1//===-- Memory.cpp --------------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "lldb/Target/Memory.h"
10#include "lldb/Target/Process.h"
11#include "lldb/Utility/DataBufferHeap.h"
12#include "lldb/Utility/LLDBLog.h"
13#include "lldb/Utility/Log.h"
14#include "lldb/Utility/RangeMap.h"
15#include "lldb/Utility/State.h"
16
17#include <cinttypes>
18#include <memory>
19
20using namespace lldb;
21using namespace lldb_private;
22
23// MemoryCache constructor
24MemoryCache::MemoryCache(Process &process)
25    : m_mutex(), m_L1_cache(), m_L2_cache(), m_invalid_ranges(),
26      m_process(process),
27      m_L2_cache_line_byte_size(process.GetMemoryCacheLineSize()) {}
28
29// Destructor
30MemoryCache::~MemoryCache() = default;
31
32void MemoryCache::Clear(bool clear_invalid_ranges) {
33  std::lock_guard<std::recursive_mutex> guard(m_mutex);
34  m_L1_cache.clear();
35  m_L2_cache.clear();
36  if (clear_invalid_ranges)
37    m_invalid_ranges.Clear();
38  m_L2_cache_line_byte_size = m_process.GetMemoryCacheLineSize();
39}
40
41void MemoryCache::AddL1CacheData(lldb::addr_t addr, const void *src,
42                                 size_t src_len) {
43  AddL1CacheData(
44      addr, DataBufferSP(new DataBufferHeap(DataBufferHeap(src, src_len))));
45}
46
47void MemoryCache::AddL1CacheData(lldb::addr_t addr,
48                                 const DataBufferSP &data_buffer_sp) {
49  std::lock_guard<std::recursive_mutex> guard(m_mutex);
50  m_L1_cache[addr] = data_buffer_sp;
51}
52
53void MemoryCache::Flush(addr_t addr, size_t size) {
54  if (size == 0)
55    return;
56
57  std::lock_guard<std::recursive_mutex> guard(m_mutex);
58
59  // Erase any blocks from the L1 cache that intersect with the flush range
60  if (!m_L1_cache.empty()) {
61    AddrRange flush_range(addr, size);
62    BlockMap::iterator pos = m_L1_cache.upper_bound(addr);
63    if (pos != m_L1_cache.begin()) {
64      --pos;
65    }
66    while (pos != m_L1_cache.end()) {
67      AddrRange chunk_range(pos->first, pos->second->GetByteSize());
68      if (!chunk_range.DoesIntersect(flush_range))
69        break;
70      pos = m_L1_cache.erase(pos);
71    }
72  }
73
74  if (!m_L2_cache.empty()) {
75    const uint32_t cache_line_byte_size = m_L2_cache_line_byte_size;
76    const addr_t end_addr = (addr + size - 1);
77    const addr_t first_cache_line_addr = addr - (addr % cache_line_byte_size);
78    const addr_t last_cache_line_addr =
79        end_addr - (end_addr % cache_line_byte_size);
80    // Watch for overflow where size will cause us to go off the end of the
81    // 64 bit address space
82    uint32_t num_cache_lines;
83    if (last_cache_line_addr >= first_cache_line_addr)
84      num_cache_lines = ((last_cache_line_addr - first_cache_line_addr) /
85                         cache_line_byte_size) +
86                        1;
87    else
88      num_cache_lines =
89          (UINT64_MAX - first_cache_line_addr + 1) / cache_line_byte_size;
90
91    uint32_t cache_idx = 0;
92    for (addr_t curr_addr = first_cache_line_addr; cache_idx < num_cache_lines;
93         curr_addr += cache_line_byte_size, ++cache_idx) {
94      BlockMap::iterator pos = m_L2_cache.find(curr_addr);
95      if (pos != m_L2_cache.end())
96        m_L2_cache.erase(pos);
97    }
98  }
99}
100
101void MemoryCache::AddInvalidRange(lldb::addr_t base_addr,
102                                  lldb::addr_t byte_size) {
103  if (byte_size > 0) {
104    std::lock_guard<std::recursive_mutex> guard(m_mutex);
105    InvalidRanges::Entry range(base_addr, byte_size);
106    m_invalid_ranges.Append(range);
107    m_invalid_ranges.Sort();
108  }
109}
110
111bool MemoryCache::RemoveInvalidRange(lldb::addr_t base_addr,
112                                     lldb::addr_t byte_size) {
113  if (byte_size > 0) {
114    std::lock_guard<std::recursive_mutex> guard(m_mutex);
115    const uint32_t idx = m_invalid_ranges.FindEntryIndexThatContains(base_addr);
116    if (idx != UINT32_MAX) {
117      const InvalidRanges::Entry *entry = m_invalid_ranges.GetEntryAtIndex(idx);
118      if (entry->GetRangeBase() == base_addr &&
119          entry->GetByteSize() == byte_size)
120        return m_invalid_ranges.RemoveEntryAtIndex(idx);
121    }
122  }
123  return false;
124}
125
126lldb::DataBufferSP MemoryCache::GetL2CacheLine(lldb::addr_t line_base_addr,
127                                               Status &error) {
128  // This function assumes that the address given is aligned correctly.
129  assert((line_base_addr % m_L2_cache_line_byte_size) == 0);
130
131  std::lock_guard<std::recursive_mutex> guard(m_mutex);
132  auto pos = m_L2_cache.find(line_base_addr);
133  if (pos != m_L2_cache.end())
134    return pos->second;
135
136  auto data_buffer_heap_sp =
137      std::make_shared<DataBufferHeap>(m_L2_cache_line_byte_size, 0);
138  size_t process_bytes_read = m_process.ReadMemoryFromInferior(
139      line_base_addr, data_buffer_heap_sp->GetBytes(),
140      data_buffer_heap_sp->GetByteSize(), error);
141
142  // If we failed a read, not much we can do.
143  if (process_bytes_read == 0)
144    return lldb::DataBufferSP();
145
146  // If we didn't get a complete read, we can still cache what we did get.
147  if (process_bytes_read < m_L2_cache_line_byte_size)
148    data_buffer_heap_sp->SetByteSize(process_bytes_read);
149
150  m_L2_cache[line_base_addr] = data_buffer_heap_sp;
151  return data_buffer_heap_sp;
152}
153
154size_t MemoryCache::Read(addr_t addr, void *dst, size_t dst_len,
155                         Status &error) {
156  if (!dst || dst_len == 0)
157    return 0;
158
159  std::lock_guard<std::recursive_mutex> guard(m_mutex);
160  // FIXME: We should do a more thorough check to make sure that we're not
161  // overlapping with any invalid ranges (e.g. Read 0x100 - 0x200 but there's an
162  // invalid range 0x180 - 0x280). `FindEntryThatContains` has an implementation
163  // that takes a range, but it only checks to see if the argument is contained
164  // by an existing invalid range. It cannot check if the argument contains
165  // invalid ranges and cannot check for overlaps.
166  if (m_invalid_ranges.FindEntryThatContains(addr)) {
167    error.SetErrorStringWithFormat("memory read failed for 0x%" PRIx64, addr);
168    return 0;
169  }
170
171  // Check the L1 cache for a range that contains the entire memory read.
172  // L1 cache contains chunks of memory that are not required to be the size of
173  // an L2 cache line. We avoid trying to do partial reads from the L1 cache to
174  // simplify the implementation.
175  if (!m_L1_cache.empty()) {
176    AddrRange read_range(addr, dst_len);
177    BlockMap::iterator pos = m_L1_cache.upper_bound(addr);
178    if (pos != m_L1_cache.begin()) {
179      --pos;
180    }
181    AddrRange chunk_range(pos->first, pos->second->GetByteSize());
182    if (chunk_range.Contains(read_range)) {
183      memcpy(dst, pos->second->GetBytes() + (addr - chunk_range.GetRangeBase()),
184             dst_len);
185      return dst_len;
186    }
187  }
188
189  // If the size of the read is greater than the size of an L2 cache line, we'll
190  // just read from the inferior. If that read is successful, we'll cache what
191  // we read in the L1 cache for future use.
192  if (dst_len > m_L2_cache_line_byte_size) {
193    size_t bytes_read =
194        m_process.ReadMemoryFromInferior(addr, dst, dst_len, error);
195    if (bytes_read > 0)
196      AddL1CacheData(addr, dst, bytes_read);
197    return bytes_read;
198  }
199
200  // If the size of the read fits inside one L2 cache line, we'll try reading
201  // from the L2 cache. Note that if the range of memory we're reading sits
202  // between two contiguous cache lines, we'll touch two cache lines instead of
203  // just one.
204
205  // We're going to have all of our loads and reads be cache line aligned.
206  addr_t cache_line_offset = addr % m_L2_cache_line_byte_size;
207  addr_t cache_line_base_addr = addr - cache_line_offset;
208  DataBufferSP first_cache_line = GetL2CacheLine(cache_line_base_addr, error);
209  // If we get nothing, then the read to the inferior likely failed. Nothing to
210  // do here.
211  if (!first_cache_line)
212    return 0;
213
214  // If the cache line was not filled out completely and the offset is greater
215  // than what we have available, we can't do anything further here.
216  if (cache_line_offset >= first_cache_line->GetByteSize())
217    return 0;
218
219  uint8_t *dst_buf = (uint8_t *)dst;
220  size_t bytes_left = dst_len;
221  size_t read_size = first_cache_line->GetByteSize() - cache_line_offset;
222  if (read_size > bytes_left)
223    read_size = bytes_left;
224
225  memcpy(dst_buf + dst_len - bytes_left,
226         first_cache_line->GetBytes() + cache_line_offset, read_size);
227  bytes_left -= read_size;
228
229  // If the cache line was not filled out completely and we still have data to
230  // read, we can't do anything further.
231  if (first_cache_line->GetByteSize() < m_L2_cache_line_byte_size &&
232      bytes_left > 0)
233    return dst_len - bytes_left;
234
235  // We'll hit this scenario if our read straddles two cache lines.
236  if (bytes_left > 0) {
237    cache_line_base_addr += m_L2_cache_line_byte_size;
238
239    // FIXME: Until we are able to more thoroughly check for invalid ranges, we
240    // will have to check the second line to see if it is in an invalid range as
241    // well. See the check near the beginning of the function for more details.
242    if (m_invalid_ranges.FindEntryThatContains(cache_line_base_addr)) {
243      error.SetErrorStringWithFormat("memory read failed for 0x%" PRIx64,
244                                     cache_line_base_addr);
245      return dst_len - bytes_left;
246    }
247
248    DataBufferSP second_cache_line =
249        GetL2CacheLine(cache_line_base_addr, error);
250    if (!second_cache_line)
251      return dst_len - bytes_left;
252
253    read_size = bytes_left;
254    if (read_size > second_cache_line->GetByteSize())
255      read_size = second_cache_line->GetByteSize();
256
257    memcpy(dst_buf + dst_len - bytes_left, second_cache_line->GetBytes(),
258           read_size);
259    bytes_left -= read_size;
260
261    return dst_len - bytes_left;
262  }
263
264  return dst_len;
265}
266
267AllocatedBlock::AllocatedBlock(lldb::addr_t addr, uint32_t byte_size,
268                               uint32_t permissions, uint32_t chunk_size)
269    : m_range(addr, byte_size), m_permissions(permissions),
270      m_chunk_size(chunk_size)
271{
272  // The entire address range is free to start with.
273  m_free_blocks.Append(m_range);
274  assert(byte_size > chunk_size);
275}
276
277AllocatedBlock::~AllocatedBlock() = default;
278
279lldb::addr_t AllocatedBlock::ReserveBlock(uint32_t size) {
280  // We must return something valid for zero bytes.
281  if (size == 0)
282    size = 1;
283  Log *log = GetLog(LLDBLog::Process);
284
285  const size_t free_count = m_free_blocks.GetSize();
286  for (size_t i=0; i<free_count; ++i)
287  {
288    auto &free_block = m_free_blocks.GetEntryRef(i);
289    const lldb::addr_t range_size = free_block.GetByteSize();
290    if (range_size >= size)
291    {
292      // We found a free block that is big enough for our data. Figure out how
293      // many chunks we will need and calculate the resulting block size we
294      // will reserve.
295      addr_t addr = free_block.GetRangeBase();
296      size_t num_chunks = CalculateChunksNeededForSize(size);
297      lldb::addr_t block_size = num_chunks * m_chunk_size;
298      lldb::addr_t bytes_left = range_size - block_size;
299      if (bytes_left == 0)
300      {
301        // The newly allocated block will take all of the bytes in this
302        // available block, so we can just add it to the allocated ranges and
303        // remove the range from the free ranges.
304        m_reserved_blocks.Insert(free_block, false);
305        m_free_blocks.RemoveEntryAtIndex(i);
306      }
307      else
308      {
309        // Make the new allocated range and add it to the allocated ranges.
310        Range<lldb::addr_t, uint32_t> reserved_block(free_block);
311        reserved_block.SetByteSize(block_size);
312        // Insert the reserved range and don't combine it with other blocks in
313        // the reserved blocks list.
314        m_reserved_blocks.Insert(reserved_block, false);
315        // Adjust the free range in place since we won't change the sorted
316        // ordering of the m_free_blocks list.
317        free_block.SetRangeBase(reserved_block.GetRangeEnd());
318        free_block.SetByteSize(bytes_left);
319      }
320      LLDB_LOGV(log, "({0}) (size = {1} ({1:x})) => {2:x}", this, size, addr);
321      return addr;
322    }
323  }
324
325  LLDB_LOGV(log, "({0}) (size = {1} ({1:x})) => {2:x}", this, size,
326            LLDB_INVALID_ADDRESS);
327  return LLDB_INVALID_ADDRESS;
328}
329
330bool AllocatedBlock::FreeBlock(addr_t addr) {
331  bool success = false;
332  auto entry_idx = m_reserved_blocks.FindEntryIndexThatContains(addr);
333  if (entry_idx != UINT32_MAX)
334  {
335    m_free_blocks.Insert(m_reserved_blocks.GetEntryRef(entry_idx), true);
336    m_reserved_blocks.RemoveEntryAtIndex(entry_idx);
337    success = true;
338  }
339  Log *log = GetLog(LLDBLog::Process);
340  LLDB_LOGV(log, "({0}) (addr = {1:x}) => {2}", this, addr, success);
341  return success;
342}
343
344AllocatedMemoryCache::AllocatedMemoryCache(Process &process)
345    : m_process(process), m_mutex(), m_memory_map() {}
346
347AllocatedMemoryCache::~AllocatedMemoryCache() = default;
348
349void AllocatedMemoryCache::Clear(bool deallocate_memory) {
350  std::lock_guard<std::recursive_mutex> guard(m_mutex);
351  if (m_process.IsAlive() && deallocate_memory) {
352    PermissionsToBlockMap::iterator pos, end = m_memory_map.end();
353    for (pos = m_memory_map.begin(); pos != end; ++pos)
354      m_process.DoDeallocateMemory(pos->second->GetBaseAddress());
355  }
356  m_memory_map.clear();
357}
358
359AllocatedMemoryCache::AllocatedBlockSP
360AllocatedMemoryCache::AllocatePage(uint32_t byte_size, uint32_t permissions,
361                                   uint32_t chunk_size, Status &error) {
362  AllocatedBlockSP block_sp;
363  const size_t page_size = 4096;
364  const size_t num_pages = (byte_size + page_size - 1) / page_size;
365  const size_t page_byte_size = num_pages * page_size;
366
367  addr_t addr = m_process.DoAllocateMemory(page_byte_size, permissions, error);
368
369  Log *log = GetLog(LLDBLog::Process);
370  if (log) {
371    LLDB_LOGF(log,
372              "Process::DoAllocateMemory (byte_size = 0x%8.8" PRIx32
373              ", permissions = %s) => 0x%16.16" PRIx64,
374              (uint32_t)page_byte_size, GetPermissionsAsCString(permissions),
375              (uint64_t)addr);
376  }
377
378  if (addr != LLDB_INVALID_ADDRESS) {
379    block_sp = std::make_shared<AllocatedBlock>(addr, page_byte_size,
380                                                permissions, chunk_size);
381    m_memory_map.insert(std::make_pair(permissions, block_sp));
382  }
383  return block_sp;
384}
385
386lldb::addr_t AllocatedMemoryCache::AllocateMemory(size_t byte_size,
387                                                  uint32_t permissions,
388                                                  Status &error) {
389  std::lock_guard<std::recursive_mutex> guard(m_mutex);
390
391  addr_t addr = LLDB_INVALID_ADDRESS;
392  std::pair<PermissionsToBlockMap::iterator, PermissionsToBlockMap::iterator>
393      range = m_memory_map.equal_range(permissions);
394
395  for (PermissionsToBlockMap::iterator pos = range.first; pos != range.second;
396       ++pos) {
397    addr = (*pos).second->ReserveBlock(byte_size);
398    if (addr != LLDB_INVALID_ADDRESS)
399      break;
400  }
401
402  if (addr == LLDB_INVALID_ADDRESS) {
403    AllocatedBlockSP block_sp(AllocatePage(byte_size, permissions, 16, error));
404
405    if (block_sp)
406      addr = block_sp->ReserveBlock(byte_size);
407  }
408  Log *log = GetLog(LLDBLog::Process);
409  LLDB_LOGF(log,
410            "AllocatedMemoryCache::AllocateMemory (byte_size = 0x%8.8" PRIx32
411            ", permissions = %s) => 0x%16.16" PRIx64,
412            (uint32_t)byte_size, GetPermissionsAsCString(permissions),
413            (uint64_t)addr);
414  return addr;
415}
416
417bool AllocatedMemoryCache::DeallocateMemory(lldb::addr_t addr) {
418  std::lock_guard<std::recursive_mutex> guard(m_mutex);
419
420  PermissionsToBlockMap::iterator pos, end = m_memory_map.end();
421  bool success = false;
422  for (pos = m_memory_map.begin(); pos != end; ++pos) {
423    if (pos->second->Contains(addr)) {
424      success = pos->second->FreeBlock(addr);
425      break;
426    }
427  }
428  Log *log = GetLog(LLDBLog::Process);
429  LLDB_LOGF(log,
430            "AllocatedMemoryCache::DeallocateMemory (addr = 0x%16.16" PRIx64
431            ") => %i",
432            (uint64_t)addr, success);
433  return success;
434}
435