1//===- LinkerScript.cpp ---------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains the parser/evaluator of the linker script.
10//
11//===----------------------------------------------------------------------===//
12
13#include "LinkerScript.h"
14#include "Config.h"
15#include "InputFiles.h"
16#include "InputSection.h"
17#include "OutputSections.h"
18#include "SymbolTable.h"
19#include "Symbols.h"
20#include "SyntheticSections.h"
21#include "Target.h"
22#include "Writer.h"
23#include "lld/Common/CommonLinkerContext.h"
24#include "lld/Common/Strings.h"
25#include "llvm/ADT/STLExtras.h"
26#include "llvm/ADT/StringRef.h"
27#include "llvm/BinaryFormat/ELF.h"
28#include "llvm/Support/Casting.h"
29#include "llvm/Support/Endian.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/TimeProfiler.h"
32#include <algorithm>
33#include <cassert>
34#include <cstddef>
35#include <cstdint>
36#include <limits>
37#include <string>
38#include <vector>
39
40using namespace llvm;
41using namespace llvm::ELF;
42using namespace llvm::object;
43using namespace llvm::support::endian;
44using namespace lld;
45using namespace lld::elf;
46
47std::unique_ptr<LinkerScript> elf::script;
48
49static bool isSectionPrefix(StringRef prefix, StringRef name) {
50  return name.consume_front(prefix) && (name.empty() || name[0] == '.');
51}
52
53static StringRef getOutputSectionName(const InputSectionBase *s) {
54  // This is for --emit-relocs and -r. If .text.foo is emitted as .text.bar, we
55  // want to emit .rela.text.foo as .rela.text.bar for consistency (this is not
56  // technically required, but not doing it is odd). This code guarantees that.
57  if (auto *isec = dyn_cast<InputSection>(s)) {
58    if (InputSectionBase *rel = isec->getRelocatedSection()) {
59      OutputSection *out = rel->getOutputSection();
60      if (!out) {
61        assert(config->relocatable && (rel->flags & SHF_LINK_ORDER));
62        return s->name;
63      }
64      if (s->type == SHT_RELA)
65        return saver().save(".rela" + out->name);
66      return saver().save(".rel" + out->name);
67    }
68  }
69
70  if (config->relocatable)
71    return s->name;
72
73  // A BssSection created for a common symbol is identified as "COMMON" in
74  // linker scripts. It should go to .bss section.
75  if (s->name == "COMMON")
76    return ".bss";
77
78  if (script->hasSectionsCommand)
79    return s->name;
80
81  // When no SECTIONS is specified, emulate GNU ld's internal linker scripts
82  // by grouping sections with certain prefixes.
83
84  // GNU ld places text sections with prefix ".text.hot.", ".text.unknown.",
85  // ".text.unlikely.", ".text.startup." or ".text.exit." before others.
86  // We provide an option -z keep-text-section-prefix to group such sections
87  // into separate output sections. This is more flexible. See also
88  // sortISDBySectionOrder().
89  // ".text.unknown" means the hotness of the section is unknown. When
90  // SampleFDO is used, if a function doesn't have sample, it could be very
91  // cold or it could be a new function never being sampled. Those functions
92  // will be kept in the ".text.unknown" section.
93  // ".text.split." holds symbols which are split out from functions in other
94  // input sections. For example, with -fsplit-machine-functions, placing the
95  // cold parts in .text.split instead of .text.unlikely mitigates against poor
96  // profile inaccuracy. Techniques such as hugepage remapping can make
97  // conservative decisions at the section granularity.
98  if (isSectionPrefix(".text", s->name)) {
99    if (config->zKeepTextSectionPrefix)
100      for (StringRef v : {".text.hot", ".text.unknown", ".text.unlikely",
101                          ".text.startup", ".text.exit", ".text.split"})
102        if (isSectionPrefix(v.substr(5), s->name.substr(5)))
103          return v;
104    return ".text";
105  }
106
107  for (StringRef v :
108       {".data.rel.ro", ".data", ".rodata", ".bss.rel.ro", ".bss", ".ldata",
109        ".lrodata", ".lbss", ".gcc_except_table", ".init_array", ".fini_array",
110        ".tbss", ".tdata", ".ARM.exidx", ".ARM.extab", ".ctors", ".dtors"})
111    if (isSectionPrefix(v, s->name))
112      return v;
113
114  return s->name;
115}
116
117uint64_t ExprValue::getValue() const {
118  if (sec)
119    return alignToPowerOf2(sec->getOutputSection()->addr + sec->getOffset(val),
120                           alignment);
121  return alignToPowerOf2(val, alignment);
122}
123
124uint64_t ExprValue::getSecAddr() const {
125  return sec ? sec->getOutputSection()->addr + sec->getOffset(0) : 0;
126}
127
128uint64_t ExprValue::getSectionOffset() const {
129  return getValue() - getSecAddr();
130}
131
132OutputDesc *LinkerScript::createOutputSection(StringRef name,
133                                              StringRef location) {
134  OutputDesc *&secRef = nameToOutputSection[CachedHashStringRef(name)];
135  OutputDesc *sec;
136  if (secRef && secRef->osec.location.empty()) {
137    // There was a forward reference.
138    sec = secRef;
139  } else {
140    sec = make<OutputDesc>(name, SHT_PROGBITS, 0);
141    if (!secRef)
142      secRef = sec;
143  }
144  sec->osec.location = std::string(location);
145  return sec;
146}
147
148OutputDesc *LinkerScript::getOrCreateOutputSection(StringRef name) {
149  OutputDesc *&cmdRef = nameToOutputSection[CachedHashStringRef(name)];
150  if (!cmdRef)
151    cmdRef = make<OutputDesc>(name, SHT_PROGBITS, 0);
152  return cmdRef;
153}
154
155// Expands the memory region by the specified size.
156static void expandMemoryRegion(MemoryRegion *memRegion, uint64_t size,
157                               StringRef secName) {
158  memRegion->curPos += size;
159}
160
161void LinkerScript::expandMemoryRegions(uint64_t size) {
162  if (state->memRegion)
163    expandMemoryRegion(state->memRegion, size, state->outSec->name);
164  // Only expand the LMARegion if it is different from memRegion.
165  if (state->lmaRegion && state->memRegion != state->lmaRegion)
166    expandMemoryRegion(state->lmaRegion, size, state->outSec->name);
167}
168
169void LinkerScript::expandOutputSection(uint64_t size) {
170  state->outSec->size += size;
171  expandMemoryRegions(size);
172}
173
174void LinkerScript::setDot(Expr e, const Twine &loc, bool inSec) {
175  uint64_t val = e().getValue();
176  // If val is smaller and we are in an output section, record the error and
177  // report it if this is the last assignAddresses iteration. dot may be smaller
178  // if there is another assignAddresses iteration.
179  if (val < dot && inSec) {
180    backwardDotErr =
181        (loc + ": unable to move location counter (0x" + Twine::utohexstr(dot) +
182         ") backward to 0x" + Twine::utohexstr(val) + " for section '" +
183         state->outSec->name + "'")
184            .str();
185  }
186
187  // Update to location counter means update to section size.
188  if (inSec)
189    expandOutputSection(val - dot);
190
191  dot = val;
192}
193
194// Used for handling linker symbol assignments, for both finalizing
195// their values and doing early declarations. Returns true if symbol
196// should be defined from linker script.
197static bool shouldDefineSym(SymbolAssignment *cmd) {
198  if (cmd->name == ".")
199    return false;
200
201  if (!cmd->provide)
202    return true;
203
204  // If a symbol was in PROVIDE(), we need to define it only
205  // when it is a referenced undefined symbol.
206  Symbol *b = symtab.find(cmd->name);
207  if (b && !b->isDefined() && !b->isCommon())
208    return true;
209  return false;
210}
211
212// Called by processSymbolAssignments() to assign definitions to
213// linker-script-defined symbols.
214void LinkerScript::addSymbol(SymbolAssignment *cmd) {
215  if (!shouldDefineSym(cmd))
216    return;
217
218  // Define a symbol.
219  ExprValue value = cmd->expression();
220  SectionBase *sec = value.isAbsolute() ? nullptr : value.sec;
221  uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT;
222
223  // When this function is called, section addresses have not been
224  // fixed yet. So, we may or may not know the value of the RHS
225  // expression.
226  //
227  // For example, if an expression is `x = 42`, we know x is always 42.
228  // However, if an expression is `x = .`, there's no way to know its
229  // value at the moment.
230  //
231  // We want to set symbol values early if we can. This allows us to
232  // use symbols as variables in linker scripts. Doing so allows us to
233  // write expressions like this: `alignment = 16; . = ALIGN(., alignment)`.
234  uint64_t symValue = value.sec ? 0 : value.getValue();
235
236  Defined newSym(createInternalFile(cmd->location), cmd->name, STB_GLOBAL,
237                 visibility, value.type, symValue, 0, sec);
238
239  Symbol *sym = symtab.insert(cmd->name);
240  sym->mergeProperties(newSym);
241  newSym.overwrite(*sym);
242  sym->isUsedInRegularObj = true;
243  cmd->sym = cast<Defined>(sym);
244}
245
246// This function is called from LinkerScript::declareSymbols.
247// It creates a placeholder symbol if needed.
248static void declareSymbol(SymbolAssignment *cmd) {
249  if (!shouldDefineSym(cmd))
250    return;
251
252  uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT;
253  Defined newSym(ctx.internalFile, cmd->name, STB_GLOBAL, visibility,
254                 STT_NOTYPE, 0, 0, nullptr);
255
256  // If the symbol is already defined, its order is 0 (with absence indicating
257  // 0); otherwise it's assigned the order of the SymbolAssignment.
258  Symbol *sym = symtab.insert(cmd->name);
259  if (!sym->isDefined())
260    ctx.scriptSymOrder.insert({sym, cmd->symOrder});
261
262  // We can't calculate final value right now.
263  sym->mergeProperties(newSym);
264  newSym.overwrite(*sym);
265
266  cmd->sym = cast<Defined>(sym);
267  cmd->provide = false;
268  sym->isUsedInRegularObj = true;
269  sym->scriptDefined = true;
270}
271
272using SymbolAssignmentMap =
273    DenseMap<const Defined *, std::pair<SectionBase *, uint64_t>>;
274
275// Collect section/value pairs of linker-script-defined symbols. This is used to
276// check whether symbol values converge.
277static SymbolAssignmentMap
278getSymbolAssignmentValues(ArrayRef<SectionCommand *> sectionCommands) {
279  SymbolAssignmentMap ret;
280  for (SectionCommand *cmd : sectionCommands) {
281    if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) {
282      if (assign->sym) // sym is nullptr for dot.
283        ret.try_emplace(assign->sym, std::make_pair(assign->sym->section,
284                                                    assign->sym->value));
285      continue;
286    }
287    for (SectionCommand *subCmd : cast<OutputDesc>(cmd)->osec.commands)
288      if (auto *assign = dyn_cast<SymbolAssignment>(subCmd))
289        if (assign->sym)
290          ret.try_emplace(assign->sym, std::make_pair(assign->sym->section,
291                                                      assign->sym->value));
292  }
293  return ret;
294}
295
296// Returns the lexicographical smallest (for determinism) Defined whose
297// section/value has changed.
298static const Defined *
299getChangedSymbolAssignment(const SymbolAssignmentMap &oldValues) {
300  const Defined *changed = nullptr;
301  for (auto &it : oldValues) {
302    const Defined *sym = it.first;
303    if (std::make_pair(sym->section, sym->value) != it.second &&
304        (!changed || sym->getName() < changed->getName()))
305      changed = sym;
306  }
307  return changed;
308}
309
310// Process INSERT [AFTER|BEFORE] commands. For each command, we move the
311// specified output section to the designated place.
312void LinkerScript::processInsertCommands() {
313  SmallVector<OutputDesc *, 0> moves;
314  for (const InsertCommand &cmd : insertCommands) {
315    for (StringRef name : cmd.names) {
316      // If base is empty, it may have been discarded by
317      // adjustOutputSections(). We do not handle such output sections.
318      auto from = llvm::find_if(sectionCommands, [&](SectionCommand *subCmd) {
319        return isa<OutputDesc>(subCmd) &&
320               cast<OutputDesc>(subCmd)->osec.name == name;
321      });
322      if (from == sectionCommands.end())
323        continue;
324      moves.push_back(cast<OutputDesc>(*from));
325      sectionCommands.erase(from);
326    }
327
328    auto insertPos =
329        llvm::find_if(sectionCommands, [&cmd](SectionCommand *subCmd) {
330          auto *to = dyn_cast<OutputDesc>(subCmd);
331          return to != nullptr && to->osec.name == cmd.where;
332        });
333    if (insertPos == sectionCommands.end()) {
334      error("unable to insert " + cmd.names[0] +
335            (cmd.isAfter ? " after " : " before ") + cmd.where);
336    } else {
337      if (cmd.isAfter)
338        ++insertPos;
339      sectionCommands.insert(insertPos, moves.begin(), moves.end());
340    }
341    moves.clear();
342  }
343}
344
345// Symbols defined in script should not be inlined by LTO. At the same time
346// we don't know their final values until late stages of link. Here we scan
347// over symbol assignment commands and create placeholder symbols if needed.
348void LinkerScript::declareSymbols() {
349  assert(!state);
350  for (SectionCommand *cmd : sectionCommands) {
351    if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) {
352      declareSymbol(assign);
353      continue;
354    }
355
356    // If the output section directive has constraints,
357    // we can't say for sure if it is going to be included or not.
358    // Skip such sections for now. Improve the checks if we ever
359    // need symbols from that sections to be declared early.
360    const OutputSection &sec = cast<OutputDesc>(cmd)->osec;
361    if (sec.constraint != ConstraintKind::NoConstraint)
362      continue;
363    for (SectionCommand *cmd : sec.commands)
364      if (auto *assign = dyn_cast<SymbolAssignment>(cmd))
365        declareSymbol(assign);
366  }
367}
368
369// This function is called from assignAddresses, while we are
370// fixing the output section addresses. This function is supposed
371// to set the final value for a given symbol assignment.
372void LinkerScript::assignSymbol(SymbolAssignment *cmd, bool inSec) {
373  if (cmd->name == ".") {
374    setDot(cmd->expression, cmd->location, inSec);
375    return;
376  }
377
378  if (!cmd->sym)
379    return;
380
381  ExprValue v = cmd->expression();
382  if (v.isAbsolute()) {
383    cmd->sym->section = nullptr;
384    cmd->sym->value = v.getValue();
385  } else {
386    cmd->sym->section = v.sec;
387    cmd->sym->value = v.getSectionOffset();
388  }
389  cmd->sym->type = v.type;
390}
391
392static inline StringRef getFilename(const InputFile *file) {
393  return file ? file->getNameForScript() : StringRef();
394}
395
396bool InputSectionDescription::matchesFile(const InputFile *file) const {
397  if (filePat.isTrivialMatchAll())
398    return true;
399
400  if (!matchesFileCache || matchesFileCache->first != file)
401    matchesFileCache.emplace(file, filePat.match(getFilename(file)));
402
403  return matchesFileCache->second;
404}
405
406bool SectionPattern::excludesFile(const InputFile *file) const {
407  if (excludedFilePat.empty())
408    return false;
409
410  if (!excludesFileCache || excludesFileCache->first != file)
411    excludesFileCache.emplace(file, excludedFilePat.match(getFilename(file)));
412
413  return excludesFileCache->second;
414}
415
416bool LinkerScript::shouldKeep(InputSectionBase *s) {
417  for (InputSectionDescription *id : keptSections)
418    if (id->matchesFile(s->file))
419      for (SectionPattern &p : id->sectionPatterns)
420        if (p.sectionPat.match(s->name) &&
421            (s->flags & id->withFlags) == id->withFlags &&
422            (s->flags & id->withoutFlags) == 0)
423          return true;
424  return false;
425}
426
427// A helper function for the SORT() command.
428static bool matchConstraints(ArrayRef<InputSectionBase *> sections,
429                             ConstraintKind kind) {
430  if (kind == ConstraintKind::NoConstraint)
431    return true;
432
433  bool isRW = llvm::any_of(
434      sections, [](InputSectionBase *sec) { return sec->flags & SHF_WRITE; });
435
436  return (isRW && kind == ConstraintKind::ReadWrite) ||
437         (!isRW && kind == ConstraintKind::ReadOnly);
438}
439
440static void sortSections(MutableArrayRef<InputSectionBase *> vec,
441                         SortSectionPolicy k) {
442  auto alignmentComparator = [](InputSectionBase *a, InputSectionBase *b) {
443    // ">" is not a mistake. Sections with larger alignments are placed
444    // before sections with smaller alignments in order to reduce the
445    // amount of padding necessary. This is compatible with GNU.
446    return a->addralign > b->addralign;
447  };
448  auto nameComparator = [](InputSectionBase *a, InputSectionBase *b) {
449    return a->name < b->name;
450  };
451  auto priorityComparator = [](InputSectionBase *a, InputSectionBase *b) {
452    return getPriority(a->name) < getPriority(b->name);
453  };
454
455  switch (k) {
456  case SortSectionPolicy::Default:
457  case SortSectionPolicy::None:
458    return;
459  case SortSectionPolicy::Alignment:
460    return llvm::stable_sort(vec, alignmentComparator);
461  case SortSectionPolicy::Name:
462    return llvm::stable_sort(vec, nameComparator);
463  case SortSectionPolicy::Priority:
464    return llvm::stable_sort(vec, priorityComparator);
465  case SortSectionPolicy::Reverse:
466    return std::reverse(vec.begin(), vec.end());
467  }
468}
469
470// Sort sections as instructed by SORT-family commands and --sort-section
471// option. Because SORT-family commands can be nested at most two depth
472// (e.g. SORT_BY_NAME(SORT_BY_ALIGNMENT(.text.*))) and because the command
473// line option is respected even if a SORT command is given, the exact
474// behavior we have here is a bit complicated. Here are the rules.
475//
476// 1. If two SORT commands are given, --sort-section is ignored.
477// 2. If one SORT command is given, and if it is not SORT_NONE,
478//    --sort-section is handled as an inner SORT command.
479// 3. If one SORT command is given, and if it is SORT_NONE, don't sort.
480// 4. If no SORT command is given, sort according to --sort-section.
481static void sortInputSections(MutableArrayRef<InputSectionBase *> vec,
482                              SortSectionPolicy outer,
483                              SortSectionPolicy inner) {
484  if (outer == SortSectionPolicy::None)
485    return;
486
487  if (inner == SortSectionPolicy::Default)
488    sortSections(vec, config->sortSection);
489  else
490    sortSections(vec, inner);
491  sortSections(vec, outer);
492}
493
494// Compute and remember which sections the InputSectionDescription matches.
495SmallVector<InputSectionBase *, 0>
496LinkerScript::computeInputSections(const InputSectionDescription *cmd,
497                                   ArrayRef<InputSectionBase *> sections) {
498  SmallVector<InputSectionBase *, 0> ret;
499  SmallVector<size_t, 0> indexes;
500  DenseSet<size_t> seen;
501  auto sortByPositionThenCommandLine = [&](size_t begin, size_t end) {
502    llvm::sort(MutableArrayRef<size_t>(indexes).slice(begin, end - begin));
503    for (size_t i = begin; i != end; ++i)
504      ret[i] = sections[indexes[i]];
505    sortInputSections(
506        MutableArrayRef<InputSectionBase *>(ret).slice(begin, end - begin),
507        config->sortSection, SortSectionPolicy::None);
508  };
509
510  // Collects all sections that satisfy constraints of Cmd.
511  size_t sizeAfterPrevSort = 0;
512  for (const SectionPattern &pat : cmd->sectionPatterns) {
513    size_t sizeBeforeCurrPat = ret.size();
514
515    for (size_t i = 0, e = sections.size(); i != e; ++i) {
516      // Skip if the section is dead or has been matched by a previous input
517      // section description or a previous pattern.
518      InputSectionBase *sec = sections[i];
519      if (!sec->isLive() || sec->parent || seen.contains(i))
520        continue;
521
522      // For --emit-relocs we have to ignore entries like
523      //   .rela.dyn : { *(.rela.data) }
524      // which are common because they are in the default bfd script.
525      // We do not ignore SHT_REL[A] linker-synthesized sections here because
526      // want to support scripts that do custom layout for them.
527      if (isa<InputSection>(sec) &&
528          cast<InputSection>(sec)->getRelocatedSection())
529        continue;
530
531      // Check the name early to improve performance in the common case.
532      if (!pat.sectionPat.match(sec->name))
533        continue;
534
535      if (!cmd->matchesFile(sec->file) || pat.excludesFile(sec->file) ||
536          (sec->flags & cmd->withFlags) != cmd->withFlags ||
537          (sec->flags & cmd->withoutFlags) != 0)
538        continue;
539
540      ret.push_back(sec);
541      indexes.push_back(i);
542      seen.insert(i);
543    }
544
545    if (pat.sortOuter == SortSectionPolicy::Default)
546      continue;
547
548    // Matched sections are ordered by radix sort with the keys being (SORT*,
549    // --sort-section, input order), where SORT* (if present) is most
550    // significant.
551    //
552    // Matched sections between the previous SORT* and this SORT* are sorted by
553    // (--sort-alignment, input order).
554    sortByPositionThenCommandLine(sizeAfterPrevSort, sizeBeforeCurrPat);
555    // Matched sections by this SORT* pattern are sorted using all 3 keys.
556    // ret[sizeBeforeCurrPat,ret.size()) are already in the input order, so we
557    // just sort by sortOuter and sortInner.
558    sortInputSections(
559        MutableArrayRef<InputSectionBase *>(ret).slice(sizeBeforeCurrPat),
560        pat.sortOuter, pat.sortInner);
561    sizeAfterPrevSort = ret.size();
562  }
563  // Matched sections after the last SORT* are sorted by (--sort-alignment,
564  // input order).
565  sortByPositionThenCommandLine(sizeAfterPrevSort, ret.size());
566  return ret;
567}
568
569void LinkerScript::discard(InputSectionBase &s) {
570  if (&s == in.shStrTab.get())
571    error("discarding " + s.name + " section is not allowed");
572
573  s.markDead();
574  s.parent = nullptr;
575  for (InputSection *sec : s.dependentSections)
576    discard(*sec);
577}
578
579void LinkerScript::discardSynthetic(OutputSection &outCmd) {
580  for (Partition &part : partitions) {
581    if (!part.armExidx || !part.armExidx->isLive())
582      continue;
583    SmallVector<InputSectionBase *, 0> secs(
584        part.armExidx->exidxSections.begin(),
585        part.armExidx->exidxSections.end());
586    for (SectionCommand *cmd : outCmd.commands)
587      if (auto *isd = dyn_cast<InputSectionDescription>(cmd))
588        for (InputSectionBase *s : computeInputSections(isd, secs))
589          discard(*s);
590  }
591}
592
593SmallVector<InputSectionBase *, 0>
594LinkerScript::createInputSectionList(OutputSection &outCmd) {
595  SmallVector<InputSectionBase *, 0> ret;
596
597  for (SectionCommand *cmd : outCmd.commands) {
598    if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) {
599      isd->sectionBases = computeInputSections(isd, ctx.inputSections);
600      for (InputSectionBase *s : isd->sectionBases)
601        s->parent = &outCmd;
602      ret.insert(ret.end(), isd->sectionBases.begin(), isd->sectionBases.end());
603    }
604  }
605  return ret;
606}
607
608// Create output sections described by SECTIONS commands.
609void LinkerScript::processSectionCommands() {
610  auto process = [this](OutputSection *osec) {
611    SmallVector<InputSectionBase *, 0> v = createInputSectionList(*osec);
612
613    // The output section name `/DISCARD/' is special.
614    // Any input section assigned to it is discarded.
615    if (osec->name == "/DISCARD/") {
616      for (InputSectionBase *s : v)
617        discard(*s);
618      discardSynthetic(*osec);
619      osec->commands.clear();
620      return false;
621    }
622
623    // This is for ONLY_IF_RO and ONLY_IF_RW. An output section directive
624    // ".foo : ONLY_IF_R[OW] { ... }" is handled only if all member input
625    // sections satisfy a given constraint. If not, a directive is handled
626    // as if it wasn't present from the beginning.
627    //
628    // Because we'll iterate over SectionCommands many more times, the easy
629    // way to "make it as if it wasn't present" is to make it empty.
630    if (!matchConstraints(v, osec->constraint)) {
631      for (InputSectionBase *s : v)
632        s->parent = nullptr;
633      osec->commands.clear();
634      return false;
635    }
636
637    // Handle subalign (e.g. ".foo : SUBALIGN(32) { ... }"). If subalign
638    // is given, input sections are aligned to that value, whether the
639    // given value is larger or smaller than the original section alignment.
640    if (osec->subalignExpr) {
641      uint32_t subalign = osec->subalignExpr().getValue();
642      for (InputSectionBase *s : v)
643        s->addralign = subalign;
644    }
645
646    // Set the partition field the same way OutputSection::recordSection()
647    // does. Partitions cannot be used with the SECTIONS command, so this is
648    // always 1.
649    osec->partition = 1;
650    return true;
651  };
652
653  // Process OVERWRITE_SECTIONS first so that it can overwrite the main script
654  // or orphans.
655  DenseMap<CachedHashStringRef, OutputDesc *> map;
656  size_t i = 0;
657  for (OutputDesc *osd : overwriteSections) {
658    OutputSection *osec = &osd->osec;
659    if (process(osec) &&
660        !map.try_emplace(CachedHashStringRef(osec->name), osd).second)
661      warn("OVERWRITE_SECTIONS specifies duplicate " + osec->name);
662  }
663  for (SectionCommand *&base : sectionCommands)
664    if (auto *osd = dyn_cast<OutputDesc>(base)) {
665      OutputSection *osec = &osd->osec;
666      if (OutputDesc *overwrite = map.lookup(CachedHashStringRef(osec->name))) {
667        log(overwrite->osec.location + " overwrites " + osec->name);
668        overwrite->osec.sectionIndex = i++;
669        base = overwrite;
670      } else if (process(osec)) {
671        osec->sectionIndex = i++;
672      }
673    }
674
675  // If an OVERWRITE_SECTIONS specified output section is not in
676  // sectionCommands, append it to the end. The section will be inserted by
677  // orphan placement.
678  for (OutputDesc *osd : overwriteSections)
679    if (osd->osec.partition == 1 && osd->osec.sectionIndex == UINT32_MAX)
680      sectionCommands.push_back(osd);
681}
682
683void LinkerScript::processSymbolAssignments() {
684  // Dot outside an output section still represents a relative address, whose
685  // sh_shndx should not be SHN_UNDEF or SHN_ABS. Create a dummy aether section
686  // that fills the void outside a section. It has an index of one, which is
687  // indistinguishable from any other regular section index.
688  aether = make<OutputSection>("", 0, SHF_ALLOC);
689  aether->sectionIndex = 1;
690
691  // `st` captures the local AddressState and makes it accessible deliberately.
692  // This is needed as there are some cases where we cannot just thread the
693  // current state through to a lambda function created by the script parser.
694  AddressState st;
695  state = &st;
696  st.outSec = aether;
697
698  for (SectionCommand *cmd : sectionCommands) {
699    if (auto *assign = dyn_cast<SymbolAssignment>(cmd))
700      addSymbol(assign);
701    else
702      for (SectionCommand *subCmd : cast<OutputDesc>(cmd)->osec.commands)
703        if (auto *assign = dyn_cast<SymbolAssignment>(subCmd))
704          addSymbol(assign);
705  }
706
707  state = nullptr;
708}
709
710static OutputSection *findByName(ArrayRef<SectionCommand *> vec,
711                                 StringRef name) {
712  for (SectionCommand *cmd : vec)
713    if (auto *osd = dyn_cast<OutputDesc>(cmd))
714      if (osd->osec.name == name)
715        return &osd->osec;
716  return nullptr;
717}
718
719static OutputDesc *createSection(InputSectionBase *isec, StringRef outsecName) {
720  OutputDesc *osd = script->createOutputSection(outsecName, "<internal>");
721  osd->osec.recordSection(isec);
722  return osd;
723}
724
725static OutputDesc *addInputSec(StringMap<TinyPtrVector<OutputSection *>> &map,
726                               InputSectionBase *isec, StringRef outsecName) {
727  // Sections with SHT_GROUP or SHF_GROUP attributes reach here only when the -r
728  // option is given. A section with SHT_GROUP defines a "section group", and
729  // its members have SHF_GROUP attribute. Usually these flags have already been
730  // stripped by InputFiles.cpp as section groups are processed and uniquified.
731  // However, for the -r option, we want to pass through all section groups
732  // as-is because adding/removing members or merging them with other groups
733  // change their semantics.
734  if (isec->type == SHT_GROUP || (isec->flags & SHF_GROUP))
735    return createSection(isec, outsecName);
736
737  // Imagine .zed : { *(.foo) *(.bar) } script. Both foo and bar may have
738  // relocation sections .rela.foo and .rela.bar for example. Most tools do
739  // not allow multiple REL[A] sections for output section. Hence we
740  // should combine these relocation sections into single output.
741  // We skip synthetic sections because it can be .rela.dyn/.rela.plt or any
742  // other REL[A] sections created by linker itself.
743  if (!isa<SyntheticSection>(isec) &&
744      (isec->type == SHT_REL || isec->type == SHT_RELA)) {
745    auto *sec = cast<InputSection>(isec);
746    OutputSection *out = sec->getRelocatedSection()->getOutputSection();
747
748    if (out->relocationSection) {
749      out->relocationSection->recordSection(sec);
750      return nullptr;
751    }
752
753    OutputDesc *osd = createSection(isec, outsecName);
754    out->relocationSection = &osd->osec;
755    return osd;
756  }
757
758  //  The ELF spec just says
759  // ----------------------------------------------------------------
760  // In the first phase, input sections that match in name, type and
761  // attribute flags should be concatenated into single sections.
762  // ----------------------------------------------------------------
763  //
764  // However, it is clear that at least some flags have to be ignored for
765  // section merging. At the very least SHF_GROUP and SHF_COMPRESSED have to be
766  // ignored. We should not have two output .text sections just because one was
767  // in a group and another was not for example.
768  //
769  // It also seems that wording was a late addition and didn't get the
770  // necessary scrutiny.
771  //
772  // Merging sections with different flags is expected by some users. One
773  // reason is that if one file has
774  //
775  // int *const bar __attribute__((section(".foo"))) = (int *)0;
776  //
777  // gcc with -fPIC will produce a read only .foo section. But if another
778  // file has
779  //
780  // int zed;
781  // int *const bar __attribute__((section(".foo"))) = (int *)&zed;
782  //
783  // gcc with -fPIC will produce a read write section.
784  //
785  // Last but not least, when using linker script the merge rules are forced by
786  // the script. Unfortunately, linker scripts are name based. This means that
787  // expressions like *(.foo*) can refer to multiple input sections with
788  // different flags. We cannot put them in different output sections or we
789  // would produce wrong results for
790  //
791  // start = .; *(.foo.*) end = .; *(.bar)
792  //
793  // and a mapping of .foo1 and .bar1 to one section and .foo2 and .bar2 to
794  // another. The problem is that there is no way to layout those output
795  // sections such that the .foo sections are the only thing between the start
796  // and end symbols.
797  //
798  // Given the above issues, we instead merge sections by name and error on
799  // incompatible types and flags.
800  TinyPtrVector<OutputSection *> &v = map[outsecName];
801  for (OutputSection *sec : v) {
802    if (sec->partition != isec->partition)
803      continue;
804
805    if (config->relocatable && (isec->flags & SHF_LINK_ORDER)) {
806      // Merging two SHF_LINK_ORDER sections with different sh_link fields will
807      // change their semantics, so we only merge them in -r links if they will
808      // end up being linked to the same output section. The casts are fine
809      // because everything in the map was created by the orphan placement code.
810      auto *firstIsec = cast<InputSectionBase>(
811          cast<InputSectionDescription>(sec->commands[0])->sectionBases[0]);
812      OutputSection *firstIsecOut =
813          firstIsec->flags & SHF_LINK_ORDER
814              ? firstIsec->getLinkOrderDep()->getOutputSection()
815              : nullptr;
816      if (firstIsecOut != isec->getLinkOrderDep()->getOutputSection())
817        continue;
818    }
819
820    sec->recordSection(isec);
821    return nullptr;
822  }
823
824  OutputDesc *osd = createSection(isec, outsecName);
825  v.push_back(&osd->osec);
826  return osd;
827}
828
829// Add sections that didn't match any sections command.
830void LinkerScript::addOrphanSections() {
831  StringMap<TinyPtrVector<OutputSection *>> map;
832  SmallVector<OutputDesc *, 0> v;
833
834  auto add = [&](InputSectionBase *s) {
835    if (s->isLive() && !s->parent) {
836      orphanSections.push_back(s);
837
838      StringRef name = getOutputSectionName(s);
839      if (config->unique) {
840        v.push_back(createSection(s, name));
841      } else if (OutputSection *sec = findByName(sectionCommands, name)) {
842        sec->recordSection(s);
843      } else {
844        if (OutputDesc *osd = addInputSec(map, s, name))
845          v.push_back(osd);
846        assert(isa<MergeInputSection>(s) ||
847               s->getOutputSection()->sectionIndex == UINT32_MAX);
848      }
849    }
850  };
851
852  // For further --emit-reloc handling code we need target output section
853  // to be created before we create relocation output section, so we want
854  // to create target sections first. We do not want priority handling
855  // for synthetic sections because them are special.
856  size_t n = 0;
857  for (InputSectionBase *isec : ctx.inputSections) {
858    // Process InputSection and MergeInputSection.
859    if (LLVM_LIKELY(isa<InputSection>(isec)))
860      ctx.inputSections[n++] = isec;
861
862    // In -r links, SHF_LINK_ORDER sections are added while adding their parent
863    // sections because we need to know the parent's output section before we
864    // can select an output section for the SHF_LINK_ORDER section.
865    if (config->relocatable && (isec->flags & SHF_LINK_ORDER))
866      continue;
867
868    if (auto *sec = dyn_cast<InputSection>(isec))
869      if (InputSectionBase *rel = sec->getRelocatedSection())
870        if (auto *relIS = dyn_cast_or_null<InputSectionBase>(rel->parent))
871          add(relIS);
872    add(isec);
873    if (config->relocatable)
874      for (InputSectionBase *depSec : isec->dependentSections)
875        if (depSec->flags & SHF_LINK_ORDER)
876          add(depSec);
877  }
878  // Keep just InputSection.
879  ctx.inputSections.resize(n);
880
881  // If no SECTIONS command was given, we should insert sections commands
882  // before others, so that we can handle scripts which refers them,
883  // for example: "foo = ABSOLUTE(ADDR(.text)));".
884  // When SECTIONS command is present we just add all orphans to the end.
885  if (hasSectionsCommand)
886    sectionCommands.insert(sectionCommands.end(), v.begin(), v.end());
887  else
888    sectionCommands.insert(sectionCommands.begin(), v.begin(), v.end());
889}
890
891void LinkerScript::diagnoseOrphanHandling() const {
892  llvm::TimeTraceScope timeScope("Diagnose orphan sections");
893  if (config->orphanHandling == OrphanHandlingPolicy::Place)
894    return;
895  for (const InputSectionBase *sec : orphanSections) {
896    // .relro_padding is inserted before DATA_SEGMENT_RELRO_END, if present,
897    // automatically. The section is not supposed to be specified by scripts.
898    if (sec == in.relroPadding.get())
899      continue;
900    // Input SHT_REL[A] retained by --emit-relocs are ignored by
901    // computeInputSections(). Don't warn/error.
902    if (isa<InputSection>(sec) &&
903        cast<InputSection>(sec)->getRelocatedSection())
904      continue;
905
906    StringRef name = getOutputSectionName(sec);
907    if (config->orphanHandling == OrphanHandlingPolicy::Error)
908      error(toString(sec) + " is being placed in '" + name + "'");
909    else
910      warn(toString(sec) + " is being placed in '" + name + "'");
911  }
912}
913
914void LinkerScript::diagnoseMissingSGSectionAddress() const {
915  if (!config->cmseImplib || !in.armCmseSGSection->isNeeded())
916    return;
917
918  OutputSection *sec = findByName(sectionCommands, ".gnu.sgstubs");
919  if (sec && !sec->addrExpr && !config->sectionStartMap.count(".gnu.sgstubs"))
920    error("no address assigned to the veneers output section " + sec->name);
921}
922
923// This function searches for a memory region to place the given output
924// section in. If found, a pointer to the appropriate memory region is
925// returned in the first member of the pair. Otherwise, a nullptr is returned.
926// The second member of the pair is a hint that should be passed to the
927// subsequent call of this method.
928std::pair<MemoryRegion *, MemoryRegion *>
929LinkerScript::findMemoryRegion(OutputSection *sec, MemoryRegion *hint) {
930  // Non-allocatable sections are not part of the process image.
931  if (!(sec->flags & SHF_ALLOC)) {
932    bool hasInputOrByteCommand =
933        sec->hasInputSections ||
934        llvm::any_of(sec->commands, [](SectionCommand *comm) {
935          return ByteCommand::classof(comm);
936        });
937    if (!sec->memoryRegionName.empty() && hasInputOrByteCommand)
938      warn("ignoring memory region assignment for non-allocatable section '" +
939           sec->name + "'");
940    return {nullptr, nullptr};
941  }
942
943  // If a memory region name was specified in the output section command,
944  // then try to find that region first.
945  if (!sec->memoryRegionName.empty()) {
946    if (MemoryRegion *m = memoryRegions.lookup(sec->memoryRegionName))
947      return {m, m};
948    error("memory region '" + sec->memoryRegionName + "' not declared");
949    return {nullptr, nullptr};
950  }
951
952  // If at least one memory region is defined, all sections must
953  // belong to some memory region. Otherwise, we don't need to do
954  // anything for memory regions.
955  if (memoryRegions.empty())
956    return {nullptr, nullptr};
957
958  // An orphan section should continue the previous memory region.
959  if (sec->sectionIndex == UINT32_MAX && hint)
960    return {hint, hint};
961
962  // See if a region can be found by matching section flags.
963  for (auto &pair : memoryRegions) {
964    MemoryRegion *m = pair.second;
965    if (m->compatibleWith(sec->flags))
966      return {m, nullptr};
967  }
968
969  // Otherwise, no suitable region was found.
970  error("no memory region specified for section '" + sec->name + "'");
971  return {nullptr, nullptr};
972}
973
974static OutputSection *findFirstSection(PhdrEntry *load) {
975  for (OutputSection *sec : outputSections)
976    if (sec->ptLoad == load)
977      return sec;
978  return nullptr;
979}
980
981// This function assigns offsets to input sections and an output section
982// for a single sections command (e.g. ".text { *(.text); }").
983void LinkerScript::assignOffsets(OutputSection *sec) {
984  const bool isTbss = (sec->flags & SHF_TLS) && sec->type == SHT_NOBITS;
985  const bool sameMemRegion = state->memRegion == sec->memRegion;
986  const bool prevLMARegionIsDefault = state->lmaRegion == nullptr;
987  const uint64_t savedDot = dot;
988  state->memRegion = sec->memRegion;
989  state->lmaRegion = sec->lmaRegion;
990
991  if (!(sec->flags & SHF_ALLOC)) {
992    // Non-SHF_ALLOC sections have zero addresses.
993    dot = 0;
994  } else if (isTbss) {
995    // Allow consecutive SHF_TLS SHT_NOBITS output sections. The address range
996    // starts from the end address of the previous tbss section.
997    if (state->tbssAddr == 0)
998      state->tbssAddr = dot;
999    else
1000      dot = state->tbssAddr;
1001  } else {
1002    if (state->memRegion)
1003      dot = state->memRegion->curPos;
1004    if (sec->addrExpr)
1005      setDot(sec->addrExpr, sec->location, false);
1006
1007    // If the address of the section has been moved forward by an explicit
1008    // expression so that it now starts past the current curPos of the enclosing
1009    // region, we need to expand the current region to account for the space
1010    // between the previous section, if any, and the start of this section.
1011    if (state->memRegion && state->memRegion->curPos < dot)
1012      expandMemoryRegion(state->memRegion, dot - state->memRegion->curPos,
1013                         sec->name);
1014  }
1015
1016  state->outSec = sec;
1017  if (sec->addrExpr && script->hasSectionsCommand) {
1018    // The alignment is ignored.
1019    sec->addr = dot;
1020  } else {
1021    // sec->alignment is the max of ALIGN and the maximum of input
1022    // section alignments.
1023    const uint64_t pos = dot;
1024    dot = alignToPowerOf2(dot, sec->addralign);
1025    sec->addr = dot;
1026    expandMemoryRegions(dot - pos);
1027  }
1028
1029  // state->lmaOffset is LMA minus VMA. If LMA is explicitly specified via AT()
1030  // or AT>, recompute state->lmaOffset; otherwise, if both previous/current LMA
1031  // region is the default, and the two sections are in the same memory region,
1032  // reuse previous lmaOffset; otherwise, reset lmaOffset to 0. This emulates
1033  // heuristics described in
1034  // https://sourceware.org/binutils/docs/ld/Output-Section-LMA.html
1035  if (sec->lmaExpr) {
1036    state->lmaOffset = sec->lmaExpr().getValue() - dot;
1037  } else if (MemoryRegion *mr = sec->lmaRegion) {
1038    uint64_t lmaStart = alignToPowerOf2(mr->curPos, sec->addralign);
1039    if (mr->curPos < lmaStart)
1040      expandMemoryRegion(mr, lmaStart - mr->curPos, sec->name);
1041    state->lmaOffset = lmaStart - dot;
1042  } else if (!sameMemRegion || !prevLMARegionIsDefault) {
1043    state->lmaOffset = 0;
1044  }
1045
1046  // Propagate state->lmaOffset to the first "non-header" section.
1047  if (PhdrEntry *l = sec->ptLoad)
1048    if (sec == findFirstSection(l))
1049      l->lmaOffset = state->lmaOffset;
1050
1051  // We can call this method multiple times during the creation of
1052  // thunks and want to start over calculation each time.
1053  sec->size = 0;
1054
1055  // We visited SectionsCommands from processSectionCommands to
1056  // layout sections. Now, we visit SectionsCommands again to fix
1057  // section offsets.
1058  for (SectionCommand *cmd : sec->commands) {
1059    // This handles the assignments to symbol or to the dot.
1060    if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) {
1061      assign->addr = dot;
1062      assignSymbol(assign, true);
1063      assign->size = dot - assign->addr;
1064      continue;
1065    }
1066
1067    // Handle BYTE(), SHORT(), LONG(), or QUAD().
1068    if (auto *data = dyn_cast<ByteCommand>(cmd)) {
1069      data->offset = dot - sec->addr;
1070      dot += data->size;
1071      expandOutputSection(data->size);
1072      continue;
1073    }
1074
1075    // Handle a single input section description command.
1076    // It calculates and assigns the offsets for each section and also
1077    // updates the output section size.
1078    for (InputSection *isec : cast<InputSectionDescription>(cmd)->sections) {
1079      assert(isec->getParent() == sec);
1080      const uint64_t pos = dot;
1081      dot = alignToPowerOf2(dot, isec->addralign);
1082      isec->outSecOff = dot - sec->addr;
1083      dot += isec->getSize();
1084
1085      // Update output section size after adding each section. This is so that
1086      // SIZEOF works correctly in the case below:
1087      // .foo { *(.aaa) a = SIZEOF(.foo); *(.bbb) }
1088      expandOutputSection(dot - pos);
1089    }
1090  }
1091
1092  // If .relro_padding is present, round up the end to a common-page-size
1093  // boundary to protect the last page.
1094  if (in.relroPadding && sec == in.relroPadding->getParent())
1095    expandOutputSection(alignToPowerOf2(dot, config->commonPageSize) - dot);
1096
1097  // Non-SHF_ALLOC sections do not affect the addresses of other OutputSections
1098  // as they are not part of the process image.
1099  if (!(sec->flags & SHF_ALLOC)) {
1100    dot = savedDot;
1101  } else if (isTbss) {
1102    // NOBITS TLS sections are similar. Additionally save the end address.
1103    state->tbssAddr = dot;
1104    dot = savedDot;
1105  }
1106}
1107
1108static bool isDiscardable(const OutputSection &sec) {
1109  if (sec.name == "/DISCARD/")
1110    return true;
1111
1112  // We do not want to remove OutputSections with expressions that reference
1113  // symbols even if the OutputSection is empty. We want to ensure that the
1114  // expressions can be evaluated and report an error if they cannot.
1115  if (sec.expressionsUseSymbols)
1116    return false;
1117
1118  // OutputSections may be referenced by name in ADDR and LOADADDR expressions,
1119  // as an empty Section can has a valid VMA and LMA we keep the OutputSection
1120  // to maintain the integrity of the other Expression.
1121  if (sec.usedInExpression)
1122    return false;
1123
1124  for (SectionCommand *cmd : sec.commands) {
1125    if (auto assign = dyn_cast<SymbolAssignment>(cmd))
1126      // Don't create empty output sections just for unreferenced PROVIDE
1127      // symbols.
1128      if (assign->name != "." && !assign->sym)
1129        continue;
1130
1131    if (!isa<InputSectionDescription>(*cmd))
1132      return false;
1133  }
1134  return true;
1135}
1136
1137bool LinkerScript::isDiscarded(const OutputSection *sec) const {
1138  return hasSectionsCommand && (getFirstInputSection(sec) == nullptr) &&
1139         isDiscardable(*sec);
1140}
1141
1142static void maybePropagatePhdrs(OutputSection &sec,
1143                                SmallVector<StringRef, 0> &phdrs) {
1144  if (sec.phdrs.empty()) {
1145    // To match the bfd linker script behaviour, only propagate program
1146    // headers to sections that are allocated.
1147    if (sec.flags & SHF_ALLOC)
1148      sec.phdrs = phdrs;
1149  } else {
1150    phdrs = sec.phdrs;
1151  }
1152}
1153
1154void LinkerScript::adjustOutputSections() {
1155  // If the output section contains only symbol assignments, create a
1156  // corresponding output section. The issue is what to do with linker script
1157  // like ".foo : { symbol = 42; }". One option would be to convert it to
1158  // "symbol = 42;". That is, move the symbol out of the empty section
1159  // description. That seems to be what bfd does for this simple case. The
1160  // problem is that this is not completely general. bfd will give up and
1161  // create a dummy section too if there is a ". = . + 1" inside the section
1162  // for example.
1163  // Given that we want to create the section, we have to worry what impact
1164  // it will have on the link. For example, if we just create a section with
1165  // 0 for flags, it would change which PT_LOADs are created.
1166  // We could remember that particular section is dummy and ignore it in
1167  // other parts of the linker, but unfortunately there are quite a few places
1168  // that would need to change:
1169  //   * The program header creation.
1170  //   * The orphan section placement.
1171  //   * The address assignment.
1172  // The other option is to pick flags that minimize the impact the section
1173  // will have on the rest of the linker. That is why we copy the flags from
1174  // the previous sections. We copy just SHF_ALLOC and SHF_WRITE to keep the
1175  // impact low. We do not propagate SHF_EXECINSTR as in some cases this can
1176  // lead to executable writeable section.
1177  uint64_t flags = SHF_ALLOC;
1178
1179  SmallVector<StringRef, 0> defPhdrs;
1180  bool seenRelro = false;
1181  for (SectionCommand *&cmd : sectionCommands) {
1182    if (!isa<OutputDesc>(cmd))
1183      continue;
1184    auto *sec = &cast<OutputDesc>(cmd)->osec;
1185
1186    // Handle align (e.g. ".foo : ALIGN(16) { ... }").
1187    if (sec->alignExpr)
1188      sec->addralign =
1189          std::max<uint32_t>(sec->addralign, sec->alignExpr().getValue());
1190
1191    bool isEmpty = (getFirstInputSection(sec) == nullptr);
1192    bool discardable = isEmpty && isDiscardable(*sec);
1193    // If sec has at least one input section and not discarded, remember its
1194    // flags to be inherited by subsequent output sections. (sec may contain
1195    // just one empty synthetic section.)
1196    if (sec->hasInputSections && !discardable)
1197      flags = sec->flags;
1198
1199    // We do not want to keep any special flags for output section
1200    // in case it is empty.
1201    if (isEmpty)
1202      sec->flags =
1203          flags & ((sec->nonAlloc ? 0 : (uint64_t)SHF_ALLOC) | SHF_WRITE);
1204
1205    // The code below may remove empty output sections. We should save the
1206    // specified program headers (if exist) and propagate them to subsequent
1207    // sections which do not specify program headers.
1208    // An example of such a linker script is:
1209    // SECTIONS { .empty : { *(.empty) } :rw
1210    //            .foo : { *(.foo) } }
1211    // Note: at this point the order of output sections has not been finalized,
1212    // because orphans have not been inserted into their expected positions. We
1213    // will handle them in adjustSectionsAfterSorting().
1214    if (sec->sectionIndex != UINT32_MAX)
1215      maybePropagatePhdrs(*sec, defPhdrs);
1216
1217    // Discard .relro_padding if we have not seen one RELRO section. Note: when
1218    // .tbss is the only RELRO section, there is no associated PT_LOAD segment
1219    // (needsPtLoad), so we don't append .relro_padding in the case.
1220    if (in.relroPadding && in.relroPadding->getParent() == sec && !seenRelro)
1221      discardable = true;
1222    if (discardable) {
1223      sec->markDead();
1224      cmd = nullptr;
1225    } else {
1226      seenRelro |=
1227          sec->relro && !(sec->type == SHT_NOBITS && (sec->flags & SHF_TLS));
1228    }
1229  }
1230
1231  // It is common practice to use very generic linker scripts. So for any
1232  // given run some of the output sections in the script will be empty.
1233  // We could create corresponding empty output sections, but that would
1234  // clutter the output.
1235  // We instead remove trivially empty sections. The bfd linker seems even
1236  // more aggressive at removing them.
1237  llvm::erase_if(sectionCommands, [&](SectionCommand *cmd) { return !cmd; });
1238}
1239
1240void LinkerScript::adjustSectionsAfterSorting() {
1241  // Try and find an appropriate memory region to assign offsets in.
1242  MemoryRegion *hint = nullptr;
1243  for (SectionCommand *cmd : sectionCommands) {
1244    if (auto *osd = dyn_cast<OutputDesc>(cmd)) {
1245      OutputSection *sec = &osd->osec;
1246      if (!sec->lmaRegionName.empty()) {
1247        if (MemoryRegion *m = memoryRegions.lookup(sec->lmaRegionName))
1248          sec->lmaRegion = m;
1249        else
1250          error("memory region '" + sec->lmaRegionName + "' not declared");
1251      }
1252      std::tie(sec->memRegion, hint) = findMemoryRegion(sec, hint);
1253    }
1254  }
1255
1256  // If output section command doesn't specify any segments,
1257  // and we haven't previously assigned any section to segment,
1258  // then we simply assign section to the very first load segment.
1259  // Below is an example of such linker script:
1260  // PHDRS { seg PT_LOAD; }
1261  // SECTIONS { .aaa : { *(.aaa) } }
1262  SmallVector<StringRef, 0> defPhdrs;
1263  auto firstPtLoad = llvm::find_if(phdrsCommands, [](const PhdrsCommand &cmd) {
1264    return cmd.type == PT_LOAD;
1265  });
1266  if (firstPtLoad != phdrsCommands.end())
1267    defPhdrs.push_back(firstPtLoad->name);
1268
1269  // Walk the commands and propagate the program headers to commands that don't
1270  // explicitly specify them.
1271  for (SectionCommand *cmd : sectionCommands)
1272    if (auto *osd = dyn_cast<OutputDesc>(cmd))
1273      maybePropagatePhdrs(osd->osec, defPhdrs);
1274}
1275
1276static uint64_t computeBase(uint64_t min, bool allocateHeaders) {
1277  // If there is no SECTIONS or if the linkerscript is explicit about program
1278  // headers, do our best to allocate them.
1279  if (!script->hasSectionsCommand || allocateHeaders)
1280    return 0;
1281  // Otherwise only allocate program headers if that would not add a page.
1282  return alignDown(min, config->maxPageSize);
1283}
1284
1285// When the SECTIONS command is used, try to find an address for the file and
1286// program headers output sections, which can be added to the first PT_LOAD
1287// segment when program headers are created.
1288//
1289// We check if the headers fit below the first allocated section. If there isn't
1290// enough space for these sections, we'll remove them from the PT_LOAD segment,
1291// and we'll also remove the PT_PHDR segment.
1292void LinkerScript::allocateHeaders(SmallVector<PhdrEntry *, 0> &phdrs) {
1293  uint64_t min = std::numeric_limits<uint64_t>::max();
1294  for (OutputSection *sec : outputSections)
1295    if (sec->flags & SHF_ALLOC)
1296      min = std::min<uint64_t>(min, sec->addr);
1297
1298  auto it = llvm::find_if(
1299      phdrs, [](const PhdrEntry *e) { return e->p_type == PT_LOAD; });
1300  if (it == phdrs.end())
1301    return;
1302  PhdrEntry *firstPTLoad = *it;
1303
1304  bool hasExplicitHeaders =
1305      llvm::any_of(phdrsCommands, [](const PhdrsCommand &cmd) {
1306        return cmd.hasPhdrs || cmd.hasFilehdr;
1307      });
1308  bool paged = !config->omagic && !config->nmagic;
1309  uint64_t headerSize = getHeaderSize();
1310  if ((paged || hasExplicitHeaders) &&
1311      headerSize <= min - computeBase(min, hasExplicitHeaders)) {
1312    min = alignDown(min - headerSize, config->maxPageSize);
1313    Out::elfHeader->addr = min;
1314    Out::programHeaders->addr = min + Out::elfHeader->size;
1315    return;
1316  }
1317
1318  // Error if we were explicitly asked to allocate headers.
1319  if (hasExplicitHeaders)
1320    error("could not allocate headers");
1321
1322  Out::elfHeader->ptLoad = nullptr;
1323  Out::programHeaders->ptLoad = nullptr;
1324  firstPTLoad->firstSec = findFirstSection(firstPTLoad);
1325
1326  llvm::erase_if(phdrs,
1327                 [](const PhdrEntry *e) { return e->p_type == PT_PHDR; });
1328}
1329
1330LinkerScript::AddressState::AddressState() {
1331  for (auto &mri : script->memoryRegions) {
1332    MemoryRegion *mr = mri.second;
1333    mr->curPos = (mr->origin)().getValue();
1334  }
1335}
1336
1337// Here we assign addresses as instructed by linker script SECTIONS
1338// sub-commands. Doing that allows us to use final VA values, so here
1339// we also handle rest commands like symbol assignments and ASSERTs.
1340// Returns a symbol that has changed its section or value, or nullptr if no
1341// symbol has changed.
1342const Defined *LinkerScript::assignAddresses() {
1343  if (script->hasSectionsCommand) {
1344    // With a linker script, assignment of addresses to headers is covered by
1345    // allocateHeaders().
1346    dot = config->imageBase.value_or(0);
1347  } else {
1348    // Assign addresses to headers right now.
1349    dot = target->getImageBase();
1350    Out::elfHeader->addr = dot;
1351    Out::programHeaders->addr = dot + Out::elfHeader->size;
1352    dot += getHeaderSize();
1353  }
1354
1355  AddressState st;
1356  state = &st;
1357  errorOnMissingSection = true;
1358  st.outSec = aether;
1359  backwardDotErr.clear();
1360
1361  SymbolAssignmentMap oldValues = getSymbolAssignmentValues(sectionCommands);
1362  for (SectionCommand *cmd : sectionCommands) {
1363    if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) {
1364      assign->addr = dot;
1365      assignSymbol(assign, false);
1366      assign->size = dot - assign->addr;
1367      continue;
1368    }
1369    assignOffsets(&cast<OutputDesc>(cmd)->osec);
1370  }
1371
1372  state = nullptr;
1373  return getChangedSymbolAssignment(oldValues);
1374}
1375
1376// Creates program headers as instructed by PHDRS linker script command.
1377SmallVector<PhdrEntry *, 0> LinkerScript::createPhdrs() {
1378  SmallVector<PhdrEntry *, 0> ret;
1379
1380  // Process PHDRS and FILEHDR keywords because they are not
1381  // real output sections and cannot be added in the following loop.
1382  for (const PhdrsCommand &cmd : phdrsCommands) {
1383    PhdrEntry *phdr = make<PhdrEntry>(cmd.type, cmd.flags.value_or(PF_R));
1384
1385    if (cmd.hasFilehdr)
1386      phdr->add(Out::elfHeader);
1387    if (cmd.hasPhdrs)
1388      phdr->add(Out::programHeaders);
1389
1390    if (cmd.lmaExpr) {
1391      phdr->p_paddr = cmd.lmaExpr().getValue();
1392      phdr->hasLMA = true;
1393    }
1394    ret.push_back(phdr);
1395  }
1396
1397  // Add output sections to program headers.
1398  for (OutputSection *sec : outputSections) {
1399    // Assign headers specified by linker script
1400    for (size_t id : getPhdrIndices(sec)) {
1401      ret[id]->add(sec);
1402      if (!phdrsCommands[id].flags)
1403        ret[id]->p_flags |= sec->getPhdrFlags();
1404    }
1405  }
1406  return ret;
1407}
1408
1409// Returns true if we should emit an .interp section.
1410//
1411// We usually do. But if PHDRS commands are given, and
1412// no PT_INTERP is there, there's no place to emit an
1413// .interp, so we don't do that in that case.
1414bool LinkerScript::needsInterpSection() {
1415  if (phdrsCommands.empty())
1416    return true;
1417  for (PhdrsCommand &cmd : phdrsCommands)
1418    if (cmd.type == PT_INTERP)
1419      return true;
1420  return false;
1421}
1422
1423ExprValue LinkerScript::getSymbolValue(StringRef name, const Twine &loc) {
1424  if (name == ".") {
1425    if (state)
1426      return {state->outSec, false, dot - state->outSec->addr, loc};
1427    error(loc + ": unable to get location counter value");
1428    return 0;
1429  }
1430
1431  if (Symbol *sym = symtab.find(name)) {
1432    if (auto *ds = dyn_cast<Defined>(sym)) {
1433      ExprValue v{ds->section, false, ds->value, loc};
1434      // Retain the original st_type, so that the alias will get the same
1435      // behavior in relocation processing. Any operation will reset st_type to
1436      // STT_NOTYPE.
1437      v.type = ds->type;
1438      return v;
1439    }
1440    if (isa<SharedSymbol>(sym))
1441      if (!errorOnMissingSection)
1442        return {nullptr, false, 0, loc};
1443  }
1444
1445  error(loc + ": symbol not found: " + name);
1446  return 0;
1447}
1448
1449// Returns the index of the segment named Name.
1450static std::optional<size_t> getPhdrIndex(ArrayRef<PhdrsCommand> vec,
1451                                          StringRef name) {
1452  for (size_t i = 0; i < vec.size(); ++i)
1453    if (vec[i].name == name)
1454      return i;
1455  return std::nullopt;
1456}
1457
1458// Returns indices of ELF headers containing specific section. Each index is a
1459// zero based number of ELF header listed within PHDRS {} script block.
1460SmallVector<size_t, 0> LinkerScript::getPhdrIndices(OutputSection *cmd) {
1461  SmallVector<size_t, 0> ret;
1462
1463  for (StringRef s : cmd->phdrs) {
1464    if (std::optional<size_t> idx = getPhdrIndex(phdrsCommands, s))
1465      ret.push_back(*idx);
1466    else if (s != "NONE")
1467      error(cmd->location + ": program header '" + s +
1468            "' is not listed in PHDRS");
1469  }
1470  return ret;
1471}
1472
1473void LinkerScript::printMemoryUsage(raw_ostream& os) {
1474  auto printSize = [&](uint64_t size) {
1475    if ((size & 0x3fffffff) == 0)
1476      os << format_decimal(size >> 30, 10) << " GB";
1477    else if ((size & 0xfffff) == 0)
1478      os << format_decimal(size >> 20, 10) << " MB";
1479    else if ((size & 0x3ff) == 0)
1480      os << format_decimal(size >> 10, 10) << " KB";
1481    else
1482      os << " " << format_decimal(size, 10) << " B";
1483  };
1484  os << "Memory region         Used Size  Region Size  %age Used\n";
1485  for (auto &pair : memoryRegions) {
1486    MemoryRegion *m = pair.second;
1487    uint64_t usedLength = m->curPos - m->getOrigin();
1488    os << right_justify(m->name, 16) << ": ";
1489    printSize(usedLength);
1490    uint64_t length = m->getLength();
1491    if (length != 0) {
1492      printSize(length);
1493      double percent = usedLength * 100.0 / length;
1494      os << "    " << format("%6.2f%%", percent);
1495    }
1496    os << '\n';
1497  }
1498}
1499
1500static void checkMemoryRegion(const MemoryRegion *region,
1501                              const OutputSection *osec, uint64_t addr) {
1502  uint64_t osecEnd = addr + osec->size;
1503  uint64_t regionEnd = region->getOrigin() + region->getLength();
1504  if (osecEnd > regionEnd) {
1505    error("section '" + osec->name + "' will not fit in region '" +
1506          region->name + "': overflowed by " + Twine(osecEnd - regionEnd) +
1507          " bytes");
1508  }
1509}
1510
1511void LinkerScript::checkFinalScriptConditions() const {
1512  if (backwardDotErr.size())
1513    errorOrWarn(backwardDotErr);
1514  for (const OutputSection *sec : outputSections) {
1515    if (const MemoryRegion *memoryRegion = sec->memRegion)
1516      checkMemoryRegion(memoryRegion, sec, sec->addr);
1517    if (const MemoryRegion *lmaRegion = sec->lmaRegion)
1518      checkMemoryRegion(lmaRegion, sec, sec->getLMA());
1519  }
1520}
1521