1//===-- combined.h ----------------------------------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#ifndef SCUDO_COMBINED_H_
10#define SCUDO_COMBINED_H_
11
12#include "chunk.h"
13#include "common.h"
14#include "flags.h"
15#include "flags_parser.h"
16#include "local_cache.h"
17#include "mem_map.h"
18#include "memtag.h"
19#include "options.h"
20#include "quarantine.h"
21#include "report.h"
22#include "secondary.h"
23#include "stack_depot.h"
24#include "string_utils.h"
25#include "tsd.h"
26
27#include "scudo/interface.h"
28
29#ifdef GWP_ASAN_HOOKS
30#include "gwp_asan/guarded_pool_allocator.h"
31#include "gwp_asan/optional/backtrace.h"
32#include "gwp_asan/optional/segv_handler.h"
33#endif // GWP_ASAN_HOOKS
34
35extern "C" inline void EmptyCallback() {}
36
37#ifdef HAVE_ANDROID_UNSAFE_FRAME_POINTER_CHASE
38// This function is not part of the NDK so it does not appear in any public
39// header files. We only declare/use it when targeting the platform.
40extern "C" size_t android_unsafe_frame_pointer_chase(scudo::uptr *buf,
41                                                     size_t num_entries);
42#endif
43
44namespace scudo {
45
46template <class Config, void (*PostInitCallback)(void) = EmptyCallback>
47class Allocator {
48public:
49  using PrimaryT = typename Config::template PrimaryT<Config>;
50  using SecondaryT = typename Config::template SecondaryT<Config>;
51  using CacheT = typename PrimaryT::CacheT;
52  typedef Allocator<Config, PostInitCallback> ThisT;
53  typedef typename Config::template TSDRegistryT<ThisT> TSDRegistryT;
54
55  void callPostInitCallback() {
56    pthread_once(&PostInitNonce, PostInitCallback);
57  }
58
59  struct QuarantineCallback {
60    explicit QuarantineCallback(ThisT &Instance, CacheT &LocalCache)
61        : Allocator(Instance), Cache(LocalCache) {}
62
63    // Chunk recycling function, returns a quarantined chunk to the backend,
64    // first making sure it hasn't been tampered with.
65    void recycle(void *Ptr) {
66      Chunk::UnpackedHeader Header;
67      Chunk::loadHeader(Allocator.Cookie, Ptr, &Header);
68      if (UNLIKELY(Header.State != Chunk::State::Quarantined))
69        reportInvalidChunkState(AllocatorAction::Recycling, Ptr);
70
71      Header.State = Chunk::State::Available;
72      Chunk::storeHeader(Allocator.Cookie, Ptr, &Header);
73
74      if (allocatorSupportsMemoryTagging<Config>())
75        Ptr = untagPointer(Ptr);
76      void *BlockBegin = Allocator::getBlockBegin(Ptr, &Header);
77      Cache.deallocate(Header.ClassId, BlockBegin);
78    }
79
80    // We take a shortcut when allocating a quarantine batch by working with the
81    // appropriate class ID instead of using Size. The compiler should optimize
82    // the class ID computation and work with the associated cache directly.
83    void *allocate(UNUSED uptr Size) {
84      const uptr QuarantineClassId = SizeClassMap::getClassIdBySize(
85          sizeof(QuarantineBatch) + Chunk::getHeaderSize());
86      void *Ptr = Cache.allocate(QuarantineClassId);
87      // Quarantine batch allocation failure is fatal.
88      if (UNLIKELY(!Ptr))
89        reportOutOfMemory(SizeClassMap::getSizeByClassId(QuarantineClassId));
90
91      Ptr = reinterpret_cast<void *>(reinterpret_cast<uptr>(Ptr) +
92                                     Chunk::getHeaderSize());
93      Chunk::UnpackedHeader Header = {};
94      Header.ClassId = QuarantineClassId & Chunk::ClassIdMask;
95      Header.SizeOrUnusedBytes = sizeof(QuarantineBatch);
96      Header.State = Chunk::State::Allocated;
97      Chunk::storeHeader(Allocator.Cookie, Ptr, &Header);
98
99      // Reset tag to 0 as this chunk may have been previously used for a tagged
100      // user allocation.
101      if (UNLIKELY(useMemoryTagging<Config>(Allocator.Primary.Options.load())))
102        storeTags(reinterpret_cast<uptr>(Ptr),
103                  reinterpret_cast<uptr>(Ptr) + sizeof(QuarantineBatch));
104
105      return Ptr;
106    }
107
108    void deallocate(void *Ptr) {
109      const uptr QuarantineClassId = SizeClassMap::getClassIdBySize(
110          sizeof(QuarantineBatch) + Chunk::getHeaderSize());
111      Chunk::UnpackedHeader Header;
112      Chunk::loadHeader(Allocator.Cookie, Ptr, &Header);
113
114      if (UNLIKELY(Header.State != Chunk::State::Allocated))
115        reportInvalidChunkState(AllocatorAction::Deallocating, Ptr);
116      DCHECK_EQ(Header.ClassId, QuarantineClassId);
117      DCHECK_EQ(Header.Offset, 0);
118      DCHECK_EQ(Header.SizeOrUnusedBytes, sizeof(QuarantineBatch));
119
120      Header.State = Chunk::State::Available;
121      Chunk::storeHeader(Allocator.Cookie, Ptr, &Header);
122      Cache.deallocate(QuarantineClassId,
123                       reinterpret_cast<void *>(reinterpret_cast<uptr>(Ptr) -
124                                                Chunk::getHeaderSize()));
125    }
126
127  private:
128    ThisT &Allocator;
129    CacheT &Cache;
130  };
131
132  typedef GlobalQuarantine<QuarantineCallback, void> QuarantineT;
133  typedef typename QuarantineT::CacheT QuarantineCacheT;
134
135  void init() {
136    performSanityChecks();
137
138    // Check if hardware CRC32 is supported in the binary and by the platform,
139    // if so, opt for the CRC32 hardware version of the checksum.
140    if (&computeHardwareCRC32 && hasHardwareCRC32())
141      HashAlgorithm = Checksum::HardwareCRC32;
142
143    if (UNLIKELY(!getRandom(&Cookie, sizeof(Cookie))))
144      Cookie = static_cast<u32>(getMonotonicTime() ^
145                                (reinterpret_cast<uptr>(this) >> 4));
146
147    initFlags();
148    reportUnrecognizedFlags();
149
150    // Store some flags locally.
151    if (getFlags()->may_return_null)
152      Primary.Options.set(OptionBit::MayReturnNull);
153    if (getFlags()->zero_contents)
154      Primary.Options.setFillContentsMode(ZeroFill);
155    else if (getFlags()->pattern_fill_contents)
156      Primary.Options.setFillContentsMode(PatternOrZeroFill);
157    if (getFlags()->dealloc_type_mismatch)
158      Primary.Options.set(OptionBit::DeallocTypeMismatch);
159    if (getFlags()->delete_size_mismatch)
160      Primary.Options.set(OptionBit::DeleteSizeMismatch);
161    if (allocatorSupportsMemoryTagging<Config>() &&
162        systemSupportsMemoryTagging())
163      Primary.Options.set(OptionBit::UseMemoryTagging);
164
165    QuarantineMaxChunkSize =
166        static_cast<u32>(getFlags()->quarantine_max_chunk_size);
167
168    Stats.init();
169    const s32 ReleaseToOsIntervalMs = getFlags()->release_to_os_interval_ms;
170    Primary.init(ReleaseToOsIntervalMs);
171    Secondary.init(&Stats, ReleaseToOsIntervalMs);
172    Quarantine.init(
173        static_cast<uptr>(getFlags()->quarantine_size_kb << 10),
174        static_cast<uptr>(getFlags()->thread_local_quarantine_size_kb << 10));
175
176    mapAndInitializeRingBuffer();
177  }
178
179  // Initialize the embedded GWP-ASan instance. Requires the main allocator to
180  // be functional, best called from PostInitCallback.
181  void initGwpAsan() {
182#ifdef GWP_ASAN_HOOKS
183    gwp_asan::options::Options Opt;
184    Opt.Enabled = getFlags()->GWP_ASAN_Enabled;
185    Opt.MaxSimultaneousAllocations =
186        getFlags()->GWP_ASAN_MaxSimultaneousAllocations;
187    Opt.SampleRate = getFlags()->GWP_ASAN_SampleRate;
188    Opt.InstallSignalHandlers = getFlags()->GWP_ASAN_InstallSignalHandlers;
189    Opt.Recoverable = getFlags()->GWP_ASAN_Recoverable;
190    // Embedded GWP-ASan is locked through the Scudo atfork handler (via
191    // Allocator::disable calling GWPASan.disable). Disable GWP-ASan's atfork
192    // handler.
193    Opt.InstallForkHandlers = false;
194    Opt.Backtrace = gwp_asan::backtrace::getBacktraceFunction();
195    GuardedAlloc.init(Opt);
196
197    if (Opt.InstallSignalHandlers)
198      gwp_asan::segv_handler::installSignalHandlers(
199          &GuardedAlloc, Printf,
200          gwp_asan::backtrace::getPrintBacktraceFunction(),
201          gwp_asan::backtrace::getSegvBacktraceFunction(),
202          Opt.Recoverable);
203
204    GuardedAllocSlotSize =
205        GuardedAlloc.getAllocatorState()->maximumAllocationSize();
206    Stats.add(StatFree, static_cast<uptr>(Opt.MaxSimultaneousAllocations) *
207                            GuardedAllocSlotSize);
208#endif // GWP_ASAN_HOOKS
209  }
210
211#ifdef GWP_ASAN_HOOKS
212  const gwp_asan::AllocationMetadata *getGwpAsanAllocationMetadata() {
213    return GuardedAlloc.getMetadataRegion();
214  }
215
216  const gwp_asan::AllocatorState *getGwpAsanAllocatorState() {
217    return GuardedAlloc.getAllocatorState();
218  }
219#endif // GWP_ASAN_HOOKS
220
221  ALWAYS_INLINE void initThreadMaybe(bool MinimalInit = false) {
222    TSDRegistry.initThreadMaybe(this, MinimalInit);
223  }
224
225  void unmapTestOnly() {
226    unmapRingBuffer();
227    TSDRegistry.unmapTestOnly(this);
228    Primary.unmapTestOnly();
229    Secondary.unmapTestOnly();
230#ifdef GWP_ASAN_HOOKS
231    if (getFlags()->GWP_ASAN_InstallSignalHandlers)
232      gwp_asan::segv_handler::uninstallSignalHandlers();
233    GuardedAlloc.uninitTestOnly();
234#endif // GWP_ASAN_HOOKS
235  }
236
237  TSDRegistryT *getTSDRegistry() { return &TSDRegistry; }
238  QuarantineT *getQuarantine() { return &Quarantine; }
239
240  // The Cache must be provided zero-initialized.
241  void initCache(CacheT *Cache) { Cache->init(&Stats, &Primary); }
242
243  // Release the resources used by a TSD, which involves:
244  // - draining the local quarantine cache to the global quarantine;
245  // - releasing the cached pointers back to the Primary;
246  // - unlinking the local stats from the global ones (destroying the cache does
247  //   the last two items).
248  void commitBack(TSD<ThisT> *TSD) {
249    TSD->assertLocked(/*BypassCheck=*/true);
250    Quarantine.drain(&TSD->getQuarantineCache(),
251                     QuarantineCallback(*this, TSD->getCache()));
252    TSD->getCache().destroy(&Stats);
253  }
254
255  void drainCache(TSD<ThisT> *TSD) {
256    TSD->assertLocked(/*BypassCheck=*/true);
257    Quarantine.drainAndRecycle(&TSD->getQuarantineCache(),
258                               QuarantineCallback(*this, TSD->getCache()));
259    TSD->getCache().drain();
260  }
261  void drainCaches() { TSDRegistry.drainCaches(this); }
262
263  ALWAYS_INLINE void *getHeaderTaggedPointer(void *Ptr) {
264    if (!allocatorSupportsMemoryTagging<Config>())
265      return Ptr;
266    auto UntaggedPtr = untagPointer(Ptr);
267    if (UntaggedPtr != Ptr)
268      return UntaggedPtr;
269    // Secondary, or pointer allocated while memory tagging is unsupported or
270    // disabled. The tag mismatch is okay in the latter case because tags will
271    // not be checked.
272    return addHeaderTag(Ptr);
273  }
274
275  ALWAYS_INLINE uptr addHeaderTag(uptr Ptr) {
276    if (!allocatorSupportsMemoryTagging<Config>())
277      return Ptr;
278    return addFixedTag(Ptr, 2);
279  }
280
281  ALWAYS_INLINE void *addHeaderTag(void *Ptr) {
282    return reinterpret_cast<void *>(addHeaderTag(reinterpret_cast<uptr>(Ptr)));
283  }
284
285  NOINLINE u32 collectStackTrace() {
286#ifdef HAVE_ANDROID_UNSAFE_FRAME_POINTER_CHASE
287    // Discard collectStackTrace() frame and allocator function frame.
288    constexpr uptr DiscardFrames = 2;
289    uptr Stack[MaxTraceSize + DiscardFrames];
290    uptr Size =
291        android_unsafe_frame_pointer_chase(Stack, MaxTraceSize + DiscardFrames);
292    Size = Min<uptr>(Size, MaxTraceSize + DiscardFrames);
293    return Depot.insert(Stack + Min<uptr>(DiscardFrames, Size), Stack + Size);
294#else
295    return 0;
296#endif
297  }
298
299  uptr computeOddEvenMaskForPointerMaybe(const Options &Options, uptr Ptr,
300                                         uptr ClassId) {
301    if (!Options.get(OptionBit::UseOddEvenTags))
302      return 0;
303
304    // If a chunk's tag is odd, we want the tags of the surrounding blocks to be
305    // even, and vice versa. Blocks are laid out Size bytes apart, and adding
306    // Size to Ptr will flip the least significant set bit of Size in Ptr, so
307    // that bit will have the pattern 010101... for consecutive blocks, which we
308    // can use to determine which tag mask to use.
309    return 0x5555U << ((Ptr >> SizeClassMap::getSizeLSBByClassId(ClassId)) & 1);
310  }
311
312  NOINLINE void *allocate(uptr Size, Chunk::Origin Origin,
313                          uptr Alignment = MinAlignment,
314                          bool ZeroContents = false) NO_THREAD_SAFETY_ANALYSIS {
315    initThreadMaybe();
316
317    const Options Options = Primary.Options.load();
318    if (UNLIKELY(Alignment > MaxAlignment)) {
319      if (Options.get(OptionBit::MayReturnNull))
320        return nullptr;
321      reportAlignmentTooBig(Alignment, MaxAlignment);
322    }
323    if (Alignment < MinAlignment)
324      Alignment = MinAlignment;
325
326#ifdef GWP_ASAN_HOOKS
327    if (UNLIKELY(GuardedAlloc.shouldSample())) {
328      if (void *Ptr = GuardedAlloc.allocate(Size, Alignment)) {
329        Stats.lock();
330        Stats.add(StatAllocated, GuardedAllocSlotSize);
331        Stats.sub(StatFree, GuardedAllocSlotSize);
332        Stats.unlock();
333        return Ptr;
334      }
335    }
336#endif // GWP_ASAN_HOOKS
337
338    const FillContentsMode FillContents = ZeroContents ? ZeroFill
339                                          : TSDRegistry.getDisableMemInit()
340                                              ? NoFill
341                                              : Options.getFillContentsMode();
342
343    // If the requested size happens to be 0 (more common than you might think),
344    // allocate MinAlignment bytes on top of the header. Then add the extra
345    // bytes required to fulfill the alignment requirements: we allocate enough
346    // to be sure that there will be an address in the block that will satisfy
347    // the alignment.
348    const uptr NeededSize =
349        roundUp(Size, MinAlignment) +
350        ((Alignment > MinAlignment) ? Alignment : Chunk::getHeaderSize());
351
352    // Takes care of extravagantly large sizes as well as integer overflows.
353    static_assert(MaxAllowedMallocSize < UINTPTR_MAX - MaxAlignment, "");
354    if (UNLIKELY(Size >= MaxAllowedMallocSize)) {
355      if (Options.get(OptionBit::MayReturnNull))
356        return nullptr;
357      reportAllocationSizeTooBig(Size, NeededSize, MaxAllowedMallocSize);
358    }
359    DCHECK_LE(Size, NeededSize);
360
361    void *Block = nullptr;
362    uptr ClassId = 0;
363    uptr SecondaryBlockEnd = 0;
364    if (LIKELY(PrimaryT::canAllocate(NeededSize))) {
365      ClassId = SizeClassMap::getClassIdBySize(NeededSize);
366      DCHECK_NE(ClassId, 0U);
367      bool UnlockRequired;
368      auto *TSD = TSDRegistry.getTSDAndLock(&UnlockRequired);
369      TSD->assertLocked(/*BypassCheck=*/!UnlockRequired);
370      Block = TSD->getCache().allocate(ClassId);
371      // If the allocation failed, retry in each successively larger class until
372      // it fits. If it fails to fit in the largest class, fallback to the
373      // Secondary.
374      if (UNLIKELY(!Block)) {
375        while (ClassId < SizeClassMap::LargestClassId && !Block)
376          Block = TSD->getCache().allocate(++ClassId);
377        if (!Block)
378          ClassId = 0;
379      }
380      if (UnlockRequired)
381        TSD->unlock();
382    }
383    if (UNLIKELY(ClassId == 0)) {
384      Block = Secondary.allocate(Options, Size, Alignment, &SecondaryBlockEnd,
385                                 FillContents);
386    }
387
388    if (UNLIKELY(!Block)) {
389      if (Options.get(OptionBit::MayReturnNull))
390        return nullptr;
391      printStats();
392      reportOutOfMemory(NeededSize);
393    }
394
395    const uptr BlockUptr = reinterpret_cast<uptr>(Block);
396    const uptr UnalignedUserPtr = BlockUptr + Chunk::getHeaderSize();
397    const uptr UserPtr = roundUp(UnalignedUserPtr, Alignment);
398
399    void *Ptr = reinterpret_cast<void *>(UserPtr);
400    void *TaggedPtr = Ptr;
401    if (LIKELY(ClassId)) {
402      // We only need to zero or tag the contents for Primary backed
403      // allocations. We only set tags for primary allocations in order to avoid
404      // faulting potentially large numbers of pages for large secondary
405      // allocations. We assume that guard pages are enough to protect these
406      // allocations.
407      //
408      // FIXME: When the kernel provides a way to set the background tag of a
409      // mapping, we should be able to tag secondary allocations as well.
410      //
411      // When memory tagging is enabled, zeroing the contents is done as part of
412      // setting the tag.
413      if (UNLIKELY(useMemoryTagging<Config>(Options))) {
414        uptr PrevUserPtr;
415        Chunk::UnpackedHeader Header;
416        const uptr BlockSize = PrimaryT::getSizeByClassId(ClassId);
417        const uptr BlockEnd = BlockUptr + BlockSize;
418        // If possible, try to reuse the UAF tag that was set by deallocate().
419        // For simplicity, only reuse tags if we have the same start address as
420        // the previous allocation. This handles the majority of cases since
421        // most allocations will not be more aligned than the minimum alignment.
422        //
423        // We need to handle situations involving reclaimed chunks, and retag
424        // the reclaimed portions if necessary. In the case where the chunk is
425        // fully reclaimed, the chunk's header will be zero, which will trigger
426        // the code path for new mappings and invalid chunks that prepares the
427        // chunk from scratch. There are three possibilities for partial
428        // reclaiming:
429        //
430        // (1) Header was reclaimed, data was partially reclaimed.
431        // (2) Header was not reclaimed, all data was reclaimed (e.g. because
432        //     data started on a page boundary).
433        // (3) Header was not reclaimed, data was partially reclaimed.
434        //
435        // Case (1) will be handled in the same way as for full reclaiming,
436        // since the header will be zero.
437        //
438        // We can detect case (2) by loading the tag from the start
439        // of the chunk. If it is zero, it means that either all data was
440        // reclaimed (since we never use zero as the chunk tag), or that the
441        // previous allocation was of size zero. Either way, we need to prepare
442        // a new chunk from scratch.
443        //
444        // We can detect case (3) by moving to the next page (if covered by the
445        // chunk) and loading the tag of its first granule. If it is zero, it
446        // means that all following pages may need to be retagged. On the other
447        // hand, if it is nonzero, we can assume that all following pages are
448        // still tagged, according to the logic that if any of the pages
449        // following the next page were reclaimed, the next page would have been
450        // reclaimed as well.
451        uptr TaggedUserPtr;
452        if (getChunkFromBlock(BlockUptr, &PrevUserPtr, &Header) &&
453            PrevUserPtr == UserPtr &&
454            (TaggedUserPtr = loadTag(UserPtr)) != UserPtr) {
455          uptr PrevEnd = TaggedUserPtr + Header.SizeOrUnusedBytes;
456          const uptr NextPage = roundUp(TaggedUserPtr, getPageSizeCached());
457          if (NextPage < PrevEnd && loadTag(NextPage) != NextPage)
458            PrevEnd = NextPage;
459          TaggedPtr = reinterpret_cast<void *>(TaggedUserPtr);
460          resizeTaggedChunk(PrevEnd, TaggedUserPtr + Size, Size, BlockEnd);
461          if (UNLIKELY(FillContents != NoFill && !Header.OriginOrWasZeroed)) {
462            // If an allocation needs to be zeroed (i.e. calloc) we can normally
463            // avoid zeroing the memory now since we can rely on memory having
464            // been zeroed on free, as this is normally done while setting the
465            // UAF tag. But if tagging was disabled per-thread when the memory
466            // was freed, it would not have been retagged and thus zeroed, and
467            // therefore it needs to be zeroed now.
468            memset(TaggedPtr, 0,
469                   Min(Size, roundUp(PrevEnd - TaggedUserPtr,
470                                     archMemoryTagGranuleSize())));
471          } else if (Size) {
472            // Clear any stack metadata that may have previously been stored in
473            // the chunk data.
474            memset(TaggedPtr, 0, archMemoryTagGranuleSize());
475          }
476        } else {
477          const uptr OddEvenMask =
478              computeOddEvenMaskForPointerMaybe(Options, BlockUptr, ClassId);
479          TaggedPtr = prepareTaggedChunk(Ptr, Size, OddEvenMask, BlockEnd);
480        }
481        storePrimaryAllocationStackMaybe(Options, Ptr);
482      } else {
483        Block = addHeaderTag(Block);
484        Ptr = addHeaderTag(Ptr);
485        if (UNLIKELY(FillContents != NoFill)) {
486          // This condition is not necessarily unlikely, but since memset is
487          // costly, we might as well mark it as such.
488          memset(Block, FillContents == ZeroFill ? 0 : PatternFillByte,
489                 PrimaryT::getSizeByClassId(ClassId));
490        }
491      }
492    } else {
493      Block = addHeaderTag(Block);
494      Ptr = addHeaderTag(Ptr);
495      if (UNLIKELY(useMemoryTagging<Config>(Options))) {
496        storeTags(reinterpret_cast<uptr>(Block), reinterpret_cast<uptr>(Ptr));
497        storeSecondaryAllocationStackMaybe(Options, Ptr, Size);
498      }
499    }
500
501    Chunk::UnpackedHeader Header = {};
502    if (UNLIKELY(UnalignedUserPtr != UserPtr)) {
503      const uptr Offset = UserPtr - UnalignedUserPtr;
504      DCHECK_GE(Offset, 2 * sizeof(u32));
505      // The BlockMarker has no security purpose, but is specifically meant for
506      // the chunk iteration function that can be used in debugging situations.
507      // It is the only situation where we have to locate the start of a chunk
508      // based on its block address.
509      reinterpret_cast<u32 *>(Block)[0] = BlockMarker;
510      reinterpret_cast<u32 *>(Block)[1] = static_cast<u32>(Offset);
511      Header.Offset = (Offset >> MinAlignmentLog) & Chunk::OffsetMask;
512    }
513    Header.ClassId = ClassId & Chunk::ClassIdMask;
514    Header.State = Chunk::State::Allocated;
515    Header.OriginOrWasZeroed = Origin & Chunk::OriginMask;
516    Header.SizeOrUnusedBytes =
517        (ClassId ? Size : SecondaryBlockEnd - (UserPtr + Size)) &
518        Chunk::SizeOrUnusedBytesMask;
519    Chunk::storeHeader(Cookie, Ptr, &Header);
520
521    return TaggedPtr;
522  }
523
524  NOINLINE void deallocate(void *Ptr, Chunk::Origin Origin, uptr DeleteSize = 0,
525                           UNUSED uptr Alignment = MinAlignment) {
526    if (UNLIKELY(!Ptr))
527      return;
528
529    // For a deallocation, we only ensure minimal initialization, meaning thread
530    // local data will be left uninitialized for now (when using ELF TLS). The
531    // fallback cache will be used instead. This is a workaround for a situation
532    // where the only heap operation performed in a thread would be a free past
533    // the TLS destructors, ending up in initialized thread specific data never
534    // being destroyed properly. Any other heap operation will do a full init.
535    initThreadMaybe(/*MinimalInit=*/true);
536
537#ifdef GWP_ASAN_HOOKS
538    if (UNLIKELY(GuardedAlloc.pointerIsMine(Ptr))) {
539      GuardedAlloc.deallocate(Ptr);
540      Stats.lock();
541      Stats.add(StatFree, GuardedAllocSlotSize);
542      Stats.sub(StatAllocated, GuardedAllocSlotSize);
543      Stats.unlock();
544      return;
545    }
546#endif // GWP_ASAN_HOOKS
547
548    if (UNLIKELY(!isAligned(reinterpret_cast<uptr>(Ptr), MinAlignment)))
549      reportMisalignedPointer(AllocatorAction::Deallocating, Ptr);
550
551    void *TaggedPtr = Ptr;
552    Ptr = getHeaderTaggedPointer(Ptr);
553
554    Chunk::UnpackedHeader Header;
555    Chunk::loadHeader(Cookie, Ptr, &Header);
556
557    if (UNLIKELY(Header.State != Chunk::State::Allocated))
558      reportInvalidChunkState(AllocatorAction::Deallocating, Ptr);
559
560    const Options Options = Primary.Options.load();
561    if (Options.get(OptionBit::DeallocTypeMismatch)) {
562      if (UNLIKELY(Header.OriginOrWasZeroed != Origin)) {
563        // With the exception of memalign'd chunks, that can be still be free'd.
564        if (Header.OriginOrWasZeroed != Chunk::Origin::Memalign ||
565            Origin != Chunk::Origin::Malloc)
566          reportDeallocTypeMismatch(AllocatorAction::Deallocating, Ptr,
567                                    Header.OriginOrWasZeroed, Origin);
568      }
569    }
570
571    const uptr Size = getSize(Ptr, &Header);
572    if (DeleteSize && Options.get(OptionBit::DeleteSizeMismatch)) {
573      if (UNLIKELY(DeleteSize != Size))
574        reportDeleteSizeMismatch(Ptr, DeleteSize, Size);
575    }
576
577    quarantineOrDeallocateChunk(Options, TaggedPtr, &Header, Size);
578  }
579
580  void *reallocate(void *OldPtr, uptr NewSize, uptr Alignment = MinAlignment) {
581    initThreadMaybe();
582
583    const Options Options = Primary.Options.load();
584    if (UNLIKELY(NewSize >= MaxAllowedMallocSize)) {
585      if (Options.get(OptionBit::MayReturnNull))
586        return nullptr;
587      reportAllocationSizeTooBig(NewSize, 0, MaxAllowedMallocSize);
588    }
589
590    // The following cases are handled by the C wrappers.
591    DCHECK_NE(OldPtr, nullptr);
592    DCHECK_NE(NewSize, 0);
593
594#ifdef GWP_ASAN_HOOKS
595    if (UNLIKELY(GuardedAlloc.pointerIsMine(OldPtr))) {
596      uptr OldSize = GuardedAlloc.getSize(OldPtr);
597      void *NewPtr = allocate(NewSize, Chunk::Origin::Malloc, Alignment);
598      if (NewPtr)
599        memcpy(NewPtr, OldPtr, (NewSize < OldSize) ? NewSize : OldSize);
600      GuardedAlloc.deallocate(OldPtr);
601      Stats.lock();
602      Stats.add(StatFree, GuardedAllocSlotSize);
603      Stats.sub(StatAllocated, GuardedAllocSlotSize);
604      Stats.unlock();
605      return NewPtr;
606    }
607#endif // GWP_ASAN_HOOKS
608
609    void *OldTaggedPtr = OldPtr;
610    OldPtr = getHeaderTaggedPointer(OldPtr);
611
612    if (UNLIKELY(!isAligned(reinterpret_cast<uptr>(OldPtr), MinAlignment)))
613      reportMisalignedPointer(AllocatorAction::Reallocating, OldPtr);
614
615    Chunk::UnpackedHeader Header;
616    Chunk::loadHeader(Cookie, OldPtr, &Header);
617
618    if (UNLIKELY(Header.State != Chunk::State::Allocated))
619      reportInvalidChunkState(AllocatorAction::Reallocating, OldPtr);
620
621    // Pointer has to be allocated with a malloc-type function. Some
622    // applications think that it is OK to realloc a memalign'ed pointer, which
623    // will trigger this check. It really isn't.
624    if (Options.get(OptionBit::DeallocTypeMismatch)) {
625      if (UNLIKELY(Header.OriginOrWasZeroed != Chunk::Origin::Malloc))
626        reportDeallocTypeMismatch(AllocatorAction::Reallocating, OldPtr,
627                                  Header.OriginOrWasZeroed,
628                                  Chunk::Origin::Malloc);
629    }
630
631    void *BlockBegin = getBlockBegin(OldTaggedPtr, &Header);
632    uptr BlockEnd;
633    uptr OldSize;
634    const uptr ClassId = Header.ClassId;
635    if (LIKELY(ClassId)) {
636      BlockEnd = reinterpret_cast<uptr>(BlockBegin) +
637                 SizeClassMap::getSizeByClassId(ClassId);
638      OldSize = Header.SizeOrUnusedBytes;
639    } else {
640      BlockEnd = SecondaryT::getBlockEnd(BlockBegin);
641      OldSize = BlockEnd - (reinterpret_cast<uptr>(OldTaggedPtr) +
642                            Header.SizeOrUnusedBytes);
643    }
644    // If the new chunk still fits in the previously allocated block (with a
645    // reasonable delta), we just keep the old block, and update the chunk
646    // header to reflect the size change.
647    if (reinterpret_cast<uptr>(OldTaggedPtr) + NewSize <= BlockEnd) {
648      if (NewSize > OldSize || (OldSize - NewSize) < getPageSizeCached()) {
649        Header.SizeOrUnusedBytes =
650            (ClassId ? NewSize
651                     : BlockEnd -
652                           (reinterpret_cast<uptr>(OldTaggedPtr) + NewSize)) &
653            Chunk::SizeOrUnusedBytesMask;
654        Chunk::storeHeader(Cookie, OldPtr, &Header);
655        if (UNLIKELY(useMemoryTagging<Config>(Options))) {
656          if (ClassId) {
657            resizeTaggedChunk(reinterpret_cast<uptr>(OldTaggedPtr) + OldSize,
658                              reinterpret_cast<uptr>(OldTaggedPtr) + NewSize,
659                              NewSize, untagPointer(BlockEnd));
660            storePrimaryAllocationStackMaybe(Options, OldPtr);
661          } else {
662            storeSecondaryAllocationStackMaybe(Options, OldPtr, NewSize);
663          }
664        }
665        return OldTaggedPtr;
666      }
667    }
668
669    // Otherwise we allocate a new one, and deallocate the old one. Some
670    // allocators will allocate an even larger chunk (by a fixed factor) to
671    // allow for potential further in-place realloc. The gains of such a trick
672    // are currently unclear.
673    void *NewPtr = allocate(NewSize, Chunk::Origin::Malloc, Alignment);
674    if (LIKELY(NewPtr)) {
675      memcpy(NewPtr, OldTaggedPtr, Min(NewSize, OldSize));
676      quarantineOrDeallocateChunk(Options, OldTaggedPtr, &Header, OldSize);
677    }
678    return NewPtr;
679  }
680
681  // TODO(kostyak): disable() is currently best-effort. There are some small
682  //                windows of time when an allocation could still succeed after
683  //                this function finishes. We will revisit that later.
684  void disable() NO_THREAD_SAFETY_ANALYSIS {
685    initThreadMaybe();
686#ifdef GWP_ASAN_HOOKS
687    GuardedAlloc.disable();
688#endif
689    TSDRegistry.disable();
690    Stats.disable();
691    Quarantine.disable();
692    Primary.disable();
693    Secondary.disable();
694  }
695
696  void enable() NO_THREAD_SAFETY_ANALYSIS {
697    initThreadMaybe();
698    Secondary.enable();
699    Primary.enable();
700    Quarantine.enable();
701    Stats.enable();
702    TSDRegistry.enable();
703#ifdef GWP_ASAN_HOOKS
704    GuardedAlloc.enable();
705#endif
706  }
707
708  // The function returns the amount of bytes required to store the statistics,
709  // which might be larger than the amount of bytes provided. Note that the
710  // statistics buffer is not necessarily constant between calls to this
711  // function. This can be called with a null buffer or zero size for buffer
712  // sizing purposes.
713  uptr getStats(char *Buffer, uptr Size) {
714    ScopedString Str;
715    const uptr Length = getStats(&Str) + 1;
716    if (Length < Size)
717      Size = Length;
718    if (Buffer && Size) {
719      memcpy(Buffer, Str.data(), Size);
720      Buffer[Size - 1] = '\0';
721    }
722    return Length;
723  }
724
725  void printStats() {
726    ScopedString Str;
727    getStats(&Str);
728    Str.output();
729  }
730
731  void printFragmentationInfo() {
732    ScopedString Str;
733    Primary.getFragmentationInfo(&Str);
734    // Secondary allocator dumps the fragmentation data in getStats().
735    Str.output();
736  }
737
738  void releaseToOS(ReleaseToOS ReleaseType) {
739    initThreadMaybe();
740    if (ReleaseType == ReleaseToOS::ForceAll)
741      drainCaches();
742    Primary.releaseToOS(ReleaseType);
743    Secondary.releaseToOS();
744  }
745
746  // Iterate over all chunks and call a callback for all busy chunks located
747  // within the provided memory range. Said callback must not use this allocator
748  // or a deadlock can ensue. This fits Android's malloc_iterate() needs.
749  void iterateOverChunks(uptr Base, uptr Size, iterate_callback Callback,
750                         void *Arg) {
751    initThreadMaybe();
752    if (archSupportsMemoryTagging())
753      Base = untagPointer(Base);
754    const uptr From = Base;
755    const uptr To = Base + Size;
756    bool MayHaveTaggedPrimary = allocatorSupportsMemoryTagging<Config>() &&
757                                systemSupportsMemoryTagging();
758    auto Lambda = [this, From, To, MayHaveTaggedPrimary, Callback,
759                   Arg](uptr Block) {
760      if (Block < From || Block >= To)
761        return;
762      uptr Chunk;
763      Chunk::UnpackedHeader Header;
764      if (MayHaveTaggedPrimary) {
765        // A chunk header can either have a zero tag (tagged primary) or the
766        // header tag (secondary, or untagged primary). We don't know which so
767        // try both.
768        ScopedDisableMemoryTagChecks x;
769        if (!getChunkFromBlock(Block, &Chunk, &Header) &&
770            !getChunkFromBlock(addHeaderTag(Block), &Chunk, &Header))
771          return;
772      } else {
773        if (!getChunkFromBlock(addHeaderTag(Block), &Chunk, &Header))
774          return;
775      }
776      if (Header.State == Chunk::State::Allocated) {
777        uptr TaggedChunk = Chunk;
778        if (allocatorSupportsMemoryTagging<Config>())
779          TaggedChunk = untagPointer(TaggedChunk);
780        if (useMemoryTagging<Config>(Primary.Options.load()))
781          TaggedChunk = loadTag(Chunk);
782        Callback(TaggedChunk, getSize(reinterpret_cast<void *>(Chunk), &Header),
783                 Arg);
784      }
785    };
786    Primary.iterateOverBlocks(Lambda);
787    Secondary.iterateOverBlocks(Lambda);
788#ifdef GWP_ASAN_HOOKS
789    GuardedAlloc.iterate(reinterpret_cast<void *>(Base), Size, Callback, Arg);
790#endif
791  }
792
793  bool canReturnNull() {
794    initThreadMaybe();
795    return Primary.Options.load().get(OptionBit::MayReturnNull);
796  }
797
798  bool setOption(Option O, sptr Value) {
799    initThreadMaybe();
800    if (O == Option::MemtagTuning) {
801      // Enabling odd/even tags involves a tradeoff between use-after-free
802      // detection and buffer overflow detection. Odd/even tags make it more
803      // likely for buffer overflows to be detected by increasing the size of
804      // the guaranteed "red zone" around the allocation, but on the other hand
805      // use-after-free is less likely to be detected because the tag space for
806      // any particular chunk is cut in half. Therefore we use this tuning
807      // setting to control whether odd/even tags are enabled.
808      if (Value == M_MEMTAG_TUNING_BUFFER_OVERFLOW)
809        Primary.Options.set(OptionBit::UseOddEvenTags);
810      else if (Value == M_MEMTAG_TUNING_UAF)
811        Primary.Options.clear(OptionBit::UseOddEvenTags);
812      return true;
813    } else {
814      // We leave it to the various sub-components to decide whether or not they
815      // want to handle the option, but we do not want to short-circuit
816      // execution if one of the setOption was to return false.
817      const bool PrimaryResult = Primary.setOption(O, Value);
818      const bool SecondaryResult = Secondary.setOption(O, Value);
819      const bool RegistryResult = TSDRegistry.setOption(O, Value);
820      return PrimaryResult && SecondaryResult && RegistryResult;
821    }
822    return false;
823  }
824
825  // Return the usable size for a given chunk. Technically we lie, as we just
826  // report the actual size of a chunk. This is done to counteract code actively
827  // writing past the end of a chunk (like sqlite3) when the usable size allows
828  // for it, which then forces realloc to copy the usable size of a chunk as
829  // opposed to its actual size.
830  uptr getUsableSize(const void *Ptr) {
831    if (UNLIKELY(!Ptr))
832      return 0;
833
834    return getAllocSize(Ptr);
835  }
836
837  uptr getAllocSize(const void *Ptr) {
838    initThreadMaybe();
839
840#ifdef GWP_ASAN_HOOKS
841    if (UNLIKELY(GuardedAlloc.pointerIsMine(Ptr)))
842      return GuardedAlloc.getSize(Ptr);
843#endif // GWP_ASAN_HOOKS
844
845    Ptr = getHeaderTaggedPointer(const_cast<void *>(Ptr));
846    Chunk::UnpackedHeader Header;
847    Chunk::loadHeader(Cookie, Ptr, &Header);
848
849    // Getting the alloc size of a chunk only makes sense if it's allocated.
850    if (UNLIKELY(Header.State != Chunk::State::Allocated))
851      reportInvalidChunkState(AllocatorAction::Sizing, const_cast<void *>(Ptr));
852
853    return getSize(Ptr, &Header);
854  }
855
856  void getStats(StatCounters S) {
857    initThreadMaybe();
858    Stats.get(S);
859  }
860
861  // Returns true if the pointer provided was allocated by the current
862  // allocator instance, which is compliant with tcmalloc's ownership concept.
863  // A corrupted chunk will not be reported as owned, which is WAI.
864  bool isOwned(const void *Ptr) {
865    initThreadMaybe();
866#ifdef GWP_ASAN_HOOKS
867    if (GuardedAlloc.pointerIsMine(Ptr))
868      return true;
869#endif // GWP_ASAN_HOOKS
870    if (!Ptr || !isAligned(reinterpret_cast<uptr>(Ptr), MinAlignment))
871      return false;
872    Ptr = getHeaderTaggedPointer(const_cast<void *>(Ptr));
873    Chunk::UnpackedHeader Header;
874    return Chunk::isValid(Cookie, Ptr, &Header) &&
875           Header.State == Chunk::State::Allocated;
876  }
877
878  bool useMemoryTaggingTestOnly() const {
879    return useMemoryTagging<Config>(Primary.Options.load());
880  }
881  void disableMemoryTagging() {
882    // If we haven't been initialized yet, we need to initialize now in order to
883    // prevent a future call to initThreadMaybe() from enabling memory tagging
884    // based on feature detection. But don't call initThreadMaybe() because it
885    // may end up calling the allocator (via pthread_atfork, via the post-init
886    // callback), which may cause mappings to be created with memory tagging
887    // enabled.
888    TSDRegistry.initOnceMaybe(this);
889    if (allocatorSupportsMemoryTagging<Config>()) {
890      Secondary.disableMemoryTagging();
891      Primary.Options.clear(OptionBit::UseMemoryTagging);
892    }
893  }
894
895  void setTrackAllocationStacks(bool Track) {
896    initThreadMaybe();
897    if (getFlags()->allocation_ring_buffer_size <= 0) {
898      DCHECK(!Primary.Options.load().get(OptionBit::TrackAllocationStacks));
899      return;
900    }
901    if (Track)
902      Primary.Options.set(OptionBit::TrackAllocationStacks);
903    else
904      Primary.Options.clear(OptionBit::TrackAllocationStacks);
905  }
906
907  void setFillContents(FillContentsMode FillContents) {
908    initThreadMaybe();
909    Primary.Options.setFillContentsMode(FillContents);
910  }
911
912  void setAddLargeAllocationSlack(bool AddSlack) {
913    initThreadMaybe();
914    if (AddSlack)
915      Primary.Options.set(OptionBit::AddLargeAllocationSlack);
916    else
917      Primary.Options.clear(OptionBit::AddLargeAllocationSlack);
918  }
919
920  const char *getStackDepotAddress() const {
921    return reinterpret_cast<const char *>(&Depot);
922  }
923
924  const char *getRegionInfoArrayAddress() const {
925    return Primary.getRegionInfoArrayAddress();
926  }
927
928  static uptr getRegionInfoArraySize() {
929    return PrimaryT::getRegionInfoArraySize();
930  }
931
932  const char *getRingBufferAddress() {
933    initThreadMaybe();
934    return RawRingBuffer;
935  }
936
937  uptr getRingBufferSize() {
938    initThreadMaybe();
939    return RingBufferElements ? ringBufferSizeInBytes(RingBufferElements) : 0;
940  }
941
942  static const uptr MaxTraceSize = 64;
943
944  static void collectTraceMaybe(const StackDepot *Depot,
945                                uintptr_t (&Trace)[MaxTraceSize], u32 Hash) {
946    uptr RingPos, Size;
947    if (!Depot->find(Hash, &RingPos, &Size))
948      return;
949    for (unsigned I = 0; I != Size && I != MaxTraceSize; ++I)
950      Trace[I] = static_cast<uintptr_t>((*Depot)[RingPos + I]);
951  }
952
953  static void getErrorInfo(struct scudo_error_info *ErrorInfo,
954                           uintptr_t FaultAddr, const char *DepotPtr,
955                           const char *RegionInfoPtr, const char *RingBufferPtr,
956                           size_t RingBufferSize, const char *Memory,
957                           const char *MemoryTags, uintptr_t MemoryAddr,
958                           size_t MemorySize) {
959    *ErrorInfo = {};
960    if (!allocatorSupportsMemoryTagging<Config>() ||
961        MemoryAddr + MemorySize < MemoryAddr)
962      return;
963
964    auto *Depot = reinterpret_cast<const StackDepot *>(DepotPtr);
965    size_t NextErrorReport = 0;
966
967    // Check for OOB in the current block and the two surrounding blocks. Beyond
968    // that, UAF is more likely.
969    if (extractTag(FaultAddr) != 0)
970      getInlineErrorInfo(ErrorInfo, NextErrorReport, FaultAddr, Depot,
971                         RegionInfoPtr, Memory, MemoryTags, MemoryAddr,
972                         MemorySize, 0, 2);
973
974    // Check the ring buffer. For primary allocations this will only find UAF;
975    // for secondary allocations we can find either UAF or OOB.
976    getRingBufferErrorInfo(ErrorInfo, NextErrorReport, FaultAddr, Depot,
977                           RingBufferPtr, RingBufferSize);
978
979    // Check for OOB in the 28 blocks surrounding the 3 we checked earlier.
980    // Beyond that we are likely to hit false positives.
981    if (extractTag(FaultAddr) != 0)
982      getInlineErrorInfo(ErrorInfo, NextErrorReport, FaultAddr, Depot,
983                         RegionInfoPtr, Memory, MemoryTags, MemoryAddr,
984                         MemorySize, 2, 16);
985  }
986
987private:
988  typedef typename PrimaryT::SizeClassMap SizeClassMap;
989
990  static const uptr MinAlignmentLog = SCUDO_MIN_ALIGNMENT_LOG;
991  static const uptr MaxAlignmentLog = 24U; // 16 MB seems reasonable.
992  static const uptr MinAlignment = 1UL << MinAlignmentLog;
993  static const uptr MaxAlignment = 1UL << MaxAlignmentLog;
994  static const uptr MaxAllowedMallocSize =
995      FIRST_32_SECOND_64(1UL << 31, 1ULL << 40);
996
997  static_assert(MinAlignment >= sizeof(Chunk::PackedHeader),
998                "Minimal alignment must at least cover a chunk header.");
999  static_assert(!allocatorSupportsMemoryTagging<Config>() ||
1000                    MinAlignment >= archMemoryTagGranuleSize(),
1001                "");
1002
1003  static const u32 BlockMarker = 0x44554353U;
1004
1005  // These are indexes into an "array" of 32-bit values that store information
1006  // inline with a chunk that is relevant to diagnosing memory tag faults, where
1007  // 0 corresponds to the address of the user memory. This means that only
1008  // negative indexes may be used. The smallest index that may be used is -2,
1009  // which corresponds to 8 bytes before the user memory, because the chunk
1010  // header size is 8 bytes and in allocators that support memory tagging the
1011  // minimum alignment is at least the tag granule size (16 on aarch64).
1012  static const sptr MemTagAllocationTraceIndex = -2;
1013  static const sptr MemTagAllocationTidIndex = -1;
1014
1015  u32 Cookie = 0;
1016  u32 QuarantineMaxChunkSize = 0;
1017
1018  GlobalStats Stats;
1019  PrimaryT Primary;
1020  SecondaryT Secondary;
1021  QuarantineT Quarantine;
1022  TSDRegistryT TSDRegistry;
1023  pthread_once_t PostInitNonce = PTHREAD_ONCE_INIT;
1024
1025#ifdef GWP_ASAN_HOOKS
1026  gwp_asan::GuardedPoolAllocator GuardedAlloc;
1027  uptr GuardedAllocSlotSize = 0;
1028#endif // GWP_ASAN_HOOKS
1029
1030  StackDepot Depot;
1031
1032  struct AllocationRingBuffer {
1033    struct Entry {
1034      atomic_uptr Ptr;
1035      atomic_uptr AllocationSize;
1036      atomic_u32 AllocationTrace;
1037      atomic_u32 AllocationTid;
1038      atomic_u32 DeallocationTrace;
1039      atomic_u32 DeallocationTid;
1040    };
1041
1042    atomic_uptr Pos;
1043    // An array of Size (at least one) elements of type Entry is immediately
1044    // following to this struct.
1045  };
1046  // Pointer to memory mapped area starting with AllocationRingBuffer struct,
1047  // and immediately followed by Size elements of type Entry.
1048  char *RawRingBuffer = {};
1049  u32 RingBufferElements = 0;
1050  MemMapT RawRingBufferMap;
1051
1052  // The following might get optimized out by the compiler.
1053  NOINLINE void performSanityChecks() {
1054    // Verify that the header offset field can hold the maximum offset. In the
1055    // case of the Secondary allocator, it takes care of alignment and the
1056    // offset will always be small. In the case of the Primary, the worst case
1057    // scenario happens in the last size class, when the backend allocation
1058    // would already be aligned on the requested alignment, which would happen
1059    // to be the maximum alignment that would fit in that size class. As a
1060    // result, the maximum offset will be at most the maximum alignment for the
1061    // last size class minus the header size, in multiples of MinAlignment.
1062    Chunk::UnpackedHeader Header = {};
1063    const uptr MaxPrimaryAlignment = 1UL << getMostSignificantSetBitIndex(
1064                                         SizeClassMap::MaxSize - MinAlignment);
1065    const uptr MaxOffset =
1066        (MaxPrimaryAlignment - Chunk::getHeaderSize()) >> MinAlignmentLog;
1067    Header.Offset = MaxOffset & Chunk::OffsetMask;
1068    if (UNLIKELY(Header.Offset != MaxOffset))
1069      reportSanityCheckError("offset");
1070
1071    // Verify that we can fit the maximum size or amount of unused bytes in the
1072    // header. Given that the Secondary fits the allocation to a page, the worst
1073    // case scenario happens in the Primary. It will depend on the second to
1074    // last and last class sizes, as well as the dynamic base for the Primary.
1075    // The following is an over-approximation that works for our needs.
1076    const uptr MaxSizeOrUnusedBytes = SizeClassMap::MaxSize - 1;
1077    Header.SizeOrUnusedBytes = MaxSizeOrUnusedBytes;
1078    if (UNLIKELY(Header.SizeOrUnusedBytes != MaxSizeOrUnusedBytes))
1079      reportSanityCheckError("size (or unused bytes)");
1080
1081    const uptr LargestClassId = SizeClassMap::LargestClassId;
1082    Header.ClassId = LargestClassId;
1083    if (UNLIKELY(Header.ClassId != LargestClassId))
1084      reportSanityCheckError("class ID");
1085  }
1086
1087  static inline void *getBlockBegin(const void *Ptr,
1088                                    Chunk::UnpackedHeader *Header) {
1089    return reinterpret_cast<void *>(
1090        reinterpret_cast<uptr>(Ptr) - Chunk::getHeaderSize() -
1091        (static_cast<uptr>(Header->Offset) << MinAlignmentLog));
1092  }
1093
1094  // Return the size of a chunk as requested during its allocation.
1095  inline uptr getSize(const void *Ptr, Chunk::UnpackedHeader *Header) {
1096    const uptr SizeOrUnusedBytes = Header->SizeOrUnusedBytes;
1097    if (LIKELY(Header->ClassId))
1098      return SizeOrUnusedBytes;
1099    if (allocatorSupportsMemoryTagging<Config>())
1100      Ptr = untagPointer(const_cast<void *>(Ptr));
1101    return SecondaryT::getBlockEnd(getBlockBegin(Ptr, Header)) -
1102           reinterpret_cast<uptr>(Ptr) - SizeOrUnusedBytes;
1103  }
1104
1105  void quarantineOrDeallocateChunk(const Options &Options, void *TaggedPtr,
1106                                   Chunk::UnpackedHeader *Header,
1107                                   uptr Size) NO_THREAD_SAFETY_ANALYSIS {
1108    void *Ptr = getHeaderTaggedPointer(TaggedPtr);
1109    // If the quarantine is disabled, the actual size of a chunk is 0 or larger
1110    // than the maximum allowed, we return a chunk directly to the backend.
1111    // This purposefully underflows for Size == 0.
1112    const bool BypassQuarantine = !Quarantine.getCacheSize() ||
1113                                  ((Size - 1) >= QuarantineMaxChunkSize) ||
1114                                  !Header->ClassId;
1115    if (BypassQuarantine)
1116      Header->State = Chunk::State::Available;
1117    else
1118      Header->State = Chunk::State::Quarantined;
1119    Header->OriginOrWasZeroed = useMemoryTagging<Config>(Options) &&
1120                                Header->ClassId &&
1121                                !TSDRegistry.getDisableMemInit();
1122    Chunk::storeHeader(Cookie, Ptr, Header);
1123
1124    if (UNLIKELY(useMemoryTagging<Config>(Options))) {
1125      u8 PrevTag = extractTag(reinterpret_cast<uptr>(TaggedPtr));
1126      storeDeallocationStackMaybe(Options, Ptr, PrevTag, Size);
1127      if (Header->ClassId) {
1128        if (!TSDRegistry.getDisableMemInit()) {
1129          uptr TaggedBegin, TaggedEnd;
1130          const uptr OddEvenMask = computeOddEvenMaskForPointerMaybe(
1131              Options, reinterpret_cast<uptr>(getBlockBegin(Ptr, Header)),
1132              Header->ClassId);
1133          // Exclude the previous tag so that immediate use after free is
1134          // detected 100% of the time.
1135          setRandomTag(Ptr, Size, OddEvenMask | (1UL << PrevTag), &TaggedBegin,
1136                       &TaggedEnd);
1137        }
1138      }
1139    }
1140    if (BypassQuarantine) {
1141      if (allocatorSupportsMemoryTagging<Config>())
1142        Ptr = untagPointer(Ptr);
1143      void *BlockBegin = getBlockBegin(Ptr, Header);
1144      const uptr ClassId = Header->ClassId;
1145      if (LIKELY(ClassId)) {
1146        bool UnlockRequired;
1147        auto *TSD = TSDRegistry.getTSDAndLock(&UnlockRequired);
1148        TSD->assertLocked(/*BypassCheck=*/!UnlockRequired);
1149        const bool CacheDrained =
1150            TSD->getCache().deallocate(ClassId, BlockBegin);
1151        if (UnlockRequired)
1152          TSD->unlock();
1153        // When we have drained some blocks back to the Primary from TSD, that
1154        // implies that we may have the chance to release some pages as well.
1155        // Note that in order not to block other thread's accessing the TSD,
1156        // release the TSD first then try the page release.
1157        if (CacheDrained)
1158          Primary.tryReleaseToOS(ClassId, ReleaseToOS::Normal);
1159      } else {
1160        if (UNLIKELY(useMemoryTagging<Config>(Options)))
1161          storeTags(reinterpret_cast<uptr>(BlockBegin),
1162                    reinterpret_cast<uptr>(Ptr));
1163        Secondary.deallocate(Options, BlockBegin);
1164      }
1165    } else {
1166      bool UnlockRequired;
1167      auto *TSD = TSDRegistry.getTSDAndLock(&UnlockRequired);
1168      TSD->assertLocked(/*BypassCheck=*/!UnlockRequired);
1169      Quarantine.put(&TSD->getQuarantineCache(),
1170                     QuarantineCallback(*this, TSD->getCache()), Ptr, Size);
1171      if (UnlockRequired)
1172        TSD->unlock();
1173    }
1174  }
1175
1176  bool getChunkFromBlock(uptr Block, uptr *Chunk,
1177                         Chunk::UnpackedHeader *Header) {
1178    *Chunk =
1179        Block + getChunkOffsetFromBlock(reinterpret_cast<const char *>(Block));
1180    return Chunk::isValid(Cookie, reinterpret_cast<void *>(*Chunk), Header);
1181  }
1182
1183  static uptr getChunkOffsetFromBlock(const char *Block) {
1184    u32 Offset = 0;
1185    if (reinterpret_cast<const u32 *>(Block)[0] == BlockMarker)
1186      Offset = reinterpret_cast<const u32 *>(Block)[1];
1187    return Offset + Chunk::getHeaderSize();
1188  }
1189
1190  // Set the tag of the granule past the end of the allocation to 0, to catch
1191  // linear overflows even if a previous larger allocation used the same block
1192  // and tag. Only do this if the granule past the end is in our block, because
1193  // this would otherwise lead to a SEGV if the allocation covers the entire
1194  // block and our block is at the end of a mapping. The tag of the next block's
1195  // header granule will be set to 0, so it will serve the purpose of catching
1196  // linear overflows in this case.
1197  //
1198  // For allocations of size 0 we do not end up storing the address tag to the
1199  // memory tag space, which getInlineErrorInfo() normally relies on to match
1200  // address tags against chunks. To allow matching in this case we store the
1201  // address tag in the first byte of the chunk.
1202  void storeEndMarker(uptr End, uptr Size, uptr BlockEnd) {
1203    DCHECK_EQ(BlockEnd, untagPointer(BlockEnd));
1204    uptr UntaggedEnd = untagPointer(End);
1205    if (UntaggedEnd != BlockEnd) {
1206      storeTag(UntaggedEnd);
1207      if (Size == 0)
1208        *reinterpret_cast<u8 *>(UntaggedEnd) = extractTag(End);
1209    }
1210  }
1211
1212  void *prepareTaggedChunk(void *Ptr, uptr Size, uptr ExcludeMask,
1213                           uptr BlockEnd) {
1214    // Prepare the granule before the chunk to store the chunk header by setting
1215    // its tag to 0. Normally its tag will already be 0, but in the case where a
1216    // chunk holding a low alignment allocation is reused for a higher alignment
1217    // allocation, the chunk may already have a non-zero tag from the previous
1218    // allocation.
1219    storeTag(reinterpret_cast<uptr>(Ptr) - archMemoryTagGranuleSize());
1220
1221    uptr TaggedBegin, TaggedEnd;
1222    setRandomTag(Ptr, Size, ExcludeMask, &TaggedBegin, &TaggedEnd);
1223
1224    storeEndMarker(TaggedEnd, Size, BlockEnd);
1225    return reinterpret_cast<void *>(TaggedBegin);
1226  }
1227
1228  void resizeTaggedChunk(uptr OldPtr, uptr NewPtr, uptr NewSize,
1229                         uptr BlockEnd) {
1230    uptr RoundOldPtr = roundUp(OldPtr, archMemoryTagGranuleSize());
1231    uptr RoundNewPtr;
1232    if (RoundOldPtr >= NewPtr) {
1233      // If the allocation is shrinking we just need to set the tag past the end
1234      // of the allocation to 0. See explanation in storeEndMarker() above.
1235      RoundNewPtr = roundUp(NewPtr, archMemoryTagGranuleSize());
1236    } else {
1237      // Set the memory tag of the region
1238      // [RoundOldPtr, roundUp(NewPtr, archMemoryTagGranuleSize()))
1239      // to the pointer tag stored in OldPtr.
1240      RoundNewPtr = storeTags(RoundOldPtr, NewPtr);
1241    }
1242    storeEndMarker(RoundNewPtr, NewSize, BlockEnd);
1243  }
1244
1245  void storePrimaryAllocationStackMaybe(const Options &Options, void *Ptr) {
1246    if (!UNLIKELY(Options.get(OptionBit::TrackAllocationStacks)))
1247      return;
1248    auto *Ptr32 = reinterpret_cast<u32 *>(Ptr);
1249    Ptr32[MemTagAllocationTraceIndex] = collectStackTrace();
1250    Ptr32[MemTagAllocationTidIndex] = getThreadID();
1251  }
1252
1253  void storeRingBufferEntry(void *Ptr, u32 AllocationTrace, u32 AllocationTid,
1254                            uptr AllocationSize, u32 DeallocationTrace,
1255                            u32 DeallocationTid) {
1256    uptr Pos = atomic_fetch_add(&getRingBuffer()->Pos, 1, memory_order_relaxed);
1257    typename AllocationRingBuffer::Entry *Entry =
1258        getRingBufferEntry(RawRingBuffer, Pos % RingBufferElements);
1259
1260    // First invalidate our entry so that we don't attempt to interpret a
1261    // partially written state in getSecondaryErrorInfo(). The fences below
1262    // ensure that the compiler does not move the stores to Ptr in between the
1263    // stores to the other fields.
1264    atomic_store_relaxed(&Entry->Ptr, 0);
1265
1266    __atomic_signal_fence(__ATOMIC_SEQ_CST);
1267    atomic_store_relaxed(&Entry->AllocationTrace, AllocationTrace);
1268    atomic_store_relaxed(&Entry->AllocationTid, AllocationTid);
1269    atomic_store_relaxed(&Entry->AllocationSize, AllocationSize);
1270    atomic_store_relaxed(&Entry->DeallocationTrace, DeallocationTrace);
1271    atomic_store_relaxed(&Entry->DeallocationTid, DeallocationTid);
1272    __atomic_signal_fence(__ATOMIC_SEQ_CST);
1273
1274    atomic_store_relaxed(&Entry->Ptr, reinterpret_cast<uptr>(Ptr));
1275  }
1276
1277  void storeSecondaryAllocationStackMaybe(const Options &Options, void *Ptr,
1278                                          uptr Size) {
1279    if (!UNLIKELY(Options.get(OptionBit::TrackAllocationStacks)))
1280      return;
1281
1282    u32 Trace = collectStackTrace();
1283    u32 Tid = getThreadID();
1284
1285    auto *Ptr32 = reinterpret_cast<u32 *>(Ptr);
1286    Ptr32[MemTagAllocationTraceIndex] = Trace;
1287    Ptr32[MemTagAllocationTidIndex] = Tid;
1288
1289    storeRingBufferEntry(untagPointer(Ptr), Trace, Tid, Size, 0, 0);
1290  }
1291
1292  void storeDeallocationStackMaybe(const Options &Options, void *Ptr,
1293                                   u8 PrevTag, uptr Size) {
1294    if (!UNLIKELY(Options.get(OptionBit::TrackAllocationStacks)))
1295      return;
1296
1297    auto *Ptr32 = reinterpret_cast<u32 *>(Ptr);
1298    u32 AllocationTrace = Ptr32[MemTagAllocationTraceIndex];
1299    u32 AllocationTid = Ptr32[MemTagAllocationTidIndex];
1300
1301    u32 DeallocationTrace = collectStackTrace();
1302    u32 DeallocationTid = getThreadID();
1303
1304    storeRingBufferEntry(addFixedTag(untagPointer(Ptr), PrevTag),
1305                         AllocationTrace, AllocationTid, Size,
1306                         DeallocationTrace, DeallocationTid);
1307  }
1308
1309  static const size_t NumErrorReports =
1310      sizeof(((scudo_error_info *)nullptr)->reports) /
1311      sizeof(((scudo_error_info *)nullptr)->reports[0]);
1312
1313  static void getInlineErrorInfo(struct scudo_error_info *ErrorInfo,
1314                                 size_t &NextErrorReport, uintptr_t FaultAddr,
1315                                 const StackDepot *Depot,
1316                                 const char *RegionInfoPtr, const char *Memory,
1317                                 const char *MemoryTags, uintptr_t MemoryAddr,
1318                                 size_t MemorySize, size_t MinDistance,
1319                                 size_t MaxDistance) {
1320    uptr UntaggedFaultAddr = untagPointer(FaultAddr);
1321    u8 FaultAddrTag = extractTag(FaultAddr);
1322    BlockInfo Info =
1323        PrimaryT::findNearestBlock(RegionInfoPtr, UntaggedFaultAddr);
1324
1325    auto GetGranule = [&](uptr Addr, const char **Data, uint8_t *Tag) -> bool {
1326      if (Addr < MemoryAddr || Addr + archMemoryTagGranuleSize() < Addr ||
1327          Addr + archMemoryTagGranuleSize() > MemoryAddr + MemorySize)
1328        return false;
1329      *Data = &Memory[Addr - MemoryAddr];
1330      *Tag = static_cast<u8>(
1331          MemoryTags[(Addr - MemoryAddr) / archMemoryTagGranuleSize()]);
1332      return true;
1333    };
1334
1335    auto ReadBlock = [&](uptr Addr, uptr *ChunkAddr,
1336                         Chunk::UnpackedHeader *Header, const u32 **Data,
1337                         u8 *Tag) {
1338      const char *BlockBegin;
1339      u8 BlockBeginTag;
1340      if (!GetGranule(Addr, &BlockBegin, &BlockBeginTag))
1341        return false;
1342      uptr ChunkOffset = getChunkOffsetFromBlock(BlockBegin);
1343      *ChunkAddr = Addr + ChunkOffset;
1344
1345      const char *ChunkBegin;
1346      if (!GetGranule(*ChunkAddr, &ChunkBegin, Tag))
1347        return false;
1348      *Header = *reinterpret_cast<const Chunk::UnpackedHeader *>(
1349          ChunkBegin - Chunk::getHeaderSize());
1350      *Data = reinterpret_cast<const u32 *>(ChunkBegin);
1351
1352      // Allocations of size 0 will have stashed the tag in the first byte of
1353      // the chunk, see storeEndMarker().
1354      if (Header->SizeOrUnusedBytes == 0)
1355        *Tag = static_cast<u8>(*ChunkBegin);
1356
1357      return true;
1358    };
1359
1360    if (NextErrorReport == NumErrorReports)
1361      return;
1362
1363    auto CheckOOB = [&](uptr BlockAddr) {
1364      if (BlockAddr < Info.RegionBegin || BlockAddr >= Info.RegionEnd)
1365        return false;
1366
1367      uptr ChunkAddr;
1368      Chunk::UnpackedHeader Header;
1369      const u32 *Data;
1370      uint8_t Tag;
1371      if (!ReadBlock(BlockAddr, &ChunkAddr, &Header, &Data, &Tag) ||
1372          Header.State != Chunk::State::Allocated || Tag != FaultAddrTag)
1373        return false;
1374
1375      auto *R = &ErrorInfo->reports[NextErrorReport++];
1376      R->error_type =
1377          UntaggedFaultAddr < ChunkAddr ? BUFFER_UNDERFLOW : BUFFER_OVERFLOW;
1378      R->allocation_address = ChunkAddr;
1379      R->allocation_size = Header.SizeOrUnusedBytes;
1380      collectTraceMaybe(Depot, R->allocation_trace,
1381                        Data[MemTagAllocationTraceIndex]);
1382      R->allocation_tid = Data[MemTagAllocationTidIndex];
1383      return NextErrorReport == NumErrorReports;
1384    };
1385
1386    if (MinDistance == 0 && CheckOOB(Info.BlockBegin))
1387      return;
1388
1389    for (size_t I = Max<size_t>(MinDistance, 1); I != MaxDistance; ++I)
1390      if (CheckOOB(Info.BlockBegin + I * Info.BlockSize) ||
1391          CheckOOB(Info.BlockBegin - I * Info.BlockSize))
1392        return;
1393  }
1394
1395  static void getRingBufferErrorInfo(struct scudo_error_info *ErrorInfo,
1396                                     size_t &NextErrorReport,
1397                                     uintptr_t FaultAddr,
1398                                     const StackDepot *Depot,
1399                                     const char *RingBufferPtr,
1400                                     size_t RingBufferSize) {
1401    auto *RingBuffer =
1402        reinterpret_cast<const AllocationRingBuffer *>(RingBufferPtr);
1403    size_t RingBufferElements = ringBufferElementsFromBytes(RingBufferSize);
1404    if (!RingBuffer || RingBufferElements == 0)
1405      return;
1406    uptr Pos = atomic_load_relaxed(&RingBuffer->Pos);
1407
1408    for (uptr I = Pos - 1; I != Pos - 1 - RingBufferElements &&
1409                           NextErrorReport != NumErrorReports;
1410         --I) {
1411      auto *Entry = getRingBufferEntry(RingBufferPtr, I % RingBufferElements);
1412      uptr EntryPtr = atomic_load_relaxed(&Entry->Ptr);
1413      if (!EntryPtr)
1414        continue;
1415
1416      uptr UntaggedEntryPtr = untagPointer(EntryPtr);
1417      uptr EntrySize = atomic_load_relaxed(&Entry->AllocationSize);
1418      u32 AllocationTrace = atomic_load_relaxed(&Entry->AllocationTrace);
1419      u32 AllocationTid = atomic_load_relaxed(&Entry->AllocationTid);
1420      u32 DeallocationTrace = atomic_load_relaxed(&Entry->DeallocationTrace);
1421      u32 DeallocationTid = atomic_load_relaxed(&Entry->DeallocationTid);
1422
1423      if (DeallocationTid) {
1424        // For UAF we only consider in-bounds fault addresses because
1425        // out-of-bounds UAF is rare and attempting to detect it is very likely
1426        // to result in false positives.
1427        if (FaultAddr < EntryPtr || FaultAddr >= EntryPtr + EntrySize)
1428          continue;
1429      } else {
1430        // Ring buffer OOB is only possible with secondary allocations. In this
1431        // case we are guaranteed a guard region of at least a page on either
1432        // side of the allocation (guard page on the right, guard page + tagged
1433        // region on the left), so ignore any faults outside of that range.
1434        if (FaultAddr < EntryPtr - getPageSizeCached() ||
1435            FaultAddr >= EntryPtr + EntrySize + getPageSizeCached())
1436          continue;
1437
1438        // For UAF the ring buffer will contain two entries, one for the
1439        // allocation and another for the deallocation. Don't report buffer
1440        // overflow/underflow using the allocation entry if we have already
1441        // collected a report from the deallocation entry.
1442        bool Found = false;
1443        for (uptr J = 0; J != NextErrorReport; ++J) {
1444          if (ErrorInfo->reports[J].allocation_address == UntaggedEntryPtr) {
1445            Found = true;
1446            break;
1447          }
1448        }
1449        if (Found)
1450          continue;
1451      }
1452
1453      auto *R = &ErrorInfo->reports[NextErrorReport++];
1454      if (DeallocationTid)
1455        R->error_type = USE_AFTER_FREE;
1456      else if (FaultAddr < EntryPtr)
1457        R->error_type = BUFFER_UNDERFLOW;
1458      else
1459        R->error_type = BUFFER_OVERFLOW;
1460
1461      R->allocation_address = UntaggedEntryPtr;
1462      R->allocation_size = EntrySize;
1463      collectTraceMaybe(Depot, R->allocation_trace, AllocationTrace);
1464      R->allocation_tid = AllocationTid;
1465      collectTraceMaybe(Depot, R->deallocation_trace, DeallocationTrace);
1466      R->deallocation_tid = DeallocationTid;
1467    }
1468  }
1469
1470  uptr getStats(ScopedString *Str) {
1471    Primary.getStats(Str);
1472    Secondary.getStats(Str);
1473    Quarantine.getStats(Str);
1474    TSDRegistry.getStats(Str);
1475    return Str->length();
1476  }
1477
1478  static typename AllocationRingBuffer::Entry *
1479  getRingBufferEntry(char *RawRingBuffer, uptr N) {
1480    return &reinterpret_cast<typename AllocationRingBuffer::Entry *>(
1481        &RawRingBuffer[sizeof(AllocationRingBuffer)])[N];
1482  }
1483  static const typename AllocationRingBuffer::Entry *
1484  getRingBufferEntry(const char *RawRingBuffer, uptr N) {
1485    return &reinterpret_cast<const typename AllocationRingBuffer::Entry *>(
1486        &RawRingBuffer[sizeof(AllocationRingBuffer)])[N];
1487  }
1488
1489  void mapAndInitializeRingBuffer() {
1490    if (getFlags()->allocation_ring_buffer_size <= 0)
1491      return;
1492    u32 AllocationRingBufferSize =
1493        static_cast<u32>(getFlags()->allocation_ring_buffer_size);
1494    MemMapT MemMap;
1495    MemMap.map(
1496        /*Addr=*/0U,
1497        roundUp(ringBufferSizeInBytes(AllocationRingBufferSize),
1498                getPageSizeCached()),
1499        "scudo:ring_buffer");
1500    RawRingBuffer = reinterpret_cast<char *>(MemMap.getBase());
1501    RawRingBufferMap = MemMap;
1502    RingBufferElements = AllocationRingBufferSize;
1503    static_assert(sizeof(AllocationRingBuffer) %
1504                          alignof(typename AllocationRingBuffer::Entry) ==
1505                      0,
1506                  "invalid alignment");
1507  }
1508
1509  void unmapRingBuffer() {
1510    auto *RingBuffer = getRingBuffer();
1511    if (RingBuffer != nullptr) {
1512      RawRingBufferMap.unmap(RawRingBufferMap.getBase(),
1513                             RawRingBufferMap.getCapacity());
1514    }
1515    RawRingBuffer = nullptr;
1516  }
1517
1518  static constexpr size_t ringBufferSizeInBytes(u32 RingBufferElements) {
1519    return sizeof(AllocationRingBuffer) +
1520           RingBufferElements * sizeof(typename AllocationRingBuffer::Entry);
1521  }
1522
1523  static constexpr size_t ringBufferElementsFromBytes(size_t Bytes) {
1524    if (Bytes < sizeof(AllocationRingBuffer)) {
1525      return 0;
1526    }
1527    return (Bytes - sizeof(AllocationRingBuffer)) /
1528           sizeof(typename AllocationRingBuffer::Entry);
1529  }
1530
1531  inline AllocationRingBuffer *getRingBuffer() {
1532    return reinterpret_cast<AllocationRingBuffer *>(RawRingBuffer);
1533  }
1534};
1535
1536} // namespace scudo
1537
1538#endif // SCUDO_COMBINED_H_
1539