1//===- Writer.cpp ---------------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "Writer.h"
10#include "AArch64ErrataFix.h"
11#include "ARMErrataFix.h"
12#include "CallGraphSort.h"
13#include "Config.h"
14#include "InputFiles.h"
15#include "LinkerScript.h"
16#include "MapFile.h"
17#include "OutputSections.h"
18#include "Relocations.h"
19#include "SymbolTable.h"
20#include "Symbols.h"
21#include "SyntheticSections.h"
22#include "Target.h"
23#include "lld/Common/Arrays.h"
24#include "lld/Common/CommonLinkerContext.h"
25#include "lld/Common/Filesystem.h"
26#include "lld/Common/Strings.h"
27#include "llvm/ADT/StringMap.h"
28#include "llvm/Support/BLAKE3.h"
29#include "llvm/Support/Parallel.h"
30#include "llvm/Support/RandomNumberGenerator.h"
31#include "llvm/Support/TimeProfiler.h"
32#include "llvm/Support/xxhash.h"
33#include <climits>
34
35#define DEBUG_TYPE "lld"
36
37using namespace llvm;
38using namespace llvm::ELF;
39using namespace llvm::object;
40using namespace llvm::support;
41using namespace llvm::support::endian;
42using namespace lld;
43using namespace lld::elf;
44
45namespace {
46// The writer writes a SymbolTable result to a file.
47template <class ELFT> class Writer {
48public:
49  LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
50
51  Writer() : buffer(errorHandler().outputBuffer) {}
52
53  void run();
54
55private:
56  void addSectionSymbols();
57  void sortSections();
58  void resolveShfLinkOrder();
59  void finalizeAddressDependentContent();
60  void optimizeBasicBlockJumps();
61  void sortInputSections();
62  void sortOrphanSections();
63  void finalizeSections();
64  void checkExecuteOnly();
65  void setReservedSymbolSections();
66
67  SmallVector<PhdrEntry *, 0> createPhdrs(Partition &part);
68  void addPhdrForSection(Partition &part, unsigned shType, unsigned pType,
69                         unsigned pFlags);
70  void assignFileOffsets();
71  void assignFileOffsetsBinary();
72  void setPhdrs(Partition &part);
73  void checkSections();
74  void fixSectionAlignments();
75  void openFile();
76  void writeTrapInstr();
77  void writeHeader();
78  void writeSections();
79  void writeSectionsBinary();
80  void writeBuildId();
81
82  std::unique_ptr<FileOutputBuffer> &buffer;
83
84  void addRelIpltSymbols();
85  void addStartEndSymbols();
86  void addStartStopSymbols(OutputSection &osec);
87
88  uint64_t fileSize;
89  uint64_t sectionHeaderOff;
90};
91} // anonymous namespace
92
93static bool needsInterpSection() {
94  return !config->relocatable && !config->shared &&
95         !config->dynamicLinker.empty() && script->needsInterpSection();
96}
97
98template <class ELFT> void elf::writeResult() {
99  Writer<ELFT>().run();
100}
101
102static void removeEmptyPTLoad(SmallVector<PhdrEntry *, 0> &phdrs) {
103  auto it = std::stable_partition(
104      phdrs.begin(), phdrs.end(), [&](const PhdrEntry *p) {
105        if (p->p_type != PT_LOAD)
106          return true;
107        if (!p->firstSec)
108          return false;
109        uint64_t size = p->lastSec->addr + p->lastSec->size - p->firstSec->addr;
110        return size != 0;
111      });
112
113  // Clear OutputSection::ptLoad for sections contained in removed
114  // segments.
115  DenseSet<PhdrEntry *> removed(it, phdrs.end());
116  for (OutputSection *sec : outputSections)
117    if (removed.count(sec->ptLoad))
118      sec->ptLoad = nullptr;
119  phdrs.erase(it, phdrs.end());
120}
121
122void elf::copySectionsIntoPartitions() {
123  SmallVector<InputSectionBase *, 0> newSections;
124  const size_t ehSize = ctx.ehInputSections.size();
125  for (unsigned part = 2; part != partitions.size() + 1; ++part) {
126    for (InputSectionBase *s : ctx.inputSections) {
127      if (!(s->flags & SHF_ALLOC) || !s->isLive() || s->type != SHT_NOTE)
128        continue;
129      auto *copy = make<InputSection>(cast<InputSection>(*s));
130      copy->partition = part;
131      newSections.push_back(copy);
132    }
133    for (size_t i = 0; i != ehSize; ++i) {
134      assert(ctx.ehInputSections[i]->isLive());
135      auto *copy = make<EhInputSection>(*ctx.ehInputSections[i]);
136      copy->partition = part;
137      ctx.ehInputSections.push_back(copy);
138    }
139  }
140
141  ctx.inputSections.insert(ctx.inputSections.end(), newSections.begin(),
142                           newSections.end());
143}
144
145static Defined *addOptionalRegular(StringRef name, SectionBase *sec,
146                                   uint64_t val, uint8_t stOther = STV_HIDDEN) {
147  Symbol *s = symtab.find(name);
148  if (!s || s->isDefined() || s->isCommon())
149    return nullptr;
150
151  s->resolve(Defined{ctx.internalFile, StringRef(), STB_GLOBAL, stOther,
152                     STT_NOTYPE, val,
153                     /*size=*/0, sec});
154  s->isUsedInRegularObj = true;
155  return cast<Defined>(s);
156}
157
158// The linker is expected to define some symbols depending on
159// the linking result. This function defines such symbols.
160void elf::addReservedSymbols() {
161  if (config->emachine == EM_MIPS) {
162    auto addAbsolute = [](StringRef name) {
163      Symbol *sym =
164          symtab.addSymbol(Defined{ctx.internalFile, name, STB_GLOBAL,
165                                   STV_HIDDEN, STT_NOTYPE, 0, 0, nullptr});
166      sym->isUsedInRegularObj = true;
167      return cast<Defined>(sym);
168    };
169    // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer
170    // so that it points to an absolute address which by default is relative
171    // to GOT. Default offset is 0x7ff0.
172    // See "Global Data Symbols" in Chapter 6 in the following document:
173    // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
174    ElfSym::mipsGp = addAbsolute("_gp");
175
176    // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between
177    // start of function and 'gp' pointer into GOT.
178    if (symtab.find("_gp_disp"))
179      ElfSym::mipsGpDisp = addAbsolute("_gp_disp");
180
181    // The __gnu_local_gp is a magic symbol equal to the current value of 'gp'
182    // pointer. This symbol is used in the code generated by .cpload pseudo-op
183    // in case of using -mno-shared option.
184    // https://sourceware.org/ml/binutils/2004-12/msg00094.html
185    if (symtab.find("__gnu_local_gp"))
186      ElfSym::mipsLocalGp = addAbsolute("__gnu_local_gp");
187  } else if (config->emachine == EM_PPC) {
188    // glibc *crt1.o has a undefined reference to _SDA_BASE_. Since we don't
189    // support Small Data Area, define it arbitrarily as 0.
190    addOptionalRegular("_SDA_BASE_", nullptr, 0, STV_HIDDEN);
191  } else if (config->emachine == EM_PPC64) {
192    addPPC64SaveRestore();
193  }
194
195  // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which
196  // combines the typical ELF GOT with the small data sections. It commonly
197  // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both
198  // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to
199  // represent the TOC base which is offset by 0x8000 bytes from the start of
200  // the .got section.
201  // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the
202  // correctness of some relocations depends on its value.
203  StringRef gotSymName =
204      (config->emachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_";
205
206  if (Symbol *s = symtab.find(gotSymName)) {
207    if (s->isDefined()) {
208      error(toString(s->file) + " cannot redefine linker defined symbol '" +
209            gotSymName + "'");
210      return;
211    }
212
213    uint64_t gotOff = 0;
214    if (config->emachine == EM_PPC64)
215      gotOff = 0x8000;
216
217    s->resolve(Defined{ctx.internalFile, StringRef(), STB_GLOBAL, STV_HIDDEN,
218                       STT_NOTYPE, gotOff, /*size=*/0, Out::elfHeader});
219    ElfSym::globalOffsetTable = cast<Defined>(s);
220  }
221
222  // __ehdr_start is the location of ELF file headers. Note that we define
223  // this symbol unconditionally even when using a linker script, which
224  // differs from the behavior implemented by GNU linker which only define
225  // this symbol if ELF headers are in the memory mapped segment.
226  addOptionalRegular("__ehdr_start", Out::elfHeader, 0, STV_HIDDEN);
227
228  // __executable_start is not documented, but the expectation of at
229  // least the Android libc is that it points to the ELF header.
230  addOptionalRegular("__executable_start", Out::elfHeader, 0, STV_HIDDEN);
231
232  // __dso_handle symbol is passed to cxa_finalize as a marker to identify
233  // each DSO. The address of the symbol doesn't matter as long as they are
234  // different in different DSOs, so we chose the start address of the DSO.
235  addOptionalRegular("__dso_handle", Out::elfHeader, 0, STV_HIDDEN);
236
237  // If linker script do layout we do not need to create any standard symbols.
238  if (script->hasSectionsCommand)
239    return;
240
241  auto add = [](StringRef s, int64_t pos) {
242    return addOptionalRegular(s, Out::elfHeader, pos, STV_DEFAULT);
243  };
244
245  ElfSym::bss = add("__bss_start", 0);
246  ElfSym::end1 = add("end", -1);
247  ElfSym::end2 = add("_end", -1);
248  ElfSym::etext1 = add("etext", -1);
249  ElfSym::etext2 = add("_etext", -1);
250  ElfSym::edata1 = add("edata", -1);
251  ElfSym::edata2 = add("_edata", -1);
252}
253
254static void demoteDefined(Defined &sym, DenseMap<SectionBase *, size_t> &map) {
255  if (map.empty())
256    for (auto [i, sec] : llvm::enumerate(sym.file->getSections()))
257      map.try_emplace(sec, i);
258  // Change WEAK to GLOBAL so that if a scanned relocation references sym,
259  // maybeReportUndefined will report an error.
260  uint8_t binding = sym.isWeak() ? uint8_t(STB_GLOBAL) : sym.binding;
261  Undefined(sym.file, sym.getName(), binding, sym.stOther, sym.type,
262            /*discardedSecIdx=*/map.lookup(sym.section))
263      .overwrite(sym);
264  // Eliminate from the symbol table, otherwise we would leave an undefined
265  // symbol if the symbol is unreferenced in the absence of GC.
266  sym.isUsedInRegularObj = false;
267}
268
269// If all references to a DSO happen to be weak, the DSO is not added to
270// DT_NEEDED. If that happens, replace ShardSymbol with Undefined to avoid
271// dangling references to an unneeded DSO. Use a weak binding to avoid
272// --no-allow-shlib-undefined diagnostics. Similarly, demote lazy symbols.
273//
274// In addition, demote symbols defined in discarded sections, so that
275// references to /DISCARD/ discarded symbols will lead to errors.
276static void demoteSymbolsAndComputeIsPreemptible() {
277  llvm::TimeTraceScope timeScope("Demote symbols");
278  DenseMap<InputFile *, DenseMap<SectionBase *, size_t>> sectionIndexMap;
279  for (Symbol *sym : symtab.getSymbols()) {
280    if (auto *d = dyn_cast<Defined>(sym)) {
281      if (d->section && !d->section->isLive())
282        demoteDefined(*d, sectionIndexMap[d->file]);
283    } else {
284      auto *s = dyn_cast<SharedSymbol>(sym);
285      if (sym->isLazy() || (s && !cast<SharedFile>(s->file)->isNeeded)) {
286        uint8_t binding = sym->isLazy() ? sym->binding : uint8_t(STB_WEAK);
287        Undefined(ctx.internalFile, sym->getName(), binding, sym->stOther,
288                  sym->type)
289            .overwrite(*sym);
290        sym->versionId = VER_NDX_GLOBAL;
291      }
292    }
293
294    if (config->hasDynSymTab)
295      sym->isPreemptible = computeIsPreemptible(*sym);
296  }
297}
298
299bool elf::hasMemtag() {
300  return config->emachine == EM_AARCH64 &&
301         config->androidMemtagMode != ELF::NT_MEMTAG_LEVEL_NONE;
302}
303
304// Fully static executables don't support MTE globals at this point in time, as
305// we currently rely on:
306//   - A dynamic loader to process relocations, and
307//   - Dynamic entries.
308// This restriction could be removed in future by re-using some of the ideas
309// that ifuncs use in fully static executables.
310bool elf::canHaveMemtagGlobals() {
311  return hasMemtag() &&
312         (config->relocatable || config->shared || needsInterpSection());
313}
314
315static OutputSection *findSection(StringRef name, unsigned partition = 1) {
316  for (SectionCommand *cmd : script->sectionCommands)
317    if (auto *osd = dyn_cast<OutputDesc>(cmd))
318      if (osd->osec.name == name && osd->osec.partition == partition)
319        return &osd->osec;
320  return nullptr;
321}
322
323template <class ELFT> void elf::createSyntheticSections() {
324  // Initialize all pointers with NULL. This is needed because
325  // you can call lld::elf::main more than once as a library.
326  Out::tlsPhdr = nullptr;
327  Out::preinitArray = nullptr;
328  Out::initArray = nullptr;
329  Out::finiArray = nullptr;
330
331  // Add the .interp section first because it is not a SyntheticSection.
332  // The removeUnusedSyntheticSections() function relies on the
333  // SyntheticSections coming last.
334  if (needsInterpSection()) {
335    for (size_t i = 1; i <= partitions.size(); ++i) {
336      InputSection *sec = createInterpSection();
337      sec->partition = i;
338      ctx.inputSections.push_back(sec);
339    }
340  }
341
342  auto add = [](SyntheticSection &sec) { ctx.inputSections.push_back(&sec); };
343
344  in.shStrTab = std::make_unique<StringTableSection>(".shstrtab", false);
345
346  Out::programHeaders = make<OutputSection>("", 0, SHF_ALLOC);
347  Out::programHeaders->addralign = config->wordsize;
348
349  if (config->strip != StripPolicy::All) {
350    in.strTab = std::make_unique<StringTableSection>(".strtab", false);
351    in.symTab = std::make_unique<SymbolTableSection<ELFT>>(*in.strTab);
352    in.symTabShndx = std::make_unique<SymtabShndxSection>();
353  }
354
355  in.bss = std::make_unique<BssSection>(".bss", 0, 1);
356  add(*in.bss);
357
358  // If there is a SECTIONS command and a .data.rel.ro section name use name
359  // .data.rel.ro.bss so that we match in the .data.rel.ro output section.
360  // This makes sure our relro is contiguous.
361  bool hasDataRelRo = script->hasSectionsCommand && findSection(".data.rel.ro");
362  in.bssRelRo = std::make_unique<BssSection>(
363      hasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1);
364  add(*in.bssRelRo);
365
366  // Add MIPS-specific sections.
367  if (config->emachine == EM_MIPS) {
368    if (!config->shared && config->hasDynSymTab) {
369      in.mipsRldMap = std::make_unique<MipsRldMapSection>();
370      add(*in.mipsRldMap);
371    }
372    if ((in.mipsAbiFlags = MipsAbiFlagsSection<ELFT>::create()))
373      add(*in.mipsAbiFlags);
374    if ((in.mipsOptions = MipsOptionsSection<ELFT>::create()))
375      add(*in.mipsOptions);
376    if ((in.mipsReginfo = MipsReginfoSection<ELFT>::create()))
377      add(*in.mipsReginfo);
378  }
379
380  StringRef relaDynName = config->isRela ? ".rela.dyn" : ".rel.dyn";
381
382  const unsigned threadCount = config->threadCount;
383  for (Partition &part : partitions) {
384    auto add = [&](SyntheticSection &sec) {
385      sec.partition = part.getNumber();
386      ctx.inputSections.push_back(&sec);
387    };
388
389    if (!part.name.empty()) {
390      part.elfHeader = std::make_unique<PartitionElfHeaderSection<ELFT>>();
391      part.elfHeader->name = part.name;
392      add(*part.elfHeader);
393
394      part.programHeaders =
395          std::make_unique<PartitionProgramHeadersSection<ELFT>>();
396      add(*part.programHeaders);
397    }
398
399    if (config->buildId != BuildIdKind::None) {
400      part.buildId = std::make_unique<BuildIdSection>();
401      add(*part.buildId);
402    }
403
404    part.dynStrTab = std::make_unique<StringTableSection>(".dynstr", true);
405    part.dynSymTab =
406        std::make_unique<SymbolTableSection<ELFT>>(*part.dynStrTab);
407    part.dynamic = std::make_unique<DynamicSection<ELFT>>();
408
409    if (hasMemtag()) {
410      part.memtagAndroidNote = std::make_unique<MemtagAndroidNote>();
411      add(*part.memtagAndroidNote);
412      if (canHaveMemtagGlobals()) {
413        part.memtagGlobalDescriptors =
414            std::make_unique<MemtagGlobalDescriptors>();
415        add(*part.memtagGlobalDescriptors);
416      }
417    }
418
419    if (config->androidPackDynRelocs)
420      part.relaDyn = std::make_unique<AndroidPackedRelocationSection<ELFT>>(
421          relaDynName, threadCount);
422    else
423      part.relaDyn = std::make_unique<RelocationSection<ELFT>>(
424          relaDynName, config->zCombreloc, threadCount);
425
426    if (config->hasDynSymTab) {
427      add(*part.dynSymTab);
428
429      part.verSym = std::make_unique<VersionTableSection>();
430      add(*part.verSym);
431
432      if (!namedVersionDefs().empty()) {
433        part.verDef = std::make_unique<VersionDefinitionSection>();
434        add(*part.verDef);
435      }
436
437      part.verNeed = std::make_unique<VersionNeedSection<ELFT>>();
438      add(*part.verNeed);
439
440      if (config->gnuHash) {
441        part.gnuHashTab = std::make_unique<GnuHashTableSection>();
442        add(*part.gnuHashTab);
443      }
444
445      if (config->sysvHash) {
446        part.hashTab = std::make_unique<HashTableSection>();
447        add(*part.hashTab);
448      }
449
450      add(*part.dynamic);
451      add(*part.dynStrTab);
452      add(*part.relaDyn);
453    }
454
455    if (config->relrPackDynRelocs) {
456      part.relrDyn = std::make_unique<RelrSection<ELFT>>(threadCount);
457      add(*part.relrDyn);
458    }
459
460    if (!config->relocatable) {
461      if (config->ehFrameHdr) {
462        part.ehFrameHdr = std::make_unique<EhFrameHeader>();
463        add(*part.ehFrameHdr);
464      }
465      part.ehFrame = std::make_unique<EhFrameSection>();
466      add(*part.ehFrame);
467
468      if (config->emachine == EM_ARM) {
469        // This section replaces all the individual .ARM.exidx InputSections.
470        part.armExidx = std::make_unique<ARMExidxSyntheticSection>();
471        add(*part.armExidx);
472      }
473    }
474
475    if (!config->packageMetadata.empty()) {
476      part.packageMetadataNote = std::make_unique<PackageMetadataNote>();
477      add(*part.packageMetadataNote);
478    }
479  }
480
481  if (partitions.size() != 1) {
482    // Create the partition end marker. This needs to be in partition number 255
483    // so that it is sorted after all other partitions. It also has other
484    // special handling (see createPhdrs() and combineEhSections()).
485    in.partEnd =
486        std::make_unique<BssSection>(".part.end", config->maxPageSize, 1);
487    in.partEnd->partition = 255;
488    add(*in.partEnd);
489
490    in.partIndex = std::make_unique<PartitionIndexSection>();
491    addOptionalRegular("__part_index_begin", in.partIndex.get(), 0);
492    addOptionalRegular("__part_index_end", in.partIndex.get(),
493                       in.partIndex->getSize());
494    add(*in.partIndex);
495  }
496
497  // Add .got. MIPS' .got is so different from the other archs,
498  // it has its own class.
499  if (config->emachine == EM_MIPS) {
500    in.mipsGot = std::make_unique<MipsGotSection>();
501    add(*in.mipsGot);
502  } else {
503    in.got = std::make_unique<GotSection>();
504    add(*in.got);
505  }
506
507  if (config->emachine == EM_PPC) {
508    in.ppc32Got2 = std::make_unique<PPC32Got2Section>();
509    add(*in.ppc32Got2);
510  }
511
512  if (config->emachine == EM_PPC64) {
513    in.ppc64LongBranchTarget = std::make_unique<PPC64LongBranchTargetSection>();
514    add(*in.ppc64LongBranchTarget);
515  }
516
517  in.gotPlt = std::make_unique<GotPltSection>();
518  add(*in.gotPlt);
519  in.igotPlt = std::make_unique<IgotPltSection>();
520  add(*in.igotPlt);
521  // Add .relro_padding if DATA_SEGMENT_RELRO_END is used; otherwise, add the
522  // section in the absence of PHDRS/SECTIONS commands.
523  if (config->zRelro && ((script->phdrsCommands.empty() &&
524        !script->hasSectionsCommand) || script->seenRelroEnd)) {
525    in.relroPadding = std::make_unique<RelroPaddingSection>();
526    add(*in.relroPadding);
527  }
528
529  if (config->emachine == EM_ARM) {
530    in.armCmseSGSection = std::make_unique<ArmCmseSGSection>();
531    add(*in.armCmseSGSection);
532  }
533
534  // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat
535  // it as a relocation and ensure the referenced section is created.
536  if (ElfSym::globalOffsetTable && config->emachine != EM_MIPS) {
537    if (target->gotBaseSymInGotPlt)
538      in.gotPlt->hasGotPltOffRel = true;
539    else
540      in.got->hasGotOffRel = true;
541  }
542
543  if (config->gdbIndex)
544    add(*GdbIndexSection::create<ELFT>());
545
546  // We always need to add rel[a].plt to output if it has entries.
547  // Even for static linking it can contain R_[*]_IRELATIVE relocations.
548  in.relaPlt = std::make_unique<RelocationSection<ELFT>>(
549      config->isRela ? ".rela.plt" : ".rel.plt", /*sort=*/false,
550      /*threadCount=*/1);
551  add(*in.relaPlt);
552
553  // The relaIplt immediately follows .rel[a].dyn to ensure that the IRelative
554  // relocations are processed last by the dynamic loader. We cannot place the
555  // iplt section in .rel.dyn when Android relocation packing is enabled because
556  // that would cause a section type mismatch. However, because the Android
557  // dynamic loader reads .rel.plt after .rel.dyn, we can get the desired
558  // behaviour by placing the iplt section in .rel.plt.
559  in.relaIplt = std::make_unique<RelocationSection<ELFT>>(
560      config->androidPackDynRelocs ? in.relaPlt->name : relaDynName,
561      /*sort=*/false, /*threadCount=*/1);
562  add(*in.relaIplt);
563
564  if ((config->emachine == EM_386 || config->emachine == EM_X86_64) &&
565      (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) {
566    in.ibtPlt = std::make_unique<IBTPltSection>();
567    add(*in.ibtPlt);
568  }
569
570  if (config->emachine == EM_PPC)
571    in.plt = std::make_unique<PPC32GlinkSection>();
572  else
573    in.plt = std::make_unique<PltSection>();
574  add(*in.plt);
575  in.iplt = std::make_unique<IpltSection>();
576  add(*in.iplt);
577
578  if (config->andFeatures)
579    add(*make<GnuPropertySection>());
580
581  // .note.GNU-stack is always added when we are creating a re-linkable
582  // object file. Other linkers are using the presence of this marker
583  // section to control the executable-ness of the stack area, but that
584  // is irrelevant these days. Stack area should always be non-executable
585  // by default. So we emit this section unconditionally.
586  if (config->relocatable)
587    add(*make<GnuStackSection>());
588
589  if (in.symTab)
590    add(*in.symTab);
591  if (in.symTabShndx)
592    add(*in.symTabShndx);
593  add(*in.shStrTab);
594  if (in.strTab)
595    add(*in.strTab);
596}
597
598// The main function of the writer.
599template <class ELFT> void Writer<ELFT>::run() {
600  // Now that we have a complete set of output sections. This function
601  // completes section contents. For example, we need to add strings
602  // to the string table, and add entries to .got and .plt.
603  // finalizeSections does that.
604  finalizeSections();
605  checkExecuteOnly();
606
607  // If --compressed-debug-sections is specified, compress .debug_* sections.
608  // Do it right now because it changes the size of output sections.
609  for (OutputSection *sec : outputSections)
610    sec->maybeCompress<ELFT>();
611
612  if (script->hasSectionsCommand)
613    script->allocateHeaders(mainPart->phdrs);
614
615  // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a
616  // 0 sized region. This has to be done late since only after assignAddresses
617  // we know the size of the sections.
618  for (Partition &part : partitions)
619    removeEmptyPTLoad(part.phdrs);
620
621  if (!config->oFormatBinary)
622    assignFileOffsets();
623  else
624    assignFileOffsetsBinary();
625
626  for (Partition &part : partitions)
627    setPhdrs(part);
628
629  // Handle --print-map(-M)/--Map and --cref. Dump them before checkSections()
630  // because the files may be useful in case checkSections() or openFile()
631  // fails, for example, due to an erroneous file size.
632  writeMapAndCref();
633
634  // Handle --print-memory-usage option.
635  if (config->printMemoryUsage)
636    script->printMemoryUsage(lld::outs());
637
638  if (config->checkSections)
639    checkSections();
640
641  // It does not make sense try to open the file if we have error already.
642  if (errorCount())
643    return;
644
645  {
646    llvm::TimeTraceScope timeScope("Write output file");
647    // Write the result down to a file.
648    openFile();
649    if (errorCount())
650      return;
651
652    if (!config->oFormatBinary) {
653      if (config->zSeparate != SeparateSegmentKind::None)
654        writeTrapInstr();
655      writeHeader();
656      writeSections();
657    } else {
658      writeSectionsBinary();
659    }
660
661    // Backfill .note.gnu.build-id section content. This is done at last
662    // because the content is usually a hash value of the entire output file.
663    writeBuildId();
664    if (errorCount())
665      return;
666
667    if (auto e = buffer->commit())
668      fatal("failed to write output '" + buffer->getPath() +
669            "': " + toString(std::move(e)));
670
671    if (!config->cmseOutputLib.empty())
672      writeARMCmseImportLib<ELFT>();
673  }
674}
675
676template <class ELFT, class RelTy>
677static void markUsedLocalSymbolsImpl(ObjFile<ELFT> *file,
678                                     llvm::ArrayRef<RelTy> rels) {
679  for (const RelTy &rel : rels) {
680    Symbol &sym = file->getRelocTargetSym(rel);
681    if (sym.isLocal())
682      sym.used = true;
683  }
684}
685
686// The function ensures that the "used" field of local symbols reflects the fact
687// that the symbol is used in a relocation from a live section.
688template <class ELFT> static void markUsedLocalSymbols() {
689  // With --gc-sections, the field is already filled.
690  // See MarkLive<ELFT>::resolveReloc().
691  if (config->gcSections)
692    return;
693  for (ELFFileBase *file : ctx.objectFiles) {
694    ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file);
695    for (InputSectionBase *s : f->getSections()) {
696      InputSection *isec = dyn_cast_or_null<InputSection>(s);
697      if (!isec)
698        continue;
699      if (isec->type == SHT_REL)
700        markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rel>());
701      else if (isec->type == SHT_RELA)
702        markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rela>());
703    }
704  }
705}
706
707static bool shouldKeepInSymtab(const Defined &sym) {
708  if (sym.isSection())
709    return false;
710
711  // If --emit-reloc or -r is given, preserve symbols referenced by relocations
712  // from live sections.
713  if (sym.used && config->copyRelocs)
714    return true;
715
716  // Exclude local symbols pointing to .ARM.exidx sections.
717  // They are probably mapping symbols "$d", which are optional for these
718  // sections. After merging the .ARM.exidx sections, some of these symbols
719  // may become dangling. The easiest way to avoid the issue is not to add
720  // them to the symbol table from the beginning.
721  if (config->emachine == EM_ARM && sym.section &&
722      sym.section->type == SHT_ARM_EXIDX)
723    return false;
724
725  if (config->discard == DiscardPolicy::None)
726    return true;
727  if (config->discard == DiscardPolicy::All)
728    return false;
729
730  // In ELF assembly .L symbols are normally discarded by the assembler.
731  // If the assembler fails to do so, the linker discards them if
732  // * --discard-locals is used.
733  // * The symbol is in a SHF_MERGE section, which is normally the reason for
734  //   the assembler keeping the .L symbol.
735  if (sym.getName().starts_with(".L") &&
736      (config->discard == DiscardPolicy::Locals ||
737       (sym.section && (sym.section->flags & SHF_MERGE))))
738    return false;
739  return true;
740}
741
742bool lld::elf::includeInSymtab(const Symbol &b) {
743  if (auto *d = dyn_cast<Defined>(&b)) {
744    // Always include absolute symbols.
745    SectionBase *sec = d->section;
746    if (!sec)
747      return true;
748    assert(sec->isLive());
749
750    if (auto *s = dyn_cast<MergeInputSection>(sec))
751      return s->getSectionPiece(d->value).live;
752    return true;
753  }
754  return b.used || !config->gcSections;
755}
756
757// Scan local symbols to:
758//
759// - demote symbols defined relative to /DISCARD/ discarded input sections so
760//   that relocations referencing them will lead to errors.
761// - copy eligible symbols to .symTab
762static void demoteAndCopyLocalSymbols() {
763  llvm::TimeTraceScope timeScope("Add local symbols");
764  for (ELFFileBase *file : ctx.objectFiles) {
765    DenseMap<SectionBase *, size_t> sectionIndexMap;
766    for (Symbol *b : file->getLocalSymbols()) {
767      assert(b->isLocal() && "should have been caught in initializeSymbols()");
768      auto *dr = dyn_cast<Defined>(b);
769      if (!dr)
770        continue;
771
772      if (dr->section && !dr->section->isLive())
773        demoteDefined(*dr, sectionIndexMap);
774      else if (in.symTab && includeInSymtab(*b) && shouldKeepInSymtab(*dr))
775        in.symTab->addSymbol(b);
776    }
777  }
778}
779
780// Create a section symbol for each output section so that we can represent
781// relocations that point to the section. If we know that no relocation is
782// referring to a section (that happens if the section is a synthetic one), we
783// don't create a section symbol for that section.
784template <class ELFT> void Writer<ELFT>::addSectionSymbols() {
785  for (SectionCommand *cmd : script->sectionCommands) {
786    auto *osd = dyn_cast<OutputDesc>(cmd);
787    if (!osd)
788      continue;
789    OutputSection &osec = osd->osec;
790    InputSectionBase *isec = nullptr;
791    // Iterate over all input sections and add a STT_SECTION symbol if any input
792    // section may be a relocation target.
793    for (SectionCommand *cmd : osec.commands) {
794      auto *isd = dyn_cast<InputSectionDescription>(cmd);
795      if (!isd)
796        continue;
797      for (InputSectionBase *s : isd->sections) {
798        // Relocations are not using REL[A] section symbols.
799        if (s->type == SHT_REL || s->type == SHT_RELA)
800          continue;
801
802        // Unlike other synthetic sections, mergeable output sections contain
803        // data copied from input sections, and there may be a relocation
804        // pointing to its contents if -r or --emit-reloc is given.
805        if (isa<SyntheticSection>(s) && !(s->flags & SHF_MERGE))
806          continue;
807
808        isec = s;
809        break;
810      }
811    }
812    if (!isec)
813      continue;
814
815    // Set the symbol to be relative to the output section so that its st_value
816    // equals the output section address. Note, there may be a gap between the
817    // start of the output section and isec.
818    in.symTab->addSymbol(makeDefined(isec->file, "", STB_LOCAL, /*stOther=*/0,
819                                     STT_SECTION,
820                                     /*value=*/0, /*size=*/0, &osec));
821  }
822}
823
824// Today's loaders have a feature to make segments read-only after
825// processing dynamic relocations to enhance security. PT_GNU_RELRO
826// is defined for that.
827//
828// This function returns true if a section needs to be put into a
829// PT_GNU_RELRO segment.
830static bool isRelroSection(const OutputSection *sec) {
831  if (!config->zRelro)
832    return false;
833  if (sec->relro)
834    return true;
835
836  uint64_t flags = sec->flags;
837
838  // Non-allocatable or non-writable sections don't need RELRO because
839  // they are not writable or not even mapped to memory in the first place.
840  // RELRO is for sections that are essentially read-only but need to
841  // be writable only at process startup to allow dynamic linker to
842  // apply relocations.
843  if (!(flags & SHF_ALLOC) || !(flags & SHF_WRITE))
844    return false;
845
846  // Once initialized, TLS data segments are used as data templates
847  // for a thread-local storage. For each new thread, runtime
848  // allocates memory for a TLS and copy templates there. No thread
849  // are supposed to use templates directly. Thus, it can be in RELRO.
850  if (flags & SHF_TLS)
851    return true;
852
853  // .init_array, .preinit_array and .fini_array contain pointers to
854  // functions that are executed on process startup or exit. These
855  // pointers are set by the static linker, and they are not expected
856  // to change at runtime. But if you are an attacker, you could do
857  // interesting things by manipulating pointers in .fini_array, for
858  // example. So they are put into RELRO.
859  uint32_t type = sec->type;
860  if (type == SHT_INIT_ARRAY || type == SHT_FINI_ARRAY ||
861      type == SHT_PREINIT_ARRAY)
862    return true;
863
864  // .got contains pointers to external symbols. They are resolved by
865  // the dynamic linker when a module is loaded into memory, and after
866  // that they are not expected to change. So, it can be in RELRO.
867  if (in.got && sec == in.got->getParent())
868    return true;
869
870  // .toc is a GOT-ish section for PowerPC64. Their contents are accessed
871  // through r2 register, which is reserved for that purpose. Since r2 is used
872  // for accessing .got as well, .got and .toc need to be close enough in the
873  // virtual address space. Usually, .toc comes just after .got. Since we place
874  // .got into RELRO, .toc needs to be placed into RELRO too.
875  if (sec->name.equals(".toc"))
876    return true;
877
878  // .got.plt contains pointers to external function symbols. They are
879  // by default resolved lazily, so we usually cannot put it into RELRO.
880  // However, if "-z now" is given, the lazy symbol resolution is
881  // disabled, which enables us to put it into RELRO.
882  if (sec == in.gotPlt->getParent())
883    return config->zNow;
884
885  if (in.relroPadding && sec == in.relroPadding->getParent())
886    return true;
887
888  // .dynamic section contains data for the dynamic linker, and
889  // there's no need to write to it at runtime, so it's better to put
890  // it into RELRO.
891  if (sec->name == ".dynamic")
892    return true;
893
894  // Sections with some special names are put into RELRO. This is a
895  // bit unfortunate because section names shouldn't be significant in
896  // ELF in spirit. But in reality many linker features depend on
897  // magic section names.
898  StringRef s = sec->name;
899  return s == ".data.rel.ro" || s == ".bss.rel.ro" || s == ".ctors" ||
900         s == ".dtors" || s == ".jcr" || s == ".eh_frame" ||
901         s == ".fini_array" || s == ".init_array" ||
902         s == ".openbsd.randomdata" || s == ".preinit_array";
903}
904
905// We compute a rank for each section. The rank indicates where the
906// section should be placed in the file.  Instead of using simple
907// numbers (0,1,2...), we use a series of flags. One for each decision
908// point when placing the section.
909// Using flags has two key properties:
910// * It is easy to check if a give branch was taken.
911// * It is easy two see how similar two ranks are (see getRankProximity).
912enum RankFlags {
913  RF_NOT_ADDR_SET = 1 << 27,
914  RF_NOT_ALLOC = 1 << 26,
915  RF_PARTITION = 1 << 18, // Partition number (8 bits)
916  RF_NOT_SPECIAL = 1 << 17,
917  RF_WRITE = 1 << 16,
918  RF_EXEC_WRITE = 1 << 15,
919  RF_EXEC = 1 << 14,
920  RF_RODATA = 1 << 13,
921  RF_LARGE = 1 << 12,
922  RF_NOT_RELRO = 1 << 9,
923  RF_NOT_TLS = 1 << 8,
924  RF_BSS = 1 << 7,
925};
926
927static unsigned getSectionRank(OutputSection &osec) {
928  unsigned rank = osec.partition * RF_PARTITION;
929
930  // We want to put section specified by -T option first, so we
931  // can start assigning VA starting from them later.
932  if (config->sectionStartMap.count(osec.name))
933    return rank;
934  rank |= RF_NOT_ADDR_SET;
935
936  // Allocatable sections go first to reduce the total PT_LOAD size and
937  // so debug info doesn't change addresses in actual code.
938  if (!(osec.flags & SHF_ALLOC))
939    return rank | RF_NOT_ALLOC;
940
941  if (osec.type == SHT_LLVM_PART_EHDR)
942    return rank;
943  if (osec.type == SHT_LLVM_PART_PHDR)
944    return rank | 1;
945
946  // Put .interp first because some loaders want to see that section
947  // on the first page of the executable file when loaded into memory.
948  if (osec.name == ".interp")
949    return rank | 2;
950
951  // Put .note sections at the beginning so that they are likely to be included
952  // in a truncate core file. In particular, .note.gnu.build-id, if available,
953  // can identify the object file.
954  if (osec.type == SHT_NOTE)
955    return rank | 3;
956
957  rank |= RF_NOT_SPECIAL;
958
959  // Sort sections based on their access permission in the following
960  // order: R, RX, RXW, RW(RELRO), RW(non-RELRO).
961  //
962  // Read-only sections come first such that they go in the PT_LOAD covering the
963  // program headers at the start of the file.
964  //
965  // The layout for writable sections is PT_LOAD(PT_GNU_RELRO(.data.rel.ro
966  // .bss.rel.ro) | .data .bss), where | marks where page alignment happens.
967  // An alternative ordering is PT_LOAD(.data | PT_GNU_RELRO( .data.rel.ro
968  // .bss.rel.ro) | .bss), but it may waste more bytes due to 2 alignment
969  // places.
970  bool isExec = osec.flags & SHF_EXECINSTR;
971  bool isWrite = osec.flags & SHF_WRITE;
972
973  if (!isWrite && !isExec) {
974    // Make PROGBITS sections (e.g .rodata .eh_frame) closer to .text to
975    // alleviate relocation overflow pressure. Large special sections such as
976    // .dynstr and .dynsym can be away from .text.
977    if (osec.type == SHT_PROGBITS)
978      rank |= RF_RODATA;
979    // Among PROGBITS sections, place .lrodata further from .text.
980    if (!(osec.flags & SHF_X86_64_LARGE && config->emachine == EM_X86_64))
981      rank |= RF_LARGE;
982  } else if (isExec) {
983    rank |= isWrite ? RF_EXEC_WRITE : RF_EXEC;
984  } else {
985    rank |= RF_WRITE;
986    // The TLS initialization block needs to be a single contiguous block. Place
987    // TLS sections directly before the other RELRO sections.
988    if (!(osec.flags & SHF_TLS))
989      rank |= RF_NOT_TLS;
990    if (isRelroSection(&osec))
991      osec.relro = true;
992    else
993      rank |= RF_NOT_RELRO;
994    // Place .ldata and .lbss after .bss. Making .bss closer to .text alleviates
995    // relocation overflow pressure.
996    if (osec.flags & SHF_X86_64_LARGE && config->emachine == EM_X86_64)
997      rank |= RF_LARGE;
998  }
999
1000  // Within TLS sections, or within other RelRo sections, or within non-RelRo
1001  // sections, place non-NOBITS sections first.
1002  if (osec.type == SHT_NOBITS)
1003    rank |= RF_BSS;
1004
1005  // Some architectures have additional ordering restrictions for sections
1006  // within the same PT_LOAD.
1007  if (config->emachine == EM_PPC64) {
1008    // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections
1009    // that we would like to make sure appear is a specific order to maximize
1010    // their coverage by a single signed 16-bit offset from the TOC base
1011    // pointer.
1012    StringRef name = osec.name;
1013    if (name == ".got")
1014      rank |= 1;
1015    else if (name == ".toc")
1016      rank |= 2;
1017  }
1018
1019  if (config->emachine == EM_MIPS) {
1020    if (osec.name != ".got")
1021      rank |= 1;
1022    // All sections with SHF_MIPS_GPREL flag should be grouped together
1023    // because data in these sections is addressable with a gp relative address.
1024    if (osec.flags & SHF_MIPS_GPREL)
1025      rank |= 2;
1026  }
1027
1028  if (config->emachine == EM_RISCV) {
1029    // .sdata and .sbss are placed closer to make GP relaxation more profitable
1030    // and match GNU ld.
1031    StringRef name = osec.name;
1032    if (name == ".sdata" || (osec.type == SHT_NOBITS && name != ".sbss"))
1033      rank |= 1;
1034  }
1035
1036  return rank;
1037}
1038
1039static bool compareSections(const SectionCommand *aCmd,
1040                            const SectionCommand *bCmd) {
1041  const OutputSection *a = &cast<OutputDesc>(aCmd)->osec;
1042  const OutputSection *b = &cast<OutputDesc>(bCmd)->osec;
1043
1044  if (a->sortRank != b->sortRank)
1045    return a->sortRank < b->sortRank;
1046
1047  if (!(a->sortRank & RF_NOT_ADDR_SET))
1048    return config->sectionStartMap.lookup(a->name) <
1049           config->sectionStartMap.lookup(b->name);
1050  return false;
1051}
1052
1053void PhdrEntry::add(OutputSection *sec) {
1054  lastSec = sec;
1055  if (!firstSec)
1056    firstSec = sec;
1057  p_align = std::max(p_align, sec->addralign);
1058  if (p_type == PT_LOAD)
1059    sec->ptLoad = this;
1060}
1061
1062// The beginning and the ending of .rel[a].plt section are marked
1063// with __rel[a]_iplt_{start,end} symbols if it is a statically linked
1064// executable. The runtime needs these symbols in order to resolve
1065// all IRELATIVE relocs on startup. For dynamic executables, we don't
1066// need these symbols, since IRELATIVE relocs are resolved through GOT
1067// and PLT. For details, see http://www.airs.com/blog/archives/403.
1068template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() {
1069  if (config->isPic)
1070    return;
1071
1072  // By default, __rela_iplt_{start,end} belong to a dummy section 0
1073  // because .rela.plt might be empty and thus removed from output.
1074  // We'll override Out::elfHeader with In.relaIplt later when we are
1075  // sure that .rela.plt exists in output.
1076  ElfSym::relaIpltStart = addOptionalRegular(
1077      config->isRela ? "__rela_iplt_start" : "__rel_iplt_start",
1078      Out::elfHeader, 0, STV_HIDDEN);
1079
1080  ElfSym::relaIpltEnd = addOptionalRegular(
1081      config->isRela ? "__rela_iplt_end" : "__rel_iplt_end",
1082      Out::elfHeader, 0, STV_HIDDEN);
1083}
1084
1085// This function generates assignments for predefined symbols (e.g. _end or
1086// _etext) and inserts them into the commands sequence to be processed at the
1087// appropriate time. This ensures that the value is going to be correct by the
1088// time any references to these symbols are processed and is equivalent to
1089// defining these symbols explicitly in the linker script.
1090template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() {
1091  if (ElfSym::globalOffsetTable) {
1092    // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually
1093    // to the start of the .got or .got.plt section.
1094    InputSection *sec = in.gotPlt.get();
1095    if (!target->gotBaseSymInGotPlt)
1096      sec = in.mipsGot ? cast<InputSection>(in.mipsGot.get())
1097                       : cast<InputSection>(in.got.get());
1098    ElfSym::globalOffsetTable->section = sec;
1099  }
1100
1101  // .rela_iplt_{start,end} mark the start and the end of in.relaIplt.
1102  if (ElfSym::relaIpltStart && in.relaIplt->isNeeded()) {
1103    ElfSym::relaIpltStart->section = in.relaIplt.get();
1104    ElfSym::relaIpltEnd->section = in.relaIplt.get();
1105    ElfSym::relaIpltEnd->value = in.relaIplt->getSize();
1106  }
1107
1108  PhdrEntry *last = nullptr;
1109  PhdrEntry *lastRO = nullptr;
1110
1111  for (Partition &part : partitions) {
1112    for (PhdrEntry *p : part.phdrs) {
1113      if (p->p_type != PT_LOAD)
1114        continue;
1115      last = p;
1116      if (!(p->p_flags & PF_W))
1117        lastRO = p;
1118    }
1119  }
1120
1121  if (lastRO) {
1122    // _etext is the first location after the last read-only loadable segment.
1123    if (ElfSym::etext1)
1124      ElfSym::etext1->section = lastRO->lastSec;
1125    if (ElfSym::etext2)
1126      ElfSym::etext2->section = lastRO->lastSec;
1127  }
1128
1129  if (last) {
1130    // _edata points to the end of the last mapped initialized section.
1131    OutputSection *edata = nullptr;
1132    for (OutputSection *os : outputSections) {
1133      if (os->type != SHT_NOBITS)
1134        edata = os;
1135      if (os == last->lastSec)
1136        break;
1137    }
1138
1139    if (ElfSym::edata1)
1140      ElfSym::edata1->section = edata;
1141    if (ElfSym::edata2)
1142      ElfSym::edata2->section = edata;
1143
1144    // _end is the first location after the uninitialized data region.
1145    if (ElfSym::end1)
1146      ElfSym::end1->section = last->lastSec;
1147    if (ElfSym::end2)
1148      ElfSym::end2->section = last->lastSec;
1149  }
1150
1151  if (ElfSym::bss) {
1152    // On RISC-V, set __bss_start to the start of .sbss if present.
1153    OutputSection *sbss =
1154        config->emachine == EM_RISCV ? findSection(".sbss") : nullptr;
1155    ElfSym::bss->section = sbss ? sbss : findSection(".bss");
1156  }
1157
1158  // Setup MIPS _gp_disp/__gnu_local_gp symbols which should
1159  // be equal to the _gp symbol's value.
1160  if (ElfSym::mipsGp) {
1161    // Find GP-relative section with the lowest address
1162    // and use this address to calculate default _gp value.
1163    for (OutputSection *os : outputSections) {
1164      if (os->flags & SHF_MIPS_GPREL) {
1165        ElfSym::mipsGp->section = os;
1166        ElfSym::mipsGp->value = 0x7ff0;
1167        break;
1168      }
1169    }
1170  }
1171}
1172
1173// We want to find how similar two ranks are.
1174// The more branches in getSectionRank that match, the more similar they are.
1175// Since each branch corresponds to a bit flag, we can just use
1176// countLeadingZeros.
1177static int getRankProximity(OutputSection *a, SectionCommand *b) {
1178  auto *osd = dyn_cast<OutputDesc>(b);
1179  return (osd && osd->osec.hasInputSections)
1180             ? llvm::countl_zero(a->sortRank ^ osd->osec.sortRank)
1181             : -1;
1182}
1183
1184// When placing orphan sections, we want to place them after symbol assignments
1185// so that an orphan after
1186//   begin_foo = .;
1187//   foo : { *(foo) }
1188//   end_foo = .;
1189// doesn't break the intended meaning of the begin/end symbols.
1190// We don't want to go over sections since findOrphanPos is the
1191// one in charge of deciding the order of the sections.
1192// We don't want to go over changes to '.', since doing so in
1193//  rx_sec : { *(rx_sec) }
1194//  . = ALIGN(0x1000);
1195//  /* The RW PT_LOAD starts here*/
1196//  rw_sec : { *(rw_sec) }
1197// would mean that the RW PT_LOAD would become unaligned.
1198static bool shouldSkip(SectionCommand *cmd) {
1199  if (auto *assign = dyn_cast<SymbolAssignment>(cmd))
1200    return assign->name != ".";
1201  return false;
1202}
1203
1204// We want to place orphan sections so that they share as much
1205// characteristics with their neighbors as possible. For example, if
1206// both are rw, or both are tls.
1207static SmallVectorImpl<SectionCommand *>::iterator
1208findOrphanPos(SmallVectorImpl<SectionCommand *>::iterator b,
1209              SmallVectorImpl<SectionCommand *>::iterator e) {
1210  OutputSection *sec = &cast<OutputDesc>(*e)->osec;
1211
1212  // As a special case, place .relro_padding before the SymbolAssignment using
1213  // DATA_SEGMENT_RELRO_END, if present.
1214  if (in.relroPadding && sec == in.relroPadding->getParent()) {
1215    auto i = std::find_if(b, e, [=](SectionCommand *a) {
1216      if (auto *assign = dyn_cast<SymbolAssignment>(a))
1217        return assign->dataSegmentRelroEnd;
1218      return false;
1219    });
1220    if (i != e)
1221      return i;
1222  }
1223
1224  // Find the first element that has as close a rank as possible.
1225  auto i = std::max_element(b, e, [=](SectionCommand *a, SectionCommand *b) {
1226    return getRankProximity(sec, a) < getRankProximity(sec, b);
1227  });
1228  if (i == e)
1229    return e;
1230  if (!isa<OutputDesc>(*i))
1231    return e;
1232  auto foundSec = &cast<OutputDesc>(*i)->osec;
1233
1234  // Consider all existing sections with the same proximity.
1235  int proximity = getRankProximity(sec, *i);
1236  unsigned sortRank = sec->sortRank;
1237  if (script->hasPhdrsCommands() || !script->memoryRegions.empty())
1238    // Prevent the orphan section to be placed before the found section. If
1239    // custom program headers are defined, that helps to avoid adding it to a
1240    // previous segment and changing flags of that segment, for example, making
1241    // a read-only segment writable. If memory regions are defined, an orphan
1242    // section should continue the same region as the found section to better
1243    // resemble the behavior of GNU ld.
1244    sortRank = std::max(sortRank, foundSec->sortRank);
1245  for (; i != e; ++i) {
1246    auto *curSecDesc = dyn_cast<OutputDesc>(*i);
1247    if (!curSecDesc || !curSecDesc->osec.hasInputSections)
1248      continue;
1249    if (getRankProximity(sec, curSecDesc) != proximity ||
1250        sortRank < curSecDesc->osec.sortRank)
1251      break;
1252  }
1253
1254  auto isOutputSecWithInputSections = [](SectionCommand *cmd) {
1255    auto *osd = dyn_cast<OutputDesc>(cmd);
1256    return osd && osd->osec.hasInputSections;
1257  };
1258  auto j =
1259      std::find_if(std::make_reverse_iterator(i), std::make_reverse_iterator(b),
1260                   isOutputSecWithInputSections);
1261  i = j.base();
1262
1263  // As a special case, if the orphan section is the last section, put
1264  // it at the very end, past any other commands.
1265  // This matches bfd's behavior and is convenient when the linker script fully
1266  // specifies the start of the file, but doesn't care about the end (the non
1267  // alloc sections for example).
1268  auto nextSec = std::find_if(i, e, isOutputSecWithInputSections);
1269  if (nextSec == e)
1270    return e;
1271
1272  while (i != e && shouldSkip(*i))
1273    ++i;
1274  return i;
1275}
1276
1277// Adds random priorities to sections not already in the map.
1278static void maybeShuffle(DenseMap<const InputSectionBase *, int> &order) {
1279  if (config->shuffleSections.empty())
1280    return;
1281
1282  SmallVector<InputSectionBase *, 0> matched, sections = ctx.inputSections;
1283  matched.reserve(sections.size());
1284  for (const auto &patAndSeed : config->shuffleSections) {
1285    matched.clear();
1286    for (InputSectionBase *sec : sections)
1287      if (patAndSeed.first.match(sec->name))
1288        matched.push_back(sec);
1289    const uint32_t seed = patAndSeed.second;
1290    if (seed == UINT32_MAX) {
1291      // If --shuffle-sections <section-glob>=-1, reverse the section order. The
1292      // section order is stable even if the number of sections changes. This is
1293      // useful to catch issues like static initialization order fiasco
1294      // reliably.
1295      std::reverse(matched.begin(), matched.end());
1296    } else {
1297      std::mt19937 g(seed ? seed : std::random_device()());
1298      llvm::shuffle(matched.begin(), matched.end(), g);
1299    }
1300    size_t i = 0;
1301    for (InputSectionBase *&sec : sections)
1302      if (patAndSeed.first.match(sec->name))
1303        sec = matched[i++];
1304  }
1305
1306  // Existing priorities are < 0, so use priorities >= 0 for the missing
1307  // sections.
1308  int prio = 0;
1309  for (InputSectionBase *sec : sections) {
1310    if (order.try_emplace(sec, prio).second)
1311      ++prio;
1312  }
1313}
1314
1315// Builds section order for handling --symbol-ordering-file.
1316static DenseMap<const InputSectionBase *, int> buildSectionOrder() {
1317  DenseMap<const InputSectionBase *, int> sectionOrder;
1318  // Use the rarely used option --call-graph-ordering-file to sort sections.
1319  if (!config->callGraphProfile.empty())
1320    return computeCallGraphProfileOrder();
1321
1322  if (config->symbolOrderingFile.empty())
1323    return sectionOrder;
1324
1325  struct SymbolOrderEntry {
1326    int priority;
1327    bool present;
1328  };
1329
1330  // Build a map from symbols to their priorities. Symbols that didn't
1331  // appear in the symbol ordering file have the lowest priority 0.
1332  // All explicitly mentioned symbols have negative (higher) priorities.
1333  DenseMap<CachedHashStringRef, SymbolOrderEntry> symbolOrder;
1334  int priority = -config->symbolOrderingFile.size();
1335  for (StringRef s : config->symbolOrderingFile)
1336    symbolOrder.insert({CachedHashStringRef(s), {priority++, false}});
1337
1338  // Build a map from sections to their priorities.
1339  auto addSym = [&](Symbol &sym) {
1340    auto it = symbolOrder.find(CachedHashStringRef(sym.getName()));
1341    if (it == symbolOrder.end())
1342      return;
1343    SymbolOrderEntry &ent = it->second;
1344    ent.present = true;
1345
1346    maybeWarnUnorderableSymbol(&sym);
1347
1348    if (auto *d = dyn_cast<Defined>(&sym)) {
1349      if (auto *sec = dyn_cast_or_null<InputSectionBase>(d->section)) {
1350        int &priority = sectionOrder[cast<InputSectionBase>(sec)];
1351        priority = std::min(priority, ent.priority);
1352      }
1353    }
1354  };
1355
1356  // We want both global and local symbols. We get the global ones from the
1357  // symbol table and iterate the object files for the local ones.
1358  for (Symbol *sym : symtab.getSymbols())
1359    addSym(*sym);
1360
1361  for (ELFFileBase *file : ctx.objectFiles)
1362    for (Symbol *sym : file->getLocalSymbols())
1363      addSym(*sym);
1364
1365  if (config->warnSymbolOrdering)
1366    for (auto orderEntry : symbolOrder)
1367      if (!orderEntry.second.present)
1368        warn("symbol ordering file: no such symbol: " + orderEntry.first.val());
1369
1370  return sectionOrder;
1371}
1372
1373// Sorts the sections in ISD according to the provided section order.
1374static void
1375sortISDBySectionOrder(InputSectionDescription *isd,
1376                      const DenseMap<const InputSectionBase *, int> &order,
1377                      bool executableOutputSection) {
1378  SmallVector<InputSection *, 0> unorderedSections;
1379  SmallVector<std::pair<InputSection *, int>, 0> orderedSections;
1380  uint64_t unorderedSize = 0;
1381  uint64_t totalSize = 0;
1382
1383  for (InputSection *isec : isd->sections) {
1384    if (executableOutputSection)
1385      totalSize += isec->getSize();
1386    auto i = order.find(isec);
1387    if (i == order.end()) {
1388      unorderedSections.push_back(isec);
1389      unorderedSize += isec->getSize();
1390      continue;
1391    }
1392    orderedSections.push_back({isec, i->second});
1393  }
1394  llvm::sort(orderedSections, llvm::less_second());
1395
1396  // Find an insertion point for the ordered section list in the unordered
1397  // section list. On targets with limited-range branches, this is the mid-point
1398  // of the unordered section list. This decreases the likelihood that a range
1399  // extension thunk will be needed to enter or exit the ordered region. If the
1400  // ordered section list is a list of hot functions, we can generally expect
1401  // the ordered functions to be called more often than the unordered functions,
1402  // making it more likely that any particular call will be within range, and
1403  // therefore reducing the number of thunks required.
1404  //
1405  // For example, imagine that you have 8MB of hot code and 32MB of cold code.
1406  // If the layout is:
1407  //
1408  // 8MB hot
1409  // 32MB cold
1410  //
1411  // only the first 8-16MB of the cold code (depending on which hot function it
1412  // is actually calling) can call the hot code without a range extension thunk.
1413  // However, if we use this layout:
1414  //
1415  // 16MB cold
1416  // 8MB hot
1417  // 16MB cold
1418  //
1419  // both the last 8-16MB of the first block of cold code and the first 8-16MB
1420  // of the second block of cold code can call the hot code without a thunk. So
1421  // we effectively double the amount of code that could potentially call into
1422  // the hot code without a thunk.
1423  //
1424  // The above is not necessary if total size of input sections in this "isd"
1425  // is small. Note that we assume all input sections are executable if the
1426  // output section is executable (which is not always true but supposed to
1427  // cover most cases).
1428  size_t insPt = 0;
1429  if (executableOutputSection && !orderedSections.empty() &&
1430      target->getThunkSectionSpacing() &&
1431      totalSize >= target->getThunkSectionSpacing()) {
1432    uint64_t unorderedPos = 0;
1433    for (; insPt != unorderedSections.size(); ++insPt) {
1434      unorderedPos += unorderedSections[insPt]->getSize();
1435      if (unorderedPos > unorderedSize / 2)
1436        break;
1437    }
1438  }
1439
1440  isd->sections.clear();
1441  for (InputSection *isec : ArrayRef(unorderedSections).slice(0, insPt))
1442    isd->sections.push_back(isec);
1443  for (std::pair<InputSection *, int> p : orderedSections)
1444    isd->sections.push_back(p.first);
1445  for (InputSection *isec : ArrayRef(unorderedSections).slice(insPt))
1446    isd->sections.push_back(isec);
1447}
1448
1449static void sortSection(OutputSection &osec,
1450                        const DenseMap<const InputSectionBase *, int> &order) {
1451  StringRef name = osec.name;
1452
1453  // Never sort these.
1454  if (name == ".init" || name == ".fini")
1455    return;
1456
1457  // IRelative relocations that usually live in the .rel[a].dyn section should
1458  // be processed last by the dynamic loader. To achieve that we add synthetic
1459  // sections in the required order from the beginning so that the in.relaIplt
1460  // section is placed last in an output section. Here we just do not apply
1461  // sorting for an output section which holds the in.relaIplt section.
1462  if (in.relaIplt->getParent() == &osec)
1463    return;
1464
1465  // Sort input sections by priority using the list provided by
1466  // --symbol-ordering-file or --shuffle-sections=. This is a least significant
1467  // digit radix sort. The sections may be sorted stably again by a more
1468  // significant key.
1469  if (!order.empty())
1470    for (SectionCommand *b : osec.commands)
1471      if (auto *isd = dyn_cast<InputSectionDescription>(b))
1472        sortISDBySectionOrder(isd, order, osec.flags & SHF_EXECINSTR);
1473
1474  if (script->hasSectionsCommand)
1475    return;
1476
1477  if (name == ".init_array" || name == ".fini_array") {
1478    osec.sortInitFini();
1479  } else if (name == ".ctors" || name == ".dtors") {
1480    osec.sortCtorsDtors();
1481  } else if (config->emachine == EM_PPC64 && name == ".toc") {
1482    // .toc is allocated just after .got and is accessed using GOT-relative
1483    // relocations. Object files compiled with small code model have an
1484    // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations.
1485    // To reduce the risk of relocation overflow, .toc contents are sorted so
1486    // that sections having smaller relocation offsets are at beginning of .toc
1487    assert(osec.commands.size() == 1);
1488    auto *isd = cast<InputSectionDescription>(osec.commands[0]);
1489    llvm::stable_sort(isd->sections,
1490                      [](const InputSection *a, const InputSection *b) -> bool {
1491                        return a->file->ppc64SmallCodeModelTocRelocs &&
1492                               !b->file->ppc64SmallCodeModelTocRelocs;
1493                      });
1494  }
1495}
1496
1497// If no layout was provided by linker script, we want to apply default
1498// sorting for special input sections. This also handles --symbol-ordering-file.
1499template <class ELFT> void Writer<ELFT>::sortInputSections() {
1500  // Build the order once since it is expensive.
1501  DenseMap<const InputSectionBase *, int> order = buildSectionOrder();
1502  maybeShuffle(order);
1503  for (SectionCommand *cmd : script->sectionCommands)
1504    if (auto *osd = dyn_cast<OutputDesc>(cmd))
1505      sortSection(osd->osec, order);
1506}
1507
1508template <class ELFT> void Writer<ELFT>::sortSections() {
1509  llvm::TimeTraceScope timeScope("Sort sections");
1510
1511  // Don't sort if using -r. It is not necessary and we want to preserve the
1512  // relative order for SHF_LINK_ORDER sections.
1513  if (config->relocatable) {
1514    script->adjustOutputSections();
1515    return;
1516  }
1517
1518  sortInputSections();
1519
1520  for (SectionCommand *cmd : script->sectionCommands)
1521    if (auto *osd = dyn_cast<OutputDesc>(cmd))
1522      osd->osec.sortRank = getSectionRank(osd->osec);
1523  if (!script->hasSectionsCommand) {
1524    // OutputDescs are mostly contiguous, but may be interleaved with
1525    // SymbolAssignments in the presence of INSERT commands.
1526    auto mid = std::stable_partition(
1527        script->sectionCommands.begin(), script->sectionCommands.end(),
1528        [](SectionCommand *cmd) { return isa<OutputDesc>(cmd); });
1529    std::stable_sort(script->sectionCommands.begin(), mid, compareSections);
1530  }
1531
1532  // Process INSERT commands and update output section attributes. From this
1533  // point onwards the order of script->sectionCommands is fixed.
1534  script->processInsertCommands();
1535  script->adjustOutputSections();
1536
1537  if (script->hasSectionsCommand)
1538    sortOrphanSections();
1539
1540  script->adjustSectionsAfterSorting();
1541}
1542
1543template <class ELFT> void Writer<ELFT>::sortOrphanSections() {
1544  // Orphan sections are sections present in the input files which are
1545  // not explicitly placed into the output file by the linker script.
1546  //
1547  // The sections in the linker script are already in the correct
1548  // order. We have to figuere out where to insert the orphan
1549  // sections.
1550  //
1551  // The order of the sections in the script is arbitrary and may not agree with
1552  // compareSections. This means that we cannot easily define a strict weak
1553  // ordering. To see why, consider a comparison of a section in the script and
1554  // one not in the script. We have a two simple options:
1555  // * Make them equivalent (a is not less than b, and b is not less than a).
1556  //   The problem is then that equivalence has to be transitive and we can
1557  //   have sections a, b and c with only b in a script and a less than c
1558  //   which breaks this property.
1559  // * Use compareSectionsNonScript. Given that the script order doesn't have
1560  //   to match, we can end up with sections a, b, c, d where b and c are in the
1561  //   script and c is compareSectionsNonScript less than b. In which case d
1562  //   can be equivalent to c, a to b and d < a. As a concrete example:
1563  //   .a (rx) # not in script
1564  //   .b (rx) # in script
1565  //   .c (ro) # in script
1566  //   .d (ro) # not in script
1567  //
1568  // The way we define an order then is:
1569  // *  Sort only the orphan sections. They are in the end right now.
1570  // *  Move each orphan section to its preferred position. We try
1571  //    to put each section in the last position where it can share
1572  //    a PT_LOAD.
1573  //
1574  // There is some ambiguity as to where exactly a new entry should be
1575  // inserted, because Commands contains not only output section
1576  // commands but also other types of commands such as symbol assignment
1577  // expressions. There's no correct answer here due to the lack of the
1578  // formal specification of the linker script. We use heuristics to
1579  // determine whether a new output command should be added before or
1580  // after another commands. For the details, look at shouldSkip
1581  // function.
1582
1583  auto i = script->sectionCommands.begin();
1584  auto e = script->sectionCommands.end();
1585  auto nonScriptI = std::find_if(i, e, [](SectionCommand *cmd) {
1586    if (auto *osd = dyn_cast<OutputDesc>(cmd))
1587      return osd->osec.sectionIndex == UINT32_MAX;
1588    return false;
1589  });
1590
1591  // Sort the orphan sections.
1592  std::stable_sort(nonScriptI, e, compareSections);
1593
1594  // As a horrible special case, skip the first . assignment if it is before any
1595  // section. We do this because it is common to set a load address by starting
1596  // the script with ". = 0xabcd" and the expectation is that every section is
1597  // after that.
1598  auto firstSectionOrDotAssignment =
1599      std::find_if(i, e, [](SectionCommand *cmd) { return !shouldSkip(cmd); });
1600  if (firstSectionOrDotAssignment != e &&
1601      isa<SymbolAssignment>(**firstSectionOrDotAssignment))
1602    ++firstSectionOrDotAssignment;
1603  i = firstSectionOrDotAssignment;
1604
1605  while (nonScriptI != e) {
1606    auto pos = findOrphanPos(i, nonScriptI);
1607    OutputSection *orphan = &cast<OutputDesc>(*nonScriptI)->osec;
1608
1609    // As an optimization, find all sections with the same sort rank
1610    // and insert them with one rotate.
1611    unsigned rank = orphan->sortRank;
1612    auto end = std::find_if(nonScriptI + 1, e, [=](SectionCommand *cmd) {
1613      return cast<OutputDesc>(cmd)->osec.sortRank != rank;
1614    });
1615    std::rotate(pos, nonScriptI, end);
1616    nonScriptI = end;
1617  }
1618}
1619
1620static bool compareByFilePosition(InputSection *a, InputSection *b) {
1621  InputSection *la = a->flags & SHF_LINK_ORDER ? a->getLinkOrderDep() : nullptr;
1622  InputSection *lb = b->flags & SHF_LINK_ORDER ? b->getLinkOrderDep() : nullptr;
1623  // SHF_LINK_ORDER sections with non-zero sh_link are ordered before
1624  // non-SHF_LINK_ORDER sections and SHF_LINK_ORDER sections with zero sh_link.
1625  if (!la || !lb)
1626    return la && !lb;
1627  OutputSection *aOut = la->getParent();
1628  OutputSection *bOut = lb->getParent();
1629
1630  if (aOut != bOut)
1631    return aOut->addr < bOut->addr;
1632  return la->outSecOff < lb->outSecOff;
1633}
1634
1635template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() {
1636  llvm::TimeTraceScope timeScope("Resolve SHF_LINK_ORDER");
1637  for (OutputSection *sec : outputSections) {
1638    if (!(sec->flags & SHF_LINK_ORDER))
1639      continue;
1640
1641    // The ARM.exidx section use SHF_LINK_ORDER, but we have consolidated
1642    // this processing inside the ARMExidxsyntheticsection::finalizeContents().
1643    if (!config->relocatable && config->emachine == EM_ARM &&
1644        sec->type == SHT_ARM_EXIDX)
1645      continue;
1646
1647    // Link order may be distributed across several InputSectionDescriptions.
1648    // Sorting is performed separately.
1649    SmallVector<InputSection **, 0> scriptSections;
1650    SmallVector<InputSection *, 0> sections;
1651    for (SectionCommand *cmd : sec->commands) {
1652      auto *isd = dyn_cast<InputSectionDescription>(cmd);
1653      if (!isd)
1654        continue;
1655      bool hasLinkOrder = false;
1656      scriptSections.clear();
1657      sections.clear();
1658      for (InputSection *&isec : isd->sections) {
1659        if (isec->flags & SHF_LINK_ORDER) {
1660          InputSection *link = isec->getLinkOrderDep();
1661          if (link && !link->getParent())
1662            error(toString(isec) + ": sh_link points to discarded section " +
1663                  toString(link));
1664          hasLinkOrder = true;
1665        }
1666        scriptSections.push_back(&isec);
1667        sections.push_back(isec);
1668      }
1669      if (hasLinkOrder && errorCount() == 0) {
1670        llvm::stable_sort(sections, compareByFilePosition);
1671        for (int i = 0, n = sections.size(); i != n; ++i)
1672          *scriptSections[i] = sections[i];
1673      }
1674    }
1675  }
1676}
1677
1678static void finalizeSynthetic(SyntheticSection *sec) {
1679  if (sec && sec->isNeeded() && sec->getParent()) {
1680    llvm::TimeTraceScope timeScope("Finalize synthetic sections", sec->name);
1681    sec->finalizeContents();
1682  }
1683}
1684
1685// We need to generate and finalize the content that depends on the address of
1686// InputSections. As the generation of the content may also alter InputSection
1687// addresses we must converge to a fixed point. We do that here. See the comment
1688// in Writer<ELFT>::finalizeSections().
1689template <class ELFT> void Writer<ELFT>::finalizeAddressDependentContent() {
1690  llvm::TimeTraceScope timeScope("Finalize address dependent content");
1691  ThunkCreator tc;
1692  AArch64Err843419Patcher a64p;
1693  ARMErr657417Patcher a32p;
1694  script->assignAddresses();
1695  // .ARM.exidx and SHF_LINK_ORDER do not require precise addresses, but they
1696  // do require the relative addresses of OutputSections because linker scripts
1697  // can assign Virtual Addresses to OutputSections that are not monotonically
1698  // increasing.
1699  for (Partition &part : partitions)
1700    finalizeSynthetic(part.armExidx.get());
1701  resolveShfLinkOrder();
1702
1703  // Converts call x@GDPLT to call __tls_get_addr
1704  if (config->emachine == EM_HEXAGON)
1705    hexagonTLSSymbolUpdate(outputSections);
1706
1707  uint32_t pass = 0, assignPasses = 0;
1708  for (;;) {
1709    bool changed = target->needsThunks ? tc.createThunks(pass, outputSections)
1710                                       : target->relaxOnce(pass);
1711    ++pass;
1712
1713    // With Thunk Size much smaller than branch range we expect to
1714    // converge quickly; if we get to 30 something has gone wrong.
1715    if (changed && pass >= 30) {
1716      error(target->needsThunks ? "thunk creation not converged"
1717                                : "relaxation not converged");
1718      break;
1719    }
1720
1721    if (config->fixCortexA53Errata843419) {
1722      if (changed)
1723        script->assignAddresses();
1724      changed |= a64p.createFixes();
1725    }
1726    if (config->fixCortexA8) {
1727      if (changed)
1728        script->assignAddresses();
1729      changed |= a32p.createFixes();
1730    }
1731
1732    finalizeSynthetic(in.got.get());
1733    if (in.mipsGot)
1734      in.mipsGot->updateAllocSize();
1735
1736    for (Partition &part : partitions) {
1737      changed |= part.relaDyn->updateAllocSize();
1738      if (part.relrDyn)
1739        changed |= part.relrDyn->updateAllocSize();
1740      if (part.memtagGlobalDescriptors)
1741        changed |= part.memtagGlobalDescriptors->updateAllocSize();
1742    }
1743
1744    const Defined *changedSym = script->assignAddresses();
1745    if (!changed) {
1746      // Some symbols may be dependent on section addresses. When we break the
1747      // loop, the symbol values are finalized because a previous
1748      // assignAddresses() finalized section addresses.
1749      if (!changedSym)
1750        break;
1751      if (++assignPasses == 5) {
1752        errorOrWarn("assignment to symbol " + toString(*changedSym) +
1753                    " does not converge");
1754        break;
1755      }
1756    }
1757  }
1758  if (!config->relocatable)
1759    target->finalizeRelax(pass);
1760
1761  if (config->relocatable)
1762    for (OutputSection *sec : outputSections)
1763      sec->addr = 0;
1764
1765  // If addrExpr is set, the address may not be a multiple of the alignment.
1766  // Warn because this is error-prone.
1767  for (SectionCommand *cmd : script->sectionCommands)
1768    if (auto *osd = dyn_cast<OutputDesc>(cmd)) {
1769      OutputSection *osec = &osd->osec;
1770      if (osec->addr % osec->addralign != 0)
1771        warn("address (0x" + Twine::utohexstr(osec->addr) + ") of section " +
1772             osec->name + " is not a multiple of alignment (" +
1773             Twine(osec->addralign) + ")");
1774    }
1775}
1776
1777// If Input Sections have been shrunk (basic block sections) then
1778// update symbol values and sizes associated with these sections.  With basic
1779// block sections, input sections can shrink when the jump instructions at
1780// the end of the section are relaxed.
1781static void fixSymbolsAfterShrinking() {
1782  for (InputFile *File : ctx.objectFiles) {
1783    parallelForEach(File->getSymbols(), [&](Symbol *Sym) {
1784      auto *def = dyn_cast<Defined>(Sym);
1785      if (!def)
1786        return;
1787
1788      const SectionBase *sec = def->section;
1789      if (!sec)
1790        return;
1791
1792      const InputSectionBase *inputSec = dyn_cast<InputSectionBase>(sec);
1793      if (!inputSec || !inputSec->bytesDropped)
1794        return;
1795
1796      const size_t OldSize = inputSec->content().size();
1797      const size_t NewSize = OldSize - inputSec->bytesDropped;
1798
1799      if (def->value > NewSize && def->value <= OldSize) {
1800        LLVM_DEBUG(llvm::dbgs()
1801                   << "Moving symbol " << Sym->getName() << " from "
1802                   << def->value << " to "
1803                   << def->value - inputSec->bytesDropped << " bytes\n");
1804        def->value -= inputSec->bytesDropped;
1805        return;
1806      }
1807
1808      if (def->value + def->size > NewSize && def->value <= OldSize &&
1809          def->value + def->size <= OldSize) {
1810        LLVM_DEBUG(llvm::dbgs()
1811                   << "Shrinking symbol " << Sym->getName() << " from "
1812                   << def->size << " to " << def->size - inputSec->bytesDropped
1813                   << " bytes\n");
1814        def->size -= inputSec->bytesDropped;
1815      }
1816    });
1817  }
1818}
1819
1820// If basic block sections exist, there are opportunities to delete fall thru
1821// jumps and shrink jump instructions after basic block reordering.  This
1822// relaxation pass does that.  It is only enabled when --optimize-bb-jumps
1823// option is used.
1824template <class ELFT> void Writer<ELFT>::optimizeBasicBlockJumps() {
1825  assert(config->optimizeBBJumps);
1826  SmallVector<InputSection *, 0> storage;
1827
1828  script->assignAddresses();
1829  // For every output section that has executable input sections, this
1830  // does the following:
1831  //   1. Deletes all direct jump instructions in input sections that
1832  //      jump to the following section as it is not required.
1833  //   2. If there are two consecutive jump instructions, it checks
1834  //      if they can be flipped and one can be deleted.
1835  for (OutputSection *osec : outputSections) {
1836    if (!(osec->flags & SHF_EXECINSTR))
1837      continue;
1838    ArrayRef<InputSection *> sections = getInputSections(*osec, storage);
1839    size_t numDeleted = 0;
1840    // Delete all fall through jump instructions.  Also, check if two
1841    // consecutive jump instructions can be flipped so that a fall
1842    // through jmp instruction can be deleted.
1843    for (size_t i = 0, e = sections.size(); i != e; ++i) {
1844      InputSection *next = i + 1 < sections.size() ? sections[i + 1] : nullptr;
1845      InputSection &sec = *sections[i];
1846      numDeleted += target->deleteFallThruJmpInsn(sec, sec.file, next);
1847    }
1848    if (numDeleted > 0) {
1849      script->assignAddresses();
1850      LLVM_DEBUG(llvm::dbgs()
1851                 << "Removing " << numDeleted << " fall through jumps\n");
1852    }
1853  }
1854
1855  fixSymbolsAfterShrinking();
1856
1857  for (OutputSection *osec : outputSections)
1858    for (InputSection *is : getInputSections(*osec, storage))
1859      is->trim();
1860}
1861
1862// In order to allow users to manipulate linker-synthesized sections,
1863// we had to add synthetic sections to the input section list early,
1864// even before we make decisions whether they are needed. This allows
1865// users to write scripts like this: ".mygot : { .got }".
1866//
1867// Doing it has an unintended side effects. If it turns out that we
1868// don't need a .got (for example) at all because there's no
1869// relocation that needs a .got, we don't want to emit .got.
1870//
1871// To deal with the above problem, this function is called after
1872// scanRelocations is called to remove synthetic sections that turn
1873// out to be empty.
1874static void removeUnusedSyntheticSections() {
1875  // All input synthetic sections that can be empty are placed after
1876  // all regular ones. Reverse iterate to find the first synthetic section
1877  // after a non-synthetic one which will be our starting point.
1878  auto start =
1879      llvm::find_if(llvm::reverse(ctx.inputSections), [](InputSectionBase *s) {
1880        return !isa<SyntheticSection>(s);
1881      }).base();
1882
1883  // Remove unused synthetic sections from ctx.inputSections;
1884  DenseSet<InputSectionBase *> unused;
1885  auto end =
1886      std::remove_if(start, ctx.inputSections.end(), [&](InputSectionBase *s) {
1887        auto *sec = cast<SyntheticSection>(s);
1888        if (sec->getParent() && sec->isNeeded())
1889          return false;
1890        unused.insert(sec);
1891        return true;
1892      });
1893  ctx.inputSections.erase(end, ctx.inputSections.end());
1894
1895  // Remove unused synthetic sections from the corresponding input section
1896  // description and orphanSections.
1897  for (auto *sec : unused)
1898    if (OutputSection *osec = cast<SyntheticSection>(sec)->getParent())
1899      for (SectionCommand *cmd : osec->commands)
1900        if (auto *isd = dyn_cast<InputSectionDescription>(cmd))
1901          llvm::erase_if(isd->sections, [&](InputSection *isec) {
1902            return unused.count(isec);
1903          });
1904  llvm::erase_if(script->orphanSections, [&](const InputSectionBase *sec) {
1905    return unused.count(sec);
1906  });
1907}
1908
1909// Create output section objects and add them to OutputSections.
1910template <class ELFT> void Writer<ELFT>::finalizeSections() {
1911  if (!config->relocatable) {
1912    Out::preinitArray = findSection(".preinit_array");
1913    Out::initArray = findSection(".init_array");
1914    Out::finiArray = findSection(".fini_array");
1915
1916    // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop
1917    // symbols for sections, so that the runtime can get the start and end
1918    // addresses of each section by section name. Add such symbols.
1919    addStartEndSymbols();
1920    for (SectionCommand *cmd : script->sectionCommands)
1921      if (auto *osd = dyn_cast<OutputDesc>(cmd))
1922        addStartStopSymbols(osd->osec);
1923
1924    // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type.
1925    // It should be okay as no one seems to care about the type.
1926    // Even the author of gold doesn't remember why gold behaves that way.
1927    // https://sourceware.org/ml/binutils/2002-03/msg00360.html
1928    if (mainPart->dynamic->parent) {
1929      Symbol *s = symtab.addSymbol(Defined{
1930          ctx.internalFile, "_DYNAMIC", STB_WEAK, STV_HIDDEN, STT_NOTYPE,
1931          /*value=*/0, /*size=*/0, mainPart->dynamic.get()});
1932      s->isUsedInRegularObj = true;
1933    }
1934
1935    // Define __rel[a]_iplt_{start,end} symbols if needed.
1936    addRelIpltSymbols();
1937
1938    // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800. This symbol
1939    // should only be defined in an executable. If .sdata does not exist, its
1940    // value/section does not matter but it has to be relative, so set its
1941    // st_shndx arbitrarily to 1 (Out::elfHeader).
1942    if (config->emachine == EM_RISCV) {
1943      ElfSym::riscvGlobalPointer = nullptr;
1944      if (!config->shared) {
1945        OutputSection *sec = findSection(".sdata");
1946        addOptionalRegular(
1947            "__global_pointer$", sec ? sec : Out::elfHeader, 0x800, STV_DEFAULT);
1948        // Set riscvGlobalPointer to be used by the optional global pointer
1949        // relaxation.
1950        if (config->relaxGP) {
1951          Symbol *s = symtab.find("__global_pointer$");
1952          if (s && s->isDefined())
1953            ElfSym::riscvGlobalPointer = cast<Defined>(s);
1954        }
1955      }
1956    }
1957
1958    if (config->emachine == EM_386 || config->emachine == EM_X86_64) {
1959      // On targets that support TLSDESC, _TLS_MODULE_BASE_ is defined in such a
1960      // way that:
1961      //
1962      // 1) Without relaxation: it produces a dynamic TLSDESC relocation that
1963      // computes 0.
1964      // 2) With LD->LE relaxation: _TLS_MODULE_BASE_@tpoff = 0 (lowest address
1965      // in the TLS block).
1966      //
1967      // 2) is special cased in @tpoff computation. To satisfy 1), we define it
1968      // as an absolute symbol of zero. This is different from GNU linkers which
1969      // define _TLS_MODULE_BASE_ relative to the first TLS section.
1970      Symbol *s = symtab.find("_TLS_MODULE_BASE_");
1971      if (s && s->isUndefined()) {
1972        s->resolve(Defined{ctx.internalFile, StringRef(), STB_GLOBAL,
1973                           STV_HIDDEN, STT_TLS, /*value=*/0, 0,
1974                           /*section=*/nullptr});
1975        ElfSym::tlsModuleBase = cast<Defined>(s);
1976      }
1977    }
1978
1979    // This responsible for splitting up .eh_frame section into
1980    // pieces. The relocation scan uses those pieces, so this has to be
1981    // earlier.
1982    {
1983      llvm::TimeTraceScope timeScope("Finalize .eh_frame");
1984      for (Partition &part : partitions)
1985        finalizeSynthetic(part.ehFrame.get());
1986    }
1987  }
1988
1989  demoteSymbolsAndComputeIsPreemptible();
1990
1991  if (config->copyRelocs && config->discard != DiscardPolicy::None)
1992    markUsedLocalSymbols<ELFT>();
1993  demoteAndCopyLocalSymbols();
1994
1995  if (config->copyRelocs)
1996    addSectionSymbols();
1997
1998  // Change values of linker-script-defined symbols from placeholders (assigned
1999  // by declareSymbols) to actual definitions.
2000  script->processSymbolAssignments();
2001
2002  if (!config->relocatable) {
2003    llvm::TimeTraceScope timeScope("Scan relocations");
2004    // Scan relocations. This must be done after every symbol is declared so
2005    // that we can correctly decide if a dynamic relocation is needed. This is
2006    // called after processSymbolAssignments() because it needs to know whether
2007    // a linker-script-defined symbol is absolute.
2008    ppc64noTocRelax.clear();
2009    scanRelocations<ELFT>();
2010    reportUndefinedSymbols();
2011    postScanRelocations();
2012
2013    if (in.plt && in.plt->isNeeded())
2014      in.plt->addSymbols();
2015    if (in.iplt && in.iplt->isNeeded())
2016      in.iplt->addSymbols();
2017
2018    if (config->unresolvedSymbolsInShlib != UnresolvedPolicy::Ignore) {
2019      auto diagnose =
2020          config->unresolvedSymbolsInShlib == UnresolvedPolicy::ReportError
2021              ? errorOrWarn
2022              : warn;
2023      // Error on undefined symbols in a shared object, if all of its DT_NEEDED
2024      // entries are seen. These cases would otherwise lead to runtime errors
2025      // reported by the dynamic linker.
2026      //
2027      // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker
2028      // to catch more cases. That is too much for us. Our approach resembles
2029      // the one used in ld.gold, achieves a good balance to be useful but not
2030      // too smart.
2031      //
2032      // If a DSO reference is resolved by a SharedSymbol, but the SharedSymbol
2033      // is overridden by a hidden visibility Defined (which is later discarded
2034      // due to GC), don't report the diagnostic. However, this may indicate an
2035      // unintended SharedSymbol.
2036      for (SharedFile *file : ctx.sharedFiles) {
2037        bool allNeededIsKnown =
2038            llvm::all_of(file->dtNeeded, [&](StringRef needed) {
2039              return symtab.soNames.count(CachedHashStringRef(needed));
2040            });
2041        if (!allNeededIsKnown)
2042          continue;
2043        for (Symbol *sym : file->requiredSymbols) {
2044          if (sym->dsoDefined)
2045            continue;
2046          if (sym->isUndefined() && !sym->isWeak()) {
2047            diagnose("undefined reference due to --no-allow-shlib-undefined: " +
2048                     toString(*sym) + "\n>>> referenced by " + toString(file));
2049          } else if (sym->isDefined() && sym->computeBinding() == STB_LOCAL) {
2050            diagnose("non-exported symbol '" + toString(*sym) + "' in '" +
2051                     toString(sym->file) + "' is referenced by DSO '" +
2052                     toString(file) + "'");
2053          }
2054        }
2055      }
2056    }
2057  }
2058
2059  {
2060    llvm::TimeTraceScope timeScope("Add symbols to symtabs");
2061    // Now that we have defined all possible global symbols including linker-
2062    // synthesized ones. Visit all symbols to give the finishing touches.
2063    for (Symbol *sym : symtab.getSymbols()) {
2064      if (!sym->isUsedInRegularObj || !includeInSymtab(*sym))
2065        continue;
2066      if (!config->relocatable)
2067        sym->binding = sym->computeBinding();
2068      if (in.symTab)
2069        in.symTab->addSymbol(sym);
2070
2071      if (sym->includeInDynsym()) {
2072        partitions[sym->partition - 1].dynSymTab->addSymbol(sym);
2073        if (auto *file = dyn_cast_or_null<SharedFile>(sym->file))
2074          if (file->isNeeded && !sym->isUndefined())
2075            addVerneed(sym);
2076      }
2077    }
2078
2079    // We also need to scan the dynamic relocation tables of the other
2080    // partitions and add any referenced symbols to the partition's dynsym.
2081    for (Partition &part : MutableArrayRef<Partition>(partitions).slice(1)) {
2082      DenseSet<Symbol *> syms;
2083      for (const SymbolTableEntry &e : part.dynSymTab->getSymbols())
2084        syms.insert(e.sym);
2085      for (DynamicReloc &reloc : part.relaDyn->relocs)
2086        if (reloc.sym && reloc.needsDynSymIndex() &&
2087            syms.insert(reloc.sym).second)
2088          part.dynSymTab->addSymbol(reloc.sym);
2089    }
2090  }
2091
2092  if (in.mipsGot)
2093    in.mipsGot->build();
2094
2095  removeUnusedSyntheticSections();
2096  script->diagnoseOrphanHandling();
2097  script->diagnoseMissingSGSectionAddress();
2098
2099  sortSections();
2100
2101  // Create a list of OutputSections, assign sectionIndex, and populate
2102  // in.shStrTab.
2103  for (SectionCommand *cmd : script->sectionCommands)
2104    if (auto *osd = dyn_cast<OutputDesc>(cmd)) {
2105      OutputSection *osec = &osd->osec;
2106      outputSections.push_back(osec);
2107      osec->sectionIndex = outputSections.size();
2108      osec->shName = in.shStrTab->addString(osec->name);
2109    }
2110
2111  // Prefer command line supplied address over other constraints.
2112  for (OutputSection *sec : outputSections) {
2113    auto i = config->sectionStartMap.find(sec->name);
2114    if (i != config->sectionStartMap.end())
2115      sec->addrExpr = [=] { return i->second; };
2116  }
2117
2118  // With the outputSections available check for GDPLT relocations
2119  // and add __tls_get_addr symbol if needed.
2120  if (config->emachine == EM_HEXAGON && hexagonNeedsTLSSymbol(outputSections)) {
2121    Symbol *sym =
2122        symtab.addSymbol(Undefined{ctx.internalFile, "__tls_get_addr",
2123                                   STB_GLOBAL, STV_DEFAULT, STT_NOTYPE});
2124    sym->isPreemptible = true;
2125    partitions[0].dynSymTab->addSymbol(sym);
2126  }
2127
2128  // This is a bit of a hack. A value of 0 means undef, so we set it
2129  // to 1 to make __ehdr_start defined. The section number is not
2130  // particularly relevant.
2131  Out::elfHeader->sectionIndex = 1;
2132  Out::elfHeader->size = sizeof(typename ELFT::Ehdr);
2133
2134  // Binary and relocatable output does not have PHDRS.
2135  // The headers have to be created before finalize as that can influence the
2136  // image base and the dynamic section on mips includes the image base.
2137  if (!config->relocatable && !config->oFormatBinary) {
2138    for (Partition &part : partitions) {
2139      part.phdrs = script->hasPhdrsCommands() ? script->createPhdrs()
2140                                              : createPhdrs(part);
2141      if (config->emachine == EM_ARM) {
2142        // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME
2143        addPhdrForSection(part, SHT_ARM_EXIDX, PT_ARM_EXIDX, PF_R);
2144      }
2145      if (config->emachine == EM_MIPS) {
2146        // Add separate segments for MIPS-specific sections.
2147        addPhdrForSection(part, SHT_MIPS_REGINFO, PT_MIPS_REGINFO, PF_R);
2148        addPhdrForSection(part, SHT_MIPS_OPTIONS, PT_MIPS_OPTIONS, PF_R);
2149        addPhdrForSection(part, SHT_MIPS_ABIFLAGS, PT_MIPS_ABIFLAGS, PF_R);
2150      }
2151      if (config->emachine == EM_RISCV)
2152        addPhdrForSection(part, SHT_RISCV_ATTRIBUTES, PT_RISCV_ATTRIBUTES,
2153                          PF_R);
2154    }
2155    Out::programHeaders->size = sizeof(Elf_Phdr) * mainPart->phdrs.size();
2156
2157    // Find the TLS segment. This happens before the section layout loop so that
2158    // Android relocation packing can look up TLS symbol addresses. We only need
2159    // to care about the main partition here because all TLS symbols were moved
2160    // to the main partition (see MarkLive.cpp).
2161    for (PhdrEntry *p : mainPart->phdrs)
2162      if (p->p_type == PT_TLS)
2163        Out::tlsPhdr = p;
2164  }
2165
2166  // Some symbols are defined in term of program headers. Now that we
2167  // have the headers, we can find out which sections they point to.
2168  setReservedSymbolSections();
2169
2170  {
2171    llvm::TimeTraceScope timeScope("Finalize synthetic sections");
2172
2173    finalizeSynthetic(in.bss.get());
2174    finalizeSynthetic(in.bssRelRo.get());
2175    finalizeSynthetic(in.symTabShndx.get());
2176    finalizeSynthetic(in.shStrTab.get());
2177    finalizeSynthetic(in.strTab.get());
2178    finalizeSynthetic(in.got.get());
2179    finalizeSynthetic(in.mipsGot.get());
2180    finalizeSynthetic(in.igotPlt.get());
2181    finalizeSynthetic(in.gotPlt.get());
2182    finalizeSynthetic(in.relaIplt.get());
2183    finalizeSynthetic(in.relaPlt.get());
2184    finalizeSynthetic(in.plt.get());
2185    finalizeSynthetic(in.iplt.get());
2186    finalizeSynthetic(in.ppc32Got2.get());
2187    finalizeSynthetic(in.partIndex.get());
2188
2189    // Dynamic section must be the last one in this list and dynamic
2190    // symbol table section (dynSymTab) must be the first one.
2191    for (Partition &part : partitions) {
2192      if (part.relaDyn) {
2193        part.relaDyn->mergeRels();
2194        // Compute DT_RELACOUNT to be used by part.dynamic.
2195        part.relaDyn->partitionRels();
2196        finalizeSynthetic(part.relaDyn.get());
2197      }
2198      if (part.relrDyn) {
2199        part.relrDyn->mergeRels();
2200        finalizeSynthetic(part.relrDyn.get());
2201      }
2202
2203      finalizeSynthetic(part.dynSymTab.get());
2204      finalizeSynthetic(part.gnuHashTab.get());
2205      finalizeSynthetic(part.hashTab.get());
2206      finalizeSynthetic(part.verDef.get());
2207      finalizeSynthetic(part.ehFrameHdr.get());
2208      finalizeSynthetic(part.verSym.get());
2209      finalizeSynthetic(part.verNeed.get());
2210      finalizeSynthetic(part.dynamic.get());
2211    }
2212  }
2213
2214  if (!script->hasSectionsCommand && !config->relocatable)
2215    fixSectionAlignments();
2216
2217  // This is used to:
2218  // 1) Create "thunks":
2219  //    Jump instructions in many ISAs have small displacements, and therefore
2220  //    they cannot jump to arbitrary addresses in memory. For example, RISC-V
2221  //    JAL instruction can target only +-1 MiB from PC. It is a linker's
2222  //    responsibility to create and insert small pieces of code between
2223  //    sections to extend the ranges if jump targets are out of range. Such
2224  //    code pieces are called "thunks".
2225  //
2226  //    We add thunks at this stage. We couldn't do this before this point
2227  //    because this is the earliest point where we know sizes of sections and
2228  //    their layouts (that are needed to determine if jump targets are in
2229  //    range).
2230  //
2231  // 2) Update the sections. We need to generate content that depends on the
2232  //    address of InputSections. For example, MIPS GOT section content or
2233  //    android packed relocations sections content.
2234  //
2235  // 3) Assign the final values for the linker script symbols. Linker scripts
2236  //    sometimes using forward symbol declarations. We want to set the correct
2237  //    values. They also might change after adding the thunks.
2238  finalizeAddressDependentContent();
2239
2240  // All information needed for OutputSection part of Map file is available.
2241  if (errorCount())
2242    return;
2243
2244  {
2245    llvm::TimeTraceScope timeScope("Finalize synthetic sections");
2246    // finalizeAddressDependentContent may have added local symbols to the
2247    // static symbol table.
2248    finalizeSynthetic(in.symTab.get());
2249    finalizeSynthetic(in.ppc64LongBranchTarget.get());
2250    finalizeSynthetic(in.armCmseSGSection.get());
2251  }
2252
2253  // Relaxation to delete inter-basic block jumps created by basic block
2254  // sections. Run after in.symTab is finalized as optimizeBasicBlockJumps
2255  // can relax jump instructions based on symbol offset.
2256  if (config->optimizeBBJumps)
2257    optimizeBasicBlockJumps();
2258
2259  // Fill other section headers. The dynamic table is finalized
2260  // at the end because some tags like RELSZ depend on result
2261  // of finalizing other sections.
2262  for (OutputSection *sec : outputSections)
2263    sec->finalize();
2264
2265  script->checkFinalScriptConditions();
2266
2267  if (config->emachine == EM_ARM && !config->isLE && config->armBe8) {
2268    addArmInputSectionMappingSymbols();
2269    sortArmMappingSymbols();
2270  }
2271}
2272
2273// Ensure data sections are not mixed with executable sections when
2274// --execute-only is used. --execute-only make pages executable but not
2275// readable.
2276template <class ELFT> void Writer<ELFT>::checkExecuteOnly() {
2277  if (!config->executeOnly)
2278    return;
2279
2280  SmallVector<InputSection *, 0> storage;
2281  for (OutputSection *osec : outputSections)
2282    if (osec->flags & SHF_EXECINSTR)
2283      for (InputSection *isec : getInputSections(*osec, storage))
2284        if (!(isec->flags & SHF_EXECINSTR))
2285          error("cannot place " + toString(isec) + " into " +
2286                toString(osec->name) +
2287                ": --execute-only does not support intermingling data and code");
2288}
2289
2290// The linker is expected to define SECNAME_start and SECNAME_end
2291// symbols for a few sections. This function defines them.
2292template <class ELFT> void Writer<ELFT>::addStartEndSymbols() {
2293  // If a section does not exist, there's ambiguity as to how we
2294  // define _start and _end symbols for an init/fini section. Since
2295  // the loader assume that the symbols are always defined, we need to
2296  // always define them. But what value? The loader iterates over all
2297  // pointers between _start and _end to run global ctors/dtors, so if
2298  // the section is empty, their symbol values don't actually matter
2299  // as long as _start and _end point to the same location.
2300  //
2301  // That said, we don't want to set the symbols to 0 (which is
2302  // probably the simplest value) because that could cause some
2303  // program to fail to link due to relocation overflow, if their
2304  // program text is above 2 GiB. We use the address of the .text
2305  // section instead to prevent that failure.
2306  //
2307  // In rare situations, the .text section may not exist. If that's the
2308  // case, use the image base address as a last resort.
2309  OutputSection *Default = findSection(".text");
2310  if (!Default)
2311    Default = Out::elfHeader;
2312
2313  auto define = [=](StringRef start, StringRef end, OutputSection *os) {
2314    if (os && !script->isDiscarded(os)) {
2315      addOptionalRegular(start, os, 0);
2316      addOptionalRegular(end, os, -1);
2317    } else {
2318      addOptionalRegular(start, Default, 0);
2319      addOptionalRegular(end, Default, 0);
2320    }
2321  };
2322
2323  define("__preinit_array_start", "__preinit_array_end", Out::preinitArray);
2324  define("__init_array_start", "__init_array_end", Out::initArray);
2325  define("__fini_array_start", "__fini_array_end", Out::finiArray);
2326
2327  if (OutputSection *sec = findSection(".ARM.exidx"))
2328    define("__exidx_start", "__exidx_end", sec);
2329}
2330
2331// If a section name is valid as a C identifier (which is rare because of
2332// the leading '.'), linkers are expected to define __start_<secname> and
2333// __stop_<secname> symbols. They are at beginning and end of the section,
2334// respectively. This is not requested by the ELF standard, but GNU ld and
2335// gold provide the feature, and used by many programs.
2336template <class ELFT>
2337void Writer<ELFT>::addStartStopSymbols(OutputSection &osec) {
2338  StringRef s = osec.name;
2339  if (!isValidCIdentifier(s))
2340    return;
2341  addOptionalRegular(saver().save("__start_" + s), &osec, 0,
2342                     config->zStartStopVisibility);
2343  addOptionalRegular(saver().save("__stop_" + s), &osec, -1,
2344                     config->zStartStopVisibility);
2345}
2346
2347static bool needsPtLoad(OutputSection *sec) {
2348  if (!(sec->flags & SHF_ALLOC))
2349    return false;
2350
2351  // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is
2352  // responsible for allocating space for them, not the PT_LOAD that
2353  // contains the TLS initialization image.
2354  if ((sec->flags & SHF_TLS) && sec->type == SHT_NOBITS)
2355    return false;
2356  return true;
2357}
2358
2359// Linker scripts are responsible for aligning addresses. Unfortunately, most
2360// linker scripts are designed for creating two PT_LOADs only, one RX and one
2361// RW. This means that there is no alignment in the RO to RX transition and we
2362// cannot create a PT_LOAD there.
2363static uint64_t computeFlags(uint64_t flags) {
2364  if (config->omagic)
2365    return PF_R | PF_W | PF_X;
2366  if (config->executeOnly && (flags & PF_X))
2367    return flags & ~PF_R;
2368  if (config->singleRoRx && !(flags & PF_W))
2369    return flags | PF_X;
2370  return flags;
2371}
2372
2373// Decide which program headers to create and which sections to include in each
2374// one.
2375template <class ELFT>
2376SmallVector<PhdrEntry *, 0> Writer<ELFT>::createPhdrs(Partition &part) {
2377  SmallVector<PhdrEntry *, 0> ret;
2378  auto addHdr = [&](unsigned type, unsigned flags) -> PhdrEntry * {
2379    ret.push_back(make<PhdrEntry>(type, flags));
2380    return ret.back();
2381  };
2382
2383  unsigned partNo = part.getNumber();
2384  bool isMain = partNo == 1;
2385
2386  // Add the first PT_LOAD segment for regular output sections.
2387  uint64_t flags = computeFlags(PF_R);
2388  PhdrEntry *load = nullptr;
2389
2390  // nmagic or omagic output does not have PT_PHDR, PT_INTERP, or the readonly
2391  // PT_LOAD.
2392  if (!config->nmagic && !config->omagic) {
2393    // The first phdr entry is PT_PHDR which describes the program header
2394    // itself.
2395    if (isMain)
2396      addHdr(PT_PHDR, PF_R)->add(Out::programHeaders);
2397    else
2398      addHdr(PT_PHDR, PF_R)->add(part.programHeaders->getParent());
2399
2400    // PT_INTERP must be the second entry if exists.
2401    if (OutputSection *cmd = findSection(".interp", partNo))
2402      addHdr(PT_INTERP, cmd->getPhdrFlags())->add(cmd);
2403
2404    // Add the headers. We will remove them if they don't fit.
2405    // In the other partitions the headers are ordinary sections, so they don't
2406    // need to be added here.
2407    if (isMain) {
2408      load = addHdr(PT_LOAD, flags);
2409      load->add(Out::elfHeader);
2410      load->add(Out::programHeaders);
2411    }
2412  }
2413
2414  // PT_GNU_RELRO includes all sections that should be marked as
2415  // read-only by dynamic linker after processing relocations.
2416  // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give
2417  // an error message if more than one PT_GNU_RELRO PHDR is required.
2418  PhdrEntry *relRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R);
2419  bool inRelroPhdr = false;
2420  OutputSection *relroEnd = nullptr;
2421  for (OutputSection *sec : outputSections) {
2422    if (sec->partition != partNo || !needsPtLoad(sec))
2423      continue;
2424    if (isRelroSection(sec)) {
2425      inRelroPhdr = true;
2426      if (!relroEnd)
2427        relRo->add(sec);
2428      else
2429        error("section: " + sec->name + " is not contiguous with other relro" +
2430              " sections");
2431    } else if (inRelroPhdr) {
2432      inRelroPhdr = false;
2433      relroEnd = sec;
2434    }
2435  }
2436  relRo->p_align = 1;
2437
2438  for (OutputSection *sec : outputSections) {
2439    if (!needsPtLoad(sec))
2440      continue;
2441
2442    // Normally, sections in partitions other than the current partition are
2443    // ignored. But partition number 255 is a special case: it contains the
2444    // partition end marker (.part.end). It needs to be added to the main
2445    // partition so that a segment is created for it in the main partition,
2446    // which will cause the dynamic loader to reserve space for the other
2447    // partitions.
2448    if (sec->partition != partNo) {
2449      if (isMain && sec->partition == 255)
2450        addHdr(PT_LOAD, computeFlags(sec->getPhdrFlags()))->add(sec);
2451      continue;
2452    }
2453
2454    // Segments are contiguous memory regions that has the same attributes
2455    // (e.g. executable or writable). There is one phdr for each segment.
2456    // Therefore, we need to create a new phdr when the next section has
2457    // different flags or is loaded at a discontiguous address or memory region
2458    // using AT or AT> linker script command, respectively.
2459    //
2460    // As an exception, we don't create a separate load segment for the ELF
2461    // headers, even if the first "real" output has an AT or AT> attribute.
2462    //
2463    // In addition, NOBITS sections should only be placed at the end of a LOAD
2464    // segment (since it's represented as p_filesz < p_memsz). If we have a
2465    // not-NOBITS section after a NOBITS, we create a new LOAD for the latter
2466    // even if flags match, so as not to require actually writing the
2467    // supposed-to-be-NOBITS section to the output file. (However, we cannot do
2468    // so when hasSectionsCommand, since we cannot introduce the extra alignment
2469    // needed to create a new LOAD)
2470    uint64_t newFlags = computeFlags(sec->getPhdrFlags());
2471    bool sameLMARegion =
2472        load && !sec->lmaExpr && sec->lmaRegion == load->firstSec->lmaRegion;
2473    if (!(load && newFlags == flags && sec != relroEnd &&
2474          sec->memRegion == load->firstSec->memRegion &&
2475          (sameLMARegion || load->lastSec == Out::programHeaders) &&
2476          (script->hasSectionsCommand || sec->type == SHT_NOBITS ||
2477           load->lastSec->type != SHT_NOBITS))) {
2478      load = addHdr(PT_LOAD, newFlags);
2479      flags = newFlags;
2480    }
2481
2482    load->add(sec);
2483  }
2484
2485  // Add a TLS segment if any.
2486  PhdrEntry *tlsHdr = make<PhdrEntry>(PT_TLS, PF_R);
2487  for (OutputSection *sec : outputSections)
2488    if (sec->partition == partNo && sec->flags & SHF_TLS)
2489      tlsHdr->add(sec);
2490  if (tlsHdr->firstSec)
2491    ret.push_back(tlsHdr);
2492
2493  // Add an entry for .dynamic.
2494  if (OutputSection *sec = part.dynamic->getParent())
2495    addHdr(PT_DYNAMIC, sec->getPhdrFlags())->add(sec);
2496
2497  if (relRo->firstSec)
2498    ret.push_back(relRo);
2499
2500  // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr.
2501  if (part.ehFrame->isNeeded() && part.ehFrameHdr &&
2502      part.ehFrame->getParent() && part.ehFrameHdr->getParent())
2503    addHdr(PT_GNU_EH_FRAME, part.ehFrameHdr->getParent()->getPhdrFlags())
2504        ->add(part.ehFrameHdr->getParent());
2505
2506  // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes
2507  // the dynamic linker fill the segment with random data.
2508  if (OutputSection *cmd = findSection(".openbsd.randomdata", partNo))
2509    addHdr(PT_OPENBSD_RANDOMIZE, cmd->getPhdrFlags())->add(cmd);
2510
2511  if (config->zGnustack != GnuStackKind::None) {
2512    // PT_GNU_STACK is a special section to tell the loader to make the
2513    // pages for the stack non-executable. If you really want an executable
2514    // stack, you can pass -z execstack, but that's not recommended for
2515    // security reasons.
2516    unsigned perm = PF_R | PF_W;
2517    if (config->zGnustack == GnuStackKind::Exec)
2518      perm |= PF_X;
2519    addHdr(PT_GNU_STACK, perm)->p_memsz = config->zStackSize;
2520  }
2521
2522  // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable
2523  // is expected to perform W^X violations, such as calling mprotect(2) or
2524  // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on
2525  // OpenBSD.
2526  if (config->zWxneeded)
2527    addHdr(PT_OPENBSD_WXNEEDED, PF_X);
2528
2529  if (OutputSection *cmd = findSection(".note.gnu.property", partNo))
2530    addHdr(PT_GNU_PROPERTY, PF_R)->add(cmd);
2531
2532  // Create one PT_NOTE per a group of contiguous SHT_NOTE sections with the
2533  // same alignment.
2534  PhdrEntry *note = nullptr;
2535  for (OutputSection *sec : outputSections) {
2536    if (sec->partition != partNo)
2537      continue;
2538    if (sec->type == SHT_NOTE && (sec->flags & SHF_ALLOC)) {
2539      if (!note || sec->lmaExpr || note->lastSec->addralign != sec->addralign)
2540        note = addHdr(PT_NOTE, PF_R);
2541      note->add(sec);
2542    } else {
2543      note = nullptr;
2544    }
2545  }
2546  return ret;
2547}
2548
2549template <class ELFT>
2550void Writer<ELFT>::addPhdrForSection(Partition &part, unsigned shType,
2551                                     unsigned pType, unsigned pFlags) {
2552  unsigned partNo = part.getNumber();
2553  auto i = llvm::find_if(outputSections, [=](OutputSection *cmd) {
2554    return cmd->partition == partNo && cmd->type == shType;
2555  });
2556  if (i == outputSections.end())
2557    return;
2558
2559  PhdrEntry *entry = make<PhdrEntry>(pType, pFlags);
2560  entry->add(*i);
2561  part.phdrs.push_back(entry);
2562}
2563
2564// Place the first section of each PT_LOAD to a different page (of maxPageSize).
2565// This is achieved by assigning an alignment expression to addrExpr of each
2566// such section.
2567template <class ELFT> void Writer<ELFT>::fixSectionAlignments() {
2568  const PhdrEntry *prev;
2569  auto pageAlign = [&](const PhdrEntry *p) {
2570    OutputSection *cmd = p->firstSec;
2571    if (!cmd)
2572      return;
2573    cmd->alignExpr = [align = cmd->addralign]() { return align; };
2574    if (!cmd->addrExpr) {
2575      // Prefer advancing to align(dot, maxPageSize) + dot%maxPageSize to avoid
2576      // padding in the file contents.
2577      //
2578      // When -z separate-code is used we must not have any overlap in pages
2579      // between an executable segment and a non-executable segment. We align to
2580      // the next maximum page size boundary on transitions between executable
2581      // and non-executable segments.
2582      //
2583      // SHT_LLVM_PART_EHDR marks the start of a partition. The partition
2584      // sections will be extracted to a separate file. Align to the next
2585      // maximum page size boundary so that we can find the ELF header at the
2586      // start. We cannot benefit from overlapping p_offset ranges with the
2587      // previous segment anyway.
2588      if (config->zSeparate == SeparateSegmentKind::Loadable ||
2589          (config->zSeparate == SeparateSegmentKind::Code && prev &&
2590           (prev->p_flags & PF_X) != (p->p_flags & PF_X)) ||
2591          cmd->type == SHT_LLVM_PART_EHDR)
2592        cmd->addrExpr = [] {
2593          return alignToPowerOf2(script->getDot(), config->maxPageSize);
2594        };
2595      // PT_TLS is at the start of the first RW PT_LOAD. If `p` includes PT_TLS,
2596      // it must be the RW. Align to p_align(PT_TLS) to make sure
2597      // p_vaddr(PT_LOAD)%p_align(PT_LOAD) = 0. Otherwise, if
2598      // sh_addralign(.tdata) < sh_addralign(.tbss), we will set p_align(PT_TLS)
2599      // to sh_addralign(.tbss), while p_vaddr(PT_TLS)=p_vaddr(PT_LOAD) may not
2600      // be congruent to 0 modulo p_align(PT_TLS).
2601      //
2602      // Technically this is not required, but as of 2019, some dynamic loaders
2603      // don't handle p_vaddr%p_align != 0 correctly, e.g. glibc (i386 and
2604      // x86-64) doesn't make runtime address congruent to p_vaddr modulo
2605      // p_align for dynamic TLS blocks (PR/24606), FreeBSD rtld has the same
2606      // bug, musl (TLS Variant 1 architectures) before 1.1.23 handled TLS
2607      // blocks correctly. We need to keep the workaround for a while.
2608      else if (Out::tlsPhdr && Out::tlsPhdr->firstSec == p->firstSec)
2609        cmd->addrExpr = [] {
2610          return alignToPowerOf2(script->getDot(), config->maxPageSize) +
2611                 alignToPowerOf2(script->getDot() % config->maxPageSize,
2612                                 Out::tlsPhdr->p_align);
2613        };
2614      else
2615        cmd->addrExpr = [] {
2616          return alignToPowerOf2(script->getDot(), config->maxPageSize) +
2617                 script->getDot() % config->maxPageSize;
2618        };
2619    }
2620  };
2621
2622  for (Partition &part : partitions) {
2623    prev = nullptr;
2624    for (const PhdrEntry *p : part.phdrs)
2625      if (p->p_type == PT_LOAD && p->firstSec) {
2626        pageAlign(p);
2627        prev = p;
2628      }
2629  }
2630}
2631
2632// Compute an in-file position for a given section. The file offset must be the
2633// same with its virtual address modulo the page size, so that the loader can
2634// load executables without any address adjustment.
2635static uint64_t computeFileOffset(OutputSection *os, uint64_t off) {
2636  // The first section in a PT_LOAD has to have congruent offset and address
2637  // modulo the maximum page size.
2638  if (os->ptLoad && os->ptLoad->firstSec == os)
2639    return alignTo(off, os->ptLoad->p_align, os->addr);
2640
2641  // File offsets are not significant for .bss sections other than the first one
2642  // in a PT_LOAD/PT_TLS. By convention, we keep section offsets monotonically
2643  // increasing rather than setting to zero.
2644  if (os->type == SHT_NOBITS &&
2645      (!Out::tlsPhdr || Out::tlsPhdr->firstSec != os))
2646     return off;
2647
2648  // If the section is not in a PT_LOAD, we just have to align it.
2649  if (!os->ptLoad)
2650     return alignToPowerOf2(off, os->addralign);
2651
2652  // If two sections share the same PT_LOAD the file offset is calculated
2653  // using this formula: Off2 = Off1 + (VA2 - VA1).
2654  OutputSection *first = os->ptLoad->firstSec;
2655  return first->offset + os->addr - first->addr;
2656}
2657
2658template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() {
2659  // Compute the minimum LMA of all non-empty non-NOBITS sections as minAddr.
2660  auto needsOffset = [](OutputSection &sec) {
2661    return sec.type != SHT_NOBITS && (sec.flags & SHF_ALLOC) && sec.size > 0;
2662  };
2663  uint64_t minAddr = UINT64_MAX;
2664  for (OutputSection *sec : outputSections)
2665    if (needsOffset(*sec)) {
2666      sec->offset = sec->getLMA();
2667      minAddr = std::min(minAddr, sec->offset);
2668    }
2669
2670  // Sections are laid out at LMA minus minAddr.
2671  fileSize = 0;
2672  for (OutputSection *sec : outputSections)
2673    if (needsOffset(*sec)) {
2674      sec->offset -= minAddr;
2675      fileSize = std::max(fileSize, sec->offset + sec->size);
2676    }
2677}
2678
2679static std::string rangeToString(uint64_t addr, uint64_t len) {
2680  return "[0x" + utohexstr(addr) + ", 0x" + utohexstr(addr + len - 1) + "]";
2681}
2682
2683// Assign file offsets to output sections.
2684template <class ELFT> void Writer<ELFT>::assignFileOffsets() {
2685  Out::programHeaders->offset = Out::elfHeader->size;
2686  uint64_t off = Out::elfHeader->size + Out::programHeaders->size;
2687
2688  PhdrEntry *lastRX = nullptr;
2689  for (Partition &part : partitions)
2690    for (PhdrEntry *p : part.phdrs)
2691      if (p->p_type == PT_LOAD && (p->p_flags & PF_X))
2692        lastRX = p;
2693
2694  // Layout SHF_ALLOC sections before non-SHF_ALLOC sections. A non-SHF_ALLOC
2695  // will not occupy file offsets contained by a PT_LOAD.
2696  for (OutputSection *sec : outputSections) {
2697    if (!(sec->flags & SHF_ALLOC))
2698      continue;
2699    off = computeFileOffset(sec, off);
2700    sec->offset = off;
2701    if (sec->type != SHT_NOBITS)
2702      off += sec->size;
2703
2704    // If this is a last section of the last executable segment and that
2705    // segment is the last loadable segment, align the offset of the
2706    // following section to avoid loading non-segments parts of the file.
2707    if (config->zSeparate != SeparateSegmentKind::None && lastRX &&
2708        lastRX->lastSec == sec)
2709      off = alignToPowerOf2(off, config->maxPageSize);
2710  }
2711  for (OutputSection *osec : outputSections)
2712    if (!(osec->flags & SHF_ALLOC)) {
2713      osec->offset = alignToPowerOf2(off, osec->addralign);
2714      off = osec->offset + osec->size;
2715    }
2716
2717  sectionHeaderOff = alignToPowerOf2(off, config->wordsize);
2718  fileSize = sectionHeaderOff + (outputSections.size() + 1) * sizeof(Elf_Shdr);
2719
2720  // Our logic assumes that sections have rising VA within the same segment.
2721  // With use of linker scripts it is possible to violate this rule and get file
2722  // offset overlaps or overflows. That should never happen with a valid script
2723  // which does not move the location counter backwards and usually scripts do
2724  // not do that. Unfortunately, there are apps in the wild, for example, Linux
2725  // kernel, which control segment distribution explicitly and move the counter
2726  // backwards, so we have to allow doing that to support linking them. We
2727  // perform non-critical checks for overlaps in checkSectionOverlap(), but here
2728  // we want to prevent file size overflows because it would crash the linker.
2729  for (OutputSection *sec : outputSections) {
2730    if (sec->type == SHT_NOBITS)
2731      continue;
2732    if ((sec->offset > fileSize) || (sec->offset + sec->size > fileSize))
2733      error("unable to place section " + sec->name + " at file offset " +
2734            rangeToString(sec->offset, sec->size) +
2735            "; check your linker script for overflows");
2736  }
2737}
2738
2739// Finalize the program headers. We call this function after we assign
2740// file offsets and VAs to all sections.
2741template <class ELFT> void Writer<ELFT>::setPhdrs(Partition &part) {
2742  for (PhdrEntry *p : part.phdrs) {
2743    OutputSection *first = p->firstSec;
2744    OutputSection *last = p->lastSec;
2745
2746    // .ARM.exidx sections may not be within a single .ARM.exidx
2747    // output section. We always want to describe just the
2748    // SyntheticSection.
2749    if (part.armExidx && p->p_type == PT_ARM_EXIDX) {
2750      p->p_filesz = part.armExidx->getSize();
2751      p->p_memsz = part.armExidx->getSize();
2752      p->p_offset = first->offset + part.armExidx->outSecOff;
2753      p->p_vaddr = first->addr + part.armExidx->outSecOff;
2754      p->p_align = part.armExidx->addralign;
2755      if (part.elfHeader)
2756        p->p_offset -= part.elfHeader->getParent()->offset;
2757
2758      if (!p->hasLMA)
2759        p->p_paddr = first->getLMA() + part.armExidx->outSecOff;
2760      return;
2761    }
2762
2763    if (first) {
2764      p->p_filesz = last->offset - first->offset;
2765      if (last->type != SHT_NOBITS)
2766        p->p_filesz += last->size;
2767
2768      p->p_memsz = last->addr + last->size - first->addr;
2769      p->p_offset = first->offset;
2770      p->p_vaddr = first->addr;
2771
2772      // File offsets in partitions other than the main partition are relative
2773      // to the offset of the ELF headers. Perform that adjustment now.
2774      if (part.elfHeader)
2775        p->p_offset -= part.elfHeader->getParent()->offset;
2776
2777      if (!p->hasLMA)
2778        p->p_paddr = first->getLMA();
2779    }
2780  }
2781}
2782
2783// A helper struct for checkSectionOverlap.
2784namespace {
2785struct SectionOffset {
2786  OutputSection *sec;
2787  uint64_t offset;
2788};
2789} // namespace
2790
2791// Check whether sections overlap for a specific address range (file offsets,
2792// load and virtual addresses).
2793static void checkOverlap(StringRef name, std::vector<SectionOffset> &sections,
2794                         bool isVirtualAddr) {
2795  llvm::sort(sections, [=](const SectionOffset &a, const SectionOffset &b) {
2796    return a.offset < b.offset;
2797  });
2798
2799  // Finding overlap is easy given a vector is sorted by start position.
2800  // If an element starts before the end of the previous element, they overlap.
2801  for (size_t i = 1, end = sections.size(); i < end; ++i) {
2802    SectionOffset a = sections[i - 1];
2803    SectionOffset b = sections[i];
2804    if (b.offset >= a.offset + a.sec->size)
2805      continue;
2806
2807    // If both sections are in OVERLAY we allow the overlapping of virtual
2808    // addresses, because it is what OVERLAY was designed for.
2809    if (isVirtualAddr && a.sec->inOverlay && b.sec->inOverlay)
2810      continue;
2811
2812    errorOrWarn("section " + a.sec->name + " " + name +
2813                " range overlaps with " + b.sec->name + "\n>>> " + a.sec->name +
2814                " range is " + rangeToString(a.offset, a.sec->size) + "\n>>> " +
2815                b.sec->name + " range is " +
2816                rangeToString(b.offset, b.sec->size));
2817  }
2818}
2819
2820// Check for overlapping sections and address overflows.
2821//
2822// In this function we check that none of the output sections have overlapping
2823// file offsets. For SHF_ALLOC sections we also check that the load address
2824// ranges and the virtual address ranges don't overlap
2825template <class ELFT> void Writer<ELFT>::checkSections() {
2826  // First, check that section's VAs fit in available address space for target.
2827  for (OutputSection *os : outputSections)
2828    if ((os->addr + os->size < os->addr) ||
2829        (!ELFT::Is64Bits && os->addr + os->size > uint64_t(UINT32_MAX) + 1))
2830      errorOrWarn("section " + os->name + " at 0x" + utohexstr(os->addr) +
2831                  " of size 0x" + utohexstr(os->size) +
2832                  " exceeds available address space");
2833
2834  // Check for overlapping file offsets. In this case we need to skip any
2835  // section marked as SHT_NOBITS. These sections don't actually occupy space in
2836  // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat
2837  // binary is specified only add SHF_ALLOC sections are added to the output
2838  // file so we skip any non-allocated sections in that case.
2839  std::vector<SectionOffset> fileOffs;
2840  for (OutputSection *sec : outputSections)
2841    if (sec->size > 0 && sec->type != SHT_NOBITS &&
2842        (!config->oFormatBinary || (sec->flags & SHF_ALLOC)))
2843      fileOffs.push_back({sec, sec->offset});
2844  checkOverlap("file", fileOffs, false);
2845
2846  // When linking with -r there is no need to check for overlapping virtual/load
2847  // addresses since those addresses will only be assigned when the final
2848  // executable/shared object is created.
2849  if (config->relocatable)
2850    return;
2851
2852  // Checking for overlapping virtual and load addresses only needs to take
2853  // into account SHF_ALLOC sections since others will not be loaded.
2854  // Furthermore, we also need to skip SHF_TLS sections since these will be
2855  // mapped to other addresses at runtime and can therefore have overlapping
2856  // ranges in the file.
2857  std::vector<SectionOffset> vmas;
2858  for (OutputSection *sec : outputSections)
2859    if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS))
2860      vmas.push_back({sec, sec->addr});
2861  checkOverlap("virtual address", vmas, true);
2862
2863  // Finally, check that the load addresses don't overlap. This will usually be
2864  // the same as the virtual addresses but can be different when using a linker
2865  // script with AT().
2866  std::vector<SectionOffset> lmas;
2867  for (OutputSection *sec : outputSections)
2868    if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS))
2869      lmas.push_back({sec, sec->getLMA()});
2870  checkOverlap("load address", lmas, false);
2871}
2872
2873// The entry point address is chosen in the following ways.
2874//
2875// 1. the '-e' entry command-line option;
2876// 2. the ENTRY(symbol) command in a linker control script;
2877// 3. the value of the symbol _start, if present;
2878// 4. the number represented by the entry symbol, if it is a number;
2879// 5. the address 0.
2880static uint64_t getEntryAddr() {
2881  // Case 1, 2 or 3
2882  if (Symbol *b = symtab.find(config->entry))
2883    return b->getVA();
2884
2885  // Case 4
2886  uint64_t addr;
2887  if (to_integer(config->entry, addr))
2888    return addr;
2889
2890  // Case 5
2891  if (config->warnMissingEntry)
2892    warn("cannot find entry symbol " + config->entry +
2893         "; not setting start address");
2894  return 0;
2895}
2896
2897static uint16_t getELFType() {
2898  if (config->isPic)
2899    return ET_DYN;
2900  if (config->relocatable)
2901    return ET_REL;
2902  return ET_EXEC;
2903}
2904
2905template <class ELFT> void Writer<ELFT>::writeHeader() {
2906  writeEhdr<ELFT>(Out::bufferStart, *mainPart);
2907  writePhdrs<ELFT>(Out::bufferStart + sizeof(Elf_Ehdr), *mainPart);
2908
2909  auto *eHdr = reinterpret_cast<Elf_Ehdr *>(Out::bufferStart);
2910  eHdr->e_type = getELFType();
2911  eHdr->e_entry = getEntryAddr();
2912  eHdr->e_shoff = sectionHeaderOff;
2913
2914  // Write the section header table.
2915  //
2916  // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum
2917  // and e_shstrndx fields. When the value of one of these fields exceeds
2918  // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and
2919  // use fields in the section header at index 0 to store
2920  // the value. The sentinel values and fields are:
2921  // e_shnum = 0, SHdrs[0].sh_size = number of sections.
2922  // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index.
2923  auto *sHdrs = reinterpret_cast<Elf_Shdr *>(Out::bufferStart + eHdr->e_shoff);
2924  size_t num = outputSections.size() + 1;
2925  if (num >= SHN_LORESERVE)
2926    sHdrs->sh_size = num;
2927  else
2928    eHdr->e_shnum = num;
2929
2930  uint32_t strTabIndex = in.shStrTab->getParent()->sectionIndex;
2931  if (strTabIndex >= SHN_LORESERVE) {
2932    sHdrs->sh_link = strTabIndex;
2933    eHdr->e_shstrndx = SHN_XINDEX;
2934  } else {
2935    eHdr->e_shstrndx = strTabIndex;
2936  }
2937
2938  for (OutputSection *sec : outputSections)
2939    sec->writeHeaderTo<ELFT>(++sHdrs);
2940}
2941
2942// Open a result file.
2943template <class ELFT> void Writer<ELFT>::openFile() {
2944  uint64_t maxSize = config->is64 ? INT64_MAX : UINT32_MAX;
2945  if (fileSize != size_t(fileSize) || maxSize < fileSize) {
2946    std::string msg;
2947    raw_string_ostream s(msg);
2948    s << "output file too large: " << Twine(fileSize) << " bytes\n"
2949      << "section sizes:\n";
2950    for (OutputSection *os : outputSections)
2951      s << os->name << ' ' << os->size << "\n";
2952    error(s.str());
2953    return;
2954  }
2955
2956  unlinkAsync(config->outputFile);
2957  unsigned flags = 0;
2958  if (!config->relocatable)
2959    flags |= FileOutputBuffer::F_executable;
2960  if (!config->mmapOutputFile)
2961    flags |= FileOutputBuffer::F_no_mmap;
2962  Expected<std::unique_ptr<FileOutputBuffer>> bufferOrErr =
2963      FileOutputBuffer::create(config->outputFile, fileSize, flags);
2964
2965  if (!bufferOrErr) {
2966    error("failed to open " + config->outputFile + ": " +
2967          llvm::toString(bufferOrErr.takeError()));
2968    return;
2969  }
2970  buffer = std::move(*bufferOrErr);
2971  Out::bufferStart = buffer->getBufferStart();
2972}
2973
2974template <class ELFT> void Writer<ELFT>::writeSectionsBinary() {
2975  parallel::TaskGroup tg;
2976  for (OutputSection *sec : outputSections)
2977    if (sec->flags & SHF_ALLOC)
2978      sec->writeTo<ELFT>(Out::bufferStart + sec->offset, tg);
2979}
2980
2981static void fillTrap(uint8_t *i, uint8_t *end) {
2982  for (; i + 4 <= end; i += 4)
2983    memcpy(i, &target->trapInstr, 4);
2984}
2985
2986// Fill the last page of executable segments with trap instructions
2987// instead of leaving them as zero. Even though it is not required by any
2988// standard, it is in general a good thing to do for security reasons.
2989//
2990// We'll leave other pages in segments as-is because the rest will be
2991// overwritten by output sections.
2992template <class ELFT> void Writer<ELFT>::writeTrapInstr() {
2993  for (Partition &part : partitions) {
2994    // Fill the last page.
2995    for (PhdrEntry *p : part.phdrs)
2996      if (p->p_type == PT_LOAD && (p->p_flags & PF_X))
2997        fillTrap(Out::bufferStart +
2998                     alignDown(p->firstSec->offset + p->p_filesz, 4),
2999                 Out::bufferStart +
3000                     alignToPowerOf2(p->firstSec->offset + p->p_filesz,
3001                                     config->maxPageSize));
3002
3003    // Round up the file size of the last segment to the page boundary iff it is
3004    // an executable segment to ensure that other tools don't accidentally
3005    // trim the instruction padding (e.g. when stripping the file).
3006    PhdrEntry *last = nullptr;
3007    for (PhdrEntry *p : part.phdrs)
3008      if (p->p_type == PT_LOAD)
3009        last = p;
3010
3011    if (last && (last->p_flags & PF_X))
3012      last->p_memsz = last->p_filesz =
3013          alignToPowerOf2(last->p_filesz, config->maxPageSize);
3014  }
3015}
3016
3017// Write section contents to a mmap'ed file.
3018template <class ELFT> void Writer<ELFT>::writeSections() {
3019  llvm::TimeTraceScope timeScope("Write sections");
3020
3021  {
3022    // In -r or --emit-relocs mode, write the relocation sections first as in
3023    // ELf_Rel targets we might find out that we need to modify the relocated
3024    // section while doing it.
3025    parallel::TaskGroup tg;
3026    for (OutputSection *sec : outputSections)
3027      if (sec->type == SHT_REL || sec->type == SHT_RELA)
3028        sec->writeTo<ELFT>(Out::bufferStart + sec->offset, tg);
3029  }
3030  {
3031    parallel::TaskGroup tg;
3032    for (OutputSection *sec : outputSections)
3033      if (sec->type != SHT_REL && sec->type != SHT_RELA)
3034        sec->writeTo<ELFT>(Out::bufferStart + sec->offset, tg);
3035  }
3036
3037  // Finally, check that all dynamic relocation addends were written correctly.
3038  if (config->checkDynamicRelocs && config->writeAddends) {
3039    for (OutputSection *sec : outputSections)
3040      if (sec->type == SHT_REL || sec->type == SHT_RELA)
3041        sec->checkDynRelAddends(Out::bufferStart);
3042  }
3043}
3044
3045// Computes a hash value of Data using a given hash function.
3046// In order to utilize multiple cores, we first split data into 1MB
3047// chunks, compute a hash for each chunk, and then compute a hash value
3048// of the hash values.
3049static void
3050computeHash(llvm::MutableArrayRef<uint8_t> hashBuf,
3051            llvm::ArrayRef<uint8_t> data,
3052            std::function<void(uint8_t *dest, ArrayRef<uint8_t> arr)> hashFn) {
3053  std::vector<ArrayRef<uint8_t>> chunks = split(data, 1024 * 1024);
3054  const size_t hashesSize = chunks.size() * hashBuf.size();
3055  std::unique_ptr<uint8_t[]> hashes(new uint8_t[hashesSize]);
3056
3057  // Compute hash values.
3058  parallelFor(0, chunks.size(), [&](size_t i) {
3059    hashFn(hashes.get() + i * hashBuf.size(), chunks[i]);
3060  });
3061
3062  // Write to the final output buffer.
3063  hashFn(hashBuf.data(), ArrayRef(hashes.get(), hashesSize));
3064}
3065
3066template <class ELFT> void Writer<ELFT>::writeBuildId() {
3067  if (!mainPart->buildId || !mainPart->buildId->getParent())
3068    return;
3069
3070  if (config->buildId == BuildIdKind::Hexstring) {
3071    for (Partition &part : partitions)
3072      part.buildId->writeBuildId(config->buildIdVector);
3073    return;
3074  }
3075
3076  // Compute a hash of all sections of the output file.
3077  size_t hashSize = mainPart->buildId->hashSize;
3078  std::unique_ptr<uint8_t[]> buildId(new uint8_t[hashSize]);
3079  MutableArrayRef<uint8_t> output(buildId.get(), hashSize);
3080  llvm::ArrayRef<uint8_t> input{Out::bufferStart, size_t(fileSize)};
3081
3082  // Fedora introduced build ID as "approximation of true uniqueness across all
3083  // binaries that might be used by overlapping sets of people". It does not
3084  // need some security goals that some hash algorithms strive to provide, e.g.
3085  // (second-)preimage and collision resistance. In practice people use 'md5'
3086  // and 'sha1' just for different lengths. Implement them with the more
3087  // efficient BLAKE3.
3088  switch (config->buildId) {
3089  case BuildIdKind::Fast:
3090    computeHash(output, input, [](uint8_t *dest, ArrayRef<uint8_t> arr) {
3091      write64le(dest, xxh3_64bits(arr));
3092    });
3093    break;
3094  case BuildIdKind::Md5:
3095    computeHash(output, input, [&](uint8_t *dest, ArrayRef<uint8_t> arr) {
3096      memcpy(dest, BLAKE3::hash<16>(arr).data(), hashSize);
3097    });
3098    break;
3099  case BuildIdKind::Sha1:
3100    computeHash(output, input, [&](uint8_t *dest, ArrayRef<uint8_t> arr) {
3101      memcpy(dest, BLAKE3::hash<20>(arr).data(), hashSize);
3102    });
3103    break;
3104  case BuildIdKind::Uuid:
3105    if (auto ec = llvm::getRandomBytes(buildId.get(), hashSize))
3106      error("entropy source failure: " + ec.message());
3107    break;
3108  default:
3109    llvm_unreachable("unknown BuildIdKind");
3110  }
3111  for (Partition &part : partitions)
3112    part.buildId->writeBuildId(output);
3113}
3114
3115template void elf::createSyntheticSections<ELF32LE>();
3116template void elf::createSyntheticSections<ELF32BE>();
3117template void elf::createSyntheticSections<ELF64LE>();
3118template void elf::createSyntheticSections<ELF64BE>();
3119
3120template void elf::writeResult<ELF32LE>();
3121template void elf::writeResult<ELF32BE>();
3122template void elf::writeResult<ELF64LE>();
3123template void elf::writeResult<ELF64BE>();
3124