1//===-- DWARFCallFrameInfo.cpp --------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "lldb/Symbol/DWARFCallFrameInfo.h"
10#include "lldb/Core/Debugger.h"
11#include "lldb/Core/Module.h"
12#include "lldb/Core/Section.h"
13#include "lldb/Core/dwarf.h"
14#include "lldb/Host/Host.h"
15#include "lldb/Symbol/ObjectFile.h"
16#include "lldb/Symbol/UnwindPlan.h"
17#include "lldb/Target/RegisterContext.h"
18#include "lldb/Target/Thread.h"
19#include "lldb/Utility/ArchSpec.h"
20#include "lldb/Utility/LLDBLog.h"
21#include "lldb/Utility/Log.h"
22#include "lldb/Utility/Timer.h"
23#include <cstring>
24#include <list>
25#include <optional>
26
27using namespace lldb;
28using namespace lldb_private;
29using namespace lldb_private::dwarf;
30
31// GetDwarfEHPtr
32//
33// Used for calls when the value type is specified by a DWARF EH Frame pointer
34// encoding.
35static uint64_t
36GetGNUEHPointer(const DataExtractor &DE, offset_t *offset_ptr,
37                uint32_t eh_ptr_enc, addr_t pc_rel_addr, addr_t text_addr,
38                addr_t data_addr) //, BSDRelocs *data_relocs) const
39{
40  if (eh_ptr_enc == DW_EH_PE_omit)
41    return ULLONG_MAX; // Value isn't in the buffer...
42
43  uint64_t baseAddress = 0;
44  uint64_t addressValue = 0;
45  const uint32_t addr_size = DE.GetAddressByteSize();
46  assert(addr_size == 4 || addr_size == 8);
47
48  bool signExtendValue = false;
49  // Decode the base part or adjust our offset
50  switch (eh_ptr_enc & 0x70) {
51  case DW_EH_PE_pcrel:
52    signExtendValue = true;
53    baseAddress = *offset_ptr;
54    if (pc_rel_addr != LLDB_INVALID_ADDRESS)
55      baseAddress += pc_rel_addr;
56    //      else
57    //          Log::GlobalWarning ("PC relative pointer encoding found with
58    //          invalid pc relative address.");
59    break;
60
61  case DW_EH_PE_textrel:
62    signExtendValue = true;
63    if (text_addr != LLDB_INVALID_ADDRESS)
64      baseAddress = text_addr;
65    //      else
66    //          Log::GlobalWarning ("text relative pointer encoding being
67    //          decoded with invalid text section address, setting base address
68    //          to zero.");
69    break;
70
71  case DW_EH_PE_datarel:
72    signExtendValue = true;
73    if (data_addr != LLDB_INVALID_ADDRESS)
74      baseAddress = data_addr;
75    //      else
76    //          Log::GlobalWarning ("data relative pointer encoding being
77    //          decoded with invalid data section address, setting base address
78    //          to zero.");
79    break;
80
81  case DW_EH_PE_funcrel:
82    signExtendValue = true;
83    break;
84
85  case DW_EH_PE_aligned: {
86    // SetPointerSize should be called prior to extracting these so the pointer
87    // size is cached
88    assert(addr_size != 0);
89    if (addr_size) {
90      // Align to a address size boundary first
91      uint32_t alignOffset = *offset_ptr % addr_size;
92      if (alignOffset)
93        offset_ptr += addr_size - alignOffset;
94    }
95  } break;
96
97  default:
98    break;
99  }
100
101  // Decode the value part
102  switch (eh_ptr_enc & DW_EH_PE_MASK_ENCODING) {
103  case DW_EH_PE_absptr: {
104    addressValue = DE.GetAddress(offset_ptr);
105    //          if (data_relocs)
106    //              addressValue = data_relocs->Relocate(*offset_ptr -
107    //              addr_size, *this, addressValue);
108  } break;
109  case DW_EH_PE_uleb128:
110    addressValue = DE.GetULEB128(offset_ptr);
111    break;
112  case DW_EH_PE_udata2:
113    addressValue = DE.GetU16(offset_ptr);
114    break;
115  case DW_EH_PE_udata4:
116    addressValue = DE.GetU32(offset_ptr);
117    break;
118  case DW_EH_PE_udata8:
119    addressValue = DE.GetU64(offset_ptr);
120    break;
121  case DW_EH_PE_sleb128:
122    addressValue = DE.GetSLEB128(offset_ptr);
123    break;
124  case DW_EH_PE_sdata2:
125    addressValue = (int16_t)DE.GetU16(offset_ptr);
126    break;
127  case DW_EH_PE_sdata4:
128    addressValue = (int32_t)DE.GetU32(offset_ptr);
129    break;
130  case DW_EH_PE_sdata8:
131    addressValue = (int64_t)DE.GetU64(offset_ptr);
132    break;
133  default:
134    // Unhandled encoding type
135    assert(eh_ptr_enc);
136    break;
137  }
138
139  // Since we promote everything to 64 bit, we may need to sign extend
140  if (signExtendValue && addr_size < sizeof(baseAddress)) {
141    uint64_t sign_bit = 1ull << ((addr_size * 8ull) - 1ull);
142    if (sign_bit & addressValue) {
143      uint64_t mask = ~sign_bit + 1;
144      addressValue |= mask;
145    }
146  }
147  return baseAddress + addressValue;
148}
149
150DWARFCallFrameInfo::DWARFCallFrameInfo(ObjectFile &objfile,
151                                       SectionSP &section_sp, Type type)
152    : m_objfile(objfile), m_section_sp(section_sp), m_type(type) {}
153
154bool DWARFCallFrameInfo::GetUnwindPlan(const Address &addr,
155                                       UnwindPlan &unwind_plan) {
156  return GetUnwindPlan(AddressRange(addr, 1), unwind_plan);
157}
158
159bool DWARFCallFrameInfo::GetUnwindPlan(const AddressRange &range,
160                                       UnwindPlan &unwind_plan) {
161  FDEEntryMap::Entry fde_entry;
162  Address addr = range.GetBaseAddress();
163
164  // Make sure that the Address we're searching for is the same object file as
165  // this DWARFCallFrameInfo, we only store File offsets in m_fde_index.
166  ModuleSP module_sp = addr.GetModule();
167  if (module_sp.get() == nullptr || module_sp->GetObjectFile() == nullptr ||
168      module_sp->GetObjectFile() != &m_objfile)
169    return false;
170
171  if (std::optional<FDEEntryMap::Entry> entry = GetFirstFDEEntryInRange(range))
172    return FDEToUnwindPlan(entry->data, addr, unwind_plan);
173  return false;
174}
175
176bool DWARFCallFrameInfo::GetAddressRange(Address addr, AddressRange &range) {
177
178  // Make sure that the Address we're searching for is the same object file as
179  // this DWARFCallFrameInfo, we only store File offsets in m_fde_index.
180  ModuleSP module_sp = addr.GetModule();
181  if (module_sp.get() == nullptr || module_sp->GetObjectFile() == nullptr ||
182      module_sp->GetObjectFile() != &m_objfile)
183    return false;
184
185  if (m_section_sp.get() == nullptr || m_section_sp->IsEncrypted())
186    return false;
187  GetFDEIndex();
188  FDEEntryMap::Entry *fde_entry =
189      m_fde_index.FindEntryThatContains(addr.GetFileAddress());
190  if (!fde_entry)
191    return false;
192
193  range = AddressRange(fde_entry->base, fde_entry->size,
194                       m_objfile.GetSectionList());
195  return true;
196}
197
198std::optional<DWARFCallFrameInfo::FDEEntryMap::Entry>
199DWARFCallFrameInfo::GetFirstFDEEntryInRange(const AddressRange &range) {
200  if (!m_section_sp || m_section_sp->IsEncrypted())
201    return std::nullopt;
202
203  GetFDEIndex();
204
205  addr_t start_file_addr = range.GetBaseAddress().GetFileAddress();
206  const FDEEntryMap::Entry *fde =
207      m_fde_index.FindEntryThatContainsOrFollows(start_file_addr);
208  if (fde && fde->DoesIntersect(
209                 FDEEntryMap::Range(start_file_addr, range.GetByteSize())))
210    return *fde;
211
212  return std::nullopt;
213}
214
215void DWARFCallFrameInfo::GetFunctionAddressAndSizeVector(
216    FunctionAddressAndSizeVector &function_info) {
217  GetFDEIndex();
218  const size_t count = m_fde_index.GetSize();
219  function_info.Clear();
220  if (count > 0)
221    function_info.Reserve(count);
222  for (size_t i = 0; i < count; ++i) {
223    const FDEEntryMap::Entry *func_offset_data_entry =
224        m_fde_index.GetEntryAtIndex(i);
225    if (func_offset_data_entry) {
226      FunctionAddressAndSizeVector::Entry function_offset_entry(
227          func_offset_data_entry->base, func_offset_data_entry->size);
228      function_info.Append(function_offset_entry);
229    }
230  }
231}
232
233const DWARFCallFrameInfo::CIE *
234DWARFCallFrameInfo::GetCIE(dw_offset_t cie_offset) {
235  cie_map_t::iterator pos = m_cie_map.find(cie_offset);
236
237  if (pos != m_cie_map.end()) {
238    // Parse and cache the CIE
239    if (pos->second == nullptr)
240      pos->second = ParseCIE(cie_offset);
241
242    return pos->second.get();
243  }
244  return nullptr;
245}
246
247DWARFCallFrameInfo::CIESP
248DWARFCallFrameInfo::ParseCIE(const dw_offset_t cie_offset) {
249  CIESP cie_sp(new CIE(cie_offset));
250  lldb::offset_t offset = cie_offset;
251  if (!m_cfi_data_initialized)
252    GetCFIData();
253  uint32_t length = m_cfi_data.GetU32(&offset);
254  dw_offset_t cie_id, end_offset;
255  bool is_64bit = (length == UINT32_MAX);
256  if (is_64bit) {
257    length = m_cfi_data.GetU64(&offset);
258    cie_id = m_cfi_data.GetU64(&offset);
259    end_offset = cie_offset + length + 12;
260  } else {
261    cie_id = m_cfi_data.GetU32(&offset);
262    end_offset = cie_offset + length + 4;
263  }
264  if (length > 0 && ((m_type == DWARF && cie_id == UINT32_MAX) ||
265                     (m_type == EH && cie_id == 0ul))) {
266    size_t i;
267    //    cie.offset = cie_offset;
268    //    cie.length = length;
269    //    cie.cieID = cieID;
270    cie_sp->ptr_encoding = DW_EH_PE_absptr; // default
271    cie_sp->version = m_cfi_data.GetU8(&offset);
272    if (cie_sp->version > CFI_VERSION4) {
273      Debugger::ReportError(
274          llvm::formatv("CIE parse error: CFI version {0} is not supported",
275                        cie_sp->version));
276      return nullptr;
277    }
278
279    for (i = 0; i < CFI_AUG_MAX_SIZE; ++i) {
280      cie_sp->augmentation[i] = m_cfi_data.GetU8(&offset);
281      if (cie_sp->augmentation[i] == '\0') {
282        // Zero out remaining bytes in augmentation string
283        for (size_t j = i + 1; j < CFI_AUG_MAX_SIZE; ++j)
284          cie_sp->augmentation[j] = '\0';
285
286        break;
287      }
288    }
289
290    if (i == CFI_AUG_MAX_SIZE &&
291        cie_sp->augmentation[CFI_AUG_MAX_SIZE - 1] != '\0') {
292      Debugger::ReportError(llvm::formatv(
293          "CIE parse error: CIE augmentation string was too large "
294          "for the fixed sized buffer of {0} bytes.",
295          CFI_AUG_MAX_SIZE));
296      return nullptr;
297    }
298
299    // m_cfi_data uses address size from target architecture of the process may
300    // ignore these fields?
301    if (m_type == DWARF && cie_sp->version >= CFI_VERSION4) {
302      cie_sp->address_size = m_cfi_data.GetU8(&offset);
303      cie_sp->segment_size = m_cfi_data.GetU8(&offset);
304    }
305
306    cie_sp->code_align = (uint32_t)m_cfi_data.GetULEB128(&offset);
307    cie_sp->data_align = (int32_t)m_cfi_data.GetSLEB128(&offset);
308
309    cie_sp->return_addr_reg_num =
310        m_type == DWARF && cie_sp->version >= CFI_VERSION3
311            ? static_cast<uint32_t>(m_cfi_data.GetULEB128(&offset))
312            : m_cfi_data.GetU8(&offset);
313
314    if (cie_sp->augmentation[0]) {
315      // Get the length of the eh_frame augmentation data which starts with a
316      // ULEB128 length in bytes
317      const size_t aug_data_len = (size_t)m_cfi_data.GetULEB128(&offset);
318      const size_t aug_data_end = offset + aug_data_len;
319      const size_t aug_str_len = strlen(cie_sp->augmentation);
320      // A 'z' may be present as the first character of the string.
321      // If present, the Augmentation Data field shall be present. The contents
322      // of the Augmentation Data shall be interpreted according to other
323      // characters in the Augmentation String.
324      if (cie_sp->augmentation[0] == 'z') {
325        // Extract the Augmentation Data
326        size_t aug_str_idx = 0;
327        for (aug_str_idx = 1; aug_str_idx < aug_str_len; aug_str_idx++) {
328          char aug = cie_sp->augmentation[aug_str_idx];
329          switch (aug) {
330          case 'L':
331            // Indicates the presence of one argument in the Augmentation Data
332            // of the CIE, and a corresponding argument in the Augmentation
333            // Data of the FDE. The argument in the Augmentation Data of the
334            // CIE is 1-byte and represents the pointer encoding used for the
335            // argument in the Augmentation Data of the FDE, which is the
336            // address of a language-specific data area (LSDA). The size of the
337            // LSDA pointer is specified by the pointer encoding used.
338            cie_sp->lsda_addr_encoding = m_cfi_data.GetU8(&offset);
339            break;
340
341          case 'P':
342            // Indicates the presence of two arguments in the Augmentation Data
343            // of the CIE. The first argument is 1-byte and represents the
344            // pointer encoding used for the second argument, which is the
345            // address of a personality routine handler. The size of the
346            // personality routine pointer is specified by the pointer encoding
347            // used.
348            //
349            // The address of the personality function will be stored at this
350            // location.  Pre-execution, it will be all zero's so don't read it
351            // until we're trying to do an unwind & the reloc has been
352            // resolved.
353            {
354              uint8_t arg_ptr_encoding = m_cfi_data.GetU8(&offset);
355              const lldb::addr_t pc_rel_addr = m_section_sp->GetFileAddress();
356              cie_sp->personality_loc = GetGNUEHPointer(
357                  m_cfi_data, &offset, arg_ptr_encoding, pc_rel_addr,
358                  LLDB_INVALID_ADDRESS, LLDB_INVALID_ADDRESS);
359            }
360            break;
361
362          case 'R':
363            // A 'R' may be present at any position after the
364            // first character of the string. The Augmentation Data shall
365            // include a 1 byte argument that represents the pointer encoding
366            // for the address pointers used in the FDE. Example: 0x1B ==
367            // DW_EH_PE_pcrel | DW_EH_PE_sdata4
368            cie_sp->ptr_encoding = m_cfi_data.GetU8(&offset);
369            break;
370          }
371        }
372      } else if (strcmp(cie_sp->augmentation, "eh") == 0) {
373        // If the Augmentation string has the value "eh", then the EH Data
374        // field shall be present
375      }
376
377      // Set the offset to be the end of the augmentation data just in case we
378      // didn't understand any of the data.
379      offset = (uint32_t)aug_data_end;
380    }
381
382    if (end_offset > offset) {
383      cie_sp->inst_offset = offset;
384      cie_sp->inst_length = end_offset - offset;
385    }
386    while (offset < end_offset) {
387      uint8_t inst = m_cfi_data.GetU8(&offset);
388      uint8_t primary_opcode = inst & 0xC0;
389      uint8_t extended_opcode = inst & 0x3F;
390
391      if (!HandleCommonDwarfOpcode(primary_opcode, extended_opcode,
392                                   cie_sp->data_align, offset,
393                                   cie_sp->initial_row))
394        break; // Stop if we hit an unrecognized opcode
395    }
396  }
397
398  return cie_sp;
399}
400
401void DWARFCallFrameInfo::GetCFIData() {
402  if (!m_cfi_data_initialized) {
403    Log *log = GetLog(LLDBLog::Unwind);
404    if (log)
405      m_objfile.GetModule()->LogMessage(log, "Reading EH frame info");
406    m_objfile.ReadSectionData(m_section_sp.get(), m_cfi_data);
407    m_cfi_data_initialized = true;
408  }
409}
410// Scan through the eh_frame or debug_frame section looking for FDEs and noting
411// the start/end addresses of the functions and a pointer back to the
412// function's FDE for later expansion. Internalize CIEs as we come across them.
413
414void DWARFCallFrameInfo::GetFDEIndex() {
415  if (m_section_sp.get() == nullptr || m_section_sp->IsEncrypted())
416    return;
417
418  if (m_fde_index_initialized)
419    return;
420
421  std::lock_guard<std::mutex> guard(m_fde_index_mutex);
422
423  if (m_fde_index_initialized) // if two threads hit the locker
424    return;
425
426  LLDB_SCOPED_TIMERF("%s - %s", LLVM_PRETTY_FUNCTION,
427                     m_objfile.GetFileSpec().GetFilename().AsCString(""));
428
429  bool clear_address_zeroth_bit = false;
430  if (ArchSpec arch = m_objfile.GetArchitecture()) {
431    if (arch.GetTriple().getArch() == llvm::Triple::arm ||
432        arch.GetTriple().getArch() == llvm::Triple::thumb)
433      clear_address_zeroth_bit = true;
434  }
435
436  lldb::offset_t offset = 0;
437  if (!m_cfi_data_initialized)
438    GetCFIData();
439  while (m_cfi_data.ValidOffsetForDataOfSize(offset, 8)) {
440    const dw_offset_t current_entry = offset;
441    dw_offset_t cie_id, next_entry, cie_offset;
442    uint32_t len = m_cfi_data.GetU32(&offset);
443    bool is_64bit = (len == UINT32_MAX);
444    if (is_64bit) {
445      len = m_cfi_data.GetU64(&offset);
446      cie_id = m_cfi_data.GetU64(&offset);
447      next_entry = current_entry + len + 12;
448      cie_offset = current_entry + 12 - cie_id;
449    } else {
450      cie_id = m_cfi_data.GetU32(&offset);
451      next_entry = current_entry + len + 4;
452      cie_offset = current_entry + 4 - cie_id;
453    }
454
455    if (next_entry > m_cfi_data.GetByteSize() + 1) {
456      Debugger::ReportError(llvm::formatv("Invalid fde/cie next entry offset "
457                                          "of {0:x} found in cie/fde at {1:x}",
458                                          next_entry, current_entry));
459      // Don't trust anything in this eh_frame section if we find blatantly
460      // invalid data.
461      m_fde_index.Clear();
462      m_fde_index_initialized = true;
463      return;
464    }
465
466    // An FDE entry contains CIE_pointer in debug_frame in same place as cie_id
467    // in eh_frame. CIE_pointer is an offset into the .debug_frame section. So,
468    // variable cie_offset should be equal to cie_id for debug_frame.
469    // FDE entries with cie_id == 0 shouldn't be ignored for it.
470    if ((cie_id == 0 && m_type == EH) || cie_id == UINT32_MAX || len == 0) {
471      auto cie_sp = ParseCIE(current_entry);
472      if (!cie_sp) {
473        // Cannot parse, the reason is already logged
474        m_fde_index.Clear();
475        m_fde_index_initialized = true;
476        return;
477      }
478
479      m_cie_map[current_entry] = std::move(cie_sp);
480      offset = next_entry;
481      continue;
482    }
483
484    if (m_type == DWARF)
485      cie_offset = cie_id;
486
487    if (cie_offset > m_cfi_data.GetByteSize()) {
488      Debugger::ReportError(llvm::formatv("Invalid cie offset of {0:x} "
489                                          "found in cie/fde at {1:x}",
490                                          cie_offset, current_entry));
491      // Don't trust anything in this eh_frame section if we find blatantly
492      // invalid data.
493      m_fde_index.Clear();
494      m_fde_index_initialized = true;
495      return;
496    }
497
498    const CIE *cie = GetCIE(cie_offset);
499    if (cie) {
500      const lldb::addr_t pc_rel_addr = m_section_sp->GetFileAddress();
501      const lldb::addr_t text_addr = LLDB_INVALID_ADDRESS;
502      const lldb::addr_t data_addr = LLDB_INVALID_ADDRESS;
503
504      lldb::addr_t addr =
505          GetGNUEHPointer(m_cfi_data, &offset, cie->ptr_encoding, pc_rel_addr,
506                          text_addr, data_addr);
507      if (clear_address_zeroth_bit)
508        addr &= ~1ull;
509
510      lldb::addr_t length = GetGNUEHPointer(
511          m_cfi_data, &offset, cie->ptr_encoding & DW_EH_PE_MASK_ENCODING,
512          pc_rel_addr, text_addr, data_addr);
513      FDEEntryMap::Entry fde(addr, length, current_entry);
514      m_fde_index.Append(fde);
515    } else {
516      Debugger::ReportError(llvm::formatv(
517          "unable to find CIE at {0:x} for cie_id = {1:x} for entry at {2:x}.",
518          cie_offset, cie_id, current_entry));
519    }
520    offset = next_entry;
521  }
522  m_fde_index.Sort();
523  m_fde_index_initialized = true;
524}
525
526bool DWARFCallFrameInfo::FDEToUnwindPlan(dw_offset_t dwarf_offset,
527                                         Address startaddr,
528                                         UnwindPlan &unwind_plan) {
529  Log *log = GetLog(LLDBLog::Unwind);
530  lldb::offset_t offset = dwarf_offset;
531  lldb::offset_t current_entry = offset;
532
533  if (m_section_sp.get() == nullptr || m_section_sp->IsEncrypted())
534    return false;
535
536  if (!m_cfi_data_initialized)
537    GetCFIData();
538
539  uint32_t length = m_cfi_data.GetU32(&offset);
540  dw_offset_t cie_offset;
541  bool is_64bit = (length == UINT32_MAX);
542  if (is_64bit) {
543    length = m_cfi_data.GetU64(&offset);
544    cie_offset = m_cfi_data.GetU64(&offset);
545  } else {
546    cie_offset = m_cfi_data.GetU32(&offset);
547  }
548
549  // FDE entries with zeroth cie_offset may occur for debug_frame.
550  assert(!(m_type == EH && 0 == cie_offset) && cie_offset != UINT32_MAX);
551
552  // Translate the CIE_id from the eh_frame format, which is relative to the
553  // FDE offset, into a __eh_frame section offset
554  if (m_type == EH) {
555    unwind_plan.SetSourceName("eh_frame CFI");
556    cie_offset = current_entry + (is_64bit ? 12 : 4) - cie_offset;
557    unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolNo);
558  } else {
559    unwind_plan.SetSourceName("DWARF CFI");
560    // In theory the debug_frame info should be valid at all call sites
561    // ("asynchronous unwind info" as it is sometimes called) but in practice
562    // gcc et al all emit call frame info for the prologue and call sites, but
563    // not for the epilogue or all the other locations during the function
564    // reliably.
565    unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolNo);
566  }
567  unwind_plan.SetSourcedFromCompiler(eLazyBoolYes);
568
569  const CIE *cie = GetCIE(cie_offset);
570  assert(cie != nullptr);
571
572  const dw_offset_t end_offset = current_entry + length + (is_64bit ? 12 : 4);
573
574  const lldb::addr_t pc_rel_addr = m_section_sp->GetFileAddress();
575  const lldb::addr_t text_addr = LLDB_INVALID_ADDRESS;
576  const lldb::addr_t data_addr = LLDB_INVALID_ADDRESS;
577  lldb::addr_t range_base =
578      GetGNUEHPointer(m_cfi_data, &offset, cie->ptr_encoding, pc_rel_addr,
579                      text_addr, data_addr);
580  lldb::addr_t range_len = GetGNUEHPointer(
581      m_cfi_data, &offset, cie->ptr_encoding & DW_EH_PE_MASK_ENCODING,
582      pc_rel_addr, text_addr, data_addr);
583  AddressRange range(range_base, m_objfile.GetAddressByteSize(),
584                     m_objfile.GetSectionList());
585  range.SetByteSize(range_len);
586
587  addr_t lsda_data_file_address = LLDB_INVALID_ADDRESS;
588
589  if (cie->augmentation[0] == 'z') {
590    uint32_t aug_data_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
591    if (aug_data_len != 0 && cie->lsda_addr_encoding != DW_EH_PE_omit) {
592      offset_t saved_offset = offset;
593      lsda_data_file_address =
594          GetGNUEHPointer(m_cfi_data, &offset, cie->lsda_addr_encoding,
595                          pc_rel_addr, text_addr, data_addr);
596      if (offset - saved_offset != aug_data_len) {
597        // There is more in the augmentation region than we know how to process;
598        // don't read anything.
599        lsda_data_file_address = LLDB_INVALID_ADDRESS;
600      }
601      offset = saved_offset;
602    }
603    offset += aug_data_len;
604  }
605  unwind_plan.SetUnwindPlanForSignalTrap(
606    strchr(cie->augmentation, 'S') ? eLazyBoolYes : eLazyBoolNo);
607
608  Address lsda_data;
609  Address personality_function_ptr;
610
611  if (lsda_data_file_address != LLDB_INVALID_ADDRESS &&
612      cie->personality_loc != LLDB_INVALID_ADDRESS) {
613    m_objfile.GetModule()->ResolveFileAddress(lsda_data_file_address,
614                                              lsda_data);
615    m_objfile.GetModule()->ResolveFileAddress(cie->personality_loc,
616                                              personality_function_ptr);
617  }
618
619  if (lsda_data.IsValid() && personality_function_ptr.IsValid()) {
620    unwind_plan.SetLSDAAddress(lsda_data);
621    unwind_plan.SetPersonalityFunctionPtr(personality_function_ptr);
622  }
623
624  uint32_t code_align = cie->code_align;
625  int32_t data_align = cie->data_align;
626
627  unwind_plan.SetPlanValidAddressRange(range);
628  UnwindPlan::Row *cie_initial_row = new UnwindPlan::Row;
629  *cie_initial_row = cie->initial_row;
630  UnwindPlan::RowSP row(cie_initial_row);
631
632  unwind_plan.SetRegisterKind(GetRegisterKind());
633  unwind_plan.SetReturnAddressRegister(cie->return_addr_reg_num);
634
635  std::vector<UnwindPlan::RowSP> stack;
636
637  UnwindPlan::Row::RegisterLocation reg_location;
638  while (m_cfi_data.ValidOffset(offset) && offset < end_offset) {
639    uint8_t inst = m_cfi_data.GetU8(&offset);
640    uint8_t primary_opcode = inst & 0xC0;
641    uint8_t extended_opcode = inst & 0x3F;
642
643    if (!HandleCommonDwarfOpcode(primary_opcode, extended_opcode, data_align,
644                                 offset, *row)) {
645      if (primary_opcode) {
646        switch (primary_opcode) {
647        case DW_CFA_advance_loc: // (Row Creation Instruction)
648        { // 0x40 - high 2 bits are 0x1, lower 6 bits are delta
649          // takes a single argument that represents a constant delta. The
650          // required action is to create a new table row with a location value
651          // that is computed by taking the current entry's location value and
652          // adding (delta * code_align). All other values in the new row are
653          // initially identical to the current row.
654          unwind_plan.AppendRow(row);
655          UnwindPlan::Row *newrow = new UnwindPlan::Row;
656          *newrow = *row.get();
657          row.reset(newrow);
658          row->SlideOffset(extended_opcode * code_align);
659          break;
660        }
661
662        case DW_CFA_restore: { // 0xC0 - high 2 bits are 0x3, lower 6 bits are
663                               // register
664          // takes a single argument that represents a register number. The
665          // required action is to change the rule for the indicated register
666          // to the rule assigned it by the initial_instructions in the CIE.
667          uint32_t reg_num = extended_opcode;
668          // We only keep enough register locations around to unwind what is in
669          // our thread, and these are organized by the register index in that
670          // state, so we need to convert our eh_frame register number from the
671          // EH frame info, to a register index
672
673          if (unwind_plan.IsValidRowIndex(0) &&
674              unwind_plan.GetRowAtIndex(0)->GetRegisterInfo(reg_num,
675                                                            reg_location))
676            row->SetRegisterInfo(reg_num, reg_location);
677          else {
678            // If the register was not set in the first row, remove the
679            // register info to keep the unmodified value from the caller.
680            row->RemoveRegisterInfo(reg_num);
681          }
682          break;
683        }
684        }
685      } else {
686        switch (extended_opcode) {
687        case DW_CFA_set_loc: // 0x1 (Row Creation Instruction)
688        {
689          // DW_CFA_set_loc takes a single argument that represents an address.
690          // The required action is to create a new table row using the
691          // specified address as the location. All other values in the new row
692          // are initially identical to the current row. The new location value
693          // should always be greater than the current one.
694          unwind_plan.AppendRow(row);
695          UnwindPlan::Row *newrow = new UnwindPlan::Row;
696          *newrow = *row.get();
697          row.reset(newrow);
698          row->SetOffset(m_cfi_data.GetAddress(&offset) -
699                         startaddr.GetFileAddress());
700          break;
701        }
702
703        case DW_CFA_advance_loc1: // 0x2 (Row Creation Instruction)
704        {
705          // takes a single uword argument that represents a constant delta.
706          // This instruction is identical to DW_CFA_advance_loc except for the
707          // encoding and size of the delta argument.
708          unwind_plan.AppendRow(row);
709          UnwindPlan::Row *newrow = new UnwindPlan::Row;
710          *newrow = *row.get();
711          row.reset(newrow);
712          row->SlideOffset(m_cfi_data.GetU8(&offset) * code_align);
713          break;
714        }
715
716        case DW_CFA_advance_loc2: // 0x3 (Row Creation Instruction)
717        {
718          // takes a single uword argument that represents a constant delta.
719          // This instruction is identical to DW_CFA_advance_loc except for the
720          // encoding and size of the delta argument.
721          unwind_plan.AppendRow(row);
722          UnwindPlan::Row *newrow = new UnwindPlan::Row;
723          *newrow = *row.get();
724          row.reset(newrow);
725          row->SlideOffset(m_cfi_data.GetU16(&offset) * code_align);
726          break;
727        }
728
729        case DW_CFA_advance_loc4: // 0x4 (Row Creation Instruction)
730        {
731          // takes a single uword argument that represents a constant delta.
732          // This instruction is identical to DW_CFA_advance_loc except for the
733          // encoding and size of the delta argument.
734          unwind_plan.AppendRow(row);
735          UnwindPlan::Row *newrow = new UnwindPlan::Row;
736          *newrow = *row.get();
737          row.reset(newrow);
738          row->SlideOffset(m_cfi_data.GetU32(&offset) * code_align);
739          break;
740        }
741
742        case DW_CFA_restore_extended: // 0x6
743        {
744          // takes a single unsigned LEB128 argument that represents a register
745          // number. This instruction is identical to DW_CFA_restore except for
746          // the encoding and size of the register argument.
747          uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
748          if (unwind_plan.IsValidRowIndex(0) &&
749              unwind_plan.GetRowAtIndex(0)->GetRegisterInfo(reg_num,
750                                                            reg_location))
751            row->SetRegisterInfo(reg_num, reg_location);
752          break;
753        }
754
755        case DW_CFA_remember_state: // 0xA
756        {
757          // These instructions define a stack of information. Encountering the
758          // DW_CFA_remember_state instruction means to save the rules for
759          // every register on the current row on the stack. Encountering the
760          // DW_CFA_restore_state instruction means to pop the set of rules off
761          // the stack and place them in the current row. (This operation is
762          // useful for compilers that move epilogue code into the body of a
763          // function.)
764          stack.push_back(row);
765          UnwindPlan::Row *newrow = new UnwindPlan::Row;
766          *newrow = *row.get();
767          row.reset(newrow);
768          break;
769        }
770
771        case DW_CFA_restore_state: // 0xB
772        {
773          // These instructions define a stack of information. Encountering the
774          // DW_CFA_remember_state instruction means to save the rules for
775          // every register on the current row on the stack. Encountering the
776          // DW_CFA_restore_state instruction means to pop the set of rules off
777          // the stack and place them in the current row. (This operation is
778          // useful for compilers that move epilogue code into the body of a
779          // function.)
780          if (stack.empty()) {
781            LLDB_LOG(log,
782                     "DWARFCallFrameInfo::{0}(dwarf_offset: "
783                     "{1:x16}, startaddr: [{2:x16}] encountered "
784                     "DW_CFA_restore_state but state stack "
785                     "is empty. Corrupt unwind info?",
786                     __FUNCTION__, dwarf_offset, startaddr.GetFileAddress());
787            break;
788          }
789          lldb::addr_t offset = row->GetOffset();
790          row = stack.back();
791          stack.pop_back();
792          row->SetOffset(offset);
793          break;
794        }
795
796        case DW_CFA_GNU_args_size: // 0x2e
797        {
798          // The DW_CFA_GNU_args_size instruction takes an unsigned LEB128
799          // operand representing an argument size. This instruction specifies
800          // the total of the size of the arguments which have been pushed onto
801          // the stack.
802
803          // TODO: Figure out how we should handle this.
804          m_cfi_data.GetULEB128(&offset);
805          break;
806        }
807
808        case DW_CFA_val_offset:    // 0x14
809        case DW_CFA_val_offset_sf: // 0x15
810        default:
811          break;
812        }
813      }
814    }
815  }
816  unwind_plan.AppendRow(row);
817
818  return true;
819}
820
821bool DWARFCallFrameInfo::HandleCommonDwarfOpcode(uint8_t primary_opcode,
822                                                 uint8_t extended_opcode,
823                                                 int32_t data_align,
824                                                 lldb::offset_t &offset,
825                                                 UnwindPlan::Row &row) {
826  UnwindPlan::Row::RegisterLocation reg_location;
827
828  if (primary_opcode) {
829    switch (primary_opcode) {
830    case DW_CFA_offset: { // 0x80 - high 2 bits are 0x2, lower 6 bits are
831                          // register
832      // takes two arguments: an unsigned LEB128 constant representing a
833      // factored offset and a register number. The required action is to
834      // change the rule for the register indicated by the register number to
835      // be an offset(N) rule with a value of (N = factored offset *
836      // data_align).
837      uint8_t reg_num = extended_opcode;
838      int32_t op_offset = (int32_t)m_cfi_data.GetULEB128(&offset) * data_align;
839      reg_location.SetAtCFAPlusOffset(op_offset);
840      row.SetRegisterInfo(reg_num, reg_location);
841      return true;
842    }
843    }
844  } else {
845    switch (extended_opcode) {
846    case DW_CFA_nop: // 0x0
847      return true;
848
849    case DW_CFA_offset_extended: // 0x5
850    {
851      // takes two unsigned LEB128 arguments representing a register number and
852      // a factored offset. This instruction is identical to DW_CFA_offset
853      // except for the encoding and size of the register argument.
854      uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
855      int32_t op_offset = (int32_t)m_cfi_data.GetULEB128(&offset) * data_align;
856      UnwindPlan::Row::RegisterLocation reg_location;
857      reg_location.SetAtCFAPlusOffset(op_offset);
858      row.SetRegisterInfo(reg_num, reg_location);
859      return true;
860    }
861
862    case DW_CFA_undefined: // 0x7
863    {
864      // takes a single unsigned LEB128 argument that represents a register
865      // number. The required action is to set the rule for the specified
866      // register to undefined.
867      uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
868      UnwindPlan::Row::RegisterLocation reg_location;
869      reg_location.SetUndefined();
870      row.SetRegisterInfo(reg_num, reg_location);
871      return true;
872    }
873
874    case DW_CFA_same_value: // 0x8
875    {
876      // takes a single unsigned LEB128 argument that represents a register
877      // number. The required action is to set the rule for the specified
878      // register to same value.
879      uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
880      UnwindPlan::Row::RegisterLocation reg_location;
881      reg_location.SetSame();
882      row.SetRegisterInfo(reg_num, reg_location);
883      return true;
884    }
885
886    case DW_CFA_register: // 0x9
887    {
888      // takes two unsigned LEB128 arguments representing register numbers. The
889      // required action is to set the rule for the first register to be the
890      // second register.
891      uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
892      uint32_t other_reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
893      UnwindPlan::Row::RegisterLocation reg_location;
894      reg_location.SetInRegister(other_reg_num);
895      row.SetRegisterInfo(reg_num, reg_location);
896      return true;
897    }
898
899    case DW_CFA_def_cfa: // 0xC    (CFA Definition Instruction)
900    {
901      // Takes two unsigned LEB128 operands representing a register number and
902      // a (non-factored) offset. The required action is to define the current
903      // CFA rule to use the provided register and offset.
904      uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
905      int32_t op_offset = (int32_t)m_cfi_data.GetULEB128(&offset);
906      row.GetCFAValue().SetIsRegisterPlusOffset(reg_num, op_offset);
907      return true;
908    }
909
910    case DW_CFA_def_cfa_register: // 0xD    (CFA Definition Instruction)
911    {
912      // takes a single unsigned LEB128 argument representing a register
913      // number. The required action is to define the current CFA rule to use
914      // the provided register (but to keep the old offset).
915      uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
916      row.GetCFAValue().SetIsRegisterPlusOffset(reg_num,
917                                                row.GetCFAValue().GetOffset());
918      return true;
919    }
920
921    case DW_CFA_def_cfa_offset: // 0xE    (CFA Definition Instruction)
922    {
923      // Takes a single unsigned LEB128 operand representing a (non-factored)
924      // offset. The required action is to define the current CFA rule to use
925      // the provided offset (but to keep the old register).
926      int32_t op_offset = (int32_t)m_cfi_data.GetULEB128(&offset);
927      row.GetCFAValue().SetIsRegisterPlusOffset(
928          row.GetCFAValue().GetRegisterNumber(), op_offset);
929      return true;
930    }
931
932    case DW_CFA_def_cfa_expression: // 0xF    (CFA Definition Instruction)
933    {
934      size_t block_len = (size_t)m_cfi_data.GetULEB128(&offset);
935      const uint8_t *block_data =
936          static_cast<const uint8_t *>(m_cfi_data.GetData(&offset, block_len));
937      row.GetCFAValue().SetIsDWARFExpression(block_data, block_len);
938      return true;
939    }
940
941    case DW_CFA_expression: // 0x10
942    {
943      // Takes two operands: an unsigned LEB128 value representing a register
944      // number, and a DW_FORM_block value representing a DWARF expression. The
945      // required action is to change the rule for the register indicated by
946      // the register number to be an expression(E) rule where E is the DWARF
947      // expression. That is, the DWARF expression computes the address. The
948      // value of the CFA is pushed on the DWARF evaluation stack prior to
949      // execution of the DWARF expression.
950      uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
951      uint32_t block_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
952      const uint8_t *block_data =
953          static_cast<const uint8_t *>(m_cfi_data.GetData(&offset, block_len));
954      UnwindPlan::Row::RegisterLocation reg_location;
955      reg_location.SetAtDWARFExpression(block_data, block_len);
956      row.SetRegisterInfo(reg_num, reg_location);
957      return true;
958    }
959
960    case DW_CFA_offset_extended_sf: // 0x11
961    {
962      // takes two operands: an unsigned LEB128 value representing a register
963      // number and a signed LEB128 factored offset. This instruction is
964      // identical to DW_CFA_offset_extended except that the second operand is
965      // signed and factored.
966      uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
967      int32_t op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
968      UnwindPlan::Row::RegisterLocation reg_location;
969      reg_location.SetAtCFAPlusOffset(op_offset);
970      row.SetRegisterInfo(reg_num, reg_location);
971      return true;
972    }
973
974    case DW_CFA_def_cfa_sf: // 0x12   (CFA Definition Instruction)
975    {
976      // Takes two operands: an unsigned LEB128 value representing a register
977      // number and a signed LEB128 factored offset. This instruction is
978      // identical to DW_CFA_def_cfa except that the second operand is signed
979      // and factored.
980      uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
981      int32_t op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
982      row.GetCFAValue().SetIsRegisterPlusOffset(reg_num, op_offset);
983      return true;
984    }
985
986    case DW_CFA_def_cfa_offset_sf: // 0x13   (CFA Definition Instruction)
987    {
988      // takes a signed LEB128 operand representing a factored offset. This
989      // instruction is identical to  DW_CFA_def_cfa_offset except that the
990      // operand is signed and factored.
991      int32_t op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
992      uint32_t cfa_regnum = row.GetCFAValue().GetRegisterNumber();
993      row.GetCFAValue().SetIsRegisterPlusOffset(cfa_regnum, op_offset);
994      return true;
995    }
996
997    case DW_CFA_val_expression: // 0x16
998    {
999      // takes two operands: an unsigned LEB128 value representing a register
1000      // number, and a DW_FORM_block value representing a DWARF expression. The
1001      // required action is to change the rule for the register indicated by
1002      // the register number to be a val_expression(E) rule where E is the
1003      // DWARF expression. That is, the DWARF expression computes the value of
1004      // the given register. The value of the CFA is pushed on the DWARF
1005      // evaluation stack prior to execution of the DWARF expression.
1006      uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
1007      uint32_t block_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
1008      const uint8_t *block_data =
1009          (const uint8_t *)m_cfi_data.GetData(&offset, block_len);
1010      reg_location.SetIsDWARFExpression(block_data, block_len);
1011      row.SetRegisterInfo(reg_num, reg_location);
1012      return true;
1013    }
1014    }
1015  }
1016  return false;
1017}
1018
1019void DWARFCallFrameInfo::ForEachFDEEntries(
1020    const std::function<bool(lldb::addr_t, uint32_t, dw_offset_t)> &callback) {
1021  GetFDEIndex();
1022
1023  for (size_t i = 0, c = m_fde_index.GetSize(); i < c; ++i) {
1024    const FDEEntryMap::Entry &entry = m_fde_index.GetEntryRef(i);
1025    if (!callback(entry.base, entry.size, entry.data))
1026      break;
1027  }
1028}
1029