1//===- Symbols.cpp --------------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "Symbols.h"
10#include "Driver.h"
11#include "InputFiles.h"
12#include "InputSection.h"
13#include "OutputSections.h"
14#include "SyntheticSections.h"
15#include "Target.h"
16#include "Writer.h"
17#include "lld/Common/ErrorHandler.h"
18#include "llvm/Demangle/Demangle.h"
19#include "llvm/Support/Compiler.h"
20#include <cstring>
21
22using namespace llvm;
23using namespace llvm::object;
24using namespace llvm::ELF;
25using namespace lld;
26using namespace lld::elf;
27
28static_assert(sizeof(SymbolUnion) <= 64, "SymbolUnion too large");
29
30template <typename T> struct AssertSymbol {
31  static_assert(std::is_trivially_destructible<T>(),
32                "Symbol types must be trivially destructible");
33  static_assert(sizeof(T) <= sizeof(SymbolUnion), "SymbolUnion too small");
34  static_assert(alignof(T) <= alignof(SymbolUnion),
35                "SymbolUnion not aligned enough");
36};
37
38LLVM_ATTRIBUTE_UNUSED static inline void assertSymbols() {
39  AssertSymbol<Defined>();
40  AssertSymbol<CommonSymbol>();
41  AssertSymbol<Undefined>();
42  AssertSymbol<SharedSymbol>();
43  AssertSymbol<LazySymbol>();
44}
45
46// Returns a symbol for an error message.
47static std::string maybeDemangleSymbol(StringRef symName) {
48  return elf::config->demangle ? demangle(symName.str()) : symName.str();
49}
50
51std::string lld::toString(const elf::Symbol &sym) {
52  StringRef name = sym.getName();
53  std::string ret = maybeDemangleSymbol(name);
54
55  const char *suffix = sym.getVersionSuffix();
56  if (*suffix == '@')
57    ret += suffix;
58  return ret;
59}
60
61Defined *ElfSym::bss;
62Defined *ElfSym::etext1;
63Defined *ElfSym::etext2;
64Defined *ElfSym::edata1;
65Defined *ElfSym::edata2;
66Defined *ElfSym::end1;
67Defined *ElfSym::end2;
68Defined *ElfSym::globalOffsetTable;
69Defined *ElfSym::mipsGp;
70Defined *ElfSym::mipsGpDisp;
71Defined *ElfSym::mipsLocalGp;
72Defined *ElfSym::riscvGlobalPointer;
73Defined *ElfSym::relaIpltStart;
74Defined *ElfSym::relaIpltEnd;
75Defined *ElfSym::tlsModuleBase;
76SmallVector<SymbolAux, 0> elf::symAux;
77
78static uint64_t getSymVA(const Symbol &sym, int64_t addend) {
79  switch (sym.kind()) {
80  case Symbol::DefinedKind: {
81    auto &d = cast<Defined>(sym);
82    SectionBase *isec = d.section;
83
84    // This is an absolute symbol.
85    if (!isec)
86      return d.value;
87
88    assert(isec != &InputSection::discarded);
89
90    uint64_t offset = d.value;
91
92    // An object in an SHF_MERGE section might be referenced via a
93    // section symbol (as a hack for reducing the number of local
94    // symbols).
95    // Depending on the addend, the reference via a section symbol
96    // refers to a different object in the merge section.
97    // Since the objects in the merge section are not necessarily
98    // contiguous in the output, the addend can thus affect the final
99    // VA in a non-linear way.
100    // To make this work, we incorporate the addend into the section
101    // offset (and zero out the addend for later processing) so that
102    // we find the right object in the section.
103    if (d.isSection())
104      offset += addend;
105
106    // In the typical case, this is actually very simple and boils
107    // down to adding together 3 numbers:
108    // 1. The address of the output section.
109    // 2. The offset of the input section within the output section.
110    // 3. The offset within the input section (this addition happens
111    //    inside InputSection::getOffset).
112    //
113    // If you understand the data structures involved with this next
114    // line (and how they get built), then you have a pretty good
115    // understanding of the linker.
116    uint64_t va = isec->getVA(offset);
117    if (d.isSection())
118      va -= addend;
119
120    // MIPS relocatable files can mix regular and microMIPS code.
121    // Linker needs to distinguish such code. To do so microMIPS
122    // symbols has the `STO_MIPS_MICROMIPS` flag in the `st_other`
123    // field. Unfortunately, the `MIPS::relocate()` method has
124    // a symbol value only. To pass type of the symbol (regular/microMIPS)
125    // to that routine as well as other places where we write
126    // a symbol value as-is (.dynamic section, `Elf_Ehdr::e_entry`
127    // field etc) do the same trick as compiler uses to mark microMIPS
128    // for CPU - set the less-significant bit.
129    if (config->emachine == EM_MIPS && isMicroMips() &&
130        ((sym.stOther & STO_MIPS_MICROMIPS) || sym.hasFlag(NEEDS_COPY)))
131      va |= 1;
132
133    if (d.isTls() && !config->relocatable) {
134      // Use the address of the TLS segment's first section rather than the
135      // segment's address, because segment addresses aren't initialized until
136      // after sections are finalized. (e.g. Measuring the size of .rela.dyn
137      // for Android relocation packing requires knowing TLS symbol addresses
138      // during section finalization.)
139      if (!Out::tlsPhdr || !Out::tlsPhdr->firstSec)
140        fatal(toString(d.file) +
141              " has an STT_TLS symbol but doesn't have an SHF_TLS section");
142      return va - Out::tlsPhdr->firstSec->addr;
143    }
144    return va;
145  }
146  case Symbol::SharedKind:
147  case Symbol::UndefinedKind:
148    return 0;
149  case Symbol::LazyKind:
150    llvm_unreachable("lazy symbol reached writer");
151  case Symbol::CommonKind:
152    llvm_unreachable("common symbol reached writer");
153  case Symbol::PlaceholderKind:
154    llvm_unreachable("placeholder symbol reached writer");
155  }
156  llvm_unreachable("invalid symbol kind");
157}
158
159uint64_t Symbol::getVA(int64_t addend) const {
160  return getSymVA(*this, addend) + addend;
161}
162
163uint64_t Symbol::getGotVA() const {
164  if (gotInIgot)
165    return in.igotPlt->getVA() + getGotPltOffset();
166  return in.got->getVA() + getGotOffset();
167}
168
169uint64_t Symbol::getGotOffset() const {
170  return getGotIdx() * target->gotEntrySize;
171}
172
173uint64_t Symbol::getGotPltVA() const {
174  if (isInIplt)
175    return in.igotPlt->getVA() + getGotPltOffset();
176  return in.gotPlt->getVA() + getGotPltOffset();
177}
178
179uint64_t Symbol::getGotPltOffset() const {
180  if (isInIplt)
181    return getPltIdx() * target->gotEntrySize;
182  return (getPltIdx() + target->gotPltHeaderEntriesNum) * target->gotEntrySize;
183}
184
185uint64_t Symbol::getPltVA() const {
186  uint64_t outVA = isInIplt
187                       ? in.iplt->getVA() + getPltIdx() * target->ipltEntrySize
188                       : in.plt->getVA() + in.plt->headerSize +
189                             getPltIdx() * target->pltEntrySize;
190
191  // While linking microMIPS code PLT code are always microMIPS
192  // code. Set the less-significant bit to track that fact.
193  // See detailed comment in the `getSymVA` function.
194  if (config->emachine == EM_MIPS && isMicroMips())
195    outVA |= 1;
196  return outVA;
197}
198
199uint64_t Symbol::getSize() const {
200  if (const auto *dr = dyn_cast<Defined>(this))
201    return dr->size;
202  return cast<SharedSymbol>(this)->size;
203}
204
205OutputSection *Symbol::getOutputSection() const {
206  if (auto *s = dyn_cast<Defined>(this)) {
207    if (auto *sec = s->section)
208      return sec->getOutputSection();
209    return nullptr;
210  }
211  return nullptr;
212}
213
214// If a symbol name contains '@', the characters after that is
215// a symbol version name. This function parses that.
216void Symbol::parseSymbolVersion() {
217  // Return if localized by a local: pattern in a version script.
218  if (versionId == VER_NDX_LOCAL)
219    return;
220  StringRef s = getName();
221  size_t pos = s.find('@');
222  if (pos == StringRef::npos)
223    return;
224  StringRef verstr = s.substr(pos + 1);
225
226  // Truncate the symbol name so that it doesn't include the version string.
227  nameSize = pos;
228
229  if (verstr.empty())
230    return;
231
232  // If this is not in this DSO, it is not a definition.
233  if (!isDefined())
234    return;
235
236  // '@@' in a symbol name means the default version.
237  // It is usually the most recent one.
238  bool isDefault = (verstr[0] == '@');
239  if (isDefault)
240    verstr = verstr.substr(1);
241
242  for (const VersionDefinition &ver : namedVersionDefs()) {
243    if (ver.name != verstr)
244      continue;
245
246    if (isDefault)
247      versionId = ver.id;
248    else
249      versionId = ver.id | VERSYM_HIDDEN;
250    return;
251  }
252
253  // It is an error if the specified version is not defined.
254  // Usually version script is not provided when linking executable,
255  // but we may still want to override a versioned symbol from DSO,
256  // so we do not report error in this case. We also do not error
257  // if the symbol has a local version as it won't be in the dynamic
258  // symbol table.
259  if (config->shared && versionId != VER_NDX_LOCAL)
260    error(toString(file) + ": symbol " + s + " has undefined version " +
261          verstr);
262}
263
264void Symbol::extract() const {
265  if (file->lazy) {
266    file->lazy = false;
267    parseFile(file);
268  }
269}
270
271uint8_t Symbol::computeBinding() const {
272  auto v = visibility();
273  if ((v != STV_DEFAULT && v != STV_PROTECTED) || versionId == VER_NDX_LOCAL)
274    return STB_LOCAL;
275  if (binding == STB_GNU_UNIQUE && !config->gnuUnique)
276    return STB_GLOBAL;
277  return binding;
278}
279
280bool Symbol::includeInDynsym() const {
281  if (computeBinding() == STB_LOCAL)
282    return false;
283  if (!isDefined() && !isCommon())
284    // This should unconditionally return true, unfortunately glibc -static-pie
285    // expects undefined weak symbols not to exist in .dynsym, e.g.
286    // __pthread_mutex_lock reference in _dl_add_to_namespace_list,
287    // __pthread_initialize_minimal reference in csu/libc-start.c.
288    return !(isUndefWeak() && config->noDynamicLinker);
289
290  return exportDynamic || inDynamicList;
291}
292
293// Print out a log message for --trace-symbol.
294void elf::printTraceSymbol(const Symbol &sym, StringRef name) {
295  std::string s;
296  if (sym.isUndefined())
297    s = ": reference to ";
298  else if (sym.isLazy())
299    s = ": lazy definition of ";
300  else if (sym.isShared())
301    s = ": shared definition of ";
302  else if (sym.isCommon())
303    s = ": common definition of ";
304  else
305    s = ": definition of ";
306
307  message(toString(sym.file) + s + name);
308}
309
310static void recordWhyExtract(const InputFile *reference,
311                             const InputFile &extracted, const Symbol &sym) {
312  ctx.whyExtractRecords.emplace_back(toString(reference), &extracted, sym);
313}
314
315void elf::maybeWarnUnorderableSymbol(const Symbol *sym) {
316  if (!config->warnSymbolOrdering)
317    return;
318
319  // If UnresolvedPolicy::Ignore is used, no "undefined symbol" error/warning is
320  // emitted. It makes sense to not warn on undefined symbols (excluding those
321  // demoted by demoteSymbols).
322  //
323  // Note, ld.bfd --symbol-ordering-file= does not warn on undefined symbols,
324  // but we don't have to be compatible here.
325  if (sym->isUndefined() && !cast<Undefined>(sym)->discardedSecIdx &&
326      config->unresolvedSymbols == UnresolvedPolicy::Ignore)
327    return;
328
329  const InputFile *file = sym->file;
330  auto *d = dyn_cast<Defined>(sym);
331
332  auto report = [&](StringRef s) { warn(toString(file) + s + sym->getName()); };
333
334  if (sym->isUndefined()) {
335    if (cast<Undefined>(sym)->discardedSecIdx)
336      report(": unable to order discarded symbol: ");
337    else
338      report(": unable to order undefined symbol: ");
339  } else if (sym->isShared())
340    report(": unable to order shared symbol: ");
341  else if (d && !d->section)
342    report(": unable to order absolute symbol: ");
343  else if (d && isa<OutputSection>(d->section))
344    report(": unable to order synthetic symbol: ");
345  else if (d && !d->section->isLive())
346    report(": unable to order discarded symbol: ");
347}
348
349// Returns true if a symbol can be replaced at load-time by a symbol
350// with the same name defined in other ELF executable or DSO.
351bool elf::computeIsPreemptible(const Symbol &sym) {
352  assert(!sym.isLocal() || sym.isPlaceholder());
353
354  // Only symbols with default visibility that appear in dynsym can be
355  // preempted. Symbols with protected visibility cannot be preempted.
356  if (!sym.includeInDynsym() || sym.visibility() != STV_DEFAULT)
357    return false;
358
359  // At this point copy relocations have not been created yet, so any
360  // symbol that is not defined locally is preemptible.
361  if (!sym.isDefined())
362    return true;
363
364  if (!config->shared)
365    return false;
366
367  // If -Bsymbolic or --dynamic-list is specified, or -Bsymbolic-functions is
368  // specified and the symbol is STT_FUNC, the symbol is preemptible iff it is
369  // in the dynamic list. -Bsymbolic-non-weak-functions is a non-weak subset of
370  // -Bsymbolic-functions.
371  if (config->symbolic ||
372      (config->bsymbolic == BsymbolicKind::NonWeak &&
373       sym.binding != STB_WEAK) ||
374      (config->bsymbolic == BsymbolicKind::Functions && sym.isFunc()) ||
375      (config->bsymbolic == BsymbolicKind::NonWeakFunctions && sym.isFunc() &&
376       sym.binding != STB_WEAK))
377    return sym.inDynamicList;
378  return true;
379}
380
381// Merge symbol properties.
382//
383// When we have many symbols of the same name, we choose one of them,
384// and that's the result of symbol resolution. However, symbols that
385// were not chosen still affect some symbol properties.
386void Symbol::mergeProperties(const Symbol &other) {
387  if (other.exportDynamic)
388    exportDynamic = true;
389
390  // DSO symbols do not affect visibility in the output.
391  if (!other.isShared() && other.visibility() != STV_DEFAULT) {
392    uint8_t v = visibility(), ov = other.visibility();
393    setVisibility(v == STV_DEFAULT ? ov : std::min(v, ov));
394  }
395}
396
397void Symbol::resolve(const Undefined &other) {
398  if (other.visibility() != STV_DEFAULT) {
399    uint8_t v = visibility(), ov = other.visibility();
400    setVisibility(v == STV_DEFAULT ? ov : std::min(v, ov));
401  }
402  // An undefined symbol with non default visibility must be satisfied
403  // in the same DSO.
404  //
405  // If this is a non-weak defined symbol in a discarded section, override the
406  // existing undefined symbol for better error message later.
407  if (isPlaceholder() || (isShared() && other.visibility() != STV_DEFAULT) ||
408      (isUndefined() && other.binding != STB_WEAK && other.discardedSecIdx)) {
409    other.overwrite(*this);
410    return;
411  }
412
413  if (traced)
414    printTraceSymbol(other, getName());
415
416  if (isLazy()) {
417    // An undefined weak will not extract archive members. See comment on Lazy
418    // in Symbols.h for the details.
419    if (other.binding == STB_WEAK) {
420      binding = STB_WEAK;
421      type = other.type;
422      return;
423    }
424
425    // Do extra check for --warn-backrefs.
426    //
427    // --warn-backrefs is an option to prevent an undefined reference from
428    // extracting an archive member written earlier in the command line. It can
429    // be used to keep compatibility with GNU linkers to some degree. I'll
430    // explain the feature and why you may find it useful in this comment.
431    //
432    // lld's symbol resolution semantics is more relaxed than traditional Unix
433    // linkers. For example,
434    //
435    //   ld.lld foo.a bar.o
436    //
437    // succeeds even if bar.o contains an undefined symbol that has to be
438    // resolved by some object file in foo.a. Traditional Unix linkers don't
439    // allow this kind of backward reference, as they visit each file only once
440    // from left to right in the command line while resolving all undefined
441    // symbols at the moment of visiting.
442    //
443    // In the above case, since there's no undefined symbol when a linker visits
444    // foo.a, no files are pulled out from foo.a, and because the linker forgets
445    // about foo.a after visiting, it can't resolve undefined symbols in bar.o
446    // that could have been resolved otherwise.
447    //
448    // That lld accepts more relaxed form means that (besides it'd make more
449    // sense) you can accidentally write a command line or a build file that
450    // works only with lld, even if you have a plan to distribute it to wider
451    // users who may be using GNU linkers. With --warn-backrefs, you can detect
452    // a library order that doesn't work with other Unix linkers.
453    //
454    // The option is also useful to detect cyclic dependencies between static
455    // archives. Again, lld accepts
456    //
457    //   ld.lld foo.a bar.a
458    //
459    // even if foo.a and bar.a depend on each other. With --warn-backrefs, it is
460    // handled as an error.
461    //
462    // Here is how the option works. We assign a group ID to each file. A file
463    // with a smaller group ID can pull out object files from an archive file
464    // with an equal or greater group ID. Otherwise, it is a reverse dependency
465    // and an error.
466    //
467    // A file outside --{start,end}-group gets a fresh ID when instantiated. All
468    // files within the same --{start,end}-group get the same group ID. E.g.
469    //
470    //   ld.lld A B --start-group C D --end-group E
471    //
472    // A forms group 0. B form group 1. C and D (including their member object
473    // files) form group 2. E forms group 3. I think that you can see how this
474    // group assignment rule simulates the traditional linker's semantics.
475    bool backref = config->warnBackrefs && other.file &&
476                   file->groupId < other.file->groupId;
477    extract();
478
479    if (!config->whyExtract.empty())
480      recordWhyExtract(other.file, *file, *this);
481
482    // We don't report backward references to weak symbols as they can be
483    // overridden later.
484    //
485    // A traditional linker does not error for -ldef1 -lref -ldef2 (linking
486    // sandwich), where def2 may or may not be the same as def1. We don't want
487    // to warn for this case, so dismiss the warning if we see a subsequent lazy
488    // definition. this->file needs to be saved because in the case of LTO it
489    // may be reset to nullptr or be replaced with a file named lto.tmp.
490    if (backref && !isWeak())
491      ctx.backwardReferences.try_emplace(this,
492                                         std::make_pair(other.file, file));
493    return;
494  }
495
496  // Undefined symbols in a SharedFile do not change the binding.
497  if (isa_and_nonnull<SharedFile>(other.file))
498    return;
499
500  if (isUndefined() || isShared()) {
501    // The binding will be weak if there is at least one reference and all are
502    // weak. The binding has one opportunity to change to weak: if the first
503    // reference is weak.
504    if (other.binding != STB_WEAK || !referenced)
505      binding = other.binding;
506  }
507}
508
509// Compare two symbols. Return true if the new symbol should win.
510bool Symbol::shouldReplace(const Defined &other) const {
511  if (LLVM_UNLIKELY(isCommon())) {
512    if (config->warnCommon)
513      warn("common " + getName() + " is overridden");
514    return !other.isWeak();
515  }
516  if (!isDefined())
517    return true;
518
519  // Incoming STB_GLOBAL overrides STB_WEAK/STB_GNU_UNIQUE. -fgnu-unique changes
520  // some vague linkage data in COMDAT from STB_WEAK to STB_GNU_UNIQUE. Treat
521  // STB_GNU_UNIQUE like STB_WEAK so that we prefer the first among all
522  // STB_WEAK/STB_GNU_UNIQUE copies. If we prefer an incoming STB_GNU_UNIQUE to
523  // an existing STB_WEAK, there may be discarded section errors because the
524  // selected copy may be in a non-prevailing COMDAT.
525  return !isGlobal() && other.isGlobal();
526}
527
528void elf::reportDuplicate(const Symbol &sym, const InputFile *newFile,
529                          InputSectionBase *errSec, uint64_t errOffset) {
530  if (config->allowMultipleDefinition)
531    return;
532  // In glibc<2.32, crti.o has .gnu.linkonce.t.__x86.get_pc_thunk.bx, which
533  // is sort of proto-comdat. There is actually no duplicate if we have
534  // full support for .gnu.linkonce.
535  const Defined *d = dyn_cast<Defined>(&sym);
536  if (!d || d->getName() == "__x86.get_pc_thunk.bx")
537    return;
538  // Allow absolute symbols with the same value for GNU ld compatibility.
539  if (!d->section && !errSec && errOffset && d->value == errOffset)
540    return;
541  if (!d->section || !errSec) {
542    error("duplicate symbol: " + toString(sym) + "\n>>> defined in " +
543          toString(sym.file) + "\n>>> defined in " + toString(newFile));
544    return;
545  }
546
547  // Construct and print an error message in the form of:
548  //
549  //   ld.lld: error: duplicate symbol: foo
550  //   >>> defined at bar.c:30
551  //   >>>            bar.o (/home/alice/src/bar.o)
552  //   >>> defined at baz.c:563
553  //   >>>            baz.o in archive libbaz.a
554  auto *sec1 = cast<InputSectionBase>(d->section);
555  std::string src1 = sec1->getSrcMsg(sym, d->value);
556  std::string obj1 = sec1->getObjMsg(d->value);
557  std::string src2 = errSec->getSrcMsg(sym, errOffset);
558  std::string obj2 = errSec->getObjMsg(errOffset);
559
560  std::string msg = "duplicate symbol: " + toString(sym) + "\n>>> defined at ";
561  if (!src1.empty())
562    msg += src1 + "\n>>>            ";
563  msg += obj1 + "\n>>> defined at ";
564  if (!src2.empty())
565    msg += src2 + "\n>>>            ";
566  msg += obj2;
567  error(msg);
568}
569
570void Symbol::checkDuplicate(const Defined &other) const {
571  if (isDefined() && !isWeak() && !other.isWeak())
572    reportDuplicate(*this, other.file,
573                    dyn_cast_or_null<InputSectionBase>(other.section),
574                    other.value);
575}
576
577void Symbol::resolve(const CommonSymbol &other) {
578  if (other.exportDynamic)
579    exportDynamic = true;
580  if (other.visibility() != STV_DEFAULT) {
581    uint8_t v = visibility(), ov = other.visibility();
582    setVisibility(v == STV_DEFAULT ? ov : std::min(v, ov));
583  }
584  if (isDefined() && !isWeak()) {
585    if (config->warnCommon)
586      warn("common " + getName() + " is overridden");
587    return;
588  }
589
590  if (CommonSymbol *oldSym = dyn_cast<CommonSymbol>(this)) {
591    if (config->warnCommon)
592      warn("multiple common of " + getName());
593    oldSym->alignment = std::max(oldSym->alignment, other.alignment);
594    if (oldSym->size < other.size) {
595      oldSym->file = other.file;
596      oldSym->size = other.size;
597    }
598    return;
599  }
600
601  if (auto *s = dyn_cast<SharedSymbol>(this)) {
602    // Increase st_size if the shared symbol has a larger st_size. The shared
603    // symbol may be created from common symbols. The fact that some object
604    // files were linked into a shared object first should not change the
605    // regular rule that picks the largest st_size.
606    uint64_t size = s->size;
607    other.overwrite(*this);
608    if (size > cast<CommonSymbol>(this)->size)
609      cast<CommonSymbol>(this)->size = size;
610  } else {
611    other.overwrite(*this);
612  }
613}
614
615void Symbol::resolve(const Defined &other) {
616  if (other.exportDynamic)
617    exportDynamic = true;
618  if (other.visibility() != STV_DEFAULT) {
619    uint8_t v = visibility(), ov = other.visibility();
620    setVisibility(v == STV_DEFAULT ? ov : std::min(v, ov));
621  }
622  if (shouldReplace(other))
623    other.overwrite(*this);
624}
625
626void Symbol::resolve(const LazySymbol &other) {
627  if (isPlaceholder()) {
628    other.overwrite(*this);
629    return;
630  }
631
632  // For common objects, we want to look for global or weak definitions that
633  // should be extracted as the canonical definition instead.
634  if (LLVM_UNLIKELY(isCommon()) && elf::config->fortranCommon &&
635      other.file->shouldExtractForCommon(getName())) {
636    ctx.backwardReferences.erase(this);
637    other.overwrite(*this);
638    other.extract();
639    return;
640  }
641
642  if (!isUndefined()) {
643    // See the comment in resolveUndefined().
644    if (isDefined())
645      ctx.backwardReferences.erase(this);
646    return;
647  }
648
649  // An undefined weak will not extract archive members. See comment on Lazy in
650  // Symbols.h for the details.
651  if (isWeak()) {
652    uint8_t ty = type;
653    other.overwrite(*this);
654    type = ty;
655    binding = STB_WEAK;
656    return;
657  }
658
659  const InputFile *oldFile = file;
660  other.extract();
661  if (!config->whyExtract.empty())
662    recordWhyExtract(oldFile, *file, *this);
663}
664
665void Symbol::resolve(const SharedSymbol &other) {
666  exportDynamic = true;
667  if (isPlaceholder()) {
668    other.overwrite(*this);
669    return;
670  }
671  if (isCommon()) {
672    // See the comment in resolveCommon() above.
673    if (other.size > cast<CommonSymbol>(this)->size)
674      cast<CommonSymbol>(this)->size = other.size;
675    return;
676  }
677  if (visibility() == STV_DEFAULT && (isUndefined() || isLazy())) {
678    // An undefined symbol with non default visibility must be satisfied
679    // in the same DSO.
680    uint8_t bind = binding;
681    other.overwrite(*this);
682    binding = bind;
683  } else if (traced)
684    printTraceSymbol(other, getName());
685}
686
687void Defined::overwrite(Symbol &sym) const {
688  if (isa_and_nonnull<SharedFile>(sym.file))
689    sym.versionId = VER_NDX_GLOBAL;
690  Symbol::overwrite(sym, DefinedKind);
691  auto &s = static_cast<Defined &>(sym);
692  s.value = value;
693  s.size = size;
694  s.section = section;
695}
696