1//===-- tsan_rtl.cpp ------------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file is a part of ThreadSanitizer (TSan), a race detector.
10//
11// Main file (entry points) for the TSan run-time.
12//===----------------------------------------------------------------------===//
13
14#include "tsan_rtl.h"
15
16#include "sanitizer_common/sanitizer_atomic.h"
17#include "sanitizer_common/sanitizer_common.h"
18#include "sanitizer_common/sanitizer_file.h"
19#include "sanitizer_common/sanitizer_interface_internal.h"
20#include "sanitizer_common/sanitizer_libc.h"
21#include "sanitizer_common/sanitizer_placement_new.h"
22#include "sanitizer_common/sanitizer_stackdepot.h"
23#include "sanitizer_common/sanitizer_symbolizer.h"
24#include "tsan_defs.h"
25#include "tsan_interface.h"
26#include "tsan_mman.h"
27#include "tsan_platform.h"
28#include "tsan_suppressions.h"
29#include "tsan_symbolize.h"
30#include "ubsan/ubsan_init.h"
31
32volatile int __tsan_resumed = 0;
33
34extern "C" void __tsan_resume() {
35  __tsan_resumed = 1;
36}
37
38SANITIZER_WEAK_DEFAULT_IMPL
39void __tsan_test_only_on_fork() {}
40
41namespace __tsan {
42
43#if !SANITIZER_GO
44void (*on_initialize)(void);
45int (*on_finalize)(int);
46#endif
47
48#if !SANITIZER_GO && !SANITIZER_APPLE
49__attribute__((tls_model("initial-exec")))
50THREADLOCAL char cur_thread_placeholder[sizeof(ThreadState)] ALIGNED(
51    SANITIZER_CACHE_LINE_SIZE);
52#endif
53static char ctx_placeholder[sizeof(Context)] ALIGNED(SANITIZER_CACHE_LINE_SIZE);
54Context *ctx;
55
56// Can be overriden by a front-end.
57#ifdef TSAN_EXTERNAL_HOOKS
58bool OnFinalize(bool failed);
59void OnInitialize();
60#else
61SANITIZER_WEAK_CXX_DEFAULT_IMPL
62bool OnFinalize(bool failed) {
63#  if !SANITIZER_GO
64  if (on_finalize)
65    return on_finalize(failed);
66#  endif
67  return failed;
68}
69
70SANITIZER_WEAK_CXX_DEFAULT_IMPL
71void OnInitialize() {
72#  if !SANITIZER_GO
73  if (on_initialize)
74    on_initialize();
75#  endif
76}
77#endif
78
79static TracePart* TracePartAlloc(ThreadState* thr) {
80  TracePart* part = nullptr;
81  {
82    Lock lock(&ctx->slot_mtx);
83    uptr max_parts = Trace::kMinParts + flags()->history_size;
84    Trace* trace = &thr->tctx->trace;
85    if (trace->parts_allocated == max_parts ||
86        ctx->trace_part_finished_excess) {
87      part = ctx->trace_part_recycle.PopFront();
88      DPrintf("#%d: TracePartAlloc: part=%p\n", thr->tid, part);
89      if (part && part->trace) {
90        Trace* trace1 = part->trace;
91        Lock trace_lock(&trace1->mtx);
92        part->trace = nullptr;
93        TracePart* part1 = trace1->parts.PopFront();
94        CHECK_EQ(part, part1);
95        if (trace1->parts_allocated > trace1->parts.Size()) {
96          ctx->trace_part_finished_excess +=
97              trace1->parts_allocated - trace1->parts.Size();
98          trace1->parts_allocated = trace1->parts.Size();
99        }
100      }
101    }
102    if (trace->parts_allocated < max_parts) {
103      trace->parts_allocated++;
104      if (ctx->trace_part_finished_excess)
105        ctx->trace_part_finished_excess--;
106    }
107    if (!part)
108      ctx->trace_part_total_allocated++;
109    else if (ctx->trace_part_recycle_finished)
110      ctx->trace_part_recycle_finished--;
111  }
112  if (!part)
113    part = new (MmapOrDie(sizeof(*part), "TracePart")) TracePart();
114  return part;
115}
116
117static void TracePartFree(TracePart* part) SANITIZER_REQUIRES(ctx->slot_mtx) {
118  DCHECK(part->trace);
119  part->trace = nullptr;
120  ctx->trace_part_recycle.PushFront(part);
121}
122
123void TraceResetForTesting() {
124  Lock lock(&ctx->slot_mtx);
125  while (auto* part = ctx->trace_part_recycle.PopFront()) {
126    if (auto trace = part->trace)
127      CHECK_EQ(trace->parts.PopFront(), part);
128    UnmapOrDie(part, sizeof(*part));
129  }
130  ctx->trace_part_total_allocated = 0;
131  ctx->trace_part_recycle_finished = 0;
132  ctx->trace_part_finished_excess = 0;
133}
134
135static void DoResetImpl(uptr epoch) {
136  ThreadRegistryLock lock0(&ctx->thread_registry);
137  Lock lock1(&ctx->slot_mtx);
138  CHECK_EQ(ctx->global_epoch, epoch);
139  ctx->global_epoch++;
140  CHECK(!ctx->resetting);
141  ctx->resetting = true;
142  for (u32 i = ctx->thread_registry.NumThreadsLocked(); i--;) {
143    ThreadContext* tctx = (ThreadContext*)ctx->thread_registry.GetThreadLocked(
144        static_cast<Tid>(i));
145    // Potentially we could purge all ThreadStatusDead threads from the
146    // registry. Since we reset all shadow, they can't race with anything
147    // anymore. However, their tid's can still be stored in some aux places
148    // (e.g. tid of thread that created something).
149    auto trace = &tctx->trace;
150    Lock lock(&trace->mtx);
151    bool attached = tctx->thr && tctx->thr->slot;
152    auto parts = &trace->parts;
153    bool local = false;
154    while (!parts->Empty()) {
155      auto part = parts->Front();
156      local = local || part == trace->local_head;
157      if (local)
158        CHECK(!ctx->trace_part_recycle.Queued(part));
159      else
160        ctx->trace_part_recycle.Remove(part);
161      if (attached && parts->Size() == 1) {
162        // The thread is running and this is the last/current part.
163        // Set the trace position to the end of the current part
164        // to force the thread to call SwitchTracePart and re-attach
165        // to a new slot and allocate a new trace part.
166        // Note: the thread is concurrently modifying the position as well,
167        // so this is only best-effort. The thread can only modify position
168        // within this part, because switching parts is protected by
169        // slot/trace mutexes that we hold here.
170        atomic_store_relaxed(
171            &tctx->thr->trace_pos,
172            reinterpret_cast<uptr>(&part->events[TracePart::kSize]));
173        break;
174      }
175      parts->Remove(part);
176      TracePartFree(part);
177    }
178    CHECK_LE(parts->Size(), 1);
179    trace->local_head = parts->Front();
180    if (tctx->thr && !tctx->thr->slot) {
181      atomic_store_relaxed(&tctx->thr->trace_pos, 0);
182      tctx->thr->trace_prev_pc = 0;
183    }
184    if (trace->parts_allocated > trace->parts.Size()) {
185      ctx->trace_part_finished_excess +=
186          trace->parts_allocated - trace->parts.Size();
187      trace->parts_allocated = trace->parts.Size();
188    }
189  }
190  while (ctx->slot_queue.PopFront()) {
191  }
192  for (auto& slot : ctx->slots) {
193    slot.SetEpoch(kEpochZero);
194    slot.journal.Reset();
195    slot.thr = nullptr;
196    ctx->slot_queue.PushBack(&slot);
197  }
198
199  DPrintf("Resetting shadow...\n");
200  auto shadow_begin = ShadowBeg();
201  auto shadow_end = ShadowEnd();
202#if SANITIZER_GO
203  CHECK_NE(0, ctx->mapped_shadow_begin);
204  shadow_begin = ctx->mapped_shadow_begin;
205  shadow_end = ctx->mapped_shadow_end;
206  VPrintf(2, "shadow_begin-shadow_end: (0x%zx-0x%zx)\n",
207          shadow_begin, shadow_end);
208#endif
209
210#if SANITIZER_WINDOWS
211  auto resetFailed =
212      !ZeroMmapFixedRegion(shadow_begin, shadow_end - shadow_begin);
213#else
214  auto resetFailed =
215      !MmapFixedSuperNoReserve(shadow_begin, shadow_end-shadow_begin, "shadow");
216#  if !SANITIZER_GO
217  DontDumpShadow(shadow_begin, shadow_end - shadow_begin);
218#  endif
219#endif
220  if (resetFailed) {
221    Printf("failed to reset shadow memory\n");
222    Die();
223  }
224  DPrintf("Resetting meta shadow...\n");
225  ctx->metamap.ResetClocks();
226  StoreShadow(&ctx->last_spurious_race, Shadow::kEmpty);
227  ctx->resetting = false;
228}
229
230// Clang does not understand locking all slots in the loop:
231// error: expecting mutex 'slot.mtx' to be held at start of each loop
232void DoReset(ThreadState* thr, uptr epoch) SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
233  for (auto& slot : ctx->slots) {
234    slot.mtx.Lock();
235    if (UNLIKELY(epoch == 0))
236      epoch = ctx->global_epoch;
237    if (UNLIKELY(epoch != ctx->global_epoch)) {
238      // Epoch can't change once we've locked the first slot.
239      CHECK_EQ(slot.sid, 0);
240      slot.mtx.Unlock();
241      return;
242    }
243  }
244  DPrintf("#%d: DoReset epoch=%lu\n", thr ? thr->tid : -1, epoch);
245  DoResetImpl(epoch);
246  for (auto& slot : ctx->slots) slot.mtx.Unlock();
247}
248
249void FlushShadowMemory() { DoReset(nullptr, 0); }
250
251static TidSlot* FindSlotAndLock(ThreadState* thr)
252    SANITIZER_ACQUIRE(thr->slot->mtx) SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
253  CHECK(!thr->slot);
254  TidSlot* slot = nullptr;
255  for (;;) {
256    uptr epoch;
257    {
258      Lock lock(&ctx->slot_mtx);
259      epoch = ctx->global_epoch;
260      if (slot) {
261        // This is an exhausted slot from the previous iteration.
262        if (ctx->slot_queue.Queued(slot))
263          ctx->slot_queue.Remove(slot);
264        thr->slot_locked = false;
265        slot->mtx.Unlock();
266      }
267      for (;;) {
268        slot = ctx->slot_queue.PopFront();
269        if (!slot)
270          break;
271        if (slot->epoch() != kEpochLast) {
272          ctx->slot_queue.PushBack(slot);
273          break;
274        }
275      }
276    }
277    if (!slot) {
278      DoReset(thr, epoch);
279      continue;
280    }
281    slot->mtx.Lock();
282    CHECK(!thr->slot_locked);
283    thr->slot_locked = true;
284    if (slot->thr) {
285      DPrintf("#%d: preempting sid=%d tid=%d\n", thr->tid, (u32)slot->sid,
286              slot->thr->tid);
287      slot->SetEpoch(slot->thr->fast_state.epoch());
288      slot->thr = nullptr;
289    }
290    if (slot->epoch() != kEpochLast)
291      return slot;
292  }
293}
294
295void SlotAttachAndLock(ThreadState* thr) {
296  TidSlot* slot = FindSlotAndLock(thr);
297  DPrintf("#%d: SlotAttach: slot=%u\n", thr->tid, static_cast<int>(slot->sid));
298  CHECK(!slot->thr);
299  CHECK(!thr->slot);
300  slot->thr = thr;
301  thr->slot = slot;
302  Epoch epoch = EpochInc(slot->epoch());
303  CHECK(!EpochOverflow(epoch));
304  slot->SetEpoch(epoch);
305  thr->fast_state.SetSid(slot->sid);
306  thr->fast_state.SetEpoch(epoch);
307  if (thr->slot_epoch != ctx->global_epoch) {
308    thr->slot_epoch = ctx->global_epoch;
309    thr->clock.Reset();
310#if !SANITIZER_GO
311    thr->last_sleep_stack_id = kInvalidStackID;
312    thr->last_sleep_clock.Reset();
313#endif
314  }
315  thr->clock.Set(slot->sid, epoch);
316  slot->journal.PushBack({thr->tid, epoch});
317}
318
319static void SlotDetachImpl(ThreadState* thr, bool exiting) {
320  TidSlot* slot = thr->slot;
321  thr->slot = nullptr;
322  if (thr != slot->thr) {
323    slot = nullptr;  // we don't own the slot anymore
324    if (thr->slot_epoch != ctx->global_epoch) {
325      TracePart* part = nullptr;
326      auto* trace = &thr->tctx->trace;
327      {
328        Lock l(&trace->mtx);
329        auto* parts = &trace->parts;
330        // The trace can be completely empty in an unlikely event
331        // the thread is preempted right after it acquired the slot
332        // in ThreadStart and did not trace any events yet.
333        CHECK_LE(parts->Size(), 1);
334        part = parts->PopFront();
335        thr->tctx->trace.local_head = nullptr;
336        atomic_store_relaxed(&thr->trace_pos, 0);
337        thr->trace_prev_pc = 0;
338      }
339      if (part) {
340        Lock l(&ctx->slot_mtx);
341        TracePartFree(part);
342      }
343    }
344    return;
345  }
346  CHECK(exiting || thr->fast_state.epoch() == kEpochLast);
347  slot->SetEpoch(thr->fast_state.epoch());
348  slot->thr = nullptr;
349}
350
351void SlotDetach(ThreadState* thr) {
352  Lock lock(&thr->slot->mtx);
353  SlotDetachImpl(thr, true);
354}
355
356void SlotLock(ThreadState* thr) SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
357  DCHECK(!thr->slot_locked);
358#if SANITIZER_DEBUG
359  // Check these mutexes are not locked.
360  // We can call DoReset from SlotAttachAndLock, which will lock
361  // these mutexes, but it happens only every once in a while.
362  { ThreadRegistryLock lock(&ctx->thread_registry); }
363  { Lock lock(&ctx->slot_mtx); }
364#endif
365  TidSlot* slot = thr->slot;
366  slot->mtx.Lock();
367  thr->slot_locked = true;
368  if (LIKELY(thr == slot->thr && thr->fast_state.epoch() != kEpochLast))
369    return;
370  SlotDetachImpl(thr, false);
371  thr->slot_locked = false;
372  slot->mtx.Unlock();
373  SlotAttachAndLock(thr);
374}
375
376void SlotUnlock(ThreadState* thr) {
377  DCHECK(thr->slot_locked);
378  thr->slot_locked = false;
379  thr->slot->mtx.Unlock();
380}
381
382Context::Context()
383    : initialized(),
384      report_mtx(MutexTypeReport),
385      nreported(),
386      thread_registry([](Tid tid) -> ThreadContextBase* {
387        return new (Alloc(sizeof(ThreadContext))) ThreadContext(tid);
388      }),
389      racy_mtx(MutexTypeRacy),
390      racy_stacks(),
391      fired_suppressions_mtx(MutexTypeFired),
392      slot_mtx(MutexTypeSlots),
393      resetting() {
394  fired_suppressions.reserve(8);
395  for (uptr i = 0; i < ARRAY_SIZE(slots); i++) {
396    TidSlot* slot = &slots[i];
397    slot->sid = static_cast<Sid>(i);
398    slot_queue.PushBack(slot);
399  }
400  global_epoch = 1;
401}
402
403TidSlot::TidSlot() : mtx(MutexTypeSlot) {}
404
405// The objects are allocated in TLS, so one may rely on zero-initialization.
406ThreadState::ThreadState(Tid tid)
407    // Do not touch these, rely on zero initialization,
408    // they may be accessed before the ctor.
409    // ignore_reads_and_writes()
410    // ignore_interceptors()
411    : tid(tid) {
412  CHECK_EQ(reinterpret_cast<uptr>(this) % SANITIZER_CACHE_LINE_SIZE, 0);
413#if !SANITIZER_GO
414  // C/C++ uses fixed size shadow stack.
415  const int kInitStackSize = kShadowStackSize;
416  shadow_stack = static_cast<uptr*>(
417      MmapNoReserveOrDie(kInitStackSize * sizeof(uptr), "shadow stack"));
418  SetShadowRegionHugePageMode(reinterpret_cast<uptr>(shadow_stack),
419                              kInitStackSize * sizeof(uptr));
420#else
421  // Go uses malloc-allocated shadow stack with dynamic size.
422  const int kInitStackSize = 8;
423  shadow_stack = static_cast<uptr*>(Alloc(kInitStackSize * sizeof(uptr)));
424#endif
425  shadow_stack_pos = shadow_stack;
426  shadow_stack_end = shadow_stack + kInitStackSize;
427}
428
429#if !SANITIZER_GO
430void MemoryProfiler(u64 uptime) {
431  if (ctx->memprof_fd == kInvalidFd)
432    return;
433  InternalMmapVector<char> buf(4096);
434  WriteMemoryProfile(buf.data(), buf.size(), uptime);
435  WriteToFile(ctx->memprof_fd, buf.data(), internal_strlen(buf.data()));
436}
437
438static bool InitializeMemoryProfiler() {
439  ctx->memprof_fd = kInvalidFd;
440  const char *fname = flags()->profile_memory;
441  if (!fname || !fname[0])
442    return false;
443  if (internal_strcmp(fname, "stdout") == 0) {
444    ctx->memprof_fd = 1;
445  } else if (internal_strcmp(fname, "stderr") == 0) {
446    ctx->memprof_fd = 2;
447  } else {
448    InternalScopedString filename;
449    filename.AppendF("%s.%d", fname, (int)internal_getpid());
450    ctx->memprof_fd = OpenFile(filename.data(), WrOnly);
451    if (ctx->memprof_fd == kInvalidFd) {
452      Printf("ThreadSanitizer: failed to open memory profile file '%s'\n",
453             filename.data());
454      return false;
455    }
456  }
457  MemoryProfiler(0);
458  return true;
459}
460
461static void *BackgroundThread(void *arg) {
462  // This is a non-initialized non-user thread, nothing to see here.
463  // We don't use ScopedIgnoreInterceptors, because we want ignores to be
464  // enabled even when the thread function exits (e.g. during pthread thread
465  // shutdown code).
466  cur_thread_init()->ignore_interceptors++;
467  const u64 kMs2Ns = 1000 * 1000;
468  const u64 start = NanoTime();
469
470  u64 last_flush = start;
471  uptr last_rss = 0;
472  while (!atomic_load_relaxed(&ctx->stop_background_thread)) {
473    SleepForMillis(100);
474    u64 now = NanoTime();
475
476    // Flush memory if requested.
477    if (flags()->flush_memory_ms > 0) {
478      if (last_flush + flags()->flush_memory_ms * kMs2Ns < now) {
479        VReport(1, "ThreadSanitizer: periodic memory flush\n");
480        FlushShadowMemory();
481        now = last_flush = NanoTime();
482      }
483    }
484    if (flags()->memory_limit_mb > 0) {
485      uptr rss = GetRSS();
486      uptr limit = uptr(flags()->memory_limit_mb) << 20;
487      VReport(1,
488              "ThreadSanitizer: memory flush check"
489              " RSS=%llu LAST=%llu LIMIT=%llu\n",
490              (u64)rss >> 20, (u64)last_rss >> 20, (u64)limit >> 20);
491      if (2 * rss > limit + last_rss) {
492        VReport(1, "ThreadSanitizer: flushing memory due to RSS\n");
493        FlushShadowMemory();
494        rss = GetRSS();
495        now = NanoTime();
496        VReport(1, "ThreadSanitizer: memory flushed RSS=%llu\n",
497                (u64)rss >> 20);
498      }
499      last_rss = rss;
500    }
501
502    MemoryProfiler(now - start);
503
504    // Flush symbolizer cache if requested.
505    if (flags()->flush_symbolizer_ms > 0) {
506      u64 last = atomic_load(&ctx->last_symbolize_time_ns,
507                             memory_order_relaxed);
508      if (last != 0 && last + flags()->flush_symbolizer_ms * kMs2Ns < now) {
509        Lock l(&ctx->report_mtx);
510        ScopedErrorReportLock l2;
511        SymbolizeFlush();
512        atomic_store(&ctx->last_symbolize_time_ns, 0, memory_order_relaxed);
513      }
514    }
515  }
516  return nullptr;
517}
518
519static void StartBackgroundThread() {
520  ctx->background_thread = internal_start_thread(&BackgroundThread, 0);
521}
522
523#ifndef __mips__
524static void StopBackgroundThread() {
525  atomic_store(&ctx->stop_background_thread, 1, memory_order_relaxed);
526  internal_join_thread(ctx->background_thread);
527  ctx->background_thread = 0;
528}
529#endif
530#endif
531
532void DontNeedShadowFor(uptr addr, uptr size) {
533  ReleaseMemoryPagesToOS(reinterpret_cast<uptr>(MemToShadow(addr)),
534                         reinterpret_cast<uptr>(MemToShadow(addr + size)));
535}
536
537#if !SANITIZER_GO
538// We call UnmapShadow before the actual munmap, at that point we don't yet
539// know if the provided address/size are sane. We can't call UnmapShadow
540// after the actual munmap becuase at that point the memory range can
541// already be reused for something else, so we can't rely on the munmap
542// return value to understand is the values are sane.
543// While calling munmap with insane values (non-canonical address, negative
544// size, etc) is an error, the kernel won't crash. We must also try to not
545// crash as the failure mode is very confusing (paging fault inside of the
546// runtime on some derived shadow address).
547static bool IsValidMmapRange(uptr addr, uptr size) {
548  if (size == 0)
549    return true;
550  if (static_cast<sptr>(size) < 0)
551    return false;
552  if (!IsAppMem(addr) || !IsAppMem(addr + size - 1))
553    return false;
554  // Check that if the start of the region belongs to one of app ranges,
555  // end of the region belongs to the same region.
556  const uptr ranges[][2] = {
557      {LoAppMemBeg(), LoAppMemEnd()},
558      {MidAppMemBeg(), MidAppMemEnd()},
559      {HiAppMemBeg(), HiAppMemEnd()},
560  };
561  for (auto range : ranges) {
562    if (addr >= range[0] && addr < range[1])
563      return addr + size <= range[1];
564  }
565  return false;
566}
567
568void UnmapShadow(ThreadState *thr, uptr addr, uptr size) {
569  if (size == 0 || !IsValidMmapRange(addr, size))
570    return;
571  DontNeedShadowFor(addr, size);
572  ScopedGlobalProcessor sgp;
573  SlotLocker locker(thr, true);
574  ctx->metamap.ResetRange(thr->proc(), addr, size, true);
575}
576#endif
577
578void MapShadow(uptr addr, uptr size) {
579  // Ensure thead registry lock held, so as to synchronize
580  // with DoReset, which also access the mapped_shadow_* ctxt fields.
581  ThreadRegistryLock lock0(&ctx->thread_registry);
582  static bool data_mapped = false;
583
584#if !SANITIZER_GO
585  // Global data is not 64K aligned, but there are no adjacent mappings,
586  // so we can get away with unaligned mapping.
587  // CHECK_EQ(addr, addr & ~((64 << 10) - 1));  // windows wants 64K alignment
588  const uptr kPageSize = GetPageSizeCached();
589  uptr shadow_begin = RoundDownTo((uptr)MemToShadow(addr), kPageSize);
590  uptr shadow_end = RoundUpTo((uptr)MemToShadow(addr + size), kPageSize);
591  if (!MmapFixedNoReserve(shadow_begin, shadow_end - shadow_begin, "shadow"))
592    Die();
593#else
594  uptr shadow_begin = RoundDownTo((uptr)MemToShadow(addr), (64 << 10));
595  uptr shadow_end = RoundUpTo((uptr)MemToShadow(addr + size), (64 << 10));
596  VPrintf(2, "MapShadow for (0x%zx-0x%zx), begin/end: (0x%zx-0x%zx)\n",
597          addr, addr + size, shadow_begin, shadow_end);
598
599  if (!data_mapped) {
600    // First call maps data+bss.
601    if (!MmapFixedSuperNoReserve(shadow_begin, shadow_end - shadow_begin, "shadow"))
602      Die();
603  } else {
604    VPrintf(2, "ctx->mapped_shadow_{begin,end} = (0x%zx-0x%zx)\n",
605            ctx->mapped_shadow_begin, ctx->mapped_shadow_end);
606    // Second and subsequent calls map heap.
607    if (shadow_end <= ctx->mapped_shadow_end)
608      return;
609    if (!ctx->mapped_shadow_begin || ctx->mapped_shadow_begin > shadow_begin)
610       ctx->mapped_shadow_begin = shadow_begin;
611    if (shadow_begin < ctx->mapped_shadow_end)
612      shadow_begin = ctx->mapped_shadow_end;
613    VPrintf(2, "MapShadow begin/end = (0x%zx-0x%zx)\n",
614            shadow_begin, shadow_end);
615    if (!MmapFixedSuperNoReserve(shadow_begin, shadow_end - shadow_begin,
616                                 "shadow"))
617      Die();
618    ctx->mapped_shadow_end = shadow_end;
619  }
620#endif
621
622  // Meta shadow is 2:1, so tread carefully.
623  static uptr mapped_meta_end = 0;
624  uptr meta_begin = (uptr)MemToMeta(addr);
625  uptr meta_end = (uptr)MemToMeta(addr + size);
626  meta_begin = RoundDownTo(meta_begin, 64 << 10);
627  meta_end = RoundUpTo(meta_end, 64 << 10);
628  if (!data_mapped) {
629    // First call maps data+bss.
630    data_mapped = true;
631    if (!MmapFixedSuperNoReserve(meta_begin, meta_end - meta_begin,
632                                 "meta shadow"))
633      Die();
634  } else {
635    // Mapping continuous heap.
636    // Windows wants 64K alignment.
637    meta_begin = RoundDownTo(meta_begin, 64 << 10);
638    meta_end = RoundUpTo(meta_end, 64 << 10);
639    CHECK_GT(meta_end, mapped_meta_end);
640    if (meta_begin < mapped_meta_end)
641      meta_begin = mapped_meta_end;
642    if (!MmapFixedSuperNoReserve(meta_begin, meta_end - meta_begin,
643                                 "meta shadow"))
644      Die();
645    mapped_meta_end = meta_end;
646  }
647  VPrintf(2, "mapped meta shadow for (0x%zx-0x%zx) at (0x%zx-0x%zx)\n", addr,
648          addr + size, meta_begin, meta_end);
649}
650
651#if !SANITIZER_GO
652static void OnStackUnwind(const SignalContext &sig, const void *,
653                          BufferedStackTrace *stack) {
654  stack->Unwind(StackTrace::GetNextInstructionPc(sig.pc), sig.bp, sig.context,
655                common_flags()->fast_unwind_on_fatal);
656}
657
658static void TsanOnDeadlySignal(int signo, void *siginfo, void *context) {
659  HandleDeadlySignal(siginfo, context, GetTid(), &OnStackUnwind, nullptr);
660}
661#endif
662
663void CheckUnwind() {
664  // There is high probability that interceptors will check-fail as well,
665  // on the other hand there is no sense in processing interceptors
666  // since we are going to die soon.
667  ScopedIgnoreInterceptors ignore;
668#if !SANITIZER_GO
669  ThreadState* thr = cur_thread();
670  thr->nomalloc = false;
671  thr->ignore_sync++;
672  thr->ignore_reads_and_writes++;
673  atomic_store_relaxed(&thr->in_signal_handler, 0);
674#endif
675  PrintCurrentStackSlow(StackTrace::GetCurrentPc());
676}
677
678bool is_initialized;
679
680void Initialize(ThreadState *thr) {
681  // Thread safe because done before all threads exist.
682  if (is_initialized)
683    return;
684  is_initialized = true;
685  // We are not ready to handle interceptors yet.
686  ScopedIgnoreInterceptors ignore;
687  SanitizerToolName = "ThreadSanitizer";
688  // Install tool-specific callbacks in sanitizer_common.
689  SetCheckUnwindCallback(CheckUnwind);
690
691  ctx = new(ctx_placeholder) Context;
692  const char *env_name = SANITIZER_GO ? "GORACE" : "TSAN_OPTIONS";
693  const char *options = GetEnv(env_name);
694  CacheBinaryName();
695  CheckASLR();
696  InitializeFlags(&ctx->flags, options, env_name);
697  AvoidCVE_2016_2143();
698  __sanitizer::InitializePlatformEarly();
699  __tsan::InitializePlatformEarly();
700
701#if !SANITIZER_GO
702  InitializeAllocator();
703  ReplaceSystemMalloc();
704#endif
705  if (common_flags()->detect_deadlocks)
706    ctx->dd = DDetector::Create(flags());
707  Processor *proc = ProcCreate();
708  ProcWire(proc, thr);
709  InitializeInterceptors();
710  InitializePlatform();
711  InitializeDynamicAnnotations();
712#if !SANITIZER_GO
713  InitializeShadowMemory();
714  InitializeAllocatorLate();
715  InstallDeadlySignalHandlers(TsanOnDeadlySignal);
716#endif
717  // Setup correct file descriptor for error reports.
718  __sanitizer_set_report_path(common_flags()->log_path);
719  InitializeSuppressions();
720#if !SANITIZER_GO
721  InitializeLibIgnore();
722  Symbolizer::GetOrInit()->AddHooks(EnterSymbolizer, ExitSymbolizer);
723#endif
724
725  VPrintf(1, "***** Running under ThreadSanitizer v3 (pid %d) *****\n",
726          (int)internal_getpid());
727
728  // Initialize thread 0.
729  Tid tid = ThreadCreate(nullptr, 0, 0, true);
730  CHECK_EQ(tid, kMainTid);
731  ThreadStart(thr, tid, GetTid(), ThreadType::Regular);
732#if TSAN_CONTAINS_UBSAN
733  __ubsan::InitAsPlugin();
734#endif
735
736#if !SANITIZER_GO
737  Symbolizer::LateInitialize();
738  if (InitializeMemoryProfiler() || flags()->force_background_thread)
739    MaybeSpawnBackgroundThread();
740#endif
741  ctx->initialized = true;
742
743  if (flags()->stop_on_start) {
744    Printf("ThreadSanitizer is suspended at startup (pid %d)."
745           " Call __tsan_resume().\n",
746           (int)internal_getpid());
747    while (__tsan_resumed == 0) {}
748  }
749
750  OnInitialize();
751}
752
753void MaybeSpawnBackgroundThread() {
754  // On MIPS, TSan initialization is run before
755  // __pthread_initialize_minimal_internal() is finished, so we can not spawn
756  // new threads.
757#if !SANITIZER_GO && !defined(__mips__)
758  static atomic_uint32_t bg_thread = {};
759  if (atomic_load(&bg_thread, memory_order_relaxed) == 0 &&
760      atomic_exchange(&bg_thread, 1, memory_order_relaxed) == 0) {
761    StartBackgroundThread();
762    SetSandboxingCallback(StopBackgroundThread);
763  }
764#endif
765}
766
767int Finalize(ThreadState *thr) {
768  bool failed = false;
769
770#if !SANITIZER_GO
771  if (common_flags()->print_module_map == 1)
772    DumpProcessMap();
773#endif
774
775  if (flags()->atexit_sleep_ms > 0 && ThreadCount(thr) > 1)
776    internal_usleep(u64(flags()->atexit_sleep_ms) * 1000);
777
778  {
779    // Wait for pending reports.
780    ScopedErrorReportLock lock;
781  }
782
783#if !SANITIZER_GO
784  if (Verbosity()) AllocatorPrintStats();
785#endif
786
787  ThreadFinalize(thr);
788
789  if (ctx->nreported) {
790    failed = true;
791#if !SANITIZER_GO
792    Printf("ThreadSanitizer: reported %d warnings\n", ctx->nreported);
793#else
794    Printf("Found %d data race(s)\n", ctx->nreported);
795#endif
796  }
797
798  if (common_flags()->print_suppressions)
799    PrintMatchedSuppressions();
800
801  failed = OnFinalize(failed);
802
803  return failed ? common_flags()->exitcode : 0;
804}
805
806#if !SANITIZER_GO
807void ForkBefore(ThreadState* thr, uptr pc) SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
808  GlobalProcessorLock();
809  // Detaching from the slot makes OnUserFree skip writing to the shadow.
810  // The slot will be locked so any attempts to use it will deadlock anyway.
811  SlotDetach(thr);
812  for (auto& slot : ctx->slots) slot.mtx.Lock();
813  ctx->thread_registry.Lock();
814  ctx->slot_mtx.Lock();
815  ScopedErrorReportLock::Lock();
816  AllocatorLock();
817  // Suppress all reports in the pthread_atfork callbacks.
818  // Reports will deadlock on the report_mtx.
819  // We could ignore sync operations as well,
820  // but so far it's unclear if it will do more good or harm.
821  // Unnecessarily ignoring things can lead to false positives later.
822  thr->suppress_reports++;
823  // On OS X, REAL(fork) can call intercepted functions (OSSpinLockLock), and
824  // we'll assert in CheckNoLocks() unless we ignore interceptors.
825  // On OS X libSystem_atfork_prepare/parent/child callbacks are called
826  // after/before our callbacks and they call free.
827  thr->ignore_interceptors++;
828  // Disables memory write in OnUserAlloc/Free.
829  thr->ignore_reads_and_writes++;
830
831  __tsan_test_only_on_fork();
832}
833
834static void ForkAfter(ThreadState* thr) SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
835  thr->suppress_reports--;  // Enabled in ForkBefore.
836  thr->ignore_interceptors--;
837  thr->ignore_reads_and_writes--;
838  AllocatorUnlock();
839  ScopedErrorReportLock::Unlock();
840  ctx->slot_mtx.Unlock();
841  ctx->thread_registry.Unlock();
842  for (auto& slot : ctx->slots) slot.mtx.Unlock();
843  SlotAttachAndLock(thr);
844  SlotUnlock(thr);
845  GlobalProcessorUnlock();
846}
847
848void ForkParentAfter(ThreadState* thr, uptr pc) { ForkAfter(thr); }
849
850void ForkChildAfter(ThreadState* thr, uptr pc, bool start_thread) {
851  ForkAfter(thr);
852  u32 nthread = ctx->thread_registry.OnFork(thr->tid);
853  VPrintf(1,
854          "ThreadSanitizer: forked new process with pid %d,"
855          " parent had %d threads\n",
856          (int)internal_getpid(), (int)nthread);
857  if (nthread == 1) {
858    if (start_thread)
859      StartBackgroundThread();
860  } else {
861    // We've just forked a multi-threaded process. We cannot reasonably function
862    // after that (some mutexes may be locked before fork). So just enable
863    // ignores for everything in the hope that we will exec soon.
864    ctx->after_multithreaded_fork = true;
865    thr->ignore_interceptors++;
866    thr->suppress_reports++;
867    ThreadIgnoreBegin(thr, pc);
868    ThreadIgnoreSyncBegin(thr, pc);
869  }
870}
871#endif
872
873#if SANITIZER_GO
874NOINLINE
875void GrowShadowStack(ThreadState *thr) {
876  const int sz = thr->shadow_stack_end - thr->shadow_stack;
877  const int newsz = 2 * sz;
878  auto *newstack = (uptr *)Alloc(newsz * sizeof(uptr));
879  internal_memcpy(newstack, thr->shadow_stack, sz * sizeof(uptr));
880  Free(thr->shadow_stack);
881  thr->shadow_stack = newstack;
882  thr->shadow_stack_pos = newstack + sz;
883  thr->shadow_stack_end = newstack + newsz;
884}
885#endif
886
887StackID CurrentStackId(ThreadState *thr, uptr pc) {
888#if !SANITIZER_GO
889  if (!thr->is_inited)  // May happen during bootstrap.
890    return kInvalidStackID;
891#endif
892  if (pc != 0) {
893#if !SANITIZER_GO
894    DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
895#else
896    if (thr->shadow_stack_pos == thr->shadow_stack_end)
897      GrowShadowStack(thr);
898#endif
899    thr->shadow_stack_pos[0] = pc;
900    thr->shadow_stack_pos++;
901  }
902  StackID id = StackDepotPut(
903      StackTrace(thr->shadow_stack, thr->shadow_stack_pos - thr->shadow_stack));
904  if (pc != 0)
905    thr->shadow_stack_pos--;
906  return id;
907}
908
909static bool TraceSkipGap(ThreadState* thr) {
910  Trace *trace = &thr->tctx->trace;
911  Event *pos = reinterpret_cast<Event *>(atomic_load_relaxed(&thr->trace_pos));
912  DCHECK_EQ(reinterpret_cast<uptr>(pos + 1) & TracePart::kAlignment, 0);
913  auto *part = trace->parts.Back();
914  DPrintf("#%d: TraceSwitchPart enter trace=%p parts=%p-%p pos=%p\n", thr->tid,
915          trace, trace->parts.Front(), part, pos);
916  if (!part)
917    return false;
918  // We can get here when we still have space in the current trace part.
919  // The fast-path check in TraceAcquire has false positives in the middle of
920  // the part. Check if we are indeed at the end of the current part or not,
921  // and fill any gaps with NopEvent's.
922  Event* end = &part->events[TracePart::kSize];
923  DCHECK_GE(pos, &part->events[0]);
924  DCHECK_LE(pos, end);
925  if (pos + 1 < end) {
926    if ((reinterpret_cast<uptr>(pos) & TracePart::kAlignment) ==
927        TracePart::kAlignment)
928      *pos++ = NopEvent;
929    *pos++ = NopEvent;
930    DCHECK_LE(pos + 2, end);
931    atomic_store_relaxed(&thr->trace_pos, reinterpret_cast<uptr>(pos));
932    return true;
933  }
934  // We are indeed at the end.
935  for (; pos < end; pos++) *pos = NopEvent;
936  return false;
937}
938
939NOINLINE
940void TraceSwitchPart(ThreadState* thr) {
941  if (TraceSkipGap(thr))
942    return;
943#if !SANITIZER_GO
944  if (ctx->after_multithreaded_fork) {
945    // We just need to survive till exec.
946    TracePart* part = thr->tctx->trace.parts.Back();
947    if (part) {
948      atomic_store_relaxed(&thr->trace_pos,
949                           reinterpret_cast<uptr>(&part->events[0]));
950      return;
951    }
952  }
953#endif
954  TraceSwitchPartImpl(thr);
955}
956
957void TraceSwitchPartImpl(ThreadState* thr) {
958  SlotLocker locker(thr, true);
959  Trace* trace = &thr->tctx->trace;
960  TracePart* part = TracePartAlloc(thr);
961  part->trace = trace;
962  thr->trace_prev_pc = 0;
963  TracePart* recycle = nullptr;
964  // Keep roughly half of parts local to the thread
965  // (not queued into the recycle queue).
966  uptr local_parts = (Trace::kMinParts + flags()->history_size + 1) / 2;
967  {
968    Lock lock(&trace->mtx);
969    if (trace->parts.Empty())
970      trace->local_head = part;
971    if (trace->parts.Size() >= local_parts) {
972      recycle = trace->local_head;
973      trace->local_head = trace->parts.Next(recycle);
974    }
975    trace->parts.PushBack(part);
976    atomic_store_relaxed(&thr->trace_pos,
977                         reinterpret_cast<uptr>(&part->events[0]));
978  }
979  // Make this part self-sufficient by restoring the current stack
980  // and mutex set in the beginning of the trace.
981  TraceTime(thr);
982  {
983    // Pathologically large stacks may not fit into the part.
984    // In these cases we log only fixed number of top frames.
985    const uptr kMaxFrames = 1000;
986    // Check that kMaxFrames won't consume the whole part.
987    static_assert(kMaxFrames < TracePart::kSize / 2, "kMaxFrames is too big");
988    uptr* pos = Max(&thr->shadow_stack[0], thr->shadow_stack_pos - kMaxFrames);
989    for (; pos < thr->shadow_stack_pos; pos++) {
990      if (TryTraceFunc(thr, *pos))
991        continue;
992      CHECK(TraceSkipGap(thr));
993      CHECK(TryTraceFunc(thr, *pos));
994    }
995  }
996  for (uptr i = 0; i < thr->mset.Size(); i++) {
997    MutexSet::Desc d = thr->mset.Get(i);
998    for (uptr i = 0; i < d.count; i++)
999      TraceMutexLock(thr, d.write ? EventType::kLock : EventType::kRLock, 0,
1000                     d.addr, d.stack_id);
1001  }
1002  // Callers of TraceSwitchPart expect that TraceAcquire will always succeed
1003  // after the call. It's possible that TryTraceFunc/TraceMutexLock above
1004  // filled the trace part exactly up to the TracePart::kAlignment gap
1005  // and the next TraceAcquire won't succeed. Skip the gap to avoid that.
1006  EventFunc *ev;
1007  if (!TraceAcquire(thr, &ev)) {
1008    CHECK(TraceSkipGap(thr));
1009    CHECK(TraceAcquire(thr, &ev));
1010  }
1011  {
1012    Lock lock(&ctx->slot_mtx);
1013    // There is a small chance that the slot may be not queued at this point.
1014    // This can happen if the slot has kEpochLast epoch and another thread
1015    // in FindSlotAndLock discovered that it's exhausted and removed it from
1016    // the slot queue. kEpochLast can happen in 2 cases: (1) if TraceSwitchPart
1017    // was called with the slot locked and epoch already at kEpochLast,
1018    // or (2) if we've acquired a new slot in SlotLock in the beginning
1019    // of the function and the slot was at kEpochLast - 1, so after increment
1020    // in SlotAttachAndLock it become kEpochLast.
1021    if (ctx->slot_queue.Queued(thr->slot)) {
1022      ctx->slot_queue.Remove(thr->slot);
1023      ctx->slot_queue.PushBack(thr->slot);
1024    }
1025    if (recycle)
1026      ctx->trace_part_recycle.PushBack(recycle);
1027  }
1028  DPrintf("#%d: TraceSwitchPart exit parts=%p-%p pos=0x%zx\n", thr->tid,
1029          trace->parts.Front(), trace->parts.Back(),
1030          atomic_load_relaxed(&thr->trace_pos));
1031}
1032
1033void ThreadIgnoreBegin(ThreadState* thr, uptr pc) {
1034  DPrintf("#%d: ThreadIgnoreBegin\n", thr->tid);
1035  thr->ignore_reads_and_writes++;
1036  CHECK_GT(thr->ignore_reads_and_writes, 0);
1037  thr->fast_state.SetIgnoreBit();
1038#if !SANITIZER_GO
1039  if (pc && !ctx->after_multithreaded_fork)
1040    thr->mop_ignore_set.Add(CurrentStackId(thr, pc));
1041#endif
1042}
1043
1044void ThreadIgnoreEnd(ThreadState *thr) {
1045  DPrintf("#%d: ThreadIgnoreEnd\n", thr->tid);
1046  CHECK_GT(thr->ignore_reads_and_writes, 0);
1047  thr->ignore_reads_and_writes--;
1048  if (thr->ignore_reads_and_writes == 0) {
1049    thr->fast_state.ClearIgnoreBit();
1050#if !SANITIZER_GO
1051    thr->mop_ignore_set.Reset();
1052#endif
1053  }
1054}
1055
1056#if !SANITIZER_GO
1057extern "C" SANITIZER_INTERFACE_ATTRIBUTE
1058uptr __tsan_testonly_shadow_stack_current_size() {
1059  ThreadState *thr = cur_thread();
1060  return thr->shadow_stack_pos - thr->shadow_stack;
1061}
1062#endif
1063
1064void ThreadIgnoreSyncBegin(ThreadState *thr, uptr pc) {
1065  DPrintf("#%d: ThreadIgnoreSyncBegin\n", thr->tid);
1066  thr->ignore_sync++;
1067  CHECK_GT(thr->ignore_sync, 0);
1068#if !SANITIZER_GO
1069  if (pc && !ctx->after_multithreaded_fork)
1070    thr->sync_ignore_set.Add(CurrentStackId(thr, pc));
1071#endif
1072}
1073
1074void ThreadIgnoreSyncEnd(ThreadState *thr) {
1075  DPrintf("#%d: ThreadIgnoreSyncEnd\n", thr->tid);
1076  CHECK_GT(thr->ignore_sync, 0);
1077  thr->ignore_sync--;
1078#if !SANITIZER_GO
1079  if (thr->ignore_sync == 0)
1080    thr->sync_ignore_set.Reset();
1081#endif
1082}
1083
1084bool MD5Hash::operator==(const MD5Hash &other) const {
1085  return hash[0] == other.hash[0] && hash[1] == other.hash[1];
1086}
1087
1088#if SANITIZER_DEBUG
1089void build_consistency_debug() {}
1090#else
1091void build_consistency_release() {}
1092#endif
1093}  // namespace __tsan
1094
1095#if SANITIZER_CHECK_DEADLOCKS
1096namespace __sanitizer {
1097using namespace __tsan;
1098MutexMeta mutex_meta[] = {
1099    {MutexInvalid, "Invalid", {}},
1100    {MutexThreadRegistry,
1101     "ThreadRegistry",
1102     {MutexTypeSlots, MutexTypeTrace, MutexTypeReport}},
1103    {MutexTypeReport, "Report", {MutexTypeTrace}},
1104    {MutexTypeSyncVar, "SyncVar", {MutexTypeReport, MutexTypeTrace}},
1105    {MutexTypeAnnotations, "Annotations", {}},
1106    {MutexTypeAtExit, "AtExit", {}},
1107    {MutexTypeFired, "Fired", {MutexLeaf}},
1108    {MutexTypeRacy, "Racy", {MutexLeaf}},
1109    {MutexTypeGlobalProc, "GlobalProc", {MutexTypeSlot, MutexTypeSlots}},
1110    {MutexTypeInternalAlloc, "InternalAlloc", {MutexLeaf}},
1111    {MutexTypeTrace, "Trace", {}},
1112    {MutexTypeSlot,
1113     "Slot",
1114     {MutexMulti, MutexTypeTrace, MutexTypeSyncVar, MutexThreadRegistry,
1115      MutexTypeSlots}},
1116    {MutexTypeSlots, "Slots", {MutexTypeTrace, MutexTypeReport}},
1117    {},
1118};
1119
1120void PrintMutexPC(uptr pc) { StackTrace(&pc, 1).Print(); }
1121
1122}  // namespace __sanitizer
1123#endif
1124