1//===-- llvm/ADT/Hashing.h - Utilities for hashing --------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the newly proposed standard C++ interfaces for hashing
10// arbitrary data and building hash functions for user-defined types. This
11// interface was originally proposed in N3333[1] and is currently under review
12// for inclusion in a future TR and/or standard.
13//
14// The primary interfaces provide are comprised of one type and three functions:
15//
16//  -- 'hash_code' class is an opaque type representing the hash code for some
17//     data. It is the intended product of hashing, and can be used to implement
18//     hash tables, checksumming, and other common uses of hashes. It is not an
19//     integer type (although it can be converted to one) because it is risky
20//     to assume much about the internals of a hash_code. In particular, each
21//     execution of the program has a high probability of producing a different
22//     hash_code for a given input. Thus their values are not stable to save or
23//     persist, and should only be used during the execution for the
24//     construction of hashing datastructures.
25//
26//  -- 'hash_value' is a function designed to be overloaded for each
27//     user-defined type which wishes to be used within a hashing context. It
28//     should be overloaded within the user-defined type's namespace and found
29//     via ADL. Overloads for primitive types are provided by this library.
30//
31//  -- 'hash_combine' and 'hash_combine_range' are functions designed to aid
32//      programmers in easily and intuitively combining a set of data into
33//      a single hash_code for their object. They should only logically be used
34//      within the implementation of a 'hash_value' routine or similar context.
35//
36// Note that 'hash_combine_range' contains very special logic for hashing
37// a contiguous array of integers or pointers. This logic is *extremely* fast,
38// on a modern Intel "Gainestown" Xeon (Nehalem uarch) @2.2 GHz, these were
39// benchmarked at over 6.5 GiB/s for large keys, and <20 cycles/hash for keys
40// under 32-bytes.
41//
42//===----------------------------------------------------------------------===//
43
44#ifndef LLVM_ADT_HASHING_H
45#define LLVM_ADT_HASHING_H
46
47#include "llvm/Support/DataTypes.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/SwapByteOrder.h"
50#include "llvm/Support/type_traits.h"
51#include <algorithm>
52#include <cassert>
53#include <cstring>
54#include <optional>
55#include <string>
56#include <tuple>
57#include <utility>
58
59namespace llvm {
60template <typename T, typename Enable> struct DenseMapInfo;
61
62/// An opaque object representing a hash code.
63///
64/// This object represents the result of hashing some entity. It is intended to
65/// be used to implement hashtables or other hashing-based data structures.
66/// While it wraps and exposes a numeric value, this value should not be
67/// trusted to be stable or predictable across processes or executions.
68///
69/// In order to obtain the hash_code for an object 'x':
70/// \code
71///   using llvm::hash_value;
72///   llvm::hash_code code = hash_value(x);
73/// \endcode
74class hash_code {
75  size_t value;
76
77public:
78  /// Default construct a hash_code.
79  /// Note that this leaves the value uninitialized.
80  hash_code() = default;
81
82  /// Form a hash code directly from a numerical value.
83  hash_code(size_t value) : value(value) {}
84
85  /// Convert the hash code to its numerical value for use.
86  /*explicit*/ operator size_t() const { return value; }
87
88  friend bool operator==(const hash_code &lhs, const hash_code &rhs) {
89    return lhs.value == rhs.value;
90  }
91  friend bool operator!=(const hash_code &lhs, const hash_code &rhs) {
92    return lhs.value != rhs.value;
93  }
94
95  /// Allow a hash_code to be directly run through hash_value.
96  friend size_t hash_value(const hash_code &code) { return code.value; }
97};
98
99/// Compute a hash_code for any integer value.
100///
101/// Note that this function is intended to compute the same hash_code for
102/// a particular value without regard to the pre-promotion type. This is in
103/// contrast to hash_combine which may produce different hash_codes for
104/// differing argument types even if they would implicit promote to a common
105/// type without changing the value.
106template <typename T>
107std::enable_if_t<is_integral_or_enum<T>::value, hash_code> hash_value(T value);
108
109/// Compute a hash_code for a pointer's address.
110///
111/// N.B.: This hashes the *address*. Not the value and not the type.
112template <typename T> hash_code hash_value(const T *ptr);
113
114/// Compute a hash_code for a pair of objects.
115template <typename T, typename U>
116hash_code hash_value(const std::pair<T, U> &arg);
117
118/// Compute a hash_code for a tuple.
119template <typename... Ts>
120hash_code hash_value(const std::tuple<Ts...> &arg);
121
122/// Compute a hash_code for a standard string.
123template <typename T>
124hash_code hash_value(const std::basic_string<T> &arg);
125
126/// Compute a hash_code for a standard string.
127template <typename T> hash_code hash_value(const std::optional<T> &arg);
128
129/// Override the execution seed with a fixed value.
130///
131/// This hashing library uses a per-execution seed designed to change on each
132/// run with high probability in order to ensure that the hash codes are not
133/// attackable and to ensure that output which is intended to be stable does
134/// not rely on the particulars of the hash codes produced.
135///
136/// That said, there are use cases where it is important to be able to
137/// reproduce *exactly* a specific behavior. To that end, we provide a function
138/// which will forcibly set the seed to a fixed value. This must be done at the
139/// start of the program, before any hashes are computed. Also, it cannot be
140/// undone. This makes it thread-hostile and very hard to use outside of
141/// immediately on start of a simple program designed for reproducible
142/// behavior.
143void set_fixed_execution_hash_seed(uint64_t fixed_value);
144
145
146// All of the implementation details of actually computing the various hash
147// code values are held within this namespace. These routines are included in
148// the header file mainly to allow inlining and constant propagation.
149namespace hashing {
150namespace detail {
151
152inline uint64_t fetch64(const char *p) {
153  uint64_t result;
154  memcpy(&result, p, sizeof(result));
155  if (sys::IsBigEndianHost)
156    sys::swapByteOrder(result);
157  return result;
158}
159
160inline uint32_t fetch32(const char *p) {
161  uint32_t result;
162  memcpy(&result, p, sizeof(result));
163  if (sys::IsBigEndianHost)
164    sys::swapByteOrder(result);
165  return result;
166}
167
168/// Some primes between 2^63 and 2^64 for various uses.
169static constexpr uint64_t k0 = 0xc3a5c85c97cb3127ULL;
170static constexpr uint64_t k1 = 0xb492b66fbe98f273ULL;
171static constexpr uint64_t k2 = 0x9ae16a3b2f90404fULL;
172static constexpr uint64_t k3 = 0xc949d7c7509e6557ULL;
173
174/// Bitwise right rotate.
175/// Normally this will compile to a single instruction, especially if the
176/// shift is a manifest constant.
177inline uint64_t rotate(uint64_t val, size_t shift) {
178  // Avoid shifting by 64: doing so yields an undefined result.
179  return shift == 0 ? val : ((val >> shift) | (val << (64 - shift)));
180}
181
182inline uint64_t shift_mix(uint64_t val) {
183  return val ^ (val >> 47);
184}
185
186inline uint64_t hash_16_bytes(uint64_t low, uint64_t high) {
187  // Murmur-inspired hashing.
188  const uint64_t kMul = 0x9ddfea08eb382d69ULL;
189  uint64_t a = (low ^ high) * kMul;
190  a ^= (a >> 47);
191  uint64_t b = (high ^ a) * kMul;
192  b ^= (b >> 47);
193  b *= kMul;
194  return b;
195}
196
197inline uint64_t hash_1to3_bytes(const char *s, size_t len, uint64_t seed) {
198  uint8_t a = s[0];
199  uint8_t b = s[len >> 1];
200  uint8_t c = s[len - 1];
201  uint32_t y = static_cast<uint32_t>(a) + (static_cast<uint32_t>(b) << 8);
202  uint32_t z = static_cast<uint32_t>(len) + (static_cast<uint32_t>(c) << 2);
203  return shift_mix(y * k2 ^ z * k3 ^ seed) * k2;
204}
205
206inline uint64_t hash_4to8_bytes(const char *s, size_t len, uint64_t seed) {
207  uint64_t a = fetch32(s);
208  return hash_16_bytes(len + (a << 3), seed ^ fetch32(s + len - 4));
209}
210
211inline uint64_t hash_9to16_bytes(const char *s, size_t len, uint64_t seed) {
212  uint64_t a = fetch64(s);
213  uint64_t b = fetch64(s + len - 8);
214  return hash_16_bytes(seed ^ a, rotate(b + len, len)) ^ b;
215}
216
217inline uint64_t hash_17to32_bytes(const char *s, size_t len, uint64_t seed) {
218  uint64_t a = fetch64(s) * k1;
219  uint64_t b = fetch64(s + 8);
220  uint64_t c = fetch64(s + len - 8) * k2;
221  uint64_t d = fetch64(s + len - 16) * k0;
222  return hash_16_bytes(llvm::rotr<uint64_t>(a - b, 43) +
223                           llvm::rotr<uint64_t>(c ^ seed, 30) + d,
224                       a + llvm::rotr<uint64_t>(b ^ k3, 20) - c + len + seed);
225}
226
227inline uint64_t hash_33to64_bytes(const char *s, size_t len, uint64_t seed) {
228  uint64_t z = fetch64(s + 24);
229  uint64_t a = fetch64(s) + (len + fetch64(s + len - 16)) * k0;
230  uint64_t b = llvm::rotr<uint64_t>(a + z, 52);
231  uint64_t c = llvm::rotr<uint64_t>(a, 37);
232  a += fetch64(s + 8);
233  c += llvm::rotr<uint64_t>(a, 7);
234  a += fetch64(s + 16);
235  uint64_t vf = a + z;
236  uint64_t vs = b + llvm::rotr<uint64_t>(a, 31) + c;
237  a = fetch64(s + 16) + fetch64(s + len - 32);
238  z = fetch64(s + len - 8);
239  b = llvm::rotr<uint64_t>(a + z, 52);
240  c = llvm::rotr<uint64_t>(a, 37);
241  a += fetch64(s + len - 24);
242  c += llvm::rotr<uint64_t>(a, 7);
243  a += fetch64(s + len - 16);
244  uint64_t wf = a + z;
245  uint64_t ws = b + llvm::rotr<uint64_t>(a, 31) + c;
246  uint64_t r = shift_mix((vf + ws) * k2 + (wf + vs) * k0);
247  return shift_mix((seed ^ (r * k0)) + vs) * k2;
248}
249
250inline uint64_t hash_short(const char *s, size_t length, uint64_t seed) {
251  if (length >= 4 && length <= 8)
252    return hash_4to8_bytes(s, length, seed);
253  if (length > 8 && length <= 16)
254    return hash_9to16_bytes(s, length, seed);
255  if (length > 16 && length <= 32)
256    return hash_17to32_bytes(s, length, seed);
257  if (length > 32)
258    return hash_33to64_bytes(s, length, seed);
259  if (length != 0)
260    return hash_1to3_bytes(s, length, seed);
261
262  return k2 ^ seed;
263}
264
265/// The intermediate state used during hashing.
266/// Currently, the algorithm for computing hash codes is based on CityHash and
267/// keeps 56 bytes of arbitrary state.
268struct hash_state {
269  uint64_t h0 = 0, h1 = 0, h2 = 0, h3 = 0, h4 = 0, h5 = 0, h6 = 0;
270
271  /// Create a new hash_state structure and initialize it based on the
272  /// seed and the first 64-byte chunk.
273  /// This effectively performs the initial mix.
274  static hash_state create(const char *s, uint64_t seed) {
275    hash_state state = {0,
276                        seed,
277                        hash_16_bytes(seed, k1),
278                        llvm::rotr<uint64_t>(seed ^ k1, 49),
279                        seed * k1,
280                        shift_mix(seed),
281                        0};
282    state.h6 = hash_16_bytes(state.h4, state.h5);
283    state.mix(s);
284    return state;
285  }
286
287  /// Mix 32-bytes from the input sequence into the 16-bytes of 'a'
288  /// and 'b', including whatever is already in 'a' and 'b'.
289  static void mix_32_bytes(const char *s, uint64_t &a, uint64_t &b) {
290    a += fetch64(s);
291    uint64_t c = fetch64(s + 24);
292    b = llvm::rotr<uint64_t>(b + a + c, 21);
293    uint64_t d = a;
294    a += fetch64(s + 8) + fetch64(s + 16);
295    b += llvm::rotr<uint64_t>(a, 44) + d;
296    a += c;
297  }
298
299  /// Mix in a 64-byte buffer of data.
300  /// We mix all 64 bytes even when the chunk length is smaller, but we
301  /// record the actual length.
302  void mix(const char *s) {
303    h0 = llvm::rotr<uint64_t>(h0 + h1 + h3 + fetch64(s + 8), 37) * k1;
304    h1 = llvm::rotr<uint64_t>(h1 + h4 + fetch64(s + 48), 42) * k1;
305    h0 ^= h6;
306    h1 += h3 + fetch64(s + 40);
307    h2 = llvm::rotr<uint64_t>(h2 + h5, 33) * k1;
308    h3 = h4 * k1;
309    h4 = h0 + h5;
310    mix_32_bytes(s, h3, h4);
311    h5 = h2 + h6;
312    h6 = h1 + fetch64(s + 16);
313    mix_32_bytes(s + 32, h5, h6);
314    std::swap(h2, h0);
315  }
316
317  /// Compute the final 64-bit hash code value based on the current
318  /// state and the length of bytes hashed.
319  uint64_t finalize(size_t length) {
320    return hash_16_bytes(hash_16_bytes(h3, h5) + shift_mix(h1) * k1 + h2,
321                         hash_16_bytes(h4, h6) + shift_mix(length) * k1 + h0);
322  }
323};
324
325
326/// A global, fixed seed-override variable.
327///
328/// This variable can be set using the \see llvm::set_fixed_execution_seed
329/// function. See that function for details. Do not, under any circumstances,
330/// set or read this variable.
331extern uint64_t fixed_seed_override;
332
333inline uint64_t get_execution_seed() {
334  // FIXME: This needs to be a per-execution seed. This is just a placeholder
335  // implementation. Switching to a per-execution seed is likely to flush out
336  // instability bugs and so will happen as its own commit.
337  //
338  // However, if there is a fixed seed override set the first time this is
339  // called, return that instead of the per-execution seed.
340  const uint64_t seed_prime = 0xff51afd7ed558ccdULL;
341  static uint64_t seed = fixed_seed_override ? fixed_seed_override : seed_prime;
342  return seed;
343}
344
345
346/// Trait to indicate whether a type's bits can be hashed directly.
347///
348/// A type trait which is true if we want to combine values for hashing by
349/// reading the underlying data. It is false if values of this type must
350/// first be passed to hash_value, and the resulting hash_codes combined.
351//
352// FIXME: We want to replace is_integral_or_enum and is_pointer here with
353// a predicate which asserts that comparing the underlying storage of two
354// values of the type for equality is equivalent to comparing the two values
355// for equality. For all the platforms we care about, this holds for integers
356// and pointers, but there are platforms where it doesn't and we would like to
357// support user-defined types which happen to satisfy this property.
358template <typename T> struct is_hashable_data
359  : std::integral_constant<bool, ((is_integral_or_enum<T>::value ||
360                                   std::is_pointer<T>::value) &&
361                                  64 % sizeof(T) == 0)> {};
362
363// Special case std::pair to detect when both types are viable and when there
364// is no alignment-derived padding in the pair. This is a bit of a lie because
365// std::pair isn't truly POD, but it's close enough in all reasonable
366// implementations for our use case of hashing the underlying data.
367template <typename T, typename U> struct is_hashable_data<std::pair<T, U> >
368  : std::integral_constant<bool, (is_hashable_data<T>::value &&
369                                  is_hashable_data<U>::value &&
370                                  (sizeof(T) + sizeof(U)) ==
371                                   sizeof(std::pair<T, U>))> {};
372
373/// Helper to get the hashable data representation for a type.
374/// This variant is enabled when the type itself can be used.
375template <typename T>
376std::enable_if_t<is_hashable_data<T>::value, T>
377get_hashable_data(const T &value) {
378  return value;
379}
380/// Helper to get the hashable data representation for a type.
381/// This variant is enabled when we must first call hash_value and use the
382/// result as our data.
383template <typename T>
384std::enable_if_t<!is_hashable_data<T>::value, size_t>
385get_hashable_data(const T &value) {
386  using ::llvm::hash_value;
387  return hash_value(value);
388}
389
390/// Helper to store data from a value into a buffer and advance the
391/// pointer into that buffer.
392///
393/// This routine first checks whether there is enough space in the provided
394/// buffer, and if not immediately returns false. If there is space, it
395/// copies the underlying bytes of value into the buffer, advances the
396/// buffer_ptr past the copied bytes, and returns true.
397template <typename T>
398bool store_and_advance(char *&buffer_ptr, char *buffer_end, const T& value,
399                       size_t offset = 0) {
400  size_t store_size = sizeof(value) - offset;
401  if (buffer_ptr + store_size > buffer_end)
402    return false;
403  const char *value_data = reinterpret_cast<const char *>(&value);
404  memcpy(buffer_ptr, value_data + offset, store_size);
405  buffer_ptr += store_size;
406  return true;
407}
408
409/// Implement the combining of integral values into a hash_code.
410///
411/// This overload is selected when the value type of the iterator is
412/// integral. Rather than computing a hash_code for each object and then
413/// combining them, this (as an optimization) directly combines the integers.
414template <typename InputIteratorT>
415hash_code hash_combine_range_impl(InputIteratorT first, InputIteratorT last) {
416  const uint64_t seed = get_execution_seed();
417  char buffer[64], *buffer_ptr = buffer;
418  char *const buffer_end = std::end(buffer);
419  while (first != last && store_and_advance(buffer_ptr, buffer_end,
420                                            get_hashable_data(*first)))
421    ++first;
422  if (first == last)
423    return hash_short(buffer, buffer_ptr - buffer, seed);
424  assert(buffer_ptr == buffer_end);
425
426  hash_state state = state.create(buffer, seed);
427  size_t length = 64;
428  while (first != last) {
429    // Fill up the buffer. We don't clear it, which re-mixes the last round
430    // when only a partial 64-byte chunk is left.
431    buffer_ptr = buffer;
432    while (first != last && store_and_advance(buffer_ptr, buffer_end,
433                                              get_hashable_data(*first)))
434      ++first;
435
436    // Rotate the buffer if we did a partial fill in order to simulate doing
437    // a mix of the last 64-bytes. That is how the algorithm works when we
438    // have a contiguous byte sequence, and we want to emulate that here.
439    std::rotate(buffer, buffer_ptr, buffer_end);
440
441    // Mix this chunk into the current state.
442    state.mix(buffer);
443    length += buffer_ptr - buffer;
444  };
445
446  return state.finalize(length);
447}
448
449/// Implement the combining of integral values into a hash_code.
450///
451/// This overload is selected when the value type of the iterator is integral
452/// and when the input iterator is actually a pointer. Rather than computing
453/// a hash_code for each object and then combining them, this (as an
454/// optimization) directly combines the integers. Also, because the integers
455/// are stored in contiguous memory, this routine avoids copying each value
456/// and directly reads from the underlying memory.
457template <typename ValueT>
458std::enable_if_t<is_hashable_data<ValueT>::value, hash_code>
459hash_combine_range_impl(ValueT *first, ValueT *last) {
460  const uint64_t seed = get_execution_seed();
461  const char *s_begin = reinterpret_cast<const char *>(first);
462  const char *s_end = reinterpret_cast<const char *>(last);
463  const size_t length = std::distance(s_begin, s_end);
464  if (length <= 64)
465    return hash_short(s_begin, length, seed);
466
467  const char *s_aligned_end = s_begin + (length & ~63);
468  hash_state state = state.create(s_begin, seed);
469  s_begin += 64;
470  while (s_begin != s_aligned_end) {
471    state.mix(s_begin);
472    s_begin += 64;
473  }
474  if (length & 63)
475    state.mix(s_end - 64);
476
477  return state.finalize(length);
478}
479
480} // namespace detail
481} // namespace hashing
482
483
484/// Compute a hash_code for a sequence of values.
485///
486/// This hashes a sequence of values. It produces the same hash_code as
487/// 'hash_combine(a, b, c, ...)', but can run over arbitrary sized sequences
488/// and is significantly faster given pointers and types which can be hashed as
489/// a sequence of bytes.
490template <typename InputIteratorT>
491hash_code hash_combine_range(InputIteratorT first, InputIteratorT last) {
492  return ::llvm::hashing::detail::hash_combine_range_impl(first, last);
493}
494
495
496// Implementation details for hash_combine.
497namespace hashing {
498namespace detail {
499
500/// Helper class to manage the recursive combining of hash_combine
501/// arguments.
502///
503/// This class exists to manage the state and various calls involved in the
504/// recursive combining of arguments used in hash_combine. It is particularly
505/// useful at minimizing the code in the recursive calls to ease the pain
506/// caused by a lack of variadic functions.
507struct hash_combine_recursive_helper {
508  char buffer[64] = {};
509  hash_state state;
510  const uint64_t seed;
511
512public:
513  /// Construct a recursive hash combining helper.
514  ///
515  /// This sets up the state for a recursive hash combine, including getting
516  /// the seed and buffer setup.
517  hash_combine_recursive_helper()
518    : seed(get_execution_seed()) {}
519
520  /// Combine one chunk of data into the current in-flight hash.
521  ///
522  /// This merges one chunk of data into the hash. First it tries to buffer
523  /// the data. If the buffer is full, it hashes the buffer into its
524  /// hash_state, empties it, and then merges the new chunk in. This also
525  /// handles cases where the data straddles the end of the buffer.
526  template <typename T>
527  char *combine_data(size_t &length, char *buffer_ptr, char *buffer_end, T data) {
528    if (!store_and_advance(buffer_ptr, buffer_end, data)) {
529      // Check for skew which prevents the buffer from being packed, and do
530      // a partial store into the buffer to fill it. This is only a concern
531      // with the variadic combine because that formation can have varying
532      // argument types.
533      size_t partial_store_size = buffer_end - buffer_ptr;
534      memcpy(buffer_ptr, &data, partial_store_size);
535
536      // If the store fails, our buffer is full and ready to hash. We have to
537      // either initialize the hash state (on the first full buffer) or mix
538      // this buffer into the existing hash state. Length tracks the *hashed*
539      // length, not the buffered length.
540      if (length == 0) {
541        state = state.create(buffer, seed);
542        length = 64;
543      } else {
544        // Mix this chunk into the current state and bump length up by 64.
545        state.mix(buffer);
546        length += 64;
547      }
548      // Reset the buffer_ptr to the head of the buffer for the next chunk of
549      // data.
550      buffer_ptr = buffer;
551
552      // Try again to store into the buffer -- this cannot fail as we only
553      // store types smaller than the buffer.
554      if (!store_and_advance(buffer_ptr, buffer_end, data,
555                             partial_store_size))
556        llvm_unreachable("buffer smaller than stored type");
557    }
558    return buffer_ptr;
559  }
560
561  /// Recursive, variadic combining method.
562  ///
563  /// This function recurses through each argument, combining that argument
564  /// into a single hash.
565  template <typename T, typename ...Ts>
566  hash_code combine(size_t length, char *buffer_ptr, char *buffer_end,
567                    const T &arg, const Ts &...args) {
568    buffer_ptr = combine_data(length, buffer_ptr, buffer_end, get_hashable_data(arg));
569
570    // Recurse to the next argument.
571    return combine(length, buffer_ptr, buffer_end, args...);
572  }
573
574  /// Base case for recursive, variadic combining.
575  ///
576  /// The base case when combining arguments recursively is reached when all
577  /// arguments have been handled. It flushes the remaining buffer and
578  /// constructs a hash_code.
579  hash_code combine(size_t length, char *buffer_ptr, char *buffer_end) {
580    // Check whether the entire set of values fit in the buffer. If so, we'll
581    // use the optimized short hashing routine and skip state entirely.
582    if (length == 0)
583      return hash_short(buffer, buffer_ptr - buffer, seed);
584
585    // Mix the final buffer, rotating it if we did a partial fill in order to
586    // simulate doing a mix of the last 64-bytes. That is how the algorithm
587    // works when we have a contiguous byte sequence, and we want to emulate
588    // that here.
589    std::rotate(buffer, buffer_ptr, buffer_end);
590
591    // Mix this chunk into the current state.
592    state.mix(buffer);
593    length += buffer_ptr - buffer;
594
595    return state.finalize(length);
596  }
597};
598
599} // namespace detail
600} // namespace hashing
601
602/// Combine values into a single hash_code.
603///
604/// This routine accepts a varying number of arguments of any type. It will
605/// attempt to combine them into a single hash_code. For user-defined types it
606/// attempts to call a \see hash_value overload (via ADL) for the type. For
607/// integer and pointer types it directly combines their data into the
608/// resulting hash_code.
609///
610/// The result is suitable for returning from a user's hash_value
611/// *implementation* for their user-defined type. Consumers of a type should
612/// *not* call this routine, they should instead call 'hash_value'.
613template <typename ...Ts> hash_code hash_combine(const Ts &...args) {
614  // Recursively hash each argument using a helper class.
615  ::llvm::hashing::detail::hash_combine_recursive_helper helper;
616  return helper.combine(0, helper.buffer, helper.buffer + 64, args...);
617}
618
619// Implementation details for implementations of hash_value overloads provided
620// here.
621namespace hashing {
622namespace detail {
623
624/// Helper to hash the value of a single integer.
625///
626/// Overloads for smaller integer types are not provided to ensure consistent
627/// behavior in the presence of integral promotions. Essentially,
628/// "hash_value('4')" and "hash_value('0' + 4)" should be the same.
629inline hash_code hash_integer_value(uint64_t value) {
630  // Similar to hash_4to8_bytes but using a seed instead of length.
631  const uint64_t seed = get_execution_seed();
632  const char *s = reinterpret_cast<const char *>(&value);
633  const uint64_t a = fetch32(s);
634  return hash_16_bytes(seed + (a << 3), fetch32(s + 4));
635}
636
637} // namespace detail
638} // namespace hashing
639
640// Declared and documented above, but defined here so that any of the hashing
641// infrastructure is available.
642template <typename T>
643std::enable_if_t<is_integral_or_enum<T>::value, hash_code> hash_value(T value) {
644  return ::llvm::hashing::detail::hash_integer_value(
645      static_cast<uint64_t>(value));
646}
647
648// Declared and documented above, but defined here so that any of the hashing
649// infrastructure is available.
650template <typename T> hash_code hash_value(const T *ptr) {
651  return ::llvm::hashing::detail::hash_integer_value(
652    reinterpret_cast<uintptr_t>(ptr));
653}
654
655// Declared and documented above, but defined here so that any of the hashing
656// infrastructure is available.
657template <typename T, typename U>
658hash_code hash_value(const std::pair<T, U> &arg) {
659  return hash_combine(arg.first, arg.second);
660}
661
662template <typename... Ts> hash_code hash_value(const std::tuple<Ts...> &arg) {
663  return std::apply([](const auto &...xs) { return hash_combine(xs...); }, arg);
664}
665
666// Declared and documented above, but defined here so that any of the hashing
667// infrastructure is available.
668template <typename T>
669hash_code hash_value(const std::basic_string<T> &arg) {
670  return hash_combine_range(arg.begin(), arg.end());
671}
672
673template <typename T> hash_code hash_value(const std::optional<T> &arg) {
674  return arg ? hash_combine(true, *arg) : hash_value(false);
675}
676
677template <> struct DenseMapInfo<hash_code, void> {
678  static inline hash_code getEmptyKey() { return hash_code(-1); }
679  static inline hash_code getTombstoneKey() { return hash_code(-2); }
680  static unsigned getHashValue(hash_code val) {
681    return static_cast<unsigned>(size_t(val));
682  }
683  static bool isEqual(hash_code LHS, hash_code RHS) { return LHS == RHS; }
684};
685
686} // namespace llvm
687
688/// Implement std::hash so that hash_code can be used in STL containers.
689namespace std {
690
691template<>
692struct hash<llvm::hash_code> {
693  size_t operator()(llvm::hash_code const& Val) const {
694    return Val;
695  }
696};
697
698} // namespace std;
699
700#endif
701