1//===-- Process.cpp -------------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include <atomic>
10#include <memory>
11#include <mutex>
12#include <optional>
13
14#include "llvm/ADT/ScopeExit.h"
15#include "llvm/Support/ScopedPrinter.h"
16#include "llvm/Support/Threading.h"
17
18#include "lldb/Breakpoint/BreakpointLocation.h"
19#include "lldb/Breakpoint/StoppointCallbackContext.h"
20#include "lldb/Core/Debugger.h"
21#include "lldb/Core/Module.h"
22#include "lldb/Core/ModuleSpec.h"
23#include "lldb/Core/PluginManager.h"
24#include "lldb/Expression/DiagnosticManager.h"
25#include "lldb/Expression/DynamicCheckerFunctions.h"
26#include "lldb/Expression/UserExpression.h"
27#include "lldb/Expression/UtilityFunction.h"
28#include "lldb/Host/ConnectionFileDescriptor.h"
29#include "lldb/Host/FileSystem.h"
30#include "lldb/Host/Host.h"
31#include "lldb/Host/HostInfo.h"
32#include "lldb/Host/OptionParser.h"
33#include "lldb/Host/Pipe.h"
34#include "lldb/Host/Terminal.h"
35#include "lldb/Host/ThreadLauncher.h"
36#include "lldb/Interpreter/CommandInterpreter.h"
37#include "lldb/Interpreter/OptionArgParser.h"
38#include "lldb/Interpreter/OptionValueProperties.h"
39#include "lldb/Symbol/Function.h"
40#include "lldb/Symbol/Symbol.h"
41#include "lldb/Target/ABI.h"
42#include "lldb/Target/AssertFrameRecognizer.h"
43#include "lldb/Target/DynamicLoader.h"
44#include "lldb/Target/InstrumentationRuntime.h"
45#include "lldb/Target/JITLoader.h"
46#include "lldb/Target/JITLoaderList.h"
47#include "lldb/Target/Language.h"
48#include "lldb/Target/LanguageRuntime.h"
49#include "lldb/Target/MemoryHistory.h"
50#include "lldb/Target/MemoryRegionInfo.h"
51#include "lldb/Target/OperatingSystem.h"
52#include "lldb/Target/Platform.h"
53#include "lldb/Target/Process.h"
54#include "lldb/Target/RegisterContext.h"
55#include "lldb/Target/StopInfo.h"
56#include "lldb/Target/StructuredDataPlugin.h"
57#include "lldb/Target/SystemRuntime.h"
58#include "lldb/Target/Target.h"
59#include "lldb/Target/TargetList.h"
60#include "lldb/Target/Thread.h"
61#include "lldb/Target/ThreadPlan.h"
62#include "lldb/Target/ThreadPlanBase.h"
63#include "lldb/Target/ThreadPlanCallFunction.h"
64#include "lldb/Target/ThreadPlanStack.h"
65#include "lldb/Target/UnixSignals.h"
66#include "lldb/Utility/Event.h"
67#include "lldb/Utility/LLDBLog.h"
68#include "lldb/Utility/Log.h"
69#include "lldb/Utility/NameMatches.h"
70#include "lldb/Utility/ProcessInfo.h"
71#include "lldb/Utility/SelectHelper.h"
72#include "lldb/Utility/State.h"
73#include "lldb/Utility/Timer.h"
74
75using namespace lldb;
76using namespace lldb_private;
77using namespace std::chrono;
78
79// Comment out line below to disable memory caching, overriding the process
80// setting target.process.disable-memory-cache
81#define ENABLE_MEMORY_CACHING
82
83#ifdef ENABLE_MEMORY_CACHING
84#define DISABLE_MEM_CACHE_DEFAULT false
85#else
86#define DISABLE_MEM_CACHE_DEFAULT true
87#endif
88
89class ProcessOptionValueProperties
90    : public Cloneable<ProcessOptionValueProperties, OptionValueProperties> {
91public:
92  ProcessOptionValueProperties(llvm::StringRef name) : Cloneable(name) {}
93
94  const Property *
95  GetPropertyAtIndex(size_t idx,
96                     const ExecutionContext *exe_ctx) const override {
97    // When getting the value for a key from the process options, we will
98    // always try and grab the setting from the current process if there is
99    // one. Else we just use the one from this instance.
100    if (exe_ctx) {
101      Process *process = exe_ctx->GetProcessPtr();
102      if (process) {
103        ProcessOptionValueProperties *instance_properties =
104            static_cast<ProcessOptionValueProperties *>(
105                process->GetValueProperties().get());
106        if (this != instance_properties)
107          return instance_properties->ProtectedGetPropertyAtIndex(idx);
108      }
109    }
110    return ProtectedGetPropertyAtIndex(idx);
111  }
112};
113
114static constexpr OptionEnumValueElement g_follow_fork_mode_values[] = {
115    {
116        eFollowParent,
117        "parent",
118        "Continue tracing the parent process and detach the child.",
119    },
120    {
121        eFollowChild,
122        "child",
123        "Trace the child process and detach the parent.",
124    },
125};
126
127#define LLDB_PROPERTIES_process
128#include "TargetProperties.inc"
129
130enum {
131#define LLDB_PROPERTIES_process
132#include "TargetPropertiesEnum.inc"
133  ePropertyExperimental,
134};
135
136#define LLDB_PROPERTIES_process_experimental
137#include "TargetProperties.inc"
138
139enum {
140#define LLDB_PROPERTIES_process_experimental
141#include "TargetPropertiesEnum.inc"
142};
143
144class ProcessExperimentalOptionValueProperties
145    : public Cloneable<ProcessExperimentalOptionValueProperties,
146                       OptionValueProperties> {
147public:
148  ProcessExperimentalOptionValueProperties()
149      : Cloneable(Properties::GetExperimentalSettingsName()) {}
150};
151
152ProcessExperimentalProperties::ProcessExperimentalProperties()
153    : Properties(OptionValuePropertiesSP(
154          new ProcessExperimentalOptionValueProperties())) {
155  m_collection_sp->Initialize(g_process_experimental_properties);
156}
157
158ProcessProperties::ProcessProperties(lldb_private::Process *process)
159    : Properties(),
160      m_process(process) // Can be nullptr for global ProcessProperties
161{
162  if (process == nullptr) {
163    // Global process properties, set them up one time
164    m_collection_sp = std::make_shared<ProcessOptionValueProperties>("process");
165    m_collection_sp->Initialize(g_process_properties);
166    m_collection_sp->AppendProperty(
167        "thread", "Settings specific to threads.", true,
168        Thread::GetGlobalProperties().GetValueProperties());
169  } else {
170    m_collection_sp =
171        OptionValueProperties::CreateLocalCopy(Process::GetGlobalProperties());
172    m_collection_sp->SetValueChangedCallback(
173        ePropertyPythonOSPluginPath,
174        [this] { m_process->LoadOperatingSystemPlugin(true); });
175  }
176
177  m_experimental_properties_up =
178      std::make_unique<ProcessExperimentalProperties>();
179  m_collection_sp->AppendProperty(
180      Properties::GetExperimentalSettingsName(),
181      "Experimental settings - setting these won't produce "
182      "errors if the setting is not present.",
183      true, m_experimental_properties_up->GetValueProperties());
184}
185
186ProcessProperties::~ProcessProperties() = default;
187
188bool ProcessProperties::GetDisableMemoryCache() const {
189  const uint32_t idx = ePropertyDisableMemCache;
190  return GetPropertyAtIndexAs<bool>(
191      idx, g_process_properties[idx].default_uint_value != 0);
192}
193
194uint64_t ProcessProperties::GetMemoryCacheLineSize() const {
195  const uint32_t idx = ePropertyMemCacheLineSize;
196  return GetPropertyAtIndexAs<uint64_t>(
197      idx, g_process_properties[idx].default_uint_value);
198}
199
200Args ProcessProperties::GetExtraStartupCommands() const {
201  Args args;
202  const uint32_t idx = ePropertyExtraStartCommand;
203  m_collection_sp->GetPropertyAtIndexAsArgs(idx, args);
204  return args;
205}
206
207void ProcessProperties::SetExtraStartupCommands(const Args &args) {
208  const uint32_t idx = ePropertyExtraStartCommand;
209  m_collection_sp->SetPropertyAtIndexFromArgs(idx, args);
210}
211
212FileSpec ProcessProperties::GetPythonOSPluginPath() const {
213  const uint32_t idx = ePropertyPythonOSPluginPath;
214  return GetPropertyAtIndexAs<FileSpec>(idx, {});
215}
216
217uint32_t ProcessProperties::GetVirtualAddressableBits() const {
218  const uint32_t idx = ePropertyVirtualAddressableBits;
219  return GetPropertyAtIndexAs<uint64_t>(
220      idx, g_process_properties[idx].default_uint_value);
221}
222
223void ProcessProperties::SetVirtualAddressableBits(uint32_t bits) {
224  const uint32_t idx = ePropertyVirtualAddressableBits;
225  SetPropertyAtIndex(idx, static_cast<uint64_t>(bits));
226}
227
228uint32_t ProcessProperties::GetHighmemVirtualAddressableBits() const {
229  const uint32_t idx = ePropertyHighmemVirtualAddressableBits;
230  return GetPropertyAtIndexAs<uint64_t>(
231      idx, g_process_properties[idx].default_uint_value);
232}
233
234void ProcessProperties::SetHighmemVirtualAddressableBits(uint32_t bits) {
235  const uint32_t idx = ePropertyHighmemVirtualAddressableBits;
236  SetPropertyAtIndex(idx, static_cast<uint64_t>(bits));
237}
238
239void ProcessProperties::SetPythonOSPluginPath(const FileSpec &file) {
240  const uint32_t idx = ePropertyPythonOSPluginPath;
241  SetPropertyAtIndex(idx, file);
242}
243
244bool ProcessProperties::GetIgnoreBreakpointsInExpressions() const {
245  const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions;
246  return GetPropertyAtIndexAs<bool>(
247      idx, g_process_properties[idx].default_uint_value != 0);
248}
249
250void ProcessProperties::SetIgnoreBreakpointsInExpressions(bool ignore) {
251  const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions;
252  SetPropertyAtIndex(idx, ignore);
253}
254
255bool ProcessProperties::GetUnwindOnErrorInExpressions() const {
256  const uint32_t idx = ePropertyUnwindOnErrorInExpressions;
257  return GetPropertyAtIndexAs<bool>(
258      idx, g_process_properties[idx].default_uint_value != 0);
259}
260
261void ProcessProperties::SetUnwindOnErrorInExpressions(bool ignore) {
262  const uint32_t idx = ePropertyUnwindOnErrorInExpressions;
263  SetPropertyAtIndex(idx, ignore);
264}
265
266bool ProcessProperties::GetStopOnSharedLibraryEvents() const {
267  const uint32_t idx = ePropertyStopOnSharedLibraryEvents;
268  return GetPropertyAtIndexAs<bool>(
269      idx, g_process_properties[idx].default_uint_value != 0);
270}
271
272void ProcessProperties::SetStopOnSharedLibraryEvents(bool stop) {
273  const uint32_t idx = ePropertyStopOnSharedLibraryEvents;
274  SetPropertyAtIndex(idx, stop);
275}
276
277bool ProcessProperties::GetDisableLangRuntimeUnwindPlans() const {
278  const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans;
279  return GetPropertyAtIndexAs<bool>(
280      idx, g_process_properties[idx].default_uint_value != 0);
281}
282
283void ProcessProperties::SetDisableLangRuntimeUnwindPlans(bool disable) {
284  const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans;
285  SetPropertyAtIndex(idx, disable);
286  m_process->Flush();
287}
288
289bool ProcessProperties::GetDetachKeepsStopped() const {
290  const uint32_t idx = ePropertyDetachKeepsStopped;
291  return GetPropertyAtIndexAs<bool>(
292      idx, g_process_properties[idx].default_uint_value != 0);
293}
294
295void ProcessProperties::SetDetachKeepsStopped(bool stop) {
296  const uint32_t idx = ePropertyDetachKeepsStopped;
297  SetPropertyAtIndex(idx, stop);
298}
299
300bool ProcessProperties::GetWarningsOptimization() const {
301  const uint32_t idx = ePropertyWarningOptimization;
302  return GetPropertyAtIndexAs<bool>(
303      idx, g_process_properties[idx].default_uint_value != 0);
304}
305
306bool ProcessProperties::GetWarningsUnsupportedLanguage() const {
307  const uint32_t idx = ePropertyWarningUnsupportedLanguage;
308  return GetPropertyAtIndexAs<bool>(
309      idx, g_process_properties[idx].default_uint_value != 0);
310}
311
312bool ProcessProperties::GetStopOnExec() const {
313  const uint32_t idx = ePropertyStopOnExec;
314  return GetPropertyAtIndexAs<bool>(
315      idx, g_process_properties[idx].default_uint_value != 0);
316}
317
318std::chrono::seconds ProcessProperties::GetUtilityExpressionTimeout() const {
319  const uint32_t idx = ePropertyUtilityExpressionTimeout;
320  uint64_t value = GetPropertyAtIndexAs<uint64_t>(
321      idx, g_process_properties[idx].default_uint_value);
322  return std::chrono::seconds(value);
323}
324
325std::chrono::seconds ProcessProperties::GetInterruptTimeout() const {
326  const uint32_t idx = ePropertyInterruptTimeout;
327  uint64_t value = GetPropertyAtIndexAs<uint64_t>(
328      idx, g_process_properties[idx].default_uint_value);
329  return std::chrono::seconds(value);
330}
331
332bool ProcessProperties::GetSteppingRunsAllThreads() const {
333  const uint32_t idx = ePropertySteppingRunsAllThreads;
334  return GetPropertyAtIndexAs<bool>(
335      idx, g_process_properties[idx].default_uint_value != 0);
336}
337
338bool ProcessProperties::GetOSPluginReportsAllThreads() const {
339  const bool fail_value = true;
340  const Property *exp_property =
341      m_collection_sp->GetPropertyAtIndex(ePropertyExperimental);
342  OptionValueProperties *exp_values =
343      exp_property->GetValue()->GetAsProperties();
344  if (!exp_values)
345    return fail_value;
346
347  return exp_values
348      ->GetPropertyAtIndexAs<bool>(ePropertyOSPluginReportsAllThreads)
349      .value_or(fail_value);
350}
351
352void ProcessProperties::SetOSPluginReportsAllThreads(bool does_report) {
353  const Property *exp_property =
354      m_collection_sp->GetPropertyAtIndex(ePropertyExperimental);
355  OptionValueProperties *exp_values =
356      exp_property->GetValue()->GetAsProperties();
357  if (exp_values)
358    exp_values->SetPropertyAtIndex(ePropertyOSPluginReportsAllThreads,
359                                   does_report);
360}
361
362FollowForkMode ProcessProperties::GetFollowForkMode() const {
363  const uint32_t idx = ePropertyFollowForkMode;
364  return GetPropertyAtIndexAs<FollowForkMode>(
365      idx, static_cast<FollowForkMode>(
366               g_process_properties[idx].default_uint_value));
367}
368
369ProcessSP Process::FindPlugin(lldb::TargetSP target_sp,
370                              llvm::StringRef plugin_name,
371                              ListenerSP listener_sp,
372                              const FileSpec *crash_file_path,
373                              bool can_connect) {
374  static uint32_t g_process_unique_id = 0;
375
376  ProcessSP process_sp;
377  ProcessCreateInstance create_callback = nullptr;
378  if (!plugin_name.empty()) {
379    create_callback =
380        PluginManager::GetProcessCreateCallbackForPluginName(plugin_name);
381    if (create_callback) {
382      process_sp = create_callback(target_sp, listener_sp, crash_file_path,
383                                   can_connect);
384      if (process_sp) {
385        if (process_sp->CanDebug(target_sp, true)) {
386          process_sp->m_process_unique_id = ++g_process_unique_id;
387        } else
388          process_sp.reset();
389      }
390    }
391  } else {
392    for (uint32_t idx = 0;
393         (create_callback =
394              PluginManager::GetProcessCreateCallbackAtIndex(idx)) != nullptr;
395         ++idx) {
396      process_sp = create_callback(target_sp, listener_sp, crash_file_path,
397                                   can_connect);
398      if (process_sp) {
399        if (process_sp->CanDebug(target_sp, false)) {
400          process_sp->m_process_unique_id = ++g_process_unique_id;
401          break;
402        } else
403          process_sp.reset();
404      }
405    }
406  }
407  return process_sp;
408}
409
410ConstString &Process::GetStaticBroadcasterClass() {
411  static ConstString class_name("lldb.process");
412  return class_name;
413}
414
415Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp)
416    : Process(target_sp, listener_sp, UnixSignals::CreateForHost()) {
417  // This constructor just delegates to the full Process constructor,
418  // defaulting to using the Host's UnixSignals.
419}
420
421Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp,
422                 const UnixSignalsSP &unix_signals_sp)
423    : ProcessProperties(this),
424      Broadcaster((target_sp->GetDebugger().GetBroadcasterManager()),
425                  Process::GetStaticBroadcasterClass().AsCString()),
426      m_target_wp(target_sp), m_public_state(eStateUnloaded),
427      m_private_state(eStateUnloaded),
428      m_private_state_broadcaster(nullptr,
429                                  "lldb.process.internal_state_broadcaster"),
430      m_private_state_control_broadcaster(
431          nullptr, "lldb.process.internal_state_control_broadcaster"),
432      m_private_state_listener_sp(
433          Listener::MakeListener("lldb.process.internal_state_listener")),
434      m_mod_id(), m_process_unique_id(0), m_thread_index_id(0),
435      m_thread_id_to_index_id_map(), m_exit_status(-1), m_exit_string(),
436      m_exit_status_mutex(), m_thread_mutex(), m_thread_list_real(this),
437      m_thread_list(this), m_thread_plans(*this), m_extended_thread_list(this),
438      m_extended_thread_stop_id(0), m_queue_list(this), m_queue_list_stop_id(0),
439      m_watchpoint_resource_list(), m_notifications(), m_image_tokens(),
440      m_breakpoint_site_list(), m_dynamic_checkers_up(),
441      m_unix_signals_sp(unix_signals_sp), m_abi_sp(), m_process_input_reader(),
442      m_stdio_communication("process.stdio"), m_stdio_communication_mutex(),
443      m_stdin_forward(false), m_stdout_data(), m_stderr_data(),
444      m_profile_data_comm_mutex(), m_profile_data(), m_iohandler_sync(0),
445      m_memory_cache(*this), m_allocated_memory_cache(*this),
446      m_should_detach(false), m_next_event_action_up(), m_public_run_lock(),
447      m_private_run_lock(), m_currently_handling_do_on_removals(false),
448      m_resume_requested(false), m_finalizing(false), m_destructing(false),
449      m_clear_thread_plans_on_stop(false), m_force_next_event_delivery(false),
450      m_last_broadcast_state(eStateInvalid), m_destroy_in_process(false),
451      m_can_interpret_function_calls(false), m_run_thread_plan_lock(),
452      m_can_jit(eCanJITDontKnow) {
453  CheckInWithManager();
454
455  Log *log = GetLog(LLDBLog::Object);
456  LLDB_LOGF(log, "%p Process::Process()", static_cast<void *>(this));
457
458  if (!m_unix_signals_sp)
459    m_unix_signals_sp = std::make_shared<UnixSignals>();
460
461  SetEventName(eBroadcastBitStateChanged, "state-changed");
462  SetEventName(eBroadcastBitInterrupt, "interrupt");
463  SetEventName(eBroadcastBitSTDOUT, "stdout-available");
464  SetEventName(eBroadcastBitSTDERR, "stderr-available");
465  SetEventName(eBroadcastBitProfileData, "profile-data-available");
466  SetEventName(eBroadcastBitStructuredData, "structured-data-available");
467
468  m_private_state_control_broadcaster.SetEventName(
469      eBroadcastInternalStateControlStop, "control-stop");
470  m_private_state_control_broadcaster.SetEventName(
471      eBroadcastInternalStateControlPause, "control-pause");
472  m_private_state_control_broadcaster.SetEventName(
473      eBroadcastInternalStateControlResume, "control-resume");
474
475  // The listener passed into process creation is the primary listener:
476  // It always listens for all the event bits for Process:
477  SetPrimaryListener(listener_sp);
478
479  m_private_state_listener_sp->StartListeningForEvents(
480      &m_private_state_broadcaster,
481      eBroadcastBitStateChanged | eBroadcastBitInterrupt);
482
483  m_private_state_listener_sp->StartListeningForEvents(
484      &m_private_state_control_broadcaster,
485      eBroadcastInternalStateControlStop | eBroadcastInternalStateControlPause |
486          eBroadcastInternalStateControlResume);
487  // We need something valid here, even if just the default UnixSignalsSP.
488  assert(m_unix_signals_sp && "null m_unix_signals_sp after initialization");
489
490  // Allow the platform to override the default cache line size
491  OptionValueSP value_sp =
492      m_collection_sp->GetPropertyAtIndex(ePropertyMemCacheLineSize)
493          ->GetValue();
494  uint64_t platform_cache_line_size =
495      target_sp->GetPlatform()->GetDefaultMemoryCacheLineSize();
496  if (!value_sp->OptionWasSet() && platform_cache_line_size != 0)
497    value_sp->SetValueAs(platform_cache_line_size);
498
499  RegisterAssertFrameRecognizer(this);
500}
501
502Process::~Process() {
503  Log *log = GetLog(LLDBLog::Object);
504  LLDB_LOGF(log, "%p Process::~Process()", static_cast<void *>(this));
505  StopPrivateStateThread();
506
507  // ThreadList::Clear() will try to acquire this process's mutex, so
508  // explicitly clear the thread list here to ensure that the mutex is not
509  // destroyed before the thread list.
510  m_thread_list.Clear();
511}
512
513ProcessProperties &Process::GetGlobalProperties() {
514  // NOTE: intentional leak so we don't crash if global destructor chain gets
515  // called as other threads still use the result of this function
516  static ProcessProperties *g_settings_ptr =
517      new ProcessProperties(nullptr);
518  return *g_settings_ptr;
519}
520
521void Process::Finalize(bool destructing) {
522  if (m_finalizing.exchange(true))
523    return;
524  if (destructing)
525    m_destructing.exchange(true);
526
527  // Destroy the process. This will call the virtual function DoDestroy under
528  // the hood, giving our derived class a chance to do the ncessary tear down.
529  DestroyImpl(false);
530
531  // Clear our broadcaster before we proceed with destroying
532  Broadcaster::Clear();
533
534  // Do any cleanup needed prior to being destructed... Subclasses that
535  // override this method should call this superclass method as well.
536
537  // We need to destroy the loader before the derived Process class gets
538  // destroyed since it is very likely that undoing the loader will require
539  // access to the real process.
540  m_dynamic_checkers_up.reset();
541  m_abi_sp.reset();
542  m_os_up.reset();
543  m_system_runtime_up.reset();
544  m_dyld_up.reset();
545  m_jit_loaders_up.reset();
546  m_thread_plans.Clear();
547  m_thread_list_real.Destroy();
548  m_thread_list.Destroy();
549  m_extended_thread_list.Destroy();
550  m_queue_list.Clear();
551  m_queue_list_stop_id = 0;
552  m_watchpoint_resource_list.Clear();
553  std::vector<Notifications> empty_notifications;
554  m_notifications.swap(empty_notifications);
555  m_image_tokens.clear();
556  m_memory_cache.Clear();
557  m_allocated_memory_cache.Clear(/*deallocate_memory=*/true);
558  {
559    std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
560    m_language_runtimes.clear();
561  }
562  m_instrumentation_runtimes.clear();
563  m_next_event_action_up.reset();
564  // Clear the last natural stop ID since it has a strong reference to this
565  // process
566  m_mod_id.SetStopEventForLastNaturalStopID(EventSP());
567  // We have to be very careful here as the m_private_state_listener might
568  // contain events that have ProcessSP values in them which can keep this
569  // process around forever. These events need to be cleared out.
570  m_private_state_listener_sp->Clear();
571  m_public_run_lock.TrySetRunning(); // This will do nothing if already locked
572  m_public_run_lock.SetStopped();
573  m_private_run_lock.TrySetRunning(); // This will do nothing if already locked
574  m_private_run_lock.SetStopped();
575  m_structured_data_plugin_map.clear();
576}
577
578void Process::RegisterNotificationCallbacks(const Notifications &callbacks) {
579  m_notifications.push_back(callbacks);
580  if (callbacks.initialize != nullptr)
581    callbacks.initialize(callbacks.baton, this);
582}
583
584bool Process::UnregisterNotificationCallbacks(const Notifications &callbacks) {
585  std::vector<Notifications>::iterator pos, end = m_notifications.end();
586  for (pos = m_notifications.begin(); pos != end; ++pos) {
587    if (pos->baton == callbacks.baton &&
588        pos->initialize == callbacks.initialize &&
589        pos->process_state_changed == callbacks.process_state_changed) {
590      m_notifications.erase(pos);
591      return true;
592    }
593  }
594  return false;
595}
596
597void Process::SynchronouslyNotifyStateChanged(StateType state) {
598  std::vector<Notifications>::iterator notification_pos,
599      notification_end = m_notifications.end();
600  for (notification_pos = m_notifications.begin();
601       notification_pos != notification_end; ++notification_pos) {
602    if (notification_pos->process_state_changed)
603      notification_pos->process_state_changed(notification_pos->baton, this,
604                                              state);
605  }
606}
607
608// FIXME: We need to do some work on events before the general Listener sees
609// them.
610// For instance if we are continuing from a breakpoint, we need to ensure that
611// we do the little "insert real insn, step & stop" trick.  But we can't do
612// that when the event is delivered by the broadcaster - since that is done on
613// the thread that is waiting for new events, so if we needed more than one
614// event for our handling, we would stall.  So instead we do it when we fetch
615// the event off of the queue.
616//
617
618StateType Process::GetNextEvent(EventSP &event_sp) {
619  StateType state = eStateInvalid;
620
621  if (GetPrimaryListener()->GetEventForBroadcaster(this, event_sp,
622                                            std::chrono::seconds(0)) &&
623      event_sp)
624    state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
625
626  return state;
627}
628
629void Process::SyncIOHandler(uint32_t iohandler_id,
630                            const Timeout<std::micro> &timeout) {
631  // don't sync (potentially context switch) in case where there is no process
632  // IO
633  if (!ProcessIOHandlerExists())
634    return;
635
636  auto Result = m_iohandler_sync.WaitForValueNotEqualTo(iohandler_id, timeout);
637
638  Log *log = GetLog(LLDBLog::Process);
639  if (Result) {
640    LLDB_LOG(
641        log,
642        "waited from m_iohandler_sync to change from {0}. New value is {1}.",
643        iohandler_id, *Result);
644  } else {
645    LLDB_LOG(log, "timed out waiting for m_iohandler_sync to change from {0}.",
646             iohandler_id);
647  }
648}
649
650StateType Process::WaitForProcessToStop(
651    const Timeout<std::micro> &timeout, EventSP *event_sp_ptr, bool wait_always,
652    ListenerSP hijack_listener_sp, Stream *stream, bool use_run_lock,
653    SelectMostRelevant select_most_relevant) {
654  // We can't just wait for a "stopped" event, because the stopped event may
655  // have restarted the target. We have to actually check each event, and in
656  // the case of a stopped event check the restarted flag on the event.
657  if (event_sp_ptr)
658    event_sp_ptr->reset();
659  StateType state = GetState();
660  // If we are exited or detached, we won't ever get back to any other valid
661  // state...
662  if (state == eStateDetached || state == eStateExited)
663    return state;
664
665  Log *log = GetLog(LLDBLog::Process);
666  LLDB_LOG(log, "timeout = {0}", timeout);
667
668  if (!wait_always && StateIsStoppedState(state, true) &&
669      StateIsStoppedState(GetPrivateState(), true)) {
670    LLDB_LOGF(log,
671              "Process::%s returning without waiting for events; process "
672              "private and public states are already 'stopped'.",
673              __FUNCTION__);
674    // We need to toggle the run lock as this won't get done in
675    // SetPublicState() if the process is hijacked.
676    if (hijack_listener_sp && use_run_lock)
677      m_public_run_lock.SetStopped();
678    return state;
679  }
680
681  while (state != eStateInvalid) {
682    EventSP event_sp;
683    state = GetStateChangedEvents(event_sp, timeout, hijack_listener_sp);
684    if (event_sp_ptr && event_sp)
685      *event_sp_ptr = event_sp;
686
687    bool pop_process_io_handler = (hijack_listener_sp.get() != nullptr);
688    Process::HandleProcessStateChangedEvent(
689        event_sp, stream, select_most_relevant, pop_process_io_handler);
690
691    switch (state) {
692    case eStateCrashed:
693    case eStateDetached:
694    case eStateExited:
695    case eStateUnloaded:
696      // We need to toggle the run lock as this won't get done in
697      // SetPublicState() if the process is hijacked.
698      if (hijack_listener_sp && use_run_lock)
699        m_public_run_lock.SetStopped();
700      return state;
701    case eStateStopped:
702      if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get()))
703        continue;
704      else {
705        // We need to toggle the run lock as this won't get done in
706        // SetPublicState() if the process is hijacked.
707        if (hijack_listener_sp && use_run_lock)
708          m_public_run_lock.SetStopped();
709        return state;
710      }
711    default:
712      continue;
713    }
714  }
715  return state;
716}
717
718bool Process::HandleProcessStateChangedEvent(
719    const EventSP &event_sp, Stream *stream,
720    SelectMostRelevant select_most_relevant,
721    bool &pop_process_io_handler) {
722  const bool handle_pop = pop_process_io_handler;
723
724  pop_process_io_handler = false;
725  ProcessSP process_sp =
726      Process::ProcessEventData::GetProcessFromEvent(event_sp.get());
727
728  if (!process_sp)
729    return false;
730
731  StateType event_state =
732      Process::ProcessEventData::GetStateFromEvent(event_sp.get());
733  if (event_state == eStateInvalid)
734    return false;
735
736  switch (event_state) {
737  case eStateInvalid:
738  case eStateUnloaded:
739  case eStateAttaching:
740  case eStateLaunching:
741  case eStateStepping:
742  case eStateDetached:
743    if (stream)
744      stream->Printf("Process %" PRIu64 " %s\n", process_sp->GetID(),
745                     StateAsCString(event_state));
746    if (event_state == eStateDetached)
747      pop_process_io_handler = true;
748    break;
749
750  case eStateConnected:
751  case eStateRunning:
752    // Don't be chatty when we run...
753    break;
754
755  case eStateExited:
756    if (stream)
757      process_sp->GetStatus(*stream);
758    pop_process_io_handler = true;
759    break;
760
761  case eStateStopped:
762  case eStateCrashed:
763  case eStateSuspended:
764    // Make sure the program hasn't been auto-restarted:
765    if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) {
766      if (stream) {
767        size_t num_reasons =
768            Process::ProcessEventData::GetNumRestartedReasons(event_sp.get());
769        if (num_reasons > 0) {
770          // FIXME: Do we want to report this, or would that just be annoyingly
771          // chatty?
772          if (num_reasons == 1) {
773            const char *reason =
774                Process::ProcessEventData::GetRestartedReasonAtIndex(
775                    event_sp.get(), 0);
776            stream->Printf("Process %" PRIu64 " stopped and restarted: %s\n",
777                           process_sp->GetID(),
778                           reason ? reason : "<UNKNOWN REASON>");
779          } else {
780            stream->Printf("Process %" PRIu64
781                           " stopped and restarted, reasons:\n",
782                           process_sp->GetID());
783
784            for (size_t i = 0; i < num_reasons; i++) {
785              const char *reason =
786                  Process::ProcessEventData::GetRestartedReasonAtIndex(
787                      event_sp.get(), i);
788              stream->Printf("\t%s\n", reason ? reason : "<UNKNOWN REASON>");
789            }
790          }
791        }
792      }
793    } else {
794      StopInfoSP curr_thread_stop_info_sp;
795      // Lock the thread list so it doesn't change on us, this is the scope for
796      // the locker:
797      {
798        ThreadList &thread_list = process_sp->GetThreadList();
799        std::lock_guard<std::recursive_mutex> guard(thread_list.GetMutex());
800
801        ThreadSP curr_thread(thread_list.GetSelectedThread());
802        ThreadSP thread;
803        StopReason curr_thread_stop_reason = eStopReasonInvalid;
804        bool prefer_curr_thread = false;
805        if (curr_thread && curr_thread->IsValid()) {
806          curr_thread_stop_reason = curr_thread->GetStopReason();
807          switch (curr_thread_stop_reason) {
808          case eStopReasonNone:
809          case eStopReasonInvalid:
810            // Don't prefer the current thread if it didn't stop for a reason.
811            break;
812          case eStopReasonSignal: {
813            // We need to do the same computation we do for other threads
814            // below in case the current thread happens to be the one that
815            // stopped for the no-stop signal.
816            uint64_t signo = curr_thread->GetStopInfo()->GetValue();
817            if (process_sp->GetUnixSignals()->GetShouldStop(signo))
818              prefer_curr_thread = true;
819          } break;
820          default:
821            prefer_curr_thread = true;
822            break;
823          }
824          curr_thread_stop_info_sp = curr_thread->GetStopInfo();
825        }
826
827        if (!prefer_curr_thread) {
828          // Prefer a thread that has just completed its plan over another
829          // thread as current thread.
830          ThreadSP plan_thread;
831          ThreadSP other_thread;
832
833          const size_t num_threads = thread_list.GetSize();
834          size_t i;
835          for (i = 0; i < num_threads; ++i) {
836            thread = thread_list.GetThreadAtIndex(i);
837            StopReason thread_stop_reason = thread->GetStopReason();
838            switch (thread_stop_reason) {
839            case eStopReasonInvalid:
840            case eStopReasonNone:
841              break;
842
843            case eStopReasonSignal: {
844              // Don't select a signal thread if we weren't going to stop at
845              // that signal.  We have to have had another reason for stopping
846              // here, and the user doesn't want to see this thread.
847              uint64_t signo = thread->GetStopInfo()->GetValue();
848              if (process_sp->GetUnixSignals()->GetShouldStop(signo)) {
849                if (!other_thread)
850                  other_thread = thread;
851              }
852              break;
853            }
854            case eStopReasonTrace:
855            case eStopReasonBreakpoint:
856            case eStopReasonWatchpoint:
857            case eStopReasonException:
858            case eStopReasonExec:
859            case eStopReasonFork:
860            case eStopReasonVFork:
861            case eStopReasonVForkDone:
862            case eStopReasonThreadExiting:
863            case eStopReasonInstrumentation:
864            case eStopReasonProcessorTrace:
865              if (!other_thread)
866                other_thread = thread;
867              break;
868            case eStopReasonPlanComplete:
869              if (!plan_thread)
870                plan_thread = thread;
871              break;
872            }
873          }
874          if (plan_thread)
875            thread_list.SetSelectedThreadByID(plan_thread->GetID());
876          else if (other_thread)
877            thread_list.SetSelectedThreadByID(other_thread->GetID());
878          else {
879            if (curr_thread && curr_thread->IsValid())
880              thread = curr_thread;
881            else
882              thread = thread_list.GetThreadAtIndex(0);
883
884            if (thread)
885              thread_list.SetSelectedThreadByID(thread->GetID());
886          }
887        }
888      }
889      // Drop the ThreadList mutex by here, since GetThreadStatus below might
890      // have to run code, e.g. for Data formatters, and if we hold the
891      // ThreadList mutex, then the process is going to have a hard time
892      // restarting the process.
893      if (stream) {
894        Debugger &debugger = process_sp->GetTarget().GetDebugger();
895        if (debugger.GetTargetList().GetSelectedTarget().get() ==
896            &process_sp->GetTarget()) {
897          ThreadSP thread_sp = process_sp->GetThreadList().GetSelectedThread();
898
899          if (!thread_sp || !thread_sp->IsValid())
900            return false;
901
902          const bool only_threads_with_stop_reason = true;
903          const uint32_t start_frame =
904              thread_sp->GetSelectedFrameIndex(select_most_relevant);
905          const uint32_t num_frames = 1;
906          const uint32_t num_frames_with_source = 1;
907          const bool stop_format = true;
908
909          process_sp->GetStatus(*stream);
910          process_sp->GetThreadStatus(*stream, only_threads_with_stop_reason,
911                                      start_frame, num_frames,
912                                      num_frames_with_source,
913                                      stop_format);
914          if (curr_thread_stop_info_sp) {
915            lldb::addr_t crashing_address;
916            ValueObjectSP valobj_sp = StopInfo::GetCrashingDereference(
917                curr_thread_stop_info_sp, &crashing_address);
918            if (valobj_sp) {
919              const ValueObject::GetExpressionPathFormat format =
920                  ValueObject::GetExpressionPathFormat::
921                      eGetExpressionPathFormatHonorPointers;
922              stream->PutCString("Likely cause: ");
923              valobj_sp->GetExpressionPath(*stream, format);
924              stream->Printf(" accessed 0x%" PRIx64 "\n", crashing_address);
925            }
926          }
927        } else {
928          uint32_t target_idx = debugger.GetTargetList().GetIndexOfTarget(
929              process_sp->GetTarget().shared_from_this());
930          if (target_idx != UINT32_MAX)
931            stream->Printf("Target %d: (", target_idx);
932          else
933            stream->Printf("Target <unknown index>: (");
934          process_sp->GetTarget().Dump(stream, eDescriptionLevelBrief);
935          stream->Printf(") stopped.\n");
936        }
937      }
938
939      // Pop the process IO handler
940      pop_process_io_handler = true;
941    }
942    break;
943  }
944
945  if (handle_pop && pop_process_io_handler)
946    process_sp->PopProcessIOHandler();
947
948  return true;
949}
950
951bool Process::HijackProcessEvents(ListenerSP listener_sp) {
952  if (listener_sp) {
953    return HijackBroadcaster(listener_sp, eBroadcastBitStateChanged |
954                                              eBroadcastBitInterrupt);
955  } else
956    return false;
957}
958
959void Process::RestoreProcessEvents() { RestoreBroadcaster(); }
960
961StateType Process::GetStateChangedEvents(EventSP &event_sp,
962                                         const Timeout<std::micro> &timeout,
963                                         ListenerSP hijack_listener_sp) {
964  Log *log = GetLog(LLDBLog::Process);
965  LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout);
966
967  ListenerSP listener_sp = hijack_listener_sp;
968  if (!listener_sp)
969    listener_sp = GetPrimaryListener();
970
971  StateType state = eStateInvalid;
972  if (listener_sp->GetEventForBroadcasterWithType(
973          this, eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp,
974          timeout)) {
975    if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged)
976      state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
977    else
978      LLDB_LOG(log, "got no event or was interrupted.");
979  }
980
981  LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, state);
982  return state;
983}
984
985Event *Process::PeekAtStateChangedEvents() {
986  Log *log = GetLog(LLDBLog::Process);
987
988  LLDB_LOGF(log, "Process::%s...", __FUNCTION__);
989
990  Event *event_ptr;
991  event_ptr = GetPrimaryListener()->PeekAtNextEventForBroadcasterWithType(
992      this, eBroadcastBitStateChanged);
993  if (log) {
994    if (event_ptr) {
995      LLDB_LOGF(log, "Process::%s (event_ptr) => %s", __FUNCTION__,
996                StateAsCString(ProcessEventData::GetStateFromEvent(event_ptr)));
997    } else {
998      LLDB_LOGF(log, "Process::%s no events found", __FUNCTION__);
999    }
1000  }
1001  return event_ptr;
1002}
1003
1004StateType
1005Process::GetStateChangedEventsPrivate(EventSP &event_sp,
1006                                      const Timeout<std::micro> &timeout) {
1007  Log *log = GetLog(LLDBLog::Process);
1008  LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout);
1009
1010  StateType state = eStateInvalid;
1011  if (m_private_state_listener_sp->GetEventForBroadcasterWithType(
1012          &m_private_state_broadcaster,
1013          eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp,
1014          timeout))
1015    if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged)
1016      state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
1017
1018  LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout,
1019           state == eStateInvalid ? "TIMEOUT" : StateAsCString(state));
1020  return state;
1021}
1022
1023bool Process::GetEventsPrivate(EventSP &event_sp,
1024                               const Timeout<std::micro> &timeout,
1025                               bool control_only) {
1026  Log *log = GetLog(LLDBLog::Process);
1027  LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout);
1028
1029  if (control_only)
1030    return m_private_state_listener_sp->GetEventForBroadcaster(
1031        &m_private_state_control_broadcaster, event_sp, timeout);
1032  else
1033    return m_private_state_listener_sp->GetEvent(event_sp, timeout);
1034}
1035
1036bool Process::IsRunning() const {
1037  return StateIsRunningState(m_public_state.GetValue());
1038}
1039
1040int Process::GetExitStatus() {
1041  std::lock_guard<std::mutex> guard(m_exit_status_mutex);
1042
1043  if (m_public_state.GetValue() == eStateExited)
1044    return m_exit_status;
1045  return -1;
1046}
1047
1048const char *Process::GetExitDescription() {
1049  std::lock_guard<std::mutex> guard(m_exit_status_mutex);
1050
1051  if (m_public_state.GetValue() == eStateExited && !m_exit_string.empty())
1052    return m_exit_string.c_str();
1053  return nullptr;
1054}
1055
1056bool Process::SetExitStatus(int status, llvm::StringRef exit_string) {
1057  // Use a mutex to protect setting the exit status.
1058  std::lock_guard<std::mutex> guard(m_exit_status_mutex);
1059
1060  Log *log(GetLog(LLDBLog::State | LLDBLog::Process));
1061  LLDB_LOG(log, "(plugin = {0} status = {1} ({1:x8}), description=\"{2}\")",
1062           GetPluginName(), status, exit_string);
1063
1064  // We were already in the exited state
1065  if (m_private_state.GetValue() == eStateExited) {
1066    LLDB_LOG(
1067        log,
1068        "(plugin = {0}) ignoring exit status because state was already set "
1069        "to eStateExited",
1070        GetPluginName());
1071    return false;
1072  }
1073
1074  m_exit_status = status;
1075  if (!exit_string.empty())
1076    m_exit_string = exit_string.str();
1077  else
1078    m_exit_string.clear();
1079
1080  // Clear the last natural stop ID since it has a strong reference to this
1081  // process
1082  m_mod_id.SetStopEventForLastNaturalStopID(EventSP());
1083
1084  SetPrivateState(eStateExited);
1085
1086  // Allow subclasses to do some cleanup
1087  DidExit();
1088
1089  return true;
1090}
1091
1092bool Process::IsAlive() {
1093  switch (m_private_state.GetValue()) {
1094  case eStateConnected:
1095  case eStateAttaching:
1096  case eStateLaunching:
1097  case eStateStopped:
1098  case eStateRunning:
1099  case eStateStepping:
1100  case eStateCrashed:
1101  case eStateSuspended:
1102    return true;
1103  default:
1104    return false;
1105  }
1106}
1107
1108// This static callback can be used to watch for local child processes on the
1109// current host. The child process exits, the process will be found in the
1110// global target list (we want to be completely sure that the
1111// lldb_private::Process doesn't go away before we can deliver the signal.
1112bool Process::SetProcessExitStatus(
1113    lldb::pid_t pid, bool exited,
1114    int signo,      // Zero for no signal
1115    int exit_status // Exit value of process if signal is zero
1116    ) {
1117  Log *log = GetLog(LLDBLog::Process);
1118  LLDB_LOGF(log,
1119            "Process::SetProcessExitStatus (pid=%" PRIu64
1120            ", exited=%i, signal=%i, exit_status=%i)\n",
1121            pid, exited, signo, exit_status);
1122
1123  if (exited) {
1124    TargetSP target_sp(Debugger::FindTargetWithProcessID(pid));
1125    if (target_sp) {
1126      ProcessSP process_sp(target_sp->GetProcessSP());
1127      if (process_sp) {
1128        llvm::StringRef signal_str =
1129            process_sp->GetUnixSignals()->GetSignalAsStringRef(signo);
1130        process_sp->SetExitStatus(exit_status, signal_str);
1131      }
1132    }
1133    return true;
1134  }
1135  return false;
1136}
1137
1138bool Process::UpdateThreadList(ThreadList &old_thread_list,
1139                               ThreadList &new_thread_list) {
1140  m_thread_plans.ClearThreadCache();
1141  return DoUpdateThreadList(old_thread_list, new_thread_list);
1142}
1143
1144void Process::UpdateThreadListIfNeeded() {
1145  const uint32_t stop_id = GetStopID();
1146  if (m_thread_list.GetSize(false) == 0 ||
1147      stop_id != m_thread_list.GetStopID()) {
1148    bool clear_unused_threads = true;
1149    const StateType state = GetPrivateState();
1150    if (StateIsStoppedState(state, true)) {
1151      std::lock_guard<std::recursive_mutex> guard(m_thread_list.GetMutex());
1152      m_thread_list.SetStopID(stop_id);
1153
1154      // m_thread_list does have its own mutex, but we need to hold onto the
1155      // mutex between the call to UpdateThreadList(...) and the
1156      // os->UpdateThreadList(...) so it doesn't change on us
1157      ThreadList &old_thread_list = m_thread_list;
1158      ThreadList real_thread_list(this);
1159      ThreadList new_thread_list(this);
1160      // Always update the thread list with the protocol specific thread list,
1161      // but only update if "true" is returned
1162      if (UpdateThreadList(m_thread_list_real, real_thread_list)) {
1163        // Don't call into the OperatingSystem to update the thread list if we
1164        // are shutting down, since that may call back into the SBAPI's,
1165        // requiring the API lock which is already held by whoever is shutting
1166        // us down, causing a deadlock.
1167        OperatingSystem *os = GetOperatingSystem();
1168        if (os && !m_destroy_in_process) {
1169          // Clear any old backing threads where memory threads might have been
1170          // backed by actual threads from the lldb_private::Process subclass
1171          size_t num_old_threads = old_thread_list.GetSize(false);
1172          for (size_t i = 0; i < num_old_threads; ++i)
1173            old_thread_list.GetThreadAtIndex(i, false)->ClearBackingThread();
1174          // See if the OS plugin reports all threads.  If it does, then
1175          // it is safe to clear unseen thread's plans here.  Otherwise we
1176          // should preserve them in case they show up again:
1177          clear_unused_threads = GetOSPluginReportsAllThreads();
1178
1179          // Turn off dynamic types to ensure we don't run any expressions.
1180          // Objective-C can run an expression to determine if a SBValue is a
1181          // dynamic type or not and we need to avoid this. OperatingSystem
1182          // plug-ins can't run expressions that require running code...
1183
1184          Target &target = GetTarget();
1185          const lldb::DynamicValueType saved_prefer_dynamic =
1186              target.GetPreferDynamicValue();
1187          if (saved_prefer_dynamic != lldb::eNoDynamicValues)
1188            target.SetPreferDynamicValue(lldb::eNoDynamicValues);
1189
1190          // Now let the OperatingSystem plug-in update the thread list
1191
1192          os->UpdateThreadList(
1193              old_thread_list, // Old list full of threads created by OS plug-in
1194              real_thread_list, // The actual thread list full of threads
1195                                // created by each lldb_private::Process
1196                                // subclass
1197              new_thread_list); // The new thread list that we will show to the
1198                                // user that gets filled in
1199
1200          if (saved_prefer_dynamic != lldb::eNoDynamicValues)
1201            target.SetPreferDynamicValue(saved_prefer_dynamic);
1202        } else {
1203          // No OS plug-in, the new thread list is the same as the real thread
1204          // list.
1205          new_thread_list = real_thread_list;
1206        }
1207
1208        m_thread_list_real.Update(real_thread_list);
1209        m_thread_list.Update(new_thread_list);
1210        m_thread_list.SetStopID(stop_id);
1211
1212        if (GetLastNaturalStopID() != m_extended_thread_stop_id) {
1213          // Clear any extended threads that we may have accumulated previously
1214          m_extended_thread_list.Clear();
1215          m_extended_thread_stop_id = GetLastNaturalStopID();
1216
1217          m_queue_list.Clear();
1218          m_queue_list_stop_id = GetLastNaturalStopID();
1219        }
1220      }
1221      // Now update the plan stack map.
1222      // If we do have an OS plugin, any absent real threads in the
1223      // m_thread_list have already been removed from the ThreadPlanStackMap.
1224      // So any remaining threads are OS Plugin threads, and those we want to
1225      // preserve in case they show up again.
1226      m_thread_plans.Update(m_thread_list, clear_unused_threads);
1227    }
1228  }
1229}
1230
1231ThreadPlanStack *Process::FindThreadPlans(lldb::tid_t tid) {
1232  return m_thread_plans.Find(tid);
1233}
1234
1235bool Process::PruneThreadPlansForTID(lldb::tid_t tid) {
1236  return m_thread_plans.PrunePlansForTID(tid);
1237}
1238
1239void Process::PruneThreadPlans() {
1240  m_thread_plans.Update(GetThreadList(), true, false);
1241}
1242
1243bool Process::DumpThreadPlansForTID(Stream &strm, lldb::tid_t tid,
1244                                    lldb::DescriptionLevel desc_level,
1245                                    bool internal, bool condense_trivial,
1246                                    bool skip_unreported_plans) {
1247  return m_thread_plans.DumpPlansForTID(
1248      strm, tid, desc_level, internal, condense_trivial, skip_unreported_plans);
1249}
1250void Process::DumpThreadPlans(Stream &strm, lldb::DescriptionLevel desc_level,
1251                              bool internal, bool condense_trivial,
1252                              bool skip_unreported_plans) {
1253  m_thread_plans.DumpPlans(strm, desc_level, internal, condense_trivial,
1254                           skip_unreported_plans);
1255}
1256
1257void Process::UpdateQueueListIfNeeded() {
1258  if (m_system_runtime_up) {
1259    if (m_queue_list.GetSize() == 0 ||
1260        m_queue_list_stop_id != GetLastNaturalStopID()) {
1261      const StateType state = GetPrivateState();
1262      if (StateIsStoppedState(state, true)) {
1263        m_system_runtime_up->PopulateQueueList(m_queue_list);
1264        m_queue_list_stop_id = GetLastNaturalStopID();
1265      }
1266    }
1267  }
1268}
1269
1270ThreadSP Process::CreateOSPluginThread(lldb::tid_t tid, lldb::addr_t context) {
1271  OperatingSystem *os = GetOperatingSystem();
1272  if (os)
1273    return os->CreateThread(tid, context);
1274  return ThreadSP();
1275}
1276
1277uint32_t Process::GetNextThreadIndexID(uint64_t thread_id) {
1278  return AssignIndexIDToThread(thread_id);
1279}
1280
1281bool Process::HasAssignedIndexIDToThread(uint64_t thread_id) {
1282  return (m_thread_id_to_index_id_map.find(thread_id) !=
1283          m_thread_id_to_index_id_map.end());
1284}
1285
1286uint32_t Process::AssignIndexIDToThread(uint64_t thread_id) {
1287  uint32_t result = 0;
1288  std::map<uint64_t, uint32_t>::iterator iterator =
1289      m_thread_id_to_index_id_map.find(thread_id);
1290  if (iterator == m_thread_id_to_index_id_map.end()) {
1291    result = ++m_thread_index_id;
1292    m_thread_id_to_index_id_map[thread_id] = result;
1293  } else {
1294    result = iterator->second;
1295  }
1296
1297  return result;
1298}
1299
1300StateType Process::GetState() {
1301  if (CurrentThreadIsPrivateStateThread())
1302    return m_private_state.GetValue();
1303  else
1304    return m_public_state.GetValue();
1305}
1306
1307void Process::SetPublicState(StateType new_state, bool restarted) {
1308  const bool new_state_is_stopped = StateIsStoppedState(new_state, false);
1309  if (new_state_is_stopped) {
1310    // This will only set the time if the public stop time has no value, so
1311    // it is ok to call this multiple times. With a public stop we can't look
1312    // at the stop ID because many private stops might have happened, so we
1313    // can't check for a stop ID of zero. This allows the "statistics" command
1314    // to dump the time it takes to reach somewhere in your code, like a
1315    // breakpoint you set.
1316    GetTarget().GetStatistics().SetFirstPublicStopTime();
1317  }
1318
1319  Log *log(GetLog(LLDBLog::State | LLDBLog::Process));
1320  LLDB_LOGF(log, "(plugin = %s, state = %s, restarted = %i)",
1321           GetPluginName().data(), StateAsCString(new_state), restarted);
1322  const StateType old_state = m_public_state.GetValue();
1323  m_public_state.SetValue(new_state);
1324
1325  // On the transition from Run to Stopped, we unlock the writer end of the run
1326  // lock.  The lock gets locked in Resume, which is the public API to tell the
1327  // program to run.
1328  if (!StateChangedIsExternallyHijacked()) {
1329    if (new_state == eStateDetached) {
1330      LLDB_LOGF(log,
1331               "(plugin = %s, state = %s) -- unlocking run lock for detach",
1332               GetPluginName().data(), StateAsCString(new_state));
1333      m_public_run_lock.SetStopped();
1334    } else {
1335      const bool old_state_is_stopped = StateIsStoppedState(old_state, false);
1336      if ((old_state_is_stopped != new_state_is_stopped)) {
1337        if (new_state_is_stopped && !restarted) {
1338          LLDB_LOGF(log, "(plugin = %s, state = %s) -- unlocking run lock",
1339                   GetPluginName().data(), StateAsCString(new_state));
1340          m_public_run_lock.SetStopped();
1341        }
1342      }
1343    }
1344  }
1345}
1346
1347Status Process::Resume() {
1348  Log *log(GetLog(LLDBLog::State | LLDBLog::Process));
1349  LLDB_LOGF(log, "(plugin = %s) -- locking run lock", GetPluginName().data());
1350  if (!m_public_run_lock.TrySetRunning()) {
1351    Status error("Resume request failed - process still running.");
1352    LLDB_LOGF(log, "(plugin = %s) -- TrySetRunning failed, not resuming.",
1353             GetPluginName().data());
1354    return error;
1355  }
1356  Status error = PrivateResume();
1357  if (!error.Success()) {
1358    // Undo running state change
1359    m_public_run_lock.SetStopped();
1360  }
1361  return error;
1362}
1363
1364Status Process::ResumeSynchronous(Stream *stream) {
1365  Log *log(GetLog(LLDBLog::State | LLDBLog::Process));
1366  LLDB_LOGF(log, "Process::ResumeSynchronous -- locking run lock");
1367  if (!m_public_run_lock.TrySetRunning()) {
1368    Status error("Resume request failed - process still running.");
1369    LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming.");
1370    return error;
1371  }
1372
1373  ListenerSP listener_sp(
1374      Listener::MakeListener(ResumeSynchronousHijackListenerName.data()));
1375  HijackProcessEvents(listener_sp);
1376
1377  Status error = PrivateResume();
1378  if (error.Success()) {
1379    StateType state =
1380        WaitForProcessToStop(std::nullopt, nullptr, true, listener_sp, stream,
1381                             true /* use_run_lock */, SelectMostRelevantFrame);
1382    const bool must_be_alive =
1383        false; // eStateExited is ok, so this must be false
1384    if (!StateIsStoppedState(state, must_be_alive))
1385      error.SetErrorStringWithFormat(
1386          "process not in stopped state after synchronous resume: %s",
1387          StateAsCString(state));
1388  } else {
1389    // Undo running state change
1390    m_public_run_lock.SetStopped();
1391  }
1392
1393  // Undo the hijacking of process events...
1394  RestoreProcessEvents();
1395
1396  return error;
1397}
1398
1399bool Process::StateChangedIsExternallyHijacked() {
1400  if (IsHijackedForEvent(eBroadcastBitStateChanged)) {
1401    llvm::StringRef hijacking_name = GetHijackingListenerName();
1402    if (!hijacking_name.starts_with("lldb.internal"))
1403      return true;
1404  }
1405  return false;
1406}
1407
1408bool Process::StateChangedIsHijackedForSynchronousResume() {
1409  if (IsHijackedForEvent(eBroadcastBitStateChanged)) {
1410    llvm::StringRef hijacking_name = GetHijackingListenerName();
1411    if (hijacking_name == ResumeSynchronousHijackListenerName)
1412      return true;
1413  }
1414  return false;
1415}
1416
1417StateType Process::GetPrivateState() { return m_private_state.GetValue(); }
1418
1419void Process::SetPrivateState(StateType new_state) {
1420  // Use m_destructing not m_finalizing here.  If we are finalizing a process
1421  // that we haven't started tearing down, we'd like to be able to nicely
1422  // detach if asked, but that requires the event system be live.  That will
1423  // not be true for an in-the-middle-of-being-destructed Process, since the
1424  // event system relies on Process::shared_from_this, which may have already
1425  // been destroyed.
1426  if (m_destructing)
1427    return;
1428
1429  Log *log(GetLog(LLDBLog::State | LLDBLog::Process | LLDBLog::Unwind));
1430  bool state_changed = false;
1431
1432  LLDB_LOGF(log, "(plugin = %s, state = %s)", GetPluginName().data(),
1433           StateAsCString(new_state));
1434
1435  std::lock_guard<std::recursive_mutex> thread_guard(m_thread_list.GetMutex());
1436  std::lock_guard<std::recursive_mutex> guard(m_private_state.GetMutex());
1437
1438  const StateType old_state = m_private_state.GetValueNoLock();
1439  state_changed = old_state != new_state;
1440
1441  const bool old_state_is_stopped = StateIsStoppedState(old_state, false);
1442  const bool new_state_is_stopped = StateIsStoppedState(new_state, false);
1443  if (old_state_is_stopped != new_state_is_stopped) {
1444    if (new_state_is_stopped)
1445      m_private_run_lock.SetStopped();
1446    else
1447      m_private_run_lock.SetRunning();
1448  }
1449
1450  if (state_changed) {
1451    m_private_state.SetValueNoLock(new_state);
1452    EventSP event_sp(
1453        new Event(eBroadcastBitStateChanged,
1454                  new ProcessEventData(shared_from_this(), new_state)));
1455    if (StateIsStoppedState(new_state, false)) {
1456      // Note, this currently assumes that all threads in the list stop when
1457      // the process stops.  In the future we will want to support a debugging
1458      // model where some threads continue to run while others are stopped.
1459      // When that happens we will either need a way for the thread list to
1460      // identify which threads are stopping or create a special thread list
1461      // containing only threads which actually stopped.
1462      //
1463      // The process plugin is responsible for managing the actual behavior of
1464      // the threads and should have stopped any threads that are going to stop
1465      // before we get here.
1466      m_thread_list.DidStop();
1467
1468      if (m_mod_id.BumpStopID() == 0)
1469        GetTarget().GetStatistics().SetFirstPrivateStopTime();
1470
1471      if (!m_mod_id.IsLastResumeForUserExpression())
1472        m_mod_id.SetStopEventForLastNaturalStopID(event_sp);
1473      m_memory_cache.Clear();
1474      LLDB_LOGF(log, "(plugin = %s, state = %s, stop_id = %u",
1475               GetPluginName().data(), StateAsCString(new_state),
1476               m_mod_id.GetStopID());
1477    }
1478
1479    m_private_state_broadcaster.BroadcastEvent(event_sp);
1480  } else {
1481    LLDB_LOGF(log, "(plugin = %s, state = %s) state didn't change. Ignoring...",
1482             GetPluginName().data(), StateAsCString(new_state));
1483  }
1484}
1485
1486void Process::SetRunningUserExpression(bool on) {
1487  m_mod_id.SetRunningUserExpression(on);
1488}
1489
1490void Process::SetRunningUtilityFunction(bool on) {
1491  m_mod_id.SetRunningUtilityFunction(on);
1492}
1493
1494addr_t Process::GetImageInfoAddress() { return LLDB_INVALID_ADDRESS; }
1495
1496const lldb::ABISP &Process::GetABI() {
1497  if (!m_abi_sp)
1498    m_abi_sp = ABI::FindPlugin(shared_from_this(), GetTarget().GetArchitecture());
1499  return m_abi_sp;
1500}
1501
1502std::vector<LanguageRuntime *> Process::GetLanguageRuntimes() {
1503  std::vector<LanguageRuntime *> language_runtimes;
1504
1505  if (m_finalizing)
1506    return language_runtimes;
1507
1508  std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
1509  // Before we pass off a copy of the language runtimes, we must make sure that
1510  // our collection is properly populated. It's possible that some of the
1511  // language runtimes were not loaded yet, either because nobody requested it
1512  // yet or the proper condition for loading wasn't yet met (e.g. libc++.so
1513  // hadn't been loaded).
1514  for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) {
1515    if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type))
1516      language_runtimes.emplace_back(runtime);
1517  }
1518
1519  return language_runtimes;
1520}
1521
1522LanguageRuntime *Process::GetLanguageRuntime(lldb::LanguageType language) {
1523  if (m_finalizing)
1524    return nullptr;
1525
1526  LanguageRuntime *runtime = nullptr;
1527
1528  std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
1529  LanguageRuntimeCollection::iterator pos;
1530  pos = m_language_runtimes.find(language);
1531  if (pos == m_language_runtimes.end() || !pos->second) {
1532    lldb::LanguageRuntimeSP runtime_sp(
1533        LanguageRuntime::FindPlugin(this, language));
1534
1535    m_language_runtimes[language] = runtime_sp;
1536    runtime = runtime_sp.get();
1537  } else
1538    runtime = pos->second.get();
1539
1540  if (runtime)
1541    // It's possible that a language runtime can support multiple LanguageTypes,
1542    // for example, CPPLanguageRuntime will support eLanguageTypeC_plus_plus,
1543    // eLanguageTypeC_plus_plus_03, etc. Because of this, we should get the
1544    // primary language type and make sure that our runtime supports it.
1545    assert(runtime->GetLanguageType() == Language::GetPrimaryLanguage(language));
1546
1547  return runtime;
1548}
1549
1550bool Process::IsPossibleDynamicValue(ValueObject &in_value) {
1551  if (m_finalizing)
1552    return false;
1553
1554  if (in_value.IsDynamic())
1555    return false;
1556  LanguageType known_type = in_value.GetObjectRuntimeLanguage();
1557
1558  if (known_type != eLanguageTypeUnknown && known_type != eLanguageTypeC) {
1559    LanguageRuntime *runtime = GetLanguageRuntime(known_type);
1560    return runtime ? runtime->CouldHaveDynamicValue(in_value) : false;
1561  }
1562
1563  for (LanguageRuntime *runtime : GetLanguageRuntimes()) {
1564    if (runtime->CouldHaveDynamicValue(in_value))
1565      return true;
1566  }
1567
1568  return false;
1569}
1570
1571void Process::SetDynamicCheckers(DynamicCheckerFunctions *dynamic_checkers) {
1572  m_dynamic_checkers_up.reset(dynamic_checkers);
1573}
1574
1575StopPointSiteList<BreakpointSite> &Process::GetBreakpointSiteList() {
1576  return m_breakpoint_site_list;
1577}
1578
1579const StopPointSiteList<BreakpointSite> &
1580Process::GetBreakpointSiteList() const {
1581  return m_breakpoint_site_list;
1582}
1583
1584void Process::DisableAllBreakpointSites() {
1585  m_breakpoint_site_list.ForEach([this](BreakpointSite *bp_site) -> void {
1586    //        bp_site->SetEnabled(true);
1587    DisableBreakpointSite(bp_site);
1588  });
1589}
1590
1591Status Process::ClearBreakpointSiteByID(lldb::user_id_t break_id) {
1592  Status error(DisableBreakpointSiteByID(break_id));
1593
1594  if (error.Success())
1595    m_breakpoint_site_list.Remove(break_id);
1596
1597  return error;
1598}
1599
1600Status Process::DisableBreakpointSiteByID(lldb::user_id_t break_id) {
1601  Status error;
1602  BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id);
1603  if (bp_site_sp) {
1604    if (bp_site_sp->IsEnabled())
1605      error = DisableBreakpointSite(bp_site_sp.get());
1606  } else {
1607    error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64,
1608                                   break_id);
1609  }
1610
1611  return error;
1612}
1613
1614Status Process::EnableBreakpointSiteByID(lldb::user_id_t break_id) {
1615  Status error;
1616  BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id);
1617  if (bp_site_sp) {
1618    if (!bp_site_sp->IsEnabled())
1619      error = EnableBreakpointSite(bp_site_sp.get());
1620  } else {
1621    error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64,
1622                                   break_id);
1623  }
1624  return error;
1625}
1626
1627lldb::break_id_t
1628Process::CreateBreakpointSite(const BreakpointLocationSP &constituent,
1629                              bool use_hardware) {
1630  addr_t load_addr = LLDB_INVALID_ADDRESS;
1631
1632  bool show_error = true;
1633  switch (GetState()) {
1634  case eStateInvalid:
1635  case eStateUnloaded:
1636  case eStateConnected:
1637  case eStateAttaching:
1638  case eStateLaunching:
1639  case eStateDetached:
1640  case eStateExited:
1641    show_error = false;
1642    break;
1643
1644  case eStateStopped:
1645  case eStateRunning:
1646  case eStateStepping:
1647  case eStateCrashed:
1648  case eStateSuspended:
1649    show_error = IsAlive();
1650    break;
1651  }
1652
1653  // Reset the IsIndirect flag here, in case the location changes from pointing
1654  // to a indirect symbol to a regular symbol.
1655  constituent->SetIsIndirect(false);
1656
1657  if (constituent->ShouldResolveIndirectFunctions()) {
1658    Symbol *symbol = constituent->GetAddress().CalculateSymbolContextSymbol();
1659    if (symbol && symbol->IsIndirect()) {
1660      Status error;
1661      Address symbol_address = symbol->GetAddress();
1662      load_addr = ResolveIndirectFunction(&symbol_address, error);
1663      if (!error.Success() && show_error) {
1664        GetTarget().GetDebugger().GetErrorStream().Printf(
1665            "warning: failed to resolve indirect function at 0x%" PRIx64
1666            " for breakpoint %i.%i: %s\n",
1667            symbol->GetLoadAddress(&GetTarget()),
1668            constituent->GetBreakpoint().GetID(), constituent->GetID(),
1669            error.AsCString() ? error.AsCString() : "unknown error");
1670        return LLDB_INVALID_BREAK_ID;
1671      }
1672      Address resolved_address(load_addr);
1673      load_addr = resolved_address.GetOpcodeLoadAddress(&GetTarget());
1674      constituent->SetIsIndirect(true);
1675    } else
1676      load_addr = constituent->GetAddress().GetOpcodeLoadAddress(&GetTarget());
1677  } else
1678    load_addr = constituent->GetAddress().GetOpcodeLoadAddress(&GetTarget());
1679
1680  if (load_addr != LLDB_INVALID_ADDRESS) {
1681    BreakpointSiteSP bp_site_sp;
1682
1683    // Look up this breakpoint site.  If it exists, then add this new
1684    // constituent, otherwise create a new breakpoint site and add it.
1685
1686    bp_site_sp = m_breakpoint_site_list.FindByAddress(load_addr);
1687
1688    if (bp_site_sp) {
1689      bp_site_sp->AddConstituent(constituent);
1690      constituent->SetBreakpointSite(bp_site_sp);
1691      return bp_site_sp->GetID();
1692    } else {
1693      bp_site_sp.reset(
1694          new BreakpointSite(constituent, load_addr, use_hardware));
1695      if (bp_site_sp) {
1696        Status error = EnableBreakpointSite(bp_site_sp.get());
1697        if (error.Success()) {
1698          constituent->SetBreakpointSite(bp_site_sp);
1699          return m_breakpoint_site_list.Add(bp_site_sp);
1700        } else {
1701          if (show_error || use_hardware) {
1702            // Report error for setting breakpoint...
1703            GetTarget().GetDebugger().GetErrorStream().Printf(
1704                "warning: failed to set breakpoint site at 0x%" PRIx64
1705                " for breakpoint %i.%i: %s\n",
1706                load_addr, constituent->GetBreakpoint().GetID(),
1707                constituent->GetID(),
1708                error.AsCString() ? error.AsCString() : "unknown error");
1709          }
1710        }
1711      }
1712    }
1713  }
1714  // We failed to enable the breakpoint
1715  return LLDB_INVALID_BREAK_ID;
1716}
1717
1718void Process::RemoveConstituentFromBreakpointSite(
1719    lldb::user_id_t constituent_id, lldb::user_id_t constituent_loc_id,
1720    BreakpointSiteSP &bp_site_sp) {
1721  uint32_t num_constituents =
1722      bp_site_sp->RemoveConstituent(constituent_id, constituent_loc_id);
1723  if (num_constituents == 0) {
1724    // Don't try to disable the site if we don't have a live process anymore.
1725    if (IsAlive())
1726      DisableBreakpointSite(bp_site_sp.get());
1727    m_breakpoint_site_list.RemoveByAddress(bp_site_sp->GetLoadAddress());
1728  }
1729}
1730
1731size_t Process::RemoveBreakpointOpcodesFromBuffer(addr_t bp_addr, size_t size,
1732                                                  uint8_t *buf) const {
1733  size_t bytes_removed = 0;
1734  StopPointSiteList<BreakpointSite> bp_sites_in_range;
1735
1736  if (m_breakpoint_site_list.FindInRange(bp_addr, bp_addr + size,
1737                                         bp_sites_in_range)) {
1738    bp_sites_in_range.ForEach([bp_addr, size,
1739                               buf](BreakpointSite *bp_site) -> void {
1740      if (bp_site->GetType() == BreakpointSite::eSoftware) {
1741        addr_t intersect_addr;
1742        size_t intersect_size;
1743        size_t opcode_offset;
1744        if (bp_site->IntersectsRange(bp_addr, size, &intersect_addr,
1745                                     &intersect_size, &opcode_offset)) {
1746          assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size);
1747          assert(bp_addr < intersect_addr + intersect_size &&
1748                 intersect_addr + intersect_size <= bp_addr + size);
1749          assert(opcode_offset + intersect_size <= bp_site->GetByteSize());
1750          size_t buf_offset = intersect_addr - bp_addr;
1751          ::memcpy(buf + buf_offset,
1752                   bp_site->GetSavedOpcodeBytes() + opcode_offset,
1753                   intersect_size);
1754        }
1755      }
1756    });
1757  }
1758  return bytes_removed;
1759}
1760
1761size_t Process::GetSoftwareBreakpointTrapOpcode(BreakpointSite *bp_site) {
1762  PlatformSP platform_sp(GetTarget().GetPlatform());
1763  if (platform_sp)
1764    return platform_sp->GetSoftwareBreakpointTrapOpcode(GetTarget(), bp_site);
1765  return 0;
1766}
1767
1768Status Process::EnableSoftwareBreakpoint(BreakpointSite *bp_site) {
1769  Status error;
1770  assert(bp_site != nullptr);
1771  Log *log = GetLog(LLDBLog::Breakpoints);
1772  const addr_t bp_addr = bp_site->GetLoadAddress();
1773  LLDB_LOGF(
1774      log, "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64,
1775      bp_site->GetID(), (uint64_t)bp_addr);
1776  if (bp_site->IsEnabled()) {
1777    LLDB_LOGF(
1778        log,
1779        "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1780        " -- already enabled",
1781        bp_site->GetID(), (uint64_t)bp_addr);
1782    return error;
1783  }
1784
1785  if (bp_addr == LLDB_INVALID_ADDRESS) {
1786    error.SetErrorString("BreakpointSite contains an invalid load address.");
1787    return error;
1788  }
1789  // Ask the lldb::Process subclass to fill in the correct software breakpoint
1790  // trap for the breakpoint site
1791  const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site);
1792
1793  if (bp_opcode_size == 0) {
1794    error.SetErrorStringWithFormat("Process::GetSoftwareBreakpointTrapOpcode() "
1795                                   "returned zero, unable to get breakpoint "
1796                                   "trap for address 0x%" PRIx64,
1797                                   bp_addr);
1798  } else {
1799    const uint8_t *const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes();
1800
1801    if (bp_opcode_bytes == nullptr) {
1802      error.SetErrorString(
1803          "BreakpointSite doesn't contain a valid breakpoint trap opcode.");
1804      return error;
1805    }
1806
1807    // Save the original opcode by reading it
1808    if (DoReadMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), bp_opcode_size,
1809                     error) == bp_opcode_size) {
1810      // Write a software breakpoint in place of the original opcode
1811      if (DoWriteMemory(bp_addr, bp_opcode_bytes, bp_opcode_size, error) ==
1812          bp_opcode_size) {
1813        uint8_t verify_bp_opcode_bytes[64];
1814        if (DoReadMemory(bp_addr, verify_bp_opcode_bytes, bp_opcode_size,
1815                         error) == bp_opcode_size) {
1816          if (::memcmp(bp_opcode_bytes, verify_bp_opcode_bytes,
1817                       bp_opcode_size) == 0) {
1818            bp_site->SetEnabled(true);
1819            bp_site->SetType(BreakpointSite::eSoftware);
1820            LLDB_LOGF(log,
1821                      "Process::EnableSoftwareBreakpoint (site_id = %d) "
1822                      "addr = 0x%" PRIx64 " -- SUCCESS",
1823                      bp_site->GetID(), (uint64_t)bp_addr);
1824          } else
1825            error.SetErrorString(
1826                "failed to verify the breakpoint trap in memory.");
1827        } else
1828          error.SetErrorString(
1829              "Unable to read memory to verify breakpoint trap.");
1830      } else
1831        error.SetErrorString("Unable to write breakpoint trap to memory.");
1832    } else
1833      error.SetErrorString("Unable to read memory at breakpoint address.");
1834  }
1835  if (log && error.Fail())
1836    LLDB_LOGF(
1837        log,
1838        "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1839        " -- FAILED: %s",
1840        bp_site->GetID(), (uint64_t)bp_addr, error.AsCString());
1841  return error;
1842}
1843
1844Status Process::DisableSoftwareBreakpoint(BreakpointSite *bp_site) {
1845  Status error;
1846  assert(bp_site != nullptr);
1847  Log *log = GetLog(LLDBLog::Breakpoints);
1848  addr_t bp_addr = bp_site->GetLoadAddress();
1849  lldb::user_id_t breakID = bp_site->GetID();
1850  LLDB_LOGF(log,
1851            "Process::DisableSoftwareBreakpoint (breakID = %" PRIu64
1852            ") addr = 0x%" PRIx64,
1853            breakID, (uint64_t)bp_addr);
1854
1855  if (bp_site->IsHardware()) {
1856    error.SetErrorString("Breakpoint site is a hardware breakpoint.");
1857  } else if (bp_site->IsEnabled()) {
1858    const size_t break_op_size = bp_site->GetByteSize();
1859    const uint8_t *const break_op = bp_site->GetTrapOpcodeBytes();
1860    if (break_op_size > 0) {
1861      // Clear a software breakpoint instruction
1862      uint8_t curr_break_op[8];
1863      assert(break_op_size <= sizeof(curr_break_op));
1864      bool break_op_found = false;
1865
1866      // Read the breakpoint opcode
1867      if (DoReadMemory(bp_addr, curr_break_op, break_op_size, error) ==
1868          break_op_size) {
1869        bool verify = false;
1870        // Make sure the breakpoint opcode exists at this address
1871        if (::memcmp(curr_break_op, break_op, break_op_size) == 0) {
1872          break_op_found = true;
1873          // We found a valid breakpoint opcode at this address, now restore
1874          // the saved opcode.
1875          if (DoWriteMemory(bp_addr, bp_site->GetSavedOpcodeBytes(),
1876                            break_op_size, error) == break_op_size) {
1877            verify = true;
1878          } else
1879            error.SetErrorString(
1880                "Memory write failed when restoring original opcode.");
1881        } else {
1882          error.SetErrorString(
1883              "Original breakpoint trap is no longer in memory.");
1884          // Set verify to true and so we can check if the original opcode has
1885          // already been restored
1886          verify = true;
1887        }
1888
1889        if (verify) {
1890          uint8_t verify_opcode[8];
1891          assert(break_op_size < sizeof(verify_opcode));
1892          // Verify that our original opcode made it back to the inferior
1893          if (DoReadMemory(bp_addr, verify_opcode, break_op_size, error) ==
1894              break_op_size) {
1895            // compare the memory we just read with the original opcode
1896            if (::memcmp(bp_site->GetSavedOpcodeBytes(), verify_opcode,
1897                         break_op_size) == 0) {
1898              // SUCCESS
1899              bp_site->SetEnabled(false);
1900              LLDB_LOGF(log,
1901                        "Process::DisableSoftwareBreakpoint (site_id = %d) "
1902                        "addr = 0x%" PRIx64 " -- SUCCESS",
1903                        bp_site->GetID(), (uint64_t)bp_addr);
1904              return error;
1905            } else {
1906              if (break_op_found)
1907                error.SetErrorString("Failed to restore original opcode.");
1908            }
1909          } else
1910            error.SetErrorString("Failed to read memory to verify that "
1911                                 "breakpoint trap was restored.");
1912        }
1913      } else
1914        error.SetErrorString(
1915            "Unable to read memory that should contain the breakpoint trap.");
1916    }
1917  } else {
1918    LLDB_LOGF(
1919        log,
1920        "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1921        " -- already disabled",
1922        bp_site->GetID(), (uint64_t)bp_addr);
1923    return error;
1924  }
1925
1926  LLDB_LOGF(
1927      log,
1928      "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1929      " -- FAILED: %s",
1930      bp_site->GetID(), (uint64_t)bp_addr, error.AsCString());
1931  return error;
1932}
1933
1934// Uncomment to verify memory caching works after making changes to caching
1935// code
1936//#define VERIFY_MEMORY_READS
1937
1938size_t Process::ReadMemory(addr_t addr, void *buf, size_t size, Status &error) {
1939  if (ABISP abi_sp = GetABI())
1940    addr = abi_sp->FixAnyAddress(addr);
1941
1942  error.Clear();
1943  if (!GetDisableMemoryCache()) {
1944#if defined(VERIFY_MEMORY_READS)
1945    // Memory caching is enabled, with debug verification
1946
1947    if (buf && size) {
1948      // Uncomment the line below to make sure memory caching is working.
1949      // I ran this through the test suite and got no assertions, so I am
1950      // pretty confident this is working well. If any changes are made to
1951      // memory caching, uncomment the line below and test your changes!
1952
1953      // Verify all memory reads by using the cache first, then redundantly
1954      // reading the same memory from the inferior and comparing to make sure
1955      // everything is exactly the same.
1956      std::string verify_buf(size, '\0');
1957      assert(verify_buf.size() == size);
1958      const size_t cache_bytes_read =
1959          m_memory_cache.Read(this, addr, buf, size, error);
1960      Status verify_error;
1961      const size_t verify_bytes_read =
1962          ReadMemoryFromInferior(addr, const_cast<char *>(verify_buf.data()),
1963                                 verify_buf.size(), verify_error);
1964      assert(cache_bytes_read == verify_bytes_read);
1965      assert(memcmp(buf, verify_buf.data(), verify_buf.size()) == 0);
1966      assert(verify_error.Success() == error.Success());
1967      return cache_bytes_read;
1968    }
1969    return 0;
1970#else  // !defined(VERIFY_MEMORY_READS)
1971    // Memory caching is enabled, without debug verification
1972
1973    return m_memory_cache.Read(addr, buf, size, error);
1974#endif // defined (VERIFY_MEMORY_READS)
1975  } else {
1976    // Memory caching is disabled
1977
1978    return ReadMemoryFromInferior(addr, buf, size, error);
1979  }
1980}
1981
1982size_t Process::ReadCStringFromMemory(addr_t addr, std::string &out_str,
1983                                      Status &error) {
1984  char buf[256];
1985  out_str.clear();
1986  addr_t curr_addr = addr;
1987  while (true) {
1988    size_t length = ReadCStringFromMemory(curr_addr, buf, sizeof(buf), error);
1989    if (length == 0)
1990      break;
1991    out_str.append(buf, length);
1992    // If we got "length - 1" bytes, we didn't get the whole C string, we need
1993    // to read some more characters
1994    if (length == sizeof(buf) - 1)
1995      curr_addr += length;
1996    else
1997      break;
1998  }
1999  return out_str.size();
2000}
2001
2002// Deprecated in favor of ReadStringFromMemory which has wchar support and
2003// correct code to find null terminators.
2004size_t Process::ReadCStringFromMemory(addr_t addr, char *dst,
2005                                      size_t dst_max_len,
2006                                      Status &result_error) {
2007  size_t total_cstr_len = 0;
2008  if (dst && dst_max_len) {
2009    result_error.Clear();
2010    // NULL out everything just to be safe
2011    memset(dst, 0, dst_max_len);
2012    Status error;
2013    addr_t curr_addr = addr;
2014    const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize();
2015    size_t bytes_left = dst_max_len - 1;
2016    char *curr_dst = dst;
2017
2018    while (bytes_left > 0) {
2019      addr_t cache_line_bytes_left =
2020          cache_line_size - (curr_addr % cache_line_size);
2021      addr_t bytes_to_read =
2022          std::min<addr_t>(bytes_left, cache_line_bytes_left);
2023      size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error);
2024
2025      if (bytes_read == 0) {
2026        result_error = error;
2027        dst[total_cstr_len] = '\0';
2028        break;
2029      }
2030      const size_t len = strlen(curr_dst);
2031
2032      total_cstr_len += len;
2033
2034      if (len < bytes_to_read)
2035        break;
2036
2037      curr_dst += bytes_read;
2038      curr_addr += bytes_read;
2039      bytes_left -= bytes_read;
2040    }
2041  } else {
2042    if (dst == nullptr)
2043      result_error.SetErrorString("invalid arguments");
2044    else
2045      result_error.Clear();
2046  }
2047  return total_cstr_len;
2048}
2049
2050size_t Process::ReadMemoryFromInferior(addr_t addr, void *buf, size_t size,
2051                                       Status &error) {
2052  LLDB_SCOPED_TIMER();
2053
2054  if (ABISP abi_sp = GetABI())
2055    addr = abi_sp->FixAnyAddress(addr);
2056
2057  if (buf == nullptr || size == 0)
2058    return 0;
2059
2060  size_t bytes_read = 0;
2061  uint8_t *bytes = (uint8_t *)buf;
2062
2063  while (bytes_read < size) {
2064    const size_t curr_size = size - bytes_read;
2065    const size_t curr_bytes_read =
2066        DoReadMemory(addr + bytes_read, bytes + bytes_read, curr_size, error);
2067    bytes_read += curr_bytes_read;
2068    if (curr_bytes_read == curr_size || curr_bytes_read == 0)
2069      break;
2070  }
2071
2072  // Replace any software breakpoint opcodes that fall into this range back
2073  // into "buf" before we return
2074  if (bytes_read > 0)
2075    RemoveBreakpointOpcodesFromBuffer(addr, bytes_read, (uint8_t *)buf);
2076  return bytes_read;
2077}
2078
2079uint64_t Process::ReadUnsignedIntegerFromMemory(lldb::addr_t vm_addr,
2080                                                size_t integer_byte_size,
2081                                                uint64_t fail_value,
2082                                                Status &error) {
2083  Scalar scalar;
2084  if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, false, scalar,
2085                                  error))
2086    return scalar.ULongLong(fail_value);
2087  return fail_value;
2088}
2089
2090int64_t Process::ReadSignedIntegerFromMemory(lldb::addr_t vm_addr,
2091                                             size_t integer_byte_size,
2092                                             int64_t fail_value,
2093                                             Status &error) {
2094  Scalar scalar;
2095  if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, true, scalar,
2096                                  error))
2097    return scalar.SLongLong(fail_value);
2098  return fail_value;
2099}
2100
2101addr_t Process::ReadPointerFromMemory(lldb::addr_t vm_addr, Status &error) {
2102  Scalar scalar;
2103  if (ReadScalarIntegerFromMemory(vm_addr, GetAddressByteSize(), false, scalar,
2104                                  error))
2105    return scalar.ULongLong(LLDB_INVALID_ADDRESS);
2106  return LLDB_INVALID_ADDRESS;
2107}
2108
2109bool Process::WritePointerToMemory(lldb::addr_t vm_addr, lldb::addr_t ptr_value,
2110                                   Status &error) {
2111  Scalar scalar;
2112  const uint32_t addr_byte_size = GetAddressByteSize();
2113  if (addr_byte_size <= 4)
2114    scalar = (uint32_t)ptr_value;
2115  else
2116    scalar = ptr_value;
2117  return WriteScalarToMemory(vm_addr, scalar, addr_byte_size, error) ==
2118         addr_byte_size;
2119}
2120
2121size_t Process::WriteMemoryPrivate(addr_t addr, const void *buf, size_t size,
2122                                   Status &error) {
2123  size_t bytes_written = 0;
2124  const uint8_t *bytes = (const uint8_t *)buf;
2125
2126  while (bytes_written < size) {
2127    const size_t curr_size = size - bytes_written;
2128    const size_t curr_bytes_written = DoWriteMemory(
2129        addr + bytes_written, bytes + bytes_written, curr_size, error);
2130    bytes_written += curr_bytes_written;
2131    if (curr_bytes_written == curr_size || curr_bytes_written == 0)
2132      break;
2133  }
2134  return bytes_written;
2135}
2136
2137size_t Process::WriteMemory(addr_t addr, const void *buf, size_t size,
2138                            Status &error) {
2139  if (ABISP abi_sp = GetABI())
2140    addr = abi_sp->FixAnyAddress(addr);
2141
2142#if defined(ENABLE_MEMORY_CACHING)
2143  m_memory_cache.Flush(addr, size);
2144#endif
2145
2146  if (buf == nullptr || size == 0)
2147    return 0;
2148
2149  m_mod_id.BumpMemoryID();
2150
2151  // We need to write any data that would go where any current software traps
2152  // (enabled software breakpoints) any software traps (breakpoints) that we
2153  // may have placed in our tasks memory.
2154
2155  StopPointSiteList<BreakpointSite> bp_sites_in_range;
2156  if (!m_breakpoint_site_list.FindInRange(addr, addr + size, bp_sites_in_range))
2157    return WriteMemoryPrivate(addr, buf, size, error);
2158
2159  // No breakpoint sites overlap
2160  if (bp_sites_in_range.IsEmpty())
2161    return WriteMemoryPrivate(addr, buf, size, error);
2162
2163  const uint8_t *ubuf = (const uint8_t *)buf;
2164  uint64_t bytes_written = 0;
2165
2166  bp_sites_in_range.ForEach([this, addr, size, &bytes_written, &ubuf,
2167                             &error](BreakpointSite *bp) -> void {
2168    if (error.Fail())
2169      return;
2170
2171    if (bp->GetType() != BreakpointSite::eSoftware)
2172      return;
2173
2174    addr_t intersect_addr;
2175    size_t intersect_size;
2176    size_t opcode_offset;
2177    const bool intersects = bp->IntersectsRange(
2178        addr, size, &intersect_addr, &intersect_size, &opcode_offset);
2179    UNUSED_IF_ASSERT_DISABLED(intersects);
2180    assert(intersects);
2181    assert(addr <= intersect_addr && intersect_addr < addr + size);
2182    assert(addr < intersect_addr + intersect_size &&
2183           intersect_addr + intersect_size <= addr + size);
2184    assert(opcode_offset + intersect_size <= bp->GetByteSize());
2185
2186    // Check for bytes before this breakpoint
2187    const addr_t curr_addr = addr + bytes_written;
2188    if (intersect_addr > curr_addr) {
2189      // There are some bytes before this breakpoint that we need to just
2190      // write to memory
2191      size_t curr_size = intersect_addr - curr_addr;
2192      size_t curr_bytes_written =
2193          WriteMemoryPrivate(curr_addr, ubuf + bytes_written, curr_size, error);
2194      bytes_written += curr_bytes_written;
2195      if (curr_bytes_written != curr_size) {
2196        // We weren't able to write all of the requested bytes, we are
2197        // done looping and will return the number of bytes that we have
2198        // written so far.
2199        if (error.Success())
2200          error.SetErrorToGenericError();
2201      }
2202    }
2203    // Now write any bytes that would cover up any software breakpoints
2204    // directly into the breakpoint opcode buffer
2205    ::memcpy(bp->GetSavedOpcodeBytes() + opcode_offset, ubuf + bytes_written,
2206             intersect_size);
2207    bytes_written += intersect_size;
2208  });
2209
2210  // Write any remaining bytes after the last breakpoint if we have any left
2211  if (bytes_written < size)
2212    bytes_written +=
2213        WriteMemoryPrivate(addr + bytes_written, ubuf + bytes_written,
2214                           size - bytes_written, error);
2215
2216  return bytes_written;
2217}
2218
2219size_t Process::WriteScalarToMemory(addr_t addr, const Scalar &scalar,
2220                                    size_t byte_size, Status &error) {
2221  if (byte_size == UINT32_MAX)
2222    byte_size = scalar.GetByteSize();
2223  if (byte_size > 0) {
2224    uint8_t buf[32];
2225    const size_t mem_size =
2226        scalar.GetAsMemoryData(buf, byte_size, GetByteOrder(), error);
2227    if (mem_size > 0)
2228      return WriteMemory(addr, buf, mem_size, error);
2229    else
2230      error.SetErrorString("failed to get scalar as memory data");
2231  } else {
2232    error.SetErrorString("invalid scalar value");
2233  }
2234  return 0;
2235}
2236
2237size_t Process::ReadScalarIntegerFromMemory(addr_t addr, uint32_t byte_size,
2238                                            bool is_signed, Scalar &scalar,
2239                                            Status &error) {
2240  uint64_t uval = 0;
2241  if (byte_size == 0) {
2242    error.SetErrorString("byte size is zero");
2243  } else if (byte_size & (byte_size - 1)) {
2244    error.SetErrorStringWithFormat("byte size %u is not a power of 2",
2245                                   byte_size);
2246  } else if (byte_size <= sizeof(uval)) {
2247    const size_t bytes_read = ReadMemory(addr, &uval, byte_size, error);
2248    if (bytes_read == byte_size) {
2249      DataExtractor data(&uval, sizeof(uval), GetByteOrder(),
2250                         GetAddressByteSize());
2251      lldb::offset_t offset = 0;
2252      if (byte_size <= 4)
2253        scalar = data.GetMaxU32(&offset, byte_size);
2254      else
2255        scalar = data.GetMaxU64(&offset, byte_size);
2256      if (is_signed)
2257        scalar.SignExtend(byte_size * 8);
2258      return bytes_read;
2259    }
2260  } else {
2261    error.SetErrorStringWithFormat(
2262        "byte size of %u is too large for integer scalar type", byte_size);
2263  }
2264  return 0;
2265}
2266
2267Status Process::WriteObjectFile(std::vector<ObjectFile::LoadableData> entries) {
2268  Status error;
2269  for (const auto &Entry : entries) {
2270    WriteMemory(Entry.Dest, Entry.Contents.data(), Entry.Contents.size(),
2271                error);
2272    if (!error.Success())
2273      break;
2274  }
2275  return error;
2276}
2277
2278#define USE_ALLOCATE_MEMORY_CACHE 1
2279addr_t Process::AllocateMemory(size_t size, uint32_t permissions,
2280                               Status &error) {
2281  if (GetPrivateState() != eStateStopped) {
2282    error.SetErrorToGenericError();
2283    return LLDB_INVALID_ADDRESS;
2284  }
2285
2286#if defined(USE_ALLOCATE_MEMORY_CACHE)
2287  return m_allocated_memory_cache.AllocateMemory(size, permissions, error);
2288#else
2289  addr_t allocated_addr = DoAllocateMemory(size, permissions, error);
2290  Log *log = GetLog(LLDBLog::Process);
2291  LLDB_LOGF(log,
2292            "Process::AllocateMemory(size=%" PRIu64
2293            ", permissions=%s) => 0x%16.16" PRIx64
2294            " (m_stop_id = %u m_memory_id = %u)",
2295            (uint64_t)size, GetPermissionsAsCString(permissions),
2296            (uint64_t)allocated_addr, m_mod_id.GetStopID(),
2297            m_mod_id.GetMemoryID());
2298  return allocated_addr;
2299#endif
2300}
2301
2302addr_t Process::CallocateMemory(size_t size, uint32_t permissions,
2303                                Status &error) {
2304  addr_t return_addr = AllocateMemory(size, permissions, error);
2305  if (error.Success()) {
2306    std::string buffer(size, 0);
2307    WriteMemory(return_addr, buffer.c_str(), size, error);
2308  }
2309  return return_addr;
2310}
2311
2312bool Process::CanJIT() {
2313  if (m_can_jit == eCanJITDontKnow) {
2314    Log *log = GetLog(LLDBLog::Process);
2315    Status err;
2316
2317    uint64_t allocated_memory = AllocateMemory(
2318        8, ePermissionsReadable | ePermissionsWritable | ePermissionsExecutable,
2319        err);
2320
2321    if (err.Success()) {
2322      m_can_jit = eCanJITYes;
2323      LLDB_LOGF(log,
2324                "Process::%s pid %" PRIu64
2325                " allocation test passed, CanJIT () is true",
2326                __FUNCTION__, GetID());
2327    } else {
2328      m_can_jit = eCanJITNo;
2329      LLDB_LOGF(log,
2330                "Process::%s pid %" PRIu64
2331                " allocation test failed, CanJIT () is false: %s",
2332                __FUNCTION__, GetID(), err.AsCString());
2333    }
2334
2335    DeallocateMemory(allocated_memory);
2336  }
2337
2338  return m_can_jit == eCanJITYes;
2339}
2340
2341void Process::SetCanJIT(bool can_jit) {
2342  m_can_jit = (can_jit ? eCanJITYes : eCanJITNo);
2343}
2344
2345void Process::SetCanRunCode(bool can_run_code) {
2346  SetCanJIT(can_run_code);
2347  m_can_interpret_function_calls = can_run_code;
2348}
2349
2350Status Process::DeallocateMemory(addr_t ptr) {
2351  Status error;
2352#if defined(USE_ALLOCATE_MEMORY_CACHE)
2353  if (!m_allocated_memory_cache.DeallocateMemory(ptr)) {
2354    error.SetErrorStringWithFormat(
2355        "deallocation of memory at 0x%" PRIx64 " failed.", (uint64_t)ptr);
2356  }
2357#else
2358  error = DoDeallocateMemory(ptr);
2359
2360  Log *log = GetLog(LLDBLog::Process);
2361  LLDB_LOGF(log,
2362            "Process::DeallocateMemory(addr=0x%16.16" PRIx64
2363            ") => err = %s (m_stop_id = %u, m_memory_id = %u)",
2364            ptr, error.AsCString("SUCCESS"), m_mod_id.GetStopID(),
2365            m_mod_id.GetMemoryID());
2366#endif
2367  return error;
2368}
2369
2370bool Process::GetWatchpointReportedAfter() {
2371  if (std::optional<bool> subclass_override = DoGetWatchpointReportedAfter())
2372    return *subclass_override;
2373
2374  bool reported_after = true;
2375  const ArchSpec &arch = GetTarget().GetArchitecture();
2376  if (!arch.IsValid())
2377    return reported_after;
2378  llvm::Triple triple = arch.GetTriple();
2379
2380  if (triple.isMIPS() || triple.isPPC64() || triple.isRISCV() ||
2381      triple.isAArch64() || triple.isArmMClass() || triple.isARM())
2382    reported_after = false;
2383
2384  return reported_after;
2385}
2386
2387ModuleSP Process::ReadModuleFromMemory(const FileSpec &file_spec,
2388                                       lldb::addr_t header_addr,
2389                                       size_t size_to_read) {
2390  Log *log = GetLog(LLDBLog::Host);
2391  if (log) {
2392    LLDB_LOGF(log,
2393              "Process::ReadModuleFromMemory reading %s binary from memory",
2394              file_spec.GetPath().c_str());
2395  }
2396  ModuleSP module_sp(new Module(file_spec, ArchSpec()));
2397  if (module_sp) {
2398    Status error;
2399    ObjectFile *objfile = module_sp->GetMemoryObjectFile(
2400        shared_from_this(), header_addr, error, size_to_read);
2401    if (objfile)
2402      return module_sp;
2403  }
2404  return ModuleSP();
2405}
2406
2407bool Process::GetLoadAddressPermissions(lldb::addr_t load_addr,
2408                                        uint32_t &permissions) {
2409  MemoryRegionInfo range_info;
2410  permissions = 0;
2411  Status error(GetMemoryRegionInfo(load_addr, range_info));
2412  if (!error.Success())
2413    return false;
2414  if (range_info.GetReadable() == MemoryRegionInfo::eDontKnow ||
2415      range_info.GetWritable() == MemoryRegionInfo::eDontKnow ||
2416      range_info.GetExecutable() == MemoryRegionInfo::eDontKnow) {
2417    return false;
2418  }
2419  permissions = range_info.GetLLDBPermissions();
2420  return true;
2421}
2422
2423Status Process::EnableWatchpoint(WatchpointSP wp_sp, bool notify) {
2424  Status error;
2425  error.SetErrorString("watchpoints are not supported");
2426  return error;
2427}
2428
2429Status Process::DisableWatchpoint(WatchpointSP wp_sp, bool notify) {
2430  Status error;
2431  error.SetErrorString("watchpoints are not supported");
2432  return error;
2433}
2434
2435StateType
2436Process::WaitForProcessStopPrivate(EventSP &event_sp,
2437                                   const Timeout<std::micro> &timeout) {
2438  StateType state;
2439
2440  while (true) {
2441    event_sp.reset();
2442    state = GetStateChangedEventsPrivate(event_sp, timeout);
2443
2444    if (StateIsStoppedState(state, false))
2445      break;
2446
2447    // If state is invalid, then we timed out
2448    if (state == eStateInvalid)
2449      break;
2450
2451    if (event_sp)
2452      HandlePrivateEvent(event_sp);
2453  }
2454  return state;
2455}
2456
2457void Process::LoadOperatingSystemPlugin(bool flush) {
2458  std::lock_guard<std::recursive_mutex> guard(m_thread_mutex);
2459  if (flush)
2460    m_thread_list.Clear();
2461  m_os_up.reset(OperatingSystem::FindPlugin(this, nullptr));
2462  if (flush)
2463    Flush();
2464}
2465
2466Status Process::Launch(ProcessLaunchInfo &launch_info) {
2467  StateType state_after_launch = eStateInvalid;
2468  EventSP first_stop_event_sp;
2469  Status status =
2470      LaunchPrivate(launch_info, state_after_launch, first_stop_event_sp);
2471  if (status.Fail())
2472    return status;
2473
2474  if (state_after_launch != eStateStopped &&
2475      state_after_launch != eStateCrashed)
2476    return Status();
2477
2478  // Note, the stop event was consumed above, but not handled. This
2479  // was done to give DidLaunch a chance to run. The target is either
2480  // stopped or crashed. Directly set the state.  This is done to
2481  // prevent a stop message with a bunch of spurious output on thread
2482  // status, as well as not pop a ProcessIOHandler.
2483  SetPublicState(state_after_launch, false);
2484
2485  if (PrivateStateThreadIsValid())
2486    ResumePrivateStateThread();
2487  else
2488    StartPrivateStateThread();
2489
2490  // Target was stopped at entry as was intended. Need to notify the
2491  // listeners about it.
2492  if (launch_info.GetFlags().Test(eLaunchFlagStopAtEntry))
2493    HandlePrivateEvent(first_stop_event_sp);
2494
2495  return Status();
2496}
2497
2498Status Process::LaunchPrivate(ProcessLaunchInfo &launch_info, StateType &state,
2499                              EventSP &event_sp) {
2500  Status error;
2501  m_abi_sp.reset();
2502  m_dyld_up.reset();
2503  m_jit_loaders_up.reset();
2504  m_system_runtime_up.reset();
2505  m_os_up.reset();
2506
2507  {
2508    std::lock_guard<std::mutex> guard(m_process_input_reader_mutex);
2509    m_process_input_reader.reset();
2510  }
2511
2512  Module *exe_module = GetTarget().GetExecutableModulePointer();
2513
2514  // The "remote executable path" is hooked up to the local Executable
2515  // module.  But we should be able to debug a remote process even if the
2516  // executable module only exists on the remote.  However, there needs to
2517  // be a way to express this path, without actually having a module.
2518  // The way to do that is to set the ExecutableFile in the LaunchInfo.
2519  // Figure that out here:
2520
2521  FileSpec exe_spec_to_use;
2522  if (!exe_module) {
2523    if (!launch_info.GetExecutableFile() && !launch_info.IsScriptedProcess()) {
2524      error.SetErrorString("executable module does not exist");
2525      return error;
2526    }
2527    exe_spec_to_use = launch_info.GetExecutableFile();
2528  } else
2529    exe_spec_to_use = exe_module->GetFileSpec();
2530
2531  if (exe_module && FileSystem::Instance().Exists(exe_module->GetFileSpec())) {
2532    // Install anything that might need to be installed prior to launching.
2533    // For host systems, this will do nothing, but if we are connected to a
2534    // remote platform it will install any needed binaries
2535    error = GetTarget().Install(&launch_info);
2536    if (error.Fail())
2537      return error;
2538  }
2539
2540  // Listen and queue events that are broadcasted during the process launch.
2541  ListenerSP listener_sp(Listener::MakeListener("LaunchEventHijack"));
2542  HijackProcessEvents(listener_sp);
2543  auto on_exit = llvm::make_scope_exit([this]() { RestoreProcessEvents(); });
2544
2545  if (PrivateStateThreadIsValid())
2546    PausePrivateStateThread();
2547
2548  error = WillLaunch(exe_module);
2549  if (error.Fail()) {
2550    std::string local_exec_file_path = exe_spec_to_use.GetPath();
2551    return Status("file doesn't exist: '%s'", local_exec_file_path.c_str());
2552  }
2553
2554  const bool restarted = false;
2555  SetPublicState(eStateLaunching, restarted);
2556  m_should_detach = false;
2557
2558  if (m_public_run_lock.TrySetRunning()) {
2559    // Now launch using these arguments.
2560    error = DoLaunch(exe_module, launch_info);
2561  } else {
2562    // This shouldn't happen
2563    error.SetErrorString("failed to acquire process run lock");
2564  }
2565
2566  if (error.Fail()) {
2567    if (GetID() != LLDB_INVALID_PROCESS_ID) {
2568      SetID(LLDB_INVALID_PROCESS_ID);
2569      const char *error_string = error.AsCString();
2570      if (error_string == nullptr)
2571        error_string = "launch failed";
2572      SetExitStatus(-1, error_string);
2573    }
2574    return error;
2575  }
2576
2577  // Now wait for the process to launch and return control to us, and then
2578  // call DidLaunch:
2579  state = WaitForProcessStopPrivate(event_sp, seconds(10));
2580
2581  if (state == eStateInvalid || !event_sp) {
2582    // We were able to launch the process, but we failed to catch the
2583    // initial stop.
2584    error.SetErrorString("failed to catch stop after launch");
2585    SetExitStatus(0, error.AsCString());
2586    Destroy(false);
2587    return error;
2588  }
2589
2590  if (state == eStateExited) {
2591    // We exited while trying to launch somehow.  Don't call DidLaunch
2592    // as that's not likely to work, and return an invalid pid.
2593    HandlePrivateEvent(event_sp);
2594    return Status();
2595  }
2596
2597  if (state == eStateStopped || state == eStateCrashed) {
2598    DidLaunch();
2599
2600    // Now that we know the process type, update its signal responses from the
2601    // ones stored in the Target:
2602    if (m_unix_signals_sp) {
2603      StreamSP warning_strm = GetTarget().GetDebugger().GetAsyncErrorStream();
2604      GetTarget().UpdateSignalsFromDummy(m_unix_signals_sp, warning_strm);
2605    }
2606
2607    DynamicLoader *dyld = GetDynamicLoader();
2608    if (dyld)
2609      dyld->DidLaunch();
2610
2611    GetJITLoaders().DidLaunch();
2612
2613    SystemRuntime *system_runtime = GetSystemRuntime();
2614    if (system_runtime)
2615      system_runtime->DidLaunch();
2616
2617    if (!m_os_up)
2618      LoadOperatingSystemPlugin(false);
2619
2620    // We successfully launched the process and stopped, now it the
2621    // right time to set up signal filters before resuming.
2622    UpdateAutomaticSignalFiltering();
2623    return Status();
2624  }
2625
2626  return Status("Unexpected process state after the launch: %s, expected %s, "
2627                "%s, %s or %s",
2628                StateAsCString(state), StateAsCString(eStateInvalid),
2629                StateAsCString(eStateExited), StateAsCString(eStateStopped),
2630                StateAsCString(eStateCrashed));
2631}
2632
2633Status Process::LoadCore() {
2634  Status error = DoLoadCore();
2635  if (error.Success()) {
2636    ListenerSP listener_sp(
2637        Listener::MakeListener("lldb.process.load_core_listener"));
2638    HijackProcessEvents(listener_sp);
2639
2640    if (PrivateStateThreadIsValid())
2641      ResumePrivateStateThread();
2642    else
2643      StartPrivateStateThread();
2644
2645    DynamicLoader *dyld = GetDynamicLoader();
2646    if (dyld)
2647      dyld->DidAttach();
2648
2649    GetJITLoaders().DidAttach();
2650
2651    SystemRuntime *system_runtime = GetSystemRuntime();
2652    if (system_runtime)
2653      system_runtime->DidAttach();
2654
2655    if (!m_os_up)
2656      LoadOperatingSystemPlugin(false);
2657
2658    // We successfully loaded a core file, now pretend we stopped so we can
2659    // show all of the threads in the core file and explore the crashed state.
2660    SetPrivateState(eStateStopped);
2661
2662    // Wait for a stopped event since we just posted one above...
2663    lldb::EventSP event_sp;
2664    StateType state =
2665        WaitForProcessToStop(std::nullopt, &event_sp, true, listener_sp,
2666                             nullptr, true, SelectMostRelevantFrame);
2667
2668    if (!StateIsStoppedState(state, false)) {
2669      Log *log = GetLog(LLDBLog::Process);
2670      LLDB_LOGF(log, "Process::Halt() failed to stop, state is: %s",
2671                StateAsCString(state));
2672      error.SetErrorString(
2673          "Did not get stopped event after loading the core file.");
2674    }
2675    RestoreProcessEvents();
2676  }
2677  return error;
2678}
2679
2680DynamicLoader *Process::GetDynamicLoader() {
2681  if (!m_dyld_up)
2682    m_dyld_up.reset(DynamicLoader::FindPlugin(this, ""));
2683  return m_dyld_up.get();
2684}
2685
2686void Process::SetDynamicLoader(DynamicLoaderUP dyld_up) {
2687  m_dyld_up = std::move(dyld_up);
2688}
2689
2690DataExtractor Process::GetAuxvData() { return DataExtractor(); }
2691
2692llvm::Expected<bool> Process::SaveCore(llvm::StringRef outfile) {
2693  return false;
2694}
2695
2696JITLoaderList &Process::GetJITLoaders() {
2697  if (!m_jit_loaders_up) {
2698    m_jit_loaders_up = std::make_unique<JITLoaderList>();
2699    JITLoader::LoadPlugins(this, *m_jit_loaders_up);
2700  }
2701  return *m_jit_loaders_up;
2702}
2703
2704SystemRuntime *Process::GetSystemRuntime() {
2705  if (!m_system_runtime_up)
2706    m_system_runtime_up.reset(SystemRuntime::FindPlugin(this));
2707  return m_system_runtime_up.get();
2708}
2709
2710Process::AttachCompletionHandler::AttachCompletionHandler(Process *process,
2711                                                          uint32_t exec_count)
2712    : NextEventAction(process), m_exec_count(exec_count) {
2713  Log *log = GetLog(LLDBLog::Process);
2714  LLDB_LOGF(
2715      log,
2716      "Process::AttachCompletionHandler::%s process=%p, exec_count=%" PRIu32,
2717      __FUNCTION__, static_cast<void *>(process), exec_count);
2718}
2719
2720Process::NextEventAction::EventActionResult
2721Process::AttachCompletionHandler::PerformAction(lldb::EventSP &event_sp) {
2722  Log *log = GetLog(LLDBLog::Process);
2723
2724  StateType state = ProcessEventData::GetStateFromEvent(event_sp.get());
2725  LLDB_LOGF(log,
2726            "Process::AttachCompletionHandler::%s called with state %s (%d)",
2727            __FUNCTION__, StateAsCString(state), static_cast<int>(state));
2728
2729  switch (state) {
2730  case eStateAttaching:
2731    return eEventActionSuccess;
2732
2733  case eStateRunning:
2734  case eStateConnected:
2735    return eEventActionRetry;
2736
2737  case eStateStopped:
2738  case eStateCrashed:
2739    // During attach, prior to sending the eStateStopped event,
2740    // lldb_private::Process subclasses must set the new process ID.
2741    assert(m_process->GetID() != LLDB_INVALID_PROCESS_ID);
2742    // We don't want these events to be reported, so go set the
2743    // ShouldReportStop here:
2744    m_process->GetThreadList().SetShouldReportStop(eVoteNo);
2745
2746    if (m_exec_count > 0) {
2747      --m_exec_count;
2748
2749      LLDB_LOGF(log,
2750                "Process::AttachCompletionHandler::%s state %s: reduced "
2751                "remaining exec count to %" PRIu32 ", requesting resume",
2752                __FUNCTION__, StateAsCString(state), m_exec_count);
2753
2754      RequestResume();
2755      return eEventActionRetry;
2756    } else {
2757      LLDB_LOGF(log,
2758                "Process::AttachCompletionHandler::%s state %s: no more "
2759                "execs expected to start, continuing with attach",
2760                __FUNCTION__, StateAsCString(state));
2761
2762      m_process->CompleteAttach();
2763      return eEventActionSuccess;
2764    }
2765    break;
2766
2767  default:
2768  case eStateExited:
2769  case eStateInvalid:
2770    break;
2771  }
2772
2773  m_exit_string.assign("No valid Process");
2774  return eEventActionExit;
2775}
2776
2777Process::NextEventAction::EventActionResult
2778Process::AttachCompletionHandler::HandleBeingInterrupted() {
2779  return eEventActionSuccess;
2780}
2781
2782const char *Process::AttachCompletionHandler::GetExitString() {
2783  return m_exit_string.c_str();
2784}
2785
2786ListenerSP ProcessAttachInfo::GetListenerForProcess(Debugger &debugger) {
2787  if (m_listener_sp)
2788    return m_listener_sp;
2789  else
2790    return debugger.GetListener();
2791}
2792
2793Status Process::WillLaunch(Module *module) {
2794  return DoWillLaunch(module);
2795}
2796
2797Status Process::WillAttachToProcessWithID(lldb::pid_t pid) {
2798  return DoWillAttachToProcessWithID(pid);
2799}
2800
2801Status Process::WillAttachToProcessWithName(const char *process_name,
2802                                            bool wait_for_launch) {
2803  return DoWillAttachToProcessWithName(process_name, wait_for_launch);
2804}
2805
2806Status Process::Attach(ProcessAttachInfo &attach_info) {
2807  m_abi_sp.reset();
2808  {
2809    std::lock_guard<std::mutex> guard(m_process_input_reader_mutex);
2810    m_process_input_reader.reset();
2811  }
2812  m_dyld_up.reset();
2813  m_jit_loaders_up.reset();
2814  m_system_runtime_up.reset();
2815  m_os_up.reset();
2816
2817  lldb::pid_t attach_pid = attach_info.GetProcessID();
2818  Status error;
2819  if (attach_pid == LLDB_INVALID_PROCESS_ID) {
2820    char process_name[PATH_MAX];
2821
2822    if (attach_info.GetExecutableFile().GetPath(process_name,
2823                                                sizeof(process_name))) {
2824      const bool wait_for_launch = attach_info.GetWaitForLaunch();
2825
2826      if (wait_for_launch) {
2827        error = WillAttachToProcessWithName(process_name, wait_for_launch);
2828        if (error.Success()) {
2829          if (m_public_run_lock.TrySetRunning()) {
2830            m_should_detach = true;
2831            const bool restarted = false;
2832            SetPublicState(eStateAttaching, restarted);
2833            // Now attach using these arguments.
2834            error = DoAttachToProcessWithName(process_name, attach_info);
2835          } else {
2836            // This shouldn't happen
2837            error.SetErrorString("failed to acquire process run lock");
2838          }
2839
2840          if (error.Fail()) {
2841            if (GetID() != LLDB_INVALID_PROCESS_ID) {
2842              SetID(LLDB_INVALID_PROCESS_ID);
2843              if (error.AsCString() == nullptr)
2844                error.SetErrorString("attach failed");
2845
2846              SetExitStatus(-1, error.AsCString());
2847            }
2848          } else {
2849            SetNextEventAction(new Process::AttachCompletionHandler(
2850                this, attach_info.GetResumeCount()));
2851            StartPrivateStateThread();
2852          }
2853          return error;
2854        }
2855      } else {
2856        ProcessInstanceInfoList process_infos;
2857        PlatformSP platform_sp(GetTarget().GetPlatform());
2858
2859        if (platform_sp) {
2860          ProcessInstanceInfoMatch match_info;
2861          match_info.GetProcessInfo() = attach_info;
2862          match_info.SetNameMatchType(NameMatch::Equals);
2863          platform_sp->FindProcesses(match_info, process_infos);
2864          const uint32_t num_matches = process_infos.size();
2865          if (num_matches == 1) {
2866            attach_pid = process_infos[0].GetProcessID();
2867            // Fall through and attach using the above process ID
2868          } else {
2869            match_info.GetProcessInfo().GetExecutableFile().GetPath(
2870                process_name, sizeof(process_name));
2871            if (num_matches > 1) {
2872              StreamString s;
2873              ProcessInstanceInfo::DumpTableHeader(s, true, false);
2874              for (size_t i = 0; i < num_matches; i++) {
2875                process_infos[i].DumpAsTableRow(
2876                    s, platform_sp->GetUserIDResolver(), true, false);
2877              }
2878              error.SetErrorStringWithFormat(
2879                  "more than one process named %s:\n%s", process_name,
2880                  s.GetData());
2881            } else
2882              error.SetErrorStringWithFormat(
2883                  "could not find a process named %s", process_name);
2884          }
2885        } else {
2886          error.SetErrorString(
2887              "invalid platform, can't find processes by name");
2888          return error;
2889        }
2890      }
2891    } else {
2892      error.SetErrorString("invalid process name");
2893    }
2894  }
2895
2896  if (attach_pid != LLDB_INVALID_PROCESS_ID) {
2897    error = WillAttachToProcessWithID(attach_pid);
2898    if (error.Success()) {
2899
2900      if (m_public_run_lock.TrySetRunning()) {
2901        // Now attach using these arguments.
2902        m_should_detach = true;
2903        const bool restarted = false;
2904        SetPublicState(eStateAttaching, restarted);
2905        error = DoAttachToProcessWithID(attach_pid, attach_info);
2906      } else {
2907        // This shouldn't happen
2908        error.SetErrorString("failed to acquire process run lock");
2909      }
2910
2911      if (error.Success()) {
2912        SetNextEventAction(new Process::AttachCompletionHandler(
2913            this, attach_info.GetResumeCount()));
2914        StartPrivateStateThread();
2915      } else {
2916        if (GetID() != LLDB_INVALID_PROCESS_ID)
2917          SetID(LLDB_INVALID_PROCESS_ID);
2918
2919        const char *error_string = error.AsCString();
2920        if (error_string == nullptr)
2921          error_string = "attach failed";
2922
2923        SetExitStatus(-1, error_string);
2924      }
2925    }
2926  }
2927  return error;
2928}
2929
2930void Process::CompleteAttach() {
2931  Log *log(GetLog(LLDBLog::Process | LLDBLog::Target));
2932  LLDB_LOGF(log, "Process::%s()", __FUNCTION__);
2933
2934  // Let the process subclass figure out at much as it can about the process
2935  // before we go looking for a dynamic loader plug-in.
2936  ArchSpec process_arch;
2937  DidAttach(process_arch);
2938
2939  if (process_arch.IsValid()) {
2940    GetTarget().SetArchitecture(process_arch);
2941    if (log) {
2942      const char *triple_str = process_arch.GetTriple().getTriple().c_str();
2943      LLDB_LOGF(log,
2944                "Process::%s replacing process architecture with DidAttach() "
2945                "architecture: %s",
2946                __FUNCTION__, triple_str ? triple_str : "<null>");
2947    }
2948  }
2949
2950  // We just attached.  If we have a platform, ask it for the process
2951  // architecture, and if it isn't the same as the one we've already set,
2952  // switch architectures.
2953  PlatformSP platform_sp(GetTarget().GetPlatform());
2954  assert(platform_sp);
2955  ArchSpec process_host_arch = GetSystemArchitecture();
2956  if (platform_sp) {
2957    const ArchSpec &target_arch = GetTarget().GetArchitecture();
2958    if (target_arch.IsValid() && !platform_sp->IsCompatibleArchitecture(
2959                                     target_arch, process_host_arch,
2960                                     ArchSpec::CompatibleMatch, nullptr)) {
2961      ArchSpec platform_arch;
2962      platform_sp = GetTarget().GetDebugger().GetPlatformList().GetOrCreate(
2963          target_arch, process_host_arch, &platform_arch);
2964      if (platform_sp) {
2965        GetTarget().SetPlatform(platform_sp);
2966        GetTarget().SetArchitecture(platform_arch);
2967        LLDB_LOG(log,
2968                 "switching platform to {0} and architecture to {1} based on "
2969                 "info from attach",
2970                 platform_sp->GetName(), platform_arch.GetTriple().getTriple());
2971      }
2972    } else if (!process_arch.IsValid()) {
2973      ProcessInstanceInfo process_info;
2974      GetProcessInfo(process_info);
2975      const ArchSpec &process_arch = process_info.GetArchitecture();
2976      const ArchSpec &target_arch = GetTarget().GetArchitecture();
2977      if (process_arch.IsValid() &&
2978          target_arch.IsCompatibleMatch(process_arch) &&
2979          !target_arch.IsExactMatch(process_arch)) {
2980        GetTarget().SetArchitecture(process_arch);
2981        LLDB_LOGF(log,
2982                  "Process::%s switching architecture to %s based on info "
2983                  "the platform retrieved for pid %" PRIu64,
2984                  __FUNCTION__, process_arch.GetTriple().getTriple().c_str(),
2985                  GetID());
2986      }
2987    }
2988  }
2989  // Now that we know the process type, update its signal responses from the
2990  // ones stored in the Target:
2991  if (m_unix_signals_sp) {
2992    StreamSP warning_strm = GetTarget().GetDebugger().GetAsyncErrorStream();
2993    GetTarget().UpdateSignalsFromDummy(m_unix_signals_sp, warning_strm);
2994  }
2995
2996  // We have completed the attach, now it is time to find the dynamic loader
2997  // plug-in
2998  DynamicLoader *dyld = GetDynamicLoader();
2999  if (dyld) {
3000    dyld->DidAttach();
3001    if (log) {
3002      ModuleSP exe_module_sp = GetTarget().GetExecutableModule();
3003      LLDB_LOG(log,
3004               "after DynamicLoader::DidAttach(), target "
3005               "executable is {0} (using {1} plugin)",
3006               exe_module_sp ? exe_module_sp->GetFileSpec() : FileSpec(),
3007               dyld->GetPluginName());
3008    }
3009  }
3010
3011  GetJITLoaders().DidAttach();
3012
3013  SystemRuntime *system_runtime = GetSystemRuntime();
3014  if (system_runtime) {
3015    system_runtime->DidAttach();
3016    if (log) {
3017      ModuleSP exe_module_sp = GetTarget().GetExecutableModule();
3018      LLDB_LOG(log,
3019               "after SystemRuntime::DidAttach(), target "
3020               "executable is {0} (using {1} plugin)",
3021               exe_module_sp ? exe_module_sp->GetFileSpec() : FileSpec(),
3022               system_runtime->GetPluginName());
3023    }
3024  }
3025
3026  if (!m_os_up) {
3027    LoadOperatingSystemPlugin(false);
3028    if (m_os_up) {
3029      // Somebody might have gotten threads before now, but we need to force the
3030      // update after we've loaded the OperatingSystem plugin or it won't get a
3031      // chance to process the threads.
3032      m_thread_list.Clear();
3033      UpdateThreadListIfNeeded();
3034    }
3035  }
3036  // Figure out which one is the executable, and set that in our target:
3037  ModuleSP new_executable_module_sp;
3038  for (ModuleSP module_sp : GetTarget().GetImages().Modules()) {
3039    if (module_sp && module_sp->IsExecutable()) {
3040      if (GetTarget().GetExecutableModulePointer() != module_sp.get())
3041        new_executable_module_sp = module_sp;
3042      break;
3043    }
3044  }
3045  if (new_executable_module_sp) {
3046    GetTarget().SetExecutableModule(new_executable_module_sp,
3047                                    eLoadDependentsNo);
3048    if (log) {
3049      ModuleSP exe_module_sp = GetTarget().GetExecutableModule();
3050      LLDB_LOGF(
3051          log,
3052          "Process::%s after looping through modules, target executable is %s",
3053          __FUNCTION__,
3054          exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str()
3055                        : "<none>");
3056    }
3057  }
3058}
3059
3060Status Process::ConnectRemote(llvm::StringRef remote_url) {
3061  m_abi_sp.reset();
3062  {
3063    std::lock_guard<std::mutex> guard(m_process_input_reader_mutex);
3064    m_process_input_reader.reset();
3065  }
3066
3067  // Find the process and its architecture.  Make sure it matches the
3068  // architecture of the current Target, and if not adjust it.
3069
3070  Status error(DoConnectRemote(remote_url));
3071  if (error.Success()) {
3072    if (GetID() != LLDB_INVALID_PROCESS_ID) {
3073      EventSP event_sp;
3074      StateType state = WaitForProcessStopPrivate(event_sp, std::nullopt);
3075
3076      if (state == eStateStopped || state == eStateCrashed) {
3077        // If we attached and actually have a process on the other end, then
3078        // this ended up being the equivalent of an attach.
3079        CompleteAttach();
3080
3081        // This delays passing the stopped event to listeners till
3082        // CompleteAttach gets a chance to complete...
3083        HandlePrivateEvent(event_sp);
3084      }
3085    }
3086
3087    if (PrivateStateThreadIsValid())
3088      ResumePrivateStateThread();
3089    else
3090      StartPrivateStateThread();
3091  }
3092  return error;
3093}
3094
3095Status Process::PrivateResume() {
3096  Log *log(GetLog(LLDBLog::Process | LLDBLog::Step));
3097  LLDB_LOGF(log,
3098            "Process::PrivateResume() m_stop_id = %u, public state: %s "
3099            "private state: %s",
3100            m_mod_id.GetStopID(), StateAsCString(m_public_state.GetValue()),
3101            StateAsCString(m_private_state.GetValue()));
3102
3103  // If signals handing status changed we might want to update our signal
3104  // filters before resuming.
3105  UpdateAutomaticSignalFiltering();
3106
3107  Status error(WillResume());
3108  // Tell the process it is about to resume before the thread list
3109  if (error.Success()) {
3110    // Now let the thread list know we are about to resume so it can let all of
3111    // our threads know that they are about to be resumed. Threads will each be
3112    // called with Thread::WillResume(StateType) where StateType contains the
3113    // state that they are supposed to have when the process is resumed
3114    // (suspended/running/stepping). Threads should also check their resume
3115    // signal in lldb::Thread::GetResumeSignal() to see if they are supposed to
3116    // start back up with a signal.
3117    if (m_thread_list.WillResume()) {
3118      // Last thing, do the PreResumeActions.
3119      if (!RunPreResumeActions()) {
3120        error.SetErrorString(
3121            "Process::PrivateResume PreResumeActions failed, not resuming.");
3122      } else {
3123        m_mod_id.BumpResumeID();
3124        error = DoResume();
3125        if (error.Success()) {
3126          DidResume();
3127          m_thread_list.DidResume();
3128          LLDB_LOGF(log, "Process thinks the process has resumed.");
3129        } else {
3130          LLDB_LOGF(log, "Process::PrivateResume() DoResume failed.");
3131          return error;
3132        }
3133      }
3134    } else {
3135      // Somebody wanted to run without running (e.g. we were faking a step
3136      // from one frame of a set of inlined frames that share the same PC to
3137      // another.)  So generate a continue & a stopped event, and let the world
3138      // handle them.
3139      LLDB_LOGF(log,
3140                "Process::PrivateResume() asked to simulate a start & stop.");
3141
3142      SetPrivateState(eStateRunning);
3143      SetPrivateState(eStateStopped);
3144    }
3145  } else
3146    LLDB_LOGF(log, "Process::PrivateResume() got an error \"%s\".",
3147              error.AsCString("<unknown error>"));
3148  return error;
3149}
3150
3151Status Process::Halt(bool clear_thread_plans, bool use_run_lock) {
3152  if (!StateIsRunningState(m_public_state.GetValue()))
3153    return Status("Process is not running.");
3154
3155  // Don't clear the m_clear_thread_plans_on_stop, only set it to true if in
3156  // case it was already set and some thread plan logic calls halt on its own.
3157  m_clear_thread_plans_on_stop |= clear_thread_plans;
3158
3159  ListenerSP halt_listener_sp(
3160      Listener::MakeListener("lldb.process.halt_listener"));
3161  HijackProcessEvents(halt_listener_sp);
3162
3163  EventSP event_sp;
3164
3165  SendAsyncInterrupt();
3166
3167  if (m_public_state.GetValue() == eStateAttaching) {
3168    // Don't hijack and eat the eStateExited as the code that was doing the
3169    // attach will be waiting for this event...
3170    RestoreProcessEvents();
3171    Destroy(false);
3172    SetExitStatus(SIGKILL, "Cancelled async attach.");
3173    return Status();
3174  }
3175
3176  // Wait for the process halt timeout seconds for the process to stop.
3177  // If we are going to use the run lock, that means we're stopping out to the
3178  // user, so we should also select the most relevant frame.
3179  SelectMostRelevant select_most_relevant =
3180      use_run_lock ? SelectMostRelevantFrame : DoNoSelectMostRelevantFrame;
3181  StateType state = WaitForProcessToStop(GetInterruptTimeout(), &event_sp, true,
3182                                         halt_listener_sp, nullptr,
3183                                         use_run_lock, select_most_relevant);
3184  RestoreProcessEvents();
3185
3186  if (state == eStateInvalid || !event_sp) {
3187    // We timed out and didn't get a stop event...
3188    return Status("Halt timed out. State = %s", StateAsCString(GetState()));
3189  }
3190
3191  BroadcastEvent(event_sp);
3192
3193  return Status();
3194}
3195
3196Status Process::StopForDestroyOrDetach(lldb::EventSP &exit_event_sp) {
3197  Status error;
3198
3199  // Check both the public & private states here.  If we're hung evaluating an
3200  // expression, for instance, then the public state will be stopped, but we
3201  // still need to interrupt.
3202  if (m_public_state.GetValue() == eStateRunning ||
3203      m_private_state.GetValue() == eStateRunning) {
3204    Log *log = GetLog(LLDBLog::Process);
3205    LLDB_LOGF(log, "Process::%s() About to stop.", __FUNCTION__);
3206
3207    ListenerSP listener_sp(
3208        Listener::MakeListener("lldb.Process.StopForDestroyOrDetach.hijack"));
3209    HijackProcessEvents(listener_sp);
3210
3211    SendAsyncInterrupt();
3212
3213    // Consume the interrupt event.
3214    StateType state = WaitForProcessToStop(GetInterruptTimeout(),
3215                                           &exit_event_sp, true, listener_sp);
3216
3217    RestoreProcessEvents();
3218
3219    // If the process exited while we were waiting for it to stop, put the
3220    // exited event into the shared pointer passed in and return.  Our caller
3221    // doesn't need to do anything else, since they don't have a process
3222    // anymore...
3223
3224    if (state == eStateExited || m_private_state.GetValue() == eStateExited) {
3225      LLDB_LOGF(log, "Process::%s() Process exited while waiting to stop.",
3226                __FUNCTION__);
3227      return error;
3228    } else
3229      exit_event_sp.reset(); // It is ok to consume any non-exit stop events
3230
3231    if (state != eStateStopped) {
3232      LLDB_LOGF(log, "Process::%s() failed to stop, state is: %s", __FUNCTION__,
3233                StateAsCString(state));
3234      // If we really couldn't stop the process then we should just error out
3235      // here, but if the lower levels just bobbled sending the event and we
3236      // really are stopped, then continue on.
3237      StateType private_state = m_private_state.GetValue();
3238      if (private_state != eStateStopped) {
3239        return Status(
3240            "Attempt to stop the target in order to detach timed out. "
3241            "State = %s",
3242            StateAsCString(GetState()));
3243      }
3244    }
3245  }
3246  return error;
3247}
3248
3249Status Process::Detach(bool keep_stopped) {
3250  EventSP exit_event_sp;
3251  Status error;
3252  m_destroy_in_process = true;
3253
3254  error = WillDetach();
3255
3256  if (error.Success()) {
3257    if (DetachRequiresHalt()) {
3258      error = StopForDestroyOrDetach(exit_event_sp);
3259      if (!error.Success()) {
3260        m_destroy_in_process = false;
3261        return error;
3262      } else if (exit_event_sp) {
3263        // We shouldn't need to do anything else here.  There's no process left
3264        // to detach from...
3265        StopPrivateStateThread();
3266        m_destroy_in_process = false;
3267        return error;
3268      }
3269    }
3270
3271    m_thread_list.DiscardThreadPlans();
3272    DisableAllBreakpointSites();
3273
3274    error = DoDetach(keep_stopped);
3275    if (error.Success()) {
3276      DidDetach();
3277      StopPrivateStateThread();
3278    } else {
3279      return error;
3280    }
3281  }
3282  m_destroy_in_process = false;
3283
3284  // If we exited when we were waiting for a process to stop, then forward the
3285  // event here so we don't lose the event
3286  if (exit_event_sp) {
3287    // Directly broadcast our exited event because we shut down our private
3288    // state thread above
3289    BroadcastEvent(exit_event_sp);
3290  }
3291
3292  // If we have been interrupted (to kill us) in the middle of running, we may
3293  // not end up propagating the last events through the event system, in which
3294  // case we might strand the write lock.  Unlock it here so when we do to tear
3295  // down the process we don't get an error destroying the lock.
3296
3297  m_public_run_lock.SetStopped();
3298  return error;
3299}
3300
3301Status Process::Destroy(bool force_kill) {
3302  // If we've already called Process::Finalize then there's nothing useful to
3303  // be done here.  Finalize has actually called Destroy already.
3304  if (m_finalizing)
3305    return {};
3306  return DestroyImpl(force_kill);
3307}
3308
3309Status Process::DestroyImpl(bool force_kill) {
3310  // Tell ourselves we are in the process of destroying the process, so that we
3311  // don't do any unnecessary work that might hinder the destruction.  Remember
3312  // to set this back to false when we are done.  That way if the attempt
3313  // failed and the process stays around for some reason it won't be in a
3314  // confused state.
3315
3316  if (force_kill)
3317    m_should_detach = false;
3318
3319  if (GetShouldDetach()) {
3320    // FIXME: This will have to be a process setting:
3321    bool keep_stopped = false;
3322    Detach(keep_stopped);
3323  }
3324
3325  m_destroy_in_process = true;
3326
3327  Status error(WillDestroy());
3328  if (error.Success()) {
3329    EventSP exit_event_sp;
3330    if (DestroyRequiresHalt()) {
3331      error = StopForDestroyOrDetach(exit_event_sp);
3332    }
3333
3334    if (m_public_state.GetValue() == eStateStopped) {
3335      // Ditch all thread plans, and remove all our breakpoints: in case we
3336      // have to restart the target to kill it, we don't want it hitting a
3337      // breakpoint... Only do this if we've stopped, however, since if we
3338      // didn't manage to halt it above, then we're not going to have much luck
3339      // doing this now.
3340      m_thread_list.DiscardThreadPlans();
3341      DisableAllBreakpointSites();
3342    }
3343
3344    error = DoDestroy();
3345    if (error.Success()) {
3346      DidDestroy();
3347      StopPrivateStateThread();
3348    }
3349    m_stdio_communication.StopReadThread();
3350    m_stdio_communication.Disconnect();
3351    m_stdin_forward = false;
3352
3353    {
3354      std::lock_guard<std::mutex> guard(m_process_input_reader_mutex);
3355      if (m_process_input_reader) {
3356        m_process_input_reader->SetIsDone(true);
3357        m_process_input_reader->Cancel();
3358        m_process_input_reader.reset();
3359      }
3360    }
3361
3362    // If we exited when we were waiting for a process to stop, then forward
3363    // the event here so we don't lose the event
3364    if (exit_event_sp) {
3365      // Directly broadcast our exited event because we shut down our private
3366      // state thread above
3367      BroadcastEvent(exit_event_sp);
3368    }
3369
3370    // If we have been interrupted (to kill us) in the middle of running, we
3371    // may not end up propagating the last events through the event system, in
3372    // which case we might strand the write lock.  Unlock it here so when we do
3373    // to tear down the process we don't get an error destroying the lock.
3374    m_public_run_lock.SetStopped();
3375  }
3376
3377  m_destroy_in_process = false;
3378
3379  return error;
3380}
3381
3382Status Process::Signal(int signal) {
3383  Status error(WillSignal());
3384  if (error.Success()) {
3385    error = DoSignal(signal);
3386    if (error.Success())
3387      DidSignal();
3388  }
3389  return error;
3390}
3391
3392void Process::SetUnixSignals(UnixSignalsSP &&signals_sp) {
3393  assert(signals_sp && "null signals_sp");
3394  m_unix_signals_sp = std::move(signals_sp);
3395}
3396
3397const lldb::UnixSignalsSP &Process::GetUnixSignals() {
3398  assert(m_unix_signals_sp && "null m_unix_signals_sp");
3399  return m_unix_signals_sp;
3400}
3401
3402lldb::ByteOrder Process::GetByteOrder() const {
3403  return GetTarget().GetArchitecture().GetByteOrder();
3404}
3405
3406uint32_t Process::GetAddressByteSize() const {
3407  return GetTarget().GetArchitecture().GetAddressByteSize();
3408}
3409
3410bool Process::ShouldBroadcastEvent(Event *event_ptr) {
3411  const StateType state =
3412      Process::ProcessEventData::GetStateFromEvent(event_ptr);
3413  bool return_value = true;
3414  Log *log(GetLog(LLDBLog::Events | LLDBLog::Process));
3415
3416  switch (state) {
3417  case eStateDetached:
3418  case eStateExited:
3419  case eStateUnloaded:
3420    m_stdio_communication.SynchronizeWithReadThread();
3421    m_stdio_communication.StopReadThread();
3422    m_stdio_communication.Disconnect();
3423    m_stdin_forward = false;
3424
3425    [[fallthrough]];
3426  case eStateConnected:
3427  case eStateAttaching:
3428  case eStateLaunching:
3429    // These events indicate changes in the state of the debugging session,
3430    // always report them.
3431    return_value = true;
3432    break;
3433  case eStateInvalid:
3434    // We stopped for no apparent reason, don't report it.
3435    return_value = false;
3436    break;
3437  case eStateRunning:
3438  case eStateStepping:
3439    // If we've started the target running, we handle the cases where we are
3440    // already running and where there is a transition from stopped to running
3441    // differently. running -> running: Automatically suppress extra running
3442    // events stopped -> running: Report except when there is one or more no
3443    // votes
3444    //     and no yes votes.
3445    SynchronouslyNotifyStateChanged(state);
3446    if (m_force_next_event_delivery)
3447      return_value = true;
3448    else {
3449      switch (m_last_broadcast_state) {
3450      case eStateRunning:
3451      case eStateStepping:
3452        // We always suppress multiple runnings with no PUBLIC stop in between.
3453        return_value = false;
3454        break;
3455      default:
3456        // TODO: make this work correctly. For now always report
3457        // run if we aren't running so we don't miss any running events. If I
3458        // run the lldb/test/thread/a.out file and break at main.cpp:58, run
3459        // and hit the breakpoints on multiple threads, then somehow during the
3460        // stepping over of all breakpoints no run gets reported.
3461
3462        // This is a transition from stop to run.
3463        switch (m_thread_list.ShouldReportRun(event_ptr)) {
3464        case eVoteYes:
3465        case eVoteNoOpinion:
3466          return_value = true;
3467          break;
3468        case eVoteNo:
3469          return_value = false;
3470          break;
3471        }
3472        break;
3473      }
3474    }
3475    break;
3476  case eStateStopped:
3477  case eStateCrashed:
3478  case eStateSuspended:
3479    // We've stopped.  First see if we're going to restart the target. If we
3480    // are going to stop, then we always broadcast the event. If we aren't
3481    // going to stop, let the thread plans decide if we're going to report this
3482    // event. If no thread has an opinion, we don't report it.
3483
3484    m_stdio_communication.SynchronizeWithReadThread();
3485    RefreshStateAfterStop();
3486    if (ProcessEventData::GetInterruptedFromEvent(event_ptr)) {
3487      LLDB_LOGF(log,
3488                "Process::ShouldBroadcastEvent (%p) stopped due to an "
3489                "interrupt, state: %s",
3490                static_cast<void *>(event_ptr), StateAsCString(state));
3491      // Even though we know we are going to stop, we should let the threads
3492      // have a look at the stop, so they can properly set their state.
3493      m_thread_list.ShouldStop(event_ptr);
3494      return_value = true;
3495    } else {
3496      bool was_restarted = ProcessEventData::GetRestartedFromEvent(event_ptr);
3497      bool should_resume = false;
3498
3499      // It makes no sense to ask "ShouldStop" if we've already been
3500      // restarted... Asking the thread list is also not likely to go well,
3501      // since we are running again. So in that case just report the event.
3502
3503      if (!was_restarted)
3504        should_resume = !m_thread_list.ShouldStop(event_ptr);
3505
3506      if (was_restarted || should_resume || m_resume_requested) {
3507        Vote report_stop_vote = m_thread_list.ShouldReportStop(event_ptr);
3508        LLDB_LOGF(log,
3509                  "Process::ShouldBroadcastEvent: should_resume: %i state: "
3510                  "%s was_restarted: %i report_stop_vote: %d.",
3511                  should_resume, StateAsCString(state), was_restarted,
3512                  report_stop_vote);
3513
3514        switch (report_stop_vote) {
3515        case eVoteYes:
3516          return_value = true;
3517          break;
3518        case eVoteNoOpinion:
3519        case eVoteNo:
3520          return_value = false;
3521          break;
3522        }
3523
3524        if (!was_restarted) {
3525          LLDB_LOGF(log,
3526                    "Process::ShouldBroadcastEvent (%p) Restarting process "
3527                    "from state: %s",
3528                    static_cast<void *>(event_ptr), StateAsCString(state));
3529          ProcessEventData::SetRestartedInEvent(event_ptr, true);
3530          PrivateResume();
3531        }
3532      } else {
3533        return_value = true;
3534        SynchronouslyNotifyStateChanged(state);
3535      }
3536    }
3537    break;
3538  }
3539
3540  // Forcing the next event delivery is a one shot deal.  So reset it here.
3541  m_force_next_event_delivery = false;
3542
3543  // We do some coalescing of events (for instance two consecutive running
3544  // events get coalesced.) But we only coalesce against events we actually
3545  // broadcast.  So we use m_last_broadcast_state to track that.  NB - you
3546  // can't use "m_public_state.GetValue()" for that purpose, as was originally
3547  // done, because the PublicState reflects the last event pulled off the
3548  // queue, and there may be several events stacked up on the queue unserviced.
3549  // So the PublicState may not reflect the last broadcasted event yet.
3550  // m_last_broadcast_state gets updated here.
3551
3552  if (return_value)
3553    m_last_broadcast_state = state;
3554
3555  LLDB_LOGF(log,
3556            "Process::ShouldBroadcastEvent (%p) => new state: %s, last "
3557            "broadcast state: %s - %s",
3558            static_cast<void *>(event_ptr), StateAsCString(state),
3559            StateAsCString(m_last_broadcast_state),
3560            return_value ? "YES" : "NO");
3561  return return_value;
3562}
3563
3564bool Process::StartPrivateStateThread(bool is_secondary_thread) {
3565  Log *log = GetLog(LLDBLog::Events);
3566
3567  bool already_running = PrivateStateThreadIsValid();
3568  LLDB_LOGF(log, "Process::%s()%s ", __FUNCTION__,
3569            already_running ? " already running"
3570                            : " starting private state thread");
3571
3572  if (!is_secondary_thread && already_running)
3573    return true;
3574
3575  // Create a thread that watches our internal state and controls which events
3576  // make it to clients (into the DCProcess event queue).
3577  char thread_name[1024];
3578  uint32_t max_len = llvm::get_max_thread_name_length();
3579  if (max_len > 0 && max_len <= 30) {
3580    // On platforms with abbreviated thread name lengths, choose thread names
3581    // that fit within the limit.
3582    if (already_running)
3583      snprintf(thread_name, sizeof(thread_name), "intern-state-OV");
3584    else
3585      snprintf(thread_name, sizeof(thread_name), "intern-state");
3586  } else {
3587    if (already_running)
3588      snprintf(thread_name, sizeof(thread_name),
3589               "<lldb.process.internal-state-override(pid=%" PRIu64 ")>",
3590               GetID());
3591    else
3592      snprintf(thread_name, sizeof(thread_name),
3593               "<lldb.process.internal-state(pid=%" PRIu64 ")>", GetID());
3594  }
3595
3596  llvm::Expected<HostThread> private_state_thread =
3597      ThreadLauncher::LaunchThread(
3598          thread_name,
3599          [this, is_secondary_thread] {
3600            return RunPrivateStateThread(is_secondary_thread);
3601          },
3602          8 * 1024 * 1024);
3603  if (!private_state_thread) {
3604    LLDB_LOG_ERROR(GetLog(LLDBLog::Host), private_state_thread.takeError(),
3605                   "failed to launch host thread: {0}");
3606    return false;
3607  }
3608
3609  assert(private_state_thread->IsJoinable());
3610  m_private_state_thread = *private_state_thread;
3611  ResumePrivateStateThread();
3612  return true;
3613}
3614
3615void Process::PausePrivateStateThread() {
3616  ControlPrivateStateThread(eBroadcastInternalStateControlPause);
3617}
3618
3619void Process::ResumePrivateStateThread() {
3620  ControlPrivateStateThread(eBroadcastInternalStateControlResume);
3621}
3622
3623void Process::StopPrivateStateThread() {
3624  if (m_private_state_thread.IsJoinable())
3625    ControlPrivateStateThread(eBroadcastInternalStateControlStop);
3626  else {
3627    Log *log = GetLog(LLDBLog::Process);
3628    LLDB_LOGF(
3629        log,
3630        "Went to stop the private state thread, but it was already invalid.");
3631  }
3632}
3633
3634void Process::ControlPrivateStateThread(uint32_t signal) {
3635  Log *log = GetLog(LLDBLog::Process);
3636
3637  assert(signal == eBroadcastInternalStateControlStop ||
3638         signal == eBroadcastInternalStateControlPause ||
3639         signal == eBroadcastInternalStateControlResume);
3640
3641  LLDB_LOGF(log, "Process::%s (signal = %d)", __FUNCTION__, signal);
3642
3643  // Signal the private state thread
3644  if (m_private_state_thread.IsJoinable()) {
3645    // Broadcast the event.
3646    // It is important to do this outside of the if below, because it's
3647    // possible that the thread state is invalid but that the thread is waiting
3648    // on a control event instead of simply being on its way out (this should
3649    // not happen, but it apparently can).
3650    LLDB_LOGF(log, "Sending control event of type: %d.", signal);
3651    std::shared_ptr<EventDataReceipt> event_receipt_sp(new EventDataReceipt());
3652    m_private_state_control_broadcaster.BroadcastEvent(signal,
3653                                                       event_receipt_sp);
3654
3655    // Wait for the event receipt or for the private state thread to exit
3656    bool receipt_received = false;
3657    if (PrivateStateThreadIsValid()) {
3658      while (!receipt_received) {
3659        // Check for a receipt for n seconds and then check if the private
3660        // state thread is still around.
3661        receipt_received =
3662          event_receipt_sp->WaitForEventReceived(GetUtilityExpressionTimeout());
3663        if (!receipt_received) {
3664          // Check if the private state thread is still around. If it isn't
3665          // then we are done waiting
3666          if (!PrivateStateThreadIsValid())
3667            break; // Private state thread exited or is exiting, we are done
3668        }
3669      }
3670    }
3671
3672    if (signal == eBroadcastInternalStateControlStop) {
3673      thread_result_t result = {};
3674      m_private_state_thread.Join(&result);
3675      m_private_state_thread.Reset();
3676    }
3677  } else {
3678    LLDB_LOGF(
3679        log,
3680        "Private state thread already dead, no need to signal it to stop.");
3681  }
3682}
3683
3684void Process::SendAsyncInterrupt() {
3685  if (PrivateStateThreadIsValid())
3686    m_private_state_broadcaster.BroadcastEvent(Process::eBroadcastBitInterrupt,
3687                                               nullptr);
3688  else
3689    BroadcastEvent(Process::eBroadcastBitInterrupt, nullptr);
3690}
3691
3692void Process::HandlePrivateEvent(EventSP &event_sp) {
3693  Log *log = GetLog(LLDBLog::Process);
3694  m_resume_requested = false;
3695
3696  const StateType new_state =
3697      Process::ProcessEventData::GetStateFromEvent(event_sp.get());
3698
3699  // First check to see if anybody wants a shot at this event:
3700  if (m_next_event_action_up) {
3701    NextEventAction::EventActionResult action_result =
3702        m_next_event_action_up->PerformAction(event_sp);
3703    LLDB_LOGF(log, "Ran next event action, result was %d.", action_result);
3704
3705    switch (action_result) {
3706    case NextEventAction::eEventActionSuccess:
3707      SetNextEventAction(nullptr);
3708      break;
3709
3710    case NextEventAction::eEventActionRetry:
3711      break;
3712
3713    case NextEventAction::eEventActionExit:
3714      // Handle Exiting Here.  If we already got an exited event, we should
3715      // just propagate it.  Otherwise, swallow this event, and set our state
3716      // to exit so the next event will kill us.
3717      if (new_state != eStateExited) {
3718        // FIXME: should cons up an exited event, and discard this one.
3719        SetExitStatus(0, m_next_event_action_up->GetExitString());
3720        SetNextEventAction(nullptr);
3721        return;
3722      }
3723      SetNextEventAction(nullptr);
3724      break;
3725    }
3726  }
3727
3728  // See if we should broadcast this state to external clients?
3729  const bool should_broadcast = ShouldBroadcastEvent(event_sp.get());
3730
3731  if (should_broadcast) {
3732    const bool is_hijacked = IsHijackedForEvent(eBroadcastBitStateChanged);
3733    if (log) {
3734      LLDB_LOGF(log,
3735                "Process::%s (pid = %" PRIu64
3736                ") broadcasting new state %s (old state %s) to %s",
3737                __FUNCTION__, GetID(), StateAsCString(new_state),
3738                StateAsCString(GetState()),
3739                is_hijacked ? "hijacked" : "public");
3740    }
3741    Process::ProcessEventData::SetUpdateStateOnRemoval(event_sp.get());
3742    if (StateIsRunningState(new_state)) {
3743      // Only push the input handler if we aren't fowarding events, as this
3744      // means the curses GUI is in use... Or don't push it if we are launching
3745      // since it will come up stopped.
3746      if (!GetTarget().GetDebugger().IsForwardingEvents() &&
3747          new_state != eStateLaunching && new_state != eStateAttaching) {
3748        PushProcessIOHandler();
3749        m_iohandler_sync.SetValue(m_iohandler_sync.GetValue() + 1,
3750                                  eBroadcastAlways);
3751        LLDB_LOGF(log, "Process::%s updated m_iohandler_sync to %d",
3752                  __FUNCTION__, m_iohandler_sync.GetValue());
3753      }
3754    } else if (StateIsStoppedState(new_state, false)) {
3755      if (!Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) {
3756        // If the lldb_private::Debugger is handling the events, we don't want
3757        // to pop the process IOHandler here, we want to do it when we receive
3758        // the stopped event so we can carefully control when the process
3759        // IOHandler is popped because when we stop we want to display some
3760        // text stating how and why we stopped, then maybe some
3761        // process/thread/frame info, and then we want the "(lldb) " prompt to
3762        // show up. If we pop the process IOHandler here, then we will cause
3763        // the command interpreter to become the top IOHandler after the
3764        // process pops off and it will update its prompt right away... See the
3765        // Debugger.cpp file where it calls the function as
3766        // "process_sp->PopProcessIOHandler()" to see where I am talking about.
3767        // Otherwise we end up getting overlapping "(lldb) " prompts and
3768        // garbled output.
3769        //
3770        // If we aren't handling the events in the debugger (which is indicated
3771        // by "m_target.GetDebugger().IsHandlingEvents()" returning false) or
3772        // we are hijacked, then we always pop the process IO handler manually.
3773        // Hijacking happens when the internal process state thread is running
3774        // thread plans, or when commands want to run in synchronous mode and
3775        // they call "process->WaitForProcessToStop()". An example of something
3776        // that will hijack the events is a simple expression:
3777        //
3778        //  (lldb) expr (int)puts("hello")
3779        //
3780        // This will cause the internal process state thread to resume and halt
3781        // the process (and _it_ will hijack the eBroadcastBitStateChanged
3782        // events) and we do need the IO handler to be pushed and popped
3783        // correctly.
3784
3785        if (is_hijacked || !GetTarget().GetDebugger().IsHandlingEvents())
3786          PopProcessIOHandler();
3787      }
3788    }
3789
3790    BroadcastEvent(event_sp);
3791  } else {
3792    if (log) {
3793      LLDB_LOGF(
3794          log,
3795          "Process::%s (pid = %" PRIu64
3796          ") suppressing state %s (old state %s): should_broadcast == false",
3797          __FUNCTION__, GetID(), StateAsCString(new_state),
3798          StateAsCString(GetState()));
3799    }
3800  }
3801}
3802
3803Status Process::HaltPrivate() {
3804  EventSP event_sp;
3805  Status error(WillHalt());
3806  if (error.Fail())
3807    return error;
3808
3809  // Ask the process subclass to actually halt our process
3810  bool caused_stop;
3811  error = DoHalt(caused_stop);
3812
3813  DidHalt();
3814  return error;
3815}
3816
3817thread_result_t Process::RunPrivateStateThread(bool is_secondary_thread) {
3818  bool control_only = true;
3819
3820  Log *log = GetLog(LLDBLog::Process);
3821  LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread starting...",
3822            __FUNCTION__, static_cast<void *>(this), GetID());
3823
3824  bool exit_now = false;
3825  bool interrupt_requested = false;
3826  while (!exit_now) {
3827    EventSP event_sp;
3828    GetEventsPrivate(event_sp, std::nullopt, control_only);
3829    if (event_sp->BroadcasterIs(&m_private_state_control_broadcaster)) {
3830      LLDB_LOGF(log,
3831                "Process::%s (arg = %p, pid = %" PRIu64
3832                ") got a control event: %d",
3833                __FUNCTION__, static_cast<void *>(this), GetID(),
3834                event_sp->GetType());
3835
3836      switch (event_sp->GetType()) {
3837      case eBroadcastInternalStateControlStop:
3838        exit_now = true;
3839        break; // doing any internal state management below
3840
3841      case eBroadcastInternalStateControlPause:
3842        control_only = true;
3843        break;
3844
3845      case eBroadcastInternalStateControlResume:
3846        control_only = false;
3847        break;
3848      }
3849
3850      continue;
3851    } else if (event_sp->GetType() == eBroadcastBitInterrupt) {
3852      if (m_public_state.GetValue() == eStateAttaching) {
3853        LLDB_LOGF(log,
3854                  "Process::%s (arg = %p, pid = %" PRIu64
3855                  ") woke up with an interrupt while attaching - "
3856                  "forwarding interrupt.",
3857                  __FUNCTION__, static_cast<void *>(this), GetID());
3858        // The server may be spinning waiting for a process to appear, in which
3859        // case we should tell it to stop doing that.  Normally, we don't NEED
3860        // to do that because we will next close the communication to the stub
3861        // and that will get it to shut down.  But there are remote debugging
3862        // cases where relying on that side-effect causes the shutdown to be
3863        // flakey, so we should send a positive signal to interrupt the wait.
3864        Status error = HaltPrivate();
3865        BroadcastEvent(eBroadcastBitInterrupt, nullptr);
3866      } else if (StateIsRunningState(m_last_broadcast_state)) {
3867        LLDB_LOGF(log,
3868                  "Process::%s (arg = %p, pid = %" PRIu64
3869                  ") woke up with an interrupt - Halting.",
3870                  __FUNCTION__, static_cast<void *>(this), GetID());
3871        Status error = HaltPrivate();
3872        if (error.Fail() && log)
3873          LLDB_LOGF(log,
3874                    "Process::%s (arg = %p, pid = %" PRIu64
3875                    ") failed to halt the process: %s",
3876                    __FUNCTION__, static_cast<void *>(this), GetID(),
3877                    error.AsCString());
3878        // Halt should generate a stopped event. Make a note of the fact that
3879        // we were doing the interrupt, so we can set the interrupted flag
3880        // after we receive the event. We deliberately set this to true even if
3881        // HaltPrivate failed, so that we can interrupt on the next natural
3882        // stop.
3883        interrupt_requested = true;
3884      } else {
3885        // This can happen when someone (e.g. Process::Halt) sees that we are
3886        // running and sends an interrupt request, but the process actually
3887        // stops before we receive it. In that case, we can just ignore the
3888        // request. We use m_last_broadcast_state, because the Stopped event
3889        // may not have been popped of the event queue yet, which is when the
3890        // public state gets updated.
3891        LLDB_LOGF(log,
3892                  "Process::%s ignoring interrupt as we have already stopped.",
3893                  __FUNCTION__);
3894      }
3895      continue;
3896    }
3897
3898    const StateType internal_state =
3899        Process::ProcessEventData::GetStateFromEvent(event_sp.get());
3900
3901    if (internal_state != eStateInvalid) {
3902      if (m_clear_thread_plans_on_stop &&
3903          StateIsStoppedState(internal_state, true)) {
3904        m_clear_thread_plans_on_stop = false;
3905        m_thread_list.DiscardThreadPlans();
3906      }
3907
3908      if (interrupt_requested) {
3909        if (StateIsStoppedState(internal_state, true)) {
3910          // We requested the interrupt, so mark this as such in the stop event
3911          // so clients can tell an interrupted process from a natural stop
3912          ProcessEventData::SetInterruptedInEvent(event_sp.get(), true);
3913          interrupt_requested = false;
3914        } else if (log) {
3915          LLDB_LOGF(log,
3916                    "Process::%s interrupt_requested, but a non-stopped "
3917                    "state '%s' received.",
3918                    __FUNCTION__, StateAsCString(internal_state));
3919        }
3920      }
3921
3922      HandlePrivateEvent(event_sp);
3923    }
3924
3925    if (internal_state == eStateInvalid || internal_state == eStateExited ||
3926        internal_state == eStateDetached) {
3927      LLDB_LOGF(log,
3928                "Process::%s (arg = %p, pid = %" PRIu64
3929                ") about to exit with internal state %s...",
3930                __FUNCTION__, static_cast<void *>(this), GetID(),
3931                StateAsCString(internal_state));
3932
3933      break;
3934    }
3935  }
3936
3937  // Verify log is still enabled before attempting to write to it...
3938  LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread exiting...",
3939            __FUNCTION__, static_cast<void *>(this), GetID());
3940
3941  // If we are a secondary thread, then the primary thread we are working for
3942  // will have already acquired the public_run_lock, and isn't done with what
3943  // it was doing yet, so don't try to change it on the way out.
3944  if (!is_secondary_thread)
3945    m_public_run_lock.SetStopped();
3946  return {};
3947}
3948
3949// Process Event Data
3950
3951Process::ProcessEventData::ProcessEventData() : EventData(), m_process_wp() {}
3952
3953Process::ProcessEventData::ProcessEventData(const ProcessSP &process_sp,
3954                                            StateType state)
3955    : EventData(), m_process_wp(), m_state(state) {
3956  if (process_sp)
3957    m_process_wp = process_sp;
3958}
3959
3960Process::ProcessEventData::~ProcessEventData() = default;
3961
3962llvm::StringRef Process::ProcessEventData::GetFlavorString() {
3963  return "Process::ProcessEventData";
3964}
3965
3966llvm::StringRef Process::ProcessEventData::GetFlavor() const {
3967  return ProcessEventData::GetFlavorString();
3968}
3969
3970bool Process::ProcessEventData::ShouldStop(Event *event_ptr,
3971                                           bool &found_valid_stopinfo) {
3972  found_valid_stopinfo = false;
3973
3974  ProcessSP process_sp(m_process_wp.lock());
3975  if (!process_sp)
3976    return false;
3977
3978  ThreadList &curr_thread_list = process_sp->GetThreadList();
3979  uint32_t num_threads = curr_thread_list.GetSize();
3980  uint32_t idx;
3981
3982  // The actions might change one of the thread's stop_info's opinions about
3983  // whether we should stop the process, so we need to query that as we go.
3984
3985  // One other complication here, is that we try to catch any case where the
3986  // target has run (except for expressions) and immediately exit, but if we
3987  // get that wrong (which is possible) then the thread list might have
3988  // changed, and that would cause our iteration here to crash.  We could
3989  // make a copy of the thread list, but we'd really like to also know if it
3990  // has changed at all, so we make up a vector of the thread ID's and check
3991  // what we get back against this list & bag out if anything differs.
3992  ThreadList not_suspended_thread_list(process_sp.get());
3993  std::vector<uint32_t> thread_index_array(num_threads);
3994  uint32_t not_suspended_idx = 0;
3995  for (idx = 0; idx < num_threads; ++idx) {
3996    lldb::ThreadSP thread_sp = curr_thread_list.GetThreadAtIndex(idx);
3997
3998    /*
3999     Filter out all suspended threads, they could not be the reason
4000     of stop and no need to perform any actions on them.
4001     */
4002    if (thread_sp->GetResumeState() != eStateSuspended) {
4003      not_suspended_thread_list.AddThread(thread_sp);
4004      thread_index_array[not_suspended_idx] = thread_sp->GetIndexID();
4005      not_suspended_idx++;
4006    }
4007  }
4008
4009  // Use this to track whether we should continue from here.  We will only
4010  // continue the target running if no thread says we should stop.  Of course
4011  // if some thread's PerformAction actually sets the target running, then it
4012  // doesn't matter what the other threads say...
4013
4014  bool still_should_stop = false;
4015
4016  // Sometimes - for instance if we have a bug in the stub we are talking to,
4017  // we stop but no thread has a valid stop reason.  In that case we should
4018  // just stop, because we have no way of telling what the right thing to do
4019  // is, and it's better to let the user decide than continue behind their
4020  // backs.
4021
4022  for (idx = 0; idx < not_suspended_thread_list.GetSize(); ++idx) {
4023    curr_thread_list = process_sp->GetThreadList();
4024    if (curr_thread_list.GetSize() != num_threads) {
4025      Log *log(GetLog(LLDBLog::Step | LLDBLog::Process));
4026      LLDB_LOGF(
4027          log,
4028          "Number of threads changed from %u to %u while processing event.",
4029          num_threads, curr_thread_list.GetSize());
4030      break;
4031    }
4032
4033    lldb::ThreadSP thread_sp = not_suspended_thread_list.GetThreadAtIndex(idx);
4034
4035    if (thread_sp->GetIndexID() != thread_index_array[idx]) {
4036      Log *log(GetLog(LLDBLog::Step | LLDBLog::Process));
4037      LLDB_LOGF(log,
4038                "The thread at position %u changed from %u to %u while "
4039                "processing event.",
4040                idx, thread_index_array[idx], thread_sp->GetIndexID());
4041      break;
4042    }
4043
4044    StopInfoSP stop_info_sp = thread_sp->GetStopInfo();
4045    if (stop_info_sp && stop_info_sp->IsValid()) {
4046      found_valid_stopinfo = true;
4047      bool this_thread_wants_to_stop;
4048      if (stop_info_sp->GetOverrideShouldStop()) {
4049        this_thread_wants_to_stop =
4050            stop_info_sp->GetOverriddenShouldStopValue();
4051      } else {
4052        stop_info_sp->PerformAction(event_ptr);
4053        // The stop action might restart the target.  If it does, then we
4054        // want to mark that in the event so that whoever is receiving it
4055        // will know to wait for the running event and reflect that state
4056        // appropriately. We also need to stop processing actions, since they
4057        // aren't expecting the target to be running.
4058
4059        // FIXME: we might have run.
4060        if (stop_info_sp->HasTargetRunSinceMe()) {
4061          SetRestarted(true);
4062          break;
4063        }
4064
4065        this_thread_wants_to_stop = stop_info_sp->ShouldStop(event_ptr);
4066      }
4067
4068      if (!still_should_stop)
4069        still_should_stop = this_thread_wants_to_stop;
4070    }
4071  }
4072
4073  return still_should_stop;
4074}
4075
4076void Process::ProcessEventData::DoOnRemoval(Event *event_ptr) {
4077  ProcessSP process_sp(m_process_wp.lock());
4078
4079  if (!process_sp)
4080    return;
4081
4082  // This function gets called twice for each event, once when the event gets
4083  // pulled off of the private process event queue, and then any number of
4084  // times, first when it gets pulled off of the public event queue, then other
4085  // times when we're pretending that this is where we stopped at the end of
4086  // expression evaluation.  m_update_state is used to distinguish these three
4087  // cases; it is 0 when we're just pulling it off for private handling, and >
4088  // 1 for expression evaluation, and we don't want to do the breakpoint
4089  // command handling then.
4090  if (m_update_state != 1)
4091    return;
4092
4093  process_sp->SetPublicState(
4094      m_state, Process::ProcessEventData::GetRestartedFromEvent(event_ptr));
4095
4096  if (m_state == eStateStopped && !m_restarted) {
4097    // Let process subclasses know we are about to do a public stop and do
4098    // anything they might need to in order to speed up register and memory
4099    // accesses.
4100    process_sp->WillPublicStop();
4101  }
4102
4103  // If this is a halt event, even if the halt stopped with some reason other
4104  // than a plain interrupt (e.g. we had already stopped for a breakpoint when
4105  // the halt request came through) don't do the StopInfo actions, as they may
4106  // end up restarting the process.
4107  if (m_interrupted)
4108    return;
4109
4110  // If we're not stopped or have restarted, then skip the StopInfo actions:
4111  if (m_state != eStateStopped || m_restarted) {
4112    return;
4113  }
4114
4115  bool does_anybody_have_an_opinion = false;
4116  bool still_should_stop = ShouldStop(event_ptr, does_anybody_have_an_opinion);
4117
4118  if (GetRestarted()) {
4119    return;
4120  }
4121
4122  if (!still_should_stop && does_anybody_have_an_opinion) {
4123    // We've been asked to continue, so do that here.
4124    SetRestarted(true);
4125    // Use the private resume method here, since we aren't changing the run
4126    // lock state.
4127    process_sp->PrivateResume();
4128  } else {
4129    bool hijacked = process_sp->IsHijackedForEvent(eBroadcastBitStateChanged) &&
4130                    !process_sp->StateChangedIsHijackedForSynchronousResume();
4131
4132    if (!hijacked) {
4133      // If we didn't restart, run the Stop Hooks here.
4134      // Don't do that if state changed events aren't hooked up to the
4135      // public (or SyncResume) broadcasters.  StopHooks are just for
4136      // real public stops.  They might also restart the target,
4137      // so watch for that.
4138      if (process_sp->GetTarget().RunStopHooks())
4139        SetRestarted(true);
4140    }
4141  }
4142}
4143
4144void Process::ProcessEventData::Dump(Stream *s) const {
4145  ProcessSP process_sp(m_process_wp.lock());
4146
4147  if (process_sp)
4148    s->Printf(" process = %p (pid = %" PRIu64 "), ",
4149              static_cast<void *>(process_sp.get()), process_sp->GetID());
4150  else
4151    s->PutCString(" process = NULL, ");
4152
4153  s->Printf("state = %s", StateAsCString(GetState()));
4154}
4155
4156const Process::ProcessEventData *
4157Process::ProcessEventData::GetEventDataFromEvent(const Event *event_ptr) {
4158  if (event_ptr) {
4159    const EventData *event_data = event_ptr->GetData();
4160    if (event_data &&
4161        event_data->GetFlavor() == ProcessEventData::GetFlavorString())
4162      return static_cast<const ProcessEventData *>(event_ptr->GetData());
4163  }
4164  return nullptr;
4165}
4166
4167ProcessSP
4168Process::ProcessEventData::GetProcessFromEvent(const Event *event_ptr) {
4169  ProcessSP process_sp;
4170  const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4171  if (data)
4172    process_sp = data->GetProcessSP();
4173  return process_sp;
4174}
4175
4176StateType Process::ProcessEventData::GetStateFromEvent(const Event *event_ptr) {
4177  const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4178  if (data == nullptr)
4179    return eStateInvalid;
4180  else
4181    return data->GetState();
4182}
4183
4184bool Process::ProcessEventData::GetRestartedFromEvent(const Event *event_ptr) {
4185  const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4186  if (data == nullptr)
4187    return false;
4188  else
4189    return data->GetRestarted();
4190}
4191
4192void Process::ProcessEventData::SetRestartedInEvent(Event *event_ptr,
4193                                                    bool new_value) {
4194  ProcessEventData *data =
4195      const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4196  if (data != nullptr)
4197    data->SetRestarted(new_value);
4198}
4199
4200size_t
4201Process::ProcessEventData::GetNumRestartedReasons(const Event *event_ptr) {
4202  ProcessEventData *data =
4203      const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4204  if (data != nullptr)
4205    return data->GetNumRestartedReasons();
4206  else
4207    return 0;
4208}
4209
4210const char *
4211Process::ProcessEventData::GetRestartedReasonAtIndex(const Event *event_ptr,
4212                                                     size_t idx) {
4213  ProcessEventData *data =
4214      const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4215  if (data != nullptr)
4216    return data->GetRestartedReasonAtIndex(idx);
4217  else
4218    return nullptr;
4219}
4220
4221void Process::ProcessEventData::AddRestartedReason(Event *event_ptr,
4222                                                   const char *reason) {
4223  ProcessEventData *data =
4224      const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4225  if (data != nullptr)
4226    data->AddRestartedReason(reason);
4227}
4228
4229bool Process::ProcessEventData::GetInterruptedFromEvent(
4230    const Event *event_ptr) {
4231  const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4232  if (data == nullptr)
4233    return false;
4234  else
4235    return data->GetInterrupted();
4236}
4237
4238void Process::ProcessEventData::SetInterruptedInEvent(Event *event_ptr,
4239                                                      bool new_value) {
4240  ProcessEventData *data =
4241      const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4242  if (data != nullptr)
4243    data->SetInterrupted(new_value);
4244}
4245
4246bool Process::ProcessEventData::SetUpdateStateOnRemoval(Event *event_ptr) {
4247  ProcessEventData *data =
4248      const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4249  if (data) {
4250    data->SetUpdateStateOnRemoval();
4251    return true;
4252  }
4253  return false;
4254}
4255
4256lldb::TargetSP Process::CalculateTarget() { return m_target_wp.lock(); }
4257
4258void Process::CalculateExecutionContext(ExecutionContext &exe_ctx) {
4259  exe_ctx.SetTargetPtr(&GetTarget());
4260  exe_ctx.SetProcessPtr(this);
4261  exe_ctx.SetThreadPtr(nullptr);
4262  exe_ctx.SetFramePtr(nullptr);
4263}
4264
4265// uint32_t
4266// Process::ListProcessesMatchingName (const char *name, StringList &matches,
4267// std::vector<lldb::pid_t> &pids)
4268//{
4269//    return 0;
4270//}
4271//
4272// ArchSpec
4273// Process::GetArchSpecForExistingProcess (lldb::pid_t pid)
4274//{
4275//    return Host::GetArchSpecForExistingProcess (pid);
4276//}
4277//
4278// ArchSpec
4279// Process::GetArchSpecForExistingProcess (const char *process_name)
4280//{
4281//    return Host::GetArchSpecForExistingProcess (process_name);
4282//}
4283
4284void Process::AppendSTDOUT(const char *s, size_t len) {
4285  std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex);
4286  m_stdout_data.append(s, len);
4287  BroadcastEventIfUnique(eBroadcastBitSTDOUT,
4288                         new ProcessEventData(shared_from_this(), GetState()));
4289}
4290
4291void Process::AppendSTDERR(const char *s, size_t len) {
4292  std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex);
4293  m_stderr_data.append(s, len);
4294  BroadcastEventIfUnique(eBroadcastBitSTDERR,
4295                         new ProcessEventData(shared_from_this(), GetState()));
4296}
4297
4298void Process::BroadcastAsyncProfileData(const std::string &one_profile_data) {
4299  std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex);
4300  m_profile_data.push_back(one_profile_data);
4301  BroadcastEventIfUnique(eBroadcastBitProfileData,
4302                         new ProcessEventData(shared_from_this(), GetState()));
4303}
4304
4305void Process::BroadcastStructuredData(const StructuredData::ObjectSP &object_sp,
4306                                      const StructuredDataPluginSP &plugin_sp) {
4307  auto data_sp = std::make_shared<EventDataStructuredData>(
4308      shared_from_this(), object_sp, plugin_sp);
4309  BroadcastEvent(eBroadcastBitStructuredData, data_sp);
4310}
4311
4312StructuredDataPluginSP
4313Process::GetStructuredDataPlugin(llvm::StringRef type_name) const {
4314  auto find_it = m_structured_data_plugin_map.find(type_name);
4315  if (find_it != m_structured_data_plugin_map.end())
4316    return find_it->second;
4317  else
4318    return StructuredDataPluginSP();
4319}
4320
4321size_t Process::GetAsyncProfileData(char *buf, size_t buf_size, Status &error) {
4322  std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex);
4323  if (m_profile_data.empty())
4324    return 0;
4325
4326  std::string &one_profile_data = m_profile_data.front();
4327  size_t bytes_available = one_profile_data.size();
4328  if (bytes_available > 0) {
4329    Log *log = GetLog(LLDBLog::Process);
4330    LLDB_LOGF(log, "Process::GetProfileData (buf = %p, size = %" PRIu64 ")",
4331              static_cast<void *>(buf), static_cast<uint64_t>(buf_size));
4332    if (bytes_available > buf_size) {
4333      memcpy(buf, one_profile_data.c_str(), buf_size);
4334      one_profile_data.erase(0, buf_size);
4335      bytes_available = buf_size;
4336    } else {
4337      memcpy(buf, one_profile_data.c_str(), bytes_available);
4338      m_profile_data.erase(m_profile_data.begin());
4339    }
4340  }
4341  return bytes_available;
4342}
4343
4344// Process STDIO
4345
4346size_t Process::GetSTDOUT(char *buf, size_t buf_size, Status &error) {
4347  std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex);
4348  size_t bytes_available = m_stdout_data.size();
4349  if (bytes_available > 0) {
4350    Log *log = GetLog(LLDBLog::Process);
4351    LLDB_LOGF(log, "Process::GetSTDOUT (buf = %p, size = %" PRIu64 ")",
4352              static_cast<void *>(buf), static_cast<uint64_t>(buf_size));
4353    if (bytes_available > buf_size) {
4354      memcpy(buf, m_stdout_data.c_str(), buf_size);
4355      m_stdout_data.erase(0, buf_size);
4356      bytes_available = buf_size;
4357    } else {
4358      memcpy(buf, m_stdout_data.c_str(), bytes_available);
4359      m_stdout_data.clear();
4360    }
4361  }
4362  return bytes_available;
4363}
4364
4365size_t Process::GetSTDERR(char *buf, size_t buf_size, Status &error) {
4366  std::lock_guard<std::recursive_mutex> gaurd(m_stdio_communication_mutex);
4367  size_t bytes_available = m_stderr_data.size();
4368  if (bytes_available > 0) {
4369    Log *log = GetLog(LLDBLog::Process);
4370    LLDB_LOGF(log, "Process::GetSTDERR (buf = %p, size = %" PRIu64 ")",
4371              static_cast<void *>(buf), static_cast<uint64_t>(buf_size));
4372    if (bytes_available > buf_size) {
4373      memcpy(buf, m_stderr_data.c_str(), buf_size);
4374      m_stderr_data.erase(0, buf_size);
4375      bytes_available = buf_size;
4376    } else {
4377      memcpy(buf, m_stderr_data.c_str(), bytes_available);
4378      m_stderr_data.clear();
4379    }
4380  }
4381  return bytes_available;
4382}
4383
4384void Process::STDIOReadThreadBytesReceived(void *baton, const void *src,
4385                                           size_t src_len) {
4386  Process *process = (Process *)baton;
4387  process->AppendSTDOUT(static_cast<const char *>(src), src_len);
4388}
4389
4390class IOHandlerProcessSTDIO : public IOHandler {
4391public:
4392  IOHandlerProcessSTDIO(Process *process, int write_fd)
4393      : IOHandler(process->GetTarget().GetDebugger(),
4394                  IOHandler::Type::ProcessIO),
4395        m_process(process),
4396        m_read_file(GetInputFD(), File::eOpenOptionReadOnly, false),
4397        m_write_file(write_fd, File::eOpenOptionWriteOnly, false) {
4398    m_pipe.CreateNew(false);
4399  }
4400
4401  ~IOHandlerProcessSTDIO() override = default;
4402
4403  void SetIsRunning(bool running) {
4404    std::lock_guard<std::mutex> guard(m_mutex);
4405    SetIsDone(!running);
4406    m_is_running = running;
4407  }
4408
4409  // Each IOHandler gets to run until it is done. It should read data from the
4410  // "in" and place output into "out" and "err and return when done.
4411  void Run() override {
4412    if (!m_read_file.IsValid() || !m_write_file.IsValid() ||
4413        !m_pipe.CanRead() || !m_pipe.CanWrite()) {
4414      SetIsDone(true);
4415      return;
4416    }
4417
4418    SetIsDone(false);
4419    const int read_fd = m_read_file.GetDescriptor();
4420    Terminal terminal(read_fd);
4421    TerminalState terminal_state(terminal, false);
4422    // FIXME: error handling?
4423    llvm::consumeError(terminal.SetCanonical(false));
4424    llvm::consumeError(terminal.SetEcho(false));
4425// FD_ZERO, FD_SET are not supported on windows
4426#ifndef _WIN32
4427    const int pipe_read_fd = m_pipe.GetReadFileDescriptor();
4428    SetIsRunning(true);
4429    while (true) {
4430      {
4431        std::lock_guard<std::mutex> guard(m_mutex);
4432        if (GetIsDone())
4433          break;
4434      }
4435
4436      SelectHelper select_helper;
4437      select_helper.FDSetRead(read_fd);
4438      select_helper.FDSetRead(pipe_read_fd);
4439      Status error = select_helper.Select();
4440
4441      if (error.Fail())
4442        break;
4443
4444      char ch = 0;
4445      size_t n;
4446      if (select_helper.FDIsSetRead(read_fd)) {
4447        n = 1;
4448        if (m_read_file.Read(&ch, n).Success() && n == 1) {
4449          if (m_write_file.Write(&ch, n).Fail() || n != 1)
4450            break;
4451        } else
4452          break;
4453      }
4454
4455      if (select_helper.FDIsSetRead(pipe_read_fd)) {
4456        size_t bytes_read;
4457        // Consume the interrupt byte
4458        Status error = m_pipe.Read(&ch, 1, bytes_read);
4459        if (error.Success()) {
4460          if (ch == 'q')
4461            break;
4462          if (ch == 'i')
4463            if (StateIsRunningState(m_process->GetState()))
4464              m_process->SendAsyncInterrupt();
4465        }
4466      }
4467    }
4468    SetIsRunning(false);
4469#endif
4470  }
4471
4472  void Cancel() override {
4473    std::lock_guard<std::mutex> guard(m_mutex);
4474    SetIsDone(true);
4475    // Only write to our pipe to cancel if we are in
4476    // IOHandlerProcessSTDIO::Run(). We can end up with a python command that
4477    // is being run from the command interpreter:
4478    //
4479    // (lldb) step_process_thousands_of_times
4480    //
4481    // In this case the command interpreter will be in the middle of handling
4482    // the command and if the process pushes and pops the IOHandler thousands
4483    // of times, we can end up writing to m_pipe without ever consuming the
4484    // bytes from the pipe in IOHandlerProcessSTDIO::Run() and end up
4485    // deadlocking when the pipe gets fed up and blocks until data is consumed.
4486    if (m_is_running) {
4487      char ch = 'q'; // Send 'q' for quit
4488      size_t bytes_written = 0;
4489      m_pipe.Write(&ch, 1, bytes_written);
4490    }
4491  }
4492
4493  bool Interrupt() override {
4494    // Do only things that are safe to do in an interrupt context (like in a
4495    // SIGINT handler), like write 1 byte to a file descriptor. This will
4496    // interrupt the IOHandlerProcessSTDIO::Run() and we can look at the byte
4497    // that was written to the pipe and then call
4498    // m_process->SendAsyncInterrupt() from a much safer location in code.
4499    if (m_active) {
4500      char ch = 'i'; // Send 'i' for interrupt
4501      size_t bytes_written = 0;
4502      Status result = m_pipe.Write(&ch, 1, bytes_written);
4503      return result.Success();
4504    } else {
4505      // This IOHandler might be pushed on the stack, but not being run
4506      // currently so do the right thing if we aren't actively watching for
4507      // STDIN by sending the interrupt to the process. Otherwise the write to
4508      // the pipe above would do nothing. This can happen when the command
4509      // interpreter is running and gets a "expression ...". It will be on the
4510      // IOHandler thread and sending the input is complete to the delegate
4511      // which will cause the expression to run, which will push the process IO
4512      // handler, but not run it.
4513
4514      if (StateIsRunningState(m_process->GetState())) {
4515        m_process->SendAsyncInterrupt();
4516        return true;
4517      }
4518    }
4519    return false;
4520  }
4521
4522  void GotEOF() override {}
4523
4524protected:
4525  Process *m_process;
4526  NativeFile m_read_file;  // Read from this file (usually actual STDIN for LLDB
4527  NativeFile m_write_file; // Write to this file (usually the primary pty for
4528                           // getting io to debuggee)
4529  Pipe m_pipe;
4530  std::mutex m_mutex;
4531  bool m_is_running = false;
4532};
4533
4534void Process::SetSTDIOFileDescriptor(int fd) {
4535  // First set up the Read Thread for reading/handling process I/O
4536  m_stdio_communication.SetConnection(
4537      std::make_unique<ConnectionFileDescriptor>(fd, true));
4538  if (m_stdio_communication.IsConnected()) {
4539    m_stdio_communication.SetReadThreadBytesReceivedCallback(
4540        STDIOReadThreadBytesReceived, this);
4541    m_stdio_communication.StartReadThread();
4542
4543    // Now read thread is set up, set up input reader.
4544    {
4545      std::lock_guard<std::mutex> guard(m_process_input_reader_mutex);
4546      if (!m_process_input_reader)
4547        m_process_input_reader =
4548            std::make_shared<IOHandlerProcessSTDIO>(this, fd);
4549    }
4550  }
4551}
4552
4553bool Process::ProcessIOHandlerIsActive() {
4554  std::lock_guard<std::mutex> guard(m_process_input_reader_mutex);
4555  IOHandlerSP io_handler_sp(m_process_input_reader);
4556  if (io_handler_sp)
4557    return GetTarget().GetDebugger().IsTopIOHandler(io_handler_sp);
4558  return false;
4559}
4560
4561bool Process::PushProcessIOHandler() {
4562  std::lock_guard<std::mutex> guard(m_process_input_reader_mutex);
4563  IOHandlerSP io_handler_sp(m_process_input_reader);
4564  if (io_handler_sp) {
4565    Log *log = GetLog(LLDBLog::Process);
4566    LLDB_LOGF(log, "Process::%s pushing IO handler", __FUNCTION__);
4567
4568    io_handler_sp->SetIsDone(false);
4569    // If we evaluate an utility function, then we don't cancel the current
4570    // IOHandler. Our IOHandler is non-interactive and shouldn't disturb the
4571    // existing IOHandler that potentially provides the user interface (e.g.
4572    // the IOHandler for Editline).
4573    bool cancel_top_handler = !m_mod_id.IsRunningUtilityFunction();
4574    GetTarget().GetDebugger().RunIOHandlerAsync(io_handler_sp,
4575                                                cancel_top_handler);
4576    return true;
4577  }
4578  return false;
4579}
4580
4581bool Process::PopProcessIOHandler() {
4582  std::lock_guard<std::mutex> guard(m_process_input_reader_mutex);
4583  IOHandlerSP io_handler_sp(m_process_input_reader);
4584  if (io_handler_sp)
4585    return GetTarget().GetDebugger().RemoveIOHandler(io_handler_sp);
4586  return false;
4587}
4588
4589// The process needs to know about installed plug-ins
4590void Process::SettingsInitialize() { Thread::SettingsInitialize(); }
4591
4592void Process::SettingsTerminate() { Thread::SettingsTerminate(); }
4593
4594namespace {
4595// RestorePlanState is used to record the "is private", "is controlling" and
4596// "okay
4597// to discard" fields of the plan we are running, and reset it on Clean or on
4598// destruction. It will only reset the state once, so you can call Clean and
4599// then monkey with the state and it won't get reset on you again.
4600
4601class RestorePlanState {
4602public:
4603  RestorePlanState(lldb::ThreadPlanSP thread_plan_sp)
4604      : m_thread_plan_sp(thread_plan_sp) {
4605    if (m_thread_plan_sp) {
4606      m_private = m_thread_plan_sp->GetPrivate();
4607      m_is_controlling = m_thread_plan_sp->IsControllingPlan();
4608      m_okay_to_discard = m_thread_plan_sp->OkayToDiscard();
4609    }
4610  }
4611
4612  ~RestorePlanState() { Clean(); }
4613
4614  void Clean() {
4615    if (!m_already_reset && m_thread_plan_sp) {
4616      m_already_reset = true;
4617      m_thread_plan_sp->SetPrivate(m_private);
4618      m_thread_plan_sp->SetIsControllingPlan(m_is_controlling);
4619      m_thread_plan_sp->SetOkayToDiscard(m_okay_to_discard);
4620    }
4621  }
4622
4623private:
4624  lldb::ThreadPlanSP m_thread_plan_sp;
4625  bool m_already_reset = false;
4626  bool m_private = false;
4627  bool m_is_controlling = false;
4628  bool m_okay_to_discard = false;
4629};
4630} // anonymous namespace
4631
4632static microseconds
4633GetOneThreadExpressionTimeout(const EvaluateExpressionOptions &options) {
4634  const milliseconds default_one_thread_timeout(250);
4635
4636  // If the overall wait is forever, then we don't need to worry about it.
4637  if (!options.GetTimeout()) {
4638    return options.GetOneThreadTimeout() ? *options.GetOneThreadTimeout()
4639                                         : default_one_thread_timeout;
4640  }
4641
4642  // If the one thread timeout is set, use it.
4643  if (options.GetOneThreadTimeout())
4644    return *options.GetOneThreadTimeout();
4645
4646  // Otherwise use half the total timeout, bounded by the
4647  // default_one_thread_timeout.
4648  return std::min<microseconds>(default_one_thread_timeout,
4649                                *options.GetTimeout() / 2);
4650}
4651
4652static Timeout<std::micro>
4653GetExpressionTimeout(const EvaluateExpressionOptions &options,
4654                     bool before_first_timeout) {
4655  // If we are going to run all threads the whole time, or if we are only going
4656  // to run one thread, we can just return the overall timeout.
4657  if (!options.GetStopOthers() || !options.GetTryAllThreads())
4658    return options.GetTimeout();
4659
4660  if (before_first_timeout)
4661    return GetOneThreadExpressionTimeout(options);
4662
4663  if (!options.GetTimeout())
4664    return std::nullopt;
4665  else
4666    return *options.GetTimeout() - GetOneThreadExpressionTimeout(options);
4667}
4668
4669static std::optional<ExpressionResults>
4670HandleStoppedEvent(lldb::tid_t thread_id, const ThreadPlanSP &thread_plan_sp,
4671                   RestorePlanState &restorer, const EventSP &event_sp,
4672                   EventSP &event_to_broadcast_sp,
4673                   const EvaluateExpressionOptions &options,
4674                   bool handle_interrupts) {
4675  Log *log = GetLog(LLDBLog::Step | LLDBLog::Process);
4676
4677  ThreadSP thread_sp = thread_plan_sp->GetTarget()
4678                           .GetProcessSP()
4679                           ->GetThreadList()
4680                           .FindThreadByID(thread_id);
4681  if (!thread_sp) {
4682    LLDB_LOG(log,
4683             "The thread on which we were running the "
4684             "expression: tid = {0}, exited while "
4685             "the expression was running.",
4686             thread_id);
4687    return eExpressionThreadVanished;
4688  }
4689
4690  ThreadPlanSP plan = thread_sp->GetCompletedPlan();
4691  if (plan == thread_plan_sp && plan->PlanSucceeded()) {
4692    LLDB_LOG(log, "execution completed successfully");
4693
4694    // Restore the plan state so it will get reported as intended when we are
4695    // done.
4696    restorer.Clean();
4697    return eExpressionCompleted;
4698  }
4699
4700  StopInfoSP stop_info_sp = thread_sp->GetStopInfo();
4701  if (stop_info_sp && stop_info_sp->GetStopReason() == eStopReasonBreakpoint &&
4702      stop_info_sp->ShouldNotify(event_sp.get())) {
4703    LLDB_LOG(log, "stopped for breakpoint: {0}.", stop_info_sp->GetDescription());
4704    if (!options.DoesIgnoreBreakpoints()) {
4705      // Restore the plan state and then force Private to false.  We are going
4706      // to stop because of this plan so we need it to become a public plan or
4707      // it won't report correctly when we continue to its termination later
4708      // on.
4709      restorer.Clean();
4710      thread_plan_sp->SetPrivate(false);
4711      event_to_broadcast_sp = event_sp;
4712    }
4713    return eExpressionHitBreakpoint;
4714  }
4715
4716  if (!handle_interrupts &&
4717      Process::ProcessEventData::GetInterruptedFromEvent(event_sp.get()))
4718    return std::nullopt;
4719
4720  LLDB_LOG(log, "thread plan did not successfully complete");
4721  if (!options.DoesUnwindOnError())
4722    event_to_broadcast_sp = event_sp;
4723  return eExpressionInterrupted;
4724}
4725
4726ExpressionResults
4727Process::RunThreadPlan(ExecutionContext &exe_ctx,
4728                       lldb::ThreadPlanSP &thread_plan_sp,
4729                       const EvaluateExpressionOptions &options,
4730                       DiagnosticManager &diagnostic_manager) {
4731  ExpressionResults return_value = eExpressionSetupError;
4732
4733  std::lock_guard<std::mutex> run_thread_plan_locker(m_run_thread_plan_lock);
4734
4735  if (!thread_plan_sp) {
4736    diagnostic_manager.PutString(
4737        eDiagnosticSeverityError,
4738        "RunThreadPlan called with empty thread plan.");
4739    return eExpressionSetupError;
4740  }
4741
4742  if (!thread_plan_sp->ValidatePlan(nullptr)) {
4743    diagnostic_manager.PutString(
4744        eDiagnosticSeverityError,
4745        "RunThreadPlan called with an invalid thread plan.");
4746    return eExpressionSetupError;
4747  }
4748
4749  if (exe_ctx.GetProcessPtr() != this) {
4750    diagnostic_manager.PutString(eDiagnosticSeverityError,
4751                                 "RunThreadPlan called on wrong process.");
4752    return eExpressionSetupError;
4753  }
4754
4755  Thread *thread = exe_ctx.GetThreadPtr();
4756  if (thread == nullptr) {
4757    diagnostic_manager.PutString(eDiagnosticSeverityError,
4758                                 "RunThreadPlan called with invalid thread.");
4759    return eExpressionSetupError;
4760  }
4761
4762  // Record the thread's id so we can tell when a thread we were using
4763  // to run the expression exits during the expression evaluation.
4764  lldb::tid_t expr_thread_id = thread->GetID();
4765
4766  // We need to change some of the thread plan attributes for the thread plan
4767  // runner.  This will restore them when we are done:
4768
4769  RestorePlanState thread_plan_restorer(thread_plan_sp);
4770
4771  // We rely on the thread plan we are running returning "PlanCompleted" if
4772  // when it successfully completes. For that to be true the plan can't be
4773  // private - since private plans suppress themselves in the GetCompletedPlan
4774  // call.
4775
4776  thread_plan_sp->SetPrivate(false);
4777
4778  // The plans run with RunThreadPlan also need to be terminal controlling plans
4779  // or when they are done we will end up asking the plan above us whether we
4780  // should stop, which may give the wrong answer.
4781
4782  thread_plan_sp->SetIsControllingPlan(true);
4783  thread_plan_sp->SetOkayToDiscard(false);
4784
4785  // If we are running some utility expression for LLDB, we now have to mark
4786  // this in the ProcesModID of this process. This RAII takes care of marking
4787  // and reverting the mark it once we are done running the expression.
4788  UtilityFunctionScope util_scope(options.IsForUtilityExpr() ? this : nullptr);
4789
4790  if (m_private_state.GetValue() != eStateStopped) {
4791    diagnostic_manager.PutString(
4792        eDiagnosticSeverityError,
4793        "RunThreadPlan called while the private state was not stopped.");
4794    return eExpressionSetupError;
4795  }
4796
4797  // Save the thread & frame from the exe_ctx for restoration after we run
4798  const uint32_t thread_idx_id = thread->GetIndexID();
4799  StackFrameSP selected_frame_sp =
4800      thread->GetSelectedFrame(DoNoSelectMostRelevantFrame);
4801  if (!selected_frame_sp) {
4802    thread->SetSelectedFrame(nullptr);
4803    selected_frame_sp = thread->GetSelectedFrame(DoNoSelectMostRelevantFrame);
4804    if (!selected_frame_sp) {
4805      diagnostic_manager.Printf(
4806          eDiagnosticSeverityError,
4807          "RunThreadPlan called without a selected frame on thread %d",
4808          thread_idx_id);
4809      return eExpressionSetupError;
4810    }
4811  }
4812
4813  // Make sure the timeout values make sense. The one thread timeout needs to
4814  // be smaller than the overall timeout.
4815  if (options.GetOneThreadTimeout() && options.GetTimeout() &&
4816      *options.GetTimeout() < *options.GetOneThreadTimeout()) {
4817    diagnostic_manager.PutString(eDiagnosticSeverityError,
4818                                 "RunThreadPlan called with one thread "
4819                                 "timeout greater than total timeout");
4820    return eExpressionSetupError;
4821  }
4822
4823  StackID ctx_frame_id = selected_frame_sp->GetStackID();
4824
4825  // N.B. Running the target may unset the currently selected thread and frame.
4826  // We don't want to do that either, so we should arrange to reset them as
4827  // well.
4828
4829  lldb::ThreadSP selected_thread_sp = GetThreadList().GetSelectedThread();
4830
4831  uint32_t selected_tid;
4832  StackID selected_stack_id;
4833  if (selected_thread_sp) {
4834    selected_tid = selected_thread_sp->GetIndexID();
4835    selected_stack_id =
4836        selected_thread_sp->GetSelectedFrame(DoNoSelectMostRelevantFrame)
4837            ->GetStackID();
4838  } else {
4839    selected_tid = LLDB_INVALID_THREAD_ID;
4840  }
4841
4842  HostThread backup_private_state_thread;
4843  lldb::StateType old_state = eStateInvalid;
4844  lldb::ThreadPlanSP stopper_base_plan_sp;
4845
4846  Log *log(GetLog(LLDBLog::Step | LLDBLog::Process));
4847  if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) {
4848    // Yikes, we are running on the private state thread!  So we can't wait for
4849    // public events on this thread, since we are the thread that is generating
4850    // public events. The simplest thing to do is to spin up a temporary thread
4851    // to handle private state thread events while we are fielding public
4852    // events here.
4853    LLDB_LOGF(log, "Running thread plan on private state thread, spinning up "
4854                   "another state thread to handle the events.");
4855
4856    backup_private_state_thread = m_private_state_thread;
4857
4858    // One other bit of business: we want to run just this thread plan and
4859    // anything it pushes, and then stop, returning control here. But in the
4860    // normal course of things, the plan above us on the stack would be given a
4861    // shot at the stop event before deciding to stop, and we don't want that.
4862    // So we insert a "stopper" base plan on the stack before the plan we want
4863    // to run.  Since base plans always stop and return control to the user,
4864    // that will do just what we want.
4865    stopper_base_plan_sp.reset(new ThreadPlanBase(*thread));
4866    thread->QueueThreadPlan(stopper_base_plan_sp, false);
4867    // Have to make sure our public state is stopped, since otherwise the
4868    // reporting logic below doesn't work correctly.
4869    old_state = m_public_state.GetValue();
4870    m_public_state.SetValueNoLock(eStateStopped);
4871
4872    // Now spin up the private state thread:
4873    StartPrivateStateThread(true);
4874  }
4875
4876  thread->QueueThreadPlan(
4877      thread_plan_sp, false); // This used to pass "true" does that make sense?
4878
4879  if (options.GetDebug()) {
4880    // In this case, we aren't actually going to run, we just want to stop
4881    // right away. Flush this thread so we will refetch the stacks and show the
4882    // correct backtrace.
4883    // FIXME: To make this prettier we should invent some stop reason for this,
4884    // but that
4885    // is only cosmetic, and this functionality is only of use to lldb
4886    // developers who can live with not pretty...
4887    thread->Flush();
4888    return eExpressionStoppedForDebug;
4889  }
4890
4891  ListenerSP listener_sp(
4892      Listener::MakeListener("lldb.process.listener.run-thread-plan"));
4893
4894  lldb::EventSP event_to_broadcast_sp;
4895
4896  {
4897    // This process event hijacker Hijacks the Public events and its destructor
4898    // makes sure that the process events get restored on exit to the function.
4899    //
4900    // If the event needs to propagate beyond the hijacker (e.g., the process
4901    // exits during execution), then the event is put into
4902    // event_to_broadcast_sp for rebroadcasting.
4903
4904    ProcessEventHijacker run_thread_plan_hijacker(*this, listener_sp);
4905
4906    if (log) {
4907      StreamString s;
4908      thread_plan_sp->GetDescription(&s, lldb::eDescriptionLevelVerbose);
4909      LLDB_LOGF(log,
4910                "Process::RunThreadPlan(): Resuming thread %u - 0x%4.4" PRIx64
4911                " to run thread plan \"%s\".",
4912                thread_idx_id, expr_thread_id, s.GetData());
4913    }
4914
4915    bool got_event;
4916    lldb::EventSP event_sp;
4917    lldb::StateType stop_state = lldb::eStateInvalid;
4918
4919    bool before_first_timeout = true; // This is set to false the first time
4920                                      // that we have to halt the target.
4921    bool do_resume = true;
4922    bool handle_running_event = true;
4923
4924    // This is just for accounting:
4925    uint32_t num_resumes = 0;
4926
4927    // If we are going to run all threads the whole time, or if we are only
4928    // going to run one thread, then we don't need the first timeout.  So we
4929    // pretend we are after the first timeout already.
4930    if (!options.GetStopOthers() || !options.GetTryAllThreads())
4931      before_first_timeout = false;
4932
4933    LLDB_LOGF(log, "Stop others: %u, try all: %u, before_first: %u.\n",
4934              options.GetStopOthers(), options.GetTryAllThreads(),
4935              before_first_timeout);
4936
4937    // This isn't going to work if there are unfetched events on the queue. Are
4938    // there cases where we might want to run the remaining events here, and
4939    // then try to call the function?  That's probably being too tricky for our
4940    // own good.
4941
4942    Event *other_events = listener_sp->PeekAtNextEvent();
4943    if (other_events != nullptr) {
4944      diagnostic_manager.PutString(
4945          eDiagnosticSeverityError,
4946          "RunThreadPlan called with pending events on the queue.");
4947      return eExpressionSetupError;
4948    }
4949
4950    // We also need to make sure that the next event is delivered.  We might be
4951    // calling a function as part of a thread plan, in which case the last
4952    // delivered event could be the running event, and we don't want event
4953    // coalescing to cause us to lose OUR running event...
4954    ForceNextEventDelivery();
4955
4956// This while loop must exit out the bottom, there's cleanup that we need to do
4957// when we are done. So don't call return anywhere within it.
4958
4959#ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT
4960    // It's pretty much impossible to write test cases for things like: One
4961    // thread timeout expires, I go to halt, but the process already stopped on
4962    // the function call stop breakpoint.  Turning on this define will make us
4963    // not fetch the first event till after the halt.  So if you run a quick
4964    // function, it will have completed, and the completion event will be
4965    // waiting, when you interrupt for halt. The expression evaluation should
4966    // still succeed.
4967    bool miss_first_event = true;
4968#endif
4969    while (true) {
4970      // We usually want to resume the process if we get to the top of the
4971      // loop. The only exception is if we get two running events with no
4972      // intervening stop, which can happen, we will just wait for then next
4973      // stop event.
4974      LLDB_LOGF(log,
4975                "Top of while loop: do_resume: %i handle_running_event: %i "
4976                "before_first_timeout: %i.",
4977                do_resume, handle_running_event, before_first_timeout);
4978
4979      if (do_resume || handle_running_event) {
4980        // Do the initial resume and wait for the running event before going
4981        // further.
4982
4983        if (do_resume) {
4984          num_resumes++;
4985          Status resume_error = PrivateResume();
4986          if (!resume_error.Success()) {
4987            diagnostic_manager.Printf(
4988                eDiagnosticSeverityError,
4989                "couldn't resume inferior the %d time: \"%s\".", num_resumes,
4990                resume_error.AsCString());
4991            return_value = eExpressionSetupError;
4992            break;
4993          }
4994        }
4995
4996        got_event =
4997            listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout());
4998        if (!got_event) {
4999          LLDB_LOGF(log,
5000                    "Process::RunThreadPlan(): didn't get any event after "
5001                    "resume %" PRIu32 ", exiting.",
5002                    num_resumes);
5003
5004          diagnostic_manager.Printf(eDiagnosticSeverityError,
5005                                    "didn't get any event after resume %" PRIu32
5006                                    ", exiting.",
5007                                    num_resumes);
5008          return_value = eExpressionSetupError;
5009          break;
5010        }
5011
5012        stop_state =
5013            Process::ProcessEventData::GetStateFromEvent(event_sp.get());
5014
5015        if (stop_state != eStateRunning) {
5016          bool restarted = false;
5017
5018          if (stop_state == eStateStopped) {
5019            restarted = Process::ProcessEventData::GetRestartedFromEvent(
5020                event_sp.get());
5021            LLDB_LOGF(
5022                log,
5023                "Process::RunThreadPlan(): didn't get running event after "
5024                "resume %d, got %s instead (restarted: %i, do_resume: %i, "
5025                "handle_running_event: %i).",
5026                num_resumes, StateAsCString(stop_state), restarted, do_resume,
5027                handle_running_event);
5028          }
5029
5030          if (restarted) {
5031            // This is probably an overabundance of caution, I don't think I
5032            // should ever get a stopped & restarted event here.  But if I do,
5033            // the best thing is to Halt and then get out of here.
5034            const bool clear_thread_plans = false;
5035            const bool use_run_lock = false;
5036            Halt(clear_thread_plans, use_run_lock);
5037          }
5038
5039          diagnostic_manager.Printf(
5040              eDiagnosticSeverityError,
5041              "didn't get running event after initial resume, got %s instead.",
5042              StateAsCString(stop_state));
5043          return_value = eExpressionSetupError;
5044          break;
5045        }
5046
5047        if (log)
5048          log->PutCString("Process::RunThreadPlan(): resuming succeeded.");
5049        // We need to call the function synchronously, so spin waiting for it
5050        // to return. If we get interrupted while executing, we're going to
5051        // lose our context, and won't be able to gather the result at this
5052        // point. We set the timeout AFTER the resume, since the resume takes
5053        // some time and we don't want to charge that to the timeout.
5054      } else {
5055        if (log)
5056          log->PutCString("Process::RunThreadPlan(): waiting for next event.");
5057      }
5058
5059      do_resume = true;
5060      handle_running_event = true;
5061
5062      // Now wait for the process to stop again:
5063      event_sp.reset();
5064
5065      Timeout<std::micro> timeout =
5066          GetExpressionTimeout(options, before_first_timeout);
5067      if (log) {
5068        if (timeout) {
5069          auto now = system_clock::now();
5070          LLDB_LOGF(log,
5071                    "Process::RunThreadPlan(): about to wait - now is %s - "
5072                    "endpoint is %s",
5073                    llvm::to_string(now).c_str(),
5074                    llvm::to_string(now + *timeout).c_str());
5075        } else {
5076          LLDB_LOGF(log, "Process::RunThreadPlan(): about to wait forever.");
5077        }
5078      }
5079
5080#ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT
5081      // See comment above...
5082      if (miss_first_event) {
5083        std::this_thread::sleep_for(std::chrono::milliseconds(1));
5084        miss_first_event = false;
5085        got_event = false;
5086      } else
5087#endif
5088        got_event = listener_sp->GetEvent(event_sp, timeout);
5089
5090      if (got_event) {
5091        if (event_sp) {
5092          bool keep_going = false;
5093          if (event_sp->GetType() == eBroadcastBitInterrupt) {
5094            const bool clear_thread_plans = false;
5095            const bool use_run_lock = false;
5096            Halt(clear_thread_plans, use_run_lock);
5097            return_value = eExpressionInterrupted;
5098            diagnostic_manager.PutString(eDiagnosticSeverityRemark,
5099                                         "execution halted by user interrupt.");
5100            LLDB_LOGF(log, "Process::RunThreadPlan(): Got  interrupted by "
5101                           "eBroadcastBitInterrupted, exiting.");
5102            break;
5103          } else {
5104            stop_state =
5105                Process::ProcessEventData::GetStateFromEvent(event_sp.get());
5106            LLDB_LOGF(log,
5107                      "Process::RunThreadPlan(): in while loop, got event: %s.",
5108                      StateAsCString(stop_state));
5109
5110            switch (stop_state) {
5111            case lldb::eStateStopped: {
5112              if (Process::ProcessEventData::GetRestartedFromEvent(
5113                      event_sp.get())) {
5114                // If we were restarted, we just need to go back up to fetch
5115                // another event.
5116                LLDB_LOGF(log, "Process::RunThreadPlan(): Got a stop and "
5117                               "restart, so we'll continue waiting.");
5118                keep_going = true;
5119                do_resume = false;
5120                handle_running_event = true;
5121              } else {
5122                const bool handle_interrupts = true;
5123                return_value = *HandleStoppedEvent(
5124                    expr_thread_id, thread_plan_sp, thread_plan_restorer,
5125                    event_sp, event_to_broadcast_sp, options,
5126                    handle_interrupts);
5127                if (return_value == eExpressionThreadVanished)
5128                  keep_going = false;
5129              }
5130            } break;
5131
5132            case lldb::eStateRunning:
5133              // This shouldn't really happen, but sometimes we do get two
5134              // running events without an intervening stop, and in that case
5135              // we should just go back to waiting for the stop.
5136              do_resume = false;
5137              keep_going = true;
5138              handle_running_event = false;
5139              break;
5140
5141            default:
5142              LLDB_LOGF(log,
5143                        "Process::RunThreadPlan(): execution stopped with "
5144                        "unexpected state: %s.",
5145                        StateAsCString(stop_state));
5146
5147              if (stop_state == eStateExited)
5148                event_to_broadcast_sp = event_sp;
5149
5150              diagnostic_manager.PutString(
5151                  eDiagnosticSeverityError,
5152                  "execution stopped with unexpected state.");
5153              return_value = eExpressionInterrupted;
5154              break;
5155            }
5156          }
5157
5158          if (keep_going)
5159            continue;
5160          else
5161            break;
5162        } else {
5163          if (log)
5164            log->PutCString("Process::RunThreadPlan(): got_event was true, but "
5165                            "the event pointer was null.  How odd...");
5166          return_value = eExpressionInterrupted;
5167          break;
5168        }
5169      } else {
5170        // If we didn't get an event that means we've timed out... We will
5171        // interrupt the process here.  Depending on what we were asked to do
5172        // we will either exit, or try with all threads running for the same
5173        // timeout.
5174
5175        if (log) {
5176          if (options.GetTryAllThreads()) {
5177            if (before_first_timeout) {
5178              LLDB_LOG(log,
5179                       "Running function with one thread timeout timed out.");
5180            } else
5181              LLDB_LOG(log, "Restarting function with all threads enabled and "
5182                            "timeout: {0} timed out, abandoning execution.",
5183                       timeout);
5184          } else
5185            LLDB_LOG(log, "Running function with timeout: {0} timed out, "
5186                          "abandoning execution.",
5187                     timeout);
5188        }
5189
5190        // It is possible that between the time we issued the Halt, and we get
5191        // around to calling Halt the target could have stopped.  That's fine,
5192        // Halt will figure that out and send the appropriate Stopped event.
5193        // BUT it is also possible that we stopped & restarted (e.g. hit a
5194        // signal with "stop" set to false.)  In
5195        // that case, we'll get the stopped & restarted event, and we should go
5196        // back to waiting for the Halt's stopped event.  That's what this
5197        // while loop does.
5198
5199        bool back_to_top = true;
5200        uint32_t try_halt_again = 0;
5201        bool do_halt = true;
5202        const uint32_t num_retries = 5;
5203        while (try_halt_again < num_retries) {
5204          Status halt_error;
5205          if (do_halt) {
5206            LLDB_LOGF(log, "Process::RunThreadPlan(): Running Halt.");
5207            const bool clear_thread_plans = false;
5208            const bool use_run_lock = false;
5209            Halt(clear_thread_plans, use_run_lock);
5210          }
5211          if (halt_error.Success()) {
5212            if (log)
5213              log->PutCString("Process::RunThreadPlan(): Halt succeeded.");
5214
5215            got_event =
5216                listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout());
5217
5218            if (got_event) {
5219              stop_state =
5220                  Process::ProcessEventData::GetStateFromEvent(event_sp.get());
5221              if (log) {
5222                LLDB_LOGF(log,
5223                          "Process::RunThreadPlan(): Stopped with event: %s",
5224                          StateAsCString(stop_state));
5225                if (stop_state == lldb::eStateStopped &&
5226                    Process::ProcessEventData::GetInterruptedFromEvent(
5227                        event_sp.get()))
5228                  log->PutCString("    Event was the Halt interruption event.");
5229              }
5230
5231              if (stop_state == lldb::eStateStopped) {
5232                if (Process::ProcessEventData::GetRestartedFromEvent(
5233                        event_sp.get())) {
5234                  if (log)
5235                    log->PutCString("Process::RunThreadPlan(): Went to halt "
5236                                    "but got a restarted event, there must be "
5237                                    "an un-restarted stopped event so try "
5238                                    "again...  "
5239                                    "Exiting wait loop.");
5240                  try_halt_again++;
5241                  do_halt = false;
5242                  continue;
5243                }
5244
5245                // Between the time we initiated the Halt and the time we
5246                // delivered it, the process could have already finished its
5247                // job.  Check that here:
5248                const bool handle_interrupts = false;
5249                if (auto result = HandleStoppedEvent(
5250                        expr_thread_id, thread_plan_sp, thread_plan_restorer,
5251                        event_sp, event_to_broadcast_sp, options,
5252                        handle_interrupts)) {
5253                  return_value = *result;
5254                  back_to_top = false;
5255                  break;
5256                }
5257
5258                if (!options.GetTryAllThreads()) {
5259                  if (log)
5260                    log->PutCString("Process::RunThreadPlan(): try_all_threads "
5261                                    "was false, we stopped so now we're "
5262                                    "quitting.");
5263                  return_value = eExpressionInterrupted;
5264                  back_to_top = false;
5265                  break;
5266                }
5267
5268                if (before_first_timeout) {
5269                  // Set all the other threads to run, and return to the top of
5270                  // the loop, which will continue;
5271                  before_first_timeout = false;
5272                  thread_plan_sp->SetStopOthers(false);
5273                  if (log)
5274                    log->PutCString(
5275                        "Process::RunThreadPlan(): about to resume.");
5276
5277                  back_to_top = true;
5278                  break;
5279                } else {
5280                  // Running all threads failed, so return Interrupted.
5281                  if (log)
5282                    log->PutCString("Process::RunThreadPlan(): running all "
5283                                    "threads timed out.");
5284                  return_value = eExpressionInterrupted;
5285                  back_to_top = false;
5286                  break;
5287                }
5288              }
5289            } else {
5290              if (log)
5291                log->PutCString("Process::RunThreadPlan(): halt said it "
5292                                "succeeded, but I got no event.  "
5293                                "I'm getting out of here passing Interrupted.");
5294              return_value = eExpressionInterrupted;
5295              back_to_top = false;
5296              break;
5297            }
5298          } else {
5299            try_halt_again++;
5300            continue;
5301          }
5302        }
5303
5304        if (!back_to_top || try_halt_again > num_retries)
5305          break;
5306        else
5307          continue;
5308      }
5309    } // END WAIT LOOP
5310
5311    // If we had to start up a temporary private state thread to run this
5312    // thread plan, shut it down now.
5313    if (backup_private_state_thread.IsJoinable()) {
5314      StopPrivateStateThread();
5315      Status error;
5316      m_private_state_thread = backup_private_state_thread;
5317      if (stopper_base_plan_sp) {
5318        thread->DiscardThreadPlansUpToPlan(stopper_base_plan_sp);
5319      }
5320      if (old_state != eStateInvalid)
5321        m_public_state.SetValueNoLock(old_state);
5322    }
5323
5324    // If our thread went away on us, we need to get out of here without
5325    // doing any more work.  We don't have to clean up the thread plan, that
5326    // will have happened when the Thread was destroyed.
5327    if (return_value == eExpressionThreadVanished) {
5328      return return_value;
5329    }
5330
5331    if (return_value != eExpressionCompleted && log) {
5332      // Print a backtrace into the log so we can figure out where we are:
5333      StreamString s;
5334      s.PutCString("Thread state after unsuccessful completion: \n");
5335      thread->GetStackFrameStatus(s, 0, UINT32_MAX, true, UINT32_MAX);
5336      log->PutString(s.GetString());
5337    }
5338    // Restore the thread state if we are going to discard the plan execution.
5339    // There are three cases where this could happen: 1) The execution
5340    // successfully completed 2) We hit a breakpoint, and ignore_breakpoints
5341    // was true 3) We got some other error, and discard_on_error was true
5342    bool should_unwind = (return_value == eExpressionInterrupted &&
5343                          options.DoesUnwindOnError()) ||
5344                         (return_value == eExpressionHitBreakpoint &&
5345                          options.DoesIgnoreBreakpoints());
5346
5347    if (return_value == eExpressionCompleted || should_unwind) {
5348      thread_plan_sp->RestoreThreadState();
5349    }
5350
5351    // Now do some processing on the results of the run:
5352    if (return_value == eExpressionInterrupted ||
5353        return_value == eExpressionHitBreakpoint) {
5354      if (log) {
5355        StreamString s;
5356        if (event_sp)
5357          event_sp->Dump(&s);
5358        else {
5359          log->PutCString("Process::RunThreadPlan(): Stop event that "
5360                          "interrupted us is NULL.");
5361        }
5362
5363        StreamString ts;
5364
5365        const char *event_explanation = nullptr;
5366
5367        do {
5368          if (!event_sp) {
5369            event_explanation = "<no event>";
5370            break;
5371          } else if (event_sp->GetType() == eBroadcastBitInterrupt) {
5372            event_explanation = "<user interrupt>";
5373            break;
5374          } else {
5375            const Process::ProcessEventData *event_data =
5376                Process::ProcessEventData::GetEventDataFromEvent(
5377                    event_sp.get());
5378
5379            if (!event_data) {
5380              event_explanation = "<no event data>";
5381              break;
5382            }
5383
5384            Process *process = event_data->GetProcessSP().get();
5385
5386            if (!process) {
5387              event_explanation = "<no process>";
5388              break;
5389            }
5390
5391            ThreadList &thread_list = process->GetThreadList();
5392
5393            uint32_t num_threads = thread_list.GetSize();
5394            uint32_t thread_index;
5395
5396            ts.Printf("<%u threads> ", num_threads);
5397
5398            for (thread_index = 0; thread_index < num_threads; ++thread_index) {
5399              Thread *thread = thread_list.GetThreadAtIndex(thread_index).get();
5400
5401              if (!thread) {
5402                ts.Printf("<?> ");
5403                continue;
5404              }
5405
5406              ts.Printf("<0x%4.4" PRIx64 " ", thread->GetID());
5407              RegisterContext *register_context =
5408                  thread->GetRegisterContext().get();
5409
5410              if (register_context)
5411                ts.Printf("[ip 0x%" PRIx64 "] ", register_context->GetPC());
5412              else
5413                ts.Printf("[ip unknown] ");
5414
5415              // Show the private stop info here, the public stop info will be
5416              // from the last natural stop.
5417              lldb::StopInfoSP stop_info_sp = thread->GetPrivateStopInfo();
5418              if (stop_info_sp) {
5419                const char *stop_desc = stop_info_sp->GetDescription();
5420                if (stop_desc)
5421                  ts.PutCString(stop_desc);
5422              }
5423              ts.Printf(">");
5424            }
5425
5426            event_explanation = ts.GetData();
5427          }
5428        } while (false);
5429
5430        if (event_explanation)
5431          LLDB_LOGF(log,
5432                    "Process::RunThreadPlan(): execution interrupted: %s %s",
5433                    s.GetData(), event_explanation);
5434        else
5435          LLDB_LOGF(log, "Process::RunThreadPlan(): execution interrupted: %s",
5436                    s.GetData());
5437      }
5438
5439      if (should_unwind) {
5440        LLDB_LOGF(log,
5441                  "Process::RunThreadPlan: ExecutionInterrupted - "
5442                  "discarding thread plans up to %p.",
5443                  static_cast<void *>(thread_plan_sp.get()));
5444        thread->DiscardThreadPlansUpToPlan(thread_plan_sp);
5445      } else {
5446        LLDB_LOGF(log,
5447                  "Process::RunThreadPlan: ExecutionInterrupted - for "
5448                  "plan: %p not discarding.",
5449                  static_cast<void *>(thread_plan_sp.get()));
5450      }
5451    } else if (return_value == eExpressionSetupError) {
5452      if (log)
5453        log->PutCString("Process::RunThreadPlan(): execution set up error.");
5454
5455      if (options.DoesUnwindOnError()) {
5456        thread->DiscardThreadPlansUpToPlan(thread_plan_sp);
5457      }
5458    } else {
5459      if (thread->IsThreadPlanDone(thread_plan_sp.get())) {
5460        if (log)
5461          log->PutCString("Process::RunThreadPlan(): thread plan is done");
5462        return_value = eExpressionCompleted;
5463      } else if (thread->WasThreadPlanDiscarded(thread_plan_sp.get())) {
5464        if (log)
5465          log->PutCString(
5466              "Process::RunThreadPlan(): thread plan was discarded");
5467        return_value = eExpressionDiscarded;
5468      } else {
5469        if (log)
5470          log->PutCString(
5471              "Process::RunThreadPlan(): thread plan stopped in mid course");
5472        if (options.DoesUnwindOnError() && thread_plan_sp) {
5473          if (log)
5474            log->PutCString("Process::RunThreadPlan(): discarding thread plan "
5475                            "'cause unwind_on_error is set.");
5476          thread->DiscardThreadPlansUpToPlan(thread_plan_sp);
5477        }
5478      }
5479    }
5480
5481    // Thread we ran the function in may have gone away because we ran the
5482    // target Check that it's still there, and if it is put it back in the
5483    // context. Also restore the frame in the context if it is still present.
5484    thread = GetThreadList().FindThreadByIndexID(thread_idx_id, true).get();
5485    if (thread) {
5486      exe_ctx.SetFrameSP(thread->GetFrameWithStackID(ctx_frame_id));
5487    }
5488
5489    // Also restore the current process'es selected frame & thread, since this
5490    // function calling may be done behind the user's back.
5491
5492    if (selected_tid != LLDB_INVALID_THREAD_ID) {
5493      if (GetThreadList().SetSelectedThreadByIndexID(selected_tid) &&
5494          selected_stack_id.IsValid()) {
5495        // We were able to restore the selected thread, now restore the frame:
5496        std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex());
5497        StackFrameSP old_frame_sp =
5498            GetThreadList().GetSelectedThread()->GetFrameWithStackID(
5499                selected_stack_id);
5500        if (old_frame_sp)
5501          GetThreadList().GetSelectedThread()->SetSelectedFrame(
5502              old_frame_sp.get());
5503      }
5504    }
5505  }
5506
5507  // If the process exited during the run of the thread plan, notify everyone.
5508
5509  if (event_to_broadcast_sp) {
5510    if (log)
5511      log->PutCString("Process::RunThreadPlan(): rebroadcasting event.");
5512    BroadcastEvent(event_to_broadcast_sp);
5513  }
5514
5515  return return_value;
5516}
5517
5518const char *Process::ExecutionResultAsCString(ExpressionResults result) {
5519  const char *result_name = "<unknown>";
5520
5521  switch (result) {
5522  case eExpressionCompleted:
5523    result_name = "eExpressionCompleted";
5524    break;
5525  case eExpressionDiscarded:
5526    result_name = "eExpressionDiscarded";
5527    break;
5528  case eExpressionInterrupted:
5529    result_name = "eExpressionInterrupted";
5530    break;
5531  case eExpressionHitBreakpoint:
5532    result_name = "eExpressionHitBreakpoint";
5533    break;
5534  case eExpressionSetupError:
5535    result_name = "eExpressionSetupError";
5536    break;
5537  case eExpressionParseError:
5538    result_name = "eExpressionParseError";
5539    break;
5540  case eExpressionResultUnavailable:
5541    result_name = "eExpressionResultUnavailable";
5542    break;
5543  case eExpressionTimedOut:
5544    result_name = "eExpressionTimedOut";
5545    break;
5546  case eExpressionStoppedForDebug:
5547    result_name = "eExpressionStoppedForDebug";
5548    break;
5549  case eExpressionThreadVanished:
5550    result_name = "eExpressionThreadVanished";
5551  }
5552  return result_name;
5553}
5554
5555void Process::GetStatus(Stream &strm) {
5556  const StateType state = GetState();
5557  if (StateIsStoppedState(state, false)) {
5558    if (state == eStateExited) {
5559      int exit_status = GetExitStatus();
5560      const char *exit_description = GetExitDescription();
5561      strm.Printf("Process %" PRIu64 " exited with status = %i (0x%8.8x) %s\n",
5562                  GetID(), exit_status, exit_status,
5563                  exit_description ? exit_description : "");
5564    } else {
5565      if (state == eStateConnected)
5566        strm.Printf("Connected to remote target.\n");
5567      else
5568        strm.Printf("Process %" PRIu64 " %s\n", GetID(), StateAsCString(state));
5569    }
5570  } else {
5571    strm.Printf("Process %" PRIu64 " is running.\n", GetID());
5572  }
5573}
5574
5575size_t Process::GetThreadStatus(Stream &strm,
5576                                bool only_threads_with_stop_reason,
5577                                uint32_t start_frame, uint32_t num_frames,
5578                                uint32_t num_frames_with_source,
5579                                bool stop_format) {
5580  size_t num_thread_infos_dumped = 0;
5581
5582  // You can't hold the thread list lock while calling Thread::GetStatus.  That
5583  // very well might run code (e.g. if we need it to get return values or
5584  // arguments.)  For that to work the process has to be able to acquire it.
5585  // So instead copy the thread ID's, and look them up one by one:
5586
5587  uint32_t num_threads;
5588  std::vector<lldb::tid_t> thread_id_array;
5589  // Scope for thread list locker;
5590  {
5591    std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex());
5592    ThreadList &curr_thread_list = GetThreadList();
5593    num_threads = curr_thread_list.GetSize();
5594    uint32_t idx;
5595    thread_id_array.resize(num_threads);
5596    for (idx = 0; idx < num_threads; ++idx)
5597      thread_id_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetID();
5598  }
5599
5600  for (uint32_t i = 0; i < num_threads; i++) {
5601    ThreadSP thread_sp(GetThreadList().FindThreadByID(thread_id_array[i]));
5602    if (thread_sp) {
5603      if (only_threads_with_stop_reason) {
5604        StopInfoSP stop_info_sp = thread_sp->GetStopInfo();
5605        if (!stop_info_sp || !stop_info_sp->IsValid())
5606          continue;
5607      }
5608      thread_sp->GetStatus(strm, start_frame, num_frames,
5609                           num_frames_with_source,
5610                           stop_format);
5611      ++num_thread_infos_dumped;
5612    } else {
5613      Log *log = GetLog(LLDBLog::Process);
5614      LLDB_LOGF(log, "Process::GetThreadStatus - thread 0x" PRIu64
5615                     " vanished while running Thread::GetStatus.");
5616    }
5617  }
5618  return num_thread_infos_dumped;
5619}
5620
5621void Process::AddInvalidMemoryRegion(const LoadRange &region) {
5622  m_memory_cache.AddInvalidRange(region.GetRangeBase(), region.GetByteSize());
5623}
5624
5625bool Process::RemoveInvalidMemoryRange(const LoadRange &region) {
5626  return m_memory_cache.RemoveInvalidRange(region.GetRangeBase(),
5627                                           region.GetByteSize());
5628}
5629
5630void Process::AddPreResumeAction(PreResumeActionCallback callback,
5631                                 void *baton) {
5632  m_pre_resume_actions.push_back(PreResumeCallbackAndBaton(callback, baton));
5633}
5634
5635bool Process::RunPreResumeActions() {
5636  bool result = true;
5637  while (!m_pre_resume_actions.empty()) {
5638    struct PreResumeCallbackAndBaton action = m_pre_resume_actions.back();
5639    m_pre_resume_actions.pop_back();
5640    bool this_result = action.callback(action.baton);
5641    if (result)
5642      result = this_result;
5643  }
5644  return result;
5645}
5646
5647void Process::ClearPreResumeActions() { m_pre_resume_actions.clear(); }
5648
5649void Process::ClearPreResumeAction(PreResumeActionCallback callback, void *baton)
5650{
5651    PreResumeCallbackAndBaton element(callback, baton);
5652    auto found_iter = std::find(m_pre_resume_actions.begin(), m_pre_resume_actions.end(), element);
5653    if (found_iter != m_pre_resume_actions.end())
5654    {
5655        m_pre_resume_actions.erase(found_iter);
5656    }
5657}
5658
5659ProcessRunLock &Process::GetRunLock() {
5660  if (m_private_state_thread.EqualsThread(Host::GetCurrentThread()))
5661    return m_private_run_lock;
5662  else
5663    return m_public_run_lock;
5664}
5665
5666bool Process::CurrentThreadIsPrivateStateThread()
5667{
5668  return m_private_state_thread.EqualsThread(Host::GetCurrentThread());
5669}
5670
5671
5672void Process::Flush() {
5673  m_thread_list.Flush();
5674  m_extended_thread_list.Flush();
5675  m_extended_thread_stop_id = 0;
5676  m_queue_list.Clear();
5677  m_queue_list_stop_id = 0;
5678}
5679
5680lldb::addr_t Process::GetCodeAddressMask() {
5681  if (uint32_t num_bits_setting = GetVirtualAddressableBits())
5682    return ~((1ULL << num_bits_setting) - 1);
5683
5684  return m_code_address_mask;
5685}
5686
5687lldb::addr_t Process::GetDataAddressMask() {
5688  if (uint32_t num_bits_setting = GetVirtualAddressableBits())
5689    return ~((1ULL << num_bits_setting) - 1);
5690
5691  return m_data_address_mask;
5692}
5693
5694lldb::addr_t Process::GetHighmemCodeAddressMask() {
5695  if (uint32_t num_bits_setting = GetHighmemVirtualAddressableBits())
5696    return ~((1ULL << num_bits_setting) - 1);
5697  if (m_highmem_code_address_mask)
5698    return m_highmem_code_address_mask;
5699  return GetCodeAddressMask();
5700}
5701
5702lldb::addr_t Process::GetHighmemDataAddressMask() {
5703  if (uint32_t num_bits_setting = GetHighmemVirtualAddressableBits())
5704    return ~((1ULL << num_bits_setting) - 1);
5705  if (m_highmem_data_address_mask)
5706    return m_highmem_data_address_mask;
5707  return GetDataAddressMask();
5708}
5709
5710void Process::SetCodeAddressMask(lldb::addr_t code_address_mask) {
5711  LLDB_LOG(GetLog(LLDBLog::Process),
5712           "Setting Process code address mask to {0:x}", code_address_mask);
5713  m_code_address_mask = code_address_mask;
5714}
5715
5716void Process::SetDataAddressMask(lldb::addr_t data_address_mask) {
5717  LLDB_LOG(GetLog(LLDBLog::Process),
5718           "Setting Process data address mask to {0:x}", data_address_mask);
5719  m_data_address_mask = data_address_mask;
5720}
5721
5722void Process::SetHighmemCodeAddressMask(lldb::addr_t code_address_mask) {
5723  LLDB_LOG(GetLog(LLDBLog::Process),
5724           "Setting Process highmem code address mask to {0:x}",
5725           code_address_mask);
5726  m_highmem_code_address_mask = code_address_mask;
5727}
5728
5729void Process::SetHighmemDataAddressMask(lldb::addr_t data_address_mask) {
5730  LLDB_LOG(GetLog(LLDBLog::Process),
5731           "Setting Process highmem data address mask to {0:x}",
5732           data_address_mask);
5733  m_highmem_data_address_mask = data_address_mask;
5734}
5735
5736addr_t Process::FixCodeAddress(addr_t addr) {
5737  if (ABISP abi_sp = GetABI())
5738    addr = abi_sp->FixCodeAddress(addr);
5739  return addr;
5740}
5741
5742addr_t Process::FixDataAddress(addr_t addr) {
5743  if (ABISP abi_sp = GetABI())
5744    addr = abi_sp->FixDataAddress(addr);
5745  return addr;
5746}
5747
5748addr_t Process::FixAnyAddress(addr_t addr) {
5749  if (ABISP abi_sp = GetABI())
5750    addr = abi_sp->FixAnyAddress(addr);
5751  return addr;
5752}
5753
5754void Process::DidExec() {
5755  Log *log = GetLog(LLDBLog::Process);
5756  LLDB_LOGF(log, "Process::%s()", __FUNCTION__);
5757
5758  Target &target = GetTarget();
5759  target.CleanupProcess();
5760  target.ClearModules(false);
5761  m_dynamic_checkers_up.reset();
5762  m_abi_sp.reset();
5763  m_system_runtime_up.reset();
5764  m_os_up.reset();
5765  m_dyld_up.reset();
5766  m_jit_loaders_up.reset();
5767  m_image_tokens.clear();
5768  // After an exec, the inferior is a new process and these memory regions are
5769  // no longer allocated.
5770  m_allocated_memory_cache.Clear(/*deallocte_memory=*/false);
5771  {
5772    std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
5773    m_language_runtimes.clear();
5774  }
5775  m_instrumentation_runtimes.clear();
5776  m_thread_list.DiscardThreadPlans();
5777  m_memory_cache.Clear(true);
5778  DoDidExec();
5779  CompleteAttach();
5780  // Flush the process (threads and all stack frames) after running
5781  // CompleteAttach() in case the dynamic loader loaded things in new
5782  // locations.
5783  Flush();
5784
5785  // After we figure out what was loaded/unloaded in CompleteAttach, we need to
5786  // let the target know so it can do any cleanup it needs to.
5787  target.DidExec();
5788}
5789
5790addr_t Process::ResolveIndirectFunction(const Address *address, Status &error) {
5791  if (address == nullptr) {
5792    error.SetErrorString("Invalid address argument");
5793    return LLDB_INVALID_ADDRESS;
5794  }
5795
5796  addr_t function_addr = LLDB_INVALID_ADDRESS;
5797
5798  addr_t addr = address->GetLoadAddress(&GetTarget());
5799  std::map<addr_t, addr_t>::const_iterator iter =
5800      m_resolved_indirect_addresses.find(addr);
5801  if (iter != m_resolved_indirect_addresses.end()) {
5802    function_addr = (*iter).second;
5803  } else {
5804    if (!CallVoidArgVoidPtrReturn(address, function_addr)) {
5805      Symbol *symbol = address->CalculateSymbolContextSymbol();
5806      error.SetErrorStringWithFormat(
5807          "Unable to call resolver for indirect function %s",
5808          symbol ? symbol->GetName().AsCString() : "<UNKNOWN>");
5809      function_addr = LLDB_INVALID_ADDRESS;
5810    } else {
5811      if (ABISP abi_sp = GetABI())
5812        function_addr = abi_sp->FixCodeAddress(function_addr);
5813      m_resolved_indirect_addresses.insert(
5814          std::pair<addr_t, addr_t>(addr, function_addr));
5815    }
5816  }
5817  return function_addr;
5818}
5819
5820void Process::ModulesDidLoad(ModuleList &module_list) {
5821  // Inform the system runtime of the modified modules.
5822  SystemRuntime *sys_runtime = GetSystemRuntime();
5823  if (sys_runtime)
5824    sys_runtime->ModulesDidLoad(module_list);
5825
5826  GetJITLoaders().ModulesDidLoad(module_list);
5827
5828  // Give the instrumentation runtimes a chance to be created before informing
5829  // them of the modified modules.
5830  InstrumentationRuntime::ModulesDidLoad(module_list, this,
5831                                         m_instrumentation_runtimes);
5832  for (auto &runtime : m_instrumentation_runtimes)
5833    runtime.second->ModulesDidLoad(module_list);
5834
5835  // Give the language runtimes a chance to be created before informing them of
5836  // the modified modules.
5837  for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) {
5838    if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type))
5839      runtime->ModulesDidLoad(module_list);
5840  }
5841
5842  // If we don't have an operating system plug-in, try to load one since
5843  // loading shared libraries might cause a new one to try and load
5844  if (!m_os_up)
5845    LoadOperatingSystemPlugin(false);
5846
5847  // Inform the structured-data plugins of the modified modules.
5848  for (auto &pair : m_structured_data_plugin_map) {
5849    if (pair.second)
5850      pair.second->ModulesDidLoad(*this, module_list);
5851  }
5852}
5853
5854void Process::PrintWarningOptimization(const SymbolContext &sc) {
5855  if (!GetWarningsOptimization())
5856    return;
5857  if (!sc.module_sp || !sc.function || !sc.function->GetIsOptimized())
5858    return;
5859  sc.module_sp->ReportWarningOptimization(GetTarget().GetDebugger().GetID());
5860}
5861
5862void Process::PrintWarningUnsupportedLanguage(const SymbolContext &sc) {
5863  if (!GetWarningsUnsupportedLanguage())
5864    return;
5865  if (!sc.module_sp)
5866    return;
5867  LanguageType language = sc.GetLanguage();
5868  if (language == eLanguageTypeUnknown)
5869    return;
5870  LanguageSet plugins =
5871      PluginManager::GetAllTypeSystemSupportedLanguagesForTypes();
5872  if (plugins[language])
5873    return;
5874  sc.module_sp->ReportWarningUnsupportedLanguage(
5875      language, GetTarget().GetDebugger().GetID());
5876}
5877
5878bool Process::GetProcessInfo(ProcessInstanceInfo &info) {
5879  info.Clear();
5880
5881  PlatformSP platform_sp = GetTarget().GetPlatform();
5882  if (!platform_sp)
5883    return false;
5884
5885  return platform_sp->GetProcessInfo(GetID(), info);
5886}
5887
5888ThreadCollectionSP Process::GetHistoryThreads(lldb::addr_t addr) {
5889  ThreadCollectionSP threads;
5890
5891  const MemoryHistorySP &memory_history =
5892      MemoryHistory::FindPlugin(shared_from_this());
5893
5894  if (!memory_history) {
5895    return threads;
5896  }
5897
5898  threads = std::make_shared<ThreadCollection>(
5899      memory_history->GetHistoryThreads(addr));
5900
5901  return threads;
5902}
5903
5904InstrumentationRuntimeSP
5905Process::GetInstrumentationRuntime(lldb::InstrumentationRuntimeType type) {
5906  InstrumentationRuntimeCollection::iterator pos;
5907  pos = m_instrumentation_runtimes.find(type);
5908  if (pos == m_instrumentation_runtimes.end()) {
5909    return InstrumentationRuntimeSP();
5910  } else
5911    return (*pos).second;
5912}
5913
5914bool Process::GetModuleSpec(const FileSpec &module_file_spec,
5915                            const ArchSpec &arch, ModuleSpec &module_spec) {
5916  module_spec.Clear();
5917  return false;
5918}
5919
5920size_t Process::AddImageToken(lldb::addr_t image_ptr) {
5921  m_image_tokens.push_back(image_ptr);
5922  return m_image_tokens.size() - 1;
5923}
5924
5925lldb::addr_t Process::GetImagePtrFromToken(size_t token) const {
5926  if (token < m_image_tokens.size())
5927    return m_image_tokens[token];
5928  return LLDB_INVALID_IMAGE_TOKEN;
5929}
5930
5931void Process::ResetImageToken(size_t token) {
5932  if (token < m_image_tokens.size())
5933    m_image_tokens[token] = LLDB_INVALID_IMAGE_TOKEN;
5934}
5935
5936Address
5937Process::AdvanceAddressToNextBranchInstruction(Address default_stop_addr,
5938                                               AddressRange range_bounds) {
5939  Target &target = GetTarget();
5940  DisassemblerSP disassembler_sp;
5941  InstructionList *insn_list = nullptr;
5942
5943  Address retval = default_stop_addr;
5944
5945  if (!target.GetUseFastStepping())
5946    return retval;
5947  if (!default_stop_addr.IsValid())
5948    return retval;
5949
5950  const char *plugin_name = nullptr;
5951  const char *flavor = nullptr;
5952  disassembler_sp = Disassembler::DisassembleRange(
5953      target.GetArchitecture(), plugin_name, flavor, GetTarget(), range_bounds);
5954  if (disassembler_sp)
5955    insn_list = &disassembler_sp->GetInstructionList();
5956
5957  if (insn_list == nullptr) {
5958    return retval;
5959  }
5960
5961  size_t insn_offset =
5962      insn_list->GetIndexOfInstructionAtAddress(default_stop_addr);
5963  if (insn_offset == UINT32_MAX) {
5964    return retval;
5965  }
5966
5967  uint32_t branch_index = insn_list->GetIndexOfNextBranchInstruction(
5968      insn_offset, false /* ignore_calls*/, nullptr);
5969  if (branch_index == UINT32_MAX) {
5970    return retval;
5971  }
5972
5973  if (branch_index > insn_offset) {
5974    Address next_branch_insn_address =
5975        insn_list->GetInstructionAtIndex(branch_index)->GetAddress();
5976    if (next_branch_insn_address.IsValid() &&
5977        range_bounds.ContainsFileAddress(next_branch_insn_address)) {
5978      retval = next_branch_insn_address;
5979    }
5980  }
5981
5982  return retval;
5983}
5984
5985Status Process::GetMemoryRegionInfo(lldb::addr_t load_addr,
5986                                    MemoryRegionInfo &range_info) {
5987  if (const lldb::ABISP &abi = GetABI())
5988    load_addr = abi->FixAnyAddress(load_addr);
5989  return DoGetMemoryRegionInfo(load_addr, range_info);
5990}
5991
5992Status Process::GetMemoryRegions(lldb_private::MemoryRegionInfos &region_list) {
5993  Status error;
5994
5995  lldb::addr_t range_end = 0;
5996  const lldb::ABISP &abi = GetABI();
5997
5998  region_list.clear();
5999  do {
6000    lldb_private::MemoryRegionInfo region_info;
6001    error = GetMemoryRegionInfo(range_end, region_info);
6002    // GetMemoryRegionInfo should only return an error if it is unimplemented.
6003    if (error.Fail()) {
6004      region_list.clear();
6005      break;
6006    }
6007
6008    // We only check the end address, not start and end, because we assume that
6009    // the start will not have non-address bits until the first unmappable
6010    // region. We will have exited the loop by that point because the previous
6011    // region, the last mappable region, will have non-address bits in its end
6012    // address.
6013    range_end = region_info.GetRange().GetRangeEnd();
6014    if (region_info.GetMapped() == MemoryRegionInfo::eYes) {
6015      region_list.push_back(std::move(region_info));
6016    }
6017  } while (
6018      // For a process with no non-address bits, all address bits
6019      // set means the end of memory.
6020      range_end != LLDB_INVALID_ADDRESS &&
6021      // If we have non-address bits and some are set then the end
6022      // is at or beyond the end of mappable memory.
6023      !(abi && (abi->FixAnyAddress(range_end) != range_end)));
6024
6025  return error;
6026}
6027
6028Status
6029Process::ConfigureStructuredData(llvm::StringRef type_name,
6030                                 const StructuredData::ObjectSP &config_sp) {
6031  // If you get this, the Process-derived class needs to implement a method to
6032  // enable an already-reported asynchronous structured data feature. See
6033  // ProcessGDBRemote for an example implementation over gdb-remote.
6034  return Status("unimplemented");
6035}
6036
6037void Process::MapSupportedStructuredDataPlugins(
6038    const StructuredData::Array &supported_type_names) {
6039  Log *log = GetLog(LLDBLog::Process);
6040
6041  // Bail out early if there are no type names to map.
6042  if (supported_type_names.GetSize() == 0) {
6043    LLDB_LOG(log, "no structured data types supported");
6044    return;
6045  }
6046
6047  // These StringRefs are backed by the input parameter.
6048  std::set<llvm::StringRef> type_names;
6049
6050  LLDB_LOG(log,
6051           "the process supports the following async structured data types:");
6052
6053  supported_type_names.ForEach(
6054      [&type_names, &log](StructuredData::Object *object) {
6055        // There shouldn't be null objects in the array.
6056        if (!object)
6057          return false;
6058
6059        // All type names should be strings.
6060        const llvm::StringRef type_name = object->GetStringValue();
6061        if (type_name.empty())
6062          return false;
6063
6064        type_names.insert(type_name);
6065        LLDB_LOG(log, "- {0}", type_name);
6066        return true;
6067      });
6068
6069  // For each StructuredDataPlugin, if the plugin handles any of the types in
6070  // the supported_type_names, map that type name to that plugin. Stop when
6071  // we've consumed all the type names.
6072  // FIXME: should we return an error if there are type names nobody
6073  // supports?
6074  for (uint32_t plugin_index = 0; !type_names.empty(); plugin_index++) {
6075    auto create_instance =
6076        PluginManager::GetStructuredDataPluginCreateCallbackAtIndex(
6077            plugin_index);
6078    if (!create_instance)
6079      break;
6080
6081    // Create the plugin.
6082    StructuredDataPluginSP plugin_sp = (*create_instance)(*this);
6083    if (!plugin_sp) {
6084      // This plugin doesn't think it can work with the process. Move on to the
6085      // next.
6086      continue;
6087    }
6088
6089    // For any of the remaining type names, map any that this plugin supports.
6090    std::vector<llvm::StringRef> names_to_remove;
6091    for (llvm::StringRef type_name : type_names) {
6092      if (plugin_sp->SupportsStructuredDataType(type_name)) {
6093        m_structured_data_plugin_map.insert(
6094            std::make_pair(type_name, plugin_sp));
6095        names_to_remove.push_back(type_name);
6096        LLDB_LOG(log, "using plugin {0} for type name {1}",
6097                 plugin_sp->GetPluginName(), type_name);
6098      }
6099    }
6100
6101    // Remove the type names that were consumed by this plugin.
6102    for (llvm::StringRef type_name : names_to_remove)
6103      type_names.erase(type_name);
6104  }
6105}
6106
6107bool Process::RouteAsyncStructuredData(
6108    const StructuredData::ObjectSP object_sp) {
6109  // Nothing to do if there's no data.
6110  if (!object_sp)
6111    return false;
6112
6113  // The contract is this must be a dictionary, so we can look up the routing
6114  // key via the top-level 'type' string value within the dictionary.
6115  StructuredData::Dictionary *dictionary = object_sp->GetAsDictionary();
6116  if (!dictionary)
6117    return false;
6118
6119  // Grab the async structured type name (i.e. the feature/plugin name).
6120  llvm::StringRef type_name;
6121  if (!dictionary->GetValueForKeyAsString("type", type_name))
6122    return false;
6123
6124  // Check if there's a plugin registered for this type name.
6125  auto find_it = m_structured_data_plugin_map.find(type_name);
6126  if (find_it == m_structured_data_plugin_map.end()) {
6127    // We don't have a mapping for this structured data type.
6128    return false;
6129  }
6130
6131  // Route the structured data to the plugin.
6132  find_it->second->HandleArrivalOfStructuredData(*this, type_name, object_sp);
6133  return true;
6134}
6135
6136Status Process::UpdateAutomaticSignalFiltering() {
6137  // Default implementation does nothign.
6138  // No automatic signal filtering to speak of.
6139  return Status();
6140}
6141
6142UtilityFunction *Process::GetLoadImageUtilityFunction(
6143    Platform *platform,
6144    llvm::function_ref<std::unique_ptr<UtilityFunction>()> factory) {
6145  if (platform != GetTarget().GetPlatform().get())
6146    return nullptr;
6147  llvm::call_once(m_dlopen_utility_func_flag_once,
6148                  [&] { m_dlopen_utility_func_up = factory(); });
6149  return m_dlopen_utility_func_up.get();
6150}
6151
6152llvm::Expected<TraceSupportedResponse> Process::TraceSupported() {
6153  if (!IsLiveDebugSession())
6154    return llvm::createStringError(llvm::inconvertibleErrorCode(),
6155                                   "Can't trace a non-live process.");
6156  return llvm::make_error<UnimplementedError>();
6157}
6158
6159bool Process::CallVoidArgVoidPtrReturn(const Address *address,
6160                                       addr_t &returned_func,
6161                                       bool trap_exceptions) {
6162  Thread *thread = GetThreadList().GetExpressionExecutionThread().get();
6163  if (thread == nullptr || address == nullptr)
6164    return false;
6165
6166  EvaluateExpressionOptions options;
6167  options.SetStopOthers(true);
6168  options.SetUnwindOnError(true);
6169  options.SetIgnoreBreakpoints(true);
6170  options.SetTryAllThreads(true);
6171  options.SetDebug(false);
6172  options.SetTimeout(GetUtilityExpressionTimeout());
6173  options.SetTrapExceptions(trap_exceptions);
6174
6175  auto type_system_or_err =
6176      GetTarget().GetScratchTypeSystemForLanguage(eLanguageTypeC);
6177  if (!type_system_or_err) {
6178    llvm::consumeError(type_system_or_err.takeError());
6179    return false;
6180  }
6181  auto ts = *type_system_or_err;
6182  if (!ts)
6183    return false;
6184  CompilerType void_ptr_type =
6185      ts->GetBasicTypeFromAST(eBasicTypeVoid).GetPointerType();
6186  lldb::ThreadPlanSP call_plan_sp(new ThreadPlanCallFunction(
6187      *thread, *address, void_ptr_type, llvm::ArrayRef<addr_t>(), options));
6188  if (call_plan_sp) {
6189    DiagnosticManager diagnostics;
6190
6191    StackFrame *frame = thread->GetStackFrameAtIndex(0).get();
6192    if (frame) {
6193      ExecutionContext exe_ctx;
6194      frame->CalculateExecutionContext(exe_ctx);
6195      ExpressionResults result =
6196          RunThreadPlan(exe_ctx, call_plan_sp, options, diagnostics);
6197      if (result == eExpressionCompleted) {
6198        returned_func =
6199            call_plan_sp->GetReturnValueObject()->GetValueAsUnsigned(
6200                LLDB_INVALID_ADDRESS);
6201
6202        if (GetAddressByteSize() == 4) {
6203          if (returned_func == UINT32_MAX)
6204            return false;
6205        } else if (GetAddressByteSize() == 8) {
6206          if (returned_func == UINT64_MAX)
6207            return false;
6208        }
6209        return true;
6210      }
6211    }
6212  }
6213
6214  return false;
6215}
6216
6217llvm::Expected<const MemoryTagManager *> Process::GetMemoryTagManager() {
6218  Architecture *arch = GetTarget().GetArchitecturePlugin();
6219  const MemoryTagManager *tag_manager =
6220      arch ? arch->GetMemoryTagManager() : nullptr;
6221  if (!arch || !tag_manager) {
6222    return llvm::createStringError(
6223        llvm::inconvertibleErrorCode(),
6224        "This architecture does not support memory tagging");
6225  }
6226
6227  if (!SupportsMemoryTagging()) {
6228    return llvm::createStringError(llvm::inconvertibleErrorCode(),
6229                                   "Process does not support memory tagging");
6230  }
6231
6232  return tag_manager;
6233}
6234
6235llvm::Expected<std::vector<lldb::addr_t>>
6236Process::ReadMemoryTags(lldb::addr_t addr, size_t len) {
6237  llvm::Expected<const MemoryTagManager *> tag_manager_or_err =
6238      GetMemoryTagManager();
6239  if (!tag_manager_or_err)
6240    return tag_manager_or_err.takeError();
6241
6242  const MemoryTagManager *tag_manager = *tag_manager_or_err;
6243  llvm::Expected<std::vector<uint8_t>> tag_data =
6244      DoReadMemoryTags(addr, len, tag_manager->GetAllocationTagType());
6245  if (!tag_data)
6246    return tag_data.takeError();
6247
6248  return tag_manager->UnpackTagsData(*tag_data,
6249                                     len / tag_manager->GetGranuleSize());
6250}
6251
6252Status Process::WriteMemoryTags(lldb::addr_t addr, size_t len,
6253                                const std::vector<lldb::addr_t> &tags) {
6254  llvm::Expected<const MemoryTagManager *> tag_manager_or_err =
6255      GetMemoryTagManager();
6256  if (!tag_manager_or_err)
6257    return Status(tag_manager_or_err.takeError());
6258
6259  const MemoryTagManager *tag_manager = *tag_manager_or_err;
6260  llvm::Expected<std::vector<uint8_t>> packed_tags =
6261      tag_manager->PackTags(tags);
6262  if (!packed_tags) {
6263    return Status(packed_tags.takeError());
6264  }
6265
6266  return DoWriteMemoryTags(addr, len, tag_manager->GetAllocationTagType(),
6267                           *packed_tags);
6268}
6269
6270// Create a CoreFileMemoryRange from a MemoryRegionInfo
6271static Process::CoreFileMemoryRange
6272CreateCoreFileMemoryRange(const MemoryRegionInfo &region) {
6273  const addr_t addr = region.GetRange().GetRangeBase();
6274  llvm::AddressRange range(addr, addr + region.GetRange().GetByteSize());
6275  return {range, region.GetLLDBPermissions()};
6276}
6277
6278// Add dirty pages to the core file ranges and return true if dirty pages
6279// were added. Return false if the dirty page information is not valid or in
6280// the region.
6281static bool AddDirtyPages(const MemoryRegionInfo &region,
6282                          Process::CoreFileMemoryRanges &ranges) {
6283  const auto &dirty_page_list = region.GetDirtyPageList();
6284  if (!dirty_page_list)
6285    return false;
6286  const uint32_t lldb_permissions = region.GetLLDBPermissions();
6287  const addr_t page_size = region.GetPageSize();
6288  if (page_size == 0)
6289    return false;
6290  llvm::AddressRange range(0, 0);
6291  for (addr_t page_addr : *dirty_page_list) {
6292    if (range.empty()) {
6293      // No range yet, initialize the range with the current dirty page.
6294      range = llvm::AddressRange(page_addr, page_addr + page_size);
6295    } else {
6296      if (range.end() == page_addr) {
6297        // Combine consective ranges.
6298        range = llvm::AddressRange(range.start(), page_addr + page_size);
6299      } else {
6300        // Add previous contiguous range and init the new range with the
6301        // current dirty page.
6302        ranges.push_back({range, lldb_permissions});
6303        range = llvm::AddressRange(page_addr, page_addr + page_size);
6304      }
6305    }
6306  }
6307  // The last range
6308  if (!range.empty())
6309    ranges.push_back({range, lldb_permissions});
6310  return true;
6311}
6312
6313// Given a region, add the region to \a ranges.
6314//
6315// Only add the region if it isn't empty and if it has some permissions.
6316// If \a try_dirty_pages is true, then try to add only the dirty pages for a
6317// given region. If the region has dirty page information, only dirty pages
6318// will be added to \a ranges, else the entire range will be added to \a
6319// ranges.
6320static void AddRegion(const MemoryRegionInfo &region, bool try_dirty_pages,
6321                      Process::CoreFileMemoryRanges &ranges) {
6322  // Don't add empty ranges or ranges with no permissions.
6323  if (region.GetRange().GetByteSize() == 0 || region.GetLLDBPermissions() == 0)
6324    return;
6325  if (try_dirty_pages && AddDirtyPages(region, ranges))
6326    return;
6327  ranges.push_back(CreateCoreFileMemoryRange(region));
6328}
6329
6330// Save all memory regions that are not empty or have at least some permissions
6331// for a full core file style.
6332static void GetCoreFileSaveRangesFull(Process &process,
6333                                      const MemoryRegionInfos &regions,
6334                                      Process::CoreFileMemoryRanges &ranges) {
6335
6336  // Don't add only dirty pages, add full regions.
6337const bool try_dirty_pages = false;
6338  for (const auto &region : regions)
6339    AddRegion(region, try_dirty_pages, ranges);
6340}
6341
6342// Save only the dirty pages to the core file. Make sure the process has at
6343// least some dirty pages, as some OS versions don't support reporting what
6344// pages are dirty within an memory region. If no memory regions have dirty
6345// page information fall back to saving out all ranges with write permissions.
6346static void
6347GetCoreFileSaveRangesDirtyOnly(Process &process,
6348                               const MemoryRegionInfos &regions,
6349                               Process::CoreFileMemoryRanges &ranges) {
6350  // Iterate over the regions and find all dirty pages.
6351  bool have_dirty_page_info = false;
6352  for (const auto &region : regions) {
6353    if (AddDirtyPages(region, ranges))
6354      have_dirty_page_info = true;
6355  }
6356
6357  if (!have_dirty_page_info) {
6358    // We didn't find support for reporting dirty pages from the process
6359    // plug-in so fall back to any region with write access permissions.
6360    const bool try_dirty_pages = false;
6361    for (const auto &region : regions)
6362      if (region.GetWritable() == MemoryRegionInfo::eYes)
6363        AddRegion(region, try_dirty_pages, ranges);
6364  }
6365}
6366
6367// Save all thread stacks to the core file. Some OS versions support reporting
6368// when a memory region is stack related. We check on this information, but we
6369// also use the stack pointers of each thread and add those in case the OS
6370// doesn't support reporting stack memory. This function also attempts to only
6371// emit dirty pages from the stack if the memory regions support reporting
6372// dirty regions as this will make the core file smaller. If the process
6373// doesn't support dirty regions, then it will fall back to adding the full
6374// stack region.
6375static void
6376GetCoreFileSaveRangesStackOnly(Process &process,
6377                               const MemoryRegionInfos &regions,
6378                               Process::CoreFileMemoryRanges &ranges) {
6379  // Some platforms support annotating the region information that tell us that
6380  // it comes from a thread stack. So look for those regions first.
6381
6382  // Keep track of which stack regions we have added
6383  std::set<addr_t> stack_bases;
6384
6385  const bool try_dirty_pages = true;
6386  for (const auto &region : regions) {
6387    if (region.IsStackMemory() == MemoryRegionInfo::eYes) {
6388      stack_bases.insert(region.GetRange().GetRangeBase());
6389      AddRegion(region, try_dirty_pages, ranges);
6390    }
6391  }
6392
6393  // Also check with our threads and get the regions for their stack pointers
6394  // and add those regions if not already added above.
6395  for (lldb::ThreadSP thread_sp : process.GetThreadList().Threads()) {
6396    if (!thread_sp)
6397      continue;
6398    StackFrameSP frame_sp = thread_sp->GetStackFrameAtIndex(0);
6399    if (!frame_sp)
6400      continue;
6401    RegisterContextSP reg_ctx_sp = frame_sp->GetRegisterContext();
6402    if (!reg_ctx_sp)
6403      continue;
6404    const addr_t sp = reg_ctx_sp->GetSP();
6405    lldb_private::MemoryRegionInfo sp_region;
6406    if (process.GetMemoryRegionInfo(sp, sp_region).Success()) {
6407      // Only add this region if not already added above. If our stack pointer
6408      // is pointing off in the weeds, we will want this range.
6409      if (stack_bases.count(sp_region.GetRange().GetRangeBase()) == 0)
6410        AddRegion(sp_region, try_dirty_pages, ranges);
6411    }
6412  }
6413}
6414
6415Status Process::CalculateCoreFileSaveRanges(lldb::SaveCoreStyle core_style,
6416                                            CoreFileMemoryRanges &ranges) {
6417  lldb_private::MemoryRegionInfos regions;
6418  Status err = GetMemoryRegions(regions);
6419  if (err.Fail())
6420    return err;
6421  if (regions.empty())
6422    return Status("failed to get any valid memory regions from the process");
6423
6424  switch (core_style) {
6425  case eSaveCoreUnspecified:
6426    err = Status("callers must set the core_style to something other than "
6427                 "eSaveCoreUnspecified");
6428    break;
6429
6430  case eSaveCoreFull:
6431    GetCoreFileSaveRangesFull(*this, regions, ranges);
6432    break;
6433
6434  case eSaveCoreDirtyOnly:
6435    GetCoreFileSaveRangesDirtyOnly(*this, regions, ranges);
6436    break;
6437
6438  case eSaveCoreStackOnly:
6439    GetCoreFileSaveRangesStackOnly(*this, regions, ranges);
6440    break;
6441  }
6442
6443  if (err.Fail())
6444    return err;
6445
6446  if (ranges.empty())
6447    return Status("no valid address ranges found for core style");
6448
6449  return Status(); // Success!
6450}
6451