void setStop(KeyT b);
1601
1602  /// setValue - Change the mapped value of the current interval.
1603  /// This may cause coalescing with the previous and following intervals.
1604  /// @param x New value.
1605  void setValue(ValT x);
1606
1607  /// setStartUnchecked - Move the start of the current interval without
1608  /// checking for coalescing or overlaps.
1609  /// This should only be used when it is known that coalescing is not required.
1610  /// @param a New start key.
1611  void setStartUnchecked(KeyT a) { this->unsafeStart() = a; }
1612
1613  /// setStopUnchecked - Move the end of the current interval without checking
1614  /// for coalescing or overlaps.
1615  /// This should only be used when it is known that coalescing is not required.
1616  /// @param b New stop key.
1617  void setStopUnchecked(KeyT b) {
1618    this->unsafeStop() = b;
1619    // Update keys in branch nodes as well.
1620    if (this->path.atLastEntry(this->path.height()))
1621      setNodeStop(this->path.height(), b);
1622  }
1623
1624  /// setValueUnchecked - Change the mapped value of the current interval
1625  /// without checking for coalescing.
1626  /// @param x New value.
1627  void setValueUnchecked(ValT x) { this->unsafeValue() = x; }
1628
1629  /// insert - Insert mapping [a;b] -> y before the current position.
1630  void insert(KeyT a, KeyT b, ValT y);
1631
1632  /// erase - Erase the current interval.
1633  void erase();
1634
1635  iterator &operator++() {
1636    const_iterator::operator++();
1637    return *this;
1638  }
1639
1640  iterator operator++(int) {
1641    iterator tmp = *this;
1642    operator++();
1643    return tmp;
1644  }
1645
1646  iterator &operator--() {
1647    const_iterator::operator--();
1648    return *this;
1649  }
1650
1651  iterator operator--(int) {
1652    iterator tmp = *this;
1653    operator--();
1654    return tmp;
1655  }
1656};
1657
1658/// canCoalesceLeft - Can the current interval coalesce to the left after
1659/// changing start or value?
1660/// @param Start New start of current interval.
1661/// @param Value New value for current interval.
1662/// @return True when updating the current interval would enable coalescing.
1663template <typename KeyT, typename ValT, unsigned N, typename Traits>
1664bool IntervalMap<KeyT, ValT, N, Traits>::
1665iterator::canCoalesceLeft(KeyT Start, ValT Value) {
1666  using namespace IntervalMapImpl;
1667  Path &P = this->path;
1668  if (!this->branched()) {
1669    unsigned i = P.leafOffset();
1670    RootLeaf &Node = P.leaf<RootLeaf>();
1671    return i && Node.value(i-1) == Value &&
1672                Traits::adjacent(Node.stop(i-1), Start);
1673  }
1674  // Branched.
1675  if (unsigned i = P.leafOffset()) {
1676    Leaf &Node = P.leaf<Leaf>();
1677    return Node.value(i-1) == Value && Traits::adjacent(Node.stop(i-1), Start);
1678  } else if (NodeRef NR = P.getLeftSibling(P.height())) {
1679    unsigned i = NR.size() - 1;
1680    Leaf &Node = NR.get<Leaf>();
1681    return Node.value(i) == Value && Traits::adjacent(Node.stop(i), Start);
1682  }
1683  return false;
1684}
1685
1686/// canCoalesceRight - Can the current interval coalesce to the right after
1687/// changing stop or value?
1688/// @param Stop New stop of current interval.
1689/// @param Value New value for current interval.
1690/// @return True when updating the current interval would enable coalescing.
1691template <typename KeyT, typename ValT, unsigned N, typename Traits>
1692bool IntervalMap<KeyT, ValT, N, Traits>::
1693iterator::canCoalesceRight(KeyT Stop, ValT Value) {
1694  using namespace IntervalMapImpl;
1695  Path &P = this->path;
1696  unsigned i = P.leafOffset() + 1;
1697  if (!this->branched()) {
1698    if (i >= P.leafSize())
1699      return false;
1700    RootLeaf &Node = P.leaf<RootLeaf>();
1701    return Node.value(i) == Value && Traits::adjacent(Stop, Node.start(i));
1702  }
1703  // Branched.
1704  if (i < P.leafSize()) {
1705    Leaf &Node = P.leaf<Leaf>();
1706    return Node.value(i) == Value && Traits::adjacent(Stop, Node.start(i));
1707  } else if (NodeRef NR = P.getRightSibling(P.height())) {
1708    Leaf &Node = NR.get<Leaf>();
1709    return Node.value(0) == Value && Traits::adjacent(Stop, Node.start(0));
1710  }
1711  return false;
1712}
1713
1714/// setNodeStop - Update the stop key of the current node at level and above.
1715template <typename KeyT, typename ValT, unsigned N, typename Traits>
1716void IntervalMap<KeyT, ValT, N, Traits>::
1717iterator::setNodeStop(unsigned Level, KeyT Stop) {
1718  // There are no references to the root node, so nothing to update.
1719  if (!Level)
1720    return;
1721  IntervalMapImpl::Path &P = this->path;
1722  // Update nodes pointing to the current node.
1723  while (--Level) {
1724    P.node<Branch>(Level).stop(P.offset(Level)) = Stop;
1725    if (!P.atLastEntry(Level))
1726      return;
1727  }
1728  // Update root separately since it has a different layout.
1729  P.node<RootBranch>(Level).stop(P.offset(Level)) = Stop;
1730}
1731
1732template <typename KeyT, typename ValT, unsigned N, typename Traits>
1733void IntervalMap<KeyT, ValT, N, Traits>::
1734iterator::setStart(KeyT a) {
1735  assert(Traits::nonEmpty(a, this->stop()) && "Cannot move start beyond stop");
1736  KeyT &CurStart = this->unsafeStart();
1737  if (!Traits::startLess(a, CurStart) || !canCoalesceLeft(a, this->value())) {
1738    CurStart = a;
1739    return;
1740  }
1741  // Coalesce with the interval to the left.
1742  --*this;
1743  a = this->start();
1744  erase();
1745  setStartUnchecked(a);
1746}
1747
1748template <typename KeyT, typename ValT, unsigned N, typename Traits>
1749void IntervalMap<KeyT, ValT, N, Traits>::
1750iterator::setStop(KeyT b) {
1751  assert(Traits::nonEmpty(this->start(), b) && "Cannot move stop beyond start");
1752  if (Traits::startLess(b, this->stop()) ||
1753      !canCoalesceRight(b, this->value())) {
1754    setStopUnchecked(b);
1755    return;
1756  }
1757  // Coalesce with interval to the right.
1758  KeyT a = this->start();
1759  erase();
1760  setStartUnchecked(a);
1761}
1762
1763template <typename KeyT, typename ValT, unsigned N, typename Traits>
1764void IntervalMap<KeyT, ValT, N, Traits>::
1765iterator::setValue(ValT x) {
1766  setValueUnchecked(x);
1767  if (canCoalesceRight(this->stop(), x)) {
1768    KeyT a = this->start();
1769    erase();
1770    setStartUnchecked(a);
1771  }
1772  if (canCoalesceLeft(this->start(), x)) {
1773    --*this;
1774    KeyT a = this->start();
1775    erase();
1776    setStartUnchecked(a);
1777  }
1778}
1779
1780/// insertNode - insert a node before the current path at level.
1781/// Leave the current path pointing at the new node.
1782/// @param Level path index of the node to be inserted.
1783/// @param Node The node to be inserted.
1784/// @param Stop The last index in the new node.
1785/// @return True if the tree height was increased.
1786template <typename KeyT, typename ValT, unsigned N, typename Traits>
1787bool IntervalMap<KeyT, ValT, N, Traits>::
1788iterator::insertNode(unsigned Level, IntervalMapImpl::NodeRef Node, KeyT Stop) {
1789  assert(Level && "Cannot insert next to the root");
1790  bool SplitRoot = false;
1791  IntervalMap &IM = *this->map;
1792  IntervalMapImpl::Path &P = this->path;
1793
1794  if (Level == 1) {
1795    // Insert into the root branch node.
1796    if (IM.rootSize < RootBranch::Capacity) {
1797      IM.rootBranch().insert(P.offset(0), IM.rootSize, Node, Stop);
1798      P.setSize(0, ++IM.rootSize);
1799      P.reset(Level);
1800      return SplitRoot;
1801    }
1802
1803    // We need to split the root while keeping our position.
1804    SplitRoot = true;
1805    IdxPair Offset = IM.splitRoot(P.offset(0));
1806    P.replaceRoot(&IM.rootBranch(), IM.rootSize, Offset);
1807
1808    // Fall through to insert at the new higher level.
1809    ++Level;
1810  }
1811
1812  // When inserting before end(), make sure we have a valid path.
1813  P.legalizeForInsert(--Level);
1814
1815  // Insert into the branch node at Level-1.
1816  if (P.size(Level) == Branch::Capacity) {
1817    // Branch node is full, handle the overflow.
1818    assert(!SplitRoot && "Cannot overflow after splitting the root");
1819    SplitRoot = overflow<Branch>(Level);
1820    Level += SplitRoot;
1821  }
1822  P.node<Branch>(Level).insert(P.offset(Level), P.size(Level), Node, Stop);
1823  P.setSize(Level, P.size(Level) + 1);
1824  if (P.atLastEntry(Level))
1825    setNodeStop(Level, Stop);
1826  P.reset(Level + 1);
1827  return SplitRoot;
1828}
1829
1830// insert
1831template <typename KeyT, typename ValT, unsigned N, typename Traits>
1832void IntervalMap<KeyT, ValT, N, Traits>::
1833iterator::insert(KeyT a, KeyT b, ValT y) {
1834  if (this->branched())
1835    return treeInsert(a, b, y);
1836  IntervalMap &IM = *this->map;
1837  IntervalMapImpl::Path &P = this->path;
1838
1839  // Try simple root leaf insert.
1840  unsigned Size = IM.rootLeaf().insertFrom(P.leafOffset(), IM.rootSize, a, b, y);
1841
1842  // Was the root node insert successful?
1843  if (Size <= RootLeaf::Capacity) {
1844    P.setSize(0, IM.rootSize = Size);
1845    return;
1846  }
1847
1848  // Root leaf node is full, we must branch.
1849  IdxPair Offset = IM.branchRoot(P.leafOffset());
1850  P.replaceRoot(&IM.rootBranch(), IM.rootSize, Offset);
1851
1852  // Now it fits in the new leaf.
1853  treeInsert(a, b, y);
1854}
1855
1856template <typename KeyT, typename ValT, unsigned N, typename Traits>
1857void IntervalMap<KeyT, ValT, N, Traits>::
1858iterator::treeInsert(KeyT a, KeyT b, ValT y) {
1859  using namespace IntervalMapImpl;
1860  Path &P = this->path;
1861
1862  if (!P.valid())
1863    P.legalizeForInsert(this->map->height);
1864
1865  // Check if this insertion will extend the node to the left.
1866  if (P.leafOffset() == 0 && Traits::startLess(a, P.leaf<Leaf>().start(0))) {
1867    // Node is growing to the left, will it affect a left sibling node?
1868    if (NodeRef Sib = P.getLeftSibling(P.height())) {
1869      Leaf &SibLeaf = Sib.get<Leaf>();
1870      unsigned SibOfs = Sib.size() - 1;
1871      if (SibLeaf.value(SibOfs) == y &&
1872          Traits::adjacent(SibLeaf.stop(SibOfs), a)) {
1873        // This insertion will coalesce with the last entry in SibLeaf. We can
1874        // handle it in two ways:
1875        //  1. Extend SibLeaf.stop to b and be done, or
1876        //  2. Extend a to SibLeaf, erase the SibLeaf entry and continue.
1877        // We prefer 1., but need 2 when coalescing to the right as well.
1878        Leaf &CurLeaf = P.leaf<Leaf>();
1879        P.moveLeft(P.height());
1880        if (Traits::stopLess(b, CurLeaf.start(0)) &&
1881            (y != CurLeaf.value(0) || !Traits::adjacent(b, CurLeaf.start(0)))) {
1882          // Easy, just extend SibLeaf and we're done.
1883          setNodeStop(P.height(), SibLeaf.stop(SibOfs) = b);
1884          return;
1885        } else {
1886          // We have both left and right coalescing. Erase the old SibLeaf entry
1887          // and continue inserting the larger interval.
1888          a = SibLeaf.start(SibOfs);
1889          treeErase(/* UpdateRoot= */false);
1890        }
1891      }
1892    } else {
1893      // No left sibling means we are at begin(). Update cached bound.
1894      this->map->rootBranchStart() = a;
1895    }
1896  }
1897
1898  // When we are inserting at the end of a leaf node, we must update stops.
1899  unsigned Size = P.leafSize();
1900  bool Grow = P.leafOffset() == Size;
1901  Size = P.leaf<Leaf>().insertFrom(P.leafOffset(), Size, a, b, y);
1902
1903  // Leaf insertion unsuccessful? Overflow and try again.
1904  if (Size > Leaf::Capacity) {
1905    overflow<Leaf>(P.height());
1906    Grow = P.leafOffset() == P.leafSize();
1907    Size = P.leaf<Leaf>().insertFrom(P.leafOffset(), P.leafSize(), a, b, y);
1908    assert(Size <= Leaf::Capacity && "overflow() didn't make room");
1909  }
1910
1911  // Inserted, update offset and leaf size.
1912  P.setSize(P.height(), Size);
1913
1914  // Insert was the last node entry, update stops.
1915  if (Grow)
1916    setNodeStop(P.height(), b);
1917}
1918
1919/// erase - erase the current interval and move to the next position.
1920template <typename KeyT, typename ValT, unsigned N, typename Traits>
1921void IntervalMap<KeyT, ValT, N, Traits>::
1922iterator::erase() {
1923  IntervalMap &IM = *this->map;
1924  IntervalMapImpl::Path &P = this->path;
1925  assert(P.valid() && "Cannot erase end()");
1926  if (this->branched())
1927    return treeErase();
1928  IM.rootLeaf().erase(P.leafOffset(), IM.rootSize);
1929  P.setSize(0, --IM.rootSize);
1930}
1931
1932/// treeErase - erase() for a branched tree.
1933template <typename KeyT, typename ValT, unsigned N, typename Traits>
1934void IntervalMap<KeyT, ValT, N, Traits>::
1935iterator::treeErase(bool UpdateRoot) {
1936  IntervalMap &IM = *this->map;
1937  IntervalMapImpl::Path &P = this->path;
1938  Leaf &Node = P.leaf<Leaf>();
1939
1940  // Nodes are not allowed to become empty.
1941  if (P.leafSize() == 1) {
1942    IM.deleteNode(&Node);
1943    eraseNode(IM.height);
1944    // Update rootBranchStart if we erased begin().
1945    if (UpdateRoot && IM.branched() && P.valid() && P.atBegin())
1946      IM.rootBranchStart() = P.leaf<Leaf>().start(0);
1947    return;
1948  }
1949
1950  // Erase current entry.
1951  Node.erase(P.leafOffset(), P.leafSize());
1952  unsigned NewSize = P.leafSize() - 1;
1953  P.setSize(IM.height, NewSize);
1954  // When we erase the last entry, update stop and move to a legal position.
1955  if (P.leafOffset() == NewSize) {
1956    setNodeStop(IM.height, Node.stop(NewSize - 1));
1957    P.moveRight(IM.height);
1958  } else if (UpdateRoot && P.atBegin())
1959    IM.rootBranchStart() = P.leaf<Leaf>().start(0);
1960}
1961
1962/// eraseNode - Erase the current node at Level from its parent and move path to
1963/// the first entry of the next sibling node.
1964/// The node must be deallocated by the caller.
1965/// @param Level 1..height, the root node cannot be erased.
1966template <typename KeyT, typename ValT, unsigned N, typename Traits>
1967void IntervalMap<KeyT, ValT, N, Traits>::
1968iterator::eraseNode(unsigned Level) {
1969  assert(Level && "Cannot erase root node");
1970  IntervalMap &IM = *this->map;
1971  IntervalMapImpl::Path &P = this->path;
1972
1973  if (--Level == 0) {
1974    IM.rootBranch().erase(P.offset(0), IM.rootSize);
1975    P.setSize(0, --IM.rootSize);
1976    // If this cleared the root, switch to height=0.
1977    if (IM.empty()) {
1978      IM.switchRootToLeaf();
1979      this->setRoot(0);
1980      return;
1981    }
1982  } else {
1983    // Remove node ref from branch node at Level.
1984    Branch &Parent = P.node<Branch>(Level);
1985    if (P.size(Level) == 1) {
1986      // Branch node became empty, remove it recursively.
1987      IM.deleteNode(&Parent);
1988      eraseNode(Level);
1989    } else {
1990      // Branch node won't become empty.
1991      Parent.erase(P.offset(Level), P.size(Level));
1992      unsigned NewSize = P.size(Level) - 1;
1993      P.setSize(Level, NewSize);
1994      // If we removed the last branch, update stop and move to a legal pos.
1995      if (P.offset(Level) == NewSize) {
1996        setNodeStop(Level, Parent.stop(NewSize - 1));
1997        P.moveRight(Level);
1998      }
1999    }
2000  }
2001  // Update path cache for the new right sibling position.
2002  if (P.valid()) {
2003    P.reset(Level + 1);
2004    P.offset(Level + 1) = 0;
2005  }
2006}
2007
2008/// overflow - Distribute entries of the current node evenly among
2009/// its siblings and ensure that the current node is not full.
2010/// This may require allocating a new node.
2011/// @tparam NodeT The type of node at Level (Leaf or Branch).
2012/// @param Level path index of the overflowing node.
2013/// @return True when the tree height was changed.
2014template <typename KeyT, typename ValT, unsigned N, typename Traits>
2015template <typename NodeT>
2016bool IntervalMap<KeyT, ValT, N, Traits>::
2017iterator::overflow(unsigned Level) {
2018  using namespace IntervalMapImpl;
2019  Path &P = this->path;
2020  unsigned CurSize[4];
2021  NodeT *Node[4];
2022  unsigned Nodes = 0;
2023  unsigned Elements = 0;
2024  unsigned Offset = P.offset(Level);
2025
2026  // Do we have a left sibling?
2027  NodeRef LeftSib = P.getLeftSibling(Level);
2028  if (LeftSib) {
2029    Offset += Elements = CurSize[Nodes] = LeftSib.size();
2030    Node[Nodes++] = &LeftSib.get<NodeT>();
2031  }
2032
2033  // Current node.
2034  Elements += CurSize[Nodes] = P.size(Level);
2035  Node[Nodes++] = &P.node<NodeT>(Level);
2036
2037  // Do we have a right sibling?
2038  NodeRef RightSib = P.getRightSibling(Level);
2039  if (RightSib) {
2040    Elements += CurSize[Nodes] = RightSib.size();
2041    Node[Nodes++] = &RightSib.get<NodeT>();
2042  }
2043
2044  // Do we need to allocate a new node?
2045  unsigned NewNode = 0;
2046  if (Elements + 1 > Nodes * NodeT::Capacity) {
2047    // Insert NewNode at the penultimate position, or after a single node.
2048    NewNode = Nodes == 1 ? 1 : Nodes - 1;
2049    CurSize[Nodes] = CurSize[NewNode];
2050    Node[Nodes] = Node[NewNode];
2051    CurSize[NewNode] = 0;
2052    Node[NewNode] = this->map->template newNode<NodeT>();
2053    ++Nodes;
2054  }
2055
2056  // Compute the new element distribution.
2057  unsigned NewSize[4];
2058  IdxPair NewOffset = distribute(Nodes, Elements, NodeT::Capacity,
2059                                 CurSize, NewSize, Offset, true);
2060  adjustSiblingSizes(Node, Nodes, CurSize, NewSize);
2061
2062  // Move current location to the leftmost node.
2063  if (LeftSib)
2064    P.moveLeft(Level);
2065
2066  // Elements have been rearranged, now update node sizes and stops.
2067  bool SplitRoot = false;
2068  unsigned Pos = 0;
2069  while (true) {
2070    KeyT Stop = Node[Pos]->stop(NewSize[Pos]-1);
2071    if (NewNode && Pos == NewNode) {
2072      SplitRoot = insertNode(Level, NodeRef(Node[Pos], NewSize[Pos]), Stop);
2073      Level += SplitRoot;
2074    } else {
2075      P.setSize(Level, NewSize[Pos]);
2076      setNodeStop(Level, Stop);
2077    }
2078    if (Pos + 1 == Nodes)
2079      break;
2080    P.moveRight(Level);
2081    ++Pos;
2082  }
2083
2084  // Where was I? Find NewOffset.
2085  while(Pos != NewOffset.first) {
2086    P.moveLeft(Level);
2087    --Pos;
2088  }
2089  P.offset(Level) = NewOffset.second;
2090  return SplitRoot;
2091}
2092
2093//===----------------------------------------------------------------------===//
2094//---                       IntervalMapOverlaps                           ----//
2095//===----------------------------------------------------------------------===//
2096
2097/// IntervalMapOverlaps - Iterate over the overlaps of mapped intervals in two
2098/// IntervalMaps. The maps may be different, but the KeyT and Traits types
2099/// should be the same.
2100///
2101/// Typical uses:
2102///
2103/// 1. Test for overlap:
2104///    bool overlap = IntervalMapOverlaps(a, b).valid();
2105///
2106/// 2. Enumerate overlaps:
2107///    for (IntervalMapOverlaps I(a, b); I.valid() ; ++I) { ... }
2108///
2109template <typename MapA, typename MapB>
2110class IntervalMapOverlaps {
2111  using KeyType = typename MapA::KeyType;
2112  using Traits = typename MapA::KeyTraits;
2113
2114  typename MapA::const_iterator posA;
2115  typename MapB::const_iterator posB;
2116
2117  /// advance - Move posA and posB forward until reaching an overlap, or until
2118  /// either meets end.
2119  /// Don't move the iterators if they are already overlapping.
2120  void advance() {
2121    if (!valid())
2122      return;
2123
2124    if (Traits::stopLess(posA.stop(), posB.start())) {
2125      // A ends before B begins. Catch up.
2126      posA.advanceTo(posB.start());
2127      if (!posA.valid() || !Traits::stopLess(posB.stop(), posA.start()))
2128        return;
2129    } else if (Traits::stopLess(posB.stop(), posA.start())) {
2130      // B ends before A begins. Catch up.
2131      posB.advanceTo(posA.start());
2132      if (!posB.valid() || !Traits::stopLess(posA.stop(), posB.start()))
2133        return;
2134    } else
2135      // Already overlapping.
2136      return;
2137
2138    while (true) {
2139      // Make a.end > b.start.
2140      posA.advanceTo(posB.start());
2141      if (!posA.valid() || !Traits::stopLess(posB.stop(), posA.start()))
2142        return;
2143      // Make b.end > a.start.
2144      posB.advanceTo(posA.start());
2145      if (!posB.valid() || !Traits::stopLess(posA.stop(), posB.start()))
2146        return;
2147    }
2148  }
2149
2150public:
2151  /// IntervalMapOverlaps - Create an iterator for the overlaps of a and b.
2152  IntervalMapOverlaps(const MapA &a, const MapB &b)
2153    : posA(b.empty() ? a.end() : a.find(b.start())),
2154      posB(posA.valid() ? b.find(posA.start()) : b.end()) { advance(); }
2155
2156  /// valid - Return true if iterator is at an overlap.
2157  bool valid() const {
2158    return posA.valid() && posB.valid();
2159  }
2160
2161  /// a - access the left hand side in the overlap.
2162  const typename MapA::const_iterator &a() const { return posA; }
2163
2164  /// b - access the right hand side in the overlap.
2165  const typename MapB::const_iterator &b() const { return posB; }
2166
2167  /// start - Beginning of the overlapping interval.
2168  KeyType start() const {
2169    KeyType ak = a().start();
2170    KeyType bk = b().start();
2171    return Traits::startLess(ak, bk) ? bk : ak;
2172  }
2173
2174  /// stop - End of the overlapping interval.
2175  KeyType stop() const {
2176    KeyType ak = a().stop();
2177    KeyType bk = b().stop();
2178    return Traits::startLess(ak, bk) ? ak : bk;
2179  }
2180
2181  /// skipA - Move to the next overlap that doesn't involve a().
2182  void skipA() {
2183    ++posA;
2184    advance();
2185  }
2186
2187  /// skipB - Move to the next overlap that doesn't involve b().
2188  void skipB() {
2189    ++posB;
2190    advance();
2191  }
2192
2193  /// Preincrement - Move to the next overlap.
2194  IntervalMapOverlaps &operator++() {
2195    // Bump the iterator that ends first. The other one may have more overlaps.
2196    if (Traits::startLess(posB.stop(), posA.stop()))
2197      skipB();
2198    else
2199      skipA();
2200    return *this;
2201  }
2202
2203  /// advanceTo - Move to the first overlapping interval with
2204  /// stopLess(x, stop()).
2205  void advanceTo(KeyType x) {
2206    if (!valid())
2207      return;
2208    // Make sure advanceTo sees monotonic keys.
2209    if (Traits::stopLess(posA.stop(), x))
2210      posA.advanceTo(x);
2211    if (Traits::stopLess(posB.stop(), x))
2212      posB.advanceTo(x);
2213    advance();
2214  }
2215};
2216
2217} // end namespace llvm
2218
2219#endif // LLVM_ADT_INTERVALMAP_H
2220