1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9//  This file implements semantic analysis for expressions.
10//
11//===----------------------------------------------------------------------===//
12
13#include "TreeTransform.h"
14#include "UsedDeclVisitor.h"
15#include "clang/AST/ASTConsumer.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/ASTLambda.h"
18#include "clang/AST/ASTMutationListener.h"
19#include "clang/AST/CXXInheritance.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/EvaluatedExprVisitor.h"
23#include "clang/AST/Expr.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/ExprObjC.h"
26#include "clang/AST/ExprOpenMP.h"
27#include "clang/AST/OperationKinds.h"
28#include "clang/AST/ParentMapContext.h"
29#include "clang/AST/RecursiveASTVisitor.h"
30#include "clang/AST/Type.h"
31#include "clang/AST/TypeLoc.h"
32#include "clang/Basic/Builtins.h"
33#include "clang/Basic/DiagnosticSema.h"
34#include "clang/Basic/PartialDiagnostic.h"
35#include "clang/Basic/SourceManager.h"
36#include "clang/Basic/Specifiers.h"
37#include "clang/Basic/TargetInfo.h"
38#include "clang/Basic/TypeTraits.h"
39#include "clang/Lex/LiteralSupport.h"
40#include "clang/Lex/Preprocessor.h"
41#include "clang/Sema/AnalysisBasedWarnings.h"
42#include "clang/Sema/DeclSpec.h"
43#include "clang/Sema/DelayedDiagnostic.h"
44#include "clang/Sema/Designator.h"
45#include "clang/Sema/EnterExpressionEvaluationContext.h"
46#include "clang/Sema/Initialization.h"
47#include "clang/Sema/Lookup.h"
48#include "clang/Sema/Overload.h"
49#include "clang/Sema/ParsedTemplate.h"
50#include "clang/Sema/Scope.h"
51#include "clang/Sema/ScopeInfo.h"
52#include "clang/Sema/SemaFixItUtils.h"
53#include "clang/Sema/SemaInternal.h"
54#include "clang/Sema/Template.h"
55#include "llvm/ADT/STLExtras.h"
56#include "llvm/ADT/StringExtras.h"
57#include "llvm/Support/Casting.h"
58#include "llvm/Support/ConvertUTF.h"
59#include "llvm/Support/SaveAndRestore.h"
60#include "llvm/Support/TypeSize.h"
61#include <optional>
62
63using namespace clang;
64using namespace sema;
65
66/// Determine whether the use of this declaration is valid, without
67/// emitting diagnostics.
68bool Sema::CanUseDecl(NamedDecl *D, bool TreatUnavailableAsInvalid) {
69  // See if this is an auto-typed variable whose initializer we are parsing.
70  if (ParsingInitForAutoVars.count(D))
71    return false;
72
73  // See if this is a deleted function.
74  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
75    if (FD->isDeleted())
76      return false;
77
78    // If the function has a deduced return type, and we can't deduce it,
79    // then we can't use it either.
80    if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
81        DeduceReturnType(FD, SourceLocation(), /*Diagnose*/ false))
82      return false;
83
84    // See if this is an aligned allocation/deallocation function that is
85    // unavailable.
86    if (TreatUnavailableAsInvalid &&
87        isUnavailableAlignedAllocationFunction(*FD))
88      return false;
89  }
90
91  // See if this function is unavailable.
92  if (TreatUnavailableAsInvalid && D->getAvailability() == AR_Unavailable &&
93      cast<Decl>(CurContext)->getAvailability() != AR_Unavailable)
94    return false;
95
96  if (isa<UnresolvedUsingIfExistsDecl>(D))
97    return false;
98
99  return true;
100}
101
102static void DiagnoseUnusedOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc) {
103  // Warn if this is used but marked unused.
104  if (const auto *A = D->getAttr<UnusedAttr>()) {
105    // [[maybe_unused]] should not diagnose uses, but __attribute__((unused))
106    // should diagnose them.
107    if (A->getSemanticSpelling() != UnusedAttr::CXX11_maybe_unused &&
108        A->getSemanticSpelling() != UnusedAttr::C23_maybe_unused) {
109      const Decl *DC = cast_or_null<Decl>(S.getCurObjCLexicalContext());
110      if (DC && !DC->hasAttr<UnusedAttr>())
111        S.Diag(Loc, diag::warn_used_but_marked_unused) << D;
112    }
113  }
114}
115
116/// Emit a note explaining that this function is deleted.
117void Sema::NoteDeletedFunction(FunctionDecl *Decl) {
118  assert(Decl && Decl->isDeleted());
119
120  if (Decl->isDefaulted()) {
121    // If the method was explicitly defaulted, point at that declaration.
122    if (!Decl->isImplicit())
123      Diag(Decl->getLocation(), diag::note_implicitly_deleted);
124
125    // Try to diagnose why this special member function was implicitly
126    // deleted. This might fail, if that reason no longer applies.
127    DiagnoseDeletedDefaultedFunction(Decl);
128    return;
129  }
130
131  auto *Ctor = dyn_cast<CXXConstructorDecl>(Decl);
132  if (Ctor && Ctor->isInheritingConstructor())
133    return NoteDeletedInheritingConstructor(Ctor);
134
135  Diag(Decl->getLocation(), diag::note_availability_specified_here)
136    << Decl << 1;
137}
138
139/// Determine whether a FunctionDecl was ever declared with an
140/// explicit storage class.
141static bool hasAnyExplicitStorageClass(const FunctionDecl *D) {
142  for (auto *I : D->redecls()) {
143    if (I->getStorageClass() != SC_None)
144      return true;
145  }
146  return false;
147}
148
149/// Check whether we're in an extern inline function and referring to a
150/// variable or function with internal linkage (C11 6.7.4p3).
151///
152/// This is only a warning because we used to silently accept this code, but
153/// in many cases it will not behave correctly. This is not enabled in C++ mode
154/// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6)
155/// and so while there may still be user mistakes, most of the time we can't
156/// prove that there are errors.
157static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S,
158                                                      const NamedDecl *D,
159                                                      SourceLocation Loc) {
160  // This is disabled under C++; there are too many ways for this to fire in
161  // contexts where the warning is a false positive, or where it is technically
162  // correct but benign.
163  if (S.getLangOpts().CPlusPlus)
164    return;
165
166  // Check if this is an inlined function or method.
167  FunctionDecl *Current = S.getCurFunctionDecl();
168  if (!Current)
169    return;
170  if (!Current->isInlined())
171    return;
172  if (!Current->isExternallyVisible())
173    return;
174
175  // Check if the decl has internal linkage.
176  if (D->getFormalLinkage() != Linkage::Internal)
177    return;
178
179  // Downgrade from ExtWarn to Extension if
180  //  (1) the supposedly external inline function is in the main file,
181  //      and probably won't be included anywhere else.
182  //  (2) the thing we're referencing is a pure function.
183  //  (3) the thing we're referencing is another inline function.
184  // This last can give us false negatives, but it's better than warning on
185  // wrappers for simple C library functions.
186  const FunctionDecl *UsedFn = dyn_cast<FunctionDecl>(D);
187  bool DowngradeWarning = S.getSourceManager().isInMainFile(Loc);
188  if (!DowngradeWarning && UsedFn)
189    DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr<ConstAttr>();
190
191  S.Diag(Loc, DowngradeWarning ? diag::ext_internal_in_extern_inline_quiet
192                               : diag::ext_internal_in_extern_inline)
193    << /*IsVar=*/!UsedFn << D;
194
195  S.MaybeSuggestAddingStaticToDecl(Current);
196
197  S.Diag(D->getCanonicalDecl()->getLocation(), diag::note_entity_declared_at)
198      << D;
199}
200
201void Sema::MaybeSuggestAddingStaticToDecl(const FunctionDecl *Cur) {
202  const FunctionDecl *First = Cur->getFirstDecl();
203
204  // Suggest "static" on the function, if possible.
205  if (!hasAnyExplicitStorageClass(First)) {
206    SourceLocation DeclBegin = First->getSourceRange().getBegin();
207    Diag(DeclBegin, diag::note_convert_inline_to_static)
208      << Cur << FixItHint::CreateInsertion(DeclBegin, "static ");
209  }
210}
211
212/// Determine whether the use of this declaration is valid, and
213/// emit any corresponding diagnostics.
214///
215/// This routine diagnoses various problems with referencing
216/// declarations that can occur when using a declaration. For example,
217/// it might warn if a deprecated or unavailable declaration is being
218/// used, or produce an error (and return true) if a C++0x deleted
219/// function is being used.
220///
221/// \returns true if there was an error (this declaration cannot be
222/// referenced), false otherwise.
223///
224bool Sema::DiagnoseUseOfDecl(NamedDecl *D, ArrayRef<SourceLocation> Locs,
225                             const ObjCInterfaceDecl *UnknownObjCClass,
226                             bool ObjCPropertyAccess,
227                             bool AvoidPartialAvailabilityChecks,
228                             ObjCInterfaceDecl *ClassReceiver,
229                             bool SkipTrailingRequiresClause) {
230  SourceLocation Loc = Locs.front();
231  if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) {
232    // If there were any diagnostics suppressed by template argument deduction,
233    // emit them now.
234    auto Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
235    if (Pos != SuppressedDiagnostics.end()) {
236      for (const PartialDiagnosticAt &Suppressed : Pos->second)
237        Diag(Suppressed.first, Suppressed.second);
238
239      // Clear out the list of suppressed diagnostics, so that we don't emit
240      // them again for this specialization. However, we don't obsolete this
241      // entry from the table, because we want to avoid ever emitting these
242      // diagnostics again.
243      Pos->second.clear();
244    }
245
246    // C++ [basic.start.main]p3:
247    //   The function 'main' shall not be used within a program.
248    if (cast<FunctionDecl>(D)->isMain())
249      Diag(Loc, diag::ext_main_used);
250
251    diagnoseUnavailableAlignedAllocation(*cast<FunctionDecl>(D), Loc);
252  }
253
254  // See if this is an auto-typed variable whose initializer we are parsing.
255  if (ParsingInitForAutoVars.count(D)) {
256    if (isa<BindingDecl>(D)) {
257      Diag(Loc, diag::err_binding_cannot_appear_in_own_initializer)
258        << D->getDeclName();
259    } else {
260      Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
261        << D->getDeclName() << cast<VarDecl>(D)->getType();
262    }
263    return true;
264  }
265
266  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
267    // See if this is a deleted function.
268    if (FD->isDeleted()) {
269      auto *Ctor = dyn_cast<CXXConstructorDecl>(FD);
270      if (Ctor && Ctor->isInheritingConstructor())
271        Diag(Loc, diag::err_deleted_inherited_ctor_use)
272            << Ctor->getParent()
273            << Ctor->getInheritedConstructor().getConstructor()->getParent();
274      else
275        Diag(Loc, diag::err_deleted_function_use);
276      NoteDeletedFunction(FD);
277      return true;
278    }
279
280    // [expr.prim.id]p4
281    //   A program that refers explicitly or implicitly to a function with a
282    //   trailing requires-clause whose constraint-expression is not satisfied,
283    //   other than to declare it, is ill-formed. [...]
284    //
285    // See if this is a function with constraints that need to be satisfied.
286    // Check this before deducing the return type, as it might instantiate the
287    // definition.
288    if (!SkipTrailingRequiresClause && FD->getTrailingRequiresClause()) {
289      ConstraintSatisfaction Satisfaction;
290      if (CheckFunctionConstraints(FD, Satisfaction, Loc,
291                                   /*ForOverloadResolution*/ true))
292        // A diagnostic will have already been generated (non-constant
293        // constraint expression, for example)
294        return true;
295      if (!Satisfaction.IsSatisfied) {
296        Diag(Loc,
297             diag::err_reference_to_function_with_unsatisfied_constraints)
298            << D;
299        DiagnoseUnsatisfiedConstraint(Satisfaction);
300        return true;
301      }
302    }
303
304    // If the function has a deduced return type, and we can't deduce it,
305    // then we can't use it either.
306    if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
307        DeduceReturnType(FD, Loc))
308      return true;
309
310    if (getLangOpts().CUDA && !CheckCUDACall(Loc, FD))
311      return true;
312
313  }
314
315  if (auto *MD = dyn_cast<CXXMethodDecl>(D)) {
316    // Lambdas are only default-constructible or assignable in C++2a onwards.
317    if (MD->getParent()->isLambda() &&
318        ((isa<CXXConstructorDecl>(MD) &&
319          cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) ||
320         MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator())) {
321      Diag(Loc, diag::warn_cxx17_compat_lambda_def_ctor_assign)
322        << !isa<CXXConstructorDecl>(MD);
323    }
324  }
325
326  auto getReferencedObjCProp = [](const NamedDecl *D) ->
327                                      const ObjCPropertyDecl * {
328    if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
329      return MD->findPropertyDecl();
330    return nullptr;
331  };
332  if (const ObjCPropertyDecl *ObjCPDecl = getReferencedObjCProp(D)) {
333    if (diagnoseArgIndependentDiagnoseIfAttrs(ObjCPDecl, Loc))
334      return true;
335  } else if (diagnoseArgIndependentDiagnoseIfAttrs(D, Loc)) {
336      return true;
337  }
338
339  // [OpenMP 4.0], 2.15 declare reduction Directive, Restrictions
340  // Only the variables omp_in and omp_out are allowed in the combiner.
341  // Only the variables omp_priv and omp_orig are allowed in the
342  // initializer-clause.
343  auto *DRD = dyn_cast<OMPDeclareReductionDecl>(CurContext);
344  if (LangOpts.OpenMP && DRD && !CurContext->containsDecl(D) &&
345      isa<VarDecl>(D)) {
346    Diag(Loc, diag::err_omp_wrong_var_in_declare_reduction)
347        << getCurFunction()->HasOMPDeclareReductionCombiner;
348    Diag(D->getLocation(), diag::note_entity_declared_at) << D;
349    return true;
350  }
351
352  // [OpenMP 5.0], 2.19.7.3. declare mapper Directive, Restrictions
353  //  List-items in map clauses on this construct may only refer to the declared
354  //  variable var and entities that could be referenced by a procedure defined
355  //  at the same location.
356  // [OpenMP 5.2] Also allow iterator declared variables.
357  if (LangOpts.OpenMP && isa<VarDecl>(D) &&
358      !isOpenMPDeclareMapperVarDeclAllowed(cast<VarDecl>(D))) {
359    Diag(Loc, diag::err_omp_declare_mapper_wrong_var)
360        << getOpenMPDeclareMapperVarName();
361    Diag(D->getLocation(), diag::note_entity_declared_at) << D;
362    return true;
363  }
364
365  if (const auto *EmptyD = dyn_cast<UnresolvedUsingIfExistsDecl>(D)) {
366    Diag(Loc, diag::err_use_of_empty_using_if_exists);
367    Diag(EmptyD->getLocation(), diag::note_empty_using_if_exists_here);
368    return true;
369  }
370
371  DiagnoseAvailabilityOfDecl(D, Locs, UnknownObjCClass, ObjCPropertyAccess,
372                             AvoidPartialAvailabilityChecks, ClassReceiver);
373
374  DiagnoseUnusedOfDecl(*this, D, Loc);
375
376  diagnoseUseOfInternalDeclInInlineFunction(*this, D, Loc);
377
378  if (D->hasAttr<AvailableOnlyInDefaultEvalMethodAttr>()) {
379    if (getLangOpts().getFPEvalMethod() !=
380            LangOptions::FPEvalMethodKind::FEM_UnsetOnCommandLine &&
381        PP.getLastFPEvalPragmaLocation().isValid() &&
382        PP.getCurrentFPEvalMethod() != getLangOpts().getFPEvalMethod())
383      Diag(D->getLocation(),
384           diag::err_type_available_only_in_default_eval_method)
385          << D->getName();
386  }
387
388  if (auto *VD = dyn_cast<ValueDecl>(D))
389    checkTypeSupport(VD->getType(), Loc, VD);
390
391  if (LangOpts.SYCLIsDevice ||
392      (LangOpts.OpenMP && LangOpts.OpenMPIsTargetDevice)) {
393    if (!Context.getTargetInfo().isTLSSupported())
394      if (const auto *VD = dyn_cast<VarDecl>(D))
395        if (VD->getTLSKind() != VarDecl::TLS_None)
396          targetDiag(*Locs.begin(), diag::err_thread_unsupported);
397  }
398
399  if (isa<ParmVarDecl>(D) && isa<RequiresExprBodyDecl>(D->getDeclContext()) &&
400      !isUnevaluatedContext()) {
401    // C++ [expr.prim.req.nested] p3
402    //   A local parameter shall only appear as an unevaluated operand
403    //   (Clause 8) within the constraint-expression.
404    Diag(Loc, diag::err_requires_expr_parameter_referenced_in_evaluated_context)
405        << D;
406    Diag(D->getLocation(), diag::note_entity_declared_at) << D;
407    return true;
408  }
409
410  return false;
411}
412
413/// DiagnoseSentinelCalls - This routine checks whether a call or
414/// message-send is to a declaration with the sentinel attribute, and
415/// if so, it checks that the requirements of the sentinel are
416/// satisfied.
417void Sema::DiagnoseSentinelCalls(const NamedDecl *D, SourceLocation Loc,
418                                 ArrayRef<Expr *> Args) {
419  const SentinelAttr *Attr = D->getAttr<SentinelAttr>();
420  if (!Attr)
421    return;
422
423  // The number of formal parameters of the declaration.
424  unsigned NumFormalParams;
425
426  // The kind of declaration.  This is also an index into a %select in
427  // the diagnostic.
428  enum { CK_Function, CK_Method, CK_Block } CalleeKind;
429
430  if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
431    NumFormalParams = MD->param_size();
432    CalleeKind = CK_Method;
433  } else if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
434    NumFormalParams = FD->param_size();
435    CalleeKind = CK_Function;
436  } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
437    QualType Ty = VD->getType();
438    const FunctionType *Fn = nullptr;
439    if (const auto *PtrTy = Ty->getAs<PointerType>()) {
440      Fn = PtrTy->getPointeeType()->getAs<FunctionType>();
441      if (!Fn)
442        return;
443      CalleeKind = CK_Function;
444    } else if (const auto *PtrTy = Ty->getAs<BlockPointerType>()) {
445      Fn = PtrTy->getPointeeType()->castAs<FunctionType>();
446      CalleeKind = CK_Block;
447    } else {
448      return;
449    }
450
451    if (const auto *proto = dyn_cast<FunctionProtoType>(Fn))
452      NumFormalParams = proto->getNumParams();
453    else
454      NumFormalParams = 0;
455  } else {
456    return;
457  }
458
459  // "NullPos" is the number of formal parameters at the end which
460  // effectively count as part of the variadic arguments.  This is
461  // useful if you would prefer to not have *any* formal parameters,
462  // but the language forces you to have at least one.
463  unsigned NullPos = Attr->getNullPos();
464  assert((NullPos == 0 || NullPos == 1) && "invalid null position on sentinel");
465  NumFormalParams = (NullPos > NumFormalParams ? 0 : NumFormalParams - NullPos);
466
467  // The number of arguments which should follow the sentinel.
468  unsigned NumArgsAfterSentinel = Attr->getSentinel();
469
470  // If there aren't enough arguments for all the formal parameters,
471  // the sentinel, and the args after the sentinel, complain.
472  if (Args.size() < NumFormalParams + NumArgsAfterSentinel + 1) {
473    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
474    Diag(D->getLocation(), diag::note_sentinel_here) << int(CalleeKind);
475    return;
476  }
477
478  // Otherwise, find the sentinel expression.
479  const Expr *SentinelExpr = Args[Args.size() - NumArgsAfterSentinel - 1];
480  if (!SentinelExpr)
481    return;
482  if (SentinelExpr->isValueDependent())
483    return;
484  if (Context.isSentinelNullExpr(SentinelExpr))
485    return;
486
487  // Pick a reasonable string to insert.  Optimistically use 'nil', 'nullptr',
488  // or 'NULL' if those are actually defined in the context.  Only use
489  // 'nil' for ObjC methods, where it's much more likely that the
490  // variadic arguments form a list of object pointers.
491  SourceLocation MissingNilLoc = getLocForEndOfToken(SentinelExpr->getEndLoc());
492  std::string NullValue;
493  if (CalleeKind == CK_Method && PP.isMacroDefined("nil"))
494    NullValue = "nil";
495  else if (getLangOpts().CPlusPlus11)
496    NullValue = "nullptr";
497  else if (PP.isMacroDefined("NULL"))
498    NullValue = "NULL";
499  else
500    NullValue = "(void*) 0";
501
502  if (MissingNilLoc.isInvalid())
503    Diag(Loc, diag::warn_missing_sentinel) << int(CalleeKind);
504  else
505    Diag(MissingNilLoc, diag::warn_missing_sentinel)
506        << int(CalleeKind)
507        << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
508  Diag(D->getLocation(), diag::note_sentinel_here)
509      << int(CalleeKind) << Attr->getRange();
510}
511
512SourceRange Sema::getExprRange(Expr *E) const {
513  return E ? E->getSourceRange() : SourceRange();
514}
515
516//===----------------------------------------------------------------------===//
517//  Standard Promotions and Conversions
518//===----------------------------------------------------------------------===//
519
520/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
521ExprResult Sema::DefaultFunctionArrayConversion(Expr *E, bool Diagnose) {
522  // Handle any placeholder expressions which made it here.
523  if (E->hasPlaceholderType()) {
524    ExprResult result = CheckPlaceholderExpr(E);
525    if (result.isInvalid()) return ExprError();
526    E = result.get();
527  }
528
529  QualType Ty = E->getType();
530  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
531
532  if (Ty->isFunctionType()) {
533    if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts()))
534      if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()))
535        if (!checkAddressOfFunctionIsAvailable(FD, Diagnose, E->getExprLoc()))
536          return ExprError();
537
538    E = ImpCastExprToType(E, Context.getPointerType(Ty),
539                          CK_FunctionToPointerDecay).get();
540  } else if (Ty->isArrayType()) {
541    // In C90 mode, arrays only promote to pointers if the array expression is
542    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
543    // type 'array of type' is converted to an expression that has type 'pointer
544    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
545    // that has type 'array of type' ...".  The relevant change is "an lvalue"
546    // (C90) to "an expression" (C99).
547    //
548    // C++ 4.2p1:
549    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
550    // T" can be converted to an rvalue of type "pointer to T".
551    //
552    if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue()) {
553      ExprResult Res = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
554                                         CK_ArrayToPointerDecay);
555      if (Res.isInvalid())
556        return ExprError();
557      E = Res.get();
558    }
559  }
560  return E;
561}
562
563static void CheckForNullPointerDereference(Sema &S, Expr *E) {
564  // Check to see if we are dereferencing a null pointer.  If so,
565  // and if not volatile-qualified, this is undefined behavior that the
566  // optimizer will delete, so warn about it.  People sometimes try to use this
567  // to get a deterministic trap and are surprised by clang's behavior.  This
568  // only handles the pattern "*null", which is a very syntactic check.
569  const auto *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts());
570  if (UO && UO->getOpcode() == UO_Deref &&
571      UO->getSubExpr()->getType()->isPointerType()) {
572    const LangAS AS =
573        UO->getSubExpr()->getType()->getPointeeType().getAddressSpace();
574    if ((!isTargetAddressSpace(AS) ||
575         (isTargetAddressSpace(AS) && toTargetAddressSpace(AS) == 0)) &&
576        UO->getSubExpr()->IgnoreParenCasts()->isNullPointerConstant(
577            S.Context, Expr::NPC_ValueDependentIsNotNull) &&
578        !UO->getType().isVolatileQualified()) {
579      S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
580                            S.PDiag(diag::warn_indirection_through_null)
581                                << UO->getSubExpr()->getSourceRange());
582      S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
583                            S.PDiag(diag::note_indirection_through_null));
584    }
585  }
586}
587
588static void DiagnoseDirectIsaAccess(Sema &S, const ObjCIvarRefExpr *OIRE,
589                                    SourceLocation AssignLoc,
590                                    const Expr* RHS) {
591  const ObjCIvarDecl *IV = OIRE->getDecl();
592  if (!IV)
593    return;
594
595  DeclarationName MemberName = IV->getDeclName();
596  IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
597  if (!Member || !Member->isStr("isa"))
598    return;
599
600  const Expr *Base = OIRE->getBase();
601  QualType BaseType = Base->getType();
602  if (OIRE->isArrow())
603    BaseType = BaseType->getPointeeType();
604  if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>())
605    if (ObjCInterfaceDecl *IDecl = OTy->getInterface()) {
606      ObjCInterfaceDecl *ClassDeclared = nullptr;
607      ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
608      if (!ClassDeclared->getSuperClass()
609          && (*ClassDeclared->ivar_begin()) == IV) {
610        if (RHS) {
611          NamedDecl *ObjectSetClass =
612            S.LookupSingleName(S.TUScope,
613                               &S.Context.Idents.get("object_setClass"),
614                               SourceLocation(), S.LookupOrdinaryName);
615          if (ObjectSetClass) {
616            SourceLocation RHSLocEnd = S.getLocForEndOfToken(RHS->getEndLoc());
617            S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_assign)
618                << FixItHint::CreateInsertion(OIRE->getBeginLoc(),
619                                              "object_setClass(")
620                << FixItHint::CreateReplacement(
621                       SourceRange(OIRE->getOpLoc(), AssignLoc), ",")
622                << FixItHint::CreateInsertion(RHSLocEnd, ")");
623          }
624          else
625            S.Diag(OIRE->getLocation(), diag::warn_objc_isa_assign);
626        } else {
627          NamedDecl *ObjectGetClass =
628            S.LookupSingleName(S.TUScope,
629                               &S.Context.Idents.get("object_getClass"),
630                               SourceLocation(), S.LookupOrdinaryName);
631          if (ObjectGetClass)
632            S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_use)
633                << FixItHint::CreateInsertion(OIRE->getBeginLoc(),
634                                              "object_getClass(")
635                << FixItHint::CreateReplacement(
636                       SourceRange(OIRE->getOpLoc(), OIRE->getEndLoc()), ")");
637          else
638            S.Diag(OIRE->getLocation(), diag::warn_objc_isa_use);
639        }
640        S.Diag(IV->getLocation(), diag::note_ivar_decl);
641      }
642    }
643}
644
645ExprResult Sema::DefaultLvalueConversion(Expr *E) {
646  // Handle any placeholder expressions which made it here.
647  if (E->hasPlaceholderType()) {
648    ExprResult result = CheckPlaceholderExpr(E);
649    if (result.isInvalid()) return ExprError();
650    E = result.get();
651  }
652
653  // C++ [conv.lval]p1:
654  //   A glvalue of a non-function, non-array type T can be
655  //   converted to a prvalue.
656  if (!E->isGLValue()) return E;
657
658  QualType T = E->getType();
659  assert(!T.isNull() && "r-value conversion on typeless expression?");
660
661  // lvalue-to-rvalue conversion cannot be applied to function or array types.
662  if (T->isFunctionType() || T->isArrayType())
663    return E;
664
665  // We don't want to throw lvalue-to-rvalue casts on top of
666  // expressions of certain types in C++.
667  if (getLangOpts().CPlusPlus &&
668      (E->getType() == Context.OverloadTy ||
669       T->isDependentType() ||
670       T->isRecordType()))
671    return E;
672
673  // The C standard is actually really unclear on this point, and
674  // DR106 tells us what the result should be but not why.  It's
675  // generally best to say that void types just doesn't undergo
676  // lvalue-to-rvalue at all.  Note that expressions of unqualified
677  // 'void' type are never l-values, but qualified void can be.
678  if (T->isVoidType())
679    return E;
680
681  // OpenCL usually rejects direct accesses to values of 'half' type.
682  if (getLangOpts().OpenCL &&
683      !getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()) &&
684      T->isHalfType()) {
685    Diag(E->getExprLoc(), diag::err_opencl_half_load_store)
686      << 0 << T;
687    return ExprError();
688  }
689
690  CheckForNullPointerDereference(*this, E);
691  if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(E->IgnoreParenCasts())) {
692    NamedDecl *ObjectGetClass = LookupSingleName(TUScope,
693                                     &Context.Idents.get("object_getClass"),
694                                     SourceLocation(), LookupOrdinaryName);
695    if (ObjectGetClass)
696      Diag(E->getExprLoc(), diag::warn_objc_isa_use)
697          << FixItHint::CreateInsertion(OISA->getBeginLoc(), "object_getClass(")
698          << FixItHint::CreateReplacement(
699                 SourceRange(OISA->getOpLoc(), OISA->getIsaMemberLoc()), ")");
700    else
701      Diag(E->getExprLoc(), diag::warn_objc_isa_use);
702  }
703  else if (const ObjCIvarRefExpr *OIRE =
704            dyn_cast<ObjCIvarRefExpr>(E->IgnoreParenCasts()))
705    DiagnoseDirectIsaAccess(*this, OIRE, SourceLocation(), /* Expr*/nullptr);
706
707  // C++ [conv.lval]p1:
708  //   [...] If T is a non-class type, the type of the prvalue is the
709  //   cv-unqualified version of T. Otherwise, the type of the
710  //   rvalue is T.
711  //
712  // C99 6.3.2.1p2:
713  //   If the lvalue has qualified type, the value has the unqualified
714  //   version of the type of the lvalue; otherwise, the value has the
715  //   type of the lvalue.
716  if (T.hasQualifiers())
717    T = T.getUnqualifiedType();
718
719  // Under the MS ABI, lock down the inheritance model now.
720  if (T->isMemberPointerType() &&
721      Context.getTargetInfo().getCXXABI().isMicrosoft())
722    (void)isCompleteType(E->getExprLoc(), T);
723
724  ExprResult Res = CheckLValueToRValueConversionOperand(E);
725  if (Res.isInvalid())
726    return Res;
727  E = Res.get();
728
729  // Loading a __weak object implicitly retains the value, so we need a cleanup to
730  // balance that.
731  if (E->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
732    Cleanup.setExprNeedsCleanups(true);
733
734  if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
735    Cleanup.setExprNeedsCleanups(true);
736
737  // C++ [conv.lval]p3:
738  //   If T is cv std::nullptr_t, the result is a null pointer constant.
739  CastKind CK = T->isNullPtrType() ? CK_NullToPointer : CK_LValueToRValue;
740  Res = ImplicitCastExpr::Create(Context, T, CK, E, nullptr, VK_PRValue,
741                                 CurFPFeatureOverrides());
742
743  // C11 6.3.2.1p2:
744  //   ... if the lvalue has atomic type, the value has the non-atomic version
745  //   of the type of the lvalue ...
746  if (const AtomicType *Atomic = T->getAs<AtomicType>()) {
747    T = Atomic->getValueType().getUnqualifiedType();
748    Res = ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic, Res.get(),
749                                   nullptr, VK_PRValue, FPOptionsOverride());
750  }
751
752  return Res;
753}
754
755ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E, bool Diagnose) {
756  ExprResult Res = DefaultFunctionArrayConversion(E, Diagnose);
757  if (Res.isInvalid())
758    return ExprError();
759  Res = DefaultLvalueConversion(Res.get());
760  if (Res.isInvalid())
761    return ExprError();
762  return Res;
763}
764
765/// CallExprUnaryConversions - a special case of an unary conversion
766/// performed on a function designator of a call expression.
767ExprResult Sema::CallExprUnaryConversions(Expr *E) {
768  QualType Ty = E->getType();
769  ExprResult Res = E;
770  // Only do implicit cast for a function type, but not for a pointer
771  // to function type.
772  if (Ty->isFunctionType()) {
773    Res = ImpCastExprToType(E, Context.getPointerType(Ty),
774                            CK_FunctionToPointerDecay);
775    if (Res.isInvalid())
776      return ExprError();
777  }
778  Res = DefaultLvalueConversion(Res.get());
779  if (Res.isInvalid())
780    return ExprError();
781  return Res.get();
782}
783
784/// UsualUnaryConversions - Performs various conversions that are common to most
785/// operators (C99 6.3). The conversions of array and function types are
786/// sometimes suppressed. For example, the array->pointer conversion doesn't
787/// apply if the array is an argument to the sizeof or address (&) operators.
788/// In these instances, this routine should *not* be called.
789ExprResult Sema::UsualUnaryConversions(Expr *E) {
790  // First, convert to an r-value.
791  ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
792  if (Res.isInvalid())
793    return ExprError();
794  E = Res.get();
795
796  QualType Ty = E->getType();
797  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
798
799  LangOptions::FPEvalMethodKind EvalMethod = CurFPFeatures.getFPEvalMethod();
800  if (EvalMethod != LangOptions::FEM_Source && Ty->isFloatingType() &&
801      (getLangOpts().getFPEvalMethod() !=
802           LangOptions::FPEvalMethodKind::FEM_UnsetOnCommandLine ||
803       PP.getLastFPEvalPragmaLocation().isValid())) {
804    switch (EvalMethod) {
805    default:
806      llvm_unreachable("Unrecognized float evaluation method");
807      break;
808    case LangOptions::FEM_UnsetOnCommandLine:
809      llvm_unreachable("Float evaluation method should be set by now");
810      break;
811    case LangOptions::FEM_Double:
812      if (Context.getFloatingTypeOrder(Context.DoubleTy, Ty) > 0)
813        // Widen the expression to double.
814        return Ty->isComplexType()
815                   ? ImpCastExprToType(E,
816                                       Context.getComplexType(Context.DoubleTy),
817                                       CK_FloatingComplexCast)
818                   : ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast);
819      break;
820    case LangOptions::FEM_Extended:
821      if (Context.getFloatingTypeOrder(Context.LongDoubleTy, Ty) > 0)
822        // Widen the expression to long double.
823        return Ty->isComplexType()
824                   ? ImpCastExprToType(
825                         E, Context.getComplexType(Context.LongDoubleTy),
826                         CK_FloatingComplexCast)
827                   : ImpCastExprToType(E, Context.LongDoubleTy,
828                                       CK_FloatingCast);
829      break;
830    }
831  }
832
833  // Half FP have to be promoted to float unless it is natively supported
834  if (Ty->isHalfType() && !getLangOpts().NativeHalfType)
835    return ImpCastExprToType(Res.get(), Context.FloatTy, CK_FloatingCast);
836
837  // Try to perform integral promotions if the object has a theoretically
838  // promotable type.
839  if (Ty->isIntegralOrUnscopedEnumerationType()) {
840    // C99 6.3.1.1p2:
841    //
842    //   The following may be used in an expression wherever an int or
843    //   unsigned int may be used:
844    //     - an object or expression with an integer type whose integer
845    //       conversion rank is less than or equal to the rank of int
846    //       and unsigned int.
847    //     - A bit-field of type _Bool, int, signed int, or unsigned int.
848    //
849    //   If an int can represent all values of the original type, the
850    //   value is converted to an int; otherwise, it is converted to an
851    //   unsigned int. These are called the integer promotions. All
852    //   other types are unchanged by the integer promotions.
853
854    QualType PTy = Context.isPromotableBitField(E);
855    if (!PTy.isNull()) {
856      E = ImpCastExprToType(E, PTy, CK_IntegralCast).get();
857      return E;
858    }
859    if (Context.isPromotableIntegerType(Ty)) {
860      QualType PT = Context.getPromotedIntegerType(Ty);
861      E = ImpCastExprToType(E, PT, CK_IntegralCast).get();
862      return E;
863    }
864  }
865  return E;
866}
867
868/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
869/// do not have a prototype. Arguments that have type float or __fp16
870/// are promoted to double. All other argument types are converted by
871/// UsualUnaryConversions().
872ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
873  QualType Ty = E->getType();
874  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
875
876  ExprResult Res = UsualUnaryConversions(E);
877  if (Res.isInvalid())
878    return ExprError();
879  E = Res.get();
880
881  // If this is a 'float'  or '__fp16' (CVR qualified or typedef)
882  // promote to double.
883  // Note that default argument promotion applies only to float (and
884  // half/fp16); it does not apply to _Float16.
885  const BuiltinType *BTy = Ty->getAs<BuiltinType>();
886  if (BTy && (BTy->getKind() == BuiltinType::Half ||
887              BTy->getKind() == BuiltinType::Float)) {
888    if (getLangOpts().OpenCL &&
889        !getOpenCLOptions().isAvailableOption("cl_khr_fp64", getLangOpts())) {
890      if (BTy->getKind() == BuiltinType::Half) {
891        E = ImpCastExprToType(E, Context.FloatTy, CK_FloatingCast).get();
892      }
893    } else {
894      E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).get();
895    }
896  }
897  if (BTy &&
898      getLangOpts().getExtendIntArgs() ==
899          LangOptions::ExtendArgsKind::ExtendTo64 &&
900      Context.getTargetInfo().supportsExtendIntArgs() && Ty->isIntegerType() &&
901      Context.getTypeSizeInChars(BTy) <
902          Context.getTypeSizeInChars(Context.LongLongTy)) {
903    E = (Ty->isUnsignedIntegerType())
904            ? ImpCastExprToType(E, Context.UnsignedLongLongTy, CK_IntegralCast)
905                  .get()
906            : ImpCastExprToType(E, Context.LongLongTy, CK_IntegralCast).get();
907    assert(8 == Context.getTypeSizeInChars(Context.LongLongTy).getQuantity() &&
908           "Unexpected typesize for LongLongTy");
909  }
910
911  // C++ performs lvalue-to-rvalue conversion as a default argument
912  // promotion, even on class types, but note:
913  //   C++11 [conv.lval]p2:
914  //     When an lvalue-to-rvalue conversion occurs in an unevaluated
915  //     operand or a subexpression thereof the value contained in the
916  //     referenced object is not accessed. Otherwise, if the glvalue
917  //     has a class type, the conversion copy-initializes a temporary
918  //     of type T from the glvalue and the result of the conversion
919  //     is a prvalue for the temporary.
920  // FIXME: add some way to gate this entire thing for correctness in
921  // potentially potentially evaluated contexts.
922  if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) {
923    ExprResult Temp = PerformCopyInitialization(
924                       InitializedEntity::InitializeTemporary(E->getType()),
925                                                E->getExprLoc(), E);
926    if (Temp.isInvalid())
927      return ExprError();
928    E = Temp.get();
929  }
930
931  return E;
932}
933
934/// Determine the degree of POD-ness for an expression.
935/// Incomplete types are considered POD, since this check can be performed
936/// when we're in an unevaluated context.
937Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) {
938  if (Ty->isIncompleteType()) {
939    // C++11 [expr.call]p7:
940    //   After these conversions, if the argument does not have arithmetic,
941    //   enumeration, pointer, pointer to member, or class type, the program
942    //   is ill-formed.
943    //
944    // Since we've already performed array-to-pointer and function-to-pointer
945    // decay, the only such type in C++ is cv void. This also handles
946    // initializer lists as variadic arguments.
947    if (Ty->isVoidType())
948      return VAK_Invalid;
949
950    if (Ty->isObjCObjectType())
951      return VAK_Invalid;
952    return VAK_Valid;
953  }
954
955  if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct)
956    return VAK_Invalid;
957
958  if (Context.getTargetInfo().getTriple().isWasm() &&
959      Ty.isWebAssemblyReferenceType()) {
960    return VAK_Invalid;
961  }
962
963  if (Ty.isCXX98PODType(Context))
964    return VAK_Valid;
965
966  // C++11 [expr.call]p7:
967  //   Passing a potentially-evaluated argument of class type (Clause 9)
968  //   having a non-trivial copy constructor, a non-trivial move constructor,
969  //   or a non-trivial destructor, with no corresponding parameter,
970  //   is conditionally-supported with implementation-defined semantics.
971  if (getLangOpts().CPlusPlus11 && !Ty->isDependentType())
972    if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl())
973      if (!Record->hasNonTrivialCopyConstructor() &&
974          !Record->hasNonTrivialMoveConstructor() &&
975          !Record->hasNonTrivialDestructor())
976        return VAK_ValidInCXX11;
977
978  if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType())
979    return VAK_Valid;
980
981  if (Ty->isObjCObjectType())
982    return VAK_Invalid;
983
984  if (getLangOpts().MSVCCompat)
985    return VAK_MSVCUndefined;
986
987  // FIXME: In C++11, these cases are conditionally-supported, meaning we're
988  // permitted to reject them. We should consider doing so.
989  return VAK_Undefined;
990}
991
992void Sema::checkVariadicArgument(const Expr *E, VariadicCallType CT) {
993  // Don't allow one to pass an Objective-C interface to a vararg.
994  const QualType &Ty = E->getType();
995  VarArgKind VAK = isValidVarArgType(Ty);
996
997  // Complain about passing non-POD types through varargs.
998  switch (VAK) {
999  case VAK_ValidInCXX11:
1000    DiagRuntimeBehavior(
1001        E->getBeginLoc(), nullptr,
1002        PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg) << Ty << CT);
1003    [[fallthrough]];
1004  case VAK_Valid:
1005    if (Ty->isRecordType()) {
1006      // This is unlikely to be what the user intended. If the class has a
1007      // 'c_str' member function, the user probably meant to call that.
1008      DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
1009                          PDiag(diag::warn_pass_class_arg_to_vararg)
1010                              << Ty << CT << hasCStrMethod(E) << ".c_str()");
1011    }
1012    break;
1013
1014  case VAK_Undefined:
1015  case VAK_MSVCUndefined:
1016    DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
1017                        PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
1018                            << getLangOpts().CPlusPlus11 << Ty << CT);
1019    break;
1020
1021  case VAK_Invalid:
1022    if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct)
1023      Diag(E->getBeginLoc(),
1024           diag::err_cannot_pass_non_trivial_c_struct_to_vararg)
1025          << Ty << CT;
1026    else if (Ty->isObjCObjectType())
1027      DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
1028                          PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
1029                              << Ty << CT);
1030    else
1031      Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg)
1032          << isa<InitListExpr>(E) << Ty << CT;
1033    break;
1034  }
1035}
1036
1037/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
1038/// will create a trap if the resulting type is not a POD type.
1039ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
1040                                                  FunctionDecl *FDecl) {
1041  if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
1042    // Strip the unbridged-cast placeholder expression off, if applicable.
1043    if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
1044        (CT == VariadicMethod ||
1045         (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) {
1046      E = stripARCUnbridgedCast(E);
1047
1048    // Otherwise, do normal placeholder checking.
1049    } else {
1050      ExprResult ExprRes = CheckPlaceholderExpr(E);
1051      if (ExprRes.isInvalid())
1052        return ExprError();
1053      E = ExprRes.get();
1054    }
1055  }
1056
1057  ExprResult ExprRes = DefaultArgumentPromotion(E);
1058  if (ExprRes.isInvalid())
1059    return ExprError();
1060
1061  // Copy blocks to the heap.
1062  if (ExprRes.get()->getType()->isBlockPointerType())
1063    maybeExtendBlockObject(ExprRes);
1064
1065  E = ExprRes.get();
1066
1067  // Diagnostics regarding non-POD argument types are
1068  // emitted along with format string checking in Sema::CheckFunctionCall().
1069  if (isValidVarArgType(E->getType()) == VAK_Undefined) {
1070    // Turn this into a trap.
1071    CXXScopeSpec SS;
1072    SourceLocation TemplateKWLoc;
1073    UnqualifiedId Name;
1074    Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
1075                       E->getBeginLoc());
1076    ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc, Name,
1077                                          /*HasTrailingLParen=*/true,
1078                                          /*IsAddressOfOperand=*/false);
1079    if (TrapFn.isInvalid())
1080      return ExprError();
1081
1082    ExprResult Call = BuildCallExpr(TUScope, TrapFn.get(), E->getBeginLoc(),
1083                                    std::nullopt, E->getEndLoc());
1084    if (Call.isInvalid())
1085      return ExprError();
1086
1087    ExprResult Comma =
1088        ActOnBinOp(TUScope, E->getBeginLoc(), tok::comma, Call.get(), E);
1089    if (Comma.isInvalid())
1090      return ExprError();
1091    return Comma.get();
1092  }
1093
1094  if (!getLangOpts().CPlusPlus &&
1095      RequireCompleteType(E->getExprLoc(), E->getType(),
1096                          diag::err_call_incomplete_argument))
1097    return ExprError();
1098
1099  return E;
1100}
1101
1102/// Converts an integer to complex float type.  Helper function of
1103/// UsualArithmeticConversions()
1104///
1105/// \return false if the integer expression is an integer type and is
1106/// successfully converted to the complex type.
1107static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr,
1108                                                  ExprResult &ComplexExpr,
1109                                                  QualType IntTy,
1110                                                  QualType ComplexTy,
1111                                                  bool SkipCast) {
1112  if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
1113  if (SkipCast) return false;
1114  if (IntTy->isIntegerType()) {
1115    QualType fpTy = ComplexTy->castAs<ComplexType>()->getElementType();
1116    IntExpr = S.ImpCastExprToType(IntExpr.get(), fpTy, CK_IntegralToFloating);
1117    IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
1118                                  CK_FloatingRealToComplex);
1119  } else {
1120    assert(IntTy->isComplexIntegerType());
1121    IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
1122                                  CK_IntegralComplexToFloatingComplex);
1123  }
1124  return false;
1125}
1126
1127// This handles complex/complex, complex/float, or float/complex.
1128// When both operands are complex, the shorter operand is converted to the
1129// type of the longer, and that is the type of the result. This corresponds
1130// to what is done when combining two real floating-point operands.
1131// The fun begins when size promotion occur across type domains.
1132// From H&S 6.3.4: When one operand is complex and the other is a real
1133// floating-point type, the less precise type is converted, within it's
1134// real or complex domain, to the precision of the other type. For example,
1135// when combining a "long double" with a "double _Complex", the
1136// "double _Complex" is promoted to "long double _Complex".
1137static QualType handleComplexFloatConversion(Sema &S, ExprResult &Shorter,
1138                                             QualType ShorterType,
1139                                             QualType LongerType,
1140                                             bool PromotePrecision) {
1141  bool LongerIsComplex = isa<ComplexType>(LongerType.getCanonicalType());
1142  QualType Result =
1143      LongerIsComplex ? LongerType : S.Context.getComplexType(LongerType);
1144
1145  if (PromotePrecision) {
1146    if (isa<ComplexType>(ShorterType.getCanonicalType())) {
1147      Shorter =
1148          S.ImpCastExprToType(Shorter.get(), Result, CK_FloatingComplexCast);
1149    } else {
1150      if (LongerIsComplex)
1151        LongerType = LongerType->castAs<ComplexType>()->getElementType();
1152      Shorter = S.ImpCastExprToType(Shorter.get(), LongerType, CK_FloatingCast);
1153    }
1154  }
1155  return Result;
1156}
1157
1158/// Handle arithmetic conversion with complex types.  Helper function of
1159/// UsualArithmeticConversions()
1160static QualType handleComplexConversion(Sema &S, ExprResult &LHS,
1161                                        ExprResult &RHS, QualType LHSType,
1162                                        QualType RHSType, bool IsCompAssign) {
1163  // if we have an integer operand, the result is the complex type.
1164  if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType,
1165                                             /*SkipCast=*/false))
1166    return LHSType;
1167  if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType,
1168                                             /*SkipCast=*/IsCompAssign))
1169    return RHSType;
1170
1171  // Compute the rank of the two types, regardless of whether they are complex.
1172  int Order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
1173  if (Order < 0)
1174    // Promote the precision of the LHS if not an assignment.
1175    return handleComplexFloatConversion(S, LHS, LHSType, RHSType,
1176                                        /*PromotePrecision=*/!IsCompAssign);
1177  // Promote the precision of the RHS unless it is already the same as the LHS.
1178  return handleComplexFloatConversion(S, RHS, RHSType, LHSType,
1179                                      /*PromotePrecision=*/Order > 0);
1180}
1181
1182/// Handle arithmetic conversion from integer to float.  Helper function
1183/// of UsualArithmeticConversions()
1184static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
1185                                           ExprResult &IntExpr,
1186                                           QualType FloatTy, QualType IntTy,
1187                                           bool ConvertFloat, bool ConvertInt) {
1188  if (IntTy->isIntegerType()) {
1189    if (ConvertInt)
1190      // Convert intExpr to the lhs floating point type.
1191      IntExpr = S.ImpCastExprToType(IntExpr.get(), FloatTy,
1192                                    CK_IntegralToFloating);
1193    return FloatTy;
1194  }
1195
1196  // Convert both sides to the appropriate complex float.
1197  assert(IntTy->isComplexIntegerType());
1198  QualType result = S.Context.getComplexType(FloatTy);
1199
1200  // _Complex int -> _Complex float
1201  if (ConvertInt)
1202    IntExpr = S.ImpCastExprToType(IntExpr.get(), result,
1203                                  CK_IntegralComplexToFloatingComplex);
1204
1205  // float -> _Complex float
1206  if (ConvertFloat)
1207    FloatExpr = S.ImpCastExprToType(FloatExpr.get(), result,
1208                                    CK_FloatingRealToComplex);
1209
1210  return result;
1211}
1212
1213/// Handle arithmethic conversion with floating point types.  Helper
1214/// function of UsualArithmeticConversions()
1215static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
1216                                      ExprResult &RHS, QualType LHSType,
1217                                      QualType RHSType, bool IsCompAssign) {
1218  bool LHSFloat = LHSType->isRealFloatingType();
1219  bool RHSFloat = RHSType->isRealFloatingType();
1220
1221  // N1169 4.1.4: If one of the operands has a floating type and the other
1222  //              operand has a fixed-point type, the fixed-point operand
1223  //              is converted to the floating type [...]
1224  if (LHSType->isFixedPointType() || RHSType->isFixedPointType()) {
1225    if (LHSFloat)
1226      RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FixedPointToFloating);
1227    else if (!IsCompAssign)
1228      LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FixedPointToFloating);
1229    return LHSFloat ? LHSType : RHSType;
1230  }
1231
1232  // If we have two real floating types, convert the smaller operand
1233  // to the bigger result.
1234  if (LHSFloat && RHSFloat) {
1235    int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
1236    if (order > 0) {
1237      RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FloatingCast);
1238      return LHSType;
1239    }
1240
1241    assert(order < 0 && "illegal float comparison");
1242    if (!IsCompAssign)
1243      LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FloatingCast);
1244    return RHSType;
1245  }
1246
1247  if (LHSFloat) {
1248    // Half FP has to be promoted to float unless it is natively supported
1249    if (LHSType->isHalfType() && !S.getLangOpts().NativeHalfType)
1250      LHSType = S.Context.FloatTy;
1251
1252    return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType,
1253                                      /*ConvertFloat=*/!IsCompAssign,
1254                                      /*ConvertInt=*/ true);
1255  }
1256  assert(RHSFloat);
1257  return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType,
1258                                    /*ConvertFloat=*/ true,
1259                                    /*ConvertInt=*/!IsCompAssign);
1260}
1261
1262/// Diagnose attempts to convert between __float128, __ibm128 and
1263/// long double if there is no support for such conversion.
1264/// Helper function of UsualArithmeticConversions().
1265static bool unsupportedTypeConversion(const Sema &S, QualType LHSType,
1266                                      QualType RHSType) {
1267  // No issue if either is not a floating point type.
1268  if (!LHSType->isFloatingType() || !RHSType->isFloatingType())
1269    return false;
1270
1271  // No issue if both have the same 128-bit float semantics.
1272  auto *LHSComplex = LHSType->getAs<ComplexType>();
1273  auto *RHSComplex = RHSType->getAs<ComplexType>();
1274
1275  QualType LHSElem = LHSComplex ? LHSComplex->getElementType() : LHSType;
1276  QualType RHSElem = RHSComplex ? RHSComplex->getElementType() : RHSType;
1277
1278  const llvm::fltSemantics &LHSSem = S.Context.getFloatTypeSemantics(LHSElem);
1279  const llvm::fltSemantics &RHSSem = S.Context.getFloatTypeSemantics(RHSElem);
1280
1281  if ((&LHSSem != &llvm::APFloat::PPCDoubleDouble() ||
1282       &RHSSem != &llvm::APFloat::IEEEquad()) &&
1283      (&LHSSem != &llvm::APFloat::IEEEquad() ||
1284       &RHSSem != &llvm::APFloat::PPCDoubleDouble()))
1285    return false;
1286
1287  return true;
1288}
1289
1290typedef ExprResult PerformCastFn(Sema &S, Expr *operand, QualType toType);
1291
1292namespace {
1293/// These helper callbacks are placed in an anonymous namespace to
1294/// permit their use as function template parameters.
1295ExprResult doIntegralCast(Sema &S, Expr *op, QualType toType) {
1296  return S.ImpCastExprToType(op, toType, CK_IntegralCast);
1297}
1298
1299ExprResult doComplexIntegralCast(Sema &S, Expr *op, QualType toType) {
1300  return S.ImpCastExprToType(op, S.Context.getComplexType(toType),
1301                             CK_IntegralComplexCast);
1302}
1303}
1304
1305/// Handle integer arithmetic conversions.  Helper function of
1306/// UsualArithmeticConversions()
1307template <PerformCastFn doLHSCast, PerformCastFn doRHSCast>
1308static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
1309                                        ExprResult &RHS, QualType LHSType,
1310                                        QualType RHSType, bool IsCompAssign) {
1311  // The rules for this case are in C99 6.3.1.8
1312  int order = S.Context.getIntegerTypeOrder(LHSType, RHSType);
1313  bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
1314  bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
1315  if (LHSSigned == RHSSigned) {
1316    // Same signedness; use the higher-ranked type
1317    if (order >= 0) {
1318      RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1319      return LHSType;
1320    } else if (!IsCompAssign)
1321      LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1322    return RHSType;
1323  } else if (order != (LHSSigned ? 1 : -1)) {
1324    // The unsigned type has greater than or equal rank to the
1325    // signed type, so use the unsigned type
1326    if (RHSSigned) {
1327      RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1328      return LHSType;
1329    } else if (!IsCompAssign)
1330      LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1331    return RHSType;
1332  } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) {
1333    // The two types are different widths; if we are here, that
1334    // means the signed type is larger than the unsigned type, so
1335    // use the signed type.
1336    if (LHSSigned) {
1337      RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1338      return LHSType;
1339    } else if (!IsCompAssign)
1340      LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1341    return RHSType;
1342  } else {
1343    // The signed type is higher-ranked than the unsigned type,
1344    // but isn't actually any bigger (like unsigned int and long
1345    // on most 32-bit systems).  Use the unsigned type corresponding
1346    // to the signed type.
1347    QualType result =
1348      S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType);
1349    RHS = (*doRHSCast)(S, RHS.get(), result);
1350    if (!IsCompAssign)
1351      LHS = (*doLHSCast)(S, LHS.get(), result);
1352    return result;
1353  }
1354}
1355
1356/// Handle conversions with GCC complex int extension.  Helper function
1357/// of UsualArithmeticConversions()
1358static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
1359                                           ExprResult &RHS, QualType LHSType,
1360                                           QualType RHSType,
1361                                           bool IsCompAssign) {
1362  const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
1363  const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
1364
1365  if (LHSComplexInt && RHSComplexInt) {
1366    QualType LHSEltType = LHSComplexInt->getElementType();
1367    QualType RHSEltType = RHSComplexInt->getElementType();
1368    QualType ScalarType =
1369      handleIntegerConversion<doComplexIntegralCast, doComplexIntegralCast>
1370        (S, LHS, RHS, LHSEltType, RHSEltType, IsCompAssign);
1371
1372    return S.Context.getComplexType(ScalarType);
1373  }
1374
1375  if (LHSComplexInt) {
1376    QualType LHSEltType = LHSComplexInt->getElementType();
1377    QualType ScalarType =
1378      handleIntegerConversion<doComplexIntegralCast, doIntegralCast>
1379        (S, LHS, RHS, LHSEltType, RHSType, IsCompAssign);
1380    QualType ComplexType = S.Context.getComplexType(ScalarType);
1381    RHS = S.ImpCastExprToType(RHS.get(), ComplexType,
1382                              CK_IntegralRealToComplex);
1383
1384    return ComplexType;
1385  }
1386
1387  assert(RHSComplexInt);
1388
1389  QualType RHSEltType = RHSComplexInt->getElementType();
1390  QualType ScalarType =
1391    handleIntegerConversion<doIntegralCast, doComplexIntegralCast>
1392      (S, LHS, RHS, LHSType, RHSEltType, IsCompAssign);
1393  QualType ComplexType = S.Context.getComplexType(ScalarType);
1394
1395  if (!IsCompAssign)
1396    LHS = S.ImpCastExprToType(LHS.get(), ComplexType,
1397                              CK_IntegralRealToComplex);
1398  return ComplexType;
1399}
1400
1401/// Return the rank of a given fixed point or integer type. The value itself
1402/// doesn't matter, but the values must be increasing with proper increasing
1403/// rank as described in N1169 4.1.1.
1404static unsigned GetFixedPointRank(QualType Ty) {
1405  const auto *BTy = Ty->getAs<BuiltinType>();
1406  assert(BTy && "Expected a builtin type.");
1407
1408  switch (BTy->getKind()) {
1409  case BuiltinType::ShortFract:
1410  case BuiltinType::UShortFract:
1411  case BuiltinType::SatShortFract:
1412  case BuiltinType::SatUShortFract:
1413    return 1;
1414  case BuiltinType::Fract:
1415  case BuiltinType::UFract:
1416  case BuiltinType::SatFract:
1417  case BuiltinType::SatUFract:
1418    return 2;
1419  case BuiltinType::LongFract:
1420  case BuiltinType::ULongFract:
1421  case BuiltinType::SatLongFract:
1422  case BuiltinType::SatULongFract:
1423    return 3;
1424  case BuiltinType::ShortAccum:
1425  case BuiltinType::UShortAccum:
1426  case BuiltinType::SatShortAccum:
1427  case BuiltinType::SatUShortAccum:
1428    return 4;
1429  case BuiltinType::Accum:
1430  case BuiltinType::UAccum:
1431  case BuiltinType::SatAccum:
1432  case BuiltinType::SatUAccum:
1433    return 5;
1434  case BuiltinType::LongAccum:
1435  case BuiltinType::ULongAccum:
1436  case BuiltinType::SatLongAccum:
1437  case BuiltinType::SatULongAccum:
1438    return 6;
1439  default:
1440    if (BTy->isInteger())
1441      return 0;
1442    llvm_unreachable("Unexpected fixed point or integer type");
1443  }
1444}
1445
1446/// handleFixedPointConversion - Fixed point operations between fixed
1447/// point types and integers or other fixed point types do not fall under
1448/// usual arithmetic conversion since these conversions could result in loss
1449/// of precsision (N1169 4.1.4). These operations should be calculated with
1450/// the full precision of their result type (N1169 4.1.6.2.1).
1451static QualType handleFixedPointConversion(Sema &S, QualType LHSTy,
1452                                           QualType RHSTy) {
1453  assert((LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) &&
1454         "Expected at least one of the operands to be a fixed point type");
1455  assert((LHSTy->isFixedPointOrIntegerType() ||
1456          RHSTy->isFixedPointOrIntegerType()) &&
1457         "Special fixed point arithmetic operation conversions are only "
1458         "applied to ints or other fixed point types");
1459
1460  // If one operand has signed fixed-point type and the other operand has
1461  // unsigned fixed-point type, then the unsigned fixed-point operand is
1462  // converted to its corresponding signed fixed-point type and the resulting
1463  // type is the type of the converted operand.
1464  if (RHSTy->isSignedFixedPointType() && LHSTy->isUnsignedFixedPointType())
1465    LHSTy = S.Context.getCorrespondingSignedFixedPointType(LHSTy);
1466  else if (RHSTy->isUnsignedFixedPointType() && LHSTy->isSignedFixedPointType())
1467    RHSTy = S.Context.getCorrespondingSignedFixedPointType(RHSTy);
1468
1469  // The result type is the type with the highest rank, whereby a fixed-point
1470  // conversion rank is always greater than an integer conversion rank; if the
1471  // type of either of the operands is a saturating fixedpoint type, the result
1472  // type shall be the saturating fixed-point type corresponding to the type
1473  // with the highest rank; the resulting value is converted (taking into
1474  // account rounding and overflow) to the precision of the resulting type.
1475  // Same ranks between signed and unsigned types are resolved earlier, so both
1476  // types are either signed or both unsigned at this point.
1477  unsigned LHSTyRank = GetFixedPointRank(LHSTy);
1478  unsigned RHSTyRank = GetFixedPointRank(RHSTy);
1479
1480  QualType ResultTy = LHSTyRank > RHSTyRank ? LHSTy : RHSTy;
1481
1482  if (LHSTy->isSaturatedFixedPointType() || RHSTy->isSaturatedFixedPointType())
1483    ResultTy = S.Context.getCorrespondingSaturatedType(ResultTy);
1484
1485  return ResultTy;
1486}
1487
1488/// Check that the usual arithmetic conversions can be performed on this pair of
1489/// expressions that might be of enumeration type.
1490static void checkEnumArithmeticConversions(Sema &S, Expr *LHS, Expr *RHS,
1491                                           SourceLocation Loc,
1492                                           Sema::ArithConvKind ACK) {
1493  // C++2a [expr.arith.conv]p1:
1494  //   If one operand is of enumeration type and the other operand is of a
1495  //   different enumeration type or a floating-point type, this behavior is
1496  //   deprecated ([depr.arith.conv.enum]).
1497  //
1498  // Warn on this in all language modes. Produce a deprecation warning in C++20.
1499  // Eventually we will presumably reject these cases (in C++23 onwards?).
1500  QualType L = LHS->getType(), R = RHS->getType();
1501  bool LEnum = L->isUnscopedEnumerationType(),
1502       REnum = R->isUnscopedEnumerationType();
1503  bool IsCompAssign = ACK == Sema::ACK_CompAssign;
1504  if ((!IsCompAssign && LEnum && R->isFloatingType()) ||
1505      (REnum && L->isFloatingType())) {
1506    S.Diag(Loc, S.getLangOpts().CPlusPlus26
1507                    ? diag::err_arith_conv_enum_float_cxx26
1508                : S.getLangOpts().CPlusPlus20
1509                    ? diag::warn_arith_conv_enum_float_cxx20
1510                    : diag::warn_arith_conv_enum_float)
1511        << LHS->getSourceRange() << RHS->getSourceRange() << (int)ACK << LEnum
1512        << L << R;
1513  } else if (!IsCompAssign && LEnum && REnum &&
1514             !S.Context.hasSameUnqualifiedType(L, R)) {
1515    unsigned DiagID;
1516    // In C++ 26, usual arithmetic conversions between 2 different enum types
1517    // are ill-formed.
1518    if (S.getLangOpts().CPlusPlus26)
1519      DiagID = diag::err_conv_mixed_enum_types_cxx26;
1520    else if (!L->castAs<EnumType>()->getDecl()->hasNameForLinkage() ||
1521             !R->castAs<EnumType>()->getDecl()->hasNameForLinkage()) {
1522      // If either enumeration type is unnamed, it's less likely that the
1523      // user cares about this, but this situation is still deprecated in
1524      // C++2a. Use a different warning group.
1525      DiagID = S.getLangOpts().CPlusPlus20
1526                    ? diag::warn_arith_conv_mixed_anon_enum_types_cxx20
1527                    : diag::warn_arith_conv_mixed_anon_enum_types;
1528    } else if (ACK == Sema::ACK_Conditional) {
1529      // Conditional expressions are separated out because they have
1530      // historically had a different warning flag.
1531      DiagID = S.getLangOpts().CPlusPlus20
1532                   ? diag::warn_conditional_mixed_enum_types_cxx20
1533                   : diag::warn_conditional_mixed_enum_types;
1534    } else if (ACK == Sema::ACK_Comparison) {
1535      // Comparison expressions are separated out because they have
1536      // historically had a different warning flag.
1537      DiagID = S.getLangOpts().CPlusPlus20
1538                   ? diag::warn_comparison_mixed_enum_types_cxx20
1539                   : diag::warn_comparison_mixed_enum_types;
1540    } else {
1541      DiagID = S.getLangOpts().CPlusPlus20
1542                   ? diag::warn_arith_conv_mixed_enum_types_cxx20
1543                   : diag::warn_arith_conv_mixed_enum_types;
1544    }
1545    S.Diag(Loc, DiagID) << LHS->getSourceRange() << RHS->getSourceRange()
1546                        << (int)ACK << L << R;
1547  }
1548}
1549
1550/// UsualArithmeticConversions - Performs various conversions that are common to
1551/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
1552/// routine returns the first non-arithmetic type found. The client is
1553/// responsible for emitting appropriate error diagnostics.
1554QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
1555                                          SourceLocation Loc,
1556                                          ArithConvKind ACK) {
1557  checkEnumArithmeticConversions(*this, LHS.get(), RHS.get(), Loc, ACK);
1558
1559  if (ACK != ACK_CompAssign) {
1560    LHS = UsualUnaryConversions(LHS.get());
1561    if (LHS.isInvalid())
1562      return QualType();
1563  }
1564
1565  RHS = UsualUnaryConversions(RHS.get());
1566  if (RHS.isInvalid())
1567    return QualType();
1568
1569  // For conversion purposes, we ignore any qualifiers.
1570  // For example, "const float" and "float" are equivalent.
1571  QualType LHSType = LHS.get()->getType().getUnqualifiedType();
1572  QualType RHSType = RHS.get()->getType().getUnqualifiedType();
1573
1574  // For conversion purposes, we ignore any atomic qualifier on the LHS.
1575  if (const AtomicType *AtomicLHS = LHSType->getAs<AtomicType>())
1576    LHSType = AtomicLHS->getValueType();
1577
1578  // If both types are identical, no conversion is needed.
1579  if (Context.hasSameType(LHSType, RHSType))
1580    return Context.getCommonSugaredType(LHSType, RHSType);
1581
1582  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
1583  // The caller can deal with this (e.g. pointer + int).
1584  if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
1585    return QualType();
1586
1587  // Apply unary and bitfield promotions to the LHS's type.
1588  QualType LHSUnpromotedType = LHSType;
1589  if (Context.isPromotableIntegerType(LHSType))
1590    LHSType = Context.getPromotedIntegerType(LHSType);
1591  QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get());
1592  if (!LHSBitfieldPromoteTy.isNull())
1593    LHSType = LHSBitfieldPromoteTy;
1594  if (LHSType != LHSUnpromotedType && ACK != ACK_CompAssign)
1595    LHS = ImpCastExprToType(LHS.get(), LHSType, CK_IntegralCast);
1596
1597  // If both types are identical, no conversion is needed.
1598  if (Context.hasSameType(LHSType, RHSType))
1599    return Context.getCommonSugaredType(LHSType, RHSType);
1600
1601  // At this point, we have two different arithmetic types.
1602
1603  // Diagnose attempts to convert between __ibm128, __float128 and long double
1604  // where such conversions currently can't be handled.
1605  if (unsupportedTypeConversion(*this, LHSType, RHSType))
1606    return QualType();
1607
1608  // Handle complex types first (C99 6.3.1.8p1).
1609  if (LHSType->isComplexType() || RHSType->isComplexType())
1610    return handleComplexConversion(*this, LHS, RHS, LHSType, RHSType,
1611                                   ACK == ACK_CompAssign);
1612
1613  // Now handle "real" floating types (i.e. float, double, long double).
1614  if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
1615    return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1616                                 ACK == ACK_CompAssign);
1617
1618  // Handle GCC complex int extension.
1619  if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
1620    return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType,
1621                                      ACK == ACK_CompAssign);
1622
1623  if (LHSType->isFixedPointType() || RHSType->isFixedPointType())
1624    return handleFixedPointConversion(*this, LHSType, RHSType);
1625
1626  // Finally, we have two differing integer types.
1627  return handleIntegerConversion<doIntegralCast, doIntegralCast>
1628           (*this, LHS, RHS, LHSType, RHSType, ACK == ACK_CompAssign);
1629}
1630
1631//===----------------------------------------------------------------------===//
1632//  Semantic Analysis for various Expression Types
1633//===----------------------------------------------------------------------===//
1634
1635
1636ExprResult Sema::ActOnGenericSelectionExpr(
1637    SourceLocation KeyLoc, SourceLocation DefaultLoc, SourceLocation RParenLoc,
1638    bool PredicateIsExpr, void *ControllingExprOrType,
1639    ArrayRef<ParsedType> ArgTypes, ArrayRef<Expr *> ArgExprs) {
1640  unsigned NumAssocs = ArgTypes.size();
1641  assert(NumAssocs == ArgExprs.size());
1642
1643  TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
1644  for (unsigned i = 0; i < NumAssocs; ++i) {
1645    if (ArgTypes[i])
1646      (void) GetTypeFromParser(ArgTypes[i], &Types[i]);
1647    else
1648      Types[i] = nullptr;
1649  }
1650
1651  // If we have a controlling type, we need to convert it from a parsed type
1652  // into a semantic type and then pass that along.
1653  if (!PredicateIsExpr) {
1654    TypeSourceInfo *ControllingType;
1655    (void)GetTypeFromParser(ParsedType::getFromOpaquePtr(ControllingExprOrType),
1656                            &ControllingType);
1657    assert(ControllingType && "couldn't get the type out of the parser");
1658    ControllingExprOrType = ControllingType;
1659  }
1660
1661  ExprResult ER = CreateGenericSelectionExpr(
1662      KeyLoc, DefaultLoc, RParenLoc, PredicateIsExpr, ControllingExprOrType,
1663      llvm::ArrayRef(Types, NumAssocs), ArgExprs);
1664  delete [] Types;
1665  return ER;
1666}
1667
1668ExprResult Sema::CreateGenericSelectionExpr(
1669    SourceLocation KeyLoc, SourceLocation DefaultLoc, SourceLocation RParenLoc,
1670    bool PredicateIsExpr, void *ControllingExprOrType,
1671    ArrayRef<TypeSourceInfo *> Types, ArrayRef<Expr *> Exprs) {
1672  unsigned NumAssocs = Types.size();
1673  assert(NumAssocs == Exprs.size());
1674  assert(ControllingExprOrType &&
1675         "Must have either a controlling expression or a controlling type");
1676
1677  Expr *ControllingExpr = nullptr;
1678  TypeSourceInfo *ControllingType = nullptr;
1679  if (PredicateIsExpr) {
1680    // Decay and strip qualifiers for the controlling expression type, and
1681    // handle placeholder type replacement. See committee discussion from WG14
1682    // DR423.
1683    EnterExpressionEvaluationContext Unevaluated(
1684        *this, Sema::ExpressionEvaluationContext::Unevaluated);
1685    ExprResult R = DefaultFunctionArrayLvalueConversion(
1686        reinterpret_cast<Expr *>(ControllingExprOrType));
1687    if (R.isInvalid())
1688      return ExprError();
1689    ControllingExpr = R.get();
1690  } else {
1691    // The extension form uses the type directly rather than converting it.
1692    ControllingType = reinterpret_cast<TypeSourceInfo *>(ControllingExprOrType);
1693    if (!ControllingType)
1694      return ExprError();
1695  }
1696
1697  bool TypeErrorFound = false,
1698       IsResultDependent = ControllingExpr
1699                               ? ControllingExpr->isTypeDependent()
1700                               : ControllingType->getType()->isDependentType(),
1701       ContainsUnexpandedParameterPack =
1702           ControllingExpr
1703               ? ControllingExpr->containsUnexpandedParameterPack()
1704               : ControllingType->getType()->containsUnexpandedParameterPack();
1705
1706  // The controlling expression is an unevaluated operand, so side effects are
1707  // likely unintended.
1708  if (!inTemplateInstantiation() && !IsResultDependent && ControllingExpr &&
1709      ControllingExpr->HasSideEffects(Context, false))
1710    Diag(ControllingExpr->getExprLoc(),
1711         diag::warn_side_effects_unevaluated_context);
1712
1713  for (unsigned i = 0; i < NumAssocs; ++i) {
1714    if (Exprs[i]->containsUnexpandedParameterPack())
1715      ContainsUnexpandedParameterPack = true;
1716
1717    if (Types[i]) {
1718      if (Types[i]->getType()->containsUnexpandedParameterPack())
1719        ContainsUnexpandedParameterPack = true;
1720
1721      if (Types[i]->getType()->isDependentType()) {
1722        IsResultDependent = true;
1723      } else {
1724        // We relax the restriction on use of incomplete types and non-object
1725        // types with the type-based extension of _Generic. Allowing incomplete
1726        // objects means those can be used as "tags" for a type-safe way to map
1727        // to a value. Similarly, matching on function types rather than
1728        // function pointer types can be useful. However, the restriction on VM
1729        // types makes sense to retain as there are open questions about how
1730        // the selection can be made at compile time.
1731        //
1732        // C11 6.5.1.1p2 "The type name in a generic association shall specify a
1733        // complete object type other than a variably modified type."
1734        unsigned D = 0;
1735        if (ControllingExpr && Types[i]->getType()->isIncompleteType())
1736          D = diag::err_assoc_type_incomplete;
1737        else if (ControllingExpr && !Types[i]->getType()->isObjectType())
1738          D = diag::err_assoc_type_nonobject;
1739        else if (Types[i]->getType()->isVariablyModifiedType())
1740          D = diag::err_assoc_type_variably_modified;
1741        else if (ControllingExpr) {
1742          // Because the controlling expression undergoes lvalue conversion,
1743          // array conversion, and function conversion, an association which is
1744          // of array type, function type, or is qualified can never be
1745          // reached. We will warn about this so users are less surprised by
1746          // the unreachable association. However, we don't have to handle
1747          // function types; that's not an object type, so it's handled above.
1748          //
1749          // The logic is somewhat different for C++ because C++ has different
1750          // lvalue to rvalue conversion rules than C. [conv.lvalue]p1 says,
1751          // If T is a non-class type, the type of the prvalue is the cv-
1752          // unqualified version of T. Otherwise, the type of the prvalue is T.
1753          // The result of these rules is that all qualified types in an
1754          // association in C are unreachable, and in C++, only qualified non-
1755          // class types are unreachable.
1756          //
1757          // NB: this does not apply when the first operand is a type rather
1758          // than an expression, because the type form does not undergo
1759          // conversion.
1760          unsigned Reason = 0;
1761          QualType QT = Types[i]->getType();
1762          if (QT->isArrayType())
1763            Reason = 1;
1764          else if (QT.hasQualifiers() &&
1765                   (!LangOpts.CPlusPlus || !QT->isRecordType()))
1766            Reason = 2;
1767
1768          if (Reason)
1769            Diag(Types[i]->getTypeLoc().getBeginLoc(),
1770                 diag::warn_unreachable_association)
1771                << QT << (Reason - 1);
1772        }
1773
1774        if (D != 0) {
1775          Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
1776            << Types[i]->getTypeLoc().getSourceRange()
1777            << Types[i]->getType();
1778          TypeErrorFound = true;
1779        }
1780
1781        // C11 6.5.1.1p2 "No two generic associations in the same generic
1782        // selection shall specify compatible types."
1783        for (unsigned j = i+1; j < NumAssocs; ++j)
1784          if (Types[j] && !Types[j]->getType()->isDependentType() &&
1785              Context.typesAreCompatible(Types[i]->getType(),
1786                                         Types[j]->getType())) {
1787            Diag(Types[j]->getTypeLoc().getBeginLoc(),
1788                 diag::err_assoc_compatible_types)
1789              << Types[j]->getTypeLoc().getSourceRange()
1790              << Types[j]->getType()
1791              << Types[i]->getType();
1792            Diag(Types[i]->getTypeLoc().getBeginLoc(),
1793                 diag::note_compat_assoc)
1794              << Types[i]->getTypeLoc().getSourceRange()
1795              << Types[i]->getType();
1796            TypeErrorFound = true;
1797          }
1798      }
1799    }
1800  }
1801  if (TypeErrorFound)
1802    return ExprError();
1803
1804  // If we determined that the generic selection is result-dependent, don't
1805  // try to compute the result expression.
1806  if (IsResultDependent) {
1807    if (ControllingExpr)
1808      return GenericSelectionExpr::Create(Context, KeyLoc, ControllingExpr,
1809                                          Types, Exprs, DefaultLoc, RParenLoc,
1810                                          ContainsUnexpandedParameterPack);
1811    return GenericSelectionExpr::Create(Context, KeyLoc, ControllingType, Types,
1812                                        Exprs, DefaultLoc, RParenLoc,
1813                                        ContainsUnexpandedParameterPack);
1814  }
1815
1816  SmallVector<unsigned, 1> CompatIndices;
1817  unsigned DefaultIndex = -1U;
1818  // Look at the canonical type of the controlling expression in case it was a
1819  // deduced type like __auto_type. However, when issuing diagnostics, use the
1820  // type the user wrote in source rather than the canonical one.
1821  for (unsigned i = 0; i < NumAssocs; ++i) {
1822    if (!Types[i])
1823      DefaultIndex = i;
1824    else if (ControllingExpr &&
1825             Context.typesAreCompatible(
1826                 ControllingExpr->getType().getCanonicalType(),
1827                 Types[i]->getType()))
1828      CompatIndices.push_back(i);
1829    else if (ControllingType &&
1830             Context.typesAreCompatible(
1831                 ControllingType->getType().getCanonicalType(),
1832                 Types[i]->getType()))
1833      CompatIndices.push_back(i);
1834  }
1835
1836  auto GetControllingRangeAndType = [](Expr *ControllingExpr,
1837                                       TypeSourceInfo *ControllingType) {
1838    // We strip parens here because the controlling expression is typically
1839    // parenthesized in macro definitions.
1840    if (ControllingExpr)
1841      ControllingExpr = ControllingExpr->IgnoreParens();
1842
1843    SourceRange SR = ControllingExpr
1844                         ? ControllingExpr->getSourceRange()
1845                         : ControllingType->getTypeLoc().getSourceRange();
1846    QualType QT = ControllingExpr ? ControllingExpr->getType()
1847                                  : ControllingType->getType();
1848
1849    return std::make_pair(SR, QT);
1850  };
1851
1852  // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
1853  // type compatible with at most one of the types named in its generic
1854  // association list."
1855  if (CompatIndices.size() > 1) {
1856    auto P = GetControllingRangeAndType(ControllingExpr, ControllingType);
1857    SourceRange SR = P.first;
1858    Diag(SR.getBegin(), diag::err_generic_sel_multi_match)
1859        << SR << P.second << (unsigned)CompatIndices.size();
1860    for (unsigned I : CompatIndices) {
1861      Diag(Types[I]->getTypeLoc().getBeginLoc(),
1862           diag::note_compat_assoc)
1863        << Types[I]->getTypeLoc().getSourceRange()
1864        << Types[I]->getType();
1865    }
1866    return ExprError();
1867  }
1868
1869  // C11 6.5.1.1p2 "If a generic selection has no default generic association,
1870  // its controlling expression shall have type compatible with exactly one of
1871  // the types named in its generic association list."
1872  if (DefaultIndex == -1U && CompatIndices.size() == 0) {
1873    auto P = GetControllingRangeAndType(ControllingExpr, ControllingType);
1874    SourceRange SR = P.first;
1875    Diag(SR.getBegin(), diag::err_generic_sel_no_match) << SR << P.second;
1876    return ExprError();
1877  }
1878
1879  // C11 6.5.1.1p3 "If a generic selection has a generic association with a
1880  // type name that is compatible with the type of the controlling expression,
1881  // then the result expression of the generic selection is the expression
1882  // in that generic association. Otherwise, the result expression of the
1883  // generic selection is the expression in the default generic association."
1884  unsigned ResultIndex =
1885    CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
1886
1887  if (ControllingExpr) {
1888    return GenericSelectionExpr::Create(
1889        Context, KeyLoc, ControllingExpr, Types, Exprs, DefaultLoc, RParenLoc,
1890        ContainsUnexpandedParameterPack, ResultIndex);
1891  }
1892  return GenericSelectionExpr::Create(
1893      Context, KeyLoc, ControllingType, Types, Exprs, DefaultLoc, RParenLoc,
1894      ContainsUnexpandedParameterPack, ResultIndex);
1895}
1896
1897static PredefinedIdentKind getPredefinedExprKind(tok::TokenKind Kind) {
1898  switch (Kind) {
1899  default:
1900    llvm_unreachable("unexpected TokenKind");
1901  case tok::kw___func__:
1902    return PredefinedIdentKind::Func; // [C99 6.4.2.2]
1903  case tok::kw___FUNCTION__:
1904    return PredefinedIdentKind::Function;
1905  case tok::kw___FUNCDNAME__:
1906    return PredefinedIdentKind::FuncDName; // [MS]
1907  case tok::kw___FUNCSIG__:
1908    return PredefinedIdentKind::FuncSig; // [MS]
1909  case tok::kw_L__FUNCTION__:
1910    return PredefinedIdentKind::LFunction; // [MS]
1911  case tok::kw_L__FUNCSIG__:
1912    return PredefinedIdentKind::LFuncSig; // [MS]
1913  case tok::kw___PRETTY_FUNCTION__:
1914    return PredefinedIdentKind::PrettyFunction; // [GNU]
1915  }
1916}
1917
1918/// getPredefinedExprDecl - Returns Decl of a given DeclContext that can be used
1919/// to determine the value of a PredefinedExpr. This can be either a
1920/// block, lambda, captured statement, function, otherwise a nullptr.
1921static Decl *getPredefinedExprDecl(DeclContext *DC) {
1922  while (DC && !isa<BlockDecl, CapturedDecl, FunctionDecl, ObjCMethodDecl>(DC))
1923    DC = DC->getParent();
1924  return cast_or_null<Decl>(DC);
1925}
1926
1927/// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the
1928/// location of the token and the offset of the ud-suffix within it.
1929static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc,
1930                                     unsigned Offset) {
1931  return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(),
1932                                        S.getLangOpts());
1933}
1934
1935/// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up
1936/// the corresponding cooked (non-raw) literal operator, and build a call to it.
1937static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope,
1938                                                 IdentifierInfo *UDSuffix,
1939                                                 SourceLocation UDSuffixLoc,
1940                                                 ArrayRef<Expr*> Args,
1941                                                 SourceLocation LitEndLoc) {
1942  assert(Args.size() <= 2 && "too many arguments for literal operator");
1943
1944  QualType ArgTy[2];
1945  for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
1946    ArgTy[ArgIdx] = Args[ArgIdx]->getType();
1947    if (ArgTy[ArgIdx]->isArrayType())
1948      ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]);
1949  }
1950
1951  DeclarationName OpName =
1952    S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1953  DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1954  OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1955
1956  LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName);
1957  if (S.LookupLiteralOperator(Scope, R, llvm::ArrayRef(ArgTy, Args.size()),
1958                              /*AllowRaw*/ false, /*AllowTemplate*/ false,
1959                              /*AllowStringTemplatePack*/ false,
1960                              /*DiagnoseMissing*/ true) == Sema::LOLR_Error)
1961    return ExprError();
1962
1963  return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc);
1964}
1965
1966ExprResult Sema::ActOnUnevaluatedStringLiteral(ArrayRef<Token> StringToks) {
1967  // StringToks needs backing storage as it doesn't hold array elements itself
1968  std::vector<Token> ExpandedToks;
1969  if (getLangOpts().MicrosoftExt)
1970    StringToks = ExpandedToks = ExpandFunctionLocalPredefinedMacros(StringToks);
1971
1972  StringLiteralParser Literal(StringToks, PP,
1973                              StringLiteralEvalMethod::Unevaluated);
1974  if (Literal.hadError)
1975    return ExprError();
1976
1977  SmallVector<SourceLocation, 4> StringTokLocs;
1978  for (const Token &Tok : StringToks)
1979    StringTokLocs.push_back(Tok.getLocation());
1980
1981  StringLiteral *Lit = StringLiteral::Create(
1982      Context, Literal.GetString(), StringLiteralKind::Unevaluated, false, {},
1983      &StringTokLocs[0], StringTokLocs.size());
1984
1985  if (!Literal.getUDSuffix().empty()) {
1986    SourceLocation UDSuffixLoc =
1987        getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
1988                       Literal.getUDSuffixOffset());
1989    return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
1990  }
1991
1992  return Lit;
1993}
1994
1995std::vector<Token>
1996Sema::ExpandFunctionLocalPredefinedMacros(ArrayRef<Token> Toks) {
1997  // MSVC treats some predefined identifiers (e.g. __FUNCTION__) as function
1998  // local macros that expand to string literals that may be concatenated.
1999  // These macros are expanded here (in Sema), because StringLiteralParser
2000  // (in Lex) doesn't know the enclosing function (because it hasn't been
2001  // parsed yet).
2002  assert(getLangOpts().MicrosoftExt);
2003
2004  // Note: Although function local macros are defined only inside functions,
2005  // we ensure a valid `CurrentDecl` even outside of a function. This allows
2006  // expansion of macros into empty string literals without additional checks.
2007  Decl *CurrentDecl = getPredefinedExprDecl(CurContext);
2008  if (!CurrentDecl)
2009    CurrentDecl = Context.getTranslationUnitDecl();
2010
2011  std::vector<Token> ExpandedToks;
2012  ExpandedToks.reserve(Toks.size());
2013  for (const Token &Tok : Toks) {
2014    if (!isFunctionLocalStringLiteralMacro(Tok.getKind(), getLangOpts())) {
2015      assert(tok::isStringLiteral(Tok.getKind()));
2016      ExpandedToks.emplace_back(Tok);
2017      continue;
2018    }
2019    if (isa<TranslationUnitDecl>(CurrentDecl))
2020      Diag(Tok.getLocation(), diag::ext_predef_outside_function);
2021    // Stringify predefined expression
2022    Diag(Tok.getLocation(), diag::ext_string_literal_from_predefined)
2023        << Tok.getKind();
2024    SmallString<64> Str;
2025    llvm::raw_svector_ostream OS(Str);
2026    Token &Exp = ExpandedToks.emplace_back();
2027    Exp.startToken();
2028    if (Tok.getKind() == tok::kw_L__FUNCTION__ ||
2029        Tok.getKind() == tok::kw_L__FUNCSIG__) {
2030      OS << 'L';
2031      Exp.setKind(tok::wide_string_literal);
2032    } else {
2033      Exp.setKind(tok::string_literal);
2034    }
2035    OS << '"'
2036       << Lexer::Stringify(PredefinedExpr::ComputeName(
2037              getPredefinedExprKind(Tok.getKind()), CurrentDecl))
2038       << '"';
2039    PP.CreateString(OS.str(), Exp, Tok.getLocation(), Tok.getEndLoc());
2040  }
2041  return ExpandedToks;
2042}
2043
2044/// ActOnStringLiteral - The specified tokens were lexed as pasted string
2045/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
2046/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
2047/// multiple tokens.  However, the common case is that StringToks points to one
2048/// string.
2049///
2050ExprResult
2051Sema::ActOnStringLiteral(ArrayRef<Token> StringToks, Scope *UDLScope) {
2052  assert(!StringToks.empty() && "Must have at least one string!");
2053
2054  // StringToks needs backing storage as it doesn't hold array elements itself
2055  std::vector<Token> ExpandedToks;
2056  if (getLangOpts().MicrosoftExt)
2057    StringToks = ExpandedToks = ExpandFunctionLocalPredefinedMacros(StringToks);
2058
2059  StringLiteralParser Literal(StringToks, PP);
2060  if (Literal.hadError)
2061    return ExprError();
2062
2063  SmallVector<SourceLocation, 4> StringTokLocs;
2064  for (const Token &Tok : StringToks)
2065    StringTokLocs.push_back(Tok.getLocation());
2066
2067  QualType CharTy = Context.CharTy;
2068  StringLiteralKind Kind = StringLiteralKind::Ordinary;
2069  if (Literal.isWide()) {
2070    CharTy = Context.getWideCharType();
2071    Kind = StringLiteralKind::Wide;
2072  } else if (Literal.isUTF8()) {
2073    if (getLangOpts().Char8)
2074      CharTy = Context.Char8Ty;
2075    Kind = StringLiteralKind::UTF8;
2076  } else if (Literal.isUTF16()) {
2077    CharTy = Context.Char16Ty;
2078    Kind = StringLiteralKind::UTF16;
2079  } else if (Literal.isUTF32()) {
2080    CharTy = Context.Char32Ty;
2081    Kind = StringLiteralKind::UTF32;
2082  } else if (Literal.isPascal()) {
2083    CharTy = Context.UnsignedCharTy;
2084  }
2085
2086  // Warn on initializing an array of char from a u8 string literal; this
2087  // becomes ill-formed in C++2a.
2088  if (getLangOpts().CPlusPlus && !getLangOpts().CPlusPlus20 &&
2089      !getLangOpts().Char8 && Kind == StringLiteralKind::UTF8) {
2090    Diag(StringTokLocs.front(), diag::warn_cxx20_compat_utf8_string);
2091
2092    // Create removals for all 'u8' prefixes in the string literal(s). This
2093    // ensures C++2a compatibility (but may change the program behavior when
2094    // built by non-Clang compilers for which the execution character set is
2095    // not always UTF-8).
2096    auto RemovalDiag = PDiag(diag::note_cxx20_compat_utf8_string_remove_u8);
2097    SourceLocation RemovalDiagLoc;
2098    for (const Token &Tok : StringToks) {
2099      if (Tok.getKind() == tok::utf8_string_literal) {
2100        if (RemovalDiagLoc.isInvalid())
2101          RemovalDiagLoc = Tok.getLocation();
2102        RemovalDiag << FixItHint::CreateRemoval(CharSourceRange::getCharRange(
2103            Tok.getLocation(),
2104            Lexer::AdvanceToTokenCharacter(Tok.getLocation(), 2,
2105                                           getSourceManager(), getLangOpts())));
2106      }
2107    }
2108    Diag(RemovalDiagLoc, RemovalDiag);
2109  }
2110
2111  QualType StrTy =
2112      Context.getStringLiteralArrayType(CharTy, Literal.GetNumStringChars());
2113
2114  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
2115  StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(),
2116                                             Kind, Literal.Pascal, StrTy,
2117                                             &StringTokLocs[0],
2118                                             StringTokLocs.size());
2119  if (Literal.getUDSuffix().empty())
2120    return Lit;
2121
2122  // We're building a user-defined literal.
2123  IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
2124  SourceLocation UDSuffixLoc =
2125    getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
2126                   Literal.getUDSuffixOffset());
2127
2128  // Make sure we're allowed user-defined literals here.
2129  if (!UDLScope)
2130    return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
2131
2132  // C++11 [lex.ext]p5: The literal L is treated as a call of the form
2133  //   operator "" X (str, len)
2134  QualType SizeType = Context.getSizeType();
2135
2136  DeclarationName OpName =
2137    Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
2138  DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
2139  OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
2140
2141  QualType ArgTy[] = {
2142    Context.getArrayDecayedType(StrTy), SizeType
2143  };
2144
2145  LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
2146  switch (LookupLiteralOperator(UDLScope, R, ArgTy,
2147                                /*AllowRaw*/ false, /*AllowTemplate*/ true,
2148                                /*AllowStringTemplatePack*/ true,
2149                                /*DiagnoseMissing*/ true, Lit)) {
2150
2151  case LOLR_Cooked: {
2152    llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars());
2153    IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType,
2154                                                    StringTokLocs[0]);
2155    Expr *Args[] = { Lit, LenArg };
2156
2157    return BuildLiteralOperatorCall(R, OpNameInfo, Args, StringTokLocs.back());
2158  }
2159
2160  case LOLR_Template: {
2161    TemplateArgumentListInfo ExplicitArgs;
2162    TemplateArgument Arg(Lit);
2163    TemplateArgumentLocInfo ArgInfo(Lit);
2164    ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
2165    return BuildLiteralOperatorCall(R, OpNameInfo, std::nullopt,
2166                                    StringTokLocs.back(), &ExplicitArgs);
2167  }
2168
2169  case LOLR_StringTemplatePack: {
2170    TemplateArgumentListInfo ExplicitArgs;
2171
2172    unsigned CharBits = Context.getIntWidth(CharTy);
2173    bool CharIsUnsigned = CharTy->isUnsignedIntegerType();
2174    llvm::APSInt Value(CharBits, CharIsUnsigned);
2175
2176    TemplateArgument TypeArg(CharTy);
2177    TemplateArgumentLocInfo TypeArgInfo(Context.getTrivialTypeSourceInfo(CharTy));
2178    ExplicitArgs.addArgument(TemplateArgumentLoc(TypeArg, TypeArgInfo));
2179
2180    for (unsigned I = 0, N = Lit->getLength(); I != N; ++I) {
2181      Value = Lit->getCodeUnit(I);
2182      TemplateArgument Arg(Context, Value, CharTy);
2183      TemplateArgumentLocInfo ArgInfo;
2184      ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
2185    }
2186    return BuildLiteralOperatorCall(R, OpNameInfo, std::nullopt,
2187                                    StringTokLocs.back(), &ExplicitArgs);
2188  }
2189  case LOLR_Raw:
2190  case LOLR_ErrorNoDiagnostic:
2191    llvm_unreachable("unexpected literal operator lookup result");
2192  case LOLR_Error:
2193    return ExprError();
2194  }
2195  llvm_unreachable("unexpected literal operator lookup result");
2196}
2197
2198DeclRefExpr *
2199Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
2200                       SourceLocation Loc,
2201                       const CXXScopeSpec *SS) {
2202  DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
2203  return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
2204}
2205
2206DeclRefExpr *
2207Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
2208                       const DeclarationNameInfo &NameInfo,
2209                       const CXXScopeSpec *SS, NamedDecl *FoundD,
2210                       SourceLocation TemplateKWLoc,
2211                       const TemplateArgumentListInfo *TemplateArgs) {
2212  NestedNameSpecifierLoc NNS =
2213      SS ? SS->getWithLocInContext(Context) : NestedNameSpecifierLoc();
2214  return BuildDeclRefExpr(D, Ty, VK, NameInfo, NNS, FoundD, TemplateKWLoc,
2215                          TemplateArgs);
2216}
2217
2218// CUDA/HIP: Check whether a captured reference variable is referencing a
2219// host variable in a device or host device lambda.
2220static bool isCapturingReferenceToHostVarInCUDADeviceLambda(const Sema &S,
2221                                                            VarDecl *VD) {
2222  if (!S.getLangOpts().CUDA || !VD->hasInit())
2223    return false;
2224  assert(VD->getType()->isReferenceType());
2225
2226  // Check whether the reference variable is referencing a host variable.
2227  auto *DRE = dyn_cast<DeclRefExpr>(VD->getInit());
2228  if (!DRE)
2229    return false;
2230  auto *Referee = dyn_cast<VarDecl>(DRE->getDecl());
2231  if (!Referee || !Referee->hasGlobalStorage() ||
2232      Referee->hasAttr<CUDADeviceAttr>())
2233    return false;
2234
2235  // Check whether the current function is a device or host device lambda.
2236  // Check whether the reference variable is a capture by getDeclContext()
2237  // since refersToEnclosingVariableOrCapture() is not ready at this point.
2238  auto *MD = dyn_cast_or_null<CXXMethodDecl>(S.CurContext);
2239  if (MD && MD->getParent()->isLambda() &&
2240      MD->getOverloadedOperator() == OO_Call && MD->hasAttr<CUDADeviceAttr>() &&
2241      VD->getDeclContext() != MD)
2242    return true;
2243
2244  return false;
2245}
2246
2247NonOdrUseReason Sema::getNonOdrUseReasonInCurrentContext(ValueDecl *D) {
2248  // A declaration named in an unevaluated operand never constitutes an odr-use.
2249  if (isUnevaluatedContext())
2250    return NOUR_Unevaluated;
2251
2252  // C++2a [basic.def.odr]p4:
2253  //   A variable x whose name appears as a potentially-evaluated expression e
2254  //   is odr-used by e unless [...] x is a reference that is usable in
2255  //   constant expressions.
2256  // CUDA/HIP:
2257  //   If a reference variable referencing a host variable is captured in a
2258  //   device or host device lambda, the value of the referee must be copied
2259  //   to the capture and the reference variable must be treated as odr-use
2260  //   since the value of the referee is not known at compile time and must
2261  //   be loaded from the captured.
2262  if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
2263    if (VD->getType()->isReferenceType() &&
2264        !(getLangOpts().OpenMP && isOpenMPCapturedDecl(D)) &&
2265        !isCapturingReferenceToHostVarInCUDADeviceLambda(*this, VD) &&
2266        VD->isUsableInConstantExpressions(Context))
2267      return NOUR_Constant;
2268  }
2269
2270  // All remaining non-variable cases constitute an odr-use. For variables, we
2271  // need to wait and see how the expression is used.
2272  return NOUR_None;
2273}
2274
2275/// BuildDeclRefExpr - Build an expression that references a
2276/// declaration that does not require a closure capture.
2277DeclRefExpr *
2278Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
2279                       const DeclarationNameInfo &NameInfo,
2280                       NestedNameSpecifierLoc NNS, NamedDecl *FoundD,
2281                       SourceLocation TemplateKWLoc,
2282                       const TemplateArgumentListInfo *TemplateArgs) {
2283  bool RefersToCapturedVariable = isa<VarDecl, BindingDecl>(D) &&
2284                                  NeedToCaptureVariable(D, NameInfo.getLoc());
2285
2286  DeclRefExpr *E = DeclRefExpr::Create(
2287      Context, NNS, TemplateKWLoc, D, RefersToCapturedVariable, NameInfo, Ty,
2288      VK, FoundD, TemplateArgs, getNonOdrUseReasonInCurrentContext(D));
2289  MarkDeclRefReferenced(E);
2290
2291  // C++ [except.spec]p17:
2292  //   An exception-specification is considered to be needed when:
2293  //   - in an expression, the function is the unique lookup result or
2294  //     the selected member of a set of overloaded functions.
2295  //
2296  // We delay doing this until after we've built the function reference and
2297  // marked it as used so that:
2298  //  a) if the function is defaulted, we get errors from defining it before /
2299  //     instead of errors from computing its exception specification, and
2300  //  b) if the function is a defaulted comparison, we can use the body we
2301  //     build when defining it as input to the exception specification
2302  //     computation rather than computing a new body.
2303  if (const auto *FPT = Ty->getAs<FunctionProtoType>()) {
2304    if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) {
2305      if (const auto *NewFPT = ResolveExceptionSpec(NameInfo.getLoc(), FPT))
2306        E->setType(Context.getQualifiedType(NewFPT, Ty.getQualifiers()));
2307    }
2308  }
2309
2310  if (getLangOpts().ObjCWeak && isa<VarDecl>(D) &&
2311      Ty.getObjCLifetime() == Qualifiers::OCL_Weak && !isUnevaluatedContext() &&
2312      !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, E->getBeginLoc()))
2313    getCurFunction()->recordUseOfWeak(E);
2314
2315  const auto *FD = dyn_cast<FieldDecl>(D);
2316  if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D))
2317    FD = IFD->getAnonField();
2318  if (FD) {
2319    UnusedPrivateFields.remove(FD);
2320    // Just in case we're building an illegal pointer-to-member.
2321    if (FD->isBitField())
2322      E->setObjectKind(OK_BitField);
2323  }
2324
2325  // C++ [expr.prim]/8: The expression [...] is a bit-field if the identifier
2326  // designates a bit-field.
2327  if (const auto *BD = dyn_cast<BindingDecl>(D))
2328    if (const auto *BE = BD->getBinding())
2329      E->setObjectKind(BE->getObjectKind());
2330
2331  return E;
2332}
2333
2334/// Decomposes the given name into a DeclarationNameInfo, its location, and
2335/// possibly a list of template arguments.
2336///
2337/// If this produces template arguments, it is permitted to call
2338/// DecomposeTemplateName.
2339///
2340/// This actually loses a lot of source location information for
2341/// non-standard name kinds; we should consider preserving that in
2342/// some way.
2343void
2344Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
2345                             TemplateArgumentListInfo &Buffer,
2346                             DeclarationNameInfo &NameInfo,
2347                             const TemplateArgumentListInfo *&TemplateArgs) {
2348  if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId) {
2349    Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
2350    Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
2351
2352    ASTTemplateArgsPtr TemplateArgsPtr(Id.TemplateId->getTemplateArgs(),
2353                                       Id.TemplateId->NumArgs);
2354    translateTemplateArguments(TemplateArgsPtr, Buffer);
2355
2356    TemplateName TName = Id.TemplateId->Template.get();
2357    SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
2358    NameInfo = Context.getNameForTemplate(TName, TNameLoc);
2359    TemplateArgs = &Buffer;
2360  } else {
2361    NameInfo = GetNameFromUnqualifiedId(Id);
2362    TemplateArgs = nullptr;
2363  }
2364}
2365
2366static void emitEmptyLookupTypoDiagnostic(
2367    const TypoCorrection &TC, Sema &SemaRef, const CXXScopeSpec &SS,
2368    DeclarationName Typo, SourceLocation TypoLoc, ArrayRef<Expr *> Args,
2369    unsigned DiagnosticID, unsigned DiagnosticSuggestID) {
2370  DeclContext *Ctx =
2371      SS.isEmpty() ? nullptr : SemaRef.computeDeclContext(SS, false);
2372  if (!TC) {
2373    // Emit a special diagnostic for failed member lookups.
2374    // FIXME: computing the declaration context might fail here (?)
2375    if (Ctx)
2376      SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << Ctx
2377                                                 << SS.getRange();
2378    else
2379      SemaRef.Diag(TypoLoc, DiagnosticID) << Typo;
2380    return;
2381  }
2382
2383  std::string CorrectedStr = TC.getAsString(SemaRef.getLangOpts());
2384  bool DroppedSpecifier =
2385      TC.WillReplaceSpecifier() && Typo.getAsString() == CorrectedStr;
2386  unsigned NoteID = TC.getCorrectionDeclAs<ImplicitParamDecl>()
2387                        ? diag::note_implicit_param_decl
2388                        : diag::note_previous_decl;
2389  if (!Ctx)
2390    SemaRef.diagnoseTypo(TC, SemaRef.PDiag(DiagnosticSuggestID) << Typo,
2391                         SemaRef.PDiag(NoteID));
2392  else
2393    SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest)
2394                                 << Typo << Ctx << DroppedSpecifier
2395                                 << SS.getRange(),
2396                         SemaRef.PDiag(NoteID));
2397}
2398
2399/// Diagnose a lookup that found results in an enclosing class during error
2400/// recovery. This usually indicates that the results were found in a dependent
2401/// base class that could not be searched as part of a template definition.
2402/// Always issues a diagnostic (though this may be only a warning in MS
2403/// compatibility mode).
2404///
2405/// Return \c true if the error is unrecoverable, or \c false if the caller
2406/// should attempt to recover using these lookup results.
2407bool Sema::DiagnoseDependentMemberLookup(const LookupResult &R) {
2408  // During a default argument instantiation the CurContext points
2409  // to a CXXMethodDecl; but we can't apply a this-> fixit inside a
2410  // function parameter list, hence add an explicit check.
2411  bool isDefaultArgument =
2412      !CodeSynthesisContexts.empty() &&
2413      CodeSynthesisContexts.back().Kind ==
2414          CodeSynthesisContext::DefaultFunctionArgumentInstantiation;
2415  const auto *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
2416  bool isInstance = CurMethod && CurMethod->isInstance() &&
2417                    R.getNamingClass() == CurMethod->getParent() &&
2418                    !isDefaultArgument;
2419
2420  // There are two ways we can find a class-scope declaration during template
2421  // instantiation that we did not find in the template definition: if it is a
2422  // member of a dependent base class, or if it is declared after the point of
2423  // use in the same class. Distinguish these by comparing the class in which
2424  // the member was found to the naming class of the lookup.
2425  unsigned DiagID = diag::err_found_in_dependent_base;
2426  unsigned NoteID = diag::note_member_declared_at;
2427  if (R.getRepresentativeDecl()->getDeclContext()->Equals(R.getNamingClass())) {
2428    DiagID = getLangOpts().MSVCCompat ? diag::ext_found_later_in_class
2429                                      : diag::err_found_later_in_class;
2430  } else if (getLangOpts().MSVCCompat) {
2431    DiagID = diag::ext_found_in_dependent_base;
2432    NoteID = diag::note_dependent_member_use;
2433  }
2434
2435  if (isInstance) {
2436    // Give a code modification hint to insert 'this->'.
2437    Diag(R.getNameLoc(), DiagID)
2438        << R.getLookupName()
2439        << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
2440    CheckCXXThisCapture(R.getNameLoc());
2441  } else {
2442    // FIXME: Add a FixItHint to insert 'Base::' or 'Derived::' (assuming
2443    // they're not shadowed).
2444    Diag(R.getNameLoc(), DiagID) << R.getLookupName();
2445  }
2446
2447  for (const NamedDecl *D : R)
2448    Diag(D->getLocation(), NoteID);
2449
2450  // Return true if we are inside a default argument instantiation
2451  // and the found name refers to an instance member function, otherwise
2452  // the caller will try to create an implicit member call and this is wrong
2453  // for default arguments.
2454  //
2455  // FIXME: Is this special case necessary? We could allow the caller to
2456  // diagnose this.
2457  if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) {
2458    Diag(R.getNameLoc(), diag::err_member_call_without_object) << 0;
2459    return true;
2460  }
2461
2462  // Tell the callee to try to recover.
2463  return false;
2464}
2465
2466/// Diagnose an empty lookup.
2467///
2468/// \return false if new lookup candidates were found
2469bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
2470                               CorrectionCandidateCallback &CCC,
2471                               TemplateArgumentListInfo *ExplicitTemplateArgs,
2472                               ArrayRef<Expr *> Args, DeclContext *LookupCtx,
2473                               TypoExpr **Out) {
2474  DeclarationName Name = R.getLookupName();
2475
2476  unsigned diagnostic = diag::err_undeclared_var_use;
2477  unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
2478  if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
2479      Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
2480      Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
2481    diagnostic = diag::err_undeclared_use;
2482    diagnostic_suggest = diag::err_undeclared_use_suggest;
2483  }
2484
2485  // If the original lookup was an unqualified lookup, fake an
2486  // unqualified lookup.  This is useful when (for example) the
2487  // original lookup would not have found something because it was a
2488  // dependent name.
2489  DeclContext *DC =
2490      LookupCtx ? LookupCtx : (SS.isEmpty() ? CurContext : nullptr);
2491  while (DC) {
2492    if (isa<CXXRecordDecl>(DC)) {
2493      LookupQualifiedName(R, DC);
2494
2495      if (!R.empty()) {
2496        // Don't give errors about ambiguities in this lookup.
2497        R.suppressDiagnostics();
2498
2499        // If there's a best viable function among the results, only mention
2500        // that one in the notes.
2501        OverloadCandidateSet Candidates(R.getNameLoc(),
2502                                        OverloadCandidateSet::CSK_Normal);
2503        AddOverloadedCallCandidates(R, ExplicitTemplateArgs, Args, Candidates);
2504        OverloadCandidateSet::iterator Best;
2505        if (Candidates.BestViableFunction(*this, R.getNameLoc(), Best) ==
2506            OR_Success) {
2507          R.clear();
2508          R.addDecl(Best->FoundDecl.getDecl(), Best->FoundDecl.getAccess());
2509          R.resolveKind();
2510        }
2511
2512        return DiagnoseDependentMemberLookup(R);
2513      }
2514
2515      R.clear();
2516    }
2517
2518    DC = DC->getLookupParent();
2519  }
2520
2521  // We didn't find anything, so try to correct for a typo.
2522  TypoCorrection Corrected;
2523  if (S && Out) {
2524    SourceLocation TypoLoc = R.getNameLoc();
2525    assert(!ExplicitTemplateArgs &&
2526           "Diagnosing an empty lookup with explicit template args!");
2527    *Out = CorrectTypoDelayed(
2528        R.getLookupNameInfo(), R.getLookupKind(), S, &SS, CCC,
2529        [=](const TypoCorrection &TC) {
2530          emitEmptyLookupTypoDiagnostic(TC, *this, SS, Name, TypoLoc, Args,
2531                                        diagnostic, diagnostic_suggest);
2532        },
2533        nullptr, CTK_ErrorRecovery, LookupCtx);
2534    if (*Out)
2535      return true;
2536  } else if (S && (Corrected =
2537                       CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S,
2538                                   &SS, CCC, CTK_ErrorRecovery, LookupCtx))) {
2539    std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
2540    bool DroppedSpecifier =
2541        Corrected.WillReplaceSpecifier() && Name.getAsString() == CorrectedStr;
2542    R.setLookupName(Corrected.getCorrection());
2543
2544    bool AcceptableWithRecovery = false;
2545    bool AcceptableWithoutRecovery = false;
2546    NamedDecl *ND = Corrected.getFoundDecl();
2547    if (ND) {
2548      if (Corrected.isOverloaded()) {
2549        OverloadCandidateSet OCS(R.getNameLoc(),
2550                                 OverloadCandidateSet::CSK_Normal);
2551        OverloadCandidateSet::iterator Best;
2552        for (NamedDecl *CD : Corrected) {
2553          if (FunctionTemplateDecl *FTD =
2554                   dyn_cast<FunctionTemplateDecl>(CD))
2555            AddTemplateOverloadCandidate(
2556                FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
2557                Args, OCS);
2558          else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
2559            if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
2560              AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
2561                                   Args, OCS);
2562        }
2563        switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
2564        case OR_Success:
2565          ND = Best->FoundDecl;
2566          Corrected.setCorrectionDecl(ND);
2567          break;
2568        default:
2569          // FIXME: Arbitrarily pick the first declaration for the note.
2570          Corrected.setCorrectionDecl(ND);
2571          break;
2572        }
2573      }
2574      R.addDecl(ND);
2575      if (getLangOpts().CPlusPlus && ND->isCXXClassMember()) {
2576        CXXRecordDecl *Record = nullptr;
2577        if (Corrected.getCorrectionSpecifier()) {
2578          const Type *Ty = Corrected.getCorrectionSpecifier()->getAsType();
2579          Record = Ty->getAsCXXRecordDecl();
2580        }
2581        if (!Record)
2582          Record = cast<CXXRecordDecl>(
2583              ND->getDeclContext()->getRedeclContext());
2584        R.setNamingClass(Record);
2585      }
2586
2587      auto *UnderlyingND = ND->getUnderlyingDecl();
2588      AcceptableWithRecovery = isa<ValueDecl>(UnderlyingND) ||
2589                               isa<FunctionTemplateDecl>(UnderlyingND);
2590      // FIXME: If we ended up with a typo for a type name or
2591      // Objective-C class name, we're in trouble because the parser
2592      // is in the wrong place to recover. Suggest the typo
2593      // correction, but don't make it a fix-it since we're not going
2594      // to recover well anyway.
2595      AcceptableWithoutRecovery = isa<TypeDecl>(UnderlyingND) ||
2596                                  getAsTypeTemplateDecl(UnderlyingND) ||
2597                                  isa<ObjCInterfaceDecl>(UnderlyingND);
2598    } else {
2599      // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
2600      // because we aren't able to recover.
2601      AcceptableWithoutRecovery = true;
2602    }
2603
2604    if (AcceptableWithRecovery || AcceptableWithoutRecovery) {
2605      unsigned NoteID = Corrected.getCorrectionDeclAs<ImplicitParamDecl>()
2606                            ? diag::note_implicit_param_decl
2607                            : diag::note_previous_decl;
2608      if (SS.isEmpty())
2609        diagnoseTypo(Corrected, PDiag(diagnostic_suggest) << Name,
2610                     PDiag(NoteID), AcceptableWithRecovery);
2611      else
2612        diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
2613                                  << Name << computeDeclContext(SS, false)
2614                                  << DroppedSpecifier << SS.getRange(),
2615                     PDiag(NoteID), AcceptableWithRecovery);
2616
2617      // Tell the callee whether to try to recover.
2618      return !AcceptableWithRecovery;
2619    }
2620  }
2621  R.clear();
2622
2623  // Emit a special diagnostic for failed member lookups.
2624  // FIXME: computing the declaration context might fail here (?)
2625  if (!SS.isEmpty()) {
2626    Diag(R.getNameLoc(), diag::err_no_member)
2627      << Name << computeDeclContext(SS, false)
2628      << SS.getRange();
2629    return true;
2630  }
2631
2632  // Give up, we can't recover.
2633  Diag(R.getNameLoc(), diagnostic) << Name;
2634  return true;
2635}
2636
2637/// In Microsoft mode, if we are inside a template class whose parent class has
2638/// dependent base classes, and we can't resolve an unqualified identifier, then
2639/// assume the identifier is a member of a dependent base class.  We can only
2640/// recover successfully in static methods, instance methods, and other contexts
2641/// where 'this' is available.  This doesn't precisely match MSVC's
2642/// instantiation model, but it's close enough.
2643static Expr *
2644recoverFromMSUnqualifiedLookup(Sema &S, ASTContext &Context,
2645                               DeclarationNameInfo &NameInfo,
2646                               SourceLocation TemplateKWLoc,
2647                               const TemplateArgumentListInfo *TemplateArgs) {
2648  // Only try to recover from lookup into dependent bases in static methods or
2649  // contexts where 'this' is available.
2650  QualType ThisType = S.getCurrentThisType();
2651  const CXXRecordDecl *RD = nullptr;
2652  if (!ThisType.isNull())
2653    RD = ThisType->getPointeeType()->getAsCXXRecordDecl();
2654  else if (auto *MD = dyn_cast<CXXMethodDecl>(S.CurContext))
2655    RD = MD->getParent();
2656  if (!RD || !RD->hasAnyDependentBases())
2657    return nullptr;
2658
2659  // Diagnose this as unqualified lookup into a dependent base class.  If 'this'
2660  // is available, suggest inserting 'this->' as a fixit.
2661  SourceLocation Loc = NameInfo.getLoc();
2662  auto DB = S.Diag(Loc, diag::ext_undeclared_unqual_id_with_dependent_base);
2663  DB << NameInfo.getName() << RD;
2664
2665  if (!ThisType.isNull()) {
2666    DB << FixItHint::CreateInsertion(Loc, "this->");
2667    return CXXDependentScopeMemberExpr::Create(
2668        Context, /*This=*/nullptr, ThisType, /*IsArrow=*/true,
2669        /*Op=*/SourceLocation(), NestedNameSpecifierLoc(), TemplateKWLoc,
2670        /*FirstQualifierFoundInScope=*/nullptr, NameInfo, TemplateArgs);
2671  }
2672
2673  // Synthesize a fake NNS that points to the derived class.  This will
2674  // perform name lookup during template instantiation.
2675  CXXScopeSpec SS;
2676  auto *NNS =
2677      NestedNameSpecifier::Create(Context, nullptr, true, RD->getTypeForDecl());
2678  SS.MakeTrivial(Context, NNS, SourceRange(Loc, Loc));
2679  return DependentScopeDeclRefExpr::Create(
2680      Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
2681      TemplateArgs);
2682}
2683
2684ExprResult
2685Sema::ActOnIdExpression(Scope *S, CXXScopeSpec &SS,
2686                        SourceLocation TemplateKWLoc, UnqualifiedId &Id,
2687                        bool HasTrailingLParen, bool IsAddressOfOperand,
2688                        CorrectionCandidateCallback *CCC,
2689                        bool IsInlineAsmIdentifier, Token *KeywordReplacement) {
2690  assert(!(IsAddressOfOperand && HasTrailingLParen) &&
2691         "cannot be direct & operand and have a trailing lparen");
2692  if (SS.isInvalid())
2693    return ExprError();
2694
2695  TemplateArgumentListInfo TemplateArgsBuffer;
2696
2697  // Decompose the UnqualifiedId into the following data.
2698  DeclarationNameInfo NameInfo;
2699  const TemplateArgumentListInfo *TemplateArgs;
2700  DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
2701
2702  DeclarationName Name = NameInfo.getName();
2703  IdentifierInfo *II = Name.getAsIdentifierInfo();
2704  SourceLocation NameLoc = NameInfo.getLoc();
2705
2706  if (II && II->isEditorPlaceholder()) {
2707    // FIXME: When typed placeholders are supported we can create a typed
2708    // placeholder expression node.
2709    return ExprError();
2710  }
2711
2712  // C++ [temp.dep.expr]p3:
2713  //   An id-expression is type-dependent if it contains:
2714  //     -- an identifier that was declared with a dependent type,
2715  //        (note: handled after lookup)
2716  //     -- a template-id that is dependent,
2717  //        (note: handled in BuildTemplateIdExpr)
2718  //     -- a conversion-function-id that specifies a dependent type,
2719  //     -- a nested-name-specifier that contains a class-name that
2720  //        names a dependent type.
2721  // Determine whether this is a member of an unknown specialization;
2722  // we need to handle these differently.
2723  bool DependentID = false;
2724  if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
2725      Name.getCXXNameType()->isDependentType()) {
2726    DependentID = true;
2727  } else if (SS.isSet()) {
2728    if (DeclContext *DC = computeDeclContext(SS, false)) {
2729      if (RequireCompleteDeclContext(SS, DC))
2730        return ExprError();
2731    } else {
2732      DependentID = true;
2733    }
2734  }
2735
2736  if (DependentID)
2737    return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2738                                      IsAddressOfOperand, TemplateArgs);
2739
2740  // Perform the required lookup.
2741  LookupResult R(*this, NameInfo,
2742                 (Id.getKind() == UnqualifiedIdKind::IK_ImplicitSelfParam)
2743                     ? LookupObjCImplicitSelfParam
2744                     : LookupOrdinaryName);
2745  if (TemplateKWLoc.isValid() || TemplateArgs) {
2746    // Lookup the template name again to correctly establish the context in
2747    // which it was found. This is really unfortunate as we already did the
2748    // lookup to determine that it was a template name in the first place. If
2749    // this becomes a performance hit, we can work harder to preserve those
2750    // results until we get here but it's likely not worth it.
2751    bool MemberOfUnknownSpecialization;
2752    AssumedTemplateKind AssumedTemplate;
2753    if (LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
2754                           MemberOfUnknownSpecialization, TemplateKWLoc,
2755                           &AssumedTemplate))
2756      return ExprError();
2757
2758    if (MemberOfUnknownSpecialization ||
2759        (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
2760      return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2761                                        IsAddressOfOperand, TemplateArgs);
2762  } else {
2763    bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl();
2764    LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
2765
2766    // If the result might be in a dependent base class, this is a dependent
2767    // id-expression.
2768    if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
2769      return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2770                                        IsAddressOfOperand, TemplateArgs);
2771
2772    // If this reference is in an Objective-C method, then we need to do
2773    // some special Objective-C lookup, too.
2774    if (IvarLookupFollowUp) {
2775      ExprResult E(LookupInObjCMethod(R, S, II, true));
2776      if (E.isInvalid())
2777        return ExprError();
2778
2779      if (Expr *Ex = E.getAs<Expr>())
2780        return Ex;
2781    }
2782  }
2783
2784  if (R.isAmbiguous())
2785    return ExprError();
2786
2787  // This could be an implicitly declared function reference if the language
2788  // mode allows it as a feature.
2789  if (R.empty() && HasTrailingLParen && II &&
2790      getLangOpts().implicitFunctionsAllowed()) {
2791    NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
2792    if (D) R.addDecl(D);
2793  }
2794
2795  // Determine whether this name might be a candidate for
2796  // argument-dependent lookup.
2797  bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
2798
2799  if (R.empty() && !ADL) {
2800    if (SS.isEmpty() && getLangOpts().MSVCCompat) {
2801      if (Expr *E = recoverFromMSUnqualifiedLookup(*this, Context, NameInfo,
2802                                                   TemplateKWLoc, TemplateArgs))
2803        return E;
2804    }
2805
2806    // Don't diagnose an empty lookup for inline assembly.
2807    if (IsInlineAsmIdentifier)
2808      return ExprError();
2809
2810    // If this name wasn't predeclared and if this is not a function
2811    // call, diagnose the problem.
2812    TypoExpr *TE = nullptr;
2813    DefaultFilterCCC DefaultValidator(II, SS.isValid() ? SS.getScopeRep()
2814                                                       : nullptr);
2815    DefaultValidator.IsAddressOfOperand = IsAddressOfOperand;
2816    assert((!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) &&
2817           "Typo correction callback misconfigured");
2818    if (CCC) {
2819      // Make sure the callback knows what the typo being diagnosed is.
2820      CCC->setTypoName(II);
2821      if (SS.isValid())
2822        CCC->setTypoNNS(SS.getScopeRep());
2823    }
2824    // FIXME: DiagnoseEmptyLookup produces bad diagnostics if we're looking for
2825    // a template name, but we happen to have always already looked up the name
2826    // before we get here if it must be a template name.
2827    if (DiagnoseEmptyLookup(S, SS, R, CCC ? *CCC : DefaultValidator, nullptr,
2828                            std::nullopt, nullptr, &TE)) {
2829      if (TE && KeywordReplacement) {
2830        auto &State = getTypoExprState(TE);
2831        auto BestTC = State.Consumer->getNextCorrection();
2832        if (BestTC.isKeyword()) {
2833          auto *II = BestTC.getCorrectionAsIdentifierInfo();
2834          if (State.DiagHandler)
2835            State.DiagHandler(BestTC);
2836          KeywordReplacement->startToken();
2837          KeywordReplacement->setKind(II->getTokenID());
2838          KeywordReplacement->setIdentifierInfo(II);
2839          KeywordReplacement->setLocation(BestTC.getCorrectionRange().getBegin());
2840          // Clean up the state associated with the TypoExpr, since it has
2841          // now been diagnosed (without a call to CorrectDelayedTyposInExpr).
2842          clearDelayedTypo(TE);
2843          // Signal that a correction to a keyword was performed by returning a
2844          // valid-but-null ExprResult.
2845          return (Expr*)nullptr;
2846        }
2847        State.Consumer->resetCorrectionStream();
2848      }
2849      return TE ? TE : ExprError();
2850    }
2851
2852    assert(!R.empty() &&
2853           "DiagnoseEmptyLookup returned false but added no results");
2854
2855    // If we found an Objective-C instance variable, let
2856    // LookupInObjCMethod build the appropriate expression to
2857    // reference the ivar.
2858    if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
2859      R.clear();
2860      ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
2861      // In a hopelessly buggy code, Objective-C instance variable
2862      // lookup fails and no expression will be built to reference it.
2863      if (!E.isInvalid() && !E.get())
2864        return ExprError();
2865      return E;
2866    }
2867  }
2868
2869  // This is guaranteed from this point on.
2870  assert(!R.empty() || ADL);
2871
2872  // Check whether this might be a C++ implicit instance member access.
2873  // C++ [class.mfct.non-static]p3:
2874  //   When an id-expression that is not part of a class member access
2875  //   syntax and not used to form a pointer to member is used in the
2876  //   body of a non-static member function of class X, if name lookup
2877  //   resolves the name in the id-expression to a non-static non-type
2878  //   member of some class C, the id-expression is transformed into a
2879  //   class member access expression using (*this) as the
2880  //   postfix-expression to the left of the . operator.
2881  //
2882  // But we don't actually need to do this for '&' operands if R
2883  // resolved to a function or overloaded function set, because the
2884  // expression is ill-formed if it actually works out to be a
2885  // non-static member function:
2886  //
2887  // C++ [expr.ref]p4:
2888  //   Otherwise, if E1.E2 refers to a non-static member function. . .
2889  //   [t]he expression can be used only as the left-hand operand of a
2890  //   member function call.
2891  //
2892  // There are other safeguards against such uses, but it's important
2893  // to get this right here so that we don't end up making a
2894  // spuriously dependent expression if we're inside a dependent
2895  // instance method.
2896  if (!R.empty() && (*R.begin())->isCXXClassMember()) {
2897    bool MightBeImplicitMember;
2898    if (!IsAddressOfOperand)
2899      MightBeImplicitMember = true;
2900    else if (!SS.isEmpty())
2901      MightBeImplicitMember = false;
2902    else if (R.isOverloadedResult())
2903      MightBeImplicitMember = false;
2904    else if (R.isUnresolvableResult())
2905      MightBeImplicitMember = true;
2906    else
2907      MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
2908                              isa<IndirectFieldDecl>(R.getFoundDecl()) ||
2909                              isa<MSPropertyDecl>(R.getFoundDecl());
2910
2911    if (MightBeImplicitMember)
2912      return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
2913                                             R, TemplateArgs, S);
2914  }
2915
2916  if (TemplateArgs || TemplateKWLoc.isValid()) {
2917
2918    // In C++1y, if this is a variable template id, then check it
2919    // in BuildTemplateIdExpr().
2920    // The single lookup result must be a variable template declaration.
2921    if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId && Id.TemplateId &&
2922        Id.TemplateId->Kind == TNK_Var_template) {
2923      assert(R.getAsSingle<VarTemplateDecl>() &&
2924             "There should only be one declaration found.");
2925    }
2926
2927    return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs);
2928  }
2929
2930  return BuildDeclarationNameExpr(SS, R, ADL);
2931}
2932
2933/// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
2934/// declaration name, generally during template instantiation.
2935/// There's a large number of things which don't need to be done along
2936/// this path.
2937ExprResult Sema::BuildQualifiedDeclarationNameExpr(
2938    CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo,
2939    bool IsAddressOfOperand, const Scope *S, TypeSourceInfo **RecoveryTSI) {
2940  if (NameInfo.getName().isDependentName())
2941    return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2942                                     NameInfo, /*TemplateArgs=*/nullptr);
2943
2944  DeclContext *DC = computeDeclContext(SS, false);
2945  if (!DC)
2946    return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2947                                     NameInfo, /*TemplateArgs=*/nullptr);
2948
2949  if (RequireCompleteDeclContext(SS, DC))
2950    return ExprError();
2951
2952  LookupResult R(*this, NameInfo, LookupOrdinaryName);
2953  LookupQualifiedName(R, DC);
2954
2955  if (R.isAmbiguous())
2956    return ExprError();
2957
2958  if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
2959    return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2960                                     NameInfo, /*TemplateArgs=*/nullptr);
2961
2962  if (R.empty()) {
2963    // Don't diagnose problems with invalid record decl, the secondary no_member
2964    // diagnostic during template instantiation is likely bogus, e.g. if a class
2965    // is invalid because it's derived from an invalid base class, then missing
2966    // members were likely supposed to be inherited.
2967    if (const auto *CD = dyn_cast<CXXRecordDecl>(DC))
2968      if (CD->isInvalidDecl())
2969        return ExprError();
2970    Diag(NameInfo.getLoc(), diag::err_no_member)
2971      << NameInfo.getName() << DC << SS.getRange();
2972    return ExprError();
2973  }
2974
2975  if (const TypeDecl *TD = R.getAsSingle<TypeDecl>()) {
2976    // Diagnose a missing typename if this resolved unambiguously to a type in
2977    // a dependent context.  If we can recover with a type, downgrade this to
2978    // a warning in Microsoft compatibility mode.
2979    unsigned DiagID = diag::err_typename_missing;
2980    if (RecoveryTSI && getLangOpts().MSVCCompat)
2981      DiagID = diag::ext_typename_missing;
2982    SourceLocation Loc = SS.getBeginLoc();
2983    auto D = Diag(Loc, DiagID);
2984    D << SS.getScopeRep() << NameInfo.getName().getAsString()
2985      << SourceRange(Loc, NameInfo.getEndLoc());
2986
2987    // Don't recover if the caller isn't expecting us to or if we're in a SFINAE
2988    // context.
2989    if (!RecoveryTSI)
2990      return ExprError();
2991
2992    // Only issue the fixit if we're prepared to recover.
2993    D << FixItHint::CreateInsertion(Loc, "typename ");
2994
2995    // Recover by pretending this was an elaborated type.
2996    QualType Ty = Context.getTypeDeclType(TD);
2997    TypeLocBuilder TLB;
2998    TLB.pushTypeSpec(Ty).setNameLoc(NameInfo.getLoc());
2999
3000    QualType ET = getElaboratedType(ElaboratedTypeKeyword::None, SS, Ty);
3001    ElaboratedTypeLoc QTL = TLB.push<ElaboratedTypeLoc>(ET);
3002    QTL.setElaboratedKeywordLoc(SourceLocation());
3003    QTL.setQualifierLoc(SS.getWithLocInContext(Context));
3004
3005    *RecoveryTSI = TLB.getTypeSourceInfo(Context, ET);
3006
3007    return ExprEmpty();
3008  }
3009
3010  // Defend against this resolving to an implicit member access. We usually
3011  // won't get here if this might be a legitimate a class member (we end up in
3012  // BuildMemberReferenceExpr instead), but this can be valid if we're forming
3013  // a pointer-to-member or in an unevaluated context in C++11.
3014  if (!R.empty() && (*R.begin())->isCXXClassMember() && !IsAddressOfOperand)
3015    return BuildPossibleImplicitMemberExpr(SS,
3016                                           /*TemplateKWLoc=*/SourceLocation(),
3017                                           R, /*TemplateArgs=*/nullptr, S);
3018
3019  return BuildDeclarationNameExpr(SS, R, /* ADL */ false);
3020}
3021
3022/// The parser has read a name in, and Sema has detected that we're currently
3023/// inside an ObjC method. Perform some additional checks and determine if we
3024/// should form a reference to an ivar.
3025///
3026/// Ideally, most of this would be done by lookup, but there's
3027/// actually quite a lot of extra work involved.
3028DeclResult Sema::LookupIvarInObjCMethod(LookupResult &Lookup, Scope *S,
3029                                        IdentifierInfo *II) {
3030  SourceLocation Loc = Lookup.getNameLoc();
3031  ObjCMethodDecl *CurMethod = getCurMethodDecl();
3032
3033  // Check for error condition which is already reported.
3034  if (!CurMethod)
3035    return DeclResult(true);
3036
3037  // There are two cases to handle here.  1) scoped lookup could have failed,
3038  // in which case we should look for an ivar.  2) scoped lookup could have
3039  // found a decl, but that decl is outside the current instance method (i.e.
3040  // a global variable).  In these two cases, we do a lookup for an ivar with
3041  // this name, if the lookup sucedes, we replace it our current decl.
3042
3043  // If we're in a class method, we don't normally want to look for
3044  // ivars.  But if we don't find anything else, and there's an
3045  // ivar, that's an error.
3046  bool IsClassMethod = CurMethod->isClassMethod();
3047
3048  bool LookForIvars;
3049  if (Lookup.empty())
3050    LookForIvars = true;
3051  else if (IsClassMethod)
3052    LookForIvars = false;
3053  else
3054    LookForIvars = (Lookup.isSingleResult() &&
3055                    Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
3056  ObjCInterfaceDecl *IFace = nullptr;
3057  if (LookForIvars) {
3058    IFace = CurMethod->getClassInterface();
3059    ObjCInterfaceDecl *ClassDeclared;
3060    ObjCIvarDecl *IV = nullptr;
3061    if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) {
3062      // Diagnose using an ivar in a class method.
3063      if (IsClassMethod) {
3064        Diag(Loc, diag::err_ivar_use_in_class_method) << IV->getDeclName();
3065        return DeclResult(true);
3066      }
3067
3068      // Diagnose the use of an ivar outside of the declaring class.
3069      if (IV->getAccessControl() == ObjCIvarDecl::Private &&
3070          !declaresSameEntity(ClassDeclared, IFace) &&
3071          !getLangOpts().DebuggerSupport)
3072        Diag(Loc, diag::err_private_ivar_access) << IV->getDeclName();
3073
3074      // Success.
3075      return IV;
3076    }
3077  } else if (CurMethod->isInstanceMethod()) {
3078    // We should warn if a local variable hides an ivar.
3079    if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) {
3080      ObjCInterfaceDecl *ClassDeclared;
3081      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
3082        if (IV->getAccessControl() != ObjCIvarDecl::Private ||
3083            declaresSameEntity(IFace, ClassDeclared))
3084          Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
3085      }
3086    }
3087  } else if (Lookup.isSingleResult() &&
3088             Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) {
3089    // If accessing a stand-alone ivar in a class method, this is an error.
3090    if (const ObjCIvarDecl *IV =
3091            dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl())) {
3092      Diag(Loc, diag::err_ivar_use_in_class_method) << IV->getDeclName();
3093      return DeclResult(true);
3094    }
3095  }
3096
3097  // Didn't encounter an error, didn't find an ivar.
3098  return DeclResult(false);
3099}
3100
3101ExprResult Sema::BuildIvarRefExpr(Scope *S, SourceLocation Loc,
3102                                  ObjCIvarDecl *IV) {
3103  ObjCMethodDecl *CurMethod = getCurMethodDecl();
3104  assert(CurMethod && CurMethod->isInstanceMethod() &&
3105         "should not reference ivar from this context");
3106
3107  ObjCInterfaceDecl *IFace = CurMethod->getClassInterface();
3108  assert(IFace && "should not reference ivar from this context");
3109
3110  // If we're referencing an invalid decl, just return this as a silent
3111  // error node.  The error diagnostic was already emitted on the decl.
3112  if (IV->isInvalidDecl())
3113    return ExprError();
3114
3115  // Check if referencing a field with __attribute__((deprecated)).
3116  if (DiagnoseUseOfDecl(IV, Loc))
3117    return ExprError();
3118
3119  // FIXME: This should use a new expr for a direct reference, don't
3120  // turn this into Self->ivar, just return a BareIVarExpr or something.
3121  IdentifierInfo &II = Context.Idents.get("self");
3122  UnqualifiedId SelfName;
3123  SelfName.setImplicitSelfParam(&II);
3124  CXXScopeSpec SelfScopeSpec;
3125  SourceLocation TemplateKWLoc;
3126  ExprResult SelfExpr =
3127      ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc, SelfName,
3128                        /*HasTrailingLParen=*/false,
3129                        /*IsAddressOfOperand=*/false);
3130  if (SelfExpr.isInvalid())
3131    return ExprError();
3132
3133  SelfExpr = DefaultLvalueConversion(SelfExpr.get());
3134  if (SelfExpr.isInvalid())
3135    return ExprError();
3136
3137  MarkAnyDeclReferenced(Loc, IV, true);
3138
3139  ObjCMethodFamily MF = CurMethod->getMethodFamily();
3140  if (MF != OMF_init && MF != OMF_dealloc && MF != OMF_finalize &&
3141      !IvarBacksCurrentMethodAccessor(IFace, CurMethod, IV))
3142    Diag(Loc, diag::warn_direct_ivar_access) << IV->getDeclName();
3143
3144  ObjCIvarRefExpr *Result = new (Context)
3145      ObjCIvarRefExpr(IV, IV->getUsageType(SelfExpr.get()->getType()), Loc,
3146                      IV->getLocation(), SelfExpr.get(), true, true);
3147
3148  if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
3149    if (!isUnevaluatedContext() &&
3150        !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
3151      getCurFunction()->recordUseOfWeak(Result);
3152  }
3153  if (getLangOpts().ObjCAutoRefCount && !isUnevaluatedContext())
3154    if (const BlockDecl *BD = CurContext->getInnermostBlockDecl())
3155      ImplicitlyRetainedSelfLocs.push_back({Loc, BD});
3156
3157  return Result;
3158}
3159
3160/// The parser has read a name in, and Sema has detected that we're currently
3161/// inside an ObjC method. Perform some additional checks and determine if we
3162/// should form a reference to an ivar. If so, build an expression referencing
3163/// that ivar.
3164ExprResult
3165Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
3166                         IdentifierInfo *II, bool AllowBuiltinCreation) {
3167  // FIXME: Integrate this lookup step into LookupParsedName.
3168  DeclResult Ivar = LookupIvarInObjCMethod(Lookup, S, II);
3169  if (Ivar.isInvalid())
3170    return ExprError();
3171  if (Ivar.isUsable())
3172    return BuildIvarRefExpr(S, Lookup.getNameLoc(),
3173                            cast<ObjCIvarDecl>(Ivar.get()));
3174
3175  if (Lookup.empty() && II && AllowBuiltinCreation)
3176    LookupBuiltin(Lookup);
3177
3178  // Sentinel value saying that we didn't do anything special.
3179  return ExprResult(false);
3180}
3181
3182/// Cast a base object to a member's actual type.
3183///
3184/// There are two relevant checks:
3185///
3186/// C++ [class.access.base]p7:
3187///
3188///   If a class member access operator [...] is used to access a non-static
3189///   data member or non-static member function, the reference is ill-formed if
3190///   the left operand [...] cannot be implicitly converted to a pointer to the
3191///   naming class of the right operand.
3192///
3193/// C++ [expr.ref]p7:
3194///
3195///   If E2 is a non-static data member or a non-static member function, the
3196///   program is ill-formed if the class of which E2 is directly a member is an
3197///   ambiguous base (11.8) of the naming class (11.9.3) of E2.
3198///
3199/// Note that the latter check does not consider access; the access of the
3200/// "real" base class is checked as appropriate when checking the access of the
3201/// member name.
3202ExprResult
3203Sema::PerformObjectMemberConversion(Expr *From,
3204                                    NestedNameSpecifier *Qualifier,
3205                                    NamedDecl *FoundDecl,
3206                                    NamedDecl *Member) {
3207  const auto *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
3208  if (!RD)
3209    return From;
3210
3211  QualType DestRecordType;
3212  QualType DestType;
3213  QualType FromRecordType;
3214  QualType FromType = From->getType();
3215  bool PointerConversions = false;
3216  if (isa<FieldDecl>(Member)) {
3217    DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
3218    auto FromPtrType = FromType->getAs<PointerType>();
3219    DestRecordType = Context.getAddrSpaceQualType(
3220        DestRecordType, FromPtrType
3221                            ? FromType->getPointeeType().getAddressSpace()
3222                            : FromType.getAddressSpace());
3223
3224    if (FromPtrType) {
3225      DestType = Context.getPointerType(DestRecordType);
3226      FromRecordType = FromPtrType->getPointeeType();
3227      PointerConversions = true;
3228    } else {
3229      DestType = DestRecordType;
3230      FromRecordType = FromType;
3231    }
3232  } else if (const auto *Method = dyn_cast<CXXMethodDecl>(Member)) {
3233    if (!Method->isImplicitObjectMemberFunction())
3234      return From;
3235
3236    DestType = Method->getThisType().getNonReferenceType();
3237    DestRecordType = Method->getFunctionObjectParameterType();
3238
3239    if (FromType->getAs<PointerType>()) {
3240      FromRecordType = FromType->getPointeeType();
3241      PointerConversions = true;
3242    } else {
3243      FromRecordType = FromType;
3244      DestType = DestRecordType;
3245    }
3246
3247    LangAS FromAS = FromRecordType.getAddressSpace();
3248    LangAS DestAS = DestRecordType.getAddressSpace();
3249    if (FromAS != DestAS) {
3250      QualType FromRecordTypeWithoutAS =
3251          Context.removeAddrSpaceQualType(FromRecordType);
3252      QualType FromTypeWithDestAS =
3253          Context.getAddrSpaceQualType(FromRecordTypeWithoutAS, DestAS);
3254      if (PointerConversions)
3255        FromTypeWithDestAS = Context.getPointerType(FromTypeWithDestAS);
3256      From = ImpCastExprToType(From, FromTypeWithDestAS,
3257                               CK_AddressSpaceConversion, From->getValueKind())
3258                 .get();
3259    }
3260  } else {
3261    // No conversion necessary.
3262    return From;
3263  }
3264
3265  if (DestType->isDependentType() || FromType->isDependentType())
3266    return From;
3267
3268  // If the unqualified types are the same, no conversion is necessary.
3269  if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
3270    return From;
3271
3272  SourceRange FromRange = From->getSourceRange();
3273  SourceLocation FromLoc = FromRange.getBegin();
3274
3275  ExprValueKind VK = From->getValueKind();
3276
3277  // C++ [class.member.lookup]p8:
3278  //   [...] Ambiguities can often be resolved by qualifying a name with its
3279  //   class name.
3280  //
3281  // If the member was a qualified name and the qualified referred to a
3282  // specific base subobject type, we'll cast to that intermediate type
3283  // first and then to the object in which the member is declared. That allows
3284  // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
3285  //
3286  //   class Base { public: int x; };
3287  //   class Derived1 : public Base { };
3288  //   class Derived2 : public Base { };
3289  //   class VeryDerived : public Derived1, public Derived2 { void f(); };
3290  //
3291  //   void VeryDerived::f() {
3292  //     x = 17; // error: ambiguous base subobjects
3293  //     Derived1::x = 17; // okay, pick the Base subobject of Derived1
3294  //   }
3295  if (Qualifier && Qualifier->getAsType()) {
3296    QualType QType = QualType(Qualifier->getAsType(), 0);
3297    assert(QType->isRecordType() && "lookup done with non-record type");
3298
3299    QualType QRecordType = QualType(QType->castAs<RecordType>(), 0);
3300
3301    // In C++98, the qualifier type doesn't actually have to be a base
3302    // type of the object type, in which case we just ignore it.
3303    // Otherwise build the appropriate casts.
3304    if (IsDerivedFrom(FromLoc, FromRecordType, QRecordType)) {
3305      CXXCastPath BasePath;
3306      if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
3307                                       FromLoc, FromRange, &BasePath))
3308        return ExprError();
3309
3310      if (PointerConversions)
3311        QType = Context.getPointerType(QType);
3312      From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
3313                               VK, &BasePath).get();
3314
3315      FromType = QType;
3316      FromRecordType = QRecordType;
3317
3318      // If the qualifier type was the same as the destination type,
3319      // we're done.
3320      if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
3321        return From;
3322    }
3323  }
3324
3325  CXXCastPath BasePath;
3326  if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
3327                                   FromLoc, FromRange, &BasePath,
3328                                   /*IgnoreAccess=*/true))
3329    return ExprError();
3330
3331  return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
3332                           VK, &BasePath);
3333}
3334
3335bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
3336                                      const LookupResult &R,
3337                                      bool HasTrailingLParen) {
3338  // Only when used directly as the postfix-expression of a call.
3339  if (!HasTrailingLParen)
3340    return false;
3341
3342  // Never if a scope specifier was provided.
3343  if (SS.isSet())
3344    return false;
3345
3346  // Only in C++ or ObjC++.
3347  if (!getLangOpts().CPlusPlus)
3348    return false;
3349
3350  // Turn off ADL when we find certain kinds of declarations during
3351  // normal lookup:
3352  for (const NamedDecl *D : R) {
3353    // C++0x [basic.lookup.argdep]p3:
3354    //     -- a declaration of a class member
3355    // Since using decls preserve this property, we check this on the
3356    // original decl.
3357    if (D->isCXXClassMember())
3358      return false;
3359
3360    // C++0x [basic.lookup.argdep]p3:
3361    //     -- a block-scope function declaration that is not a
3362    //        using-declaration
3363    // NOTE: we also trigger this for function templates (in fact, we
3364    // don't check the decl type at all, since all other decl types
3365    // turn off ADL anyway).
3366    if (isa<UsingShadowDecl>(D))
3367      D = cast<UsingShadowDecl>(D)->getTargetDecl();
3368    else if (D->getLexicalDeclContext()->isFunctionOrMethod())
3369      return false;
3370
3371    // C++0x [basic.lookup.argdep]p3:
3372    //     -- a declaration that is neither a function or a function
3373    //        template
3374    // And also for builtin functions.
3375    if (const auto *FDecl = dyn_cast<FunctionDecl>(D)) {
3376      // But also builtin functions.
3377      if (FDecl->getBuiltinID() && FDecl->isImplicit())
3378        return false;
3379    } else if (!isa<FunctionTemplateDecl>(D))
3380      return false;
3381  }
3382
3383  return true;
3384}
3385
3386
3387/// Diagnoses obvious problems with the use of the given declaration
3388/// as an expression.  This is only actually called for lookups that
3389/// were not overloaded, and it doesn't promise that the declaration
3390/// will in fact be used.
3391static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D,
3392                            bool AcceptInvalid) {
3393  if (D->isInvalidDecl() && !AcceptInvalid)
3394    return true;
3395
3396  if (isa<TypedefNameDecl>(D)) {
3397    S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
3398    return true;
3399  }
3400
3401  if (isa<ObjCInterfaceDecl>(D)) {
3402    S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
3403    return true;
3404  }
3405
3406  if (isa<NamespaceDecl>(D)) {
3407    S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
3408    return true;
3409  }
3410
3411  return false;
3412}
3413
3414// Certain multiversion types should be treated as overloaded even when there is
3415// only one result.
3416static bool ShouldLookupResultBeMultiVersionOverload(const LookupResult &R) {
3417  assert(R.isSingleResult() && "Expected only a single result");
3418  const auto *FD = dyn_cast<FunctionDecl>(R.getFoundDecl());
3419  return FD &&
3420         (FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion());
3421}
3422
3423ExprResult Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
3424                                          LookupResult &R, bool NeedsADL,
3425                                          bool AcceptInvalidDecl) {
3426  // If this is a single, fully-resolved result and we don't need ADL,
3427  // just build an ordinary singleton decl ref.
3428  if (!NeedsADL && R.isSingleResult() &&
3429      !R.getAsSingle<FunctionTemplateDecl>() &&
3430      !ShouldLookupResultBeMultiVersionOverload(R))
3431    return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), R.getFoundDecl(),
3432                                    R.getRepresentativeDecl(), nullptr,
3433                                    AcceptInvalidDecl);
3434
3435  // We only need to check the declaration if there's exactly one
3436  // result, because in the overloaded case the results can only be
3437  // functions and function templates.
3438  if (R.isSingleResult() && !ShouldLookupResultBeMultiVersionOverload(R) &&
3439      CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl(),
3440                      AcceptInvalidDecl))
3441    return ExprError();
3442
3443  // Otherwise, just build an unresolved lookup expression.  Suppress
3444  // any lookup-related diagnostics; we'll hash these out later, when
3445  // we've picked a target.
3446  R.suppressDiagnostics();
3447
3448  UnresolvedLookupExpr *ULE
3449    = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
3450                                   SS.getWithLocInContext(Context),
3451                                   R.getLookupNameInfo(),
3452                                   NeedsADL, R.isOverloadedResult(),
3453                                   R.begin(), R.end());
3454
3455  return ULE;
3456}
3457
3458static void diagnoseUncapturableValueReferenceOrBinding(Sema &S,
3459                                                        SourceLocation loc,
3460                                                        ValueDecl *var);
3461
3462/// Complete semantic analysis for a reference to the given declaration.
3463ExprResult Sema::BuildDeclarationNameExpr(
3464    const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D,
3465    NamedDecl *FoundD, const TemplateArgumentListInfo *TemplateArgs,
3466    bool AcceptInvalidDecl) {
3467  assert(D && "Cannot refer to a NULL declaration");
3468  assert(!isa<FunctionTemplateDecl>(D) &&
3469         "Cannot refer unambiguously to a function template");
3470
3471  SourceLocation Loc = NameInfo.getLoc();
3472  if (CheckDeclInExpr(*this, Loc, D, AcceptInvalidDecl)) {
3473    // Recovery from invalid cases (e.g. D is an invalid Decl).
3474    // We use the dependent type for the RecoveryExpr to prevent bogus follow-up
3475    // diagnostics, as invalid decls use int as a fallback type.
3476    return CreateRecoveryExpr(NameInfo.getBeginLoc(), NameInfo.getEndLoc(), {});
3477  }
3478
3479  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
3480    // Specifically diagnose references to class templates that are missing
3481    // a template argument list.
3482    diagnoseMissingTemplateArguments(TemplateName(Template), Loc);
3483    return ExprError();
3484  }
3485
3486  // Make sure that we're referring to a value.
3487  if (!isa<ValueDecl, UnresolvedUsingIfExistsDecl>(D)) {
3488    Diag(Loc, diag::err_ref_non_value) << D << SS.getRange();
3489    Diag(D->getLocation(), diag::note_declared_at);
3490    return ExprError();
3491  }
3492
3493  // Check whether this declaration can be used. Note that we suppress
3494  // this check when we're going to perform argument-dependent lookup
3495  // on this function name, because this might not be the function
3496  // that overload resolution actually selects.
3497  if (DiagnoseUseOfDecl(D, Loc))
3498    return ExprError();
3499
3500  auto *VD = cast<ValueDecl>(D);
3501
3502  // Only create DeclRefExpr's for valid Decl's.
3503  if (VD->isInvalidDecl() && !AcceptInvalidDecl)
3504    return ExprError();
3505
3506  // Handle members of anonymous structs and unions.  If we got here,
3507  // and the reference is to a class member indirect field, then this
3508  // must be the subject of a pointer-to-member expression.
3509  if (auto *IndirectField = dyn_cast<IndirectFieldDecl>(VD);
3510      IndirectField && !IndirectField->isCXXClassMember())
3511    return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
3512                                                    IndirectField);
3513
3514  QualType type = VD->getType();
3515  if (type.isNull())
3516    return ExprError();
3517  ExprValueKind valueKind = VK_PRValue;
3518
3519  // In 'T ...V;', the type of the declaration 'V' is 'T...', but the type of
3520  // a reference to 'V' is simply (unexpanded) 'T'. The type, like the value,
3521  // is expanded by some outer '...' in the context of the use.
3522  type = type.getNonPackExpansionType();
3523
3524  switch (D->getKind()) {
3525    // Ignore all the non-ValueDecl kinds.
3526#define ABSTRACT_DECL(kind)
3527#define VALUE(type, base)
3528#define DECL(type, base) case Decl::type:
3529#include "clang/AST/DeclNodes.inc"
3530    llvm_unreachable("invalid value decl kind");
3531
3532  // These shouldn't make it here.
3533  case Decl::ObjCAtDefsField:
3534    llvm_unreachable("forming non-member reference to ivar?");
3535
3536  // Enum constants are always r-values and never references.
3537  // Unresolved using declarations are dependent.
3538  case Decl::EnumConstant:
3539  case Decl::UnresolvedUsingValue:
3540  case Decl::OMPDeclareReduction:
3541  case Decl::OMPDeclareMapper:
3542    valueKind = VK_PRValue;
3543    break;
3544
3545  // Fields and indirect fields that got here must be for
3546  // pointer-to-member expressions; we just call them l-values for
3547  // internal consistency, because this subexpression doesn't really
3548  // exist in the high-level semantics.
3549  case Decl::Field:
3550  case Decl::IndirectField:
3551  case Decl::ObjCIvar:
3552    assert(getLangOpts().CPlusPlus && "building reference to field in C?");
3553
3554    // These can't have reference type in well-formed programs, but
3555    // for internal consistency we do this anyway.
3556    type = type.getNonReferenceType();
3557    valueKind = VK_LValue;
3558    break;
3559
3560  // Non-type template parameters are either l-values or r-values
3561  // depending on the type.
3562  case Decl::NonTypeTemplateParm: {
3563    if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
3564      type = reftype->getPointeeType();
3565      valueKind = VK_LValue; // even if the parameter is an r-value reference
3566      break;
3567    }
3568
3569    // [expr.prim.id.unqual]p2:
3570    //   If the entity is a template parameter object for a template
3571    //   parameter of type T, the type of the expression is const T.
3572    //   [...] The expression is an lvalue if the entity is a [...] template
3573    //   parameter object.
3574    if (type->isRecordType()) {
3575      type = type.getUnqualifiedType().withConst();
3576      valueKind = VK_LValue;
3577      break;
3578    }
3579
3580    // For non-references, we need to strip qualifiers just in case
3581    // the template parameter was declared as 'const int' or whatever.
3582    valueKind = VK_PRValue;
3583    type = type.getUnqualifiedType();
3584    break;
3585  }
3586
3587  case Decl::Var:
3588  case Decl::VarTemplateSpecialization:
3589  case Decl::VarTemplatePartialSpecialization:
3590  case Decl::Decomposition:
3591  case Decl::OMPCapturedExpr:
3592    // In C, "extern void blah;" is valid and is an r-value.
3593    if (!getLangOpts().CPlusPlus && !type.hasQualifiers() &&
3594        type->isVoidType()) {
3595      valueKind = VK_PRValue;
3596      break;
3597    }
3598    [[fallthrough]];
3599
3600  case Decl::ImplicitParam:
3601  case Decl::ParmVar: {
3602    // These are always l-values.
3603    valueKind = VK_LValue;
3604    type = type.getNonReferenceType();
3605
3606    // FIXME: Does the addition of const really only apply in
3607    // potentially-evaluated contexts? Since the variable isn't actually
3608    // captured in an unevaluated context, it seems that the answer is no.
3609    if (!isUnevaluatedContext()) {
3610      QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc);
3611      if (!CapturedType.isNull())
3612        type = CapturedType;
3613    }
3614
3615    break;
3616  }
3617
3618  case Decl::Binding:
3619    // These are always lvalues.
3620    valueKind = VK_LValue;
3621    type = type.getNonReferenceType();
3622    break;
3623
3624  case Decl::Function: {
3625    if (unsigned BID = cast<FunctionDecl>(VD)->getBuiltinID()) {
3626      if (!Context.BuiltinInfo.isDirectlyAddressable(BID)) {
3627        type = Context.BuiltinFnTy;
3628        valueKind = VK_PRValue;
3629        break;
3630      }
3631    }
3632
3633    const FunctionType *fty = type->castAs<FunctionType>();
3634
3635    // If we're referring to a function with an __unknown_anytype
3636    // result type, make the entire expression __unknown_anytype.
3637    if (fty->getReturnType() == Context.UnknownAnyTy) {
3638      type = Context.UnknownAnyTy;
3639      valueKind = VK_PRValue;
3640      break;
3641    }
3642
3643    // Functions are l-values in C++.
3644    if (getLangOpts().CPlusPlus) {
3645      valueKind = VK_LValue;
3646      break;
3647    }
3648
3649    // C99 DR 316 says that, if a function type comes from a
3650    // function definition (without a prototype), that type is only
3651    // used for checking compatibility. Therefore, when referencing
3652    // the function, we pretend that we don't have the full function
3653    // type.
3654    if (!cast<FunctionDecl>(VD)->hasPrototype() && isa<FunctionProtoType>(fty))
3655      type = Context.getFunctionNoProtoType(fty->getReturnType(),
3656                                            fty->getExtInfo());
3657
3658    // Functions are r-values in C.
3659    valueKind = VK_PRValue;
3660    break;
3661  }
3662
3663  case Decl::CXXDeductionGuide:
3664    llvm_unreachable("building reference to deduction guide");
3665
3666  case Decl::MSProperty:
3667  case Decl::MSGuid:
3668  case Decl::TemplateParamObject:
3669    // FIXME: Should MSGuidDecl and template parameter objects be subject to
3670    // capture in OpenMP, or duplicated between host and device?
3671    valueKind = VK_LValue;
3672    break;
3673
3674  case Decl::UnnamedGlobalConstant:
3675    valueKind = VK_LValue;
3676    break;
3677
3678  case Decl::CXXMethod:
3679    // If we're referring to a method with an __unknown_anytype
3680    // result type, make the entire expression __unknown_anytype.
3681    // This should only be possible with a type written directly.
3682    if (const FunctionProtoType *proto =
3683            dyn_cast<FunctionProtoType>(VD->getType()))
3684      if (proto->getReturnType() == Context.UnknownAnyTy) {
3685        type = Context.UnknownAnyTy;
3686        valueKind = VK_PRValue;
3687        break;
3688      }
3689
3690    // C++ methods are l-values if static, r-values if non-static.
3691    if (cast<CXXMethodDecl>(VD)->isStatic()) {
3692      valueKind = VK_LValue;
3693      break;
3694    }
3695    [[fallthrough]];
3696
3697  case Decl::CXXConversion:
3698  case Decl::CXXDestructor:
3699  case Decl::CXXConstructor:
3700    valueKind = VK_PRValue;
3701    break;
3702  }
3703
3704  auto *E =
3705      BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS, FoundD,
3706                       /*FIXME: TemplateKWLoc*/ SourceLocation(), TemplateArgs);
3707  // Clang AST consumers assume a DeclRefExpr refers to a valid decl. We
3708  // wrap a DeclRefExpr referring to an invalid decl with a dependent-type
3709  // RecoveryExpr to avoid follow-up semantic analysis (thus prevent bogus
3710  // diagnostics).
3711  if (VD->isInvalidDecl() && E)
3712    return CreateRecoveryExpr(E->getBeginLoc(), E->getEndLoc(), {E});
3713  return E;
3714}
3715
3716static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
3717                                    SmallString<32> &Target) {
3718  Target.resize(CharByteWidth * (Source.size() + 1));
3719  char *ResultPtr = &Target[0];
3720  const llvm::UTF8 *ErrorPtr;
3721  bool success =
3722      llvm::ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
3723  (void)success;
3724  assert(success);
3725  Target.resize(ResultPtr - &Target[0]);
3726}
3727
3728ExprResult Sema::BuildPredefinedExpr(SourceLocation Loc,
3729                                     PredefinedIdentKind IK) {
3730  Decl *currentDecl = getPredefinedExprDecl(CurContext);
3731  if (!currentDecl) {
3732    Diag(Loc, diag::ext_predef_outside_function);
3733    currentDecl = Context.getTranslationUnitDecl();
3734  }
3735
3736  QualType ResTy;
3737  StringLiteral *SL = nullptr;
3738  if (cast<DeclContext>(currentDecl)->isDependentContext())
3739    ResTy = Context.DependentTy;
3740  else {
3741    // Pre-defined identifiers are of type char[x], where x is the length of
3742    // the string.
3743    auto Str = PredefinedExpr::ComputeName(IK, currentDecl);
3744    unsigned Length = Str.length();
3745
3746    llvm::APInt LengthI(32, Length + 1);
3747    if (IK == PredefinedIdentKind::LFunction ||
3748        IK == PredefinedIdentKind::LFuncSig) {
3749      ResTy =
3750          Context.adjustStringLiteralBaseType(Context.WideCharTy.withConst());
3751      SmallString<32> RawChars;
3752      ConvertUTF8ToWideString(Context.getTypeSizeInChars(ResTy).getQuantity(),
3753                              Str, RawChars);
3754      ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr,
3755                                           ArraySizeModifier::Normal,
3756                                           /*IndexTypeQuals*/ 0);
3757      SL = StringLiteral::Create(Context, RawChars, StringLiteralKind::Wide,
3758                                 /*Pascal*/ false, ResTy, Loc);
3759    } else {
3760      ResTy = Context.adjustStringLiteralBaseType(Context.CharTy.withConst());
3761      ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr,
3762                                           ArraySizeModifier::Normal,
3763                                           /*IndexTypeQuals*/ 0);
3764      SL = StringLiteral::Create(Context, Str, StringLiteralKind::Ordinary,
3765                                 /*Pascal*/ false, ResTy, Loc);
3766    }
3767  }
3768
3769  return PredefinedExpr::Create(Context, Loc, ResTy, IK, LangOpts.MicrosoftExt,
3770                                SL);
3771}
3772
3773ExprResult Sema::BuildSYCLUniqueStableNameExpr(SourceLocation OpLoc,
3774                                               SourceLocation LParen,
3775                                               SourceLocation RParen,
3776                                               TypeSourceInfo *TSI) {
3777  return SYCLUniqueStableNameExpr::Create(Context, OpLoc, LParen, RParen, TSI);
3778}
3779
3780ExprResult Sema::ActOnSYCLUniqueStableNameExpr(SourceLocation OpLoc,
3781                                               SourceLocation LParen,
3782                                               SourceLocation RParen,
3783                                               ParsedType ParsedTy) {
3784  TypeSourceInfo *TSI = nullptr;
3785  QualType Ty = GetTypeFromParser(ParsedTy, &TSI);
3786
3787  if (Ty.isNull())
3788    return ExprError();
3789  if (!TSI)
3790    TSI = Context.getTrivialTypeSourceInfo(Ty, LParen);
3791
3792  return BuildSYCLUniqueStableNameExpr(OpLoc, LParen, RParen, TSI);
3793}
3794
3795ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
3796  return BuildPredefinedExpr(Loc, getPredefinedExprKind(Kind));
3797}
3798
3799ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) {
3800  SmallString<16> CharBuffer;
3801  bool Invalid = false;
3802  StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
3803  if (Invalid)
3804    return ExprError();
3805
3806  CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
3807                            PP, Tok.getKind());
3808  if (Literal.hadError())
3809    return ExprError();
3810
3811  QualType Ty;
3812  if (Literal.isWide())
3813    Ty = Context.WideCharTy; // L'x' -> wchar_t in C and C++.
3814  else if (Literal.isUTF8() && getLangOpts().C23)
3815    Ty = Context.UnsignedCharTy; // u8'x' -> unsigned char in C23
3816  else if (Literal.isUTF8() && getLangOpts().Char8)
3817    Ty = Context.Char8Ty; // u8'x' -> char8_t when it exists.
3818  else if (Literal.isUTF16())
3819    Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11.
3820  else if (Literal.isUTF32())
3821    Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11.
3822  else if (!getLangOpts().CPlusPlus || Literal.isMultiChar())
3823    Ty = Context.IntTy;   // 'x' -> int in C, 'wxyz' -> int in C++.
3824  else
3825    Ty = Context.CharTy; // 'x' -> char in C++;
3826                         // u8'x' -> char in C11-C17 and in C++ without char8_t.
3827
3828  CharacterLiteralKind Kind = CharacterLiteralKind::Ascii;
3829  if (Literal.isWide())
3830    Kind = CharacterLiteralKind::Wide;
3831  else if (Literal.isUTF16())
3832    Kind = CharacterLiteralKind::UTF16;
3833  else if (Literal.isUTF32())
3834    Kind = CharacterLiteralKind::UTF32;
3835  else if (Literal.isUTF8())
3836    Kind = CharacterLiteralKind::UTF8;
3837
3838  Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
3839                                             Tok.getLocation());
3840
3841  if (Literal.getUDSuffix().empty())
3842    return Lit;
3843
3844  // We're building a user-defined literal.
3845  IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
3846  SourceLocation UDSuffixLoc =
3847    getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
3848
3849  // Make sure we're allowed user-defined literals here.
3850  if (!UDLScope)
3851    return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl));
3852
3853  // C++11 [lex.ext]p6: The literal L is treated as a call of the form
3854  //   operator "" X (ch)
3855  return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
3856                                        Lit, Tok.getLocation());
3857}
3858
3859ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) {
3860  unsigned IntSize = Context.getTargetInfo().getIntWidth();
3861  return IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val),
3862                                Context.IntTy, Loc);
3863}
3864
3865static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal,
3866                                  QualType Ty, SourceLocation Loc) {
3867  const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty);
3868
3869  using llvm::APFloat;
3870  APFloat Val(Format);
3871
3872  APFloat::opStatus result = Literal.GetFloatValue(Val);
3873
3874  // Overflow is always an error, but underflow is only an error if
3875  // we underflowed to zero (APFloat reports denormals as underflow).
3876  if ((result & APFloat::opOverflow) ||
3877      ((result & APFloat::opUnderflow) && Val.isZero())) {
3878    unsigned diagnostic;
3879    SmallString<20> buffer;
3880    if (result & APFloat::opOverflow) {
3881      diagnostic = diag::warn_float_overflow;
3882      APFloat::getLargest(Format).toString(buffer);
3883    } else {
3884      diagnostic = diag::warn_float_underflow;
3885      APFloat::getSmallest(Format).toString(buffer);
3886    }
3887
3888    S.Diag(Loc, diagnostic)
3889      << Ty
3890      << StringRef(buffer.data(), buffer.size());
3891  }
3892
3893  bool isExact = (result == APFloat::opOK);
3894  return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc);
3895}
3896
3897bool Sema::CheckLoopHintExpr(Expr *E, SourceLocation Loc) {
3898  assert(E && "Invalid expression");
3899
3900  if (E->isValueDependent())
3901    return false;
3902
3903  QualType QT = E->getType();
3904  if (!QT->isIntegerType() || QT->isBooleanType() || QT->isCharType()) {
3905    Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_type) << QT;
3906    return true;
3907  }
3908
3909  llvm::APSInt ValueAPS;
3910  ExprResult R = VerifyIntegerConstantExpression(E, &ValueAPS);
3911
3912  if (R.isInvalid())
3913    return true;
3914
3915  bool ValueIsPositive = ValueAPS.isStrictlyPositive();
3916  if (!ValueIsPositive || ValueAPS.getActiveBits() > 31) {
3917    Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_value)
3918        << toString(ValueAPS, 10) << ValueIsPositive;
3919    return true;
3920  }
3921
3922  return false;
3923}
3924
3925ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) {
3926  // Fast path for a single digit (which is quite common).  A single digit
3927  // cannot have a trigraph, escaped newline, radix prefix, or suffix.
3928  if (Tok.getLength() == 1) {
3929    const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
3930    return ActOnIntegerConstant(Tok.getLocation(), Val-'0');
3931  }
3932
3933  SmallString<128> SpellingBuffer;
3934  // NumericLiteralParser wants to overread by one character.  Add padding to
3935  // the buffer in case the token is copied to the buffer.  If getSpelling()
3936  // returns a StringRef to the memory buffer, it should have a null char at
3937  // the EOF, so it is also safe.
3938  SpellingBuffer.resize(Tok.getLength() + 1);
3939
3940  // Get the spelling of the token, which eliminates trigraphs, etc.
3941  bool Invalid = false;
3942  StringRef TokSpelling = PP.getSpelling(Tok, SpellingBuffer, &Invalid);
3943  if (Invalid)
3944    return ExprError();
3945
3946  NumericLiteralParser Literal(TokSpelling, Tok.getLocation(),
3947                               PP.getSourceManager(), PP.getLangOpts(),
3948                               PP.getTargetInfo(), PP.getDiagnostics());
3949  if (Literal.hadError)
3950    return ExprError();
3951
3952  if (Literal.hasUDSuffix()) {
3953    // We're building a user-defined literal.
3954    const IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
3955    SourceLocation UDSuffixLoc =
3956      getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
3957
3958    // Make sure we're allowed user-defined literals here.
3959    if (!UDLScope)
3960      return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl));
3961
3962    QualType CookedTy;
3963    if (Literal.isFloatingLiteral()) {
3964      // C++11 [lex.ext]p4: If S contains a literal operator with parameter type
3965      // long double, the literal is treated as a call of the form
3966      //   operator "" X (f L)
3967      CookedTy = Context.LongDoubleTy;
3968    } else {
3969      // C++11 [lex.ext]p3: If S contains a literal operator with parameter type
3970      // unsigned long long, the literal is treated as a call of the form
3971      //   operator "" X (n ULL)
3972      CookedTy = Context.UnsignedLongLongTy;
3973    }
3974
3975    DeclarationName OpName =
3976      Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
3977    DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
3978    OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
3979
3980    SourceLocation TokLoc = Tok.getLocation();
3981
3982    // Perform literal operator lookup to determine if we're building a raw
3983    // literal or a cooked one.
3984    LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
3985    switch (LookupLiteralOperator(UDLScope, R, CookedTy,
3986                                  /*AllowRaw*/ true, /*AllowTemplate*/ true,
3987                                  /*AllowStringTemplatePack*/ false,
3988                                  /*DiagnoseMissing*/ !Literal.isImaginary)) {
3989    case LOLR_ErrorNoDiagnostic:
3990      // Lookup failure for imaginary constants isn't fatal, there's still the
3991      // GNU extension producing _Complex types.
3992      break;
3993    case LOLR_Error:
3994      return ExprError();
3995    case LOLR_Cooked: {
3996      Expr *Lit;
3997      if (Literal.isFloatingLiteral()) {
3998        Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation());
3999      } else {
4000        llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0);
4001        if (Literal.GetIntegerValue(ResultVal))
4002          Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
4003              << /* Unsigned */ 1;
4004        Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy,
4005                                     Tok.getLocation());
4006      }
4007      return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
4008    }
4009
4010    case LOLR_Raw: {
4011      // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the
4012      // literal is treated as a call of the form
4013      //   operator "" X ("n")
4014      unsigned Length = Literal.getUDSuffixOffset();
4015      QualType StrTy = Context.getConstantArrayType(
4016          Context.adjustStringLiteralBaseType(Context.CharTy.withConst()),
4017          llvm::APInt(32, Length + 1), nullptr, ArraySizeModifier::Normal, 0);
4018      Expr *Lit =
4019          StringLiteral::Create(Context, StringRef(TokSpelling.data(), Length),
4020                                StringLiteralKind::Ordinary,
4021                                /*Pascal*/ false, StrTy, &TokLoc, 1);
4022      return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
4023    }
4024
4025    case LOLR_Template: {
4026      // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator
4027      // template), L is treated as a call fo the form
4028      //   operator "" X <'c1', 'c2', ... 'ck'>()
4029      // where n is the source character sequence c1 c2 ... ck.
4030      TemplateArgumentListInfo ExplicitArgs;
4031      unsigned CharBits = Context.getIntWidth(Context.CharTy);
4032      bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType();
4033      llvm::APSInt Value(CharBits, CharIsUnsigned);
4034      for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) {
4035        Value = TokSpelling[I];
4036        TemplateArgument Arg(Context, Value, Context.CharTy);
4037        TemplateArgumentLocInfo ArgInfo;
4038        ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
4039      }
4040      return BuildLiteralOperatorCall(R, OpNameInfo, std::nullopt, TokLoc,
4041                                      &ExplicitArgs);
4042    }
4043    case LOLR_StringTemplatePack:
4044      llvm_unreachable("unexpected literal operator lookup result");
4045    }
4046  }
4047
4048  Expr *Res;
4049
4050  if (Literal.isFixedPointLiteral()) {
4051    QualType Ty;
4052
4053    if (Literal.isAccum) {
4054      if (Literal.isHalf) {
4055        Ty = Context.ShortAccumTy;
4056      } else if (Literal.isLong) {
4057        Ty = Context.LongAccumTy;
4058      } else {
4059        Ty = Context.AccumTy;
4060      }
4061    } else if (Literal.isFract) {
4062      if (Literal.isHalf) {
4063        Ty = Context.ShortFractTy;
4064      } else if (Literal.isLong) {
4065        Ty = Context.LongFractTy;
4066      } else {
4067        Ty = Context.FractTy;
4068      }
4069    }
4070
4071    if (Literal.isUnsigned) Ty = Context.getCorrespondingUnsignedType(Ty);
4072
4073    bool isSigned = !Literal.isUnsigned;
4074    unsigned scale = Context.getFixedPointScale(Ty);
4075    unsigned bit_width = Context.getTypeInfo(Ty).Width;
4076
4077    llvm::APInt Val(bit_width, 0, isSigned);
4078    bool Overflowed = Literal.GetFixedPointValue(Val, scale);
4079    bool ValIsZero = Val.isZero() && !Overflowed;
4080
4081    auto MaxVal = Context.getFixedPointMax(Ty).getValue();
4082    if (Literal.isFract && Val == MaxVal + 1 && !ValIsZero)
4083      // Clause 6.4.4 - The value of a constant shall be in the range of
4084      // representable values for its type, with exception for constants of a
4085      // fract type with a value of exactly 1; such a constant shall denote
4086      // the maximal value for the type.
4087      --Val;
4088    else if (Val.ugt(MaxVal) || Overflowed)
4089      Diag(Tok.getLocation(), diag::err_too_large_for_fixed_point);
4090
4091    Res = FixedPointLiteral::CreateFromRawInt(Context, Val, Ty,
4092                                              Tok.getLocation(), scale);
4093  } else if (Literal.isFloatingLiteral()) {
4094    QualType Ty;
4095    if (Literal.isHalf){
4096      if (getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()))
4097        Ty = Context.HalfTy;
4098      else {
4099        Diag(Tok.getLocation(), diag::err_half_const_requires_fp16);
4100        return ExprError();
4101      }
4102    } else if (Literal.isFloat)
4103      Ty = Context.FloatTy;
4104    else if (Literal.isLong)
4105      Ty = Context.LongDoubleTy;
4106    else if (Literal.isFloat16)
4107      Ty = Context.Float16Ty;
4108    else if (Literal.isFloat128)
4109      Ty = Context.Float128Ty;
4110    else
4111      Ty = Context.DoubleTy;
4112
4113    Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation());
4114
4115    if (Ty == Context.DoubleTy) {
4116      if (getLangOpts().SinglePrecisionConstants) {
4117        if (Ty->castAs<BuiltinType>()->getKind() != BuiltinType::Float) {
4118          Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
4119        }
4120      } else if (getLangOpts().OpenCL && !getOpenCLOptions().isAvailableOption(
4121                                             "cl_khr_fp64", getLangOpts())) {
4122        // Impose single-precision float type when cl_khr_fp64 is not enabled.
4123        Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64)
4124            << (getLangOpts().getOpenCLCompatibleVersion() >= 300);
4125        Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
4126      }
4127    }
4128  } else if (!Literal.isIntegerLiteral()) {
4129    return ExprError();
4130  } else {
4131    QualType Ty;
4132
4133    // 'z/uz' literals are a C++23 feature.
4134    if (Literal.isSizeT)
4135      Diag(Tok.getLocation(), getLangOpts().CPlusPlus
4136                                  ? getLangOpts().CPlusPlus23
4137                                        ? diag::warn_cxx20_compat_size_t_suffix
4138                                        : diag::ext_cxx23_size_t_suffix
4139                                  : diag::err_cxx23_size_t_suffix);
4140
4141    // 'wb/uwb' literals are a C23 feature. We support _BitInt as a type in C++,
4142    // but we do not currently support the suffix in C++ mode because it's not
4143    // entirely clear whether WG21 will prefer this suffix to return a library
4144    // type such as std::bit_int instead of returning a _BitInt.
4145    if (Literal.isBitInt && !getLangOpts().CPlusPlus)
4146      PP.Diag(Tok.getLocation(), getLangOpts().C23
4147                                     ? diag::warn_c23_compat_bitint_suffix
4148                                     : diag::ext_c23_bitint_suffix);
4149
4150    // Get the value in the widest-possible width. What is "widest" depends on
4151    // whether the literal is a bit-precise integer or not. For a bit-precise
4152    // integer type, try to scan the source to determine how many bits are
4153    // needed to represent the value. This may seem a bit expensive, but trying
4154    // to get the integer value from an overly-wide APInt is *extremely*
4155    // expensive, so the naive approach of assuming
4156    // llvm::IntegerType::MAX_INT_BITS is a big performance hit.
4157    unsigned BitsNeeded =
4158        Literal.isBitInt ? llvm::APInt::getSufficientBitsNeeded(
4159                               Literal.getLiteralDigits(), Literal.getRadix())
4160                         : Context.getTargetInfo().getIntMaxTWidth();
4161    llvm::APInt ResultVal(BitsNeeded, 0);
4162
4163    if (Literal.GetIntegerValue(ResultVal)) {
4164      // If this value didn't fit into uintmax_t, error and force to ull.
4165      Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
4166          << /* Unsigned */ 1;
4167      Ty = Context.UnsignedLongLongTy;
4168      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
4169             "long long is not intmax_t?");
4170    } else {
4171      // If this value fits into a ULL, try to figure out what else it fits into
4172      // according to the rules of C99 6.4.4.1p5.
4173
4174      // Octal, Hexadecimal, and integers with a U suffix are allowed to
4175      // be an unsigned int.
4176      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
4177
4178      // Check from smallest to largest, picking the smallest type we can.
4179      unsigned Width = 0;
4180
4181      // Microsoft specific integer suffixes are explicitly sized.
4182      if (Literal.MicrosoftInteger) {
4183        if (Literal.MicrosoftInteger == 8 && !Literal.isUnsigned) {
4184          Width = 8;
4185          Ty = Context.CharTy;
4186        } else {
4187          Width = Literal.MicrosoftInteger;
4188          Ty = Context.getIntTypeForBitwidth(Width,
4189                                             /*Signed=*/!Literal.isUnsigned);
4190        }
4191      }
4192
4193      // Bit-precise integer literals are automagically-sized based on the
4194      // width required by the literal.
4195      if (Literal.isBitInt) {
4196        // The signed version has one more bit for the sign value. There are no
4197        // zero-width bit-precise integers, even if the literal value is 0.
4198        Width = std::max(ResultVal.getActiveBits(), 1u) +
4199                (Literal.isUnsigned ? 0u : 1u);
4200
4201        // Diagnose if the width of the constant is larger than BITINT_MAXWIDTH,
4202        // and reset the type to the largest supported width.
4203        unsigned int MaxBitIntWidth =
4204            Context.getTargetInfo().getMaxBitIntWidth();
4205        if (Width > MaxBitIntWidth) {
4206          Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
4207              << Literal.isUnsigned;
4208          Width = MaxBitIntWidth;
4209        }
4210
4211        // Reset the result value to the smaller APInt and select the correct
4212        // type to be used. Note, we zext even for signed values because the
4213        // literal itself is always an unsigned value (a preceeding - is a
4214        // unary operator, not part of the literal).
4215        ResultVal = ResultVal.zextOrTrunc(Width);
4216        Ty = Context.getBitIntType(Literal.isUnsigned, Width);
4217      }
4218
4219      // Check C++23 size_t literals.
4220      if (Literal.isSizeT) {
4221        assert(!Literal.MicrosoftInteger &&
4222               "size_t literals can't be Microsoft literals");
4223        unsigned SizeTSize = Context.getTargetInfo().getTypeWidth(
4224            Context.getTargetInfo().getSizeType());
4225
4226        // Does it fit in size_t?
4227        if (ResultVal.isIntN(SizeTSize)) {
4228          // Does it fit in ssize_t?
4229          if (!Literal.isUnsigned && ResultVal[SizeTSize - 1] == 0)
4230            Ty = Context.getSignedSizeType();
4231          else if (AllowUnsigned)
4232            Ty = Context.getSizeType();
4233          Width = SizeTSize;
4234        }
4235      }
4236
4237      if (Ty.isNull() && !Literal.isLong && !Literal.isLongLong &&
4238          !Literal.isSizeT) {
4239        // Are int/unsigned possibilities?
4240        unsigned IntSize = Context.getTargetInfo().getIntWidth();
4241
4242        // Does it fit in a unsigned int?
4243        if (ResultVal.isIntN(IntSize)) {
4244          // Does it fit in a signed int?
4245          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
4246            Ty = Context.IntTy;
4247          else if (AllowUnsigned)
4248            Ty = Context.UnsignedIntTy;
4249          Width = IntSize;
4250        }
4251      }
4252
4253      // Are long/unsigned long possibilities?
4254      if (Ty.isNull() && !Literal.isLongLong && !Literal.isSizeT) {
4255        unsigned LongSize = Context.getTargetInfo().getLongWidth();
4256
4257        // Does it fit in a unsigned long?
4258        if (ResultVal.isIntN(LongSize)) {
4259          // Does it fit in a signed long?
4260          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
4261            Ty = Context.LongTy;
4262          else if (AllowUnsigned)
4263            Ty = Context.UnsignedLongTy;
4264          // Check according to the rules of C90 6.1.3.2p5. C++03 [lex.icon]p2
4265          // is compatible.
4266          else if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11) {
4267            const unsigned LongLongSize =
4268                Context.getTargetInfo().getLongLongWidth();
4269            Diag(Tok.getLocation(),
4270                 getLangOpts().CPlusPlus
4271                     ? Literal.isLong
4272                           ? diag::warn_old_implicitly_unsigned_long_cxx
4273                           : /*C++98 UB*/ diag::
4274                                 ext_old_implicitly_unsigned_long_cxx
4275                     : diag::warn_old_implicitly_unsigned_long)
4276                << (LongLongSize > LongSize ? /*will have type 'long long'*/ 0
4277                                            : /*will be ill-formed*/ 1);
4278            Ty = Context.UnsignedLongTy;
4279          }
4280          Width = LongSize;
4281        }
4282      }
4283
4284      // Check long long if needed.
4285      if (Ty.isNull() && !Literal.isSizeT) {
4286        unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
4287
4288        // Does it fit in a unsigned long long?
4289        if (ResultVal.isIntN(LongLongSize)) {
4290          // Does it fit in a signed long long?
4291          // To be compatible with MSVC, hex integer literals ending with the
4292          // LL or i64 suffix are always signed in Microsoft mode.
4293          if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
4294              (getLangOpts().MSVCCompat && Literal.isLongLong)))
4295            Ty = Context.LongLongTy;
4296          else if (AllowUnsigned)
4297            Ty = Context.UnsignedLongLongTy;
4298          Width = LongLongSize;
4299
4300          // 'long long' is a C99 or C++11 feature, whether the literal
4301          // explicitly specified 'long long' or we needed the extra width.
4302          if (getLangOpts().CPlusPlus)
4303            Diag(Tok.getLocation(), getLangOpts().CPlusPlus11
4304                                        ? diag::warn_cxx98_compat_longlong
4305                                        : diag::ext_cxx11_longlong);
4306          else if (!getLangOpts().C99)
4307            Diag(Tok.getLocation(), diag::ext_c99_longlong);
4308        }
4309      }
4310
4311      // If we still couldn't decide a type, we either have 'size_t' literal
4312      // that is out of range, or a decimal literal that does not fit in a
4313      // signed long long and has no U suffix.
4314      if (Ty.isNull()) {
4315        if (Literal.isSizeT)
4316          Diag(Tok.getLocation(), diag::err_size_t_literal_too_large)
4317              << Literal.isUnsigned;
4318        else
4319          Diag(Tok.getLocation(),
4320               diag::ext_integer_literal_too_large_for_signed);
4321        Ty = Context.UnsignedLongLongTy;
4322        Width = Context.getTargetInfo().getLongLongWidth();
4323      }
4324
4325      if (ResultVal.getBitWidth() != Width)
4326        ResultVal = ResultVal.trunc(Width);
4327    }
4328    Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
4329  }
4330
4331  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
4332  if (Literal.isImaginary) {
4333    Res = new (Context) ImaginaryLiteral(Res,
4334                                        Context.getComplexType(Res->getType()));
4335
4336    Diag(Tok.getLocation(), diag::ext_imaginary_constant);
4337  }
4338  return Res;
4339}
4340
4341ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
4342  assert(E && "ActOnParenExpr() missing expr");
4343  QualType ExprTy = E->getType();
4344  if (getLangOpts().ProtectParens && CurFPFeatures.getAllowFPReassociate() &&
4345      !E->isLValue() && ExprTy->hasFloatingRepresentation())
4346    return BuildBuiltinCallExpr(R, Builtin::BI__arithmetic_fence, E);
4347  return new (Context) ParenExpr(L, R, E);
4348}
4349
4350static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
4351                                         SourceLocation Loc,
4352                                         SourceRange ArgRange) {
4353  // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
4354  // scalar or vector data type argument..."
4355  // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
4356  // type (C99 6.2.5p18) or void.
4357  if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
4358    S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
4359      << T << ArgRange;
4360    return true;
4361  }
4362
4363  assert((T->isVoidType() || !T->isIncompleteType()) &&
4364         "Scalar types should always be complete");
4365  return false;
4366}
4367
4368static bool CheckVectorElementsTraitOperandType(Sema &S, QualType T,
4369                                                SourceLocation Loc,
4370                                                SourceRange ArgRange) {
4371  // builtin_vectorelements supports both fixed-sized and scalable vectors.
4372  if (!T->isVectorType() && !T->isSizelessVectorType())
4373    return S.Diag(Loc, diag::err_builtin_non_vector_type)
4374           << ""
4375           << "__builtin_vectorelements" << T << ArgRange;
4376
4377  return false;
4378}
4379
4380static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
4381                                           SourceLocation Loc,
4382                                           SourceRange ArgRange,
4383                                           UnaryExprOrTypeTrait TraitKind) {
4384  // Invalid types must be hard errors for SFINAE in C++.
4385  if (S.LangOpts.CPlusPlus)
4386    return true;
4387
4388  // C99 6.5.3.4p1:
4389  if (T->isFunctionType() &&
4390      (TraitKind == UETT_SizeOf || TraitKind == UETT_AlignOf ||
4391       TraitKind == UETT_PreferredAlignOf)) {
4392    // sizeof(function)/alignof(function) is allowed as an extension.
4393    S.Diag(Loc, diag::ext_sizeof_alignof_function_type)
4394        << getTraitSpelling(TraitKind) << ArgRange;
4395    return false;
4396  }
4397
4398  // Allow sizeof(void)/alignof(void) as an extension, unless in OpenCL where
4399  // this is an error (OpenCL v1.1 s6.3.k)
4400  if (T->isVoidType()) {
4401    unsigned DiagID = S.LangOpts.OpenCL ? diag::err_opencl_sizeof_alignof_type
4402                                        : diag::ext_sizeof_alignof_void_type;
4403    S.Diag(Loc, DiagID) << getTraitSpelling(TraitKind) << ArgRange;
4404    return false;
4405  }
4406
4407  return true;
4408}
4409
4410static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
4411                                             SourceLocation Loc,
4412                                             SourceRange ArgRange,
4413                                             UnaryExprOrTypeTrait TraitKind) {
4414  // Reject sizeof(interface) and sizeof(interface<proto>) if the
4415  // runtime doesn't allow it.
4416  if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) {
4417    S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
4418      << T << (TraitKind == UETT_SizeOf)
4419      << ArgRange;
4420    return true;
4421  }
4422
4423  return false;
4424}
4425
4426/// Check whether E is a pointer from a decayed array type (the decayed
4427/// pointer type is equal to T) and emit a warning if it is.
4428static void warnOnSizeofOnArrayDecay(Sema &S, SourceLocation Loc, QualType T,
4429                                     const Expr *E) {
4430  // Don't warn if the operation changed the type.
4431  if (T != E->getType())
4432    return;
4433
4434  // Now look for array decays.
4435  const auto *ICE = dyn_cast<ImplicitCastExpr>(E);
4436  if (!ICE || ICE->getCastKind() != CK_ArrayToPointerDecay)
4437    return;
4438
4439  S.Diag(Loc, diag::warn_sizeof_array_decay) << ICE->getSourceRange()
4440                                             << ICE->getType()
4441                                             << ICE->getSubExpr()->getType();
4442}
4443
4444/// Check the constraints on expression operands to unary type expression
4445/// and type traits.
4446///
4447/// Completes any types necessary and validates the constraints on the operand
4448/// expression. The logic mostly mirrors the type-based overload, but may modify
4449/// the expression as it completes the type for that expression through template
4450/// instantiation, etc.
4451bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
4452                                            UnaryExprOrTypeTrait ExprKind) {
4453  QualType ExprTy = E->getType();
4454  assert(!ExprTy->isReferenceType());
4455
4456  bool IsUnevaluatedOperand =
4457      (ExprKind == UETT_SizeOf || ExprKind == UETT_DataSizeOf ||
4458       ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf ||
4459       ExprKind == UETT_VecStep);
4460  if (IsUnevaluatedOperand) {
4461    ExprResult Result = CheckUnevaluatedOperand(E);
4462    if (Result.isInvalid())
4463      return true;
4464    E = Result.get();
4465  }
4466
4467  // The operand for sizeof and alignof is in an unevaluated expression context,
4468  // so side effects could result in unintended consequences.
4469  // Exclude instantiation-dependent expressions, because 'sizeof' is sometimes
4470  // used to build SFINAE gadgets.
4471  // FIXME: Should we consider instantiation-dependent operands to 'alignof'?
4472  if (IsUnevaluatedOperand && !inTemplateInstantiation() &&
4473      !E->isInstantiationDependent() &&
4474      !E->getType()->isVariableArrayType() &&
4475      E->HasSideEffects(Context, false))
4476    Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
4477
4478  if (ExprKind == UETT_VecStep)
4479    return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(),
4480                                        E->getSourceRange());
4481
4482  if (ExprKind == UETT_VectorElements)
4483    return CheckVectorElementsTraitOperandType(*this, ExprTy, E->getExprLoc(),
4484                                               E->getSourceRange());
4485
4486  // Explicitly list some types as extensions.
4487  if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(),
4488                                      E->getSourceRange(), ExprKind))
4489    return false;
4490
4491  // WebAssembly tables are always illegal operands to unary expressions and
4492  // type traits.
4493  if (Context.getTargetInfo().getTriple().isWasm() &&
4494      E->getType()->isWebAssemblyTableType()) {
4495    Diag(E->getExprLoc(), diag::err_wasm_table_invalid_uett_operand)
4496        << getTraitSpelling(ExprKind);
4497    return true;
4498  }
4499
4500  // 'alignof' applied to an expression only requires the base element type of
4501  // the expression to be complete. 'sizeof' requires the expression's type to
4502  // be complete (and will attempt to complete it if it's an array of unknown
4503  // bound).
4504  if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
4505    if (RequireCompleteSizedType(
4506            E->getExprLoc(), Context.getBaseElementType(E->getType()),
4507            diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4508            getTraitSpelling(ExprKind), E->getSourceRange()))
4509      return true;
4510  } else {
4511    if (RequireCompleteSizedExprType(
4512            E, diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4513            getTraitSpelling(ExprKind), E->getSourceRange()))
4514      return true;
4515  }
4516
4517  // Completing the expression's type may have changed it.
4518  ExprTy = E->getType();
4519  assert(!ExprTy->isReferenceType());
4520
4521  if (ExprTy->isFunctionType()) {
4522    Diag(E->getExprLoc(), diag::err_sizeof_alignof_function_type)
4523        << getTraitSpelling(ExprKind) << E->getSourceRange();
4524    return true;
4525  }
4526
4527  if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(),
4528                                       E->getSourceRange(), ExprKind))
4529    return true;
4530
4531  if (ExprKind == UETT_SizeOf) {
4532    if (const auto *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
4533      if (const auto *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
4534        QualType OType = PVD->getOriginalType();
4535        QualType Type = PVD->getType();
4536        if (Type->isPointerType() && OType->isArrayType()) {
4537          Diag(E->getExprLoc(), diag::warn_sizeof_array_param)
4538            << Type << OType;
4539          Diag(PVD->getLocation(), diag::note_declared_at);
4540        }
4541      }
4542    }
4543
4544    // Warn on "sizeof(array op x)" and "sizeof(x op array)", where the array
4545    // decays into a pointer and returns an unintended result. This is most
4546    // likely a typo for "sizeof(array) op x".
4547    if (const auto *BO = dyn_cast<BinaryOperator>(E->IgnoreParens())) {
4548      warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
4549                               BO->getLHS());
4550      warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
4551                               BO->getRHS());
4552    }
4553  }
4554
4555  return false;
4556}
4557
4558static bool CheckAlignOfExpr(Sema &S, Expr *E, UnaryExprOrTypeTrait ExprKind) {
4559  // Cannot know anything else if the expression is dependent.
4560  if (E->isTypeDependent())
4561    return false;
4562
4563  if (E->getObjectKind() == OK_BitField) {
4564    S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield)
4565       << 1 << E->getSourceRange();
4566    return true;
4567  }
4568
4569  ValueDecl *D = nullptr;
4570  Expr *Inner = E->IgnoreParens();
4571  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Inner)) {
4572    D = DRE->getDecl();
4573  } else if (MemberExpr *ME = dyn_cast<MemberExpr>(Inner)) {
4574    D = ME->getMemberDecl();
4575  }
4576
4577  // If it's a field, require the containing struct to have a
4578  // complete definition so that we can compute the layout.
4579  //
4580  // This can happen in C++11 onwards, either by naming the member
4581  // in a way that is not transformed into a member access expression
4582  // (in an unevaluated operand, for instance), or by naming the member
4583  // in a trailing-return-type.
4584  //
4585  // For the record, since __alignof__ on expressions is a GCC
4586  // extension, GCC seems to permit this but always gives the
4587  // nonsensical answer 0.
4588  //
4589  // We don't really need the layout here --- we could instead just
4590  // directly check for all the appropriate alignment-lowing
4591  // attributes --- but that would require duplicating a lot of
4592  // logic that just isn't worth duplicating for such a marginal
4593  // use-case.
4594  if (FieldDecl *FD = dyn_cast_or_null<FieldDecl>(D)) {
4595    // Fast path this check, since we at least know the record has a
4596    // definition if we can find a member of it.
4597    if (!FD->getParent()->isCompleteDefinition()) {
4598      S.Diag(E->getExprLoc(), diag::err_alignof_member_of_incomplete_type)
4599        << E->getSourceRange();
4600      return true;
4601    }
4602
4603    // Otherwise, if it's a field, and the field doesn't have
4604    // reference type, then it must have a complete type (or be a
4605    // flexible array member, which we explicitly want to
4606    // white-list anyway), which makes the following checks trivial.
4607    if (!FD->getType()->isReferenceType())
4608      return false;
4609  }
4610
4611  return S.CheckUnaryExprOrTypeTraitOperand(E, ExprKind);
4612}
4613
4614bool Sema::CheckVecStepExpr(Expr *E) {
4615  E = E->IgnoreParens();
4616
4617  // Cannot know anything else if the expression is dependent.
4618  if (E->isTypeDependent())
4619    return false;
4620
4621  return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
4622}
4623
4624static void captureVariablyModifiedType(ASTContext &Context, QualType T,
4625                                        CapturingScopeInfo *CSI) {
4626  assert(T->isVariablyModifiedType());
4627  assert(CSI != nullptr);
4628
4629  // We're going to walk down into the type and look for VLA expressions.
4630  do {
4631    const Type *Ty = T.getTypePtr();
4632    switch (Ty->getTypeClass()) {
4633#define TYPE(Class, Base)
4634#define ABSTRACT_TYPE(Class, Base)
4635#define NON_CANONICAL_TYPE(Class, Base)
4636#define DEPENDENT_TYPE(Class, Base) case Type::Class:
4637#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
4638#include "clang/AST/TypeNodes.inc"
4639      T = QualType();
4640      break;
4641    // These types are never variably-modified.
4642    case Type::Builtin:
4643    case Type::Complex:
4644    case Type::Vector:
4645    case Type::ExtVector:
4646    case Type::ConstantMatrix:
4647    case Type::Record:
4648    case Type::Enum:
4649    case Type::TemplateSpecialization:
4650    case Type::ObjCObject:
4651    case Type::ObjCInterface:
4652    case Type::ObjCObjectPointer:
4653    case Type::ObjCTypeParam:
4654    case Type::Pipe:
4655    case Type::BitInt:
4656      llvm_unreachable("type class is never variably-modified!");
4657    case Type::Elaborated:
4658      T = cast<ElaboratedType>(Ty)->getNamedType();
4659      break;
4660    case Type::Adjusted:
4661      T = cast<AdjustedType>(Ty)->getOriginalType();
4662      break;
4663    case Type::Decayed:
4664      T = cast<DecayedType>(Ty)->getPointeeType();
4665      break;
4666    case Type::Pointer:
4667      T = cast<PointerType>(Ty)->getPointeeType();
4668      break;
4669    case Type::BlockPointer:
4670      T = cast<BlockPointerType>(Ty)->getPointeeType();
4671      break;
4672    case Type::LValueReference:
4673    case Type::RValueReference:
4674      T = cast<ReferenceType>(Ty)->getPointeeType();
4675      break;
4676    case Type::MemberPointer:
4677      T = cast<MemberPointerType>(Ty)->getPointeeType();
4678      break;
4679    case Type::ConstantArray:
4680    case Type::IncompleteArray:
4681      // Losing element qualification here is fine.
4682      T = cast<ArrayType>(Ty)->getElementType();
4683      break;
4684    case Type::VariableArray: {
4685      // Losing element qualification here is fine.
4686      const VariableArrayType *VAT = cast<VariableArrayType>(Ty);
4687
4688      // Unknown size indication requires no size computation.
4689      // Otherwise, evaluate and record it.
4690      auto Size = VAT->getSizeExpr();
4691      if (Size && !CSI->isVLATypeCaptured(VAT) &&
4692          (isa<CapturedRegionScopeInfo>(CSI) || isa<LambdaScopeInfo>(CSI)))
4693        CSI->addVLATypeCapture(Size->getExprLoc(), VAT, Context.getSizeType());
4694
4695      T = VAT->getElementType();
4696      break;
4697    }
4698    case Type::FunctionProto:
4699    case Type::FunctionNoProto:
4700      T = cast<FunctionType>(Ty)->getReturnType();
4701      break;
4702    case Type::Paren:
4703    case Type::TypeOf:
4704    case Type::UnaryTransform:
4705    case Type::Attributed:
4706    case Type::BTFTagAttributed:
4707    case Type::SubstTemplateTypeParm:
4708    case Type::MacroQualified:
4709      // Keep walking after single level desugaring.
4710      T = T.getSingleStepDesugaredType(Context);
4711      break;
4712    case Type::Typedef:
4713      T = cast<TypedefType>(Ty)->desugar();
4714      break;
4715    case Type::Decltype:
4716      T = cast<DecltypeType>(Ty)->desugar();
4717      break;
4718    case Type::Using:
4719      T = cast<UsingType>(Ty)->desugar();
4720      break;
4721    case Type::Auto:
4722    case Type::DeducedTemplateSpecialization:
4723      T = cast<DeducedType>(Ty)->getDeducedType();
4724      break;
4725    case Type::TypeOfExpr:
4726      T = cast<TypeOfExprType>(Ty)->getUnderlyingExpr()->getType();
4727      break;
4728    case Type::Atomic:
4729      T = cast<AtomicType>(Ty)->getValueType();
4730      break;
4731    }
4732  } while (!T.isNull() && T->isVariablyModifiedType());
4733}
4734
4735/// Check the constraints on operands to unary expression and type
4736/// traits.
4737///
4738/// This will complete any types necessary, and validate the various constraints
4739/// on those operands.
4740///
4741/// The UsualUnaryConversions() function is *not* called by this routine.
4742/// C99 6.3.2.1p[2-4] all state:
4743///   Except when it is the operand of the sizeof operator ...
4744///
4745/// C++ [expr.sizeof]p4
4746///   The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
4747///   standard conversions are not applied to the operand of sizeof.
4748///
4749/// This policy is followed for all of the unary trait expressions.
4750bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
4751                                            SourceLocation OpLoc,
4752                                            SourceRange ExprRange,
4753                                            UnaryExprOrTypeTrait ExprKind,
4754                                            StringRef KWName) {
4755  if (ExprType->isDependentType())
4756    return false;
4757
4758  // C++ [expr.sizeof]p2:
4759  //     When applied to a reference or a reference type, the result
4760  //     is the size of the referenced type.
4761  // C++11 [expr.alignof]p3:
4762  //     When alignof is applied to a reference type, the result
4763  //     shall be the alignment of the referenced type.
4764  if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
4765    ExprType = Ref->getPointeeType();
4766
4767  // C11 6.5.3.4/3, C++11 [expr.alignof]p3:
4768  //   When alignof or _Alignof is applied to an array type, the result
4769  //   is the alignment of the element type.
4770  if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf ||
4771      ExprKind == UETT_OpenMPRequiredSimdAlign)
4772    ExprType = Context.getBaseElementType(ExprType);
4773
4774  if (ExprKind == UETT_VecStep)
4775    return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange);
4776
4777  if (ExprKind == UETT_VectorElements)
4778    return CheckVectorElementsTraitOperandType(*this, ExprType, OpLoc,
4779                                               ExprRange);
4780
4781  // Explicitly list some types as extensions.
4782  if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange,
4783                                      ExprKind))
4784    return false;
4785
4786  if (RequireCompleteSizedType(
4787          OpLoc, ExprType, diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4788          KWName, ExprRange))
4789    return true;
4790
4791  if (ExprType->isFunctionType()) {
4792    Diag(OpLoc, diag::err_sizeof_alignof_function_type) << KWName << ExprRange;
4793    return true;
4794  }
4795
4796  // WebAssembly tables are always illegal operands to unary expressions and
4797  // type traits.
4798  if (Context.getTargetInfo().getTriple().isWasm() &&
4799      ExprType->isWebAssemblyTableType()) {
4800    Diag(OpLoc, diag::err_wasm_table_invalid_uett_operand)
4801        << getTraitSpelling(ExprKind);
4802    return true;
4803  }
4804
4805  if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange,
4806                                       ExprKind))
4807    return true;
4808
4809  if (ExprType->isVariablyModifiedType() && FunctionScopes.size() > 1) {
4810    if (auto *TT = ExprType->getAs<TypedefType>()) {
4811      for (auto I = FunctionScopes.rbegin(),
4812                E = std::prev(FunctionScopes.rend());
4813           I != E; ++I) {
4814        auto *CSI = dyn_cast<CapturingScopeInfo>(*I);
4815        if (CSI == nullptr)
4816          break;
4817        DeclContext *DC = nullptr;
4818        if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI))
4819          DC = LSI->CallOperator;
4820        else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI))
4821          DC = CRSI->TheCapturedDecl;
4822        else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI))
4823          DC = BSI->TheDecl;
4824        if (DC) {
4825          if (DC->containsDecl(TT->getDecl()))
4826            break;
4827          captureVariablyModifiedType(Context, ExprType, CSI);
4828        }
4829      }
4830    }
4831  }
4832
4833  return false;
4834}
4835
4836/// Build a sizeof or alignof expression given a type operand.
4837ExprResult Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
4838                                                SourceLocation OpLoc,
4839                                                UnaryExprOrTypeTrait ExprKind,
4840                                                SourceRange R) {
4841  if (!TInfo)
4842    return ExprError();
4843
4844  QualType T = TInfo->getType();
4845
4846  if (!T->isDependentType() &&
4847      CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind,
4848                                       getTraitSpelling(ExprKind)))
4849    return ExprError();
4850
4851  // Adds overload of TransformToPotentiallyEvaluated for TypeSourceInfo to
4852  // properly deal with VLAs in nested calls of sizeof and typeof.
4853  if (isUnevaluatedContext() && ExprKind == UETT_SizeOf &&
4854      TInfo->getType()->isVariablyModifiedType())
4855    TInfo = TransformToPotentiallyEvaluated(TInfo);
4856
4857  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
4858  return new (Context) UnaryExprOrTypeTraitExpr(
4859      ExprKind, TInfo, Context.getSizeType(), OpLoc, R.getEnd());
4860}
4861
4862/// Build a sizeof or alignof expression given an expression
4863/// operand.
4864ExprResult
4865Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
4866                                     UnaryExprOrTypeTrait ExprKind) {
4867  ExprResult PE = CheckPlaceholderExpr(E);
4868  if (PE.isInvalid())
4869    return ExprError();
4870
4871  E = PE.get();
4872
4873  // Verify that the operand is valid.
4874  bool isInvalid = false;
4875  if (E->isTypeDependent()) {
4876    // Delay type-checking for type-dependent expressions.
4877  } else if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
4878    isInvalid = CheckAlignOfExpr(*this, E, ExprKind);
4879  } else if (ExprKind == UETT_VecStep) {
4880    isInvalid = CheckVecStepExpr(E);
4881  } else if (ExprKind == UETT_OpenMPRequiredSimdAlign) {
4882      Diag(E->getExprLoc(), diag::err_openmp_default_simd_align_expr);
4883      isInvalid = true;
4884  } else if (E->refersToBitField()) {  // C99 6.5.3.4p1.
4885    Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 0;
4886    isInvalid = true;
4887  } else if (ExprKind == UETT_VectorElements) {
4888    isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_VectorElements);
4889  } else {
4890    isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
4891  }
4892
4893  if (isInvalid)
4894    return ExprError();
4895
4896  if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) {
4897    PE = TransformToPotentiallyEvaluated(E);
4898    if (PE.isInvalid()) return ExprError();
4899    E = PE.get();
4900  }
4901
4902  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
4903  return new (Context) UnaryExprOrTypeTraitExpr(
4904      ExprKind, E, Context.getSizeType(), OpLoc, E->getSourceRange().getEnd());
4905}
4906
4907/// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
4908/// expr and the same for @c alignof and @c __alignof
4909/// Note that the ArgRange is invalid if isType is false.
4910ExprResult
4911Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
4912                                    UnaryExprOrTypeTrait ExprKind, bool IsType,
4913                                    void *TyOrEx, SourceRange ArgRange) {
4914  // If error parsing type, ignore.
4915  if (!TyOrEx) return ExprError();
4916
4917  if (IsType) {
4918    TypeSourceInfo *TInfo;
4919    (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
4920    return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
4921  }
4922
4923  Expr *ArgEx = (Expr *)TyOrEx;
4924  ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
4925  return Result;
4926}
4927
4928bool Sema::CheckAlignasTypeArgument(StringRef KWName, TypeSourceInfo *TInfo,
4929                                    SourceLocation OpLoc, SourceRange R) {
4930  if (!TInfo)
4931    return true;
4932  return CheckUnaryExprOrTypeTraitOperand(TInfo->getType(), OpLoc, R,
4933                                          UETT_AlignOf, KWName);
4934}
4935
4936/// ActOnAlignasTypeArgument - Handle @c alignas(type-id) and @c
4937/// _Alignas(type-name) .
4938/// [dcl.align] An alignment-specifier of the form
4939/// alignas(type-id) has the same effect as alignas(alignof(type-id)).
4940///
4941/// [N1570 6.7.5] _Alignas(type-name) is equivalent to
4942/// _Alignas(_Alignof(type-name)).
4943bool Sema::ActOnAlignasTypeArgument(StringRef KWName, ParsedType Ty,
4944                                    SourceLocation OpLoc, SourceRange R) {
4945  TypeSourceInfo *TInfo;
4946  (void)GetTypeFromParser(ParsedType::getFromOpaquePtr(Ty.getAsOpaquePtr()),
4947                          &TInfo);
4948  return CheckAlignasTypeArgument(KWName, TInfo, OpLoc, R);
4949}
4950
4951static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
4952                                     bool IsReal) {
4953  if (V.get()->isTypeDependent())
4954    return S.Context.DependentTy;
4955
4956  // _Real and _Imag are only l-values for normal l-values.
4957  if (V.get()->getObjectKind() != OK_Ordinary) {
4958    V = S.DefaultLvalueConversion(V.get());
4959    if (V.isInvalid())
4960      return QualType();
4961  }
4962
4963  // These operators return the element type of a complex type.
4964  if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
4965    return CT->getElementType();
4966
4967  // Otherwise they pass through real integer and floating point types here.
4968  if (V.get()->getType()->isArithmeticType())
4969    return V.get()->getType();
4970
4971  // Test for placeholders.
4972  ExprResult PR = S.CheckPlaceholderExpr(V.get());
4973  if (PR.isInvalid()) return QualType();
4974  if (PR.get() != V.get()) {
4975    V = PR;
4976    return CheckRealImagOperand(S, V, Loc, IsReal);
4977  }
4978
4979  // Reject anything else.
4980  S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
4981    << (IsReal ? "__real" : "__imag");
4982  return QualType();
4983}
4984
4985
4986
4987ExprResult
4988Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
4989                          tok::TokenKind Kind, Expr *Input) {
4990  UnaryOperatorKind Opc;
4991  switch (Kind) {
4992  default: llvm_unreachable("Unknown unary op!");
4993  case tok::plusplus:   Opc = UO_PostInc; break;
4994  case tok::minusminus: Opc = UO_PostDec; break;
4995  }
4996
4997  // Since this might is a postfix expression, get rid of ParenListExprs.
4998  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input);
4999  if (Result.isInvalid()) return ExprError();
5000  Input = Result.get();
5001
5002  return BuildUnaryOp(S, OpLoc, Opc, Input);
5003}
5004
5005/// Diagnose if arithmetic on the given ObjC pointer is illegal.
5006///
5007/// \return true on error
5008static bool checkArithmeticOnObjCPointer(Sema &S,
5009                                         SourceLocation opLoc,
5010                                         Expr *op) {
5011  assert(op->getType()->isObjCObjectPointerType());
5012  if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic() &&
5013      !S.LangOpts.ObjCSubscriptingLegacyRuntime)
5014    return false;
5015
5016  S.Diag(opLoc, diag::err_arithmetic_nonfragile_interface)
5017    << op->getType()->castAs<ObjCObjectPointerType>()->getPointeeType()
5018    << op->getSourceRange();
5019  return true;
5020}
5021
5022static bool isMSPropertySubscriptExpr(Sema &S, Expr *Base) {
5023  auto *BaseNoParens = Base->IgnoreParens();
5024  if (auto *MSProp = dyn_cast<MSPropertyRefExpr>(BaseNoParens))
5025    return MSProp->getPropertyDecl()->getType()->isArrayType();
5026  return isa<MSPropertySubscriptExpr>(BaseNoParens);
5027}
5028
5029// Returns the type used for LHS[RHS], given one of LHS, RHS is type-dependent.
5030// Typically this is DependentTy, but can sometimes be more precise.
5031//
5032// There are cases when we could determine a non-dependent type:
5033//  - LHS and RHS may have non-dependent types despite being type-dependent
5034//    (e.g. unbounded array static members of the current instantiation)
5035//  - one may be a dependent-sized array with known element type
5036//  - one may be a dependent-typed valid index (enum in current instantiation)
5037//
5038// We *always* return a dependent type, in such cases it is DependentTy.
5039// This avoids creating type-dependent expressions with non-dependent types.
5040// FIXME: is this important to avoid? See https://reviews.llvm.org/D107275
5041static QualType getDependentArraySubscriptType(Expr *LHS, Expr *RHS,
5042                                               const ASTContext &Ctx) {
5043  assert(LHS->isTypeDependent() || RHS->isTypeDependent());
5044  QualType LTy = LHS->getType(), RTy = RHS->getType();
5045  QualType Result = Ctx.DependentTy;
5046  if (RTy->isIntegralOrUnscopedEnumerationType()) {
5047    if (const PointerType *PT = LTy->getAs<PointerType>())
5048      Result = PT->getPointeeType();
5049    else if (const ArrayType *AT = LTy->getAsArrayTypeUnsafe())
5050      Result = AT->getElementType();
5051  } else if (LTy->isIntegralOrUnscopedEnumerationType()) {
5052    if (const PointerType *PT = RTy->getAs<PointerType>())
5053      Result = PT->getPointeeType();
5054    else if (const ArrayType *AT = RTy->getAsArrayTypeUnsafe())
5055      Result = AT->getElementType();
5056  }
5057  // Ensure we return a dependent type.
5058  return Result->isDependentType() ? Result : Ctx.DependentTy;
5059}
5060
5061ExprResult Sema::ActOnArraySubscriptExpr(Scope *S, Expr *base,
5062                                         SourceLocation lbLoc,
5063                                         MultiExprArg ArgExprs,
5064                                         SourceLocation rbLoc) {
5065
5066  if (base && !base->getType().isNull() &&
5067      base->hasPlaceholderType(BuiltinType::OMPArraySection))
5068    return ActOnOMPArraySectionExpr(base, lbLoc, ArgExprs.front(), SourceLocation(),
5069                                    SourceLocation(), /*Length*/ nullptr,
5070                                    /*Stride=*/nullptr, rbLoc);
5071
5072  // Since this might be a postfix expression, get rid of ParenListExprs.
5073  if (isa<ParenListExpr>(base)) {
5074    ExprResult result = MaybeConvertParenListExprToParenExpr(S, base);
5075    if (result.isInvalid())
5076      return ExprError();
5077    base = result.get();
5078  }
5079
5080  // Check if base and idx form a MatrixSubscriptExpr.
5081  //
5082  // Helper to check for comma expressions, which are not allowed as indices for
5083  // matrix subscript expressions.
5084  auto CheckAndReportCommaError = [this, base, rbLoc](Expr *E) {
5085    if (isa<BinaryOperator>(E) && cast<BinaryOperator>(E)->isCommaOp()) {
5086      Diag(E->getExprLoc(), diag::err_matrix_subscript_comma)
5087          << SourceRange(base->getBeginLoc(), rbLoc);
5088      return true;
5089    }
5090    return false;
5091  };
5092  // The matrix subscript operator ([][])is considered a single operator.
5093  // Separating the index expressions by parenthesis is not allowed.
5094  if (base && !base->getType().isNull() &&
5095      base->hasPlaceholderType(BuiltinType::IncompleteMatrixIdx) &&
5096      !isa<MatrixSubscriptExpr>(base)) {
5097    Diag(base->getExprLoc(), diag::err_matrix_separate_incomplete_index)
5098        << SourceRange(base->getBeginLoc(), rbLoc);
5099    return ExprError();
5100  }
5101  // If the base is a MatrixSubscriptExpr, try to create a new
5102  // MatrixSubscriptExpr.
5103  auto *matSubscriptE = dyn_cast<MatrixSubscriptExpr>(base);
5104  if (matSubscriptE) {
5105    assert(ArgExprs.size() == 1);
5106    if (CheckAndReportCommaError(ArgExprs.front()))
5107      return ExprError();
5108
5109    assert(matSubscriptE->isIncomplete() &&
5110           "base has to be an incomplete matrix subscript");
5111    return CreateBuiltinMatrixSubscriptExpr(matSubscriptE->getBase(),
5112                                            matSubscriptE->getRowIdx(),
5113                                            ArgExprs.front(), rbLoc);
5114  }
5115  if (base->getType()->isWebAssemblyTableType()) {
5116    Diag(base->getExprLoc(), diag::err_wasm_table_art)
5117        << SourceRange(base->getBeginLoc(), rbLoc) << 3;
5118    return ExprError();
5119  }
5120
5121  // Handle any non-overload placeholder types in the base and index
5122  // expressions.  We can't handle overloads here because the other
5123  // operand might be an overloadable type, in which case the overload
5124  // resolution for the operator overload should get the first crack
5125  // at the overload.
5126  bool IsMSPropertySubscript = false;
5127  if (base->getType()->isNonOverloadPlaceholderType()) {
5128    IsMSPropertySubscript = isMSPropertySubscriptExpr(*this, base);
5129    if (!IsMSPropertySubscript) {
5130      ExprResult result = CheckPlaceholderExpr(base);
5131      if (result.isInvalid())
5132        return ExprError();
5133      base = result.get();
5134    }
5135  }
5136
5137  // If the base is a matrix type, try to create a new MatrixSubscriptExpr.
5138  if (base->getType()->isMatrixType()) {
5139    assert(ArgExprs.size() == 1);
5140    if (CheckAndReportCommaError(ArgExprs.front()))
5141      return ExprError();
5142
5143    return CreateBuiltinMatrixSubscriptExpr(base, ArgExprs.front(), nullptr,
5144                                            rbLoc);
5145  }
5146
5147  if (ArgExprs.size() == 1 && getLangOpts().CPlusPlus20) {
5148    Expr *idx = ArgExprs[0];
5149    if ((isa<BinaryOperator>(idx) && cast<BinaryOperator>(idx)->isCommaOp()) ||
5150        (isa<CXXOperatorCallExpr>(idx) &&
5151         cast<CXXOperatorCallExpr>(idx)->getOperator() == OO_Comma)) {
5152      Diag(idx->getExprLoc(), diag::warn_deprecated_comma_subscript)
5153          << SourceRange(base->getBeginLoc(), rbLoc);
5154    }
5155  }
5156
5157  if (ArgExprs.size() == 1 &&
5158      ArgExprs[0]->getType()->isNonOverloadPlaceholderType()) {
5159    ExprResult result = CheckPlaceholderExpr(ArgExprs[0]);
5160    if (result.isInvalid())
5161      return ExprError();
5162    ArgExprs[0] = result.get();
5163  } else {
5164    if (CheckArgsForPlaceholders(ArgExprs))
5165      return ExprError();
5166  }
5167
5168  // Build an unanalyzed expression if either operand is type-dependent.
5169  if (getLangOpts().CPlusPlus && ArgExprs.size() == 1 &&
5170      (base->isTypeDependent() ||
5171       Expr::hasAnyTypeDependentArguments(ArgExprs)) &&
5172      !isa<PackExpansionExpr>(ArgExprs[0])) {
5173    return new (Context) ArraySubscriptExpr(
5174        base, ArgExprs.front(),
5175        getDependentArraySubscriptType(base, ArgExprs.front(), getASTContext()),
5176        VK_LValue, OK_Ordinary, rbLoc);
5177  }
5178
5179  // MSDN, property (C++)
5180  // https://msdn.microsoft.com/en-us/library/yhfk0thd(v=vs.120).aspx
5181  // This attribute can also be used in the declaration of an empty array in a
5182  // class or structure definition. For example:
5183  // __declspec(property(get=GetX, put=PutX)) int x[];
5184  // The above statement indicates that x[] can be used with one or more array
5185  // indices. In this case, i=p->x[a][b] will be turned into i=p->GetX(a, b),
5186  // and p->x[a][b] = i will be turned into p->PutX(a, b, i);
5187  if (IsMSPropertySubscript) {
5188    assert(ArgExprs.size() == 1);
5189    // Build MS property subscript expression if base is MS property reference
5190    // or MS property subscript.
5191    return new (Context)
5192        MSPropertySubscriptExpr(base, ArgExprs.front(), Context.PseudoObjectTy,
5193                                VK_LValue, OK_Ordinary, rbLoc);
5194  }
5195
5196  // Use C++ overloaded-operator rules if either operand has record
5197  // type.  The spec says to do this if either type is *overloadable*,
5198  // but enum types can't declare subscript operators or conversion
5199  // operators, so there's nothing interesting for overload resolution
5200  // to do if there aren't any record types involved.
5201  //
5202  // ObjC pointers have their own subscripting logic that is not tied
5203  // to overload resolution and so should not take this path.
5204  if (getLangOpts().CPlusPlus && !base->getType()->isObjCObjectPointerType() &&
5205      ((base->getType()->isRecordType() ||
5206        (ArgExprs.size() != 1 || isa<PackExpansionExpr>(ArgExprs[0]) ||
5207         ArgExprs[0]->getType()->isRecordType())))) {
5208    return CreateOverloadedArraySubscriptExpr(lbLoc, rbLoc, base, ArgExprs);
5209  }
5210
5211  ExprResult Res =
5212      CreateBuiltinArraySubscriptExpr(base, lbLoc, ArgExprs.front(), rbLoc);
5213
5214  if (!Res.isInvalid() && isa<ArraySubscriptExpr>(Res.get()))
5215    CheckSubscriptAccessOfNoDeref(cast<ArraySubscriptExpr>(Res.get()));
5216
5217  return Res;
5218}
5219
5220ExprResult Sema::tryConvertExprToType(Expr *E, QualType Ty) {
5221  InitializedEntity Entity = InitializedEntity::InitializeTemporary(Ty);
5222  InitializationKind Kind =
5223      InitializationKind::CreateCopy(E->getBeginLoc(), SourceLocation());
5224  InitializationSequence InitSeq(*this, Entity, Kind, E);
5225  return InitSeq.Perform(*this, Entity, Kind, E);
5226}
5227
5228ExprResult Sema::CreateBuiltinMatrixSubscriptExpr(Expr *Base, Expr *RowIdx,
5229                                                  Expr *ColumnIdx,
5230                                                  SourceLocation RBLoc) {
5231  ExprResult BaseR = CheckPlaceholderExpr(Base);
5232  if (BaseR.isInvalid())
5233    return BaseR;
5234  Base = BaseR.get();
5235
5236  ExprResult RowR = CheckPlaceholderExpr(RowIdx);
5237  if (RowR.isInvalid())
5238    return RowR;
5239  RowIdx = RowR.get();
5240
5241  if (!ColumnIdx)
5242    return new (Context) MatrixSubscriptExpr(
5243        Base, RowIdx, ColumnIdx, Context.IncompleteMatrixIdxTy, RBLoc);
5244
5245  // Build an unanalyzed expression if any of the operands is type-dependent.
5246  if (Base->isTypeDependent() || RowIdx->isTypeDependent() ||
5247      ColumnIdx->isTypeDependent())
5248    return new (Context) MatrixSubscriptExpr(Base, RowIdx, ColumnIdx,
5249                                             Context.DependentTy, RBLoc);
5250
5251  ExprResult ColumnR = CheckPlaceholderExpr(ColumnIdx);
5252  if (ColumnR.isInvalid())
5253    return ColumnR;
5254  ColumnIdx = ColumnR.get();
5255
5256  // Check that IndexExpr is an integer expression. If it is a constant
5257  // expression, check that it is less than Dim (= the number of elements in the
5258  // corresponding dimension).
5259  auto IsIndexValid = [&](Expr *IndexExpr, unsigned Dim,
5260                          bool IsColumnIdx) -> Expr * {
5261    if (!IndexExpr->getType()->isIntegerType() &&
5262        !IndexExpr->isTypeDependent()) {
5263      Diag(IndexExpr->getBeginLoc(), diag::err_matrix_index_not_integer)
5264          << IsColumnIdx;
5265      return nullptr;
5266    }
5267
5268    if (std::optional<llvm::APSInt> Idx =
5269            IndexExpr->getIntegerConstantExpr(Context)) {
5270      if ((*Idx < 0 || *Idx >= Dim)) {
5271        Diag(IndexExpr->getBeginLoc(), diag::err_matrix_index_outside_range)
5272            << IsColumnIdx << Dim;
5273        return nullptr;
5274      }
5275    }
5276
5277    ExprResult ConvExpr =
5278        tryConvertExprToType(IndexExpr, Context.getSizeType());
5279    assert(!ConvExpr.isInvalid() &&
5280           "should be able to convert any integer type to size type");
5281    return ConvExpr.get();
5282  };
5283
5284  auto *MTy = Base->getType()->getAs<ConstantMatrixType>();
5285  RowIdx = IsIndexValid(RowIdx, MTy->getNumRows(), false);
5286  ColumnIdx = IsIndexValid(ColumnIdx, MTy->getNumColumns(), true);
5287  if (!RowIdx || !ColumnIdx)
5288    return ExprError();
5289
5290  return new (Context) MatrixSubscriptExpr(Base, RowIdx, ColumnIdx,
5291                                           MTy->getElementType(), RBLoc);
5292}
5293
5294void Sema::CheckAddressOfNoDeref(const Expr *E) {
5295  ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back();
5296  const Expr *StrippedExpr = E->IgnoreParenImpCasts();
5297
5298  // For expressions like `&(*s).b`, the base is recorded and what should be
5299  // checked.
5300  const MemberExpr *Member = nullptr;
5301  while ((Member = dyn_cast<MemberExpr>(StrippedExpr)) && !Member->isArrow())
5302    StrippedExpr = Member->getBase()->IgnoreParenImpCasts();
5303
5304  LastRecord.PossibleDerefs.erase(StrippedExpr);
5305}
5306
5307void Sema::CheckSubscriptAccessOfNoDeref(const ArraySubscriptExpr *E) {
5308  if (isUnevaluatedContext())
5309    return;
5310
5311  QualType ResultTy = E->getType();
5312  ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back();
5313
5314  // Bail if the element is an array since it is not memory access.
5315  if (isa<ArrayType>(ResultTy))
5316    return;
5317
5318  if (ResultTy->hasAttr(attr::NoDeref)) {
5319    LastRecord.PossibleDerefs.insert(E);
5320    return;
5321  }
5322
5323  // Check if the base type is a pointer to a member access of a struct
5324  // marked with noderef.
5325  const Expr *Base = E->getBase();
5326  QualType BaseTy = Base->getType();
5327  if (!(isa<ArrayType>(BaseTy) || isa<PointerType>(BaseTy)))
5328    // Not a pointer access
5329    return;
5330
5331  const MemberExpr *Member = nullptr;
5332  while ((Member = dyn_cast<MemberExpr>(Base->IgnoreParenCasts())) &&
5333         Member->isArrow())
5334    Base = Member->getBase();
5335
5336  if (const auto *Ptr = dyn_cast<PointerType>(Base->getType())) {
5337    if (Ptr->getPointeeType()->hasAttr(attr::NoDeref))
5338      LastRecord.PossibleDerefs.insert(E);
5339  }
5340}
5341
5342ExprResult Sema::ActOnOMPArraySectionExpr(Expr *Base, SourceLocation LBLoc,
5343                                          Expr *LowerBound,
5344                                          SourceLocation ColonLocFirst,
5345                                          SourceLocation ColonLocSecond,
5346                                          Expr *Length, Expr *Stride,
5347                                          SourceLocation RBLoc) {
5348  if (Base->hasPlaceholderType() &&
5349      !Base->hasPlaceholderType(BuiltinType::OMPArraySection)) {
5350    ExprResult Result = CheckPlaceholderExpr(Base);
5351    if (Result.isInvalid())
5352      return ExprError();
5353    Base = Result.get();
5354  }
5355  if (LowerBound && LowerBound->getType()->isNonOverloadPlaceholderType()) {
5356    ExprResult Result = CheckPlaceholderExpr(LowerBound);
5357    if (Result.isInvalid())
5358      return ExprError();
5359    Result = DefaultLvalueConversion(Result.get());
5360    if (Result.isInvalid())
5361      return ExprError();
5362    LowerBound = Result.get();
5363  }
5364  if (Length && Length->getType()->isNonOverloadPlaceholderType()) {
5365    ExprResult Result = CheckPlaceholderExpr(Length);
5366    if (Result.isInvalid())
5367      return ExprError();
5368    Result = DefaultLvalueConversion(Result.get());
5369    if (Result.isInvalid())
5370      return ExprError();
5371    Length = Result.get();
5372  }
5373  if (Stride && Stride->getType()->isNonOverloadPlaceholderType()) {
5374    ExprResult Result = CheckPlaceholderExpr(Stride);
5375    if (Result.isInvalid())
5376      return ExprError();
5377    Result = DefaultLvalueConversion(Result.get());
5378    if (Result.isInvalid())
5379      return ExprError();
5380    Stride = Result.get();
5381  }
5382
5383  // Build an unanalyzed expression if either operand is type-dependent.
5384  if (Base->isTypeDependent() ||
5385      (LowerBound &&
5386       (LowerBound->isTypeDependent() || LowerBound->isValueDependent())) ||
5387      (Length && (Length->isTypeDependent() || Length->isValueDependent())) ||
5388      (Stride && (Stride->isTypeDependent() || Stride->isValueDependent()))) {
5389    return new (Context) OMPArraySectionExpr(
5390        Base, LowerBound, Length, Stride, Context.DependentTy, VK_LValue,
5391        OK_Ordinary, ColonLocFirst, ColonLocSecond, RBLoc);
5392  }
5393
5394  // Perform default conversions.
5395  QualType OriginalTy = OMPArraySectionExpr::getBaseOriginalType(Base);
5396  QualType ResultTy;
5397  if (OriginalTy->isAnyPointerType()) {
5398    ResultTy = OriginalTy->getPointeeType();
5399  } else if (OriginalTy->isArrayType()) {
5400    ResultTy = OriginalTy->getAsArrayTypeUnsafe()->getElementType();
5401  } else {
5402    return ExprError(
5403        Diag(Base->getExprLoc(), diag::err_omp_typecheck_section_value)
5404        << Base->getSourceRange());
5405  }
5406  // C99 6.5.2.1p1
5407  if (LowerBound) {
5408    auto Res = PerformOpenMPImplicitIntegerConversion(LowerBound->getExprLoc(),
5409                                                      LowerBound);
5410    if (Res.isInvalid())
5411      return ExprError(Diag(LowerBound->getExprLoc(),
5412                            diag::err_omp_typecheck_section_not_integer)
5413                       << 0 << LowerBound->getSourceRange());
5414    LowerBound = Res.get();
5415
5416    if (LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
5417        LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
5418      Diag(LowerBound->getExprLoc(), diag::warn_omp_section_is_char)
5419          << 0 << LowerBound->getSourceRange();
5420  }
5421  if (Length) {
5422    auto Res =
5423        PerformOpenMPImplicitIntegerConversion(Length->getExprLoc(), Length);
5424    if (Res.isInvalid())
5425      return ExprError(Diag(Length->getExprLoc(),
5426                            diag::err_omp_typecheck_section_not_integer)
5427                       << 1 << Length->getSourceRange());
5428    Length = Res.get();
5429
5430    if (Length->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
5431        Length->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
5432      Diag(Length->getExprLoc(), diag::warn_omp_section_is_char)
5433          << 1 << Length->getSourceRange();
5434  }
5435  if (Stride) {
5436    ExprResult Res =
5437        PerformOpenMPImplicitIntegerConversion(Stride->getExprLoc(), Stride);
5438    if (Res.isInvalid())
5439      return ExprError(Diag(Stride->getExprLoc(),
5440                            diag::err_omp_typecheck_section_not_integer)
5441                       << 1 << Stride->getSourceRange());
5442    Stride = Res.get();
5443
5444    if (Stride->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
5445        Stride->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
5446      Diag(Stride->getExprLoc(), diag::warn_omp_section_is_char)
5447          << 1 << Stride->getSourceRange();
5448  }
5449
5450  // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
5451  // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
5452  // type. Note that functions are not objects, and that (in C99 parlance)
5453  // incomplete types are not object types.
5454  if (ResultTy->isFunctionType()) {
5455    Diag(Base->getExprLoc(), diag::err_omp_section_function_type)
5456        << ResultTy << Base->getSourceRange();
5457    return ExprError();
5458  }
5459
5460  if (RequireCompleteType(Base->getExprLoc(), ResultTy,
5461                          diag::err_omp_section_incomplete_type, Base))
5462    return ExprError();
5463
5464  if (LowerBound && !OriginalTy->isAnyPointerType()) {
5465    Expr::EvalResult Result;
5466    if (LowerBound->EvaluateAsInt(Result, Context)) {
5467      // OpenMP 5.0, [2.1.5 Array Sections]
5468      // The array section must be a subset of the original array.
5469      llvm::APSInt LowerBoundValue = Result.Val.getInt();
5470      if (LowerBoundValue.isNegative()) {
5471        Diag(LowerBound->getExprLoc(), diag::err_omp_section_not_subset_of_array)
5472            << LowerBound->getSourceRange();
5473        return ExprError();
5474      }
5475    }
5476  }
5477
5478  if (Length) {
5479    Expr::EvalResult Result;
5480    if (Length->EvaluateAsInt(Result, Context)) {
5481      // OpenMP 5.0, [2.1.5 Array Sections]
5482      // The length must evaluate to non-negative integers.
5483      llvm::APSInt LengthValue = Result.Val.getInt();
5484      if (LengthValue.isNegative()) {
5485        Diag(Length->getExprLoc(), diag::err_omp_section_length_negative)
5486            << toString(LengthValue, /*Radix=*/10, /*Signed=*/true)
5487            << Length->getSourceRange();
5488        return ExprError();
5489      }
5490    }
5491  } else if (ColonLocFirst.isValid() &&
5492             (OriginalTy.isNull() || (!OriginalTy->isConstantArrayType() &&
5493                                      !OriginalTy->isVariableArrayType()))) {
5494    // OpenMP 5.0, [2.1.5 Array Sections]
5495    // When the size of the array dimension is not known, the length must be
5496    // specified explicitly.
5497    Diag(ColonLocFirst, diag::err_omp_section_length_undefined)
5498        << (!OriginalTy.isNull() && OriginalTy->isArrayType());
5499    return ExprError();
5500  }
5501
5502  if (Stride) {
5503    Expr::EvalResult Result;
5504    if (Stride->EvaluateAsInt(Result, Context)) {
5505      // OpenMP 5.0, [2.1.5 Array Sections]
5506      // The stride must evaluate to a positive integer.
5507      llvm::APSInt StrideValue = Result.Val.getInt();
5508      if (!StrideValue.isStrictlyPositive()) {
5509        Diag(Stride->getExprLoc(), diag::err_omp_section_stride_non_positive)
5510            << toString(StrideValue, /*Radix=*/10, /*Signed=*/true)
5511            << Stride->getSourceRange();
5512        return ExprError();
5513      }
5514    }
5515  }
5516
5517  if (!Base->hasPlaceholderType(BuiltinType::OMPArraySection)) {
5518    ExprResult Result = DefaultFunctionArrayLvalueConversion(Base);
5519    if (Result.isInvalid())
5520      return ExprError();
5521    Base = Result.get();
5522  }
5523  return new (Context) OMPArraySectionExpr(
5524      Base, LowerBound, Length, Stride, Context.OMPArraySectionTy, VK_LValue,
5525      OK_Ordinary, ColonLocFirst, ColonLocSecond, RBLoc);
5526}
5527
5528ExprResult Sema::ActOnOMPArrayShapingExpr(Expr *Base, SourceLocation LParenLoc,
5529                                          SourceLocation RParenLoc,
5530                                          ArrayRef<Expr *> Dims,
5531                                          ArrayRef<SourceRange> Brackets) {
5532  if (Base->hasPlaceholderType()) {
5533    ExprResult Result = CheckPlaceholderExpr(Base);
5534    if (Result.isInvalid())
5535      return ExprError();
5536    Result = DefaultLvalueConversion(Result.get());
5537    if (Result.isInvalid())
5538      return ExprError();
5539    Base = Result.get();
5540  }
5541  QualType BaseTy = Base->getType();
5542  // Delay analysis of the types/expressions if instantiation/specialization is
5543  // required.
5544  if (!BaseTy->isPointerType() && Base->isTypeDependent())
5545    return OMPArrayShapingExpr::Create(Context, Context.DependentTy, Base,
5546                                       LParenLoc, RParenLoc, Dims, Brackets);
5547  if (!BaseTy->isPointerType() ||
5548      (!Base->isTypeDependent() &&
5549       BaseTy->getPointeeType()->isIncompleteType()))
5550    return ExprError(Diag(Base->getExprLoc(),
5551                          diag::err_omp_non_pointer_type_array_shaping_base)
5552                     << Base->getSourceRange());
5553
5554  SmallVector<Expr *, 4> NewDims;
5555  bool ErrorFound = false;
5556  for (Expr *Dim : Dims) {
5557    if (Dim->hasPlaceholderType()) {
5558      ExprResult Result = CheckPlaceholderExpr(Dim);
5559      if (Result.isInvalid()) {
5560        ErrorFound = true;
5561        continue;
5562      }
5563      Result = DefaultLvalueConversion(Result.get());
5564      if (Result.isInvalid()) {
5565        ErrorFound = true;
5566        continue;
5567      }
5568      Dim = Result.get();
5569    }
5570    if (!Dim->isTypeDependent()) {
5571      ExprResult Result =
5572          PerformOpenMPImplicitIntegerConversion(Dim->getExprLoc(), Dim);
5573      if (Result.isInvalid()) {
5574        ErrorFound = true;
5575        Diag(Dim->getExprLoc(), diag::err_omp_typecheck_shaping_not_integer)
5576            << Dim->getSourceRange();
5577        continue;
5578      }
5579      Dim = Result.get();
5580      Expr::EvalResult EvResult;
5581      if (!Dim->isValueDependent() && Dim->EvaluateAsInt(EvResult, Context)) {
5582        // OpenMP 5.0, [2.1.4 Array Shaping]
5583        // Each si is an integral type expression that must evaluate to a
5584        // positive integer.
5585        llvm::APSInt Value = EvResult.Val.getInt();
5586        if (!Value.isStrictlyPositive()) {
5587          Diag(Dim->getExprLoc(), diag::err_omp_shaping_dimension_not_positive)
5588              << toString(Value, /*Radix=*/10, /*Signed=*/true)
5589              << Dim->getSourceRange();
5590          ErrorFound = true;
5591          continue;
5592        }
5593      }
5594    }
5595    NewDims.push_back(Dim);
5596  }
5597  if (ErrorFound)
5598    return ExprError();
5599  return OMPArrayShapingExpr::Create(Context, Context.OMPArrayShapingTy, Base,
5600                                     LParenLoc, RParenLoc, NewDims, Brackets);
5601}
5602
5603ExprResult Sema::ActOnOMPIteratorExpr(Scope *S, SourceLocation IteratorKwLoc,
5604                                      SourceLocation LLoc, SourceLocation RLoc,
5605                                      ArrayRef<OMPIteratorData> Data) {
5606  SmallVector<OMPIteratorExpr::IteratorDefinition, 4> ID;
5607  bool IsCorrect = true;
5608  for (const OMPIteratorData &D : Data) {
5609    TypeSourceInfo *TInfo = nullptr;
5610    SourceLocation StartLoc;
5611    QualType DeclTy;
5612    if (!D.Type.getAsOpaquePtr()) {
5613      // OpenMP 5.0, 2.1.6 Iterators
5614      // In an iterator-specifier, if the iterator-type is not specified then
5615      // the type of that iterator is of int type.
5616      DeclTy = Context.IntTy;
5617      StartLoc = D.DeclIdentLoc;
5618    } else {
5619      DeclTy = GetTypeFromParser(D.Type, &TInfo);
5620      StartLoc = TInfo->getTypeLoc().getBeginLoc();
5621    }
5622
5623    bool IsDeclTyDependent = DeclTy->isDependentType() ||
5624                             DeclTy->containsUnexpandedParameterPack() ||
5625                             DeclTy->isInstantiationDependentType();
5626    if (!IsDeclTyDependent) {
5627      if (!DeclTy->isIntegralType(Context) && !DeclTy->isAnyPointerType()) {
5628        // OpenMP 5.0, 2.1.6 Iterators, Restrictions, C/C++
5629        // The iterator-type must be an integral or pointer type.
5630        Diag(StartLoc, diag::err_omp_iterator_not_integral_or_pointer)
5631            << DeclTy;
5632        IsCorrect = false;
5633        continue;
5634      }
5635      if (DeclTy.isConstant(Context)) {
5636        // OpenMP 5.0, 2.1.6 Iterators, Restrictions, C/C++
5637        // The iterator-type must not be const qualified.
5638        Diag(StartLoc, diag::err_omp_iterator_not_integral_or_pointer)
5639            << DeclTy;
5640        IsCorrect = false;
5641        continue;
5642      }
5643    }
5644
5645    // Iterator declaration.
5646    assert(D.DeclIdent && "Identifier expected.");
5647    // Always try to create iterator declarator to avoid extra error messages
5648    // about unknown declarations use.
5649    auto *VD = VarDecl::Create(Context, CurContext, StartLoc, D.DeclIdentLoc,
5650                               D.DeclIdent, DeclTy, TInfo, SC_None);
5651    VD->setImplicit();
5652    if (S) {
5653      // Check for conflicting previous declaration.
5654      DeclarationNameInfo NameInfo(VD->getDeclName(), D.DeclIdentLoc);
5655      LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
5656                            ForVisibleRedeclaration);
5657      Previous.suppressDiagnostics();
5658      LookupName(Previous, S);
5659
5660      FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage=*/false,
5661                           /*AllowInlineNamespace=*/false);
5662      if (!Previous.empty()) {
5663        NamedDecl *Old = Previous.getRepresentativeDecl();
5664        Diag(D.DeclIdentLoc, diag::err_redefinition) << VD->getDeclName();
5665        Diag(Old->getLocation(), diag::note_previous_definition);
5666      } else {
5667        PushOnScopeChains(VD, S);
5668      }
5669    } else {
5670      CurContext->addDecl(VD);
5671    }
5672
5673    /// Act on the iterator variable declaration.
5674    ActOnOpenMPIteratorVarDecl(VD);
5675
5676    Expr *Begin = D.Range.Begin;
5677    if (!IsDeclTyDependent && Begin && !Begin->isTypeDependent()) {
5678      ExprResult BeginRes =
5679          PerformImplicitConversion(Begin, DeclTy, AA_Converting);
5680      Begin = BeginRes.get();
5681    }
5682    Expr *End = D.Range.End;
5683    if (!IsDeclTyDependent && End && !End->isTypeDependent()) {
5684      ExprResult EndRes = PerformImplicitConversion(End, DeclTy, AA_Converting);
5685      End = EndRes.get();
5686    }
5687    Expr *Step = D.Range.Step;
5688    if (!IsDeclTyDependent && Step && !Step->isTypeDependent()) {
5689      if (!Step->getType()->isIntegralType(Context)) {
5690        Diag(Step->getExprLoc(), diag::err_omp_iterator_step_not_integral)
5691            << Step << Step->getSourceRange();
5692        IsCorrect = false;
5693        continue;
5694      }
5695      std::optional<llvm::APSInt> Result =
5696          Step->getIntegerConstantExpr(Context);
5697      // OpenMP 5.0, 2.1.6 Iterators, Restrictions
5698      // If the step expression of a range-specification equals zero, the
5699      // behavior is unspecified.
5700      if (Result && Result->isZero()) {
5701        Diag(Step->getExprLoc(), diag::err_omp_iterator_step_constant_zero)
5702            << Step << Step->getSourceRange();
5703        IsCorrect = false;
5704        continue;
5705      }
5706    }
5707    if (!Begin || !End || !IsCorrect) {
5708      IsCorrect = false;
5709      continue;
5710    }
5711    OMPIteratorExpr::IteratorDefinition &IDElem = ID.emplace_back();
5712    IDElem.IteratorDecl = VD;
5713    IDElem.AssignmentLoc = D.AssignLoc;
5714    IDElem.Range.Begin = Begin;
5715    IDElem.Range.End = End;
5716    IDElem.Range.Step = Step;
5717    IDElem.ColonLoc = D.ColonLoc;
5718    IDElem.SecondColonLoc = D.SecColonLoc;
5719  }
5720  if (!IsCorrect) {
5721    // Invalidate all created iterator declarations if error is found.
5722    for (const OMPIteratorExpr::IteratorDefinition &D : ID) {
5723      if (Decl *ID = D.IteratorDecl)
5724        ID->setInvalidDecl();
5725    }
5726    return ExprError();
5727  }
5728  SmallVector<OMPIteratorHelperData, 4> Helpers;
5729  if (!CurContext->isDependentContext()) {
5730    // Build number of ityeration for each iteration range.
5731    // Ni = ((Stepi > 0) ? ((Endi + Stepi -1 - Begini)/Stepi) :
5732    // ((Begini-Stepi-1-Endi) / -Stepi);
5733    for (OMPIteratorExpr::IteratorDefinition &D : ID) {
5734      // (Endi - Begini)
5735      ExprResult Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, D.Range.End,
5736                                          D.Range.Begin);
5737      if(!Res.isUsable()) {
5738        IsCorrect = false;
5739        continue;
5740      }
5741      ExprResult St, St1;
5742      if (D.Range.Step) {
5743        St = D.Range.Step;
5744        // (Endi - Begini) + Stepi
5745        Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, Res.get(), St.get());
5746        if (!Res.isUsable()) {
5747          IsCorrect = false;
5748          continue;
5749        }
5750        // (Endi - Begini) + Stepi - 1
5751        Res =
5752            CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, Res.get(),
5753                               ActOnIntegerConstant(D.AssignmentLoc, 1).get());
5754        if (!Res.isUsable()) {
5755          IsCorrect = false;
5756          continue;
5757        }
5758        // ((Endi - Begini) + Stepi - 1) / Stepi
5759        Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Div, Res.get(), St.get());
5760        if (!Res.isUsable()) {
5761          IsCorrect = false;
5762          continue;
5763        }
5764        St1 = CreateBuiltinUnaryOp(D.AssignmentLoc, UO_Minus, D.Range.Step);
5765        // (Begini - Endi)
5766        ExprResult Res1 = CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub,
5767                                             D.Range.Begin, D.Range.End);
5768        if (!Res1.isUsable()) {
5769          IsCorrect = false;
5770          continue;
5771        }
5772        // (Begini - Endi) - Stepi
5773        Res1 =
5774            CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, Res1.get(), St1.get());
5775        if (!Res1.isUsable()) {
5776          IsCorrect = false;
5777          continue;
5778        }
5779        // (Begini - Endi) - Stepi - 1
5780        Res1 =
5781            CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, Res1.get(),
5782                               ActOnIntegerConstant(D.AssignmentLoc, 1).get());
5783        if (!Res1.isUsable()) {
5784          IsCorrect = false;
5785          continue;
5786        }
5787        // ((Begini - Endi) - Stepi - 1) / (-Stepi)
5788        Res1 =
5789            CreateBuiltinBinOp(D.AssignmentLoc, BO_Div, Res1.get(), St1.get());
5790        if (!Res1.isUsable()) {
5791          IsCorrect = false;
5792          continue;
5793        }
5794        // Stepi > 0.
5795        ExprResult CmpRes =
5796            CreateBuiltinBinOp(D.AssignmentLoc, BO_GT, D.Range.Step,
5797                               ActOnIntegerConstant(D.AssignmentLoc, 0).get());
5798        if (!CmpRes.isUsable()) {
5799          IsCorrect = false;
5800          continue;
5801        }
5802        Res = ActOnConditionalOp(D.AssignmentLoc, D.AssignmentLoc, CmpRes.get(),
5803                                 Res.get(), Res1.get());
5804        if (!Res.isUsable()) {
5805          IsCorrect = false;
5806          continue;
5807        }
5808      }
5809      Res = ActOnFinishFullExpr(Res.get(), /*DiscardedValue=*/false);
5810      if (!Res.isUsable()) {
5811        IsCorrect = false;
5812        continue;
5813      }
5814
5815      // Build counter update.
5816      // Build counter.
5817      auto *CounterVD =
5818          VarDecl::Create(Context, CurContext, D.IteratorDecl->getBeginLoc(),
5819                          D.IteratorDecl->getBeginLoc(), nullptr,
5820                          Res.get()->getType(), nullptr, SC_None);
5821      CounterVD->setImplicit();
5822      ExprResult RefRes =
5823          BuildDeclRefExpr(CounterVD, CounterVD->getType(), VK_LValue,
5824                           D.IteratorDecl->getBeginLoc());
5825      // Build counter update.
5826      // I = Begini + counter * Stepi;
5827      ExprResult UpdateRes;
5828      if (D.Range.Step) {
5829        UpdateRes = CreateBuiltinBinOp(
5830            D.AssignmentLoc, BO_Mul,
5831            DefaultLvalueConversion(RefRes.get()).get(), St.get());
5832      } else {
5833        UpdateRes = DefaultLvalueConversion(RefRes.get());
5834      }
5835      if (!UpdateRes.isUsable()) {
5836        IsCorrect = false;
5837        continue;
5838      }
5839      UpdateRes = CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, D.Range.Begin,
5840                                     UpdateRes.get());
5841      if (!UpdateRes.isUsable()) {
5842        IsCorrect = false;
5843        continue;
5844      }
5845      ExprResult VDRes =
5846          BuildDeclRefExpr(cast<VarDecl>(D.IteratorDecl),
5847                           cast<VarDecl>(D.IteratorDecl)->getType(), VK_LValue,
5848                           D.IteratorDecl->getBeginLoc());
5849      UpdateRes = CreateBuiltinBinOp(D.AssignmentLoc, BO_Assign, VDRes.get(),
5850                                     UpdateRes.get());
5851      if (!UpdateRes.isUsable()) {
5852        IsCorrect = false;
5853        continue;
5854      }
5855      UpdateRes =
5856          ActOnFinishFullExpr(UpdateRes.get(), /*DiscardedValue=*/true);
5857      if (!UpdateRes.isUsable()) {
5858        IsCorrect = false;
5859        continue;
5860      }
5861      ExprResult CounterUpdateRes =
5862          CreateBuiltinUnaryOp(D.AssignmentLoc, UO_PreInc, RefRes.get());
5863      if (!CounterUpdateRes.isUsable()) {
5864        IsCorrect = false;
5865        continue;
5866      }
5867      CounterUpdateRes =
5868          ActOnFinishFullExpr(CounterUpdateRes.get(), /*DiscardedValue=*/true);
5869      if (!CounterUpdateRes.isUsable()) {
5870        IsCorrect = false;
5871        continue;
5872      }
5873      OMPIteratorHelperData &HD = Helpers.emplace_back();
5874      HD.CounterVD = CounterVD;
5875      HD.Upper = Res.get();
5876      HD.Update = UpdateRes.get();
5877      HD.CounterUpdate = CounterUpdateRes.get();
5878    }
5879  } else {
5880    Helpers.assign(ID.size(), {});
5881  }
5882  if (!IsCorrect) {
5883    // Invalidate all created iterator declarations if error is found.
5884    for (const OMPIteratorExpr::IteratorDefinition &D : ID) {
5885      if (Decl *ID = D.IteratorDecl)
5886        ID->setInvalidDecl();
5887    }
5888    return ExprError();
5889  }
5890  return OMPIteratorExpr::Create(Context, Context.OMPIteratorTy, IteratorKwLoc,
5891                                 LLoc, RLoc, ID, Helpers);
5892}
5893
5894ExprResult
5895Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
5896                                      Expr *Idx, SourceLocation RLoc) {
5897  Expr *LHSExp = Base;
5898  Expr *RHSExp = Idx;
5899
5900  ExprValueKind VK = VK_LValue;
5901  ExprObjectKind OK = OK_Ordinary;
5902
5903  // Per C++ core issue 1213, the result is an xvalue if either operand is
5904  // a non-lvalue array, and an lvalue otherwise.
5905  if (getLangOpts().CPlusPlus11) {
5906    for (auto *Op : {LHSExp, RHSExp}) {
5907      Op = Op->IgnoreImplicit();
5908      if (Op->getType()->isArrayType() && !Op->isLValue())
5909        VK = VK_XValue;
5910    }
5911  }
5912
5913  // Perform default conversions.
5914  if (!LHSExp->getType()->getAs<VectorType>()) {
5915    ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
5916    if (Result.isInvalid())
5917      return ExprError();
5918    LHSExp = Result.get();
5919  }
5920  ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
5921  if (Result.isInvalid())
5922    return ExprError();
5923  RHSExp = Result.get();
5924
5925  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
5926
5927  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
5928  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
5929  // in the subscript position. As a result, we need to derive the array base
5930  // and index from the expression types.
5931  Expr *BaseExpr, *IndexExpr;
5932  QualType ResultType;
5933  if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
5934    BaseExpr = LHSExp;
5935    IndexExpr = RHSExp;
5936    ResultType =
5937        getDependentArraySubscriptType(LHSExp, RHSExp, getASTContext());
5938  } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
5939    BaseExpr = LHSExp;
5940    IndexExpr = RHSExp;
5941    ResultType = PTy->getPointeeType();
5942  } else if (const ObjCObjectPointerType *PTy =
5943               LHSTy->getAs<ObjCObjectPointerType>()) {
5944    BaseExpr = LHSExp;
5945    IndexExpr = RHSExp;
5946
5947    // Use custom logic if this should be the pseudo-object subscript
5948    // expression.
5949    if (!LangOpts.isSubscriptPointerArithmetic())
5950      return BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr, nullptr,
5951                                          nullptr);
5952
5953    ResultType = PTy->getPointeeType();
5954  } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
5955     // Handle the uncommon case of "123[Ptr]".
5956    BaseExpr = RHSExp;
5957    IndexExpr = LHSExp;
5958    ResultType = PTy->getPointeeType();
5959  } else if (const ObjCObjectPointerType *PTy =
5960               RHSTy->getAs<ObjCObjectPointerType>()) {
5961     // Handle the uncommon case of "123[Ptr]".
5962    BaseExpr = RHSExp;
5963    IndexExpr = LHSExp;
5964    ResultType = PTy->getPointeeType();
5965    if (!LangOpts.isSubscriptPointerArithmetic()) {
5966      Diag(LLoc, diag::err_subscript_nonfragile_interface)
5967        << ResultType << BaseExpr->getSourceRange();
5968      return ExprError();
5969    }
5970  } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
5971    BaseExpr = LHSExp;    // vectors: V[123]
5972    IndexExpr = RHSExp;
5973    // We apply C++ DR1213 to vector subscripting too.
5974    if (getLangOpts().CPlusPlus11 && LHSExp->isPRValue()) {
5975      ExprResult Materialized = TemporaryMaterializationConversion(LHSExp);
5976      if (Materialized.isInvalid())
5977        return ExprError();
5978      LHSExp = Materialized.get();
5979    }
5980    VK = LHSExp->getValueKind();
5981    if (VK != VK_PRValue)
5982      OK = OK_VectorComponent;
5983
5984    ResultType = VTy->getElementType();
5985    QualType BaseType = BaseExpr->getType();
5986    Qualifiers BaseQuals = BaseType.getQualifiers();
5987    Qualifiers MemberQuals = ResultType.getQualifiers();
5988    Qualifiers Combined = BaseQuals + MemberQuals;
5989    if (Combined != MemberQuals)
5990      ResultType = Context.getQualifiedType(ResultType, Combined);
5991  } else if (LHSTy->isBuiltinType() &&
5992             LHSTy->getAs<BuiltinType>()->isSveVLSBuiltinType()) {
5993    const BuiltinType *BTy = LHSTy->getAs<BuiltinType>();
5994    if (BTy->isSVEBool())
5995      return ExprError(Diag(LLoc, diag::err_subscript_svbool_t)
5996                       << LHSExp->getSourceRange() << RHSExp->getSourceRange());
5997
5998    BaseExpr = LHSExp;
5999    IndexExpr = RHSExp;
6000    if (getLangOpts().CPlusPlus11 && LHSExp->isPRValue()) {
6001      ExprResult Materialized = TemporaryMaterializationConversion(LHSExp);
6002      if (Materialized.isInvalid())
6003        return ExprError();
6004      LHSExp = Materialized.get();
6005    }
6006    VK = LHSExp->getValueKind();
6007    if (VK != VK_PRValue)
6008      OK = OK_VectorComponent;
6009
6010    ResultType = BTy->getSveEltType(Context);
6011
6012    QualType BaseType = BaseExpr->getType();
6013    Qualifiers BaseQuals = BaseType.getQualifiers();
6014    Qualifiers MemberQuals = ResultType.getQualifiers();
6015    Qualifiers Combined = BaseQuals + MemberQuals;
6016    if (Combined != MemberQuals)
6017      ResultType = Context.getQualifiedType(ResultType, Combined);
6018  } else if (LHSTy->isArrayType()) {
6019    // If we see an array that wasn't promoted by
6020    // DefaultFunctionArrayLvalueConversion, it must be an array that
6021    // wasn't promoted because of the C90 rule that doesn't
6022    // allow promoting non-lvalue arrays.  Warn, then
6023    // force the promotion here.
6024    Diag(LHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue)
6025        << LHSExp->getSourceRange();
6026    LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
6027                               CK_ArrayToPointerDecay).get();
6028    LHSTy = LHSExp->getType();
6029
6030    BaseExpr = LHSExp;
6031    IndexExpr = RHSExp;
6032    ResultType = LHSTy->castAs<PointerType>()->getPointeeType();
6033  } else if (RHSTy->isArrayType()) {
6034    // Same as previous, except for 123[f().a] case
6035    Diag(RHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue)
6036        << RHSExp->getSourceRange();
6037    RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
6038                               CK_ArrayToPointerDecay).get();
6039    RHSTy = RHSExp->getType();
6040
6041    BaseExpr = RHSExp;
6042    IndexExpr = LHSExp;
6043    ResultType = RHSTy->castAs<PointerType>()->getPointeeType();
6044  } else {
6045    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
6046       << LHSExp->getSourceRange() << RHSExp->getSourceRange());
6047  }
6048  // C99 6.5.2.1p1
6049  if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
6050    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
6051                     << IndexExpr->getSourceRange());
6052
6053  if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
6054       IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U)) &&
6055      !IndexExpr->isTypeDependent()) {
6056    std::optional<llvm::APSInt> IntegerContantExpr =
6057        IndexExpr->getIntegerConstantExpr(getASTContext());
6058    if (!IntegerContantExpr.has_value() ||
6059        IntegerContantExpr.value().isNegative())
6060      Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
6061  }
6062
6063  // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
6064  // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
6065  // type. Note that Functions are not objects, and that (in C99 parlance)
6066  // incomplete types are not object types.
6067  if (ResultType->isFunctionType()) {
6068    Diag(BaseExpr->getBeginLoc(), diag::err_subscript_function_type)
6069        << ResultType << BaseExpr->getSourceRange();
6070    return ExprError();
6071  }
6072
6073  if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) {
6074    // GNU extension: subscripting on pointer to void
6075    Diag(LLoc, diag::ext_gnu_subscript_void_type)
6076      << BaseExpr->getSourceRange();
6077
6078    // C forbids expressions of unqualified void type from being l-values.
6079    // See IsCForbiddenLValueType.
6080    if (!ResultType.hasQualifiers())
6081      VK = VK_PRValue;
6082  } else if (!ResultType->isDependentType() &&
6083             !ResultType.isWebAssemblyReferenceType() &&
6084             RequireCompleteSizedType(
6085                 LLoc, ResultType,
6086                 diag::err_subscript_incomplete_or_sizeless_type, BaseExpr))
6087    return ExprError();
6088
6089  assert(VK == VK_PRValue || LangOpts.CPlusPlus ||
6090         !ResultType.isCForbiddenLValueType());
6091
6092  if (LHSExp->IgnoreParenImpCasts()->getType()->isVariablyModifiedType() &&
6093      FunctionScopes.size() > 1) {
6094    if (auto *TT =
6095            LHSExp->IgnoreParenImpCasts()->getType()->getAs<TypedefType>()) {
6096      for (auto I = FunctionScopes.rbegin(),
6097                E = std::prev(FunctionScopes.rend());
6098           I != E; ++I) {
6099        auto *CSI = dyn_cast<CapturingScopeInfo>(*I);
6100        if (CSI == nullptr)
6101          break;
6102        DeclContext *DC = nullptr;
6103        if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI))
6104          DC = LSI->CallOperator;
6105        else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI))
6106          DC = CRSI->TheCapturedDecl;
6107        else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI))
6108          DC = BSI->TheDecl;
6109        if (DC) {
6110          if (DC->containsDecl(TT->getDecl()))
6111            break;
6112          captureVariablyModifiedType(
6113              Context, LHSExp->IgnoreParenImpCasts()->getType(), CSI);
6114        }
6115      }
6116    }
6117  }
6118
6119  return new (Context)
6120      ArraySubscriptExpr(LHSExp, RHSExp, ResultType, VK, OK, RLoc);
6121}
6122
6123bool Sema::CheckCXXDefaultArgExpr(SourceLocation CallLoc, FunctionDecl *FD,
6124                                  ParmVarDecl *Param, Expr *RewrittenInit,
6125                                  bool SkipImmediateInvocations) {
6126  if (Param->hasUnparsedDefaultArg()) {
6127    assert(!RewrittenInit && "Should not have a rewritten init expression yet");
6128    // If we've already cleared out the location for the default argument,
6129    // that means we're parsing it right now.
6130    if (!UnparsedDefaultArgLocs.count(Param)) {
6131      Diag(Param->getBeginLoc(), diag::err_recursive_default_argument) << FD;
6132      Diag(CallLoc, diag::note_recursive_default_argument_used_here);
6133      Param->setInvalidDecl();
6134      return true;
6135    }
6136
6137    Diag(CallLoc, diag::err_use_of_default_argument_to_function_declared_later)
6138        << FD << cast<CXXRecordDecl>(FD->getDeclContext());
6139    Diag(UnparsedDefaultArgLocs[Param],
6140         diag::note_default_argument_declared_here);
6141    return true;
6142  }
6143
6144  if (Param->hasUninstantiatedDefaultArg()) {
6145    assert(!RewrittenInit && "Should not have a rewitten init expression yet");
6146    if (InstantiateDefaultArgument(CallLoc, FD, Param))
6147      return true;
6148  }
6149
6150  Expr *Init = RewrittenInit ? RewrittenInit : Param->getInit();
6151  assert(Init && "default argument but no initializer?");
6152
6153  // If the default expression creates temporaries, we need to
6154  // push them to the current stack of expression temporaries so they'll
6155  // be properly destroyed.
6156  // FIXME: We should really be rebuilding the default argument with new
6157  // bound temporaries; see the comment in PR5810.
6158  // We don't need to do that with block decls, though, because
6159  // blocks in default argument expression can never capture anything.
6160  if (auto *InitWithCleanup = dyn_cast<ExprWithCleanups>(Init)) {
6161    // Set the "needs cleanups" bit regardless of whether there are
6162    // any explicit objects.
6163    Cleanup.setExprNeedsCleanups(InitWithCleanup->cleanupsHaveSideEffects());
6164    // Append all the objects to the cleanup list.  Right now, this
6165    // should always be a no-op, because blocks in default argument
6166    // expressions should never be able to capture anything.
6167    assert(!InitWithCleanup->getNumObjects() &&
6168           "default argument expression has capturing blocks?");
6169  }
6170  // C++ [expr.const]p15.1:
6171  //   An expression or conversion is in an immediate function context if it is
6172  //   potentially evaluated and [...] its innermost enclosing non-block scope
6173  //   is a function parameter scope of an immediate function.
6174  EnterExpressionEvaluationContext EvalContext(
6175      *this,
6176      FD->isImmediateFunction()
6177          ? ExpressionEvaluationContext::ImmediateFunctionContext
6178          : ExpressionEvaluationContext::PotentiallyEvaluated,
6179      Param);
6180  ExprEvalContexts.back().IsCurrentlyCheckingDefaultArgumentOrInitializer =
6181      SkipImmediateInvocations;
6182  runWithSufficientStackSpace(CallLoc, [&] {
6183    MarkDeclarationsReferencedInExpr(Init, /*SkipLocalVariables=*/true);
6184  });
6185  return false;
6186}
6187
6188struct ImmediateCallVisitor : public RecursiveASTVisitor<ImmediateCallVisitor> {
6189  const ASTContext &Context;
6190  ImmediateCallVisitor(const ASTContext &Ctx) : Context(Ctx) {}
6191
6192  bool HasImmediateCalls = false;
6193  bool shouldVisitImplicitCode() const { return true; }
6194
6195  bool VisitCallExpr(CallExpr *E) {
6196    if (const FunctionDecl *FD = E->getDirectCallee())
6197      HasImmediateCalls |= FD->isImmediateFunction();
6198    return RecursiveASTVisitor<ImmediateCallVisitor>::VisitStmt(E);
6199  }
6200
6201  // SourceLocExpr are not immediate invocations
6202  // but CXXDefaultInitExpr/CXXDefaultArgExpr containing a SourceLocExpr
6203  // need to be rebuilt so that they refer to the correct SourceLocation and
6204  // DeclContext.
6205  bool VisitSourceLocExpr(SourceLocExpr *E) {
6206    HasImmediateCalls = true;
6207    return RecursiveASTVisitor<ImmediateCallVisitor>::VisitStmt(E);
6208  }
6209
6210  // A nested lambda might have parameters with immediate invocations
6211  // in their default arguments.
6212  // The compound statement is not visited (as it does not constitute a
6213  // subexpression).
6214  // FIXME: We should consider visiting and transforming captures
6215  // with init expressions.
6216  bool VisitLambdaExpr(LambdaExpr *E) {
6217    return VisitCXXMethodDecl(E->getCallOperator());
6218  }
6219
6220  // Blocks don't support default parameters, and, as for lambdas,
6221  // we don't consider their body a subexpression.
6222  bool VisitBlockDecl(BlockDecl *B) { return false; }
6223
6224  bool VisitCompoundStmt(CompoundStmt *B) { return false; }
6225
6226  bool VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
6227    return TraverseStmt(E->getExpr());
6228  }
6229
6230  bool VisitCXXDefaultInitExpr(CXXDefaultInitExpr *E) {
6231    return TraverseStmt(E->getExpr());
6232  }
6233};
6234
6235struct EnsureImmediateInvocationInDefaultArgs
6236    : TreeTransform<EnsureImmediateInvocationInDefaultArgs> {
6237  EnsureImmediateInvocationInDefaultArgs(Sema &SemaRef)
6238      : TreeTransform(SemaRef) {}
6239
6240  // Lambda can only have immediate invocations in the default
6241  // args of their parameters, which is transformed upon calling the closure.
6242  // The body is not a subexpression, so we have nothing to do.
6243  // FIXME: Immediate calls in capture initializers should be transformed.
6244  ExprResult TransformLambdaExpr(LambdaExpr *E) { return E; }
6245  ExprResult TransformBlockExpr(BlockExpr *E) { return E; }
6246
6247  // Make sure we don't rebuild the this pointer as it would
6248  // cause it to incorrectly point it to the outermost class
6249  // in the case of nested struct initialization.
6250  ExprResult TransformCXXThisExpr(CXXThisExpr *E) { return E; }
6251};
6252
6253ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
6254                                        FunctionDecl *FD, ParmVarDecl *Param,
6255                                        Expr *Init) {
6256  assert(Param->hasDefaultArg() && "can't build nonexistent default arg");
6257
6258  bool NestedDefaultChecking = isCheckingDefaultArgumentOrInitializer();
6259
6260  std::optional<ExpressionEvaluationContextRecord::InitializationContext>
6261      InitializationContext =
6262          OutermostDeclarationWithDelayedImmediateInvocations();
6263  if (!InitializationContext.has_value())
6264    InitializationContext.emplace(CallLoc, Param, CurContext);
6265
6266  if (!Init && !Param->hasUnparsedDefaultArg()) {
6267    // Mark that we are replacing a default argument first.
6268    // If we are instantiating a template we won't have to
6269    // retransform immediate calls.
6270    // C++ [expr.const]p15.1:
6271    //   An expression or conversion is in an immediate function context if it
6272    //   is potentially evaluated and [...] its innermost enclosing non-block
6273    //   scope is a function parameter scope of an immediate function.
6274    EnterExpressionEvaluationContext EvalContext(
6275        *this,
6276        FD->isImmediateFunction()
6277            ? ExpressionEvaluationContext::ImmediateFunctionContext
6278            : ExpressionEvaluationContext::PotentiallyEvaluated,
6279        Param);
6280
6281    if (Param->hasUninstantiatedDefaultArg()) {
6282      if (InstantiateDefaultArgument(CallLoc, FD, Param))
6283        return ExprError();
6284    }
6285    // CWG2631
6286    // An immediate invocation that is not evaluated where it appears is
6287    // evaluated and checked for whether it is a constant expression at the
6288    // point where the enclosing initializer is used in a function call.
6289    ImmediateCallVisitor V(getASTContext());
6290    if (!NestedDefaultChecking)
6291      V.TraverseDecl(Param);
6292    if (V.HasImmediateCalls) {
6293      ExprEvalContexts.back().DelayedDefaultInitializationContext = {
6294          CallLoc, Param, CurContext};
6295      EnsureImmediateInvocationInDefaultArgs Immediate(*this);
6296      ExprResult Res;
6297      runWithSufficientStackSpace(CallLoc, [&] {
6298        Res = Immediate.TransformInitializer(Param->getInit(),
6299                                             /*NotCopy=*/false);
6300      });
6301      if (Res.isInvalid())
6302        return ExprError();
6303      Res = ConvertParamDefaultArgument(Param, Res.get(),
6304                                        Res.get()->getBeginLoc());
6305      if (Res.isInvalid())
6306        return ExprError();
6307      Init = Res.get();
6308    }
6309  }
6310
6311  if (CheckCXXDefaultArgExpr(
6312          CallLoc, FD, Param, Init,
6313          /*SkipImmediateInvocations=*/NestedDefaultChecking))
6314    return ExprError();
6315
6316  return CXXDefaultArgExpr::Create(Context, InitializationContext->Loc, Param,
6317                                   Init, InitializationContext->Context);
6318}
6319
6320ExprResult Sema::BuildCXXDefaultInitExpr(SourceLocation Loc, FieldDecl *Field) {
6321  assert(Field->hasInClassInitializer());
6322
6323  // If we might have already tried and failed to instantiate, don't try again.
6324  if (Field->isInvalidDecl())
6325    return ExprError();
6326
6327  CXXThisScopeRAII This(*this, Field->getParent(), Qualifiers());
6328
6329  auto *ParentRD = cast<CXXRecordDecl>(Field->getParent());
6330
6331  std::optional<ExpressionEvaluationContextRecord::InitializationContext>
6332      InitializationContext =
6333          OutermostDeclarationWithDelayedImmediateInvocations();
6334  if (!InitializationContext.has_value())
6335    InitializationContext.emplace(Loc, Field, CurContext);
6336
6337  Expr *Init = nullptr;
6338
6339  bool NestedDefaultChecking = isCheckingDefaultArgumentOrInitializer();
6340
6341  EnterExpressionEvaluationContext EvalContext(
6342      *this, ExpressionEvaluationContext::PotentiallyEvaluated, Field);
6343
6344  if (!Field->getInClassInitializer()) {
6345    // Maybe we haven't instantiated the in-class initializer. Go check the
6346    // pattern FieldDecl to see if it has one.
6347    if (isTemplateInstantiation(ParentRD->getTemplateSpecializationKind())) {
6348      CXXRecordDecl *ClassPattern = ParentRD->getTemplateInstantiationPattern();
6349      DeclContext::lookup_result Lookup =
6350          ClassPattern->lookup(Field->getDeclName());
6351
6352      FieldDecl *Pattern = nullptr;
6353      for (auto *L : Lookup) {
6354        if ((Pattern = dyn_cast<FieldDecl>(L)))
6355          break;
6356      }
6357      assert(Pattern && "We must have set the Pattern!");
6358      if (!Pattern->hasInClassInitializer() ||
6359          InstantiateInClassInitializer(Loc, Field, Pattern,
6360                                        getTemplateInstantiationArgs(Field))) {
6361        Field->setInvalidDecl();
6362        return ExprError();
6363      }
6364    }
6365  }
6366
6367  // CWG2631
6368  // An immediate invocation that is not evaluated where it appears is
6369  // evaluated and checked for whether it is a constant expression at the
6370  // point where the enclosing initializer is used in a [...] a constructor
6371  // definition, or an aggregate initialization.
6372  ImmediateCallVisitor V(getASTContext());
6373  if (!NestedDefaultChecking)
6374    V.TraverseDecl(Field);
6375  if (V.HasImmediateCalls) {
6376    ExprEvalContexts.back().DelayedDefaultInitializationContext = {Loc, Field,
6377                                                                   CurContext};
6378    ExprEvalContexts.back().IsCurrentlyCheckingDefaultArgumentOrInitializer =
6379        NestedDefaultChecking;
6380
6381    EnsureImmediateInvocationInDefaultArgs Immediate(*this);
6382    ExprResult Res;
6383    runWithSufficientStackSpace(Loc, [&] {
6384      Res = Immediate.TransformInitializer(Field->getInClassInitializer(),
6385                                           /*CXXDirectInit=*/false);
6386    });
6387    if (!Res.isInvalid())
6388      Res = ConvertMemberDefaultInitExpression(Field, Res.get(), Loc);
6389    if (Res.isInvalid()) {
6390      Field->setInvalidDecl();
6391      return ExprError();
6392    }
6393    Init = Res.get();
6394  }
6395
6396  if (Field->getInClassInitializer()) {
6397    Expr *E = Init ? Init : Field->getInClassInitializer();
6398    if (!NestedDefaultChecking)
6399      runWithSufficientStackSpace(Loc, [&] {
6400        MarkDeclarationsReferencedInExpr(E, /*SkipLocalVariables=*/false);
6401      });
6402    // C++11 [class.base.init]p7:
6403    //   The initialization of each base and member constitutes a
6404    //   full-expression.
6405    ExprResult Res = ActOnFinishFullExpr(E, /*DiscardedValue=*/false);
6406    if (Res.isInvalid()) {
6407      Field->setInvalidDecl();
6408      return ExprError();
6409    }
6410    Init = Res.get();
6411
6412    return CXXDefaultInitExpr::Create(Context, InitializationContext->Loc,
6413                                      Field, InitializationContext->Context,
6414                                      Init);
6415  }
6416
6417  // DR1351:
6418  //   If the brace-or-equal-initializer of a non-static data member
6419  //   invokes a defaulted default constructor of its class or of an
6420  //   enclosing class in a potentially evaluated subexpression, the
6421  //   program is ill-formed.
6422  //
6423  // This resolution is unworkable: the exception specification of the
6424  // default constructor can be needed in an unevaluated context, in
6425  // particular, in the operand of a noexcept-expression, and we can be
6426  // unable to compute an exception specification for an enclosed class.
6427  //
6428  // Any attempt to resolve the exception specification of a defaulted default
6429  // constructor before the initializer is lexically complete will ultimately
6430  // come here at which point we can diagnose it.
6431  RecordDecl *OutermostClass = ParentRD->getOuterLexicalRecordContext();
6432  Diag(Loc, diag::err_default_member_initializer_not_yet_parsed)
6433      << OutermostClass << Field;
6434  Diag(Field->getEndLoc(),
6435       diag::note_default_member_initializer_not_yet_parsed);
6436  // Recover by marking the field invalid, unless we're in a SFINAE context.
6437  if (!isSFINAEContext())
6438    Field->setInvalidDecl();
6439  return ExprError();
6440}
6441
6442Sema::VariadicCallType
6443Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto,
6444                          Expr *Fn) {
6445  if (Proto && Proto->isVariadic()) {
6446    if (isa_and_nonnull<CXXConstructorDecl>(FDecl))
6447      return VariadicConstructor;
6448    else if (Fn && Fn->getType()->isBlockPointerType())
6449      return VariadicBlock;
6450    else if (FDecl) {
6451      if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
6452        if (Method->isInstance())
6453          return VariadicMethod;
6454    } else if (Fn && Fn->getType() == Context.BoundMemberTy)
6455      return VariadicMethod;
6456    return VariadicFunction;
6457  }
6458  return VariadicDoesNotApply;
6459}
6460
6461namespace {
6462class FunctionCallCCC final : public FunctionCallFilterCCC {
6463public:
6464  FunctionCallCCC(Sema &SemaRef, const IdentifierInfo *FuncName,
6465                  unsigned NumArgs, MemberExpr *ME)
6466      : FunctionCallFilterCCC(SemaRef, NumArgs, false, ME),
6467        FunctionName(FuncName) {}
6468
6469  bool ValidateCandidate(const TypoCorrection &candidate) override {
6470    if (!candidate.getCorrectionSpecifier() ||
6471        candidate.getCorrectionAsIdentifierInfo() != FunctionName) {
6472      return false;
6473    }
6474
6475    return FunctionCallFilterCCC::ValidateCandidate(candidate);
6476  }
6477
6478  std::unique_ptr<CorrectionCandidateCallback> clone() override {
6479    return std::make_unique<FunctionCallCCC>(*this);
6480  }
6481
6482private:
6483  const IdentifierInfo *const FunctionName;
6484};
6485}
6486
6487static TypoCorrection TryTypoCorrectionForCall(Sema &S, Expr *Fn,
6488                                               FunctionDecl *FDecl,
6489                                               ArrayRef<Expr *> Args) {
6490  MemberExpr *ME = dyn_cast<MemberExpr>(Fn);
6491  DeclarationName FuncName = FDecl->getDeclName();
6492  SourceLocation NameLoc = ME ? ME->getMemberLoc() : Fn->getBeginLoc();
6493
6494  FunctionCallCCC CCC(S, FuncName.getAsIdentifierInfo(), Args.size(), ME);
6495  if (TypoCorrection Corrected = S.CorrectTypo(
6496          DeclarationNameInfo(FuncName, NameLoc), Sema::LookupOrdinaryName,
6497          S.getScopeForContext(S.CurContext), nullptr, CCC,
6498          Sema::CTK_ErrorRecovery)) {
6499    if (NamedDecl *ND = Corrected.getFoundDecl()) {
6500      if (Corrected.isOverloaded()) {
6501        OverloadCandidateSet OCS(NameLoc, OverloadCandidateSet::CSK_Normal);
6502        OverloadCandidateSet::iterator Best;
6503        for (NamedDecl *CD : Corrected) {
6504          if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
6505            S.AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none), Args,
6506                                   OCS);
6507        }
6508        switch (OCS.BestViableFunction(S, NameLoc, Best)) {
6509        case OR_Success:
6510          ND = Best->FoundDecl;
6511          Corrected.setCorrectionDecl(ND);
6512          break;
6513        default:
6514          break;
6515        }
6516      }
6517      ND = ND->getUnderlyingDecl();
6518      if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND))
6519        return Corrected;
6520    }
6521  }
6522  return TypoCorrection();
6523}
6524
6525/// ConvertArgumentsForCall - Converts the arguments specified in
6526/// Args/NumArgs to the parameter types of the function FDecl with
6527/// function prototype Proto. Call is the call expression itself, and
6528/// Fn is the function expression. For a C++ member function, this
6529/// routine does not attempt to convert the object argument. Returns
6530/// true if the call is ill-formed.
6531bool
6532Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
6533                              FunctionDecl *FDecl,
6534                              const FunctionProtoType *Proto,
6535                              ArrayRef<Expr *> Args,
6536                              SourceLocation RParenLoc,
6537                              bool IsExecConfig) {
6538  // Bail out early if calling a builtin with custom typechecking.
6539  if (FDecl)
6540    if (unsigned ID = FDecl->getBuiltinID())
6541      if (Context.BuiltinInfo.hasCustomTypechecking(ID))
6542        return false;
6543
6544  // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
6545  // assignment, to the types of the corresponding parameter, ...
6546  bool HasExplicitObjectParameter =
6547      FDecl && FDecl->hasCXXExplicitFunctionObjectParameter();
6548  unsigned ExplicitObjectParameterOffset = HasExplicitObjectParameter ? 1 : 0;
6549  unsigned NumParams = Proto->getNumParams();
6550  bool Invalid = false;
6551  unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumParams;
6552  unsigned FnKind = Fn->getType()->isBlockPointerType()
6553                       ? 1 /* block */
6554                       : (IsExecConfig ? 3 /* kernel function (exec config) */
6555                                       : 0 /* function */);
6556
6557  // If too few arguments are available (and we don't have default
6558  // arguments for the remaining parameters), don't make the call.
6559  if (Args.size() < NumParams) {
6560    if (Args.size() < MinArgs) {
6561      TypoCorrection TC;
6562      if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
6563        unsigned diag_id =
6564            MinArgs == NumParams && !Proto->isVariadic()
6565                ? diag::err_typecheck_call_too_few_args_suggest
6566                : diag::err_typecheck_call_too_few_args_at_least_suggest;
6567        diagnoseTypo(
6568            TC, PDiag(diag_id)
6569                    << FnKind << MinArgs - ExplicitObjectParameterOffset
6570                    << static_cast<unsigned>(Args.size()) -
6571                           ExplicitObjectParameterOffset
6572                    << HasExplicitObjectParameter << TC.getCorrectionRange());
6573      } else if (MinArgs - ExplicitObjectParameterOffset == 1 && FDecl &&
6574                 FDecl->getParamDecl(ExplicitObjectParameterOffset)
6575                     ->getDeclName())
6576        Diag(RParenLoc,
6577             MinArgs == NumParams && !Proto->isVariadic()
6578                 ? diag::err_typecheck_call_too_few_args_one
6579                 : diag::err_typecheck_call_too_few_args_at_least_one)
6580            << FnKind << FDecl->getParamDecl(ExplicitObjectParameterOffset)
6581            << HasExplicitObjectParameter << Fn->getSourceRange();
6582      else
6583        Diag(RParenLoc, MinArgs == NumParams && !Proto->isVariadic()
6584                            ? diag::err_typecheck_call_too_few_args
6585                            : diag::err_typecheck_call_too_few_args_at_least)
6586            << FnKind << MinArgs - ExplicitObjectParameterOffset
6587            << static_cast<unsigned>(Args.size()) -
6588                   ExplicitObjectParameterOffset
6589            << HasExplicitObjectParameter << Fn->getSourceRange();
6590
6591      // Emit the location of the prototype.
6592      if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
6593        Diag(FDecl->getLocation(), diag::note_callee_decl)
6594            << FDecl << FDecl->getParametersSourceRange();
6595
6596      return true;
6597    }
6598    // We reserve space for the default arguments when we create
6599    // the call expression, before calling ConvertArgumentsForCall.
6600    assert((Call->getNumArgs() == NumParams) &&
6601           "We should have reserved space for the default arguments before!");
6602  }
6603
6604  // If too many are passed and not variadic, error on the extras and drop
6605  // them.
6606  if (Args.size() > NumParams) {
6607    if (!Proto->isVariadic()) {
6608      TypoCorrection TC;
6609      if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
6610        unsigned diag_id =
6611            MinArgs == NumParams && !Proto->isVariadic()
6612                ? diag::err_typecheck_call_too_many_args_suggest
6613                : diag::err_typecheck_call_too_many_args_at_most_suggest;
6614        diagnoseTypo(
6615            TC, PDiag(diag_id)
6616                    << FnKind << NumParams - ExplicitObjectParameterOffset
6617                    << static_cast<unsigned>(Args.size()) -
6618                           ExplicitObjectParameterOffset
6619                    << HasExplicitObjectParameter << TC.getCorrectionRange());
6620      } else if (NumParams - ExplicitObjectParameterOffset == 1 && FDecl &&
6621                 FDecl->getParamDecl(ExplicitObjectParameterOffset)
6622                     ->getDeclName())
6623        Diag(Args[NumParams]->getBeginLoc(),
6624             MinArgs == NumParams
6625                 ? diag::err_typecheck_call_too_many_args_one
6626                 : diag::err_typecheck_call_too_many_args_at_most_one)
6627            << FnKind << FDecl->getParamDecl(ExplicitObjectParameterOffset)
6628            << static_cast<unsigned>(Args.size()) -
6629                   ExplicitObjectParameterOffset
6630            << HasExplicitObjectParameter << Fn->getSourceRange()
6631            << SourceRange(Args[NumParams]->getBeginLoc(),
6632                           Args.back()->getEndLoc());
6633      else
6634        Diag(Args[NumParams]->getBeginLoc(),
6635             MinArgs == NumParams
6636                 ? diag::err_typecheck_call_too_many_args
6637                 : diag::err_typecheck_call_too_many_args_at_most)
6638            << FnKind << NumParams - ExplicitObjectParameterOffset
6639            << static_cast<unsigned>(Args.size()) -
6640                   ExplicitObjectParameterOffset
6641            << HasExplicitObjectParameter << Fn->getSourceRange()
6642            << SourceRange(Args[NumParams]->getBeginLoc(),
6643                           Args.back()->getEndLoc());
6644
6645      // Emit the location of the prototype.
6646      if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
6647        Diag(FDecl->getLocation(), diag::note_callee_decl)
6648            << FDecl << FDecl->getParametersSourceRange();
6649
6650      // This deletes the extra arguments.
6651      Call->shrinkNumArgs(NumParams);
6652      return true;
6653    }
6654  }
6655  SmallVector<Expr *, 8> AllArgs;
6656  VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn);
6657
6658  Invalid = GatherArgumentsForCall(Call->getBeginLoc(), FDecl, Proto, 0, Args,
6659                                   AllArgs, CallType);
6660  if (Invalid)
6661    return true;
6662  unsigned TotalNumArgs = AllArgs.size();
6663  for (unsigned i = 0; i < TotalNumArgs; ++i)
6664    Call->setArg(i, AllArgs[i]);
6665
6666  Call->computeDependence();
6667  return false;
6668}
6669
6670bool Sema::GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl,
6671                                  const FunctionProtoType *Proto,
6672                                  unsigned FirstParam, ArrayRef<Expr *> Args,
6673                                  SmallVectorImpl<Expr *> &AllArgs,
6674                                  VariadicCallType CallType, bool AllowExplicit,
6675                                  bool IsListInitialization) {
6676  unsigned NumParams = Proto->getNumParams();
6677  bool Invalid = false;
6678  size_t ArgIx = 0;
6679  // Continue to check argument types (even if we have too few/many args).
6680  for (unsigned i = FirstParam; i < NumParams; i++) {
6681    QualType ProtoArgType = Proto->getParamType(i);
6682
6683    Expr *Arg;
6684    ParmVarDecl *Param = FDecl ? FDecl->getParamDecl(i) : nullptr;
6685    if (ArgIx < Args.size()) {
6686      Arg = Args[ArgIx++];
6687
6688      if (RequireCompleteType(Arg->getBeginLoc(), ProtoArgType,
6689                              diag::err_call_incomplete_argument, Arg))
6690        return true;
6691
6692      // Strip the unbridged-cast placeholder expression off, if applicable.
6693      bool CFAudited = false;
6694      if (Arg->getType() == Context.ARCUnbridgedCastTy &&
6695          FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
6696          (!Param || !Param->hasAttr<CFConsumedAttr>()))
6697        Arg = stripARCUnbridgedCast(Arg);
6698      else if (getLangOpts().ObjCAutoRefCount &&
6699               FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
6700               (!Param || !Param->hasAttr<CFConsumedAttr>()))
6701        CFAudited = true;
6702
6703      if (Proto->getExtParameterInfo(i).isNoEscape() &&
6704          ProtoArgType->isBlockPointerType())
6705        if (auto *BE = dyn_cast<BlockExpr>(Arg->IgnoreParenNoopCasts(Context)))
6706          BE->getBlockDecl()->setDoesNotEscape();
6707
6708      InitializedEntity Entity =
6709          Param ? InitializedEntity::InitializeParameter(Context, Param,
6710                                                         ProtoArgType)
6711                : InitializedEntity::InitializeParameter(
6712                      Context, ProtoArgType, Proto->isParamConsumed(i));
6713
6714      // Remember that parameter belongs to a CF audited API.
6715      if (CFAudited)
6716        Entity.setParameterCFAudited();
6717
6718      ExprResult ArgE = PerformCopyInitialization(
6719          Entity, SourceLocation(), Arg, IsListInitialization, AllowExplicit);
6720      if (ArgE.isInvalid())
6721        return true;
6722
6723      Arg = ArgE.getAs<Expr>();
6724    } else {
6725      assert(Param && "can't use default arguments without a known callee");
6726
6727      ExprResult ArgExpr = BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
6728      if (ArgExpr.isInvalid())
6729        return true;
6730
6731      Arg = ArgExpr.getAs<Expr>();
6732    }
6733
6734    // Check for array bounds violations for each argument to the call. This
6735    // check only triggers warnings when the argument isn't a more complex Expr
6736    // with its own checking, such as a BinaryOperator.
6737    CheckArrayAccess(Arg);
6738
6739    // Check for violations of C99 static array rules (C99 6.7.5.3p7).
6740    CheckStaticArrayArgument(CallLoc, Param, Arg);
6741
6742    AllArgs.push_back(Arg);
6743  }
6744
6745  // If this is a variadic call, handle args passed through "...".
6746  if (CallType != VariadicDoesNotApply) {
6747    // Assume that extern "C" functions with variadic arguments that
6748    // return __unknown_anytype aren't *really* variadic.
6749    if (Proto->getReturnType() == Context.UnknownAnyTy && FDecl &&
6750        FDecl->isExternC()) {
6751      for (Expr *A : Args.slice(ArgIx)) {
6752        QualType paramType; // ignored
6753        ExprResult arg = checkUnknownAnyArg(CallLoc, A, paramType);
6754        Invalid |= arg.isInvalid();
6755        AllArgs.push_back(arg.get());
6756      }
6757
6758    // Otherwise do argument promotion, (C99 6.5.2.2p7).
6759    } else {
6760      for (Expr *A : Args.slice(ArgIx)) {
6761        ExprResult Arg = DefaultVariadicArgumentPromotion(A, CallType, FDecl);
6762        Invalid |= Arg.isInvalid();
6763        AllArgs.push_back(Arg.get());
6764      }
6765    }
6766
6767    // Check for array bounds violations.
6768    for (Expr *A : Args.slice(ArgIx))
6769      CheckArrayAccess(A);
6770  }
6771  return Invalid;
6772}
6773
6774static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) {
6775  TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc();
6776  if (DecayedTypeLoc DTL = TL.getAs<DecayedTypeLoc>())
6777    TL = DTL.getOriginalLoc();
6778  if (ArrayTypeLoc ATL = TL.getAs<ArrayTypeLoc>())
6779    S.Diag(PVD->getLocation(), diag::note_callee_static_array)
6780      << ATL.getLocalSourceRange();
6781}
6782
6783/// CheckStaticArrayArgument - If the given argument corresponds to a static
6784/// array parameter, check that it is non-null, and that if it is formed by
6785/// array-to-pointer decay, the underlying array is sufficiently large.
6786///
6787/// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the
6788/// array type derivation, then for each call to the function, the value of the
6789/// corresponding actual argument shall provide access to the first element of
6790/// an array with at least as many elements as specified by the size expression.
6791void
6792Sema::CheckStaticArrayArgument(SourceLocation CallLoc,
6793                               ParmVarDecl *Param,
6794                               const Expr *ArgExpr) {
6795  // Static array parameters are not supported in C++.
6796  if (!Param || getLangOpts().CPlusPlus)
6797    return;
6798
6799  QualType OrigTy = Param->getOriginalType();
6800
6801  const ArrayType *AT = Context.getAsArrayType(OrigTy);
6802  if (!AT || AT->getSizeModifier() != ArraySizeModifier::Static)
6803    return;
6804
6805  if (ArgExpr->isNullPointerConstant(Context,
6806                                     Expr::NPC_NeverValueDependent)) {
6807    Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
6808    DiagnoseCalleeStaticArrayParam(*this, Param);
6809    return;
6810  }
6811
6812  const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT);
6813  if (!CAT)
6814    return;
6815
6816  const ConstantArrayType *ArgCAT =
6817    Context.getAsConstantArrayType(ArgExpr->IgnoreParenCasts()->getType());
6818  if (!ArgCAT)
6819    return;
6820
6821  if (getASTContext().hasSameUnqualifiedType(CAT->getElementType(),
6822                                             ArgCAT->getElementType())) {
6823    if (ArgCAT->getSize().ult(CAT->getSize())) {
6824      Diag(CallLoc, diag::warn_static_array_too_small)
6825          << ArgExpr->getSourceRange()
6826          << (unsigned)ArgCAT->getSize().getZExtValue()
6827          << (unsigned)CAT->getSize().getZExtValue() << 0;
6828      DiagnoseCalleeStaticArrayParam(*this, Param);
6829    }
6830    return;
6831  }
6832
6833  std::optional<CharUnits> ArgSize =
6834      getASTContext().getTypeSizeInCharsIfKnown(ArgCAT);
6835  std::optional<CharUnits> ParmSize =
6836      getASTContext().getTypeSizeInCharsIfKnown(CAT);
6837  if (ArgSize && ParmSize && *ArgSize < *ParmSize) {
6838    Diag(CallLoc, diag::warn_static_array_too_small)
6839        << ArgExpr->getSourceRange() << (unsigned)ArgSize->getQuantity()
6840        << (unsigned)ParmSize->getQuantity() << 1;
6841    DiagnoseCalleeStaticArrayParam(*this, Param);
6842  }
6843}
6844
6845/// Given a function expression of unknown-any type, try to rebuild it
6846/// to have a function type.
6847static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
6848
6849/// Is the given type a placeholder that we need to lower out
6850/// immediately during argument processing?
6851static bool isPlaceholderToRemoveAsArg(QualType type) {
6852  // Placeholders are never sugared.
6853  const BuiltinType *placeholder = dyn_cast<BuiltinType>(type);
6854  if (!placeholder) return false;
6855
6856  switch (placeholder->getKind()) {
6857  // Ignore all the non-placeholder types.
6858#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
6859  case BuiltinType::Id:
6860#include "clang/Basic/OpenCLImageTypes.def"
6861#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
6862  case BuiltinType::Id:
6863#include "clang/Basic/OpenCLExtensionTypes.def"
6864  // In practice we'll never use this, since all SVE types are sugared
6865  // via TypedefTypes rather than exposed directly as BuiltinTypes.
6866#define SVE_TYPE(Name, Id, SingletonId) \
6867  case BuiltinType::Id:
6868#include "clang/Basic/AArch64SVEACLETypes.def"
6869#define PPC_VECTOR_TYPE(Name, Id, Size) \
6870  case BuiltinType::Id:
6871#include "clang/Basic/PPCTypes.def"
6872#define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
6873#include "clang/Basic/RISCVVTypes.def"
6874#define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
6875#include "clang/Basic/WebAssemblyReferenceTypes.def"
6876#define PLACEHOLDER_TYPE(ID, SINGLETON_ID)
6877#define BUILTIN_TYPE(ID, SINGLETON_ID) case BuiltinType::ID:
6878#include "clang/AST/BuiltinTypes.def"
6879    return false;
6880
6881  // We cannot lower out overload sets; they might validly be resolved
6882  // by the call machinery.
6883  case BuiltinType::Overload:
6884    return false;
6885
6886  // Unbridged casts in ARC can be handled in some call positions and
6887  // should be left in place.
6888  case BuiltinType::ARCUnbridgedCast:
6889    return false;
6890
6891  // Pseudo-objects should be converted as soon as possible.
6892  case BuiltinType::PseudoObject:
6893    return true;
6894
6895  // The debugger mode could theoretically but currently does not try
6896  // to resolve unknown-typed arguments based on known parameter types.
6897  case BuiltinType::UnknownAny:
6898    return true;
6899
6900  // These are always invalid as call arguments and should be reported.
6901  case BuiltinType::BoundMember:
6902  case BuiltinType::BuiltinFn:
6903  case BuiltinType::IncompleteMatrixIdx:
6904  case BuiltinType::OMPArraySection:
6905  case BuiltinType::OMPArrayShaping:
6906  case BuiltinType::OMPIterator:
6907    return true;
6908
6909  }
6910  llvm_unreachable("bad builtin type kind");
6911}
6912
6913bool Sema::CheckArgsForPlaceholders(MultiExprArg args) {
6914  // Apply this processing to all the arguments at once instead of
6915  // dying at the first failure.
6916  bool hasInvalid = false;
6917  for (size_t i = 0, e = args.size(); i != e; i++) {
6918    if (isPlaceholderToRemoveAsArg(args[i]->getType())) {
6919      ExprResult result = CheckPlaceholderExpr(args[i]);
6920      if (result.isInvalid()) hasInvalid = true;
6921      else args[i] = result.get();
6922    }
6923  }
6924  return hasInvalid;
6925}
6926
6927/// If a builtin function has a pointer argument with no explicit address
6928/// space, then it should be able to accept a pointer to any address
6929/// space as input.  In order to do this, we need to replace the
6930/// standard builtin declaration with one that uses the same address space
6931/// as the call.
6932///
6933/// \returns nullptr If this builtin is not a candidate for a rewrite i.e.
6934///                  it does not contain any pointer arguments without
6935///                  an address space qualifer.  Otherwise the rewritten
6936///                  FunctionDecl is returned.
6937/// TODO: Handle pointer return types.
6938static FunctionDecl *rewriteBuiltinFunctionDecl(Sema *Sema, ASTContext &Context,
6939                                                FunctionDecl *FDecl,
6940                                                MultiExprArg ArgExprs) {
6941
6942  QualType DeclType = FDecl->getType();
6943  const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(DeclType);
6944
6945  if (!Context.BuiltinInfo.hasPtrArgsOrResult(FDecl->getBuiltinID()) || !FT ||
6946      ArgExprs.size() < FT->getNumParams())
6947    return nullptr;
6948
6949  bool NeedsNewDecl = false;
6950  unsigned i = 0;
6951  SmallVector<QualType, 8> OverloadParams;
6952
6953  for (QualType ParamType : FT->param_types()) {
6954
6955    // Convert array arguments to pointer to simplify type lookup.
6956    ExprResult ArgRes =
6957        Sema->DefaultFunctionArrayLvalueConversion(ArgExprs[i++]);
6958    if (ArgRes.isInvalid())
6959      return nullptr;
6960    Expr *Arg = ArgRes.get();
6961    QualType ArgType = Arg->getType();
6962    if (!ParamType->isPointerType() || ParamType.hasAddressSpace() ||
6963        !ArgType->isPointerType() ||
6964        !ArgType->getPointeeType().hasAddressSpace() ||
6965        isPtrSizeAddressSpace(ArgType->getPointeeType().getAddressSpace())) {
6966      OverloadParams.push_back(ParamType);
6967      continue;
6968    }
6969
6970    QualType PointeeType = ParamType->getPointeeType();
6971    if (PointeeType.hasAddressSpace())
6972      continue;
6973
6974    NeedsNewDecl = true;
6975    LangAS AS = ArgType->getPointeeType().getAddressSpace();
6976
6977    PointeeType = Context.getAddrSpaceQualType(PointeeType, AS);
6978    OverloadParams.push_back(Context.getPointerType(PointeeType));
6979  }
6980
6981  if (!NeedsNewDecl)
6982    return nullptr;
6983
6984  FunctionProtoType::ExtProtoInfo EPI;
6985  EPI.Variadic = FT->isVariadic();
6986  QualType OverloadTy = Context.getFunctionType(FT->getReturnType(),
6987                                                OverloadParams, EPI);
6988  DeclContext *Parent = FDecl->getParent();
6989  FunctionDecl *OverloadDecl = FunctionDecl::Create(
6990      Context, Parent, FDecl->getLocation(), FDecl->getLocation(),
6991      FDecl->getIdentifier(), OverloadTy,
6992      /*TInfo=*/nullptr, SC_Extern, Sema->getCurFPFeatures().isFPConstrained(),
6993      false,
6994      /*hasPrototype=*/true);
6995  SmallVector<ParmVarDecl*, 16> Params;
6996  FT = cast<FunctionProtoType>(OverloadTy);
6997  for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
6998    QualType ParamType = FT->getParamType(i);
6999    ParmVarDecl *Parm =
7000        ParmVarDecl::Create(Context, OverloadDecl, SourceLocation(),
7001                                SourceLocation(), nullptr, ParamType,
7002                                /*TInfo=*/nullptr, SC_None, nullptr);
7003    Parm->setScopeInfo(0, i);
7004    Params.push_back(Parm);
7005  }
7006  OverloadDecl->setParams(Params);
7007  Sema->mergeDeclAttributes(OverloadDecl, FDecl);
7008  return OverloadDecl;
7009}
7010
7011static void checkDirectCallValidity(Sema &S, const Expr *Fn,
7012                                    FunctionDecl *Callee,
7013                                    MultiExprArg ArgExprs) {
7014  // `Callee` (when called with ArgExprs) may be ill-formed. enable_if (and
7015  // similar attributes) really don't like it when functions are called with an
7016  // invalid number of args.
7017  if (S.TooManyArguments(Callee->getNumParams(), ArgExprs.size(),
7018                         /*PartialOverloading=*/false) &&
7019      !Callee->isVariadic())
7020    return;
7021  if (Callee->getMinRequiredArguments() > ArgExprs.size())
7022    return;
7023
7024  if (const EnableIfAttr *Attr =
7025          S.CheckEnableIf(Callee, Fn->getBeginLoc(), ArgExprs, true)) {
7026    S.Diag(Fn->getBeginLoc(),
7027           isa<CXXMethodDecl>(Callee)
7028               ? diag::err_ovl_no_viable_member_function_in_call
7029               : diag::err_ovl_no_viable_function_in_call)
7030        << Callee << Callee->getSourceRange();
7031    S.Diag(Callee->getLocation(),
7032           diag::note_ovl_candidate_disabled_by_function_cond_attr)
7033        << Attr->getCond()->getSourceRange() << Attr->getMessage();
7034    return;
7035  }
7036}
7037
7038static bool enclosingClassIsRelatedToClassInWhichMembersWereFound(
7039    const UnresolvedMemberExpr *const UME, Sema &S) {
7040
7041  const auto GetFunctionLevelDCIfCXXClass =
7042      [](Sema &S) -> const CXXRecordDecl * {
7043    const DeclContext *const DC = S.getFunctionLevelDeclContext();
7044    if (!DC || !DC->getParent())
7045      return nullptr;
7046
7047    // If the call to some member function was made from within a member
7048    // function body 'M' return return 'M's parent.
7049    if (const auto *MD = dyn_cast<CXXMethodDecl>(DC))
7050      return MD->getParent()->getCanonicalDecl();
7051    // else the call was made from within a default member initializer of a
7052    // class, so return the class.
7053    if (const auto *RD = dyn_cast<CXXRecordDecl>(DC))
7054      return RD->getCanonicalDecl();
7055    return nullptr;
7056  };
7057  // If our DeclContext is neither a member function nor a class (in the
7058  // case of a lambda in a default member initializer), we can't have an
7059  // enclosing 'this'.
7060
7061  const CXXRecordDecl *const CurParentClass = GetFunctionLevelDCIfCXXClass(S);
7062  if (!CurParentClass)
7063    return false;
7064
7065  // The naming class for implicit member functions call is the class in which
7066  // name lookup starts.
7067  const CXXRecordDecl *const NamingClass =
7068      UME->getNamingClass()->getCanonicalDecl();
7069  assert(NamingClass && "Must have naming class even for implicit access");
7070
7071  // If the unresolved member functions were found in a 'naming class' that is
7072  // related (either the same or derived from) to the class that contains the
7073  // member function that itself contained the implicit member access.
7074
7075  return CurParentClass == NamingClass ||
7076         CurParentClass->isDerivedFrom(NamingClass);
7077}
7078
7079static void
7080tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
7081    Sema &S, const UnresolvedMemberExpr *const UME, SourceLocation CallLoc) {
7082
7083  if (!UME)
7084    return;
7085
7086  LambdaScopeInfo *const CurLSI = S.getCurLambda();
7087  // Only try and implicitly capture 'this' within a C++ Lambda if it hasn't
7088  // already been captured, or if this is an implicit member function call (if
7089  // it isn't, an attempt to capture 'this' should already have been made).
7090  if (!CurLSI || CurLSI->ImpCaptureStyle == CurLSI->ImpCap_None ||
7091      !UME->isImplicitAccess() || CurLSI->isCXXThisCaptured())
7092    return;
7093
7094  // Check if the naming class in which the unresolved members were found is
7095  // related (same as or is a base of) to the enclosing class.
7096
7097  if (!enclosingClassIsRelatedToClassInWhichMembersWereFound(UME, S))
7098    return;
7099
7100
7101  DeclContext *EnclosingFunctionCtx = S.CurContext->getParent()->getParent();
7102  // If the enclosing function is not dependent, then this lambda is
7103  // capture ready, so if we can capture this, do so.
7104  if (!EnclosingFunctionCtx->isDependentContext()) {
7105    // If the current lambda and all enclosing lambdas can capture 'this' -
7106    // then go ahead and capture 'this' (since our unresolved overload set
7107    // contains at least one non-static member function).
7108    if (!S.CheckCXXThisCapture(CallLoc, /*Explcit*/ false, /*Diagnose*/ false))
7109      S.CheckCXXThisCapture(CallLoc);
7110  } else if (S.CurContext->isDependentContext()) {
7111    // ... since this is an implicit member reference, that might potentially
7112    // involve a 'this' capture, mark 'this' for potential capture in
7113    // enclosing lambdas.
7114    if (CurLSI->ImpCaptureStyle != CurLSI->ImpCap_None)
7115      CurLSI->addPotentialThisCapture(CallLoc);
7116  }
7117}
7118
7119// Once a call is fully resolved, warn for unqualified calls to specific
7120// C++ standard functions, like move and forward.
7121static void DiagnosedUnqualifiedCallsToStdFunctions(Sema &S,
7122                                                    const CallExpr *Call) {
7123  // We are only checking unary move and forward so exit early here.
7124  if (Call->getNumArgs() != 1)
7125    return;
7126
7127  const Expr *E = Call->getCallee()->IgnoreParenImpCasts();
7128  if (!E || isa<UnresolvedLookupExpr>(E))
7129    return;
7130  const DeclRefExpr *DRE = dyn_cast_if_present<DeclRefExpr>(E);
7131  if (!DRE || !DRE->getLocation().isValid())
7132    return;
7133
7134  if (DRE->getQualifier())
7135    return;
7136
7137  const FunctionDecl *FD = Call->getDirectCallee();
7138  if (!FD)
7139    return;
7140
7141  // Only warn for some functions deemed more frequent or problematic.
7142  unsigned BuiltinID = FD->getBuiltinID();
7143  if (BuiltinID != Builtin::BImove && BuiltinID != Builtin::BIforward)
7144    return;
7145
7146  S.Diag(DRE->getLocation(), diag::warn_unqualified_call_to_std_cast_function)
7147      << FD->getQualifiedNameAsString()
7148      << FixItHint::CreateInsertion(DRE->getLocation(), "std::");
7149}
7150
7151ExprResult Sema::ActOnCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
7152                               MultiExprArg ArgExprs, SourceLocation RParenLoc,
7153                               Expr *ExecConfig) {
7154  ExprResult Call =
7155      BuildCallExpr(Scope, Fn, LParenLoc, ArgExprs, RParenLoc, ExecConfig,
7156                    /*IsExecConfig=*/false, /*AllowRecovery=*/true);
7157  if (Call.isInvalid())
7158    return Call;
7159
7160  // Diagnose uses of the C++20 "ADL-only template-id call" feature in earlier
7161  // language modes.
7162  if (const auto *ULE = dyn_cast<UnresolvedLookupExpr>(Fn);
7163      ULE && ULE->hasExplicitTemplateArgs() &&
7164      ULE->decls_begin() == ULE->decls_end()) {
7165    Diag(Fn->getExprLoc(), getLangOpts().CPlusPlus20
7166                               ? diag::warn_cxx17_compat_adl_only_template_id
7167                               : diag::ext_adl_only_template_id)
7168        << ULE->getName();
7169  }
7170
7171  if (LangOpts.OpenMP)
7172    Call = ActOnOpenMPCall(Call, Scope, LParenLoc, ArgExprs, RParenLoc,
7173                           ExecConfig);
7174  if (LangOpts.CPlusPlus) {
7175    if (const auto *CE = dyn_cast<CallExpr>(Call.get()))
7176      DiagnosedUnqualifiedCallsToStdFunctions(*this, CE);
7177  }
7178  return Call;
7179}
7180
7181/// BuildCallExpr - Handle a call to Fn with the specified array of arguments.
7182/// This provides the location of the left/right parens and a list of comma
7183/// locations.
7184ExprResult Sema::BuildCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
7185                               MultiExprArg ArgExprs, SourceLocation RParenLoc,
7186                               Expr *ExecConfig, bool IsExecConfig,
7187                               bool AllowRecovery) {
7188  // Since this might be a postfix expression, get rid of ParenListExprs.
7189  ExprResult Result = MaybeConvertParenListExprToParenExpr(Scope, Fn);
7190  if (Result.isInvalid()) return ExprError();
7191  Fn = Result.get();
7192
7193  if (CheckArgsForPlaceholders(ArgExprs))
7194    return ExprError();
7195
7196  if (getLangOpts().CPlusPlus) {
7197    // If this is a pseudo-destructor expression, build the call immediately.
7198    if (isa<CXXPseudoDestructorExpr>(Fn)) {
7199      if (!ArgExprs.empty()) {
7200        // Pseudo-destructor calls should not have any arguments.
7201        Diag(Fn->getBeginLoc(), diag::err_pseudo_dtor_call_with_args)
7202            << FixItHint::CreateRemoval(
7203                   SourceRange(ArgExprs.front()->getBeginLoc(),
7204                               ArgExprs.back()->getEndLoc()));
7205      }
7206
7207      return CallExpr::Create(Context, Fn, /*Args=*/{}, Context.VoidTy,
7208                              VK_PRValue, RParenLoc, CurFPFeatureOverrides());
7209    }
7210    if (Fn->getType() == Context.PseudoObjectTy) {
7211      ExprResult result = CheckPlaceholderExpr(Fn);
7212      if (result.isInvalid()) return ExprError();
7213      Fn = result.get();
7214    }
7215
7216    // Determine whether this is a dependent call inside a C++ template,
7217    // in which case we won't do any semantic analysis now.
7218    if (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(ArgExprs)) {
7219      if (ExecConfig) {
7220        return CUDAKernelCallExpr::Create(Context, Fn,
7221                                          cast<CallExpr>(ExecConfig), ArgExprs,
7222                                          Context.DependentTy, VK_PRValue,
7223                                          RParenLoc, CurFPFeatureOverrides());
7224      } else {
7225
7226        tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
7227            *this, dyn_cast<UnresolvedMemberExpr>(Fn->IgnoreParens()),
7228            Fn->getBeginLoc());
7229
7230        return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
7231                                VK_PRValue, RParenLoc, CurFPFeatureOverrides());
7232      }
7233    }
7234
7235    // Determine whether this is a call to an object (C++ [over.call.object]).
7236    if (Fn->getType()->isRecordType())
7237      return BuildCallToObjectOfClassType(Scope, Fn, LParenLoc, ArgExprs,
7238                                          RParenLoc);
7239
7240    if (Fn->getType() == Context.UnknownAnyTy) {
7241      ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
7242      if (result.isInvalid()) return ExprError();
7243      Fn = result.get();
7244    }
7245
7246    if (Fn->getType() == Context.BoundMemberTy) {
7247      return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs,
7248                                       RParenLoc, ExecConfig, IsExecConfig,
7249                                       AllowRecovery);
7250    }
7251  }
7252
7253  // Check for overloaded calls.  This can happen even in C due to extensions.
7254  if (Fn->getType() == Context.OverloadTy) {
7255    OverloadExpr::FindResult find = OverloadExpr::find(Fn);
7256
7257    // We aren't supposed to apply this logic if there's an '&' involved.
7258    if (!find.HasFormOfMemberPointer) {
7259      if (Expr::hasAnyTypeDependentArguments(ArgExprs))
7260        return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
7261                                VK_PRValue, RParenLoc, CurFPFeatureOverrides());
7262      OverloadExpr *ovl = find.Expression;
7263      if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(ovl))
7264        return BuildOverloadedCallExpr(
7265            Scope, Fn, ULE, LParenLoc, ArgExprs, RParenLoc, ExecConfig,
7266            /*AllowTypoCorrection=*/true, find.IsAddressOfOperand);
7267      return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs,
7268                                       RParenLoc, ExecConfig, IsExecConfig,
7269                                       AllowRecovery);
7270    }
7271  }
7272
7273  // If we're directly calling a function, get the appropriate declaration.
7274  if (Fn->getType() == Context.UnknownAnyTy) {
7275    ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
7276    if (result.isInvalid()) return ExprError();
7277    Fn = result.get();
7278  }
7279
7280  Expr *NakedFn = Fn->IgnoreParens();
7281
7282  bool CallingNDeclIndirectly = false;
7283  NamedDecl *NDecl = nullptr;
7284  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn)) {
7285    if (UnOp->getOpcode() == UO_AddrOf) {
7286      CallingNDeclIndirectly = true;
7287      NakedFn = UnOp->getSubExpr()->IgnoreParens();
7288    }
7289  }
7290
7291  if (auto *DRE = dyn_cast<DeclRefExpr>(NakedFn)) {
7292    NDecl = DRE->getDecl();
7293
7294    FunctionDecl *FDecl = dyn_cast<FunctionDecl>(NDecl);
7295    if (FDecl && FDecl->getBuiltinID()) {
7296      // Rewrite the function decl for this builtin by replacing parameters
7297      // with no explicit address space with the address space of the arguments
7298      // in ArgExprs.
7299      if ((FDecl =
7300               rewriteBuiltinFunctionDecl(this, Context, FDecl, ArgExprs))) {
7301        NDecl = FDecl;
7302        Fn = DeclRefExpr::Create(
7303            Context, FDecl->getQualifierLoc(), SourceLocation(), FDecl, false,
7304            SourceLocation(), FDecl->getType(), Fn->getValueKind(), FDecl,
7305            nullptr, DRE->isNonOdrUse());
7306      }
7307    }
7308  } else if (auto *ME = dyn_cast<MemberExpr>(NakedFn))
7309    NDecl = ME->getMemberDecl();
7310
7311  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(NDecl)) {
7312    if (CallingNDeclIndirectly && !checkAddressOfFunctionIsAvailable(
7313                                      FD, /*Complain=*/true, Fn->getBeginLoc()))
7314      return ExprError();
7315
7316    checkDirectCallValidity(*this, Fn, FD, ArgExprs);
7317
7318    // If this expression is a call to a builtin function in HIP device
7319    // compilation, allow a pointer-type argument to default address space to be
7320    // passed as a pointer-type parameter to a non-default address space.
7321    // If Arg is declared in the default address space and Param is declared
7322    // in a non-default address space, perform an implicit address space cast to
7323    // the parameter type.
7324    if (getLangOpts().HIP && getLangOpts().CUDAIsDevice && FD &&
7325        FD->getBuiltinID()) {
7326      for (unsigned Idx = 0; Idx < FD->param_size(); ++Idx) {
7327        ParmVarDecl *Param = FD->getParamDecl(Idx);
7328        if (!ArgExprs[Idx] || !Param || !Param->getType()->isPointerType() ||
7329            !ArgExprs[Idx]->getType()->isPointerType())
7330          continue;
7331
7332        auto ParamAS = Param->getType()->getPointeeType().getAddressSpace();
7333        auto ArgTy = ArgExprs[Idx]->getType();
7334        auto ArgPtTy = ArgTy->getPointeeType();
7335        auto ArgAS = ArgPtTy.getAddressSpace();
7336
7337        // Add address space cast if target address spaces are different
7338        bool NeedImplicitASC =
7339          ParamAS != LangAS::Default &&       // Pointer params in generic AS don't need special handling.
7340          ( ArgAS == LangAS::Default  ||      // We do allow implicit conversion from generic AS
7341                                              // or from specific AS which has target AS matching that of Param.
7342          getASTContext().getTargetAddressSpace(ArgAS) == getASTContext().getTargetAddressSpace(ParamAS));
7343        if (!NeedImplicitASC)
7344          continue;
7345
7346        // First, ensure that the Arg is an RValue.
7347        if (ArgExprs[Idx]->isGLValue()) {
7348          ArgExprs[Idx] = ImplicitCastExpr::Create(
7349              Context, ArgExprs[Idx]->getType(), CK_NoOp, ArgExprs[Idx],
7350              nullptr, VK_PRValue, FPOptionsOverride());
7351        }
7352
7353        // Construct a new arg type with address space of Param
7354        Qualifiers ArgPtQuals = ArgPtTy.getQualifiers();
7355        ArgPtQuals.setAddressSpace(ParamAS);
7356        auto NewArgPtTy =
7357            Context.getQualifiedType(ArgPtTy.getUnqualifiedType(), ArgPtQuals);
7358        auto NewArgTy =
7359            Context.getQualifiedType(Context.getPointerType(NewArgPtTy),
7360                                     ArgTy.getQualifiers());
7361
7362        // Finally perform an implicit address space cast
7363        ArgExprs[Idx] = ImpCastExprToType(ArgExprs[Idx], NewArgTy,
7364                                          CK_AddressSpaceConversion)
7365                            .get();
7366      }
7367    }
7368  }
7369
7370  if (Context.isDependenceAllowed() &&
7371      (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(ArgExprs))) {
7372    assert(!getLangOpts().CPlusPlus);
7373    assert((Fn->containsErrors() ||
7374            llvm::any_of(ArgExprs,
7375                         [](clang::Expr *E) { return E->containsErrors(); })) &&
7376           "should only occur in error-recovery path.");
7377    return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
7378                            VK_PRValue, RParenLoc, CurFPFeatureOverrides());
7379  }
7380  return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, ArgExprs, RParenLoc,
7381                               ExecConfig, IsExecConfig);
7382}
7383
7384/// BuildBuiltinCallExpr - Create a call to a builtin function specified by Id
7385//  with the specified CallArgs
7386Expr *Sema::BuildBuiltinCallExpr(SourceLocation Loc, Builtin::ID Id,
7387                                 MultiExprArg CallArgs) {
7388  StringRef Name = Context.BuiltinInfo.getName(Id);
7389  LookupResult R(*this, &Context.Idents.get(Name), Loc,
7390                 Sema::LookupOrdinaryName);
7391  LookupName(R, TUScope, /*AllowBuiltinCreation=*/true);
7392
7393  auto *BuiltInDecl = R.getAsSingle<FunctionDecl>();
7394  assert(BuiltInDecl && "failed to find builtin declaration");
7395
7396  ExprResult DeclRef =
7397      BuildDeclRefExpr(BuiltInDecl, BuiltInDecl->getType(), VK_LValue, Loc);
7398  assert(DeclRef.isUsable() && "Builtin reference cannot fail");
7399
7400  ExprResult Call =
7401      BuildCallExpr(/*Scope=*/nullptr, DeclRef.get(), Loc, CallArgs, Loc);
7402
7403  assert(!Call.isInvalid() && "Call to builtin cannot fail!");
7404  return Call.get();
7405}
7406
7407/// Parse a __builtin_astype expression.
7408///
7409/// __builtin_astype( value, dst type )
7410///
7411ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
7412                                 SourceLocation BuiltinLoc,
7413                                 SourceLocation RParenLoc) {
7414  QualType DstTy = GetTypeFromParser(ParsedDestTy);
7415  return BuildAsTypeExpr(E, DstTy, BuiltinLoc, RParenLoc);
7416}
7417
7418/// Create a new AsTypeExpr node (bitcast) from the arguments.
7419ExprResult Sema::BuildAsTypeExpr(Expr *E, QualType DestTy,
7420                                 SourceLocation BuiltinLoc,
7421                                 SourceLocation RParenLoc) {
7422  ExprValueKind VK = VK_PRValue;
7423  ExprObjectKind OK = OK_Ordinary;
7424  QualType SrcTy = E->getType();
7425  if (!SrcTy->isDependentType() &&
7426      Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy))
7427    return ExprError(
7428        Diag(BuiltinLoc, diag::err_invalid_astype_of_different_size)
7429        << DestTy << SrcTy << E->getSourceRange());
7430  return new (Context) AsTypeExpr(E, DestTy, VK, OK, BuiltinLoc, RParenLoc);
7431}
7432
7433/// ActOnConvertVectorExpr - create a new convert-vector expression from the
7434/// provided arguments.
7435///
7436/// __builtin_convertvector( value, dst type )
7437///
7438ExprResult Sema::ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy,
7439                                        SourceLocation BuiltinLoc,
7440                                        SourceLocation RParenLoc) {
7441  TypeSourceInfo *TInfo;
7442  GetTypeFromParser(ParsedDestTy, &TInfo);
7443  return SemaConvertVectorExpr(E, TInfo, BuiltinLoc, RParenLoc);
7444}
7445
7446/// BuildResolvedCallExpr - Build a call to a resolved expression,
7447/// i.e. an expression not of \p OverloadTy.  The expression should
7448/// unary-convert to an expression of function-pointer or
7449/// block-pointer type.
7450///
7451/// \param NDecl the declaration being called, if available
7452ExprResult Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
7453                                       SourceLocation LParenLoc,
7454                                       ArrayRef<Expr *> Args,
7455                                       SourceLocation RParenLoc, Expr *Config,
7456                                       bool IsExecConfig, ADLCallKind UsesADL) {
7457  FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
7458  unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
7459
7460  // Functions with 'interrupt' attribute cannot be called directly.
7461  if (FDecl && FDecl->hasAttr<AnyX86InterruptAttr>()) {
7462    Diag(Fn->getExprLoc(), diag::err_anyx86_interrupt_called);
7463    return ExprError();
7464  }
7465
7466  // Interrupt handlers don't save off the VFP regs automatically on ARM,
7467  // so there's some risk when calling out to non-interrupt handler functions
7468  // that the callee might not preserve them. This is easy to diagnose here,
7469  // but can be very challenging to debug.
7470  // Likewise, X86 interrupt handlers may only call routines with attribute
7471  // no_caller_saved_registers since there is no efficient way to
7472  // save and restore the non-GPR state.
7473  if (auto *Caller = getCurFunctionDecl()) {
7474    if (Caller->hasAttr<ARMInterruptAttr>()) {
7475      bool VFP = Context.getTargetInfo().hasFeature("vfp");
7476      if (VFP && (!FDecl || !FDecl->hasAttr<ARMInterruptAttr>())) {
7477        Diag(Fn->getExprLoc(), diag::warn_arm_interrupt_calling_convention);
7478        if (FDecl)
7479          Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl;
7480      }
7481    }
7482    if (Caller->hasAttr<AnyX86InterruptAttr>() ||
7483        Caller->hasAttr<AnyX86NoCallerSavedRegistersAttr>()) {
7484      const TargetInfo &TI = Context.getTargetInfo();
7485      bool HasNonGPRRegisters =
7486          TI.hasFeature("sse") || TI.hasFeature("x87") || TI.hasFeature("mmx");
7487      if (HasNonGPRRegisters &&
7488          (!FDecl || !FDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>())) {
7489        Diag(Fn->getExprLoc(), diag::warn_anyx86_excessive_regsave)
7490            << (Caller->hasAttr<AnyX86InterruptAttr>() ? 0 : 1);
7491        if (FDecl)
7492          Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl;
7493      }
7494    }
7495  }
7496
7497  // Promote the function operand.
7498  // We special-case function promotion here because we only allow promoting
7499  // builtin functions to function pointers in the callee of a call.
7500  ExprResult Result;
7501  QualType ResultTy;
7502  if (BuiltinID &&
7503      Fn->getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn)) {
7504    // Extract the return type from the (builtin) function pointer type.
7505    // FIXME Several builtins still have setType in
7506    // Sema::CheckBuiltinFunctionCall. One should review their definitions in
7507    // Builtins.def to ensure they are correct before removing setType calls.
7508    QualType FnPtrTy = Context.getPointerType(FDecl->getType());
7509    Result = ImpCastExprToType(Fn, FnPtrTy, CK_BuiltinFnToFnPtr).get();
7510    ResultTy = FDecl->getCallResultType();
7511  } else {
7512    Result = CallExprUnaryConversions(Fn);
7513    ResultTy = Context.BoolTy;
7514  }
7515  if (Result.isInvalid())
7516    return ExprError();
7517  Fn = Result.get();
7518
7519  // Check for a valid function type, but only if it is not a builtin which
7520  // requires custom type checking. These will be handled by
7521  // CheckBuiltinFunctionCall below just after creation of the call expression.
7522  const FunctionType *FuncT = nullptr;
7523  if (!BuiltinID || !Context.BuiltinInfo.hasCustomTypechecking(BuiltinID)) {
7524  retry:
7525    if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
7526      // C99 6.5.2.2p1 - "The expression that denotes the called function shall
7527      // have type pointer to function".
7528      FuncT = PT->getPointeeType()->getAs<FunctionType>();
7529      if (!FuncT)
7530        return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
7531                         << Fn->getType() << Fn->getSourceRange());
7532    } else if (const BlockPointerType *BPT =
7533                   Fn->getType()->getAs<BlockPointerType>()) {
7534      FuncT = BPT->getPointeeType()->castAs<FunctionType>();
7535    } else {
7536      // Handle calls to expressions of unknown-any type.
7537      if (Fn->getType() == Context.UnknownAnyTy) {
7538        ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
7539        if (rewrite.isInvalid())
7540          return ExprError();
7541        Fn = rewrite.get();
7542        goto retry;
7543      }
7544
7545      return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
7546                       << Fn->getType() << Fn->getSourceRange());
7547    }
7548  }
7549
7550  // Get the number of parameters in the function prototype, if any.
7551  // We will allocate space for max(Args.size(), NumParams) arguments
7552  // in the call expression.
7553  const auto *Proto = dyn_cast_or_null<FunctionProtoType>(FuncT);
7554  unsigned NumParams = Proto ? Proto->getNumParams() : 0;
7555
7556  CallExpr *TheCall;
7557  if (Config) {
7558    assert(UsesADL == ADLCallKind::NotADL &&
7559           "CUDAKernelCallExpr should not use ADL");
7560    TheCall = CUDAKernelCallExpr::Create(Context, Fn, cast<CallExpr>(Config),
7561                                         Args, ResultTy, VK_PRValue, RParenLoc,
7562                                         CurFPFeatureOverrides(), NumParams);
7563  } else {
7564    TheCall =
7565        CallExpr::Create(Context, Fn, Args, ResultTy, VK_PRValue, RParenLoc,
7566                         CurFPFeatureOverrides(), NumParams, UsesADL);
7567  }
7568
7569  if (!Context.isDependenceAllowed()) {
7570    // Forget about the nulled arguments since typo correction
7571    // do not handle them well.
7572    TheCall->shrinkNumArgs(Args.size());
7573    // C cannot always handle TypoExpr nodes in builtin calls and direct
7574    // function calls as their argument checking don't necessarily handle
7575    // dependent types properly, so make sure any TypoExprs have been
7576    // dealt with.
7577    ExprResult Result = CorrectDelayedTyposInExpr(TheCall);
7578    if (!Result.isUsable()) return ExprError();
7579    CallExpr *TheOldCall = TheCall;
7580    TheCall = dyn_cast<CallExpr>(Result.get());
7581    bool CorrectedTypos = TheCall != TheOldCall;
7582    if (!TheCall) return Result;
7583    Args = llvm::ArrayRef(TheCall->getArgs(), TheCall->getNumArgs());
7584
7585    // A new call expression node was created if some typos were corrected.
7586    // However it may not have been constructed with enough storage. In this
7587    // case, rebuild the node with enough storage. The waste of space is
7588    // immaterial since this only happens when some typos were corrected.
7589    if (CorrectedTypos && Args.size() < NumParams) {
7590      if (Config)
7591        TheCall = CUDAKernelCallExpr::Create(
7592            Context, Fn, cast<CallExpr>(Config), Args, ResultTy, VK_PRValue,
7593            RParenLoc, CurFPFeatureOverrides(), NumParams);
7594      else
7595        TheCall =
7596            CallExpr::Create(Context, Fn, Args, ResultTy, VK_PRValue, RParenLoc,
7597                             CurFPFeatureOverrides(), NumParams, UsesADL);
7598    }
7599    // We can now handle the nulled arguments for the default arguments.
7600    TheCall->setNumArgsUnsafe(std::max<unsigned>(Args.size(), NumParams));
7601  }
7602
7603  // Bail out early if calling a builtin with custom type checking.
7604  if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID))
7605    return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
7606
7607  if (getLangOpts().CUDA) {
7608    if (Config) {
7609      // CUDA: Kernel calls must be to global functions
7610      if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
7611        return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
7612            << FDecl << Fn->getSourceRange());
7613
7614      // CUDA: Kernel function must have 'void' return type
7615      if (!FuncT->getReturnType()->isVoidType() &&
7616          !FuncT->getReturnType()->getAs<AutoType>() &&
7617          !FuncT->getReturnType()->isInstantiationDependentType())
7618        return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
7619            << Fn->getType() << Fn->getSourceRange());
7620    } else {
7621      // CUDA: Calls to global functions must be configured
7622      if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>())
7623        return ExprError(Diag(LParenLoc, diag::err_global_call_not_config)
7624            << FDecl << Fn->getSourceRange());
7625    }
7626  }
7627
7628  // Check for a valid return type
7629  if (CheckCallReturnType(FuncT->getReturnType(), Fn->getBeginLoc(), TheCall,
7630                          FDecl))
7631    return ExprError();
7632
7633  // We know the result type of the call, set it.
7634  TheCall->setType(FuncT->getCallResultType(Context));
7635  TheCall->setValueKind(Expr::getValueKindForType(FuncT->getReturnType()));
7636
7637  // WebAssembly tables can't be used as arguments.
7638  if (Context.getTargetInfo().getTriple().isWasm()) {
7639    for (const Expr *Arg : Args) {
7640      if (Arg && Arg->getType()->isWebAssemblyTableType()) {
7641        return ExprError(Diag(Arg->getExprLoc(),
7642                              diag::err_wasm_table_as_function_parameter));
7643      }
7644    }
7645  }
7646
7647  if (Proto) {
7648    if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, RParenLoc,
7649                                IsExecConfig))
7650      return ExprError();
7651  } else {
7652    assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
7653
7654    if (FDecl) {
7655      // Check if we have too few/too many template arguments, based
7656      // on our knowledge of the function definition.
7657      const FunctionDecl *Def = nullptr;
7658      if (FDecl->hasBody(Def) && Args.size() != Def->param_size()) {
7659        Proto = Def->getType()->getAs<FunctionProtoType>();
7660       if (!Proto || !(Proto->isVariadic() && Args.size() >= Def->param_size()))
7661          Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
7662          << (Args.size() > Def->param_size()) << FDecl << Fn->getSourceRange();
7663      }
7664
7665      // If the function we're calling isn't a function prototype, but we have
7666      // a function prototype from a prior declaratiom, use that prototype.
7667      if (!FDecl->hasPrototype())
7668        Proto = FDecl->getType()->getAs<FunctionProtoType>();
7669    }
7670
7671    // If we still haven't found a prototype to use but there are arguments to
7672    // the call, diagnose this as calling a function without a prototype.
7673    // However, if we found a function declaration, check to see if
7674    // -Wdeprecated-non-prototype was disabled where the function was declared.
7675    // If so, we will silence the diagnostic here on the assumption that this
7676    // interface is intentional and the user knows what they're doing. We will
7677    // also silence the diagnostic if there is a function declaration but it
7678    // was implicitly defined (the user already gets diagnostics about the
7679    // creation of the implicit function declaration, so the additional warning
7680    // is not helpful).
7681    if (!Proto && !Args.empty() &&
7682        (!FDecl || (!FDecl->isImplicit() &&
7683                    !Diags.isIgnored(diag::warn_strict_uses_without_prototype,
7684                                     FDecl->getLocation()))))
7685      Diag(LParenLoc, diag::warn_strict_uses_without_prototype)
7686          << (FDecl != nullptr) << FDecl;
7687
7688    // Promote the arguments (C99 6.5.2.2p6).
7689    for (unsigned i = 0, e = Args.size(); i != e; i++) {
7690      Expr *Arg = Args[i];
7691
7692      if (Proto && i < Proto->getNumParams()) {
7693        InitializedEntity Entity = InitializedEntity::InitializeParameter(
7694            Context, Proto->getParamType(i), Proto->isParamConsumed(i));
7695        ExprResult ArgE =
7696            PerformCopyInitialization(Entity, SourceLocation(), Arg);
7697        if (ArgE.isInvalid())
7698          return true;
7699
7700        Arg = ArgE.getAs<Expr>();
7701
7702      } else {
7703        ExprResult ArgE = DefaultArgumentPromotion(Arg);
7704
7705        if (ArgE.isInvalid())
7706          return true;
7707
7708        Arg = ArgE.getAs<Expr>();
7709      }
7710
7711      if (RequireCompleteType(Arg->getBeginLoc(), Arg->getType(),
7712                              diag::err_call_incomplete_argument, Arg))
7713        return ExprError();
7714
7715      TheCall->setArg(i, Arg);
7716    }
7717    TheCall->computeDependence();
7718  }
7719
7720  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
7721    if (Method->isImplicitObjectMemberFunction())
7722      return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
7723                       << Fn->getSourceRange() << 0);
7724
7725  // Check for sentinels
7726  if (NDecl)
7727    DiagnoseSentinelCalls(NDecl, LParenLoc, Args);
7728
7729  // Warn for unions passing across security boundary (CMSE).
7730  if (FuncT != nullptr && FuncT->getCmseNSCallAttr()) {
7731    for (unsigned i = 0, e = Args.size(); i != e; i++) {
7732      if (const auto *RT =
7733              dyn_cast<RecordType>(Args[i]->getType().getCanonicalType())) {
7734        if (RT->getDecl()->isOrContainsUnion())
7735          Diag(Args[i]->getBeginLoc(), diag::warn_cmse_nonsecure_union)
7736              << 0 << i;
7737      }
7738    }
7739  }
7740
7741  // Do special checking on direct calls to functions.
7742  if (FDecl) {
7743    if (CheckFunctionCall(FDecl, TheCall, Proto))
7744      return ExprError();
7745
7746    checkFortifiedBuiltinMemoryFunction(FDecl, TheCall);
7747
7748    if (BuiltinID)
7749      return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
7750  } else if (NDecl) {
7751    if (CheckPointerCall(NDecl, TheCall, Proto))
7752      return ExprError();
7753  } else {
7754    if (CheckOtherCall(TheCall, Proto))
7755      return ExprError();
7756  }
7757
7758  return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), FDecl);
7759}
7760
7761ExprResult
7762Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
7763                           SourceLocation RParenLoc, Expr *InitExpr) {
7764  assert(Ty && "ActOnCompoundLiteral(): missing type");
7765  assert(InitExpr && "ActOnCompoundLiteral(): missing expression");
7766
7767  TypeSourceInfo *TInfo;
7768  QualType literalType = GetTypeFromParser(Ty, &TInfo);
7769  if (!TInfo)
7770    TInfo = Context.getTrivialTypeSourceInfo(literalType);
7771
7772  return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
7773}
7774
7775ExprResult
7776Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
7777                               SourceLocation RParenLoc, Expr *LiteralExpr) {
7778  QualType literalType = TInfo->getType();
7779
7780  if (literalType->isArrayType()) {
7781    if (RequireCompleteSizedType(
7782            LParenLoc, Context.getBaseElementType(literalType),
7783            diag::err_array_incomplete_or_sizeless_type,
7784            SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
7785      return ExprError();
7786    if (literalType->isVariableArrayType()) {
7787      // C23 6.7.10p4: An entity of variable length array type shall not be
7788      // initialized except by an empty initializer.
7789      //
7790      // The C extension warnings are issued from ParseBraceInitializer() and
7791      // do not need to be issued here. However, we continue to issue an error
7792      // in the case there are initializers or we are compiling C++. We allow
7793      // use of VLAs in C++, but it's not clear we want to allow {} to zero
7794      // init a VLA in C++ in all cases (such as with non-trivial constructors).
7795      // FIXME: should we allow this construct in C++ when it makes sense to do
7796      // so?
7797      std::optional<unsigned> NumInits;
7798      if (const auto *ILE = dyn_cast<InitListExpr>(LiteralExpr))
7799        NumInits = ILE->getNumInits();
7800      if ((LangOpts.CPlusPlus || NumInits.value_or(0)) &&
7801          !tryToFixVariablyModifiedVarType(TInfo, literalType, LParenLoc,
7802                                           diag::err_variable_object_no_init))
7803        return ExprError();
7804    }
7805  } else if (!literalType->isDependentType() &&
7806             RequireCompleteType(LParenLoc, literalType,
7807               diag::err_typecheck_decl_incomplete_type,
7808               SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
7809    return ExprError();
7810
7811  InitializedEntity Entity
7812    = InitializedEntity::InitializeCompoundLiteralInit(TInfo);
7813  InitializationKind Kind
7814    = InitializationKind::CreateCStyleCast(LParenLoc,
7815                                           SourceRange(LParenLoc, RParenLoc),
7816                                           /*InitList=*/true);
7817  InitializationSequence InitSeq(*this, Entity, Kind, LiteralExpr);
7818  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, LiteralExpr,
7819                                      &literalType);
7820  if (Result.isInvalid())
7821    return ExprError();
7822  LiteralExpr = Result.get();
7823
7824  bool isFileScope = !CurContext->isFunctionOrMethod();
7825
7826  // In C, compound literals are l-values for some reason.
7827  // For GCC compatibility, in C++, file-scope array compound literals with
7828  // constant initializers are also l-values, and compound literals are
7829  // otherwise prvalues.
7830  //
7831  // (GCC also treats C++ list-initialized file-scope array prvalues with
7832  // constant initializers as l-values, but that's non-conforming, so we don't
7833  // follow it there.)
7834  //
7835  // FIXME: It would be better to handle the lvalue cases as materializing and
7836  // lifetime-extending a temporary object, but our materialized temporaries
7837  // representation only supports lifetime extension from a variable, not "out
7838  // of thin air".
7839  // FIXME: For C++, we might want to instead lifetime-extend only if a pointer
7840  // is bound to the result of applying array-to-pointer decay to the compound
7841  // literal.
7842  // FIXME: GCC supports compound literals of reference type, which should
7843  // obviously have a value kind derived from the kind of reference involved.
7844  ExprValueKind VK =
7845      (getLangOpts().CPlusPlus && !(isFileScope && literalType->isArrayType()))
7846          ? VK_PRValue
7847          : VK_LValue;
7848
7849  if (isFileScope)
7850    if (auto ILE = dyn_cast<InitListExpr>(LiteralExpr))
7851      for (unsigned i = 0, j = ILE->getNumInits(); i != j; i++) {
7852        Expr *Init = ILE->getInit(i);
7853        ILE->setInit(i, ConstantExpr::Create(Context, Init));
7854      }
7855
7856  auto *E = new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
7857                                              VK, LiteralExpr, isFileScope);
7858  if (isFileScope) {
7859    if (!LiteralExpr->isTypeDependent() &&
7860        !LiteralExpr->isValueDependent() &&
7861        !literalType->isDependentType()) // C99 6.5.2.5p3
7862      if (CheckForConstantInitializer(LiteralExpr, literalType))
7863        return ExprError();
7864  } else if (literalType.getAddressSpace() != LangAS::opencl_private &&
7865             literalType.getAddressSpace() != LangAS::Default) {
7866    // Embedded-C extensions to C99 6.5.2.5:
7867    //   "If the compound literal occurs inside the body of a function, the
7868    //   type name shall not be qualified by an address-space qualifier."
7869    Diag(LParenLoc, diag::err_compound_literal_with_address_space)
7870      << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd());
7871    return ExprError();
7872  }
7873
7874  if (!isFileScope && !getLangOpts().CPlusPlus) {
7875    // Compound literals that have automatic storage duration are destroyed at
7876    // the end of the scope in C; in C++, they're just temporaries.
7877
7878    // Emit diagnostics if it is or contains a C union type that is non-trivial
7879    // to destruct.
7880    if (E->getType().hasNonTrivialToPrimitiveDestructCUnion())
7881      checkNonTrivialCUnion(E->getType(), E->getExprLoc(),
7882                            NTCUC_CompoundLiteral, NTCUK_Destruct);
7883
7884    // Diagnose jumps that enter or exit the lifetime of the compound literal.
7885    if (literalType.isDestructedType()) {
7886      Cleanup.setExprNeedsCleanups(true);
7887      ExprCleanupObjects.push_back(E);
7888      getCurFunction()->setHasBranchProtectedScope();
7889    }
7890  }
7891
7892  if (E->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
7893      E->getType().hasNonTrivialToPrimitiveCopyCUnion())
7894    checkNonTrivialCUnionInInitializer(E->getInitializer(),
7895                                       E->getInitializer()->getExprLoc());
7896
7897  return MaybeBindToTemporary(E);
7898}
7899
7900ExprResult
7901Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
7902                    SourceLocation RBraceLoc) {
7903  // Only produce each kind of designated initialization diagnostic once.
7904  SourceLocation FirstDesignator;
7905  bool DiagnosedArrayDesignator = false;
7906  bool DiagnosedNestedDesignator = false;
7907  bool DiagnosedMixedDesignator = false;
7908
7909  // Check that any designated initializers are syntactically valid in the
7910  // current language mode.
7911  for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
7912    if (auto *DIE = dyn_cast<DesignatedInitExpr>(InitArgList[I])) {
7913      if (FirstDesignator.isInvalid())
7914        FirstDesignator = DIE->getBeginLoc();
7915
7916      if (!getLangOpts().CPlusPlus)
7917        break;
7918
7919      if (!DiagnosedNestedDesignator && DIE->size() > 1) {
7920        DiagnosedNestedDesignator = true;
7921        Diag(DIE->getBeginLoc(), diag::ext_designated_init_nested)
7922          << DIE->getDesignatorsSourceRange();
7923      }
7924
7925      for (auto &Desig : DIE->designators()) {
7926        if (!Desig.isFieldDesignator() && !DiagnosedArrayDesignator) {
7927          DiagnosedArrayDesignator = true;
7928          Diag(Desig.getBeginLoc(), diag::ext_designated_init_array)
7929            << Desig.getSourceRange();
7930        }
7931      }
7932
7933      if (!DiagnosedMixedDesignator &&
7934          !isa<DesignatedInitExpr>(InitArgList[0])) {
7935        DiagnosedMixedDesignator = true;
7936        Diag(DIE->getBeginLoc(), diag::ext_designated_init_mixed)
7937          << DIE->getSourceRange();
7938        Diag(InitArgList[0]->getBeginLoc(), diag::note_designated_init_mixed)
7939          << InitArgList[0]->getSourceRange();
7940      }
7941    } else if (getLangOpts().CPlusPlus && !DiagnosedMixedDesignator &&
7942               isa<DesignatedInitExpr>(InitArgList[0])) {
7943      DiagnosedMixedDesignator = true;
7944      auto *DIE = cast<DesignatedInitExpr>(InitArgList[0]);
7945      Diag(DIE->getBeginLoc(), diag::ext_designated_init_mixed)
7946        << DIE->getSourceRange();
7947      Diag(InitArgList[I]->getBeginLoc(), diag::note_designated_init_mixed)
7948        << InitArgList[I]->getSourceRange();
7949    }
7950  }
7951
7952  if (FirstDesignator.isValid()) {
7953    // Only diagnose designated initiaization as a C++20 extension if we didn't
7954    // already diagnose use of (non-C++20) C99 designator syntax.
7955    if (getLangOpts().CPlusPlus && !DiagnosedArrayDesignator &&
7956        !DiagnosedNestedDesignator && !DiagnosedMixedDesignator) {
7957      Diag(FirstDesignator, getLangOpts().CPlusPlus20
7958                                ? diag::warn_cxx17_compat_designated_init
7959                                : diag::ext_cxx_designated_init);
7960    } else if (!getLangOpts().CPlusPlus && !getLangOpts().C99) {
7961      Diag(FirstDesignator, diag::ext_designated_init);
7962    }
7963  }
7964
7965  return BuildInitList(LBraceLoc, InitArgList, RBraceLoc);
7966}
7967
7968ExprResult
7969Sema::BuildInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
7970                    SourceLocation RBraceLoc) {
7971  // Semantic analysis for initializers is done by ActOnDeclarator() and
7972  // CheckInitializer() - it requires knowledge of the object being initialized.
7973
7974  // Immediately handle non-overload placeholders.  Overloads can be
7975  // resolved contextually, but everything else here can't.
7976  for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
7977    if (InitArgList[I]->getType()->isNonOverloadPlaceholderType()) {
7978      ExprResult result = CheckPlaceholderExpr(InitArgList[I]);
7979
7980      // Ignore failures; dropping the entire initializer list because
7981      // of one failure would be terrible for indexing/etc.
7982      if (result.isInvalid()) continue;
7983
7984      InitArgList[I] = result.get();
7985    }
7986  }
7987
7988  InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitArgList,
7989                                               RBraceLoc);
7990  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
7991  return E;
7992}
7993
7994/// Do an explicit extend of the given block pointer if we're in ARC.
7995void Sema::maybeExtendBlockObject(ExprResult &E) {
7996  assert(E.get()->getType()->isBlockPointerType());
7997  assert(E.get()->isPRValue());
7998
7999  // Only do this in an r-value context.
8000  if (!getLangOpts().ObjCAutoRefCount) return;
8001
8002  E = ImplicitCastExpr::Create(
8003      Context, E.get()->getType(), CK_ARCExtendBlockObject, E.get(),
8004      /*base path*/ nullptr, VK_PRValue, FPOptionsOverride());
8005  Cleanup.setExprNeedsCleanups(true);
8006}
8007
8008/// Prepare a conversion of the given expression to an ObjC object
8009/// pointer type.
8010CastKind Sema::PrepareCastToObjCObjectPointer(ExprResult &E) {
8011  QualType type = E.get()->getType();
8012  if (type->isObjCObjectPointerType()) {
8013    return CK_BitCast;
8014  } else if (type->isBlockPointerType()) {
8015    maybeExtendBlockObject(E);
8016    return CK_BlockPointerToObjCPointerCast;
8017  } else {
8018    assert(type->isPointerType());
8019    return CK_CPointerToObjCPointerCast;
8020  }
8021}
8022
8023/// Prepares for a scalar cast, performing all the necessary stages
8024/// except the final cast and returning the kind required.
8025CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) {
8026  // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
8027  // Also, callers should have filtered out the invalid cases with
8028  // pointers.  Everything else should be possible.
8029
8030  QualType SrcTy = Src.get()->getType();
8031  if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
8032    return CK_NoOp;
8033
8034  switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) {
8035  case Type::STK_MemberPointer:
8036    llvm_unreachable("member pointer type in C");
8037
8038  case Type::STK_CPointer:
8039  case Type::STK_BlockPointer:
8040  case Type::STK_ObjCObjectPointer:
8041    switch (DestTy->getScalarTypeKind()) {
8042    case Type::STK_CPointer: {
8043      LangAS SrcAS = SrcTy->getPointeeType().getAddressSpace();
8044      LangAS DestAS = DestTy->getPointeeType().getAddressSpace();
8045      if (SrcAS != DestAS)
8046        return CK_AddressSpaceConversion;
8047      if (Context.hasCvrSimilarType(SrcTy, DestTy))
8048        return CK_NoOp;
8049      return CK_BitCast;
8050    }
8051    case Type::STK_BlockPointer:
8052      return (SrcKind == Type::STK_BlockPointer
8053                ? CK_BitCast : CK_AnyPointerToBlockPointerCast);
8054    case Type::STK_ObjCObjectPointer:
8055      if (SrcKind == Type::STK_ObjCObjectPointer)
8056        return CK_BitCast;
8057      if (SrcKind == Type::STK_CPointer)
8058        return CK_CPointerToObjCPointerCast;
8059      maybeExtendBlockObject(Src);
8060      return CK_BlockPointerToObjCPointerCast;
8061    case Type::STK_Bool:
8062      return CK_PointerToBoolean;
8063    case Type::STK_Integral:
8064      return CK_PointerToIntegral;
8065    case Type::STK_Floating:
8066    case Type::STK_FloatingComplex:
8067    case Type::STK_IntegralComplex:
8068    case Type::STK_MemberPointer:
8069    case Type::STK_FixedPoint:
8070      llvm_unreachable("illegal cast from pointer");
8071    }
8072    llvm_unreachable("Should have returned before this");
8073
8074  case Type::STK_FixedPoint:
8075    switch (DestTy->getScalarTypeKind()) {
8076    case Type::STK_FixedPoint:
8077      return CK_FixedPointCast;
8078    case Type::STK_Bool:
8079      return CK_FixedPointToBoolean;
8080    case Type::STK_Integral:
8081      return CK_FixedPointToIntegral;
8082    case Type::STK_Floating:
8083      return CK_FixedPointToFloating;
8084    case Type::STK_IntegralComplex:
8085    case Type::STK_FloatingComplex:
8086      Diag(Src.get()->getExprLoc(),
8087           diag::err_unimplemented_conversion_with_fixed_point_type)
8088          << DestTy;
8089      return CK_IntegralCast;
8090    case Type::STK_CPointer:
8091    case Type::STK_ObjCObjectPointer:
8092    case Type::STK_BlockPointer:
8093    case Type::STK_MemberPointer:
8094      llvm_unreachable("illegal cast to pointer type");
8095    }
8096    llvm_unreachable("Should have returned before this");
8097
8098  case Type::STK_Bool: // casting from bool is like casting from an integer
8099  case Type::STK_Integral:
8100    switch (DestTy->getScalarTypeKind()) {
8101    case Type::STK_CPointer:
8102    case Type::STK_ObjCObjectPointer:
8103    case Type::STK_BlockPointer:
8104      if (Src.get()->isNullPointerConstant(Context,
8105                                           Expr::NPC_ValueDependentIsNull))
8106        return CK_NullToPointer;
8107      return CK_IntegralToPointer;
8108    case Type::STK_Bool:
8109      return CK_IntegralToBoolean;
8110    case Type::STK_Integral:
8111      return CK_IntegralCast;
8112    case Type::STK_Floating:
8113      return CK_IntegralToFloating;
8114    case Type::STK_IntegralComplex:
8115      Src = ImpCastExprToType(Src.get(),
8116                      DestTy->castAs<ComplexType>()->getElementType(),
8117                      CK_IntegralCast);
8118      return CK_IntegralRealToComplex;
8119    case Type::STK_FloatingComplex:
8120      Src = ImpCastExprToType(Src.get(),
8121                      DestTy->castAs<ComplexType>()->getElementType(),
8122                      CK_IntegralToFloating);
8123      return CK_FloatingRealToComplex;
8124    case Type::STK_MemberPointer:
8125      llvm_unreachable("member pointer type in C");
8126    case Type::STK_FixedPoint:
8127      return CK_IntegralToFixedPoint;
8128    }
8129    llvm_unreachable("Should have returned before this");
8130
8131  case Type::STK_Floating:
8132    switch (DestTy->getScalarTypeKind()) {
8133    case Type::STK_Floating:
8134      return CK_FloatingCast;
8135    case Type::STK_Bool:
8136      return CK_FloatingToBoolean;
8137    case Type::STK_Integral:
8138      return CK_FloatingToIntegral;
8139    case Type::STK_FloatingComplex:
8140      Src = ImpCastExprToType(Src.get(),
8141                              DestTy->castAs<ComplexType>()->getElementType(),
8142                              CK_FloatingCast);
8143      return CK_FloatingRealToComplex;
8144    case Type::STK_IntegralComplex:
8145      Src = ImpCastExprToType(Src.get(),
8146                              DestTy->castAs<ComplexType>()->getElementType(),
8147                              CK_FloatingToIntegral);
8148      return CK_IntegralRealToComplex;
8149    case Type::STK_CPointer:
8150    case Type::STK_ObjCObjectPointer:
8151    case Type::STK_BlockPointer:
8152      llvm_unreachable("valid float->pointer cast?");
8153    case Type::STK_MemberPointer:
8154      llvm_unreachable("member pointer type in C");
8155    case Type::STK_FixedPoint:
8156      return CK_FloatingToFixedPoint;
8157    }
8158    llvm_unreachable("Should have returned before this");
8159
8160  case Type::STK_FloatingComplex:
8161    switch (DestTy->getScalarTypeKind()) {
8162    case Type::STK_FloatingComplex:
8163      return CK_FloatingComplexCast;
8164    case Type::STK_IntegralComplex:
8165      return CK_FloatingComplexToIntegralComplex;
8166    case Type::STK_Floating: {
8167      QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
8168      if (Context.hasSameType(ET, DestTy))
8169        return CK_FloatingComplexToReal;
8170      Src = ImpCastExprToType(Src.get(), ET, CK_FloatingComplexToReal);
8171      return CK_FloatingCast;
8172    }
8173    case Type::STK_Bool:
8174      return CK_FloatingComplexToBoolean;
8175    case Type::STK_Integral:
8176      Src = ImpCastExprToType(Src.get(),
8177                              SrcTy->castAs<ComplexType>()->getElementType(),
8178                              CK_FloatingComplexToReal);
8179      return CK_FloatingToIntegral;
8180    case Type::STK_CPointer:
8181    case Type::STK_ObjCObjectPointer:
8182    case Type::STK_BlockPointer:
8183      llvm_unreachable("valid complex float->pointer cast?");
8184    case Type::STK_MemberPointer:
8185      llvm_unreachable("member pointer type in C");
8186    case Type::STK_FixedPoint:
8187      Diag(Src.get()->getExprLoc(),
8188           diag::err_unimplemented_conversion_with_fixed_point_type)
8189          << SrcTy;
8190      return CK_IntegralCast;
8191    }
8192    llvm_unreachable("Should have returned before this");
8193
8194  case Type::STK_IntegralComplex:
8195    switch (DestTy->getScalarTypeKind()) {
8196    case Type::STK_FloatingComplex:
8197      return CK_IntegralComplexToFloatingComplex;
8198    case Type::STK_IntegralComplex:
8199      return CK_IntegralComplexCast;
8200    case Type::STK_Integral: {
8201      QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
8202      if (Context.hasSameType(ET, DestTy))
8203        return CK_IntegralComplexToReal;
8204      Src = ImpCastExprToType(Src.get(), ET, CK_IntegralComplexToReal);
8205      return CK_IntegralCast;
8206    }
8207    case Type::STK_Bool:
8208      return CK_IntegralComplexToBoolean;
8209    case Type::STK_Floating:
8210      Src = ImpCastExprToType(Src.get(),
8211                              SrcTy->castAs<ComplexType>()->getElementType(),
8212                              CK_IntegralComplexToReal);
8213      return CK_IntegralToFloating;
8214    case Type::STK_CPointer:
8215    case Type::STK_ObjCObjectPointer:
8216    case Type::STK_BlockPointer:
8217      llvm_unreachable("valid complex int->pointer cast?");
8218    case Type::STK_MemberPointer:
8219      llvm_unreachable("member pointer type in C");
8220    case Type::STK_FixedPoint:
8221      Diag(Src.get()->getExprLoc(),
8222           diag::err_unimplemented_conversion_with_fixed_point_type)
8223          << SrcTy;
8224      return CK_IntegralCast;
8225    }
8226    llvm_unreachable("Should have returned before this");
8227  }
8228
8229  llvm_unreachable("Unhandled scalar cast");
8230}
8231
8232static bool breakDownVectorType(QualType type, uint64_t &len,
8233                                QualType &eltType) {
8234  // Vectors are simple.
8235  if (const VectorType *vecType = type->getAs<VectorType>()) {
8236    len = vecType->getNumElements();
8237    eltType = vecType->getElementType();
8238    assert(eltType->isScalarType());
8239    return true;
8240  }
8241
8242  // We allow lax conversion to and from non-vector types, but only if
8243  // they're real types (i.e. non-complex, non-pointer scalar types).
8244  if (!type->isRealType()) return false;
8245
8246  len = 1;
8247  eltType = type;
8248  return true;
8249}
8250
8251/// Are the two types SVE-bitcast-compatible types? I.e. is bitcasting from the
8252/// first SVE type (e.g. an SVE VLAT) to the second type (e.g. an SVE VLST)
8253/// allowed?
8254///
8255/// This will also return false if the two given types do not make sense from
8256/// the perspective of SVE bitcasts.
8257bool Sema::isValidSveBitcast(QualType srcTy, QualType destTy) {
8258  assert(srcTy->isVectorType() || destTy->isVectorType());
8259
8260  auto ValidScalableConversion = [](QualType FirstType, QualType SecondType) {
8261    if (!FirstType->isSVESizelessBuiltinType())
8262      return false;
8263
8264    const auto *VecTy = SecondType->getAs<VectorType>();
8265    return VecTy && VecTy->getVectorKind() == VectorKind::SveFixedLengthData;
8266  };
8267
8268  return ValidScalableConversion(srcTy, destTy) ||
8269         ValidScalableConversion(destTy, srcTy);
8270}
8271
8272/// Are the two types RVV-bitcast-compatible types? I.e. is bitcasting from the
8273/// first RVV type (e.g. an RVV scalable type) to the second type (e.g. an RVV
8274/// VLS type) allowed?
8275///
8276/// This will also return false if the two given types do not make sense from
8277/// the perspective of RVV bitcasts.
8278bool Sema::isValidRVVBitcast(QualType srcTy, QualType destTy) {
8279  assert(srcTy->isVectorType() || destTy->isVectorType());
8280
8281  auto ValidScalableConversion = [](QualType FirstType, QualType SecondType) {
8282    if (!FirstType->isRVVSizelessBuiltinType())
8283      return false;
8284
8285    const auto *VecTy = SecondType->getAs<VectorType>();
8286    return VecTy && VecTy->getVectorKind() == VectorKind::RVVFixedLengthData;
8287  };
8288
8289  return ValidScalableConversion(srcTy, destTy) ||
8290         ValidScalableConversion(destTy, srcTy);
8291}
8292
8293/// Are the two types matrix types and do they have the same dimensions i.e.
8294/// do they have the same number of rows and the same number of columns?
8295bool Sema::areMatrixTypesOfTheSameDimension(QualType srcTy, QualType destTy) {
8296  if (!destTy->isMatrixType() || !srcTy->isMatrixType())
8297    return false;
8298
8299  const ConstantMatrixType *matSrcType = srcTy->getAs<ConstantMatrixType>();
8300  const ConstantMatrixType *matDestType = destTy->getAs<ConstantMatrixType>();
8301
8302  return matSrcType->getNumRows() == matDestType->getNumRows() &&
8303         matSrcType->getNumColumns() == matDestType->getNumColumns();
8304}
8305
8306bool Sema::areVectorTypesSameSize(QualType SrcTy, QualType DestTy) {
8307  assert(DestTy->isVectorType() || SrcTy->isVectorType());
8308
8309  uint64_t SrcLen, DestLen;
8310  QualType SrcEltTy, DestEltTy;
8311  if (!breakDownVectorType(SrcTy, SrcLen, SrcEltTy))
8312    return false;
8313  if (!breakDownVectorType(DestTy, DestLen, DestEltTy))
8314    return false;
8315
8316  // ASTContext::getTypeSize will return the size rounded up to a
8317  // power of 2, so instead of using that, we need to use the raw
8318  // element size multiplied by the element count.
8319  uint64_t SrcEltSize = Context.getTypeSize(SrcEltTy);
8320  uint64_t DestEltSize = Context.getTypeSize(DestEltTy);
8321
8322  return (SrcLen * SrcEltSize == DestLen * DestEltSize);
8323}
8324
8325// This returns true if at least one of the types is an altivec vector.
8326bool Sema::anyAltivecTypes(QualType SrcTy, QualType DestTy) {
8327  assert((DestTy->isVectorType() || SrcTy->isVectorType()) &&
8328         "expected at least one type to be a vector here");
8329
8330  bool IsSrcTyAltivec =
8331      SrcTy->isVectorType() && ((SrcTy->castAs<VectorType>()->getVectorKind() ==
8332                                 VectorKind::AltiVecVector) ||
8333                                (SrcTy->castAs<VectorType>()->getVectorKind() ==
8334                                 VectorKind::AltiVecBool) ||
8335                                (SrcTy->castAs<VectorType>()->getVectorKind() ==
8336                                 VectorKind::AltiVecPixel));
8337
8338  bool IsDestTyAltivec = DestTy->isVectorType() &&
8339                         ((DestTy->castAs<VectorType>()->getVectorKind() ==
8340                           VectorKind::AltiVecVector) ||
8341                          (DestTy->castAs<VectorType>()->getVectorKind() ==
8342                           VectorKind::AltiVecBool) ||
8343                          (DestTy->castAs<VectorType>()->getVectorKind() ==
8344                           VectorKind::AltiVecPixel));
8345
8346  return (IsSrcTyAltivec || IsDestTyAltivec);
8347}
8348
8349/// Are the two types lax-compatible vector types?  That is, given
8350/// that one of them is a vector, do they have equal storage sizes,
8351/// where the storage size is the number of elements times the element
8352/// size?
8353///
8354/// This will also return false if either of the types is neither a
8355/// vector nor a real type.
8356bool Sema::areLaxCompatibleVectorTypes(QualType srcTy, QualType destTy) {
8357  assert(destTy->isVectorType() || srcTy->isVectorType());
8358
8359  // Disallow lax conversions between scalars and ExtVectors (these
8360  // conversions are allowed for other vector types because common headers
8361  // depend on them).  Most scalar OP ExtVector cases are handled by the
8362  // splat path anyway, which does what we want (convert, not bitcast).
8363  // What this rules out for ExtVectors is crazy things like char4*float.
8364  if (srcTy->isScalarType() && destTy->isExtVectorType()) return false;
8365  if (destTy->isScalarType() && srcTy->isExtVectorType()) return false;
8366
8367  return areVectorTypesSameSize(srcTy, destTy);
8368}
8369
8370/// Is this a legal conversion between two types, one of which is
8371/// known to be a vector type?
8372bool Sema::isLaxVectorConversion(QualType srcTy, QualType destTy) {
8373  assert(destTy->isVectorType() || srcTy->isVectorType());
8374
8375  switch (Context.getLangOpts().getLaxVectorConversions()) {
8376  case LangOptions::LaxVectorConversionKind::None:
8377    return false;
8378
8379  case LangOptions::LaxVectorConversionKind::Integer:
8380    if (!srcTy->isIntegralOrEnumerationType()) {
8381      auto *Vec = srcTy->getAs<VectorType>();
8382      if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType())
8383        return false;
8384    }
8385    if (!destTy->isIntegralOrEnumerationType()) {
8386      auto *Vec = destTy->getAs<VectorType>();
8387      if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType())
8388        return false;
8389    }
8390    // OK, integer (vector) -> integer (vector) bitcast.
8391    break;
8392
8393    case LangOptions::LaxVectorConversionKind::All:
8394    break;
8395  }
8396
8397  return areLaxCompatibleVectorTypes(srcTy, destTy);
8398}
8399
8400bool Sema::CheckMatrixCast(SourceRange R, QualType DestTy, QualType SrcTy,
8401                           CastKind &Kind) {
8402  if (SrcTy->isMatrixType() && DestTy->isMatrixType()) {
8403    if (!areMatrixTypesOfTheSameDimension(SrcTy, DestTy)) {
8404      return Diag(R.getBegin(), diag::err_invalid_conversion_between_matrixes)
8405             << DestTy << SrcTy << R;
8406    }
8407  } else if (SrcTy->isMatrixType()) {
8408    return Diag(R.getBegin(),
8409                diag::err_invalid_conversion_between_matrix_and_type)
8410           << SrcTy << DestTy << R;
8411  } else if (DestTy->isMatrixType()) {
8412    return Diag(R.getBegin(),
8413                diag::err_invalid_conversion_between_matrix_and_type)
8414           << DestTy << SrcTy << R;
8415  }
8416
8417  Kind = CK_MatrixCast;
8418  return false;
8419}
8420
8421bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
8422                           CastKind &Kind) {
8423  assert(VectorTy->isVectorType() && "Not a vector type!");
8424
8425  if (Ty->isVectorType() || Ty->isIntegralType(Context)) {
8426    if (!areLaxCompatibleVectorTypes(Ty, VectorTy))
8427      return Diag(R.getBegin(),
8428                  Ty->isVectorType() ?
8429                  diag::err_invalid_conversion_between_vectors :
8430                  diag::err_invalid_conversion_between_vector_and_integer)
8431        << VectorTy << Ty << R;
8432  } else
8433    return Diag(R.getBegin(),
8434                diag::err_invalid_conversion_between_vector_and_scalar)
8435      << VectorTy << Ty << R;
8436
8437  Kind = CK_BitCast;
8438  return false;
8439}
8440
8441ExprResult Sema::prepareVectorSplat(QualType VectorTy, Expr *SplattedExpr) {
8442  QualType DestElemTy = VectorTy->castAs<VectorType>()->getElementType();
8443
8444  if (DestElemTy == SplattedExpr->getType())
8445    return SplattedExpr;
8446
8447  assert(DestElemTy->isFloatingType() ||
8448         DestElemTy->isIntegralOrEnumerationType());
8449
8450  CastKind CK;
8451  if (VectorTy->isExtVectorType() && SplattedExpr->getType()->isBooleanType()) {
8452    // OpenCL requires that we convert `true` boolean expressions to -1, but
8453    // only when splatting vectors.
8454    if (DestElemTy->isFloatingType()) {
8455      // To avoid having to have a CK_BooleanToSignedFloating cast kind, we cast
8456      // in two steps: boolean to signed integral, then to floating.
8457      ExprResult CastExprRes = ImpCastExprToType(SplattedExpr, Context.IntTy,
8458                                                 CK_BooleanToSignedIntegral);
8459      SplattedExpr = CastExprRes.get();
8460      CK = CK_IntegralToFloating;
8461    } else {
8462      CK = CK_BooleanToSignedIntegral;
8463    }
8464  } else {
8465    ExprResult CastExprRes = SplattedExpr;
8466    CK = PrepareScalarCast(CastExprRes, DestElemTy);
8467    if (CastExprRes.isInvalid())
8468      return ExprError();
8469    SplattedExpr = CastExprRes.get();
8470  }
8471  return ImpCastExprToType(SplattedExpr, DestElemTy, CK);
8472}
8473
8474ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
8475                                    Expr *CastExpr, CastKind &Kind) {
8476  assert(DestTy->isExtVectorType() && "Not an extended vector type!");
8477
8478  QualType SrcTy = CastExpr->getType();
8479
8480  // If SrcTy is a VectorType, the total size must match to explicitly cast to
8481  // an ExtVectorType.
8482  // In OpenCL, casts between vectors of different types are not allowed.
8483  // (See OpenCL 6.2).
8484  if (SrcTy->isVectorType()) {
8485    if (!areLaxCompatibleVectorTypes(SrcTy, DestTy) ||
8486        (getLangOpts().OpenCL &&
8487         !Context.hasSameUnqualifiedType(DestTy, SrcTy))) {
8488      Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
8489        << DestTy << SrcTy << R;
8490      return ExprError();
8491    }
8492    Kind = CK_BitCast;
8493    return CastExpr;
8494  }
8495
8496  // All non-pointer scalars can be cast to ExtVector type.  The appropriate
8497  // conversion will take place first from scalar to elt type, and then
8498  // splat from elt type to vector.
8499  if (SrcTy->isPointerType())
8500    return Diag(R.getBegin(),
8501                diag::err_invalid_conversion_between_vector_and_scalar)
8502      << DestTy << SrcTy << R;
8503
8504  Kind = CK_VectorSplat;
8505  return prepareVectorSplat(DestTy, CastExpr);
8506}
8507
8508ExprResult
8509Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
8510                    Declarator &D, ParsedType &Ty,
8511                    SourceLocation RParenLoc, Expr *CastExpr) {
8512  assert(!D.isInvalidType() && (CastExpr != nullptr) &&
8513         "ActOnCastExpr(): missing type or expr");
8514
8515  TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType());
8516  if (D.isInvalidType())
8517    return ExprError();
8518
8519  if (getLangOpts().CPlusPlus) {
8520    // Check that there are no default arguments (C++ only).
8521    CheckExtraCXXDefaultArguments(D);
8522  } else {
8523    // Make sure any TypoExprs have been dealt with.
8524    ExprResult Res = CorrectDelayedTyposInExpr(CastExpr);
8525    if (!Res.isUsable())
8526      return ExprError();
8527    CastExpr = Res.get();
8528  }
8529
8530  checkUnusedDeclAttributes(D);
8531
8532  QualType castType = castTInfo->getType();
8533  Ty = CreateParsedType(castType, castTInfo);
8534
8535  bool isVectorLiteral = false;
8536
8537  // Check for an altivec or OpenCL literal,
8538  // i.e. all the elements are integer constants.
8539  ParenExpr *PE = dyn_cast<ParenExpr>(CastExpr);
8540  ParenListExpr *PLE = dyn_cast<ParenListExpr>(CastExpr);
8541  if ((getLangOpts().AltiVec || getLangOpts().ZVector || getLangOpts().OpenCL)
8542       && castType->isVectorType() && (PE || PLE)) {
8543    if (PLE && PLE->getNumExprs() == 0) {
8544      Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer);
8545      return ExprError();
8546    }
8547    if (PE || PLE->getNumExprs() == 1) {
8548      Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0));
8549      if (!E->isTypeDependent() && !E->getType()->isVectorType())
8550        isVectorLiteral = true;
8551    }
8552    else
8553      isVectorLiteral = true;
8554  }
8555
8556  // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
8557  // then handle it as such.
8558  if (isVectorLiteral)
8559    return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo);
8560
8561  // If the Expr being casted is a ParenListExpr, handle it specially.
8562  // This is not an AltiVec-style cast, so turn the ParenListExpr into a
8563  // sequence of BinOp comma operators.
8564  if (isa<ParenListExpr>(CastExpr)) {
8565    ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr);
8566    if (Result.isInvalid()) return ExprError();
8567    CastExpr = Result.get();
8568  }
8569
8570  if (getLangOpts().CPlusPlus && !castType->isVoidType())
8571    Diag(LParenLoc, diag::warn_old_style_cast) << CastExpr->getSourceRange();
8572
8573  CheckTollFreeBridgeCast(castType, CastExpr);
8574
8575  CheckObjCBridgeRelatedCast(castType, CastExpr);
8576
8577  DiscardMisalignedMemberAddress(castType.getTypePtr(), CastExpr);
8578
8579  return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr);
8580}
8581
8582ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
8583                                    SourceLocation RParenLoc, Expr *E,
8584                                    TypeSourceInfo *TInfo) {
8585  assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&
8586         "Expected paren or paren list expression");
8587
8588  Expr **exprs;
8589  unsigned numExprs;
8590  Expr *subExpr;
8591  SourceLocation LiteralLParenLoc, LiteralRParenLoc;
8592  if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) {
8593    LiteralLParenLoc = PE->getLParenLoc();
8594    LiteralRParenLoc = PE->getRParenLoc();
8595    exprs = PE->getExprs();
8596    numExprs = PE->getNumExprs();
8597  } else { // isa<ParenExpr> by assertion at function entrance
8598    LiteralLParenLoc = cast<ParenExpr>(E)->getLParen();
8599    LiteralRParenLoc = cast<ParenExpr>(E)->getRParen();
8600    subExpr = cast<ParenExpr>(E)->getSubExpr();
8601    exprs = &subExpr;
8602    numExprs = 1;
8603  }
8604
8605  QualType Ty = TInfo->getType();
8606  assert(Ty->isVectorType() && "Expected vector type");
8607
8608  SmallVector<Expr *, 8> initExprs;
8609  const VectorType *VTy = Ty->castAs<VectorType>();
8610  unsigned numElems = VTy->getNumElements();
8611
8612  // '(...)' form of vector initialization in AltiVec: the number of
8613  // initializers must be one or must match the size of the vector.
8614  // If a single value is specified in the initializer then it will be
8615  // replicated to all the components of the vector
8616  if (CheckAltivecInitFromScalar(E->getSourceRange(), Ty,
8617                                 VTy->getElementType()))
8618    return ExprError();
8619  if (ShouldSplatAltivecScalarInCast(VTy)) {
8620    // The number of initializers must be one or must match the size of the
8621    // vector. If a single value is specified in the initializer then it will
8622    // be replicated to all the components of the vector
8623    if (numExprs == 1) {
8624      QualType ElemTy = VTy->getElementType();
8625      ExprResult Literal = DefaultLvalueConversion(exprs[0]);
8626      if (Literal.isInvalid())
8627        return ExprError();
8628      Literal = ImpCastExprToType(Literal.get(), ElemTy,
8629                                  PrepareScalarCast(Literal, ElemTy));
8630      return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
8631    }
8632    else if (numExprs < numElems) {
8633      Diag(E->getExprLoc(),
8634           diag::err_incorrect_number_of_vector_initializers);
8635      return ExprError();
8636    }
8637    else
8638      initExprs.append(exprs, exprs + numExprs);
8639  }
8640  else {
8641    // For OpenCL, when the number of initializers is a single value,
8642    // it will be replicated to all components of the vector.
8643    if (getLangOpts().OpenCL && VTy->getVectorKind() == VectorKind::Generic &&
8644        numExprs == 1) {
8645      QualType ElemTy = VTy->getElementType();
8646      ExprResult Literal = DefaultLvalueConversion(exprs[0]);
8647      if (Literal.isInvalid())
8648        return ExprError();
8649      Literal = ImpCastExprToType(Literal.get(), ElemTy,
8650                                  PrepareScalarCast(Literal, ElemTy));
8651      return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
8652    }
8653
8654    initExprs.append(exprs, exprs + numExprs);
8655  }
8656  // FIXME: This means that pretty-printing the final AST will produce curly
8657  // braces instead of the original commas.
8658  InitListExpr *initE = new (Context) InitListExpr(Context, LiteralLParenLoc,
8659                                                   initExprs, LiteralRParenLoc);
8660  initE->setType(Ty);
8661  return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE);
8662}
8663
8664/// This is not an AltiVec-style cast or or C++ direct-initialization, so turn
8665/// the ParenListExpr into a sequence of comma binary operators.
8666ExprResult
8667Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) {
8668  ParenListExpr *E = dyn_cast<ParenListExpr>(OrigExpr);
8669  if (!E)
8670    return OrigExpr;
8671
8672  ExprResult Result(E->getExpr(0));
8673
8674  for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
8675    Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
8676                        E->getExpr(i));
8677
8678  if (Result.isInvalid()) return ExprError();
8679
8680  return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
8681}
8682
8683ExprResult Sema::ActOnParenListExpr(SourceLocation L,
8684                                    SourceLocation R,
8685                                    MultiExprArg Val) {
8686  return ParenListExpr::Create(Context, L, Val, R);
8687}
8688
8689/// Emit a specialized diagnostic when one expression is a null pointer
8690/// constant and the other is not a pointer.  Returns true if a diagnostic is
8691/// emitted.
8692bool Sema::DiagnoseConditionalForNull(const Expr *LHSExpr, const Expr *RHSExpr,
8693                                      SourceLocation QuestionLoc) {
8694  const Expr *NullExpr = LHSExpr;
8695  const Expr *NonPointerExpr = RHSExpr;
8696  Expr::NullPointerConstantKind NullKind =
8697      NullExpr->isNullPointerConstant(Context,
8698                                      Expr::NPC_ValueDependentIsNotNull);
8699
8700  if (NullKind == Expr::NPCK_NotNull) {
8701    NullExpr = RHSExpr;
8702    NonPointerExpr = LHSExpr;
8703    NullKind =
8704        NullExpr->isNullPointerConstant(Context,
8705                                        Expr::NPC_ValueDependentIsNotNull);
8706  }
8707
8708  if (NullKind == Expr::NPCK_NotNull)
8709    return false;
8710
8711  if (NullKind == Expr::NPCK_ZeroExpression)
8712    return false;
8713
8714  if (NullKind == Expr::NPCK_ZeroLiteral) {
8715    // In this case, check to make sure that we got here from a "NULL"
8716    // string in the source code.
8717    NullExpr = NullExpr->IgnoreParenImpCasts();
8718    SourceLocation loc = NullExpr->getExprLoc();
8719    if (!findMacroSpelling(loc, "NULL"))
8720      return false;
8721  }
8722
8723  int DiagType = (NullKind == Expr::NPCK_CXX11_nullptr);
8724  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
8725      << NonPointerExpr->getType() << DiagType
8726      << NonPointerExpr->getSourceRange();
8727  return true;
8728}
8729
8730/// Return false if the condition expression is valid, true otherwise.
8731static bool checkCondition(Sema &S, const Expr *Cond,
8732                           SourceLocation QuestionLoc) {
8733  QualType CondTy = Cond->getType();
8734
8735  // OpenCL v1.1 s6.3.i says the condition cannot be a floating point type.
8736  if (S.getLangOpts().OpenCL && CondTy->isFloatingType()) {
8737    S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
8738      << CondTy << Cond->getSourceRange();
8739    return true;
8740  }
8741
8742  // C99 6.5.15p2
8743  if (CondTy->isScalarType()) return false;
8744
8745  S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_scalar)
8746    << CondTy << Cond->getSourceRange();
8747  return true;
8748}
8749
8750/// Return false if the NullExpr can be promoted to PointerTy,
8751/// true otherwise.
8752static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr,
8753                                        QualType PointerTy) {
8754  if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) ||
8755      !NullExpr.get()->isNullPointerConstant(S.Context,
8756                                            Expr::NPC_ValueDependentIsNull))
8757    return true;
8758
8759  NullExpr = S.ImpCastExprToType(NullExpr.get(), PointerTy, CK_NullToPointer);
8760  return false;
8761}
8762
8763/// Checks compatibility between two pointers and return the resulting
8764/// type.
8765static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS,
8766                                                     ExprResult &RHS,
8767                                                     SourceLocation Loc) {
8768  QualType LHSTy = LHS.get()->getType();
8769  QualType RHSTy = RHS.get()->getType();
8770
8771  if (S.Context.hasSameType(LHSTy, RHSTy)) {
8772    // Two identical pointers types are always compatible.
8773    return S.Context.getCommonSugaredType(LHSTy, RHSTy);
8774  }
8775
8776  QualType lhptee, rhptee;
8777
8778  // Get the pointee types.
8779  bool IsBlockPointer = false;
8780  if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) {
8781    lhptee = LHSBTy->getPointeeType();
8782    rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType();
8783    IsBlockPointer = true;
8784  } else {
8785    lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
8786    rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
8787  }
8788
8789  // C99 6.5.15p6: If both operands are pointers to compatible types or to
8790  // differently qualified versions of compatible types, the result type is
8791  // a pointer to an appropriately qualified version of the composite
8792  // type.
8793
8794  // Only CVR-qualifiers exist in the standard, and the differently-qualified
8795  // clause doesn't make sense for our extensions. E.g. address space 2 should
8796  // be incompatible with address space 3: they may live on different devices or
8797  // anything.
8798  Qualifiers lhQual = lhptee.getQualifiers();
8799  Qualifiers rhQual = rhptee.getQualifiers();
8800
8801  LangAS ResultAddrSpace = LangAS::Default;
8802  LangAS LAddrSpace = lhQual.getAddressSpace();
8803  LangAS RAddrSpace = rhQual.getAddressSpace();
8804
8805  // OpenCL v1.1 s6.5 - Conversion between pointers to distinct address
8806  // spaces is disallowed.
8807  if (lhQual.isAddressSpaceSupersetOf(rhQual))
8808    ResultAddrSpace = LAddrSpace;
8809  else if (rhQual.isAddressSpaceSupersetOf(lhQual))
8810    ResultAddrSpace = RAddrSpace;
8811  else {
8812    S.Diag(Loc, diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
8813        << LHSTy << RHSTy << 2 << LHS.get()->getSourceRange()
8814        << RHS.get()->getSourceRange();
8815    return QualType();
8816  }
8817
8818  unsigned MergedCVRQual = lhQual.getCVRQualifiers() | rhQual.getCVRQualifiers();
8819  auto LHSCastKind = CK_BitCast, RHSCastKind = CK_BitCast;
8820  lhQual.removeCVRQualifiers();
8821  rhQual.removeCVRQualifiers();
8822
8823  // OpenCL v2.0 specification doesn't extend compatibility of type qualifiers
8824  // (C99 6.7.3) for address spaces. We assume that the check should behave in
8825  // the same manner as it's defined for CVR qualifiers, so for OpenCL two
8826  // qual types are compatible iff
8827  //  * corresponded types are compatible
8828  //  * CVR qualifiers are equal
8829  //  * address spaces are equal
8830  // Thus for conditional operator we merge CVR and address space unqualified
8831  // pointees and if there is a composite type we return a pointer to it with
8832  // merged qualifiers.
8833  LHSCastKind =
8834      LAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion;
8835  RHSCastKind =
8836      RAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion;
8837  lhQual.removeAddressSpace();
8838  rhQual.removeAddressSpace();
8839
8840  lhptee = S.Context.getQualifiedType(lhptee.getUnqualifiedType(), lhQual);
8841  rhptee = S.Context.getQualifiedType(rhptee.getUnqualifiedType(), rhQual);
8842
8843  QualType CompositeTy = S.Context.mergeTypes(
8844      lhptee, rhptee, /*OfBlockPointer=*/false, /*Unqualified=*/false,
8845      /*BlockReturnType=*/false, /*IsConditionalOperator=*/true);
8846
8847  if (CompositeTy.isNull()) {
8848    // In this situation, we assume void* type. No especially good
8849    // reason, but this is what gcc does, and we do have to pick
8850    // to get a consistent AST.
8851    QualType incompatTy;
8852    incompatTy = S.Context.getPointerType(
8853        S.Context.getAddrSpaceQualType(S.Context.VoidTy, ResultAddrSpace));
8854    LHS = S.ImpCastExprToType(LHS.get(), incompatTy, LHSCastKind);
8855    RHS = S.ImpCastExprToType(RHS.get(), incompatTy, RHSCastKind);
8856
8857    // FIXME: For OpenCL the warning emission and cast to void* leaves a room
8858    // for casts between types with incompatible address space qualifiers.
8859    // For the following code the compiler produces casts between global and
8860    // local address spaces of the corresponded innermost pointees:
8861    // local int *global *a;
8862    // global int *global *b;
8863    // a = (0 ? a : b); // see C99 6.5.16.1.p1.
8864    S.Diag(Loc, diag::ext_typecheck_cond_incompatible_pointers)
8865        << LHSTy << RHSTy << LHS.get()->getSourceRange()
8866        << RHS.get()->getSourceRange();
8867
8868    return incompatTy;
8869  }
8870
8871  // The pointer types are compatible.
8872  // In case of OpenCL ResultTy should have the address space qualifier
8873  // which is a superset of address spaces of both the 2nd and the 3rd
8874  // operands of the conditional operator.
8875  QualType ResultTy = [&, ResultAddrSpace]() {
8876    if (S.getLangOpts().OpenCL) {
8877      Qualifiers CompositeQuals = CompositeTy.getQualifiers();
8878      CompositeQuals.setAddressSpace(ResultAddrSpace);
8879      return S.Context
8880          .getQualifiedType(CompositeTy.getUnqualifiedType(), CompositeQuals)
8881          .withCVRQualifiers(MergedCVRQual);
8882    }
8883    return CompositeTy.withCVRQualifiers(MergedCVRQual);
8884  }();
8885  if (IsBlockPointer)
8886    ResultTy = S.Context.getBlockPointerType(ResultTy);
8887  else
8888    ResultTy = S.Context.getPointerType(ResultTy);
8889
8890  LHS = S.ImpCastExprToType(LHS.get(), ResultTy, LHSCastKind);
8891  RHS = S.ImpCastExprToType(RHS.get(), ResultTy, RHSCastKind);
8892  return ResultTy;
8893}
8894
8895/// Return the resulting type when the operands are both block pointers.
8896static QualType checkConditionalBlockPointerCompatibility(Sema &S,
8897                                                          ExprResult &LHS,
8898                                                          ExprResult &RHS,
8899                                                          SourceLocation Loc) {
8900  QualType LHSTy = LHS.get()->getType();
8901  QualType RHSTy = RHS.get()->getType();
8902
8903  if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
8904    if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
8905      QualType destType = S.Context.getPointerType(S.Context.VoidTy);
8906      LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
8907      RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
8908      return destType;
8909    }
8910    S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
8911      << LHSTy << RHSTy << LHS.get()->getSourceRange()
8912      << RHS.get()->getSourceRange();
8913    return QualType();
8914  }
8915
8916  // We have 2 block pointer types.
8917  return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
8918}
8919
8920/// Return the resulting type when the operands are both pointers.
8921static QualType
8922checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS,
8923                                            ExprResult &RHS,
8924                                            SourceLocation Loc) {
8925  // get the pointer types
8926  QualType LHSTy = LHS.get()->getType();
8927  QualType RHSTy = RHS.get()->getType();
8928
8929  // get the "pointed to" types
8930  QualType lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
8931  QualType rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
8932
8933  // ignore qualifiers on void (C99 6.5.15p3, clause 6)
8934  if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
8935    // Figure out necessary qualifiers (C99 6.5.15p6)
8936    QualType destPointee
8937      = S.Context.getQualifiedType(lhptee, rhptee.getQualifiers());
8938    QualType destType = S.Context.getPointerType(destPointee);
8939    // Add qualifiers if necessary.
8940    LHS = S.ImpCastExprToType(LHS.get(), destType, CK_NoOp);
8941    // Promote to void*.
8942    RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
8943    return destType;
8944  }
8945  if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
8946    QualType destPointee
8947      = S.Context.getQualifiedType(rhptee, lhptee.getQualifiers());
8948    QualType destType = S.Context.getPointerType(destPointee);
8949    // Add qualifiers if necessary.
8950    RHS = S.ImpCastExprToType(RHS.get(), destType, CK_NoOp);
8951    // Promote to void*.
8952    LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
8953    return destType;
8954  }
8955
8956  return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
8957}
8958
8959/// Return false if the first expression is not an integer and the second
8960/// expression is not a pointer, true otherwise.
8961static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int,
8962                                        Expr* PointerExpr, SourceLocation Loc,
8963                                        bool IsIntFirstExpr) {
8964  if (!PointerExpr->getType()->isPointerType() ||
8965      !Int.get()->getType()->isIntegerType())
8966    return false;
8967
8968  Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr;
8969  Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get();
8970
8971  S.Diag(Loc, diag::ext_typecheck_cond_pointer_integer_mismatch)
8972    << Expr1->getType() << Expr2->getType()
8973    << Expr1->getSourceRange() << Expr2->getSourceRange();
8974  Int = S.ImpCastExprToType(Int.get(), PointerExpr->getType(),
8975                            CK_IntegralToPointer);
8976  return true;
8977}
8978
8979/// Simple conversion between integer and floating point types.
8980///
8981/// Used when handling the OpenCL conditional operator where the
8982/// condition is a vector while the other operands are scalar.
8983///
8984/// OpenCL v1.1 s6.3.i and s6.11.6 together require that the scalar
8985/// types are either integer or floating type. Between the two
8986/// operands, the type with the higher rank is defined as the "result
8987/// type". The other operand needs to be promoted to the same type. No
8988/// other type promotion is allowed. We cannot use
8989/// UsualArithmeticConversions() for this purpose, since it always
8990/// promotes promotable types.
8991static QualType OpenCLArithmeticConversions(Sema &S, ExprResult &LHS,
8992                                            ExprResult &RHS,
8993                                            SourceLocation QuestionLoc) {
8994  LHS = S.DefaultFunctionArrayLvalueConversion(LHS.get());
8995  if (LHS.isInvalid())
8996    return QualType();
8997  RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
8998  if (RHS.isInvalid())
8999    return QualType();
9000
9001  // For conversion purposes, we ignore any qualifiers.
9002  // For example, "const float" and "float" are equivalent.
9003  QualType LHSType =
9004    S.Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
9005  QualType RHSType =
9006    S.Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
9007
9008  if (!LHSType->isIntegerType() && !LHSType->isRealFloatingType()) {
9009    S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
9010      << LHSType << LHS.get()->getSourceRange();
9011    return QualType();
9012  }
9013
9014  if (!RHSType->isIntegerType() && !RHSType->isRealFloatingType()) {
9015    S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
9016      << RHSType << RHS.get()->getSourceRange();
9017    return QualType();
9018  }
9019
9020  // If both types are identical, no conversion is needed.
9021  if (LHSType == RHSType)
9022    return LHSType;
9023
9024  // Now handle "real" floating types (i.e. float, double, long double).
9025  if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
9026    return handleFloatConversion(S, LHS, RHS, LHSType, RHSType,
9027                                 /*IsCompAssign = */ false);
9028
9029  // Finally, we have two differing integer types.
9030  return handleIntegerConversion<doIntegralCast, doIntegralCast>
9031  (S, LHS, RHS, LHSType, RHSType, /*IsCompAssign = */ false);
9032}
9033
9034/// Convert scalar operands to a vector that matches the
9035///        condition in length.
9036///
9037/// Used when handling the OpenCL conditional operator where the
9038/// condition is a vector while the other operands are scalar.
9039///
9040/// We first compute the "result type" for the scalar operands
9041/// according to OpenCL v1.1 s6.3.i. Both operands are then converted
9042/// into a vector of that type where the length matches the condition
9043/// vector type. s6.11.6 requires that the element types of the result
9044/// and the condition must have the same number of bits.
9045static QualType
9046OpenCLConvertScalarsToVectors(Sema &S, ExprResult &LHS, ExprResult &RHS,
9047                              QualType CondTy, SourceLocation QuestionLoc) {
9048  QualType ResTy = OpenCLArithmeticConversions(S, LHS, RHS, QuestionLoc);
9049  if (ResTy.isNull()) return QualType();
9050
9051  const VectorType *CV = CondTy->getAs<VectorType>();
9052  assert(CV);
9053
9054  // Determine the vector result type
9055  unsigned NumElements = CV->getNumElements();
9056  QualType VectorTy = S.Context.getExtVectorType(ResTy, NumElements);
9057
9058  // Ensure that all types have the same number of bits
9059  if (S.Context.getTypeSize(CV->getElementType())
9060      != S.Context.getTypeSize(ResTy)) {
9061    // Since VectorTy is created internally, it does not pretty print
9062    // with an OpenCL name. Instead, we just print a description.
9063    std::string EleTyName = ResTy.getUnqualifiedType().getAsString();
9064    SmallString<64> Str;
9065    llvm::raw_svector_ostream OS(Str);
9066    OS << "(vector of " << NumElements << " '" << EleTyName << "' values)";
9067    S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
9068      << CondTy << OS.str();
9069    return QualType();
9070  }
9071
9072  // Convert operands to the vector result type
9073  LHS = S.ImpCastExprToType(LHS.get(), VectorTy, CK_VectorSplat);
9074  RHS = S.ImpCastExprToType(RHS.get(), VectorTy, CK_VectorSplat);
9075
9076  return VectorTy;
9077}
9078
9079/// Return false if this is a valid OpenCL condition vector
9080static bool checkOpenCLConditionVector(Sema &S, Expr *Cond,
9081                                       SourceLocation QuestionLoc) {
9082  // OpenCL v1.1 s6.11.6 says the elements of the vector must be of
9083  // integral type.
9084  const VectorType *CondTy = Cond->getType()->getAs<VectorType>();
9085  assert(CondTy);
9086  QualType EleTy = CondTy->getElementType();
9087  if (EleTy->isIntegerType()) return false;
9088
9089  S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
9090    << Cond->getType() << Cond->getSourceRange();
9091  return true;
9092}
9093
9094/// Return false if the vector condition type and the vector
9095///        result type are compatible.
9096///
9097/// OpenCL v1.1 s6.11.6 requires that both vector types have the same
9098/// number of elements, and their element types have the same number
9099/// of bits.
9100static bool checkVectorResult(Sema &S, QualType CondTy, QualType VecResTy,
9101                              SourceLocation QuestionLoc) {
9102  const VectorType *CV = CondTy->getAs<VectorType>();
9103  const VectorType *RV = VecResTy->getAs<VectorType>();
9104  assert(CV && RV);
9105
9106  if (CV->getNumElements() != RV->getNumElements()) {
9107    S.Diag(QuestionLoc, diag::err_conditional_vector_size)
9108      << CondTy << VecResTy;
9109    return true;
9110  }
9111
9112  QualType CVE = CV->getElementType();
9113  QualType RVE = RV->getElementType();
9114
9115  if (S.Context.getTypeSize(CVE) != S.Context.getTypeSize(RVE)) {
9116    S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
9117      << CondTy << VecResTy;
9118    return true;
9119  }
9120
9121  return false;
9122}
9123
9124/// Return the resulting type for the conditional operator in
9125///        OpenCL (aka "ternary selection operator", OpenCL v1.1
9126///        s6.3.i) when the condition is a vector type.
9127static QualType
9128OpenCLCheckVectorConditional(Sema &S, ExprResult &Cond,
9129                             ExprResult &LHS, ExprResult &RHS,
9130                             SourceLocation QuestionLoc) {
9131  Cond = S.DefaultFunctionArrayLvalueConversion(Cond.get());
9132  if (Cond.isInvalid())
9133    return QualType();
9134  QualType CondTy = Cond.get()->getType();
9135
9136  if (checkOpenCLConditionVector(S, Cond.get(), QuestionLoc))
9137    return QualType();
9138
9139  // If either operand is a vector then find the vector type of the
9140  // result as specified in OpenCL v1.1 s6.3.i.
9141  if (LHS.get()->getType()->isVectorType() ||
9142      RHS.get()->getType()->isVectorType()) {
9143    bool IsBoolVecLang =
9144        !S.getLangOpts().OpenCL && !S.getLangOpts().OpenCLCPlusPlus;
9145    QualType VecResTy =
9146        S.CheckVectorOperands(LHS, RHS, QuestionLoc,
9147                              /*isCompAssign*/ false,
9148                              /*AllowBothBool*/ true,
9149                              /*AllowBoolConversions*/ false,
9150                              /*AllowBooleanOperation*/ IsBoolVecLang,
9151                              /*ReportInvalid*/ true);
9152    if (VecResTy.isNull())
9153      return QualType();
9154    // The result type must match the condition type as specified in
9155    // OpenCL v1.1 s6.11.6.
9156    if (checkVectorResult(S, CondTy, VecResTy, QuestionLoc))
9157      return QualType();
9158    return VecResTy;
9159  }
9160
9161  // Both operands are scalar.
9162  return OpenCLConvertScalarsToVectors(S, LHS, RHS, CondTy, QuestionLoc);
9163}
9164
9165/// Return true if the Expr is block type
9166static bool checkBlockType(Sema &S, const Expr *E) {
9167  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
9168    QualType Ty = CE->getCallee()->getType();
9169    if (Ty->isBlockPointerType()) {
9170      S.Diag(E->getExprLoc(), diag::err_opencl_ternary_with_block);
9171      return true;
9172    }
9173  }
9174  return false;
9175}
9176
9177/// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
9178/// In that case, LHS = cond.
9179/// C99 6.5.15
9180QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
9181                                        ExprResult &RHS, ExprValueKind &VK,
9182                                        ExprObjectKind &OK,
9183                                        SourceLocation QuestionLoc) {
9184
9185  ExprResult LHSResult = CheckPlaceholderExpr(LHS.get());
9186  if (!LHSResult.isUsable()) return QualType();
9187  LHS = LHSResult;
9188
9189  ExprResult RHSResult = CheckPlaceholderExpr(RHS.get());
9190  if (!RHSResult.isUsable()) return QualType();
9191  RHS = RHSResult;
9192
9193  // C++ is sufficiently different to merit its own checker.
9194  if (getLangOpts().CPlusPlus)
9195    return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
9196
9197  VK = VK_PRValue;
9198  OK = OK_Ordinary;
9199
9200  if (Context.isDependenceAllowed() &&
9201      (Cond.get()->isTypeDependent() || LHS.get()->isTypeDependent() ||
9202       RHS.get()->isTypeDependent())) {
9203    assert(!getLangOpts().CPlusPlus);
9204    assert((Cond.get()->containsErrors() || LHS.get()->containsErrors() ||
9205            RHS.get()->containsErrors()) &&
9206           "should only occur in error-recovery path.");
9207    return Context.DependentTy;
9208  }
9209
9210  // The OpenCL operator with a vector condition is sufficiently
9211  // different to merit its own checker.
9212  if ((getLangOpts().OpenCL && Cond.get()->getType()->isVectorType()) ||
9213      Cond.get()->getType()->isExtVectorType())
9214    return OpenCLCheckVectorConditional(*this, Cond, LHS, RHS, QuestionLoc);
9215
9216  // First, check the condition.
9217  Cond = UsualUnaryConversions(Cond.get());
9218  if (Cond.isInvalid())
9219    return QualType();
9220  if (checkCondition(*this, Cond.get(), QuestionLoc))
9221    return QualType();
9222
9223  // Handle vectors.
9224  if (LHS.get()->getType()->isVectorType() ||
9225      RHS.get()->getType()->isVectorType())
9226    return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/ false,
9227                               /*AllowBothBool*/ true,
9228                               /*AllowBoolConversions*/ false,
9229                               /*AllowBooleanOperation*/ false,
9230                               /*ReportInvalid*/ true);
9231
9232  QualType ResTy =
9233      UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional);
9234  if (LHS.isInvalid() || RHS.isInvalid())
9235    return QualType();
9236
9237  // WebAssembly tables are not allowed as conditional LHS or RHS.
9238  QualType LHSTy = LHS.get()->getType();
9239  QualType RHSTy = RHS.get()->getType();
9240  if (LHSTy->isWebAssemblyTableType() || RHSTy->isWebAssemblyTableType()) {
9241    Diag(QuestionLoc, diag::err_wasm_table_conditional_expression)
9242        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9243    return QualType();
9244  }
9245
9246  // Diagnose attempts to convert between __ibm128, __float128 and long double
9247  // where such conversions currently can't be handled.
9248  if (unsupportedTypeConversion(*this, LHSTy, RHSTy)) {
9249    Diag(QuestionLoc,
9250         diag::err_typecheck_cond_incompatible_operands) << LHSTy << RHSTy
9251      << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9252    return QualType();
9253  }
9254
9255  // OpenCL v2.0 s6.12.5 - Blocks cannot be used as expressions of the ternary
9256  // selection operator (?:).
9257  if (getLangOpts().OpenCL &&
9258      ((int)checkBlockType(*this, LHS.get()) | (int)checkBlockType(*this, RHS.get()))) {
9259    return QualType();
9260  }
9261
9262  // If both operands have arithmetic type, do the usual arithmetic conversions
9263  // to find a common type: C99 6.5.15p3,5.
9264  if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
9265    // Disallow invalid arithmetic conversions, such as those between bit-
9266    // precise integers types of different sizes, or between a bit-precise
9267    // integer and another type.
9268    if (ResTy.isNull() && (LHSTy->isBitIntType() || RHSTy->isBitIntType())) {
9269      Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
9270          << LHSTy << RHSTy << LHS.get()->getSourceRange()
9271          << RHS.get()->getSourceRange();
9272      return QualType();
9273    }
9274
9275    LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
9276    RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
9277
9278    return ResTy;
9279  }
9280
9281  // If both operands are the same structure or union type, the result is that
9282  // type.
9283  if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) {    // C99 6.5.15p3
9284    if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
9285      if (LHSRT->getDecl() == RHSRT->getDecl())
9286        // "If both the operands have structure or union type, the result has
9287        // that type."  This implies that CV qualifiers are dropped.
9288        return Context.getCommonSugaredType(LHSTy.getUnqualifiedType(),
9289                                            RHSTy.getUnqualifiedType());
9290    // FIXME: Type of conditional expression must be complete in C mode.
9291  }
9292
9293  // C99 6.5.15p5: "If both operands have void type, the result has void type."
9294  // The following || allows only one side to be void (a GCC-ism).
9295  if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
9296    QualType ResTy;
9297    if (LHSTy->isVoidType() && RHSTy->isVoidType()) {
9298      ResTy = Context.getCommonSugaredType(LHSTy, RHSTy);
9299    } else if (RHSTy->isVoidType()) {
9300      ResTy = RHSTy;
9301      Diag(RHS.get()->getBeginLoc(), diag::ext_typecheck_cond_one_void)
9302          << RHS.get()->getSourceRange();
9303    } else {
9304      ResTy = LHSTy;
9305      Diag(LHS.get()->getBeginLoc(), diag::ext_typecheck_cond_one_void)
9306          << LHS.get()->getSourceRange();
9307    }
9308    LHS = ImpCastExprToType(LHS.get(), ResTy, CK_ToVoid);
9309    RHS = ImpCastExprToType(RHS.get(), ResTy, CK_ToVoid);
9310    return ResTy;
9311  }
9312
9313  // C23 6.5.15p7:
9314  //   ... if both the second and third operands have nullptr_t type, the
9315  //   result also has that type.
9316  if (LHSTy->isNullPtrType() && Context.hasSameType(LHSTy, RHSTy))
9317    return ResTy;
9318
9319  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
9320  // the type of the other operand."
9321  if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy;
9322  if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy;
9323
9324  // All objective-c pointer type analysis is done here.
9325  QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
9326                                                        QuestionLoc);
9327  if (LHS.isInvalid() || RHS.isInvalid())
9328    return QualType();
9329  if (!compositeType.isNull())
9330    return compositeType;
9331
9332
9333  // Handle block pointer types.
9334  if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType())
9335    return checkConditionalBlockPointerCompatibility(*this, LHS, RHS,
9336                                                     QuestionLoc);
9337
9338  // Check constraints for C object pointers types (C99 6.5.15p3,6).
9339  if (LHSTy->isPointerType() && RHSTy->isPointerType())
9340    return checkConditionalObjectPointersCompatibility(*this, LHS, RHS,
9341                                                       QuestionLoc);
9342
9343  // GCC compatibility: soften pointer/integer mismatch.  Note that
9344  // null pointers have been filtered out by this point.
9345  if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc,
9346      /*IsIntFirstExpr=*/true))
9347    return RHSTy;
9348  if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc,
9349      /*IsIntFirstExpr=*/false))
9350    return LHSTy;
9351
9352  // Emit a better diagnostic if one of the expressions is a null pointer
9353  // constant and the other is not a pointer type. In this case, the user most
9354  // likely forgot to take the address of the other expression.
9355  if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
9356    return QualType();
9357
9358  // Finally, if the LHS and RHS types are canonically the same type, we can
9359  // use the common sugared type.
9360  if (Context.hasSameType(LHSTy, RHSTy))
9361    return Context.getCommonSugaredType(LHSTy, RHSTy);
9362
9363  // Otherwise, the operands are not compatible.
9364  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
9365    << LHSTy << RHSTy << LHS.get()->getSourceRange()
9366    << RHS.get()->getSourceRange();
9367  return QualType();
9368}
9369
9370/// FindCompositeObjCPointerType - Helper method to find composite type of
9371/// two objective-c pointer types of the two input expressions.
9372QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
9373                                            SourceLocation QuestionLoc) {
9374  QualType LHSTy = LHS.get()->getType();
9375  QualType RHSTy = RHS.get()->getType();
9376
9377  // Handle things like Class and struct objc_class*.  Here we case the result
9378  // to the pseudo-builtin, because that will be implicitly cast back to the
9379  // redefinition type if an attempt is made to access its fields.
9380  if (LHSTy->isObjCClassType() &&
9381      (Context.hasSameType(RHSTy, Context.getObjCClassRedefinitionType()))) {
9382    RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
9383    return LHSTy;
9384  }
9385  if (RHSTy->isObjCClassType() &&
9386      (Context.hasSameType(LHSTy, Context.getObjCClassRedefinitionType()))) {
9387    LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
9388    return RHSTy;
9389  }
9390  // And the same for struct objc_object* / id
9391  if (LHSTy->isObjCIdType() &&
9392      (Context.hasSameType(RHSTy, Context.getObjCIdRedefinitionType()))) {
9393    RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
9394    return LHSTy;
9395  }
9396  if (RHSTy->isObjCIdType() &&
9397      (Context.hasSameType(LHSTy, Context.getObjCIdRedefinitionType()))) {
9398    LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
9399    return RHSTy;
9400  }
9401  // And the same for struct objc_selector* / SEL
9402  if (Context.isObjCSelType(LHSTy) &&
9403      (Context.hasSameType(RHSTy, Context.getObjCSelRedefinitionType()))) {
9404    RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_BitCast);
9405    return LHSTy;
9406  }
9407  if (Context.isObjCSelType(RHSTy) &&
9408      (Context.hasSameType(LHSTy, Context.getObjCSelRedefinitionType()))) {
9409    LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_BitCast);
9410    return RHSTy;
9411  }
9412  // Check constraints for Objective-C object pointers types.
9413  if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
9414
9415    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
9416      // Two identical object pointer types are always compatible.
9417      return LHSTy;
9418    }
9419    const ObjCObjectPointerType *LHSOPT = LHSTy->castAs<ObjCObjectPointerType>();
9420    const ObjCObjectPointerType *RHSOPT = RHSTy->castAs<ObjCObjectPointerType>();
9421    QualType compositeType = LHSTy;
9422
9423    // If both operands are interfaces and either operand can be
9424    // assigned to the other, use that type as the composite
9425    // type. This allows
9426    //   xxx ? (A*) a : (B*) b
9427    // where B is a subclass of A.
9428    //
9429    // Additionally, as for assignment, if either type is 'id'
9430    // allow silent coercion. Finally, if the types are
9431    // incompatible then make sure to use 'id' as the composite
9432    // type so the result is acceptable for sending messages to.
9433
9434    // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
9435    // It could return the composite type.
9436    if (!(compositeType =
9437          Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull()) {
9438      // Nothing more to do.
9439    } else if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
9440      compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
9441    } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
9442      compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
9443    } else if ((LHSOPT->isObjCQualifiedIdType() ||
9444                RHSOPT->isObjCQualifiedIdType()) &&
9445               Context.ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT,
9446                                                         true)) {
9447      // Need to handle "id<xx>" explicitly.
9448      // GCC allows qualified id and any Objective-C type to devolve to
9449      // id. Currently localizing to here until clear this should be
9450      // part of ObjCQualifiedIdTypesAreCompatible.
9451      compositeType = Context.getObjCIdType();
9452    } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
9453      compositeType = Context.getObjCIdType();
9454    } else {
9455      Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
9456      << LHSTy << RHSTy
9457      << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9458      QualType incompatTy = Context.getObjCIdType();
9459      LHS = ImpCastExprToType(LHS.get(), incompatTy, CK_BitCast);
9460      RHS = ImpCastExprToType(RHS.get(), incompatTy, CK_BitCast);
9461      return incompatTy;
9462    }
9463    // The object pointer types are compatible.
9464    LHS = ImpCastExprToType(LHS.get(), compositeType, CK_BitCast);
9465    RHS = ImpCastExprToType(RHS.get(), compositeType, CK_BitCast);
9466    return compositeType;
9467  }
9468  // Check Objective-C object pointer types and 'void *'
9469  if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
9470    if (getLangOpts().ObjCAutoRefCount) {
9471      // ARC forbids the implicit conversion of object pointers to 'void *',
9472      // so these types are not compatible.
9473      Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
9474          << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9475      LHS = RHS = true;
9476      return QualType();
9477    }
9478    QualType lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
9479    QualType rhptee = RHSTy->castAs<ObjCObjectPointerType>()->getPointeeType();
9480    QualType destPointee
9481    = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
9482    QualType destType = Context.getPointerType(destPointee);
9483    // Add qualifiers if necessary.
9484    LHS = ImpCastExprToType(LHS.get(), destType, CK_NoOp);
9485    // Promote to void*.
9486    RHS = ImpCastExprToType(RHS.get(), destType, CK_BitCast);
9487    return destType;
9488  }
9489  if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
9490    if (getLangOpts().ObjCAutoRefCount) {
9491      // ARC forbids the implicit conversion of object pointers to 'void *',
9492      // so these types are not compatible.
9493      Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
9494          << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9495      LHS = RHS = true;
9496      return QualType();
9497    }
9498    QualType lhptee = LHSTy->castAs<ObjCObjectPointerType>()->getPointeeType();
9499    QualType rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
9500    QualType destPointee
9501    = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
9502    QualType destType = Context.getPointerType(destPointee);
9503    // Add qualifiers if necessary.
9504    RHS = ImpCastExprToType(RHS.get(), destType, CK_NoOp);
9505    // Promote to void*.
9506    LHS = ImpCastExprToType(LHS.get(), destType, CK_BitCast);
9507    return destType;
9508  }
9509  return QualType();
9510}
9511
9512/// SuggestParentheses - Emit a note with a fixit hint that wraps
9513/// ParenRange in parentheses.
9514static void SuggestParentheses(Sema &Self, SourceLocation Loc,
9515                               const PartialDiagnostic &Note,
9516                               SourceRange ParenRange) {
9517  SourceLocation EndLoc = Self.getLocForEndOfToken(ParenRange.getEnd());
9518  if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() &&
9519      EndLoc.isValid()) {
9520    Self.Diag(Loc, Note)
9521      << FixItHint::CreateInsertion(ParenRange.getBegin(), "(")
9522      << FixItHint::CreateInsertion(EndLoc, ")");
9523  } else {
9524    // We can't display the parentheses, so just show the bare note.
9525    Self.Diag(Loc, Note) << ParenRange;
9526  }
9527}
9528
9529static bool IsArithmeticOp(BinaryOperatorKind Opc) {
9530  return BinaryOperator::isAdditiveOp(Opc) ||
9531         BinaryOperator::isMultiplicativeOp(Opc) ||
9532         BinaryOperator::isShiftOp(Opc) || Opc == BO_And || Opc == BO_Or;
9533  // This only checks for bitwise-or and bitwise-and, but not bitwise-xor and
9534  // not any of the logical operators.  Bitwise-xor is commonly used as a
9535  // logical-xor because there is no logical-xor operator.  The logical
9536  // operators, including uses of xor, have a high false positive rate for
9537  // precedence warnings.
9538}
9539
9540/// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
9541/// expression, either using a built-in or overloaded operator,
9542/// and sets *OpCode to the opcode and *RHSExprs to the right-hand side
9543/// expression.
9544static bool IsArithmeticBinaryExpr(const Expr *E, BinaryOperatorKind *Opcode,
9545                                   const Expr **RHSExprs) {
9546  // Don't strip parenthesis: we should not warn if E is in parenthesis.
9547  E = E->IgnoreImpCasts();
9548  E = E->IgnoreConversionOperatorSingleStep();
9549  E = E->IgnoreImpCasts();
9550  if (const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) {
9551    E = MTE->getSubExpr();
9552    E = E->IgnoreImpCasts();
9553  }
9554
9555  // Built-in binary operator.
9556  if (const auto *OP = dyn_cast<BinaryOperator>(E);
9557      OP && IsArithmeticOp(OP->getOpcode())) {
9558    *Opcode = OP->getOpcode();
9559    *RHSExprs = OP->getRHS();
9560    return true;
9561  }
9562
9563  // Overloaded operator.
9564  if (const auto *Call = dyn_cast<CXXOperatorCallExpr>(E)) {
9565    if (Call->getNumArgs() != 2)
9566      return false;
9567
9568    // Make sure this is really a binary operator that is safe to pass into
9569    // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
9570    OverloadedOperatorKind OO = Call->getOperator();
9571    if (OO < OO_Plus || OO > OO_Arrow ||
9572        OO == OO_PlusPlus || OO == OO_MinusMinus)
9573      return false;
9574
9575    BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
9576    if (IsArithmeticOp(OpKind)) {
9577      *Opcode = OpKind;
9578      *RHSExprs = Call->getArg(1);
9579      return true;
9580    }
9581  }
9582
9583  return false;
9584}
9585
9586/// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
9587/// or is a logical expression such as (x==y) which has int type, but is
9588/// commonly interpreted as boolean.
9589static bool ExprLooksBoolean(const Expr *E) {
9590  E = E->IgnoreParenImpCasts();
9591
9592  if (E->getType()->isBooleanType())
9593    return true;
9594  if (const auto *OP = dyn_cast<BinaryOperator>(E))
9595    return OP->isComparisonOp() || OP->isLogicalOp();
9596  if (const auto *OP = dyn_cast<UnaryOperator>(E))
9597    return OP->getOpcode() == UO_LNot;
9598  if (E->getType()->isPointerType())
9599    return true;
9600  // FIXME: What about overloaded operator calls returning "unspecified boolean
9601  // type"s (commonly pointer-to-members)?
9602
9603  return false;
9604}
9605
9606/// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
9607/// and binary operator are mixed in a way that suggests the programmer assumed
9608/// the conditional operator has higher precedence, for example:
9609/// "int x = a + someBinaryCondition ? 1 : 2".
9610static void DiagnoseConditionalPrecedence(Sema &Self, SourceLocation OpLoc,
9611                                          Expr *Condition, const Expr *LHSExpr,
9612                                          const Expr *RHSExpr) {
9613  BinaryOperatorKind CondOpcode;
9614  const Expr *CondRHS;
9615
9616  if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS))
9617    return;
9618  if (!ExprLooksBoolean(CondRHS))
9619    return;
9620
9621  // The condition is an arithmetic binary expression, with a right-
9622  // hand side that looks boolean, so warn.
9623
9624  unsigned DiagID = BinaryOperator::isBitwiseOp(CondOpcode)
9625                        ? diag::warn_precedence_bitwise_conditional
9626                        : diag::warn_precedence_conditional;
9627
9628  Self.Diag(OpLoc, DiagID)
9629      << Condition->getSourceRange()
9630      << BinaryOperator::getOpcodeStr(CondOpcode);
9631
9632  SuggestParentheses(
9633      Self, OpLoc,
9634      Self.PDiag(diag::note_precedence_silence)
9635          << BinaryOperator::getOpcodeStr(CondOpcode),
9636      SourceRange(Condition->getBeginLoc(), Condition->getEndLoc()));
9637
9638  SuggestParentheses(Self, OpLoc,
9639                     Self.PDiag(diag::note_precedence_conditional_first),
9640                     SourceRange(CondRHS->getBeginLoc(), RHSExpr->getEndLoc()));
9641}
9642
9643/// Compute the nullability of a conditional expression.
9644static QualType computeConditionalNullability(QualType ResTy, bool IsBin,
9645                                              QualType LHSTy, QualType RHSTy,
9646                                              ASTContext &Ctx) {
9647  if (!ResTy->isAnyPointerType())
9648    return ResTy;
9649
9650  auto GetNullability = [](QualType Ty) {
9651    std::optional<NullabilityKind> Kind = Ty->getNullability();
9652    if (Kind) {
9653      // For our purposes, treat _Nullable_result as _Nullable.
9654      if (*Kind == NullabilityKind::NullableResult)
9655        return NullabilityKind::Nullable;
9656      return *Kind;
9657    }
9658    return NullabilityKind::Unspecified;
9659  };
9660
9661  auto LHSKind = GetNullability(LHSTy), RHSKind = GetNullability(RHSTy);
9662  NullabilityKind MergedKind;
9663
9664  // Compute nullability of a binary conditional expression.
9665  if (IsBin) {
9666    if (LHSKind == NullabilityKind::NonNull)
9667      MergedKind = NullabilityKind::NonNull;
9668    else
9669      MergedKind = RHSKind;
9670  // Compute nullability of a normal conditional expression.
9671  } else {
9672    if (LHSKind == NullabilityKind::Nullable ||
9673        RHSKind == NullabilityKind::Nullable)
9674      MergedKind = NullabilityKind::Nullable;
9675    else if (LHSKind == NullabilityKind::NonNull)
9676      MergedKind = RHSKind;
9677    else if (RHSKind == NullabilityKind::NonNull)
9678      MergedKind = LHSKind;
9679    else
9680      MergedKind = NullabilityKind::Unspecified;
9681  }
9682
9683  // Return if ResTy already has the correct nullability.
9684  if (GetNullability(ResTy) == MergedKind)
9685    return ResTy;
9686
9687  // Strip all nullability from ResTy.
9688  while (ResTy->getNullability())
9689    ResTy = ResTy.getSingleStepDesugaredType(Ctx);
9690
9691  // Create a new AttributedType with the new nullability kind.
9692  auto NewAttr = AttributedType::getNullabilityAttrKind(MergedKind);
9693  return Ctx.getAttributedType(NewAttr, ResTy, ResTy);
9694}
9695
9696/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
9697/// in the case of a the GNU conditional expr extension.
9698ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
9699                                    SourceLocation ColonLoc,
9700                                    Expr *CondExpr, Expr *LHSExpr,
9701                                    Expr *RHSExpr) {
9702  if (!Context.isDependenceAllowed()) {
9703    // C cannot handle TypoExpr nodes in the condition because it
9704    // doesn't handle dependent types properly, so make sure any TypoExprs have
9705    // been dealt with before checking the operands.
9706    ExprResult CondResult = CorrectDelayedTyposInExpr(CondExpr);
9707    ExprResult LHSResult = CorrectDelayedTyposInExpr(LHSExpr);
9708    ExprResult RHSResult = CorrectDelayedTyposInExpr(RHSExpr);
9709
9710    if (!CondResult.isUsable())
9711      return ExprError();
9712
9713    if (LHSExpr) {
9714      if (!LHSResult.isUsable())
9715        return ExprError();
9716    }
9717
9718    if (!RHSResult.isUsable())
9719      return ExprError();
9720
9721    CondExpr = CondResult.get();
9722    LHSExpr = LHSResult.get();
9723    RHSExpr = RHSResult.get();
9724  }
9725
9726  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
9727  // was the condition.
9728  OpaqueValueExpr *opaqueValue = nullptr;
9729  Expr *commonExpr = nullptr;
9730  if (!LHSExpr) {
9731    commonExpr = CondExpr;
9732    // Lower out placeholder types first.  This is important so that we don't
9733    // try to capture a placeholder. This happens in few cases in C++; such
9734    // as Objective-C++'s dictionary subscripting syntax.
9735    if (commonExpr->hasPlaceholderType()) {
9736      ExprResult result = CheckPlaceholderExpr(commonExpr);
9737      if (!result.isUsable()) return ExprError();
9738      commonExpr = result.get();
9739    }
9740    // We usually want to apply unary conversions *before* saving, except
9741    // in the special case of a C++ l-value conditional.
9742    if (!(getLangOpts().CPlusPlus
9743          && !commonExpr->isTypeDependent()
9744          && commonExpr->getValueKind() == RHSExpr->getValueKind()
9745          && commonExpr->isGLValue()
9746          && commonExpr->isOrdinaryOrBitFieldObject()
9747          && RHSExpr->isOrdinaryOrBitFieldObject()
9748          && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
9749      ExprResult commonRes = UsualUnaryConversions(commonExpr);
9750      if (commonRes.isInvalid())
9751        return ExprError();
9752      commonExpr = commonRes.get();
9753    }
9754
9755    // If the common expression is a class or array prvalue, materialize it
9756    // so that we can safely refer to it multiple times.
9757    if (commonExpr->isPRValue() && (commonExpr->getType()->isRecordType() ||
9758                                    commonExpr->getType()->isArrayType())) {
9759      ExprResult MatExpr = TemporaryMaterializationConversion(commonExpr);
9760      if (MatExpr.isInvalid())
9761        return ExprError();
9762      commonExpr = MatExpr.get();
9763    }
9764
9765    opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
9766                                                commonExpr->getType(),
9767                                                commonExpr->getValueKind(),
9768                                                commonExpr->getObjectKind(),
9769                                                commonExpr);
9770    LHSExpr = CondExpr = opaqueValue;
9771  }
9772
9773  QualType LHSTy = LHSExpr->getType(), RHSTy = RHSExpr->getType();
9774  ExprValueKind VK = VK_PRValue;
9775  ExprObjectKind OK = OK_Ordinary;
9776  ExprResult Cond = CondExpr, LHS = LHSExpr, RHS = RHSExpr;
9777  QualType result = CheckConditionalOperands(Cond, LHS, RHS,
9778                                             VK, OK, QuestionLoc);
9779  if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
9780      RHS.isInvalid())
9781    return ExprError();
9782
9783  DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(),
9784                                RHS.get());
9785
9786  CheckBoolLikeConversion(Cond.get(), QuestionLoc);
9787
9788  result = computeConditionalNullability(result, commonExpr, LHSTy, RHSTy,
9789                                         Context);
9790
9791  if (!commonExpr)
9792    return new (Context)
9793        ConditionalOperator(Cond.get(), QuestionLoc, LHS.get(), ColonLoc,
9794                            RHS.get(), result, VK, OK);
9795
9796  return new (Context) BinaryConditionalOperator(
9797      commonExpr, opaqueValue, Cond.get(), LHS.get(), RHS.get(), QuestionLoc,
9798      ColonLoc, result, VK, OK);
9799}
9800
9801// Check that the SME attributes for PSTATE.ZA and PSTATE.SM are compatible.
9802bool Sema::IsInvalidSMECallConversion(QualType FromType, QualType ToType) {
9803  unsigned FromAttributes = 0, ToAttributes = 0;
9804  if (const auto *FromFn =
9805          dyn_cast<FunctionProtoType>(Context.getCanonicalType(FromType)))
9806    FromAttributes =
9807        FromFn->getAArch64SMEAttributes() & FunctionType::SME_AttributeMask;
9808  if (const auto *ToFn =
9809          dyn_cast<FunctionProtoType>(Context.getCanonicalType(ToType)))
9810    ToAttributes =
9811        ToFn->getAArch64SMEAttributes() & FunctionType::SME_AttributeMask;
9812
9813  return FromAttributes != ToAttributes;
9814}
9815
9816// Check if we have a conversion between incompatible cmse function pointer
9817// types, that is, a conversion between a function pointer with the
9818// cmse_nonsecure_call attribute and one without.
9819static bool IsInvalidCmseNSCallConversion(Sema &S, QualType FromType,
9820                                          QualType ToType) {
9821  if (const auto *ToFn =
9822          dyn_cast<FunctionType>(S.Context.getCanonicalType(ToType))) {
9823    if (const auto *FromFn =
9824            dyn_cast<FunctionType>(S.Context.getCanonicalType(FromType))) {
9825      FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo();
9826      FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo();
9827
9828      return ToEInfo.getCmseNSCall() != FromEInfo.getCmseNSCall();
9829    }
9830  }
9831  return false;
9832}
9833
9834// checkPointerTypesForAssignment - This is a very tricky routine (despite
9835// being closely modeled after the C99 spec:-). The odd characteristic of this
9836// routine is it effectively iqnores the qualifiers on the top level pointee.
9837// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
9838// FIXME: add a couple examples in this comment.
9839static Sema::AssignConvertType
9840checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType,
9841                               SourceLocation Loc) {
9842  assert(LHSType.isCanonical() && "LHS not canonicalized!");
9843  assert(RHSType.isCanonical() && "RHS not canonicalized!");
9844
9845  // get the "pointed to" type (ignoring qualifiers at the top level)
9846  const Type *lhptee, *rhptee;
9847  Qualifiers lhq, rhq;
9848  std::tie(lhptee, lhq) =
9849      cast<PointerType>(LHSType)->getPointeeType().split().asPair();
9850  std::tie(rhptee, rhq) =
9851      cast<PointerType>(RHSType)->getPointeeType().split().asPair();
9852
9853  Sema::AssignConvertType ConvTy = Sema::Compatible;
9854
9855  // C99 6.5.16.1p1: This following citation is common to constraints
9856  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
9857  // qualifiers of the type *pointed to* by the right;
9858
9859  // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
9860  if (lhq.getObjCLifetime() != rhq.getObjCLifetime() &&
9861      lhq.compatiblyIncludesObjCLifetime(rhq)) {
9862    // Ignore lifetime for further calculation.
9863    lhq.removeObjCLifetime();
9864    rhq.removeObjCLifetime();
9865  }
9866
9867  if (!lhq.compatiblyIncludes(rhq)) {
9868    // Treat address-space mismatches as fatal.
9869    if (!lhq.isAddressSpaceSupersetOf(rhq))
9870      return Sema::IncompatiblePointerDiscardsQualifiers;
9871
9872    // It's okay to add or remove GC or lifetime qualifiers when converting to
9873    // and from void*.
9874    else if (lhq.withoutObjCGCAttr().withoutObjCLifetime()
9875                        .compatiblyIncludes(
9876                                rhq.withoutObjCGCAttr().withoutObjCLifetime())
9877             && (lhptee->isVoidType() || rhptee->isVoidType()))
9878      ; // keep old
9879
9880    // Treat lifetime mismatches as fatal.
9881    else if (lhq.getObjCLifetime() != rhq.getObjCLifetime())
9882      ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
9883
9884    // For GCC/MS compatibility, other qualifier mismatches are treated
9885    // as still compatible in C.
9886    else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
9887  }
9888
9889  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
9890  // incomplete type and the other is a pointer to a qualified or unqualified
9891  // version of void...
9892  if (lhptee->isVoidType()) {
9893    if (rhptee->isIncompleteOrObjectType())
9894      return ConvTy;
9895
9896    // As an extension, we allow cast to/from void* to function pointer.
9897    assert(rhptee->isFunctionType());
9898    return Sema::FunctionVoidPointer;
9899  }
9900
9901  if (rhptee->isVoidType()) {
9902    if (lhptee->isIncompleteOrObjectType())
9903      return ConvTy;
9904
9905    // As an extension, we allow cast to/from void* to function pointer.
9906    assert(lhptee->isFunctionType());
9907    return Sema::FunctionVoidPointer;
9908  }
9909
9910  if (!S.Diags.isIgnored(
9911          diag::warn_typecheck_convert_incompatible_function_pointer_strict,
9912          Loc) &&
9913      RHSType->isFunctionPointerType() && LHSType->isFunctionPointerType() &&
9914      !S.IsFunctionConversion(RHSType, LHSType, RHSType))
9915    return Sema::IncompatibleFunctionPointerStrict;
9916
9917  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
9918  // unqualified versions of compatible types, ...
9919  QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
9920  if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
9921    // Check if the pointee types are compatible ignoring the sign.
9922    // We explicitly check for char so that we catch "char" vs
9923    // "unsigned char" on systems where "char" is unsigned.
9924    if (lhptee->isCharType())
9925      ltrans = S.Context.UnsignedCharTy;
9926    else if (lhptee->hasSignedIntegerRepresentation())
9927      ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
9928
9929    if (rhptee->isCharType())
9930      rtrans = S.Context.UnsignedCharTy;
9931    else if (rhptee->hasSignedIntegerRepresentation())
9932      rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
9933
9934    if (ltrans == rtrans) {
9935      // Types are compatible ignoring the sign. Qualifier incompatibility
9936      // takes priority over sign incompatibility because the sign
9937      // warning can be disabled.
9938      if (ConvTy != Sema::Compatible)
9939        return ConvTy;
9940
9941      return Sema::IncompatiblePointerSign;
9942    }
9943
9944    // If we are a multi-level pointer, it's possible that our issue is simply
9945    // one of qualification - e.g. char ** -> const char ** is not allowed. If
9946    // the eventual target type is the same and the pointers have the same
9947    // level of indirection, this must be the issue.
9948    if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
9949      do {
9950        std::tie(lhptee, lhq) =
9951          cast<PointerType>(lhptee)->getPointeeType().split().asPair();
9952        std::tie(rhptee, rhq) =
9953          cast<PointerType>(rhptee)->getPointeeType().split().asPair();
9954
9955        // Inconsistent address spaces at this point is invalid, even if the
9956        // address spaces would be compatible.
9957        // FIXME: This doesn't catch address space mismatches for pointers of
9958        // different nesting levels, like:
9959        //   __local int *** a;
9960        //   int ** b = a;
9961        // It's not clear how to actually determine when such pointers are
9962        // invalidly incompatible.
9963        if (lhq.getAddressSpace() != rhq.getAddressSpace())
9964          return Sema::IncompatibleNestedPointerAddressSpaceMismatch;
9965
9966      } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
9967
9968      if (lhptee == rhptee)
9969        return Sema::IncompatibleNestedPointerQualifiers;
9970    }
9971
9972    // General pointer incompatibility takes priority over qualifiers.
9973    if (RHSType->isFunctionPointerType() && LHSType->isFunctionPointerType())
9974      return Sema::IncompatibleFunctionPointer;
9975    return Sema::IncompatiblePointer;
9976  }
9977  if (!S.getLangOpts().CPlusPlus &&
9978      S.IsFunctionConversion(ltrans, rtrans, ltrans))
9979    return Sema::IncompatibleFunctionPointer;
9980  if (IsInvalidCmseNSCallConversion(S, ltrans, rtrans))
9981    return Sema::IncompatibleFunctionPointer;
9982  if (S.IsInvalidSMECallConversion(rtrans, ltrans))
9983    return Sema::IncompatibleFunctionPointer;
9984  return ConvTy;
9985}
9986
9987/// checkBlockPointerTypesForAssignment - This routine determines whether two
9988/// block pointer types are compatible or whether a block and normal pointer
9989/// are compatible. It is more restrict than comparing two function pointer
9990// types.
9991static Sema::AssignConvertType
9992checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType,
9993                                    QualType RHSType) {
9994  assert(LHSType.isCanonical() && "LHS not canonicalized!");
9995  assert(RHSType.isCanonical() && "RHS not canonicalized!");
9996
9997  QualType lhptee, rhptee;
9998
9999  // get the "pointed to" type (ignoring qualifiers at the top level)
10000  lhptee = cast<BlockPointerType>(LHSType)->getPointeeType();
10001  rhptee = cast<BlockPointerType>(RHSType)->getPointeeType();
10002
10003  // In C++, the types have to match exactly.
10004  if (S.getLangOpts().CPlusPlus)
10005    return Sema::IncompatibleBlockPointer;
10006
10007  Sema::AssignConvertType ConvTy = Sema::Compatible;
10008
10009  // For blocks we enforce that qualifiers are identical.
10010  Qualifiers LQuals = lhptee.getLocalQualifiers();
10011  Qualifiers RQuals = rhptee.getLocalQualifiers();
10012  if (S.getLangOpts().OpenCL) {
10013    LQuals.removeAddressSpace();
10014    RQuals.removeAddressSpace();
10015  }
10016  if (LQuals != RQuals)
10017    ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
10018
10019  // FIXME: OpenCL doesn't define the exact compile time semantics for a block
10020  // assignment.
10021  // The current behavior is similar to C++ lambdas. A block might be
10022  // assigned to a variable iff its return type and parameters are compatible
10023  // (C99 6.2.7) with the corresponding return type and parameters of the LHS of
10024  // an assignment. Presumably it should behave in way that a function pointer
10025  // assignment does in C, so for each parameter and return type:
10026  //  * CVR and address space of LHS should be a superset of CVR and address
10027  //  space of RHS.
10028  //  * unqualified types should be compatible.
10029  if (S.getLangOpts().OpenCL) {
10030    if (!S.Context.typesAreBlockPointerCompatible(
10031            S.Context.getQualifiedType(LHSType.getUnqualifiedType(), LQuals),
10032            S.Context.getQualifiedType(RHSType.getUnqualifiedType(), RQuals)))
10033      return Sema::IncompatibleBlockPointer;
10034  } else if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType))
10035    return Sema::IncompatibleBlockPointer;
10036
10037  return ConvTy;
10038}
10039
10040/// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
10041/// for assignment compatibility.
10042static Sema::AssignConvertType
10043checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType,
10044                                   QualType RHSType) {
10045  assert(LHSType.isCanonical() && "LHS was not canonicalized!");
10046  assert(RHSType.isCanonical() && "RHS was not canonicalized!");
10047
10048  if (LHSType->isObjCBuiltinType()) {
10049    // Class is not compatible with ObjC object pointers.
10050    if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() &&
10051        !RHSType->isObjCQualifiedClassType())
10052      return Sema::IncompatiblePointer;
10053    return Sema::Compatible;
10054  }
10055  if (RHSType->isObjCBuiltinType()) {
10056    if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() &&
10057        !LHSType->isObjCQualifiedClassType())
10058      return Sema::IncompatiblePointer;
10059    return Sema::Compatible;
10060  }
10061  QualType lhptee = LHSType->castAs<ObjCObjectPointerType>()->getPointeeType();
10062  QualType rhptee = RHSType->castAs<ObjCObjectPointerType>()->getPointeeType();
10063
10064  if (!lhptee.isAtLeastAsQualifiedAs(rhptee) &&
10065      // make an exception for id<P>
10066      !LHSType->isObjCQualifiedIdType())
10067    return Sema::CompatiblePointerDiscardsQualifiers;
10068
10069  if (S.Context.typesAreCompatible(LHSType, RHSType))
10070    return Sema::Compatible;
10071  if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType())
10072    return Sema::IncompatibleObjCQualifiedId;
10073  return Sema::IncompatiblePointer;
10074}
10075
10076Sema::AssignConvertType
10077Sema::CheckAssignmentConstraints(SourceLocation Loc,
10078                                 QualType LHSType, QualType RHSType) {
10079  // Fake up an opaque expression.  We don't actually care about what
10080  // cast operations are required, so if CheckAssignmentConstraints
10081  // adds casts to this they'll be wasted, but fortunately that doesn't
10082  // usually happen on valid code.
10083  OpaqueValueExpr RHSExpr(Loc, RHSType, VK_PRValue);
10084  ExprResult RHSPtr = &RHSExpr;
10085  CastKind K;
10086
10087  return CheckAssignmentConstraints(LHSType, RHSPtr, K, /*ConvertRHS=*/false);
10088}
10089
10090/// This helper function returns true if QT is a vector type that has element
10091/// type ElementType.
10092static bool isVector(QualType QT, QualType ElementType) {
10093  if (const VectorType *VT = QT->getAs<VectorType>())
10094    return VT->getElementType().getCanonicalType() == ElementType;
10095  return false;
10096}
10097
10098/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
10099/// has code to accommodate several GCC extensions when type checking
10100/// pointers. Here are some objectionable examples that GCC considers warnings:
10101///
10102///  int a, *pint;
10103///  short *pshort;
10104///  struct foo *pfoo;
10105///
10106///  pint = pshort; // warning: assignment from incompatible pointer type
10107///  a = pint; // warning: assignment makes integer from pointer without a cast
10108///  pint = a; // warning: assignment makes pointer from integer without a cast
10109///  pint = pfoo; // warning: assignment from incompatible pointer type
10110///
10111/// As a result, the code for dealing with pointers is more complex than the
10112/// C99 spec dictates.
10113///
10114/// Sets 'Kind' for any result kind except Incompatible.
10115Sema::AssignConvertType
10116Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS,
10117                                 CastKind &Kind, bool ConvertRHS) {
10118  QualType RHSType = RHS.get()->getType();
10119  QualType OrigLHSType = LHSType;
10120
10121  // Get canonical types.  We're not formatting these types, just comparing
10122  // them.
10123  LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType();
10124  RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType();
10125
10126  // Common case: no conversion required.
10127  if (LHSType == RHSType) {
10128    Kind = CK_NoOp;
10129    return Compatible;
10130  }
10131
10132  // If the LHS has an __auto_type, there are no additional type constraints
10133  // to be worried about.
10134  if (const auto *AT = dyn_cast<AutoType>(LHSType)) {
10135    if (AT->isGNUAutoType()) {
10136      Kind = CK_NoOp;
10137      return Compatible;
10138    }
10139  }
10140
10141  // If we have an atomic type, try a non-atomic assignment, then just add an
10142  // atomic qualification step.
10143  if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(LHSType)) {
10144    Sema::AssignConvertType result =
10145      CheckAssignmentConstraints(AtomicTy->getValueType(), RHS, Kind);
10146    if (result != Compatible)
10147      return result;
10148    if (Kind != CK_NoOp && ConvertRHS)
10149      RHS = ImpCastExprToType(RHS.get(), AtomicTy->getValueType(), Kind);
10150    Kind = CK_NonAtomicToAtomic;
10151    return Compatible;
10152  }
10153
10154  // If the left-hand side is a reference type, then we are in a
10155  // (rare!) case where we've allowed the use of references in C,
10156  // e.g., as a parameter type in a built-in function. In this case,
10157  // just make sure that the type referenced is compatible with the
10158  // right-hand side type. The caller is responsible for adjusting
10159  // LHSType so that the resulting expression does not have reference
10160  // type.
10161  if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) {
10162    if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) {
10163      Kind = CK_LValueBitCast;
10164      return Compatible;
10165    }
10166    return Incompatible;
10167  }
10168
10169  // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
10170  // to the same ExtVector type.
10171  if (LHSType->isExtVectorType()) {
10172    if (RHSType->isExtVectorType())
10173      return Incompatible;
10174    if (RHSType->isArithmeticType()) {
10175      // CK_VectorSplat does T -> vector T, so first cast to the element type.
10176      if (ConvertRHS)
10177        RHS = prepareVectorSplat(LHSType, RHS.get());
10178      Kind = CK_VectorSplat;
10179      return Compatible;
10180    }
10181  }
10182
10183  // Conversions to or from vector type.
10184  if (LHSType->isVectorType() || RHSType->isVectorType()) {
10185    if (LHSType->isVectorType() && RHSType->isVectorType()) {
10186      // Allow assignments of an AltiVec vector type to an equivalent GCC
10187      // vector type and vice versa
10188      if (Context.areCompatibleVectorTypes(LHSType, RHSType)) {
10189        Kind = CK_BitCast;
10190        return Compatible;
10191      }
10192
10193      // If we are allowing lax vector conversions, and LHS and RHS are both
10194      // vectors, the total size only needs to be the same. This is a bitcast;
10195      // no bits are changed but the result type is different.
10196      if (isLaxVectorConversion(RHSType, LHSType)) {
10197        // The default for lax vector conversions with Altivec vectors will
10198        // change, so if we are converting between vector types where
10199        // at least one is an Altivec vector, emit a warning.
10200        if (Context.getTargetInfo().getTriple().isPPC() &&
10201            anyAltivecTypes(RHSType, LHSType) &&
10202            !Context.areCompatibleVectorTypes(RHSType, LHSType))
10203          Diag(RHS.get()->getExprLoc(), diag::warn_deprecated_lax_vec_conv_all)
10204              << RHSType << LHSType;
10205        Kind = CK_BitCast;
10206        return IncompatibleVectors;
10207      }
10208    }
10209
10210    // When the RHS comes from another lax conversion (e.g. binops between
10211    // scalars and vectors) the result is canonicalized as a vector. When the
10212    // LHS is also a vector, the lax is allowed by the condition above. Handle
10213    // the case where LHS is a scalar.
10214    if (LHSType->isScalarType()) {
10215      const VectorType *VecType = RHSType->getAs<VectorType>();
10216      if (VecType && VecType->getNumElements() == 1 &&
10217          isLaxVectorConversion(RHSType, LHSType)) {
10218        if (Context.getTargetInfo().getTriple().isPPC() &&
10219            (VecType->getVectorKind() == VectorKind::AltiVecVector ||
10220             VecType->getVectorKind() == VectorKind::AltiVecBool ||
10221             VecType->getVectorKind() == VectorKind::AltiVecPixel))
10222          Diag(RHS.get()->getExprLoc(), diag::warn_deprecated_lax_vec_conv_all)
10223              << RHSType << LHSType;
10224        ExprResult *VecExpr = &RHS;
10225        *VecExpr = ImpCastExprToType(VecExpr->get(), LHSType, CK_BitCast);
10226        Kind = CK_BitCast;
10227        return Compatible;
10228      }
10229    }
10230
10231    // Allow assignments between fixed-length and sizeless SVE vectors.
10232    if ((LHSType->isSVESizelessBuiltinType() && RHSType->isVectorType()) ||
10233        (LHSType->isVectorType() && RHSType->isSVESizelessBuiltinType()))
10234      if (Context.areCompatibleSveTypes(LHSType, RHSType) ||
10235          Context.areLaxCompatibleSveTypes(LHSType, RHSType)) {
10236        Kind = CK_BitCast;
10237        return Compatible;
10238      }
10239
10240    // Allow assignments between fixed-length and sizeless RVV vectors.
10241    if ((LHSType->isRVVSizelessBuiltinType() && RHSType->isVectorType()) ||
10242        (LHSType->isVectorType() && RHSType->isRVVSizelessBuiltinType())) {
10243      if (Context.areCompatibleRVVTypes(LHSType, RHSType) ||
10244          Context.areLaxCompatibleRVVTypes(LHSType, RHSType)) {
10245        Kind = CK_BitCast;
10246        return Compatible;
10247      }
10248    }
10249
10250    return Incompatible;
10251  }
10252
10253  // Diagnose attempts to convert between __ibm128, __float128 and long double
10254  // where such conversions currently can't be handled.
10255  if (unsupportedTypeConversion(*this, LHSType, RHSType))
10256    return Incompatible;
10257
10258  // Disallow assigning a _Complex to a real type in C++ mode since it simply
10259  // discards the imaginary part.
10260  if (getLangOpts().CPlusPlus && RHSType->getAs<ComplexType>() &&
10261      !LHSType->getAs<ComplexType>())
10262    return Incompatible;
10263
10264  // Arithmetic conversions.
10265  if (LHSType->isArithmeticType() && RHSType->isArithmeticType() &&
10266      !(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) {
10267    if (ConvertRHS)
10268      Kind = PrepareScalarCast(RHS, LHSType);
10269    return Compatible;
10270  }
10271
10272  // Conversions to normal pointers.
10273  if (const PointerType *LHSPointer = dyn_cast<PointerType>(LHSType)) {
10274    // U* -> T*
10275    if (isa<PointerType>(RHSType)) {
10276      LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
10277      LangAS AddrSpaceR = RHSType->getPointeeType().getAddressSpace();
10278      if (AddrSpaceL != AddrSpaceR)
10279        Kind = CK_AddressSpaceConversion;
10280      else if (Context.hasCvrSimilarType(RHSType, LHSType))
10281        Kind = CK_NoOp;
10282      else
10283        Kind = CK_BitCast;
10284      return checkPointerTypesForAssignment(*this, LHSType, RHSType,
10285                                            RHS.get()->getBeginLoc());
10286    }
10287
10288    // int -> T*
10289    if (RHSType->isIntegerType()) {
10290      Kind = CK_IntegralToPointer; // FIXME: null?
10291      return IntToPointer;
10292    }
10293
10294    // C pointers are not compatible with ObjC object pointers,
10295    // with two exceptions:
10296    if (isa<ObjCObjectPointerType>(RHSType)) {
10297      //  - conversions to void*
10298      if (LHSPointer->getPointeeType()->isVoidType()) {
10299        Kind = CK_BitCast;
10300        return Compatible;
10301      }
10302
10303      //  - conversions from 'Class' to the redefinition type
10304      if (RHSType->isObjCClassType() &&
10305          Context.hasSameType(LHSType,
10306                              Context.getObjCClassRedefinitionType())) {
10307        Kind = CK_BitCast;
10308        return Compatible;
10309      }
10310
10311      Kind = CK_BitCast;
10312      return IncompatiblePointer;
10313    }
10314
10315    // U^ -> void*
10316    if (RHSType->getAs<BlockPointerType>()) {
10317      if (LHSPointer->getPointeeType()->isVoidType()) {
10318        LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
10319        LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>()
10320                                ->getPointeeType()
10321                                .getAddressSpace();
10322        Kind =
10323            AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
10324        return Compatible;
10325      }
10326    }
10327
10328    return Incompatible;
10329  }
10330
10331  // Conversions to block pointers.
10332  if (isa<BlockPointerType>(LHSType)) {
10333    // U^ -> T^
10334    if (RHSType->isBlockPointerType()) {
10335      LangAS AddrSpaceL = LHSType->getAs<BlockPointerType>()
10336                              ->getPointeeType()
10337                              .getAddressSpace();
10338      LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>()
10339                              ->getPointeeType()
10340                              .getAddressSpace();
10341      Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
10342      return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType);
10343    }
10344
10345    // int or null -> T^
10346    if (RHSType->isIntegerType()) {
10347      Kind = CK_IntegralToPointer; // FIXME: null
10348      return IntToBlockPointer;
10349    }
10350
10351    // id -> T^
10352    if (getLangOpts().ObjC && RHSType->isObjCIdType()) {
10353      Kind = CK_AnyPointerToBlockPointerCast;
10354      return Compatible;
10355    }
10356
10357    // void* -> T^
10358    if (const PointerType *RHSPT = RHSType->getAs<PointerType>())
10359      if (RHSPT->getPointeeType()->isVoidType()) {
10360        Kind = CK_AnyPointerToBlockPointerCast;
10361        return Compatible;
10362      }
10363
10364    return Incompatible;
10365  }
10366
10367  // Conversions to Objective-C pointers.
10368  if (isa<ObjCObjectPointerType>(LHSType)) {
10369    // A* -> B*
10370    if (RHSType->isObjCObjectPointerType()) {
10371      Kind = CK_BitCast;
10372      Sema::AssignConvertType result =
10373        checkObjCPointerTypesForAssignment(*this, LHSType, RHSType);
10374      if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
10375          result == Compatible &&
10376          !CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType))
10377        result = IncompatibleObjCWeakRef;
10378      return result;
10379    }
10380
10381    // int or null -> A*
10382    if (RHSType->isIntegerType()) {
10383      Kind = CK_IntegralToPointer; // FIXME: null
10384      return IntToPointer;
10385    }
10386
10387    // In general, C pointers are not compatible with ObjC object pointers,
10388    // with two exceptions:
10389    if (isa<PointerType>(RHSType)) {
10390      Kind = CK_CPointerToObjCPointerCast;
10391
10392      //  - conversions from 'void*'
10393      if (RHSType->isVoidPointerType()) {
10394        return Compatible;
10395      }
10396
10397      //  - conversions to 'Class' from its redefinition type
10398      if (LHSType->isObjCClassType() &&
10399          Context.hasSameType(RHSType,
10400                              Context.getObjCClassRedefinitionType())) {
10401        return Compatible;
10402      }
10403
10404      return IncompatiblePointer;
10405    }
10406
10407    // Only under strict condition T^ is compatible with an Objective-C pointer.
10408    if (RHSType->isBlockPointerType() &&
10409        LHSType->isBlockCompatibleObjCPointerType(Context)) {
10410      if (ConvertRHS)
10411        maybeExtendBlockObject(RHS);
10412      Kind = CK_BlockPointerToObjCPointerCast;
10413      return Compatible;
10414    }
10415
10416    return Incompatible;
10417  }
10418
10419  // Conversion to nullptr_t (C23 only)
10420  if (getLangOpts().C23 && LHSType->isNullPtrType() &&
10421      RHS.get()->isNullPointerConstant(Context,
10422                                       Expr::NPC_ValueDependentIsNull)) {
10423    // null -> nullptr_t
10424    Kind = CK_NullToPointer;
10425    return Compatible;
10426  }
10427
10428  // Conversions from pointers that are not covered by the above.
10429  if (isa<PointerType>(RHSType)) {
10430    // T* -> _Bool
10431    if (LHSType == Context.BoolTy) {
10432      Kind = CK_PointerToBoolean;
10433      return Compatible;
10434    }
10435
10436    // T* -> int
10437    if (LHSType->isIntegerType()) {
10438      Kind = CK_PointerToIntegral;
10439      return PointerToInt;
10440    }
10441
10442    return Incompatible;
10443  }
10444
10445  // Conversions from Objective-C pointers that are not covered by the above.
10446  if (isa<ObjCObjectPointerType>(RHSType)) {
10447    // T* -> _Bool
10448    if (LHSType == Context.BoolTy) {
10449      Kind = CK_PointerToBoolean;
10450      return Compatible;
10451    }
10452
10453    // T* -> int
10454    if (LHSType->isIntegerType()) {
10455      Kind = CK_PointerToIntegral;
10456      return PointerToInt;
10457    }
10458
10459    return Incompatible;
10460  }
10461
10462  // struct A -> struct B
10463  if (isa<TagType>(LHSType) && isa<TagType>(RHSType)) {
10464    if (Context.typesAreCompatible(LHSType, RHSType)) {
10465      Kind = CK_NoOp;
10466      return Compatible;
10467    }
10468  }
10469
10470  if (LHSType->isSamplerT() && RHSType->isIntegerType()) {
10471    Kind = CK_IntToOCLSampler;
10472    return Compatible;
10473  }
10474
10475  return Incompatible;
10476}
10477
10478/// Constructs a transparent union from an expression that is
10479/// used to initialize the transparent union.
10480static void ConstructTransparentUnion(Sema &S, ASTContext &C,
10481                                      ExprResult &EResult, QualType UnionType,
10482                                      FieldDecl *Field) {
10483  // Build an initializer list that designates the appropriate member
10484  // of the transparent union.
10485  Expr *E = EResult.get();
10486  InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
10487                                                   E, SourceLocation());
10488  Initializer->setType(UnionType);
10489  Initializer->setInitializedFieldInUnion(Field);
10490
10491  // Build a compound literal constructing a value of the transparent
10492  // union type from this initializer list.
10493  TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
10494  EResult = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
10495                                        VK_PRValue, Initializer, false);
10496}
10497
10498Sema::AssignConvertType
10499Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType,
10500                                               ExprResult &RHS) {
10501  QualType RHSType = RHS.get()->getType();
10502
10503  // If the ArgType is a Union type, we want to handle a potential
10504  // transparent_union GCC extension.
10505  const RecordType *UT = ArgType->getAsUnionType();
10506  if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
10507    return Incompatible;
10508
10509  // The field to initialize within the transparent union.
10510  RecordDecl *UD = UT->getDecl();
10511  FieldDecl *InitField = nullptr;
10512  // It's compatible if the expression matches any of the fields.
10513  for (auto *it : UD->fields()) {
10514    if (it->getType()->isPointerType()) {
10515      // If the transparent union contains a pointer type, we allow:
10516      // 1) void pointer
10517      // 2) null pointer constant
10518      if (RHSType->isPointerType())
10519        if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
10520          RHS = ImpCastExprToType(RHS.get(), it->getType(), CK_BitCast);
10521          InitField = it;
10522          break;
10523        }
10524
10525      if (RHS.get()->isNullPointerConstant(Context,
10526                                           Expr::NPC_ValueDependentIsNull)) {
10527        RHS = ImpCastExprToType(RHS.get(), it->getType(),
10528                                CK_NullToPointer);
10529        InitField = it;
10530        break;
10531      }
10532    }
10533
10534    CastKind Kind;
10535    if (CheckAssignmentConstraints(it->getType(), RHS, Kind)
10536          == Compatible) {
10537      RHS = ImpCastExprToType(RHS.get(), it->getType(), Kind);
10538      InitField = it;
10539      break;
10540    }
10541  }
10542
10543  if (!InitField)
10544    return Incompatible;
10545
10546  ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField);
10547  return Compatible;
10548}
10549
10550Sema::AssignConvertType
10551Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &CallerRHS,
10552                                       bool Diagnose,
10553                                       bool DiagnoseCFAudited,
10554                                       bool ConvertRHS) {
10555  // We need to be able to tell the caller whether we diagnosed a problem, if
10556  // they ask us to issue diagnostics.
10557  assert((ConvertRHS || !Diagnose) && "can't indicate whether we diagnosed");
10558
10559  // If ConvertRHS is false, we want to leave the caller's RHS untouched. Sadly,
10560  // we can't avoid *all* modifications at the moment, so we need some somewhere
10561  // to put the updated value.
10562  ExprResult LocalRHS = CallerRHS;
10563  ExprResult &RHS = ConvertRHS ? CallerRHS : LocalRHS;
10564
10565  if (const auto *LHSPtrType = LHSType->getAs<PointerType>()) {
10566    if (const auto *RHSPtrType = RHS.get()->getType()->getAs<PointerType>()) {
10567      if (RHSPtrType->getPointeeType()->hasAttr(attr::NoDeref) &&
10568          !LHSPtrType->getPointeeType()->hasAttr(attr::NoDeref)) {
10569        Diag(RHS.get()->getExprLoc(),
10570             diag::warn_noderef_to_dereferenceable_pointer)
10571            << RHS.get()->getSourceRange();
10572      }
10573    }
10574  }
10575
10576  if (getLangOpts().CPlusPlus) {
10577    if (!LHSType->isRecordType() && !LHSType->isAtomicType()) {
10578      // C++ 5.17p3: If the left operand is not of class type, the
10579      // expression is implicitly converted (C++ 4) to the
10580      // cv-unqualified type of the left operand.
10581      QualType RHSType = RHS.get()->getType();
10582      if (Diagnose) {
10583        RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
10584                                        AA_Assigning);
10585      } else {
10586        ImplicitConversionSequence ICS =
10587            TryImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
10588                                  /*SuppressUserConversions=*/false,
10589                                  AllowedExplicit::None,
10590                                  /*InOverloadResolution=*/false,
10591                                  /*CStyle=*/false,
10592                                  /*AllowObjCWritebackConversion=*/false);
10593        if (ICS.isFailure())
10594          return Incompatible;
10595        RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
10596                                        ICS, AA_Assigning);
10597      }
10598      if (RHS.isInvalid())
10599        return Incompatible;
10600      Sema::AssignConvertType result = Compatible;
10601      if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
10602          !CheckObjCARCUnavailableWeakConversion(LHSType, RHSType))
10603        result = IncompatibleObjCWeakRef;
10604      return result;
10605    }
10606
10607    // FIXME: Currently, we fall through and treat C++ classes like C
10608    // structures.
10609    // FIXME: We also fall through for atomics; not sure what should
10610    // happen there, though.
10611  } else if (RHS.get()->getType() == Context.OverloadTy) {
10612    // As a set of extensions to C, we support overloading on functions. These
10613    // functions need to be resolved here.
10614    DeclAccessPair DAP;
10615    if (FunctionDecl *FD = ResolveAddressOfOverloadedFunction(
10616            RHS.get(), LHSType, /*Complain=*/false, DAP))
10617      RHS = FixOverloadedFunctionReference(RHS.get(), DAP, FD);
10618    else
10619      return Incompatible;
10620  }
10621
10622  // This check seems unnatural, however it is necessary to ensure the proper
10623  // conversion of functions/arrays. If the conversion were done for all
10624  // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
10625  // expressions that suppress this implicit conversion (&, sizeof). This needs
10626  // to happen before we check for null pointer conversions because C does not
10627  // undergo the same implicit conversions as C++ does above (by the calls to
10628  // TryImplicitConversion() and PerformImplicitConversion()) which insert the
10629  // lvalue to rvalue cast before checking for null pointer constraints. This
10630  // addresses code like: nullptr_t val; int *ptr; ptr = val;
10631  //
10632  // Suppress this for references: C++ 8.5.3p5.
10633  if (!LHSType->isReferenceType()) {
10634    // FIXME: We potentially allocate here even if ConvertRHS is false.
10635    RHS = DefaultFunctionArrayLvalueConversion(RHS.get(), Diagnose);
10636    if (RHS.isInvalid())
10637      return Incompatible;
10638  }
10639
10640  // The constraints are expressed in terms of the atomic, qualified, or
10641  // unqualified type of the LHS.
10642  QualType LHSTypeAfterConversion = LHSType.getAtomicUnqualifiedType();
10643
10644  // C99 6.5.16.1p1: the left operand is a pointer and the right is
10645  // a null pointer constant <C23>or its type is nullptr_t;</C23>.
10646  if ((LHSTypeAfterConversion->isPointerType() ||
10647       LHSTypeAfterConversion->isObjCObjectPointerType() ||
10648       LHSTypeAfterConversion->isBlockPointerType()) &&
10649      ((getLangOpts().C23 && RHS.get()->getType()->isNullPtrType()) ||
10650       RHS.get()->isNullPointerConstant(Context,
10651                                        Expr::NPC_ValueDependentIsNull))) {
10652    if (Diagnose || ConvertRHS) {
10653      CastKind Kind;
10654      CXXCastPath Path;
10655      CheckPointerConversion(RHS.get(), LHSType, Kind, Path,
10656                             /*IgnoreBaseAccess=*/false, Diagnose);
10657      if (ConvertRHS)
10658        RHS = ImpCastExprToType(RHS.get(), LHSType, Kind, VK_PRValue, &Path);
10659    }
10660    return Compatible;
10661  }
10662  // C23 6.5.16.1p1: the left operand has type atomic, qualified, or
10663  // unqualified bool, and the right operand is a pointer or its type is
10664  // nullptr_t.
10665  if (getLangOpts().C23 && LHSType->isBooleanType() &&
10666      RHS.get()->getType()->isNullPtrType()) {
10667    // NB: T* -> _Bool is handled in CheckAssignmentConstraints, this only
10668    // only handles nullptr -> _Bool due to needing an extra conversion
10669    // step.
10670    // We model this by converting from nullptr -> void * and then let the
10671    // conversion from void * -> _Bool happen naturally.
10672    if (Diagnose || ConvertRHS) {
10673      CastKind Kind;
10674      CXXCastPath Path;
10675      CheckPointerConversion(RHS.get(), Context.VoidPtrTy, Kind, Path,
10676                             /*IgnoreBaseAccess=*/false, Diagnose);
10677      if (ConvertRHS)
10678        RHS = ImpCastExprToType(RHS.get(), Context.VoidPtrTy, Kind, VK_PRValue,
10679                                &Path);
10680    }
10681  }
10682
10683  // OpenCL queue_t type assignment.
10684  if (LHSType->isQueueT() && RHS.get()->isNullPointerConstant(
10685                                 Context, Expr::NPC_ValueDependentIsNull)) {
10686    RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
10687    return Compatible;
10688  }
10689
10690  CastKind Kind;
10691  Sema::AssignConvertType result =
10692    CheckAssignmentConstraints(LHSType, RHS, Kind, ConvertRHS);
10693
10694  // C99 6.5.16.1p2: The value of the right operand is converted to the
10695  // type of the assignment expression.
10696  // CheckAssignmentConstraints allows the left-hand side to be a reference,
10697  // so that we can use references in built-in functions even in C.
10698  // The getNonReferenceType() call makes sure that the resulting expression
10699  // does not have reference type.
10700  if (result != Incompatible && RHS.get()->getType() != LHSType) {
10701    QualType Ty = LHSType.getNonLValueExprType(Context);
10702    Expr *E = RHS.get();
10703
10704    // Check for various Objective-C errors. If we are not reporting
10705    // diagnostics and just checking for errors, e.g., during overload
10706    // resolution, return Incompatible to indicate the failure.
10707    if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
10708        CheckObjCConversion(SourceRange(), Ty, E, CCK_ImplicitConversion,
10709                            Diagnose, DiagnoseCFAudited) != ACR_okay) {
10710      if (!Diagnose)
10711        return Incompatible;
10712    }
10713    if (getLangOpts().ObjC &&
10714        (CheckObjCBridgeRelatedConversions(E->getBeginLoc(), LHSType,
10715                                           E->getType(), E, Diagnose) ||
10716         CheckConversionToObjCLiteral(LHSType, E, Diagnose))) {
10717      if (!Diagnose)
10718        return Incompatible;
10719      // Replace the expression with a corrected version and continue so we
10720      // can find further errors.
10721      RHS = E;
10722      return Compatible;
10723    }
10724
10725    if (ConvertRHS)
10726      RHS = ImpCastExprToType(E, Ty, Kind);
10727  }
10728
10729  return result;
10730}
10731
10732namespace {
10733/// The original operand to an operator, prior to the application of the usual
10734/// arithmetic conversions and converting the arguments of a builtin operator
10735/// candidate.
10736struct OriginalOperand {
10737  explicit OriginalOperand(Expr *Op) : Orig(Op), Conversion(nullptr) {
10738    if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Op))
10739      Op = MTE->getSubExpr();
10740    if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(Op))
10741      Op = BTE->getSubExpr();
10742    if (auto *ICE = dyn_cast<ImplicitCastExpr>(Op)) {
10743      Orig = ICE->getSubExprAsWritten();
10744      Conversion = ICE->getConversionFunction();
10745    }
10746  }
10747
10748  QualType getType() const { return Orig->getType(); }
10749
10750  Expr *Orig;
10751  NamedDecl *Conversion;
10752};
10753}
10754
10755QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS,
10756                               ExprResult &RHS) {
10757  OriginalOperand OrigLHS(LHS.get()), OrigRHS(RHS.get());
10758
10759  Diag(Loc, diag::err_typecheck_invalid_operands)
10760    << OrigLHS.getType() << OrigRHS.getType()
10761    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10762
10763  // If a user-defined conversion was applied to either of the operands prior
10764  // to applying the built-in operator rules, tell the user about it.
10765  if (OrigLHS.Conversion) {
10766    Diag(OrigLHS.Conversion->getLocation(),
10767         diag::note_typecheck_invalid_operands_converted)
10768      << 0 << LHS.get()->getType();
10769  }
10770  if (OrigRHS.Conversion) {
10771    Diag(OrigRHS.Conversion->getLocation(),
10772         diag::note_typecheck_invalid_operands_converted)
10773      << 1 << RHS.get()->getType();
10774  }
10775
10776  return QualType();
10777}
10778
10779// Diagnose cases where a scalar was implicitly converted to a vector and
10780// diagnose the underlying types. Otherwise, diagnose the error
10781// as invalid vector logical operands for non-C++ cases.
10782QualType Sema::InvalidLogicalVectorOperands(SourceLocation Loc, ExprResult &LHS,
10783                                            ExprResult &RHS) {
10784  QualType LHSType = LHS.get()->IgnoreImpCasts()->getType();
10785  QualType RHSType = RHS.get()->IgnoreImpCasts()->getType();
10786
10787  bool LHSNatVec = LHSType->isVectorType();
10788  bool RHSNatVec = RHSType->isVectorType();
10789
10790  if (!(LHSNatVec && RHSNatVec)) {
10791    Expr *Vector = LHSNatVec ? LHS.get() : RHS.get();
10792    Expr *NonVector = !LHSNatVec ? LHS.get() : RHS.get();
10793    Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict)
10794        << 0 << Vector->getType() << NonVector->IgnoreImpCasts()->getType()
10795        << Vector->getSourceRange();
10796    return QualType();
10797  }
10798
10799  Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict)
10800      << 1 << LHSType << RHSType << LHS.get()->getSourceRange()
10801      << RHS.get()->getSourceRange();
10802
10803  return QualType();
10804}
10805
10806/// Try to convert a value of non-vector type to a vector type by converting
10807/// the type to the element type of the vector and then performing a splat.
10808/// If the language is OpenCL, we only use conversions that promote scalar
10809/// rank; for C, Obj-C, and C++ we allow any real scalar conversion except
10810/// for float->int.
10811///
10812/// OpenCL V2.0 6.2.6.p2:
10813/// An error shall occur if any scalar operand type has greater rank
10814/// than the type of the vector element.
10815///
10816/// \param scalar - if non-null, actually perform the conversions
10817/// \return true if the operation fails (but without diagnosing the failure)
10818static bool tryVectorConvertAndSplat(Sema &S, ExprResult *scalar,
10819                                     QualType scalarTy,
10820                                     QualType vectorEltTy,
10821                                     QualType vectorTy,
10822                                     unsigned &DiagID) {
10823  // The conversion to apply to the scalar before splatting it,
10824  // if necessary.
10825  CastKind scalarCast = CK_NoOp;
10826
10827  if (vectorEltTy->isIntegralType(S.Context)) {
10828    if (S.getLangOpts().OpenCL && (scalarTy->isRealFloatingType() ||
10829        (scalarTy->isIntegerType() &&
10830         S.Context.getIntegerTypeOrder(vectorEltTy, scalarTy) < 0))) {
10831      DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type;
10832      return true;
10833    }
10834    if (!scalarTy->isIntegralType(S.Context))
10835      return true;
10836    scalarCast = CK_IntegralCast;
10837  } else if (vectorEltTy->isRealFloatingType()) {
10838    if (scalarTy->isRealFloatingType()) {
10839      if (S.getLangOpts().OpenCL &&
10840          S.Context.getFloatingTypeOrder(vectorEltTy, scalarTy) < 0) {
10841        DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type;
10842        return true;
10843      }
10844      scalarCast = CK_FloatingCast;
10845    }
10846    else if (scalarTy->isIntegralType(S.Context))
10847      scalarCast = CK_IntegralToFloating;
10848    else
10849      return true;
10850  } else {
10851    return true;
10852  }
10853
10854  // Adjust scalar if desired.
10855  if (scalar) {
10856    if (scalarCast != CK_NoOp)
10857      *scalar = S.ImpCastExprToType(scalar->get(), vectorEltTy, scalarCast);
10858    *scalar = S.ImpCastExprToType(scalar->get(), vectorTy, CK_VectorSplat);
10859  }
10860  return false;
10861}
10862
10863/// Convert vector E to a vector with the same number of elements but different
10864/// element type.
10865static ExprResult convertVector(Expr *E, QualType ElementType, Sema &S) {
10866  const auto *VecTy = E->getType()->getAs<VectorType>();
10867  assert(VecTy && "Expression E must be a vector");
10868  QualType NewVecTy =
10869      VecTy->isExtVectorType()
10870          ? S.Context.getExtVectorType(ElementType, VecTy->getNumElements())
10871          : S.Context.getVectorType(ElementType, VecTy->getNumElements(),
10872                                    VecTy->getVectorKind());
10873
10874  // Look through the implicit cast. Return the subexpression if its type is
10875  // NewVecTy.
10876  if (auto *ICE = dyn_cast<ImplicitCastExpr>(E))
10877    if (ICE->getSubExpr()->getType() == NewVecTy)
10878      return ICE->getSubExpr();
10879
10880  auto Cast = ElementType->isIntegerType() ? CK_IntegralCast : CK_FloatingCast;
10881  return S.ImpCastExprToType(E, NewVecTy, Cast);
10882}
10883
10884/// Test if a (constant) integer Int can be casted to another integer type
10885/// IntTy without losing precision.
10886static bool canConvertIntToOtherIntTy(Sema &S, ExprResult *Int,
10887                                      QualType OtherIntTy) {
10888  QualType IntTy = Int->get()->getType().getUnqualifiedType();
10889
10890  // Reject cases where the value of the Int is unknown as that would
10891  // possibly cause truncation, but accept cases where the scalar can be
10892  // demoted without loss of precision.
10893  Expr::EvalResult EVResult;
10894  bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context);
10895  int Order = S.Context.getIntegerTypeOrder(OtherIntTy, IntTy);
10896  bool IntSigned = IntTy->hasSignedIntegerRepresentation();
10897  bool OtherIntSigned = OtherIntTy->hasSignedIntegerRepresentation();
10898
10899  if (CstInt) {
10900    // If the scalar is constant and is of a higher order and has more active
10901    // bits that the vector element type, reject it.
10902    llvm::APSInt Result = EVResult.Val.getInt();
10903    unsigned NumBits = IntSigned
10904                           ? (Result.isNegative() ? Result.getSignificantBits()
10905                                                  : Result.getActiveBits())
10906                           : Result.getActiveBits();
10907    if (Order < 0 && S.Context.getIntWidth(OtherIntTy) < NumBits)
10908      return true;
10909
10910    // If the signedness of the scalar type and the vector element type
10911    // differs and the number of bits is greater than that of the vector
10912    // element reject it.
10913    return (IntSigned != OtherIntSigned &&
10914            NumBits > S.Context.getIntWidth(OtherIntTy));
10915  }
10916
10917  // Reject cases where the value of the scalar is not constant and it's
10918  // order is greater than that of the vector element type.
10919  return (Order < 0);
10920}
10921
10922/// Test if a (constant) integer Int can be casted to floating point type
10923/// FloatTy without losing precision.
10924static bool canConvertIntTyToFloatTy(Sema &S, ExprResult *Int,
10925                                     QualType FloatTy) {
10926  QualType IntTy = Int->get()->getType().getUnqualifiedType();
10927
10928  // Determine if the integer constant can be expressed as a floating point
10929  // number of the appropriate type.
10930  Expr::EvalResult EVResult;
10931  bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context);
10932
10933  uint64_t Bits = 0;
10934  if (CstInt) {
10935    // Reject constants that would be truncated if they were converted to
10936    // the floating point type. Test by simple to/from conversion.
10937    // FIXME: Ideally the conversion to an APFloat and from an APFloat
10938    //        could be avoided if there was a convertFromAPInt method
10939    //        which could signal back if implicit truncation occurred.
10940    llvm::APSInt Result = EVResult.Val.getInt();
10941    llvm::APFloat Float(S.Context.getFloatTypeSemantics(FloatTy));
10942    Float.convertFromAPInt(Result, IntTy->hasSignedIntegerRepresentation(),
10943                           llvm::APFloat::rmTowardZero);
10944    llvm::APSInt ConvertBack(S.Context.getIntWidth(IntTy),
10945                             !IntTy->hasSignedIntegerRepresentation());
10946    bool Ignored = false;
10947    Float.convertToInteger(ConvertBack, llvm::APFloat::rmNearestTiesToEven,
10948                           &Ignored);
10949    if (Result != ConvertBack)
10950      return true;
10951  } else {
10952    // Reject types that cannot be fully encoded into the mantissa of
10953    // the float.
10954    Bits = S.Context.getTypeSize(IntTy);
10955    unsigned FloatPrec = llvm::APFloat::semanticsPrecision(
10956        S.Context.getFloatTypeSemantics(FloatTy));
10957    if (Bits > FloatPrec)
10958      return true;
10959  }
10960
10961  return false;
10962}
10963
10964/// Attempt to convert and splat Scalar into a vector whose types matches
10965/// Vector following GCC conversion rules. The rule is that implicit
10966/// conversion can occur when Scalar can be casted to match Vector's element
10967/// type without causing truncation of Scalar.
10968static bool tryGCCVectorConvertAndSplat(Sema &S, ExprResult *Scalar,
10969                                        ExprResult *Vector) {
10970  QualType ScalarTy = Scalar->get()->getType().getUnqualifiedType();
10971  QualType VectorTy = Vector->get()->getType().getUnqualifiedType();
10972  QualType VectorEltTy;
10973
10974  if (const auto *VT = VectorTy->getAs<VectorType>()) {
10975    assert(!isa<ExtVectorType>(VT) &&
10976           "ExtVectorTypes should not be handled here!");
10977    VectorEltTy = VT->getElementType();
10978  } else if (VectorTy->isSveVLSBuiltinType()) {
10979    VectorEltTy =
10980        VectorTy->castAs<BuiltinType>()->getSveEltType(S.getASTContext());
10981  } else {
10982    llvm_unreachable("Only Fixed-Length and SVE Vector types are handled here");
10983  }
10984
10985  // Reject cases where the vector element type or the scalar element type are
10986  // not integral or floating point types.
10987  if (!VectorEltTy->isArithmeticType() || !ScalarTy->isArithmeticType())
10988    return true;
10989
10990  // The conversion to apply to the scalar before splatting it,
10991  // if necessary.
10992  CastKind ScalarCast = CK_NoOp;
10993
10994  // Accept cases where the vector elements are integers and the scalar is
10995  // an integer.
10996  // FIXME: Notionally if the scalar was a floating point value with a precise
10997  //        integral representation, we could cast it to an appropriate integer
10998  //        type and then perform the rest of the checks here. GCC will perform
10999  //        this conversion in some cases as determined by the input language.
11000  //        We should accept it on a language independent basis.
11001  if (VectorEltTy->isIntegralType(S.Context) &&
11002      ScalarTy->isIntegralType(S.Context) &&
11003      S.Context.getIntegerTypeOrder(VectorEltTy, ScalarTy)) {
11004
11005    if (canConvertIntToOtherIntTy(S, Scalar, VectorEltTy))
11006      return true;
11007
11008    ScalarCast = CK_IntegralCast;
11009  } else if (VectorEltTy->isIntegralType(S.Context) &&
11010             ScalarTy->isRealFloatingType()) {
11011    if (S.Context.getTypeSize(VectorEltTy) == S.Context.getTypeSize(ScalarTy))
11012      ScalarCast = CK_FloatingToIntegral;
11013    else
11014      return true;
11015  } else if (VectorEltTy->isRealFloatingType()) {
11016    if (ScalarTy->isRealFloatingType()) {
11017
11018      // Reject cases where the scalar type is not a constant and has a higher
11019      // Order than the vector element type.
11020      llvm::APFloat Result(0.0);
11021
11022      // Determine whether this is a constant scalar. In the event that the
11023      // value is dependent (and thus cannot be evaluated by the constant
11024      // evaluator), skip the evaluation. This will then diagnose once the
11025      // expression is instantiated.
11026      bool CstScalar = Scalar->get()->isValueDependent() ||
11027                       Scalar->get()->EvaluateAsFloat(Result, S.Context);
11028      int Order = S.Context.getFloatingTypeOrder(VectorEltTy, ScalarTy);
11029      if (!CstScalar && Order < 0)
11030        return true;
11031
11032      // If the scalar cannot be safely casted to the vector element type,
11033      // reject it.
11034      if (CstScalar) {
11035        bool Truncated = false;
11036        Result.convert(S.Context.getFloatTypeSemantics(VectorEltTy),
11037                       llvm::APFloat::rmNearestTiesToEven, &Truncated);
11038        if (Truncated)
11039          return true;
11040      }
11041
11042      ScalarCast = CK_FloatingCast;
11043    } else if (ScalarTy->isIntegralType(S.Context)) {
11044      if (canConvertIntTyToFloatTy(S, Scalar, VectorEltTy))
11045        return true;
11046
11047      ScalarCast = CK_IntegralToFloating;
11048    } else
11049      return true;
11050  } else if (ScalarTy->isEnumeralType())
11051    return true;
11052
11053  // Adjust scalar if desired.
11054  if (ScalarCast != CK_NoOp)
11055    *Scalar = S.ImpCastExprToType(Scalar->get(), VectorEltTy, ScalarCast);
11056  *Scalar = S.ImpCastExprToType(Scalar->get(), VectorTy, CK_VectorSplat);
11057  return false;
11058}
11059
11060QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
11061                                   SourceLocation Loc, bool IsCompAssign,
11062                                   bool AllowBothBool,
11063                                   bool AllowBoolConversions,
11064                                   bool AllowBoolOperation,
11065                                   bool ReportInvalid) {
11066  if (!IsCompAssign) {
11067    LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
11068    if (LHS.isInvalid())
11069      return QualType();
11070  }
11071  RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
11072  if (RHS.isInvalid())
11073    return QualType();
11074
11075  // For conversion purposes, we ignore any qualifiers.
11076  // For example, "const float" and "float" are equivalent.
11077  QualType LHSType = LHS.get()->getType().getUnqualifiedType();
11078  QualType RHSType = RHS.get()->getType().getUnqualifiedType();
11079
11080  const VectorType *LHSVecType = LHSType->getAs<VectorType>();
11081  const VectorType *RHSVecType = RHSType->getAs<VectorType>();
11082  assert(LHSVecType || RHSVecType);
11083
11084  // AltiVec-style "vector bool op vector bool" combinations are allowed
11085  // for some operators but not others.
11086  if (!AllowBothBool && LHSVecType &&
11087      LHSVecType->getVectorKind() == VectorKind::AltiVecBool && RHSVecType &&
11088      RHSVecType->getVectorKind() == VectorKind::AltiVecBool)
11089    return ReportInvalid ? InvalidOperands(Loc, LHS, RHS) : QualType();
11090
11091  // This operation may not be performed on boolean vectors.
11092  if (!AllowBoolOperation &&
11093      (LHSType->isExtVectorBoolType() || RHSType->isExtVectorBoolType()))
11094    return ReportInvalid ? InvalidOperands(Loc, LHS, RHS) : QualType();
11095
11096  // If the vector types are identical, return.
11097  if (Context.hasSameType(LHSType, RHSType))
11098    return Context.getCommonSugaredType(LHSType, RHSType);
11099
11100  // If we have compatible AltiVec and GCC vector types, use the AltiVec type.
11101  if (LHSVecType && RHSVecType &&
11102      Context.areCompatibleVectorTypes(LHSType, RHSType)) {
11103    if (isa<ExtVectorType>(LHSVecType)) {
11104      RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
11105      return LHSType;
11106    }
11107
11108    if (!IsCompAssign)
11109      LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
11110    return RHSType;
11111  }
11112
11113  // AllowBoolConversions says that bool and non-bool AltiVec vectors
11114  // can be mixed, with the result being the non-bool type.  The non-bool
11115  // operand must have integer element type.
11116  if (AllowBoolConversions && LHSVecType && RHSVecType &&
11117      LHSVecType->getNumElements() == RHSVecType->getNumElements() &&
11118      (Context.getTypeSize(LHSVecType->getElementType()) ==
11119       Context.getTypeSize(RHSVecType->getElementType()))) {
11120    if (LHSVecType->getVectorKind() == VectorKind::AltiVecVector &&
11121        LHSVecType->getElementType()->isIntegerType() &&
11122        RHSVecType->getVectorKind() == VectorKind::AltiVecBool) {
11123      RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
11124      return LHSType;
11125    }
11126    if (!IsCompAssign &&
11127        LHSVecType->getVectorKind() == VectorKind::AltiVecBool &&
11128        RHSVecType->getVectorKind() == VectorKind::AltiVecVector &&
11129        RHSVecType->getElementType()->isIntegerType()) {
11130      LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
11131      return RHSType;
11132    }
11133  }
11134
11135  // Expressions containing fixed-length and sizeless SVE/RVV vectors are
11136  // invalid since the ambiguity can affect the ABI.
11137  auto IsSveRVVConversion = [](QualType FirstType, QualType SecondType,
11138                               unsigned &SVEorRVV) {
11139    const VectorType *VecType = SecondType->getAs<VectorType>();
11140    SVEorRVV = 0;
11141    if (FirstType->isSizelessBuiltinType() && VecType) {
11142      if (VecType->getVectorKind() == VectorKind::SveFixedLengthData ||
11143          VecType->getVectorKind() == VectorKind::SveFixedLengthPredicate)
11144        return true;
11145      if (VecType->getVectorKind() == VectorKind::RVVFixedLengthData ||
11146          VecType->getVectorKind() == VectorKind::RVVFixedLengthMask) {
11147        SVEorRVV = 1;
11148        return true;
11149      }
11150    }
11151
11152    return false;
11153  };
11154
11155  unsigned SVEorRVV;
11156  if (IsSveRVVConversion(LHSType, RHSType, SVEorRVV) ||
11157      IsSveRVVConversion(RHSType, LHSType, SVEorRVV)) {
11158    Diag(Loc, diag::err_typecheck_sve_rvv_ambiguous)
11159        << SVEorRVV << LHSType << RHSType;
11160    return QualType();
11161  }
11162
11163  // Expressions containing GNU and SVE or RVV (fixed or sizeless) vectors are
11164  // invalid since the ambiguity can affect the ABI.
11165  auto IsSveRVVGnuConversion = [](QualType FirstType, QualType SecondType,
11166                                  unsigned &SVEorRVV) {
11167    const VectorType *FirstVecType = FirstType->getAs<VectorType>();
11168    const VectorType *SecondVecType = SecondType->getAs<VectorType>();
11169
11170    SVEorRVV = 0;
11171    if (FirstVecType && SecondVecType) {
11172      if (FirstVecType->getVectorKind() == VectorKind::Generic) {
11173        if (SecondVecType->getVectorKind() == VectorKind::SveFixedLengthData ||
11174            SecondVecType->getVectorKind() ==
11175                VectorKind::SveFixedLengthPredicate)
11176          return true;
11177        if (SecondVecType->getVectorKind() == VectorKind::RVVFixedLengthData ||
11178            SecondVecType->getVectorKind() == VectorKind::RVVFixedLengthMask) {
11179          SVEorRVV = 1;
11180          return true;
11181        }
11182      }
11183      return false;
11184    }
11185
11186    if (SecondVecType &&
11187        SecondVecType->getVectorKind() == VectorKind::Generic) {
11188      if (FirstType->isSVESizelessBuiltinType())
11189        return true;
11190      if (FirstType->isRVVSizelessBuiltinType()) {
11191        SVEorRVV = 1;
11192        return true;
11193      }
11194    }
11195
11196    return false;
11197  };
11198
11199  if (IsSveRVVGnuConversion(LHSType, RHSType, SVEorRVV) ||
11200      IsSveRVVGnuConversion(RHSType, LHSType, SVEorRVV)) {
11201    Diag(Loc, diag::err_typecheck_sve_rvv_gnu_ambiguous)
11202        << SVEorRVV << LHSType << RHSType;
11203    return QualType();
11204  }
11205
11206  // If there's a vector type and a scalar, try to convert the scalar to
11207  // the vector element type and splat.
11208  unsigned DiagID = diag::err_typecheck_vector_not_convertable;
11209  if (!RHSVecType) {
11210    if (isa<ExtVectorType>(LHSVecType)) {
11211      if (!tryVectorConvertAndSplat(*this, &RHS, RHSType,
11212                                    LHSVecType->getElementType(), LHSType,
11213                                    DiagID))
11214        return LHSType;
11215    } else {
11216      if (!tryGCCVectorConvertAndSplat(*this, &RHS, &LHS))
11217        return LHSType;
11218    }
11219  }
11220  if (!LHSVecType) {
11221    if (isa<ExtVectorType>(RHSVecType)) {
11222      if (!tryVectorConvertAndSplat(*this, (IsCompAssign ? nullptr : &LHS),
11223                                    LHSType, RHSVecType->getElementType(),
11224                                    RHSType, DiagID))
11225        return RHSType;
11226    } else {
11227      if (LHS.get()->isLValue() ||
11228          !tryGCCVectorConvertAndSplat(*this, &LHS, &RHS))
11229        return RHSType;
11230    }
11231  }
11232
11233  // FIXME: The code below also handles conversion between vectors and
11234  // non-scalars, we should break this down into fine grained specific checks
11235  // and emit proper diagnostics.
11236  QualType VecType = LHSVecType ? LHSType : RHSType;
11237  const VectorType *VT = LHSVecType ? LHSVecType : RHSVecType;
11238  QualType OtherType = LHSVecType ? RHSType : LHSType;
11239  ExprResult *OtherExpr = LHSVecType ? &RHS : &LHS;
11240  if (isLaxVectorConversion(OtherType, VecType)) {
11241    if (Context.getTargetInfo().getTriple().isPPC() &&
11242        anyAltivecTypes(RHSType, LHSType) &&
11243        !Context.areCompatibleVectorTypes(RHSType, LHSType))
11244      Diag(Loc, diag::warn_deprecated_lax_vec_conv_all) << RHSType << LHSType;
11245    // If we're allowing lax vector conversions, only the total (data) size
11246    // needs to be the same. For non compound assignment, if one of the types is
11247    // scalar, the result is always the vector type.
11248    if (!IsCompAssign) {
11249      *OtherExpr = ImpCastExprToType(OtherExpr->get(), VecType, CK_BitCast);
11250      return VecType;
11251    // In a compound assignment, lhs += rhs, 'lhs' is a lvalue src, forbidding
11252    // any implicit cast. Here, the 'rhs' should be implicit casted to 'lhs'
11253    // type. Note that this is already done by non-compound assignments in
11254    // CheckAssignmentConstraints. If it's a scalar type, only bitcast for
11255    // <1 x T> -> T. The result is also a vector type.
11256    } else if (OtherType->isExtVectorType() || OtherType->isVectorType() ||
11257               (OtherType->isScalarType() && VT->getNumElements() == 1)) {
11258      ExprResult *RHSExpr = &RHS;
11259      *RHSExpr = ImpCastExprToType(RHSExpr->get(), LHSType, CK_BitCast);
11260      return VecType;
11261    }
11262  }
11263
11264  // Okay, the expression is invalid.
11265
11266  // If there's a non-vector, non-real operand, diagnose that.
11267  if ((!RHSVecType && !RHSType->isRealType()) ||
11268      (!LHSVecType && !LHSType->isRealType())) {
11269    Diag(Loc, diag::err_typecheck_vector_not_convertable_non_scalar)
11270      << LHSType << RHSType
11271      << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11272    return QualType();
11273  }
11274
11275  // OpenCL V1.1 6.2.6.p1:
11276  // If the operands are of more than one vector type, then an error shall
11277  // occur. Implicit conversions between vector types are not permitted, per
11278  // section 6.2.1.
11279  if (getLangOpts().OpenCL &&
11280      RHSVecType && isa<ExtVectorType>(RHSVecType) &&
11281      LHSVecType && isa<ExtVectorType>(LHSVecType)) {
11282    Diag(Loc, diag::err_opencl_implicit_vector_conversion) << LHSType
11283                                                           << RHSType;
11284    return QualType();
11285  }
11286
11287
11288  // If there is a vector type that is not a ExtVector and a scalar, we reach
11289  // this point if scalar could not be converted to the vector's element type
11290  // without truncation.
11291  if ((RHSVecType && !isa<ExtVectorType>(RHSVecType)) ||
11292      (LHSVecType && !isa<ExtVectorType>(LHSVecType))) {
11293    QualType Scalar = LHSVecType ? RHSType : LHSType;
11294    QualType Vector = LHSVecType ? LHSType : RHSType;
11295    unsigned ScalarOrVector = LHSVecType && RHSVecType ? 1 : 0;
11296    Diag(Loc,
11297         diag::err_typecheck_vector_not_convertable_implict_truncation)
11298        << ScalarOrVector << Scalar << Vector;
11299
11300    return QualType();
11301  }
11302
11303  // Otherwise, use the generic diagnostic.
11304  Diag(Loc, DiagID)
11305    << LHSType << RHSType
11306    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11307  return QualType();
11308}
11309
11310QualType Sema::CheckSizelessVectorOperands(ExprResult &LHS, ExprResult &RHS,
11311                                           SourceLocation Loc,
11312                                           bool IsCompAssign,
11313                                           ArithConvKind OperationKind) {
11314  if (!IsCompAssign) {
11315    LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
11316    if (LHS.isInvalid())
11317      return QualType();
11318  }
11319  RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
11320  if (RHS.isInvalid())
11321    return QualType();
11322
11323  QualType LHSType = LHS.get()->getType().getUnqualifiedType();
11324  QualType RHSType = RHS.get()->getType().getUnqualifiedType();
11325
11326  const BuiltinType *LHSBuiltinTy = LHSType->getAs<BuiltinType>();
11327  const BuiltinType *RHSBuiltinTy = RHSType->getAs<BuiltinType>();
11328
11329  unsigned DiagID = diag::err_typecheck_invalid_operands;
11330  if ((OperationKind == ACK_Arithmetic) &&
11331      ((LHSBuiltinTy && LHSBuiltinTy->isSVEBool()) ||
11332       (RHSBuiltinTy && RHSBuiltinTy->isSVEBool()))) {
11333    Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange()
11334                      << RHS.get()->getSourceRange();
11335    return QualType();
11336  }
11337
11338  if (Context.hasSameType(LHSType, RHSType))
11339    return LHSType;
11340
11341  if (LHSType->isSveVLSBuiltinType() && !RHSType->isSveVLSBuiltinType()) {
11342    if (!tryGCCVectorConvertAndSplat(*this, &RHS, &LHS))
11343      return LHSType;
11344  }
11345  if (RHSType->isSveVLSBuiltinType() && !LHSType->isSveVLSBuiltinType()) {
11346    if (LHS.get()->isLValue() ||
11347        !tryGCCVectorConvertAndSplat(*this, &LHS, &RHS))
11348      return RHSType;
11349  }
11350
11351  if ((!LHSType->isSveVLSBuiltinType() && !LHSType->isRealType()) ||
11352      (!RHSType->isSveVLSBuiltinType() && !RHSType->isRealType())) {
11353    Diag(Loc, diag::err_typecheck_vector_not_convertable_non_scalar)
11354        << LHSType << RHSType << LHS.get()->getSourceRange()
11355        << RHS.get()->getSourceRange();
11356    return QualType();
11357  }
11358
11359  if (LHSType->isSveVLSBuiltinType() && RHSType->isSveVLSBuiltinType() &&
11360      Context.getBuiltinVectorTypeInfo(LHSBuiltinTy).EC !=
11361          Context.getBuiltinVectorTypeInfo(RHSBuiltinTy).EC) {
11362    Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
11363        << LHSType << RHSType << LHS.get()->getSourceRange()
11364        << RHS.get()->getSourceRange();
11365    return QualType();
11366  }
11367
11368  if (LHSType->isSveVLSBuiltinType() || RHSType->isSveVLSBuiltinType()) {
11369    QualType Scalar = LHSType->isSveVLSBuiltinType() ? RHSType : LHSType;
11370    QualType Vector = LHSType->isSveVLSBuiltinType() ? LHSType : RHSType;
11371    bool ScalarOrVector =
11372        LHSType->isSveVLSBuiltinType() && RHSType->isSveVLSBuiltinType();
11373
11374    Diag(Loc, diag::err_typecheck_vector_not_convertable_implict_truncation)
11375        << ScalarOrVector << Scalar << Vector;
11376
11377    return QualType();
11378  }
11379
11380  Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange()
11381                    << RHS.get()->getSourceRange();
11382  return QualType();
11383}
11384
11385// checkArithmeticNull - Detect when a NULL constant is used improperly in an
11386// expression.  These are mainly cases where the null pointer is used as an
11387// integer instead of a pointer.
11388static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS,
11389                                SourceLocation Loc, bool IsCompare) {
11390  // The canonical way to check for a GNU null is with isNullPointerConstant,
11391  // but we use a bit of a hack here for speed; this is a relatively
11392  // hot path, and isNullPointerConstant is slow.
11393  bool LHSNull = isa<GNUNullExpr>(LHS.get()->IgnoreParenImpCasts());
11394  bool RHSNull = isa<GNUNullExpr>(RHS.get()->IgnoreParenImpCasts());
11395
11396  QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType();
11397
11398  // Avoid analyzing cases where the result will either be invalid (and
11399  // diagnosed as such) or entirely valid and not something to warn about.
11400  if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() ||
11401      NonNullType->isMemberPointerType() || NonNullType->isFunctionType())
11402    return;
11403
11404  // Comparison operations would not make sense with a null pointer no matter
11405  // what the other expression is.
11406  if (!IsCompare) {
11407    S.Diag(Loc, diag::warn_null_in_arithmetic_operation)
11408        << (LHSNull ? LHS.get()->getSourceRange() : SourceRange())
11409        << (RHSNull ? RHS.get()->getSourceRange() : SourceRange());
11410    return;
11411  }
11412
11413  // The rest of the operations only make sense with a null pointer
11414  // if the other expression is a pointer.
11415  if (LHSNull == RHSNull || NonNullType->isAnyPointerType() ||
11416      NonNullType->canDecayToPointerType())
11417    return;
11418
11419  S.Diag(Loc, diag::warn_null_in_comparison_operation)
11420      << LHSNull /* LHS is NULL */ << NonNullType
11421      << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11422}
11423
11424static void DiagnoseDivisionSizeofPointerOrArray(Sema &S, Expr *LHS, Expr *RHS,
11425                                          SourceLocation Loc) {
11426  const auto *LUE = dyn_cast<UnaryExprOrTypeTraitExpr>(LHS);
11427  const auto *RUE = dyn_cast<UnaryExprOrTypeTraitExpr>(RHS);
11428  if (!LUE || !RUE)
11429    return;
11430  if (LUE->getKind() != UETT_SizeOf || LUE->isArgumentType() ||
11431      RUE->getKind() != UETT_SizeOf)
11432    return;
11433
11434  const Expr *LHSArg = LUE->getArgumentExpr()->IgnoreParens();
11435  QualType LHSTy = LHSArg->getType();
11436  QualType RHSTy;
11437
11438  if (RUE->isArgumentType())
11439    RHSTy = RUE->getArgumentType().getNonReferenceType();
11440  else
11441    RHSTy = RUE->getArgumentExpr()->IgnoreParens()->getType();
11442
11443  if (LHSTy->isPointerType() && !RHSTy->isPointerType()) {
11444    if (!S.Context.hasSameUnqualifiedType(LHSTy->getPointeeType(), RHSTy))
11445      return;
11446
11447    S.Diag(Loc, diag::warn_division_sizeof_ptr) << LHS << LHS->getSourceRange();
11448    if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSArg)) {
11449      if (const ValueDecl *LHSArgDecl = DRE->getDecl())
11450        S.Diag(LHSArgDecl->getLocation(), diag::note_pointer_declared_here)
11451            << LHSArgDecl;
11452    }
11453  } else if (const auto *ArrayTy = S.Context.getAsArrayType(LHSTy)) {
11454    QualType ArrayElemTy = ArrayTy->getElementType();
11455    if (ArrayElemTy != S.Context.getBaseElementType(ArrayTy) ||
11456        ArrayElemTy->isDependentType() || RHSTy->isDependentType() ||
11457        RHSTy->isReferenceType() || ArrayElemTy->isCharType() ||
11458        S.Context.getTypeSize(ArrayElemTy) == S.Context.getTypeSize(RHSTy))
11459      return;
11460    S.Diag(Loc, diag::warn_division_sizeof_array)
11461        << LHSArg->getSourceRange() << ArrayElemTy << RHSTy;
11462    if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSArg)) {
11463      if (const ValueDecl *LHSArgDecl = DRE->getDecl())
11464        S.Diag(LHSArgDecl->getLocation(), diag::note_array_declared_here)
11465            << LHSArgDecl;
11466    }
11467
11468    S.Diag(Loc, diag::note_precedence_silence) << RHS;
11469  }
11470}
11471
11472static void DiagnoseBadDivideOrRemainderValues(Sema& S, ExprResult &LHS,
11473                                               ExprResult &RHS,
11474                                               SourceLocation Loc, bool IsDiv) {
11475  // Check for division/remainder by zero.
11476  Expr::EvalResult RHSValue;
11477  if (!RHS.get()->isValueDependent() &&
11478      RHS.get()->EvaluateAsInt(RHSValue, S.Context) &&
11479      RHSValue.Val.getInt() == 0)
11480    S.DiagRuntimeBehavior(Loc, RHS.get(),
11481                          S.PDiag(diag::warn_remainder_division_by_zero)
11482                            << IsDiv << RHS.get()->getSourceRange());
11483}
11484
11485QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS,
11486                                           SourceLocation Loc,
11487                                           bool IsCompAssign, bool IsDiv) {
11488  checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
11489
11490  QualType LHSTy = LHS.get()->getType();
11491  QualType RHSTy = RHS.get()->getType();
11492  if (LHSTy->isVectorType() || RHSTy->isVectorType())
11493    return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
11494                               /*AllowBothBool*/ getLangOpts().AltiVec,
11495                               /*AllowBoolConversions*/ false,
11496                               /*AllowBooleanOperation*/ false,
11497                               /*ReportInvalid*/ true);
11498  if (LHSTy->isSveVLSBuiltinType() || RHSTy->isSveVLSBuiltinType())
11499    return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
11500                                       ACK_Arithmetic);
11501  if (!IsDiv &&
11502      (LHSTy->isConstantMatrixType() || RHSTy->isConstantMatrixType()))
11503    return CheckMatrixMultiplyOperands(LHS, RHS, Loc, IsCompAssign);
11504  // For division, only matrix-by-scalar is supported. Other combinations with
11505  // matrix types are invalid.
11506  if (IsDiv && LHSTy->isConstantMatrixType() && RHSTy->isArithmeticType())
11507    return CheckMatrixElementwiseOperands(LHS, RHS, Loc, IsCompAssign);
11508
11509  QualType compType = UsualArithmeticConversions(
11510      LHS, RHS, Loc, IsCompAssign ? ACK_CompAssign : ACK_Arithmetic);
11511  if (LHS.isInvalid() || RHS.isInvalid())
11512    return QualType();
11513
11514
11515  if (compType.isNull() || !compType->isArithmeticType())
11516    return InvalidOperands(Loc, LHS, RHS);
11517  if (IsDiv) {
11518    DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, IsDiv);
11519    DiagnoseDivisionSizeofPointerOrArray(*this, LHS.get(), RHS.get(), Loc);
11520  }
11521  return compType;
11522}
11523
11524QualType Sema::CheckRemainderOperands(
11525  ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
11526  checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
11527
11528  if (LHS.get()->getType()->isVectorType() ||
11529      RHS.get()->getType()->isVectorType()) {
11530    if (LHS.get()->getType()->hasIntegerRepresentation() &&
11531        RHS.get()->getType()->hasIntegerRepresentation())
11532      return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
11533                                 /*AllowBothBool*/ getLangOpts().AltiVec,
11534                                 /*AllowBoolConversions*/ false,
11535                                 /*AllowBooleanOperation*/ false,
11536                                 /*ReportInvalid*/ true);
11537    return InvalidOperands(Loc, LHS, RHS);
11538  }
11539
11540  if (LHS.get()->getType()->isSveVLSBuiltinType() ||
11541      RHS.get()->getType()->isSveVLSBuiltinType()) {
11542    if (LHS.get()->getType()->hasIntegerRepresentation() &&
11543        RHS.get()->getType()->hasIntegerRepresentation())
11544      return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
11545                                         ACK_Arithmetic);
11546
11547    return InvalidOperands(Loc, LHS, RHS);
11548  }
11549
11550  QualType compType = UsualArithmeticConversions(
11551      LHS, RHS, Loc, IsCompAssign ? ACK_CompAssign : ACK_Arithmetic);
11552  if (LHS.isInvalid() || RHS.isInvalid())
11553    return QualType();
11554
11555  if (compType.isNull() || !compType->isIntegerType())
11556    return InvalidOperands(Loc, LHS, RHS);
11557  DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, false /* IsDiv */);
11558  return compType;
11559}
11560
11561/// Diagnose invalid arithmetic on two void pointers.
11562static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
11563                                                Expr *LHSExpr, Expr *RHSExpr) {
11564  S.Diag(Loc, S.getLangOpts().CPlusPlus
11565                ? diag::err_typecheck_pointer_arith_void_type
11566                : diag::ext_gnu_void_ptr)
11567    << 1 /* two pointers */ << LHSExpr->getSourceRange()
11568                            << RHSExpr->getSourceRange();
11569}
11570
11571/// Diagnose invalid arithmetic on a void pointer.
11572static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc,
11573                                            Expr *Pointer) {
11574  S.Diag(Loc, S.getLangOpts().CPlusPlus
11575                ? diag::err_typecheck_pointer_arith_void_type
11576                : diag::ext_gnu_void_ptr)
11577    << 0 /* one pointer */ << Pointer->getSourceRange();
11578}
11579
11580/// Diagnose invalid arithmetic on a null pointer.
11581///
11582/// If \p IsGNUIdiom is true, the operation is using the 'p = (i8*)nullptr + n'
11583/// idiom, which we recognize as a GNU extension.
11584///
11585static void diagnoseArithmeticOnNullPointer(Sema &S, SourceLocation Loc,
11586                                            Expr *Pointer, bool IsGNUIdiom) {
11587  if (IsGNUIdiom)
11588    S.Diag(Loc, diag::warn_gnu_null_ptr_arith)
11589      << Pointer->getSourceRange();
11590  else
11591    S.Diag(Loc, diag::warn_pointer_arith_null_ptr)
11592      << S.getLangOpts().CPlusPlus << Pointer->getSourceRange();
11593}
11594
11595/// Diagnose invalid subraction on a null pointer.
11596///
11597static void diagnoseSubtractionOnNullPointer(Sema &S, SourceLocation Loc,
11598                                             Expr *Pointer, bool BothNull) {
11599  // Null - null is valid in C++ [expr.add]p7
11600  if (BothNull && S.getLangOpts().CPlusPlus)
11601    return;
11602
11603  // Is this s a macro from a system header?
11604  if (S.Diags.getSuppressSystemWarnings() && S.SourceMgr.isInSystemMacro(Loc))
11605    return;
11606
11607  S.DiagRuntimeBehavior(Loc, Pointer,
11608                        S.PDiag(diag::warn_pointer_sub_null_ptr)
11609                            << S.getLangOpts().CPlusPlus
11610                            << Pointer->getSourceRange());
11611}
11612
11613/// Diagnose invalid arithmetic on two function pointers.
11614static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc,
11615                                                    Expr *LHS, Expr *RHS) {
11616  assert(LHS->getType()->isAnyPointerType());
11617  assert(RHS->getType()->isAnyPointerType());
11618  S.Diag(Loc, S.getLangOpts().CPlusPlus
11619                ? diag::err_typecheck_pointer_arith_function_type
11620                : diag::ext_gnu_ptr_func_arith)
11621    << 1 /* two pointers */ << LHS->getType()->getPointeeType()
11622    // We only show the second type if it differs from the first.
11623    << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(),
11624                                                   RHS->getType())
11625    << RHS->getType()->getPointeeType()
11626    << LHS->getSourceRange() << RHS->getSourceRange();
11627}
11628
11629/// Diagnose invalid arithmetic on a function pointer.
11630static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
11631                                                Expr *Pointer) {
11632  assert(Pointer->getType()->isAnyPointerType());
11633  S.Diag(Loc, S.getLangOpts().CPlusPlus
11634                ? diag::err_typecheck_pointer_arith_function_type
11635                : diag::ext_gnu_ptr_func_arith)
11636    << 0 /* one pointer */ << Pointer->getType()->getPointeeType()
11637    << 0 /* one pointer, so only one type */
11638    << Pointer->getSourceRange();
11639}
11640
11641/// Emit error if Operand is incomplete pointer type
11642///
11643/// \returns True if pointer has incomplete type
11644static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc,
11645                                                 Expr *Operand) {
11646  QualType ResType = Operand->getType();
11647  if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
11648    ResType = ResAtomicType->getValueType();
11649
11650  assert(ResType->isAnyPointerType() && !ResType->isDependentType());
11651  QualType PointeeTy = ResType->getPointeeType();
11652  return S.RequireCompleteSizedType(
11653      Loc, PointeeTy,
11654      diag::err_typecheck_arithmetic_incomplete_or_sizeless_type,
11655      Operand->getSourceRange());
11656}
11657
11658/// Check the validity of an arithmetic pointer operand.
11659///
11660/// If the operand has pointer type, this code will check for pointer types
11661/// which are invalid in arithmetic operations. These will be diagnosed
11662/// appropriately, including whether or not the use is supported as an
11663/// extension.
11664///
11665/// \returns True when the operand is valid to use (even if as an extension).
11666static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
11667                                            Expr *Operand) {
11668  QualType ResType = Operand->getType();
11669  if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
11670    ResType = ResAtomicType->getValueType();
11671
11672  if (!ResType->isAnyPointerType()) return true;
11673
11674  QualType PointeeTy = ResType->getPointeeType();
11675  if (PointeeTy->isVoidType()) {
11676    diagnoseArithmeticOnVoidPointer(S, Loc, Operand);
11677    return !S.getLangOpts().CPlusPlus;
11678  }
11679  if (PointeeTy->isFunctionType()) {
11680    diagnoseArithmeticOnFunctionPointer(S, Loc, Operand);
11681    return !S.getLangOpts().CPlusPlus;
11682  }
11683
11684  if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false;
11685
11686  return true;
11687}
11688
11689/// Check the validity of a binary arithmetic operation w.r.t. pointer
11690/// operands.
11691///
11692/// This routine will diagnose any invalid arithmetic on pointer operands much
11693/// like \see checkArithmeticOpPointerOperand. However, it has special logic
11694/// for emitting a single diagnostic even for operations where both LHS and RHS
11695/// are (potentially problematic) pointers.
11696///
11697/// \returns True when the operand is valid to use (even if as an extension).
11698static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
11699                                                Expr *LHSExpr, Expr *RHSExpr) {
11700  bool isLHSPointer = LHSExpr->getType()->isAnyPointerType();
11701  bool isRHSPointer = RHSExpr->getType()->isAnyPointerType();
11702  if (!isLHSPointer && !isRHSPointer) return true;
11703
11704  QualType LHSPointeeTy, RHSPointeeTy;
11705  if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType();
11706  if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType();
11707
11708  // if both are pointers check if operation is valid wrt address spaces
11709  if (isLHSPointer && isRHSPointer) {
11710    if (!LHSPointeeTy.isAddressSpaceOverlapping(RHSPointeeTy)) {
11711      S.Diag(Loc,
11712             diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
11713          << LHSExpr->getType() << RHSExpr->getType() << 1 /*arithmetic op*/
11714          << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
11715      return false;
11716    }
11717  }
11718
11719  // Check for arithmetic on pointers to incomplete types.
11720  bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
11721  bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
11722  if (isLHSVoidPtr || isRHSVoidPtr) {
11723    if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr);
11724    else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr);
11725    else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr);
11726
11727    return !S.getLangOpts().CPlusPlus;
11728  }
11729
11730  bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
11731  bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
11732  if (isLHSFuncPtr || isRHSFuncPtr) {
11733    if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr);
11734    else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc,
11735                                                                RHSExpr);
11736    else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr);
11737
11738    return !S.getLangOpts().CPlusPlus;
11739  }
11740
11741  if (isLHSPointer && checkArithmeticIncompletePointerType(S, Loc, LHSExpr))
11742    return false;
11743  if (isRHSPointer && checkArithmeticIncompletePointerType(S, Loc, RHSExpr))
11744    return false;
11745
11746  return true;
11747}
11748
11749/// diagnoseStringPlusInt - Emit a warning when adding an integer to a string
11750/// literal.
11751static void diagnoseStringPlusInt(Sema &Self, SourceLocation OpLoc,
11752                                  Expr *LHSExpr, Expr *RHSExpr) {
11753  StringLiteral* StrExpr = dyn_cast<StringLiteral>(LHSExpr->IgnoreImpCasts());
11754  Expr* IndexExpr = RHSExpr;
11755  if (!StrExpr) {
11756    StrExpr = dyn_cast<StringLiteral>(RHSExpr->IgnoreImpCasts());
11757    IndexExpr = LHSExpr;
11758  }
11759
11760  bool IsStringPlusInt = StrExpr &&
11761      IndexExpr->getType()->isIntegralOrUnscopedEnumerationType();
11762  if (!IsStringPlusInt || IndexExpr->isValueDependent())
11763    return;
11764
11765  SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
11766  Self.Diag(OpLoc, diag::warn_string_plus_int)
11767      << DiagRange << IndexExpr->IgnoreImpCasts()->getType();
11768
11769  // Only print a fixit for "str" + int, not for int + "str".
11770  if (IndexExpr == RHSExpr) {
11771    SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc());
11772    Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
11773        << FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&")
11774        << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
11775        << FixItHint::CreateInsertion(EndLoc, "]");
11776  } else
11777    Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
11778}
11779
11780/// Emit a warning when adding a char literal to a string.
11781static void diagnoseStringPlusChar(Sema &Self, SourceLocation OpLoc,
11782                                   Expr *LHSExpr, Expr *RHSExpr) {
11783  const Expr *StringRefExpr = LHSExpr;
11784  const CharacterLiteral *CharExpr =
11785      dyn_cast<CharacterLiteral>(RHSExpr->IgnoreImpCasts());
11786
11787  if (!CharExpr) {
11788    CharExpr = dyn_cast<CharacterLiteral>(LHSExpr->IgnoreImpCasts());
11789    StringRefExpr = RHSExpr;
11790  }
11791
11792  if (!CharExpr || !StringRefExpr)
11793    return;
11794
11795  const QualType StringType = StringRefExpr->getType();
11796
11797  // Return if not a PointerType.
11798  if (!StringType->isAnyPointerType())
11799    return;
11800
11801  // Return if not a CharacterType.
11802  if (!StringType->getPointeeType()->isAnyCharacterType())
11803    return;
11804
11805  ASTContext &Ctx = Self.getASTContext();
11806  SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
11807
11808  const QualType CharType = CharExpr->getType();
11809  if (!CharType->isAnyCharacterType() &&
11810      CharType->isIntegerType() &&
11811      llvm::isUIntN(Ctx.getCharWidth(), CharExpr->getValue())) {
11812    Self.Diag(OpLoc, diag::warn_string_plus_char)
11813        << DiagRange << Ctx.CharTy;
11814  } else {
11815    Self.Diag(OpLoc, diag::warn_string_plus_char)
11816        << DiagRange << CharExpr->getType();
11817  }
11818
11819  // Only print a fixit for str + char, not for char + str.
11820  if (isa<CharacterLiteral>(RHSExpr->IgnoreImpCasts())) {
11821    SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc());
11822    Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
11823        << FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&")
11824        << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
11825        << FixItHint::CreateInsertion(EndLoc, "]");
11826  } else {
11827    Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
11828  }
11829}
11830
11831/// Emit error when two pointers are incompatible.
11832static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc,
11833                                           Expr *LHSExpr, Expr *RHSExpr) {
11834  assert(LHSExpr->getType()->isAnyPointerType());
11835  assert(RHSExpr->getType()->isAnyPointerType());
11836  S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
11837    << LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange()
11838    << RHSExpr->getSourceRange();
11839}
11840
11841// C99 6.5.6
11842QualType Sema::CheckAdditionOperands(ExprResult &LHS, ExprResult &RHS,
11843                                     SourceLocation Loc, BinaryOperatorKind Opc,
11844                                     QualType* CompLHSTy) {
11845  checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
11846
11847  if (LHS.get()->getType()->isVectorType() ||
11848      RHS.get()->getType()->isVectorType()) {
11849    QualType compType =
11850        CheckVectorOperands(LHS, RHS, Loc, CompLHSTy,
11851                            /*AllowBothBool*/ getLangOpts().AltiVec,
11852                            /*AllowBoolConversions*/ getLangOpts().ZVector,
11853                            /*AllowBooleanOperation*/ false,
11854                            /*ReportInvalid*/ true);
11855    if (CompLHSTy) *CompLHSTy = compType;
11856    return compType;
11857  }
11858
11859  if (LHS.get()->getType()->isSveVLSBuiltinType() ||
11860      RHS.get()->getType()->isSveVLSBuiltinType()) {
11861    QualType compType =
11862        CheckSizelessVectorOperands(LHS, RHS, Loc, CompLHSTy, ACK_Arithmetic);
11863    if (CompLHSTy)
11864      *CompLHSTy = compType;
11865    return compType;
11866  }
11867
11868  if (LHS.get()->getType()->isConstantMatrixType() ||
11869      RHS.get()->getType()->isConstantMatrixType()) {
11870    QualType compType =
11871        CheckMatrixElementwiseOperands(LHS, RHS, Loc, CompLHSTy);
11872    if (CompLHSTy)
11873      *CompLHSTy = compType;
11874    return compType;
11875  }
11876
11877  QualType compType = UsualArithmeticConversions(
11878      LHS, RHS, Loc, CompLHSTy ? ACK_CompAssign : ACK_Arithmetic);
11879  if (LHS.isInvalid() || RHS.isInvalid())
11880    return QualType();
11881
11882  // Diagnose "string literal" '+' int and string '+' "char literal".
11883  if (Opc == BO_Add) {
11884    diagnoseStringPlusInt(*this, Loc, LHS.get(), RHS.get());
11885    diagnoseStringPlusChar(*this, Loc, LHS.get(), RHS.get());
11886  }
11887
11888  // handle the common case first (both operands are arithmetic).
11889  if (!compType.isNull() && compType->isArithmeticType()) {
11890    if (CompLHSTy) *CompLHSTy = compType;
11891    return compType;
11892  }
11893
11894  // Type-checking.  Ultimately the pointer's going to be in PExp;
11895  // note that we bias towards the LHS being the pointer.
11896  Expr *PExp = LHS.get(), *IExp = RHS.get();
11897
11898  bool isObjCPointer;
11899  if (PExp->getType()->isPointerType()) {
11900    isObjCPointer = false;
11901  } else if (PExp->getType()->isObjCObjectPointerType()) {
11902    isObjCPointer = true;
11903  } else {
11904    std::swap(PExp, IExp);
11905    if (PExp->getType()->isPointerType()) {
11906      isObjCPointer = false;
11907    } else if (PExp->getType()->isObjCObjectPointerType()) {
11908      isObjCPointer = true;
11909    } else {
11910      return InvalidOperands(Loc, LHS, RHS);
11911    }
11912  }
11913  assert(PExp->getType()->isAnyPointerType());
11914
11915  if (!IExp->getType()->isIntegerType())
11916    return InvalidOperands(Loc, LHS, RHS);
11917
11918  // Adding to a null pointer results in undefined behavior.
11919  if (PExp->IgnoreParenCasts()->isNullPointerConstant(
11920          Context, Expr::NPC_ValueDependentIsNotNull)) {
11921    // In C++ adding zero to a null pointer is defined.
11922    Expr::EvalResult KnownVal;
11923    if (!getLangOpts().CPlusPlus ||
11924        (!IExp->isValueDependent() &&
11925         (!IExp->EvaluateAsInt(KnownVal, Context) ||
11926          KnownVal.Val.getInt() != 0))) {
11927      // Check the conditions to see if this is the 'p = nullptr + n' idiom.
11928      bool IsGNUIdiom = BinaryOperator::isNullPointerArithmeticExtension(
11929          Context, BO_Add, PExp, IExp);
11930      diagnoseArithmeticOnNullPointer(*this, Loc, PExp, IsGNUIdiom);
11931    }
11932  }
11933
11934  if (!checkArithmeticOpPointerOperand(*this, Loc, PExp))
11935    return QualType();
11936
11937  if (isObjCPointer && checkArithmeticOnObjCPointer(*this, Loc, PExp))
11938    return QualType();
11939
11940  // Check array bounds for pointer arithemtic
11941  CheckArrayAccess(PExp, IExp);
11942
11943  if (CompLHSTy) {
11944    QualType LHSTy = Context.isPromotableBitField(LHS.get());
11945    if (LHSTy.isNull()) {
11946      LHSTy = LHS.get()->getType();
11947      if (Context.isPromotableIntegerType(LHSTy))
11948        LHSTy = Context.getPromotedIntegerType(LHSTy);
11949    }
11950    *CompLHSTy = LHSTy;
11951  }
11952
11953  return PExp->getType();
11954}
11955
11956// C99 6.5.6
11957QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS,
11958                                        SourceLocation Loc,
11959                                        QualType* CompLHSTy) {
11960  checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
11961
11962  if (LHS.get()->getType()->isVectorType() ||
11963      RHS.get()->getType()->isVectorType()) {
11964    QualType compType =
11965        CheckVectorOperands(LHS, RHS, Loc, CompLHSTy,
11966                            /*AllowBothBool*/ getLangOpts().AltiVec,
11967                            /*AllowBoolConversions*/ getLangOpts().ZVector,
11968                            /*AllowBooleanOperation*/ false,
11969                            /*ReportInvalid*/ true);
11970    if (CompLHSTy) *CompLHSTy = compType;
11971    return compType;
11972  }
11973
11974  if (LHS.get()->getType()->isSveVLSBuiltinType() ||
11975      RHS.get()->getType()->isSveVLSBuiltinType()) {
11976    QualType compType =
11977        CheckSizelessVectorOperands(LHS, RHS, Loc, CompLHSTy, ACK_Arithmetic);
11978    if (CompLHSTy)
11979      *CompLHSTy = compType;
11980    return compType;
11981  }
11982
11983  if (LHS.get()->getType()->isConstantMatrixType() ||
11984      RHS.get()->getType()->isConstantMatrixType()) {
11985    QualType compType =
11986        CheckMatrixElementwiseOperands(LHS, RHS, Loc, CompLHSTy);
11987    if (CompLHSTy)
11988      *CompLHSTy = compType;
11989    return compType;
11990  }
11991
11992  QualType compType = UsualArithmeticConversions(
11993      LHS, RHS, Loc, CompLHSTy ? ACK_CompAssign : ACK_Arithmetic);
11994  if (LHS.isInvalid() || RHS.isInvalid())
11995    return QualType();
11996
11997  // Enforce type constraints: C99 6.5.6p3.
11998
11999  // Handle the common case first (both operands are arithmetic).
12000  if (!compType.isNull() && compType->isArithmeticType()) {
12001    if (CompLHSTy) *CompLHSTy = compType;
12002    return compType;
12003  }
12004
12005  // Either ptr - int   or   ptr - ptr.
12006  if (LHS.get()->getType()->isAnyPointerType()) {
12007    QualType lpointee = LHS.get()->getType()->getPointeeType();
12008
12009    // Diagnose bad cases where we step over interface counts.
12010    if (LHS.get()->getType()->isObjCObjectPointerType() &&
12011        checkArithmeticOnObjCPointer(*this, Loc, LHS.get()))
12012      return QualType();
12013
12014    // The result type of a pointer-int computation is the pointer type.
12015    if (RHS.get()->getType()->isIntegerType()) {
12016      // Subtracting from a null pointer should produce a warning.
12017      // The last argument to the diagnose call says this doesn't match the
12018      // GNU int-to-pointer idiom.
12019      if (LHS.get()->IgnoreParenCasts()->isNullPointerConstant(Context,
12020                                           Expr::NPC_ValueDependentIsNotNull)) {
12021        // In C++ adding zero to a null pointer is defined.
12022        Expr::EvalResult KnownVal;
12023        if (!getLangOpts().CPlusPlus ||
12024            (!RHS.get()->isValueDependent() &&
12025             (!RHS.get()->EvaluateAsInt(KnownVal, Context) ||
12026              KnownVal.Val.getInt() != 0))) {
12027          diagnoseArithmeticOnNullPointer(*this, Loc, LHS.get(), false);
12028        }
12029      }
12030
12031      if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get()))
12032        return QualType();
12033
12034      // Check array bounds for pointer arithemtic
12035      CheckArrayAccess(LHS.get(), RHS.get(), /*ArraySubscriptExpr*/nullptr,
12036                       /*AllowOnePastEnd*/true, /*IndexNegated*/true);
12037
12038      if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
12039      return LHS.get()->getType();
12040    }
12041
12042    // Handle pointer-pointer subtractions.
12043    if (const PointerType *RHSPTy
12044          = RHS.get()->getType()->getAs<PointerType>()) {
12045      QualType rpointee = RHSPTy->getPointeeType();
12046
12047      if (getLangOpts().CPlusPlus) {
12048        // Pointee types must be the same: C++ [expr.add]
12049        if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
12050          diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
12051        }
12052      } else {
12053        // Pointee types must be compatible C99 6.5.6p3
12054        if (!Context.typesAreCompatible(
12055                Context.getCanonicalType(lpointee).getUnqualifiedType(),
12056                Context.getCanonicalType(rpointee).getUnqualifiedType())) {
12057          diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
12058          return QualType();
12059        }
12060      }
12061
12062      if (!checkArithmeticBinOpPointerOperands(*this, Loc,
12063                                               LHS.get(), RHS.get()))
12064        return QualType();
12065
12066      bool LHSIsNullPtr = LHS.get()->IgnoreParenCasts()->isNullPointerConstant(
12067          Context, Expr::NPC_ValueDependentIsNotNull);
12068      bool RHSIsNullPtr = RHS.get()->IgnoreParenCasts()->isNullPointerConstant(
12069          Context, Expr::NPC_ValueDependentIsNotNull);
12070
12071      // Subtracting nullptr or from nullptr is suspect
12072      if (LHSIsNullPtr)
12073        diagnoseSubtractionOnNullPointer(*this, Loc, LHS.get(), RHSIsNullPtr);
12074      if (RHSIsNullPtr)
12075        diagnoseSubtractionOnNullPointer(*this, Loc, RHS.get(), LHSIsNullPtr);
12076
12077      // The pointee type may have zero size.  As an extension, a structure or
12078      // union may have zero size or an array may have zero length.  In this
12079      // case subtraction does not make sense.
12080      if (!rpointee->isVoidType() && !rpointee->isFunctionType()) {
12081        CharUnits ElementSize = Context.getTypeSizeInChars(rpointee);
12082        if (ElementSize.isZero()) {
12083          Diag(Loc,diag::warn_sub_ptr_zero_size_types)
12084            << rpointee.getUnqualifiedType()
12085            << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
12086        }
12087      }
12088
12089      if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
12090      return Context.getPointerDiffType();
12091    }
12092  }
12093
12094  return InvalidOperands(Loc, LHS, RHS);
12095}
12096
12097static bool isScopedEnumerationType(QualType T) {
12098  if (const EnumType *ET = T->getAs<EnumType>())
12099    return ET->getDecl()->isScoped();
12100  return false;
12101}
12102
12103static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS,
12104                                   SourceLocation Loc, BinaryOperatorKind Opc,
12105                                   QualType LHSType) {
12106  // OpenCL 6.3j: shift values are effectively % word size of LHS (more defined),
12107  // so skip remaining warnings as we don't want to modify values within Sema.
12108  if (S.getLangOpts().OpenCL)
12109    return;
12110
12111  // Check right/shifter operand
12112  Expr::EvalResult RHSResult;
12113  if (RHS.get()->isValueDependent() ||
12114      !RHS.get()->EvaluateAsInt(RHSResult, S.Context))
12115    return;
12116  llvm::APSInt Right = RHSResult.Val.getInt();
12117
12118  if (Right.isNegative()) {
12119    S.DiagRuntimeBehavior(Loc, RHS.get(),
12120                          S.PDiag(diag::warn_shift_negative)
12121                            << RHS.get()->getSourceRange());
12122    return;
12123  }
12124
12125  QualType LHSExprType = LHS.get()->getType();
12126  uint64_t LeftSize = S.Context.getTypeSize(LHSExprType);
12127  if (LHSExprType->isBitIntType())
12128    LeftSize = S.Context.getIntWidth(LHSExprType);
12129  else if (LHSExprType->isFixedPointType()) {
12130    auto FXSema = S.Context.getFixedPointSemantics(LHSExprType);
12131    LeftSize = FXSema.getWidth() - (unsigned)FXSema.hasUnsignedPadding();
12132  }
12133  if (Right.uge(LeftSize)) {
12134    S.DiagRuntimeBehavior(Loc, RHS.get(),
12135                          S.PDiag(diag::warn_shift_gt_typewidth)
12136                            << RHS.get()->getSourceRange());
12137    return;
12138  }
12139
12140  // FIXME: We probably need to handle fixed point types specially here.
12141  if (Opc != BO_Shl || LHSExprType->isFixedPointType())
12142    return;
12143
12144  // When left shifting an ICE which is signed, we can check for overflow which
12145  // according to C++ standards prior to C++2a has undefined behavior
12146  // ([expr.shift] 5.8/2). Unsigned integers have defined behavior modulo one
12147  // more than the maximum value representable in the result type, so never
12148  // warn for those. (FIXME: Unsigned left-shift overflow in a constant
12149  // expression is still probably a bug.)
12150  Expr::EvalResult LHSResult;
12151  if (LHS.get()->isValueDependent() ||
12152      LHSType->hasUnsignedIntegerRepresentation() ||
12153      !LHS.get()->EvaluateAsInt(LHSResult, S.Context))
12154    return;
12155  llvm::APSInt Left = LHSResult.Val.getInt();
12156
12157  // Don't warn if signed overflow is defined, then all the rest of the
12158  // diagnostics will not be triggered because the behavior is defined.
12159  // Also don't warn in C++20 mode (and newer), as signed left shifts
12160  // always wrap and never overflow.
12161  if (S.getLangOpts().isSignedOverflowDefined() || S.getLangOpts().CPlusPlus20)
12162    return;
12163
12164  // If LHS does not have a non-negative value then, the
12165  // behavior is undefined before C++2a. Warn about it.
12166  if (Left.isNegative()) {
12167    S.DiagRuntimeBehavior(Loc, LHS.get(),
12168                          S.PDiag(diag::warn_shift_lhs_negative)
12169                            << LHS.get()->getSourceRange());
12170    return;
12171  }
12172
12173  llvm::APInt ResultBits =
12174      static_cast<llvm::APInt &>(Right) + Left.getSignificantBits();
12175  if (ResultBits.ule(LeftSize))
12176    return;
12177  llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
12178  Result = Result.shl(Right);
12179
12180  // Print the bit representation of the signed integer as an unsigned
12181  // hexadecimal number.
12182  SmallString<40> HexResult;
12183  Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true);
12184
12185  // If we are only missing a sign bit, this is less likely to result in actual
12186  // bugs -- if the result is cast back to an unsigned type, it will have the
12187  // expected value. Thus we place this behind a different warning that can be
12188  // turned off separately if needed.
12189  if (ResultBits - 1 == LeftSize) {
12190    S.Diag(Loc, diag::warn_shift_result_sets_sign_bit)
12191        << HexResult << LHSType
12192        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
12193    return;
12194  }
12195
12196  S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
12197      << HexResult.str() << Result.getSignificantBits() << LHSType
12198      << Left.getBitWidth() << LHS.get()->getSourceRange()
12199      << RHS.get()->getSourceRange();
12200}
12201
12202/// Return the resulting type when a vector is shifted
12203///        by a scalar or vector shift amount.
12204static QualType checkVectorShift(Sema &S, ExprResult &LHS, ExprResult &RHS,
12205                                 SourceLocation Loc, bool IsCompAssign) {
12206  // OpenCL v1.1 s6.3.j says RHS can be a vector only if LHS is a vector.
12207  if ((S.LangOpts.OpenCL || S.LangOpts.ZVector) &&
12208      !LHS.get()->getType()->isVectorType()) {
12209    S.Diag(Loc, diag::err_shift_rhs_only_vector)
12210      << RHS.get()->getType() << LHS.get()->getType()
12211      << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
12212    return QualType();
12213  }
12214
12215  if (!IsCompAssign) {
12216    LHS = S.UsualUnaryConversions(LHS.get());
12217    if (LHS.isInvalid()) return QualType();
12218  }
12219
12220  RHS = S.UsualUnaryConversions(RHS.get());
12221  if (RHS.isInvalid()) return QualType();
12222
12223  QualType LHSType = LHS.get()->getType();
12224  // Note that LHS might be a scalar because the routine calls not only in
12225  // OpenCL case.
12226  const VectorType *LHSVecTy = LHSType->getAs<VectorType>();
12227  QualType LHSEleType = LHSVecTy ? LHSVecTy->getElementType() : LHSType;
12228
12229  // Note that RHS might not be a vector.
12230  QualType RHSType = RHS.get()->getType();
12231  const VectorType *RHSVecTy = RHSType->getAs<VectorType>();
12232  QualType RHSEleType = RHSVecTy ? RHSVecTy->getElementType() : RHSType;
12233
12234  // Do not allow shifts for boolean vectors.
12235  if ((LHSVecTy && LHSVecTy->isExtVectorBoolType()) ||
12236      (RHSVecTy && RHSVecTy->isExtVectorBoolType())) {
12237    S.Diag(Loc, diag::err_typecheck_invalid_operands)
12238        << LHS.get()->getType() << RHS.get()->getType()
12239        << LHS.get()->getSourceRange();
12240    return QualType();
12241  }
12242
12243  // The operands need to be integers.
12244  if (!LHSEleType->isIntegerType()) {
12245    S.Diag(Loc, diag::err_typecheck_expect_int)
12246      << LHS.get()->getType() << LHS.get()->getSourceRange();
12247    return QualType();
12248  }
12249
12250  if (!RHSEleType->isIntegerType()) {
12251    S.Diag(Loc, diag::err_typecheck_expect_int)
12252      << RHS.get()->getType() << RHS.get()->getSourceRange();
12253    return QualType();
12254  }
12255
12256  if (!LHSVecTy) {
12257    assert(RHSVecTy);
12258    if (IsCompAssign)
12259      return RHSType;
12260    if (LHSEleType != RHSEleType) {
12261      LHS = S.ImpCastExprToType(LHS.get(),RHSEleType, CK_IntegralCast);
12262      LHSEleType = RHSEleType;
12263    }
12264    QualType VecTy =
12265        S.Context.getExtVectorType(LHSEleType, RHSVecTy->getNumElements());
12266    LHS = S.ImpCastExprToType(LHS.get(), VecTy, CK_VectorSplat);
12267    LHSType = VecTy;
12268  } else if (RHSVecTy) {
12269    // OpenCL v1.1 s6.3.j says that for vector types, the operators
12270    // are applied component-wise. So if RHS is a vector, then ensure
12271    // that the number of elements is the same as LHS...
12272    if (RHSVecTy->getNumElements() != LHSVecTy->getNumElements()) {
12273      S.Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
12274        << LHS.get()->getType() << RHS.get()->getType()
12275        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
12276      return QualType();
12277    }
12278    if (!S.LangOpts.OpenCL && !S.LangOpts.ZVector) {
12279      const BuiltinType *LHSBT = LHSEleType->getAs<clang::BuiltinType>();
12280      const BuiltinType *RHSBT = RHSEleType->getAs<clang::BuiltinType>();
12281      if (LHSBT != RHSBT &&
12282          S.Context.getTypeSize(LHSBT) != S.Context.getTypeSize(RHSBT)) {
12283        S.Diag(Loc, diag::warn_typecheck_vector_element_sizes_not_equal)
12284            << LHS.get()->getType() << RHS.get()->getType()
12285            << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
12286      }
12287    }
12288  } else {
12289    // ...else expand RHS to match the number of elements in LHS.
12290    QualType VecTy =
12291      S.Context.getExtVectorType(RHSEleType, LHSVecTy->getNumElements());
12292    RHS = S.ImpCastExprToType(RHS.get(), VecTy, CK_VectorSplat);
12293  }
12294
12295  return LHSType;
12296}
12297
12298static QualType checkSizelessVectorShift(Sema &S, ExprResult &LHS,
12299                                         ExprResult &RHS, SourceLocation Loc,
12300                                         bool IsCompAssign) {
12301  if (!IsCompAssign) {
12302    LHS = S.UsualUnaryConversions(LHS.get());
12303    if (LHS.isInvalid())
12304      return QualType();
12305  }
12306
12307  RHS = S.UsualUnaryConversions(RHS.get());
12308  if (RHS.isInvalid())
12309    return QualType();
12310
12311  QualType LHSType = LHS.get()->getType();
12312  const BuiltinType *LHSBuiltinTy = LHSType->castAs<BuiltinType>();
12313  QualType LHSEleType = LHSType->isSveVLSBuiltinType()
12314                            ? LHSBuiltinTy->getSveEltType(S.getASTContext())
12315                            : LHSType;
12316
12317  // Note that RHS might not be a vector
12318  QualType RHSType = RHS.get()->getType();
12319  const BuiltinType *RHSBuiltinTy = RHSType->castAs<BuiltinType>();
12320  QualType RHSEleType = RHSType->isSveVLSBuiltinType()
12321                            ? RHSBuiltinTy->getSveEltType(S.getASTContext())
12322                            : RHSType;
12323
12324  if ((LHSBuiltinTy && LHSBuiltinTy->isSVEBool()) ||
12325      (RHSBuiltinTy && RHSBuiltinTy->isSVEBool())) {
12326    S.Diag(Loc, diag::err_typecheck_invalid_operands)
12327        << LHSType << RHSType << LHS.get()->getSourceRange();
12328    return QualType();
12329  }
12330
12331  if (!LHSEleType->isIntegerType()) {
12332    S.Diag(Loc, diag::err_typecheck_expect_int)
12333        << LHS.get()->getType() << LHS.get()->getSourceRange();
12334    return QualType();
12335  }
12336
12337  if (!RHSEleType->isIntegerType()) {
12338    S.Diag(Loc, diag::err_typecheck_expect_int)
12339        << RHS.get()->getType() << RHS.get()->getSourceRange();
12340    return QualType();
12341  }
12342
12343  if (LHSType->isSveVLSBuiltinType() && RHSType->isSveVLSBuiltinType() &&
12344      (S.Context.getBuiltinVectorTypeInfo(LHSBuiltinTy).EC !=
12345       S.Context.getBuiltinVectorTypeInfo(RHSBuiltinTy).EC)) {
12346    S.Diag(Loc, diag::err_typecheck_invalid_operands)
12347        << LHSType << RHSType << LHS.get()->getSourceRange()
12348        << RHS.get()->getSourceRange();
12349    return QualType();
12350  }
12351
12352  if (!LHSType->isSveVLSBuiltinType()) {
12353    assert(RHSType->isSveVLSBuiltinType());
12354    if (IsCompAssign)
12355      return RHSType;
12356    if (LHSEleType != RHSEleType) {
12357      LHS = S.ImpCastExprToType(LHS.get(), RHSEleType, clang::CK_IntegralCast);
12358      LHSEleType = RHSEleType;
12359    }
12360    const llvm::ElementCount VecSize =
12361        S.Context.getBuiltinVectorTypeInfo(RHSBuiltinTy).EC;
12362    QualType VecTy =
12363        S.Context.getScalableVectorType(LHSEleType, VecSize.getKnownMinValue());
12364    LHS = S.ImpCastExprToType(LHS.get(), VecTy, clang::CK_VectorSplat);
12365    LHSType = VecTy;
12366  } else if (RHSBuiltinTy && RHSBuiltinTy->isSveVLSBuiltinType()) {
12367    if (S.Context.getTypeSize(RHSBuiltinTy) !=
12368        S.Context.getTypeSize(LHSBuiltinTy)) {
12369      S.Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
12370          << LHSType << RHSType << LHS.get()->getSourceRange()
12371          << RHS.get()->getSourceRange();
12372      return QualType();
12373    }
12374  } else {
12375    const llvm::ElementCount VecSize =
12376        S.Context.getBuiltinVectorTypeInfo(LHSBuiltinTy).EC;
12377    if (LHSEleType != RHSEleType) {
12378      RHS = S.ImpCastExprToType(RHS.get(), LHSEleType, clang::CK_IntegralCast);
12379      RHSEleType = LHSEleType;
12380    }
12381    QualType VecTy =
12382        S.Context.getScalableVectorType(RHSEleType, VecSize.getKnownMinValue());
12383    RHS = S.ImpCastExprToType(RHS.get(), VecTy, CK_VectorSplat);
12384  }
12385
12386  return LHSType;
12387}
12388
12389// C99 6.5.7
12390QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS,
12391                                  SourceLocation Loc, BinaryOperatorKind Opc,
12392                                  bool IsCompAssign) {
12393  checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
12394
12395  // Vector shifts promote their scalar inputs to vector type.
12396  if (LHS.get()->getType()->isVectorType() ||
12397      RHS.get()->getType()->isVectorType()) {
12398    if (LangOpts.ZVector) {
12399      // The shift operators for the z vector extensions work basically
12400      // like general shifts, except that neither the LHS nor the RHS is
12401      // allowed to be a "vector bool".
12402      if (auto LHSVecType = LHS.get()->getType()->getAs<VectorType>())
12403        if (LHSVecType->getVectorKind() == VectorKind::AltiVecBool)
12404          return InvalidOperands(Loc, LHS, RHS);
12405      if (auto RHSVecType = RHS.get()->getType()->getAs<VectorType>())
12406        if (RHSVecType->getVectorKind() == VectorKind::AltiVecBool)
12407          return InvalidOperands(Loc, LHS, RHS);
12408    }
12409    return checkVectorShift(*this, LHS, RHS, Loc, IsCompAssign);
12410  }
12411
12412  if (LHS.get()->getType()->isSveVLSBuiltinType() ||
12413      RHS.get()->getType()->isSveVLSBuiltinType())
12414    return checkSizelessVectorShift(*this, LHS, RHS, Loc, IsCompAssign);
12415
12416  // Shifts don't perform usual arithmetic conversions, they just do integer
12417  // promotions on each operand. C99 6.5.7p3
12418
12419  // For the LHS, do usual unary conversions, but then reset them away
12420  // if this is a compound assignment.
12421  ExprResult OldLHS = LHS;
12422  LHS = UsualUnaryConversions(LHS.get());
12423  if (LHS.isInvalid())
12424    return QualType();
12425  QualType LHSType = LHS.get()->getType();
12426  if (IsCompAssign) LHS = OldLHS;
12427
12428  // The RHS is simpler.
12429  RHS = UsualUnaryConversions(RHS.get());
12430  if (RHS.isInvalid())
12431    return QualType();
12432  QualType RHSType = RHS.get()->getType();
12433
12434  // C99 6.5.7p2: Each of the operands shall have integer type.
12435  // Embedded-C 4.1.6.2.2: The LHS may also be fixed-point.
12436  if ((!LHSType->isFixedPointOrIntegerType() &&
12437       !LHSType->hasIntegerRepresentation()) ||
12438      !RHSType->hasIntegerRepresentation())
12439    return InvalidOperands(Loc, LHS, RHS);
12440
12441  // C++0x: Don't allow scoped enums. FIXME: Use something better than
12442  // hasIntegerRepresentation() above instead of this.
12443  if (isScopedEnumerationType(LHSType) ||
12444      isScopedEnumerationType(RHSType)) {
12445    return InvalidOperands(Loc, LHS, RHS);
12446  }
12447  DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType);
12448
12449  // "The type of the result is that of the promoted left operand."
12450  return LHSType;
12451}
12452
12453/// Diagnose bad pointer comparisons.
12454static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc,
12455                                              ExprResult &LHS, ExprResult &RHS,
12456                                              bool IsError) {
12457  S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers
12458                      : diag::ext_typecheck_comparison_of_distinct_pointers)
12459    << LHS.get()->getType() << RHS.get()->getType()
12460    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
12461}
12462
12463/// Returns false if the pointers are converted to a composite type,
12464/// true otherwise.
12465static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc,
12466                                           ExprResult &LHS, ExprResult &RHS) {
12467  // C++ [expr.rel]p2:
12468  //   [...] Pointer conversions (4.10) and qualification
12469  //   conversions (4.4) are performed on pointer operands (or on
12470  //   a pointer operand and a null pointer constant) to bring
12471  //   them to their composite pointer type. [...]
12472  //
12473  // C++ [expr.eq]p1 uses the same notion for (in)equality
12474  // comparisons of pointers.
12475
12476  QualType LHSType = LHS.get()->getType();
12477  QualType RHSType = RHS.get()->getType();
12478  assert(LHSType->isPointerType() || RHSType->isPointerType() ||
12479         LHSType->isMemberPointerType() || RHSType->isMemberPointerType());
12480
12481  QualType T = S.FindCompositePointerType(Loc, LHS, RHS);
12482  if (T.isNull()) {
12483    if ((LHSType->isAnyPointerType() || LHSType->isMemberPointerType()) &&
12484        (RHSType->isAnyPointerType() || RHSType->isMemberPointerType()))
12485      diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true);
12486    else
12487      S.InvalidOperands(Loc, LHS, RHS);
12488    return true;
12489  }
12490
12491  return false;
12492}
12493
12494static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc,
12495                                                    ExprResult &LHS,
12496                                                    ExprResult &RHS,
12497                                                    bool IsError) {
12498  S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void
12499                      : diag::ext_typecheck_comparison_of_fptr_to_void)
12500    << LHS.get()->getType() << RHS.get()->getType()
12501    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
12502}
12503
12504static bool isObjCObjectLiteral(ExprResult &E) {
12505  switch (E.get()->IgnoreParenImpCasts()->getStmtClass()) {
12506  case Stmt::ObjCArrayLiteralClass:
12507  case Stmt::ObjCDictionaryLiteralClass:
12508  case Stmt::ObjCStringLiteralClass:
12509  case Stmt::ObjCBoxedExprClass:
12510    return true;
12511  default:
12512    // Note that ObjCBoolLiteral is NOT an object literal!
12513    return false;
12514  }
12515}
12516
12517static bool hasIsEqualMethod(Sema &S, const Expr *LHS, const Expr *RHS) {
12518  const ObjCObjectPointerType *Type =
12519    LHS->getType()->getAs<ObjCObjectPointerType>();
12520
12521  // If this is not actually an Objective-C object, bail out.
12522  if (!Type)
12523    return false;
12524
12525  // Get the LHS object's interface type.
12526  QualType InterfaceType = Type->getPointeeType();
12527
12528  // If the RHS isn't an Objective-C object, bail out.
12529  if (!RHS->getType()->isObjCObjectPointerType())
12530    return false;
12531
12532  // Try to find the -isEqual: method.
12533  Selector IsEqualSel = S.NSAPIObj->getIsEqualSelector();
12534  ObjCMethodDecl *Method = S.LookupMethodInObjectType(IsEqualSel,
12535                                                      InterfaceType,
12536                                                      /*IsInstance=*/true);
12537  if (!Method) {
12538    if (Type->isObjCIdType()) {
12539      // For 'id', just check the global pool.
12540      Method = S.LookupInstanceMethodInGlobalPool(IsEqualSel, SourceRange(),
12541                                                  /*receiverId=*/true);
12542    } else {
12543      // Check protocols.
12544      Method = S.LookupMethodInQualifiedType(IsEqualSel, Type,
12545                                             /*IsInstance=*/true);
12546    }
12547  }
12548
12549  if (!Method)
12550    return false;
12551
12552  QualType T = Method->parameters()[0]->getType();
12553  if (!T->isObjCObjectPointerType())
12554    return false;
12555
12556  QualType R = Method->getReturnType();
12557  if (!R->isScalarType())
12558    return false;
12559
12560  return true;
12561}
12562
12563Sema::ObjCLiteralKind Sema::CheckLiteralKind(Expr *FromE) {
12564  FromE = FromE->IgnoreParenImpCasts();
12565  switch (FromE->getStmtClass()) {
12566    default:
12567      break;
12568    case Stmt::ObjCStringLiteralClass:
12569      // "string literal"
12570      return LK_String;
12571    case Stmt::ObjCArrayLiteralClass:
12572      // "array literal"
12573      return LK_Array;
12574    case Stmt::ObjCDictionaryLiteralClass:
12575      // "dictionary literal"
12576      return LK_Dictionary;
12577    case Stmt::BlockExprClass:
12578      return LK_Block;
12579    case Stmt::ObjCBoxedExprClass: {
12580      Expr *Inner = cast<ObjCBoxedExpr>(FromE)->getSubExpr()->IgnoreParens();
12581      switch (Inner->getStmtClass()) {
12582        case Stmt::IntegerLiteralClass:
12583        case Stmt::FloatingLiteralClass:
12584        case Stmt::CharacterLiteralClass:
12585        case Stmt::ObjCBoolLiteralExprClass:
12586        case Stmt::CXXBoolLiteralExprClass:
12587          // "numeric literal"
12588          return LK_Numeric;
12589        case Stmt::ImplicitCastExprClass: {
12590          CastKind CK = cast<CastExpr>(Inner)->getCastKind();
12591          // Boolean literals can be represented by implicit casts.
12592          if (CK == CK_IntegralToBoolean || CK == CK_IntegralCast)
12593            return LK_Numeric;
12594          break;
12595        }
12596        default:
12597          break;
12598      }
12599      return LK_Boxed;
12600    }
12601  }
12602  return LK_None;
12603}
12604
12605static void diagnoseObjCLiteralComparison(Sema &S, SourceLocation Loc,
12606                                          ExprResult &LHS, ExprResult &RHS,
12607                                          BinaryOperator::Opcode Opc){
12608  Expr *Literal;
12609  Expr *Other;
12610  if (isObjCObjectLiteral(LHS)) {
12611    Literal = LHS.get();
12612    Other = RHS.get();
12613  } else {
12614    Literal = RHS.get();
12615    Other = LHS.get();
12616  }
12617
12618  // Don't warn on comparisons against nil.
12619  Other = Other->IgnoreParenCasts();
12620  if (Other->isNullPointerConstant(S.getASTContext(),
12621                                   Expr::NPC_ValueDependentIsNotNull))
12622    return;
12623
12624  // This should be kept in sync with warn_objc_literal_comparison.
12625  // LK_String should always be after the other literals, since it has its own
12626  // warning flag.
12627  Sema::ObjCLiteralKind LiteralKind = S.CheckLiteralKind(Literal);
12628  assert(LiteralKind != Sema::LK_Block);
12629  if (LiteralKind == Sema::LK_None) {
12630    llvm_unreachable("Unknown Objective-C object literal kind");
12631  }
12632
12633  if (LiteralKind == Sema::LK_String)
12634    S.Diag(Loc, diag::warn_objc_string_literal_comparison)
12635      << Literal->getSourceRange();
12636  else
12637    S.Diag(Loc, diag::warn_objc_literal_comparison)
12638      << LiteralKind << Literal->getSourceRange();
12639
12640  if (BinaryOperator::isEqualityOp(Opc) &&
12641      hasIsEqualMethod(S, LHS.get(), RHS.get())) {
12642    SourceLocation Start = LHS.get()->getBeginLoc();
12643    SourceLocation End = S.getLocForEndOfToken(RHS.get()->getEndLoc());
12644    CharSourceRange OpRange =
12645      CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc));
12646
12647    S.Diag(Loc, diag::note_objc_literal_comparison_isequal)
12648      << FixItHint::CreateInsertion(Start, Opc == BO_EQ ? "[" : "![")
12649      << FixItHint::CreateReplacement(OpRange, " isEqual:")
12650      << FixItHint::CreateInsertion(End, "]");
12651  }
12652}
12653
12654/// Warns on !x < y, !x & y where !(x < y), !(x & y) was probably intended.
12655static void diagnoseLogicalNotOnLHSofCheck(Sema &S, ExprResult &LHS,
12656                                           ExprResult &RHS, SourceLocation Loc,
12657                                           BinaryOperatorKind Opc) {
12658  // Check that left hand side is !something.
12659  UnaryOperator *UO = dyn_cast<UnaryOperator>(LHS.get()->IgnoreImpCasts());
12660  if (!UO || UO->getOpcode() != UO_LNot) return;
12661
12662  // Only check if the right hand side is non-bool arithmetic type.
12663  if (RHS.get()->isKnownToHaveBooleanValue()) return;
12664
12665  // Make sure that the something in !something is not bool.
12666  Expr *SubExpr = UO->getSubExpr()->IgnoreImpCasts();
12667  if (SubExpr->isKnownToHaveBooleanValue()) return;
12668
12669  // Emit warning.
12670  bool IsBitwiseOp = Opc == BO_And || Opc == BO_Or || Opc == BO_Xor;
12671  S.Diag(UO->getOperatorLoc(), diag::warn_logical_not_on_lhs_of_check)
12672      << Loc << IsBitwiseOp;
12673
12674  // First note suggest !(x < y)
12675  SourceLocation FirstOpen = SubExpr->getBeginLoc();
12676  SourceLocation FirstClose = RHS.get()->getEndLoc();
12677  FirstClose = S.getLocForEndOfToken(FirstClose);
12678  if (FirstClose.isInvalid())
12679    FirstOpen = SourceLocation();
12680  S.Diag(UO->getOperatorLoc(), diag::note_logical_not_fix)
12681      << IsBitwiseOp
12682      << FixItHint::CreateInsertion(FirstOpen, "(")
12683      << FixItHint::CreateInsertion(FirstClose, ")");
12684
12685  // Second note suggests (!x) < y
12686  SourceLocation SecondOpen = LHS.get()->getBeginLoc();
12687  SourceLocation SecondClose = LHS.get()->getEndLoc();
12688  SecondClose = S.getLocForEndOfToken(SecondClose);
12689  if (SecondClose.isInvalid())
12690    SecondOpen = SourceLocation();
12691  S.Diag(UO->getOperatorLoc(), diag::note_logical_not_silence_with_parens)
12692      << FixItHint::CreateInsertion(SecondOpen, "(")
12693      << FixItHint::CreateInsertion(SecondClose, ")");
12694}
12695
12696// Returns true if E refers to a non-weak array.
12697static bool checkForArray(const Expr *E) {
12698  const ValueDecl *D = nullptr;
12699  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
12700    D = DR->getDecl();
12701  } else if (const MemberExpr *Mem = dyn_cast<MemberExpr>(E)) {
12702    if (Mem->isImplicitAccess())
12703      D = Mem->getMemberDecl();
12704  }
12705  if (!D)
12706    return false;
12707  return D->getType()->isArrayType() && !D->isWeak();
12708}
12709
12710/// Diagnose some forms of syntactically-obvious tautological comparison.
12711static void diagnoseTautologicalComparison(Sema &S, SourceLocation Loc,
12712                                           Expr *LHS, Expr *RHS,
12713                                           BinaryOperatorKind Opc) {
12714  Expr *LHSStripped = LHS->IgnoreParenImpCasts();
12715  Expr *RHSStripped = RHS->IgnoreParenImpCasts();
12716
12717  QualType LHSType = LHS->getType();
12718  QualType RHSType = RHS->getType();
12719  if (LHSType->hasFloatingRepresentation() ||
12720      (LHSType->isBlockPointerType() && !BinaryOperator::isEqualityOp(Opc)) ||
12721      S.inTemplateInstantiation())
12722    return;
12723
12724  // WebAssembly Tables cannot be compared, therefore shouldn't emit
12725  // Tautological diagnostics.
12726  if (LHSType->isWebAssemblyTableType() || RHSType->isWebAssemblyTableType())
12727    return;
12728
12729  // Comparisons between two array types are ill-formed for operator<=>, so
12730  // we shouldn't emit any additional warnings about it.
12731  if (Opc == BO_Cmp && LHSType->isArrayType() && RHSType->isArrayType())
12732    return;
12733
12734  // For non-floating point types, check for self-comparisons of the form
12735  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
12736  // often indicate logic errors in the program.
12737  //
12738  // NOTE: Don't warn about comparison expressions resulting from macro
12739  // expansion. Also don't warn about comparisons which are only self
12740  // comparisons within a template instantiation. The warnings should catch
12741  // obvious cases in the definition of the template anyways. The idea is to
12742  // warn when the typed comparison operator will always evaluate to the same
12743  // result.
12744
12745  // Used for indexing into %select in warn_comparison_always
12746  enum {
12747    AlwaysConstant,
12748    AlwaysTrue,
12749    AlwaysFalse,
12750    AlwaysEqual, // std::strong_ordering::equal from operator<=>
12751  };
12752
12753  // C++2a [depr.array.comp]:
12754  //   Equality and relational comparisons ([expr.eq], [expr.rel]) between two
12755  //   operands of array type are deprecated.
12756  if (S.getLangOpts().CPlusPlus20 && LHSStripped->getType()->isArrayType() &&
12757      RHSStripped->getType()->isArrayType()) {
12758    S.Diag(Loc, diag::warn_depr_array_comparison)
12759        << LHS->getSourceRange() << RHS->getSourceRange()
12760        << LHSStripped->getType() << RHSStripped->getType();
12761    // Carry on to produce the tautological comparison warning, if this
12762    // expression is potentially-evaluated, we can resolve the array to a
12763    // non-weak declaration, and so on.
12764  }
12765
12766  if (!LHS->getBeginLoc().isMacroID() && !RHS->getBeginLoc().isMacroID()) {
12767    if (Expr::isSameComparisonOperand(LHS, RHS)) {
12768      unsigned Result;
12769      switch (Opc) {
12770      case BO_EQ:
12771      case BO_LE:
12772      case BO_GE:
12773        Result = AlwaysTrue;
12774        break;
12775      case BO_NE:
12776      case BO_LT:
12777      case BO_GT:
12778        Result = AlwaysFalse;
12779        break;
12780      case BO_Cmp:
12781        Result = AlwaysEqual;
12782        break;
12783      default:
12784        Result = AlwaysConstant;
12785        break;
12786      }
12787      S.DiagRuntimeBehavior(Loc, nullptr,
12788                            S.PDiag(diag::warn_comparison_always)
12789                                << 0 /*self-comparison*/
12790                                << Result);
12791    } else if (checkForArray(LHSStripped) && checkForArray(RHSStripped)) {
12792      // What is it always going to evaluate to?
12793      unsigned Result;
12794      switch (Opc) {
12795      case BO_EQ: // e.g. array1 == array2
12796        Result = AlwaysFalse;
12797        break;
12798      case BO_NE: // e.g. array1 != array2
12799        Result = AlwaysTrue;
12800        break;
12801      default: // e.g. array1 <= array2
12802        // The best we can say is 'a constant'
12803        Result = AlwaysConstant;
12804        break;
12805      }
12806      S.DiagRuntimeBehavior(Loc, nullptr,
12807                            S.PDiag(diag::warn_comparison_always)
12808                                << 1 /*array comparison*/
12809                                << Result);
12810    }
12811  }
12812
12813  if (isa<CastExpr>(LHSStripped))
12814    LHSStripped = LHSStripped->IgnoreParenCasts();
12815  if (isa<CastExpr>(RHSStripped))
12816    RHSStripped = RHSStripped->IgnoreParenCasts();
12817
12818  // Warn about comparisons against a string constant (unless the other
12819  // operand is null); the user probably wants string comparison function.
12820  Expr *LiteralString = nullptr;
12821  Expr *LiteralStringStripped = nullptr;
12822  if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
12823      !RHSStripped->isNullPointerConstant(S.Context,
12824                                          Expr::NPC_ValueDependentIsNull)) {
12825    LiteralString = LHS;
12826    LiteralStringStripped = LHSStripped;
12827  } else if ((isa<StringLiteral>(RHSStripped) ||
12828              isa<ObjCEncodeExpr>(RHSStripped)) &&
12829             !LHSStripped->isNullPointerConstant(S.Context,
12830                                          Expr::NPC_ValueDependentIsNull)) {
12831    LiteralString = RHS;
12832    LiteralStringStripped = RHSStripped;
12833  }
12834
12835  if (LiteralString) {
12836    S.DiagRuntimeBehavior(Loc, nullptr,
12837                          S.PDiag(diag::warn_stringcompare)
12838                              << isa<ObjCEncodeExpr>(LiteralStringStripped)
12839                              << LiteralString->getSourceRange());
12840  }
12841}
12842
12843static ImplicitConversionKind castKindToImplicitConversionKind(CastKind CK) {
12844  switch (CK) {
12845  default: {
12846#ifndef NDEBUG
12847    llvm::errs() << "unhandled cast kind: " << CastExpr::getCastKindName(CK)
12848                 << "\n";
12849#endif
12850    llvm_unreachable("unhandled cast kind");
12851  }
12852  case CK_UserDefinedConversion:
12853    return ICK_Identity;
12854  case CK_LValueToRValue:
12855    return ICK_Lvalue_To_Rvalue;
12856  case CK_ArrayToPointerDecay:
12857    return ICK_Array_To_Pointer;
12858  case CK_FunctionToPointerDecay:
12859    return ICK_Function_To_Pointer;
12860  case CK_IntegralCast:
12861    return ICK_Integral_Conversion;
12862  case CK_FloatingCast:
12863    return ICK_Floating_Conversion;
12864  case CK_IntegralToFloating:
12865  case CK_FloatingToIntegral:
12866    return ICK_Floating_Integral;
12867  case CK_IntegralComplexCast:
12868  case CK_FloatingComplexCast:
12869  case CK_FloatingComplexToIntegralComplex:
12870  case CK_IntegralComplexToFloatingComplex:
12871    return ICK_Complex_Conversion;
12872  case CK_FloatingComplexToReal:
12873  case CK_FloatingRealToComplex:
12874  case CK_IntegralComplexToReal:
12875  case CK_IntegralRealToComplex:
12876    return ICK_Complex_Real;
12877  }
12878}
12879
12880static bool checkThreeWayNarrowingConversion(Sema &S, QualType ToType, Expr *E,
12881                                             QualType FromType,
12882                                             SourceLocation Loc) {
12883  // Check for a narrowing implicit conversion.
12884  StandardConversionSequence SCS;
12885  SCS.setAsIdentityConversion();
12886  SCS.setToType(0, FromType);
12887  SCS.setToType(1, ToType);
12888  if (const auto *ICE = dyn_cast<ImplicitCastExpr>(E))
12889    SCS.Second = castKindToImplicitConversionKind(ICE->getCastKind());
12890
12891  APValue PreNarrowingValue;
12892  QualType PreNarrowingType;
12893  switch (SCS.getNarrowingKind(S.Context, E, PreNarrowingValue,
12894                               PreNarrowingType,
12895                               /*IgnoreFloatToIntegralConversion*/ true)) {
12896  case NK_Dependent_Narrowing:
12897    // Implicit conversion to a narrower type, but the expression is
12898    // value-dependent so we can't tell whether it's actually narrowing.
12899  case NK_Not_Narrowing:
12900    return false;
12901
12902  case NK_Constant_Narrowing:
12903    // Implicit conversion to a narrower type, and the value is not a constant
12904    // expression.
12905    S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing)
12906        << /*Constant*/ 1
12907        << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << ToType;
12908    return true;
12909
12910  case NK_Variable_Narrowing:
12911    // Implicit conversion to a narrower type, and the value is not a constant
12912    // expression.
12913  case NK_Type_Narrowing:
12914    S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing)
12915        << /*Constant*/ 0 << FromType << ToType;
12916    // TODO: It's not a constant expression, but what if the user intended it
12917    // to be? Can we produce notes to help them figure out why it isn't?
12918    return true;
12919  }
12920  llvm_unreachable("unhandled case in switch");
12921}
12922
12923static QualType checkArithmeticOrEnumeralThreeWayCompare(Sema &S,
12924                                                         ExprResult &LHS,
12925                                                         ExprResult &RHS,
12926                                                         SourceLocation Loc) {
12927  QualType LHSType = LHS.get()->getType();
12928  QualType RHSType = RHS.get()->getType();
12929  // Dig out the original argument type and expression before implicit casts
12930  // were applied. These are the types/expressions we need to check the
12931  // [expr.spaceship] requirements against.
12932  ExprResult LHSStripped = LHS.get()->IgnoreParenImpCasts();
12933  ExprResult RHSStripped = RHS.get()->IgnoreParenImpCasts();
12934  QualType LHSStrippedType = LHSStripped.get()->getType();
12935  QualType RHSStrippedType = RHSStripped.get()->getType();
12936
12937  // C++2a [expr.spaceship]p3: If one of the operands is of type bool and the
12938  // other is not, the program is ill-formed.
12939  if (LHSStrippedType->isBooleanType() != RHSStrippedType->isBooleanType()) {
12940    S.InvalidOperands(Loc, LHSStripped, RHSStripped);
12941    return QualType();
12942  }
12943
12944  // FIXME: Consider combining this with checkEnumArithmeticConversions.
12945  int NumEnumArgs = (int)LHSStrippedType->isEnumeralType() +
12946                    RHSStrippedType->isEnumeralType();
12947  if (NumEnumArgs == 1) {
12948    bool LHSIsEnum = LHSStrippedType->isEnumeralType();
12949    QualType OtherTy = LHSIsEnum ? RHSStrippedType : LHSStrippedType;
12950    if (OtherTy->hasFloatingRepresentation()) {
12951      S.InvalidOperands(Loc, LHSStripped, RHSStripped);
12952      return QualType();
12953    }
12954  }
12955  if (NumEnumArgs == 2) {
12956    // C++2a [expr.spaceship]p5: If both operands have the same enumeration
12957    // type E, the operator yields the result of converting the operands
12958    // to the underlying type of E and applying <=> to the converted operands.
12959    if (!S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType)) {
12960      S.InvalidOperands(Loc, LHS, RHS);
12961      return QualType();
12962    }
12963    QualType IntType =
12964        LHSStrippedType->castAs<EnumType>()->getDecl()->getIntegerType();
12965    assert(IntType->isArithmeticType());
12966
12967    // We can't use `CK_IntegralCast` when the underlying type is 'bool', so we
12968    // promote the boolean type, and all other promotable integer types, to
12969    // avoid this.
12970    if (S.Context.isPromotableIntegerType(IntType))
12971      IntType = S.Context.getPromotedIntegerType(IntType);
12972
12973    LHS = S.ImpCastExprToType(LHS.get(), IntType, CK_IntegralCast);
12974    RHS = S.ImpCastExprToType(RHS.get(), IntType, CK_IntegralCast);
12975    LHSType = RHSType = IntType;
12976  }
12977
12978  // C++2a [expr.spaceship]p4: If both operands have arithmetic types, the
12979  // usual arithmetic conversions are applied to the operands.
12980  QualType Type =
12981      S.UsualArithmeticConversions(LHS, RHS, Loc, Sema::ACK_Comparison);
12982  if (LHS.isInvalid() || RHS.isInvalid())
12983    return QualType();
12984  if (Type.isNull())
12985    return S.InvalidOperands(Loc, LHS, RHS);
12986
12987  std::optional<ComparisonCategoryType> CCT =
12988      getComparisonCategoryForBuiltinCmp(Type);
12989  if (!CCT)
12990    return S.InvalidOperands(Loc, LHS, RHS);
12991
12992  bool HasNarrowing = checkThreeWayNarrowingConversion(
12993      S, Type, LHS.get(), LHSType, LHS.get()->getBeginLoc());
12994  HasNarrowing |= checkThreeWayNarrowingConversion(S, Type, RHS.get(), RHSType,
12995                                                   RHS.get()->getBeginLoc());
12996  if (HasNarrowing)
12997    return QualType();
12998
12999  assert(!Type.isNull() && "composite type for <=> has not been set");
13000
13001  return S.CheckComparisonCategoryType(
13002      *CCT, Loc, Sema::ComparisonCategoryUsage::OperatorInExpression);
13003}
13004
13005static QualType checkArithmeticOrEnumeralCompare(Sema &S, ExprResult &LHS,
13006                                                 ExprResult &RHS,
13007                                                 SourceLocation Loc,
13008                                                 BinaryOperatorKind Opc) {
13009  if (Opc == BO_Cmp)
13010    return checkArithmeticOrEnumeralThreeWayCompare(S, LHS, RHS, Loc);
13011
13012  // C99 6.5.8p3 / C99 6.5.9p4
13013  QualType Type =
13014      S.UsualArithmeticConversions(LHS, RHS, Loc, Sema::ACK_Comparison);
13015  if (LHS.isInvalid() || RHS.isInvalid())
13016    return QualType();
13017  if (Type.isNull())
13018    return S.InvalidOperands(Loc, LHS, RHS);
13019  assert(Type->isArithmeticType() || Type->isEnumeralType());
13020
13021  if (Type->isAnyComplexType() && BinaryOperator::isRelationalOp(Opc))
13022    return S.InvalidOperands(Loc, LHS, RHS);
13023
13024  // Check for comparisons of floating point operands using != and ==.
13025  if (Type->hasFloatingRepresentation())
13026    S.CheckFloatComparison(Loc, LHS.get(), RHS.get(), Opc);
13027
13028  // The result of comparisons is 'bool' in C++, 'int' in C.
13029  return S.Context.getLogicalOperationType();
13030}
13031
13032void Sema::CheckPtrComparisonWithNullChar(ExprResult &E, ExprResult &NullE) {
13033  if (!NullE.get()->getType()->isAnyPointerType())
13034    return;
13035  int NullValue = PP.isMacroDefined("NULL") ? 0 : 1;
13036  if (!E.get()->getType()->isAnyPointerType() &&
13037      E.get()->isNullPointerConstant(Context,
13038                                     Expr::NPC_ValueDependentIsNotNull) ==
13039        Expr::NPCK_ZeroExpression) {
13040    if (const auto *CL = dyn_cast<CharacterLiteral>(E.get())) {
13041      if (CL->getValue() == 0)
13042        Diag(E.get()->getExprLoc(), diag::warn_pointer_compare)
13043            << NullValue
13044            << FixItHint::CreateReplacement(E.get()->getExprLoc(),
13045                                            NullValue ? "NULL" : "(void *)0");
13046    } else if (const auto *CE = dyn_cast<CStyleCastExpr>(E.get())) {
13047        TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
13048        QualType T = Context.getCanonicalType(TI->getType()).getUnqualifiedType();
13049        if (T == Context.CharTy)
13050          Diag(E.get()->getExprLoc(), diag::warn_pointer_compare)
13051              << NullValue
13052              << FixItHint::CreateReplacement(E.get()->getExprLoc(),
13053                                              NullValue ? "NULL" : "(void *)0");
13054      }
13055  }
13056}
13057
13058// C99 6.5.8, C++ [expr.rel]
13059QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS,
13060                                    SourceLocation Loc,
13061                                    BinaryOperatorKind Opc) {
13062  bool IsRelational = BinaryOperator::isRelationalOp(Opc);
13063  bool IsThreeWay = Opc == BO_Cmp;
13064  bool IsOrdered = IsRelational || IsThreeWay;
13065  auto IsAnyPointerType = [](ExprResult E) {
13066    QualType Ty = E.get()->getType();
13067    return Ty->isPointerType() || Ty->isMemberPointerType();
13068  };
13069
13070  // C++2a [expr.spaceship]p6: If at least one of the operands is of pointer
13071  // type, array-to-pointer, ..., conversions are performed on both operands to
13072  // bring them to their composite type.
13073  // Otherwise, all comparisons expect an rvalue, so convert to rvalue before
13074  // any type-related checks.
13075  if (!IsThreeWay || IsAnyPointerType(LHS) || IsAnyPointerType(RHS)) {
13076    LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
13077    if (LHS.isInvalid())
13078      return QualType();
13079    RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
13080    if (RHS.isInvalid())
13081      return QualType();
13082  } else {
13083    LHS = DefaultLvalueConversion(LHS.get());
13084    if (LHS.isInvalid())
13085      return QualType();
13086    RHS = DefaultLvalueConversion(RHS.get());
13087    if (RHS.isInvalid())
13088      return QualType();
13089  }
13090
13091  checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/true);
13092  if (!getLangOpts().CPlusPlus && BinaryOperator::isEqualityOp(Opc)) {
13093    CheckPtrComparisonWithNullChar(LHS, RHS);
13094    CheckPtrComparisonWithNullChar(RHS, LHS);
13095  }
13096
13097  // Handle vector comparisons separately.
13098  if (LHS.get()->getType()->isVectorType() ||
13099      RHS.get()->getType()->isVectorType())
13100    return CheckVectorCompareOperands(LHS, RHS, Loc, Opc);
13101
13102  if (LHS.get()->getType()->isSveVLSBuiltinType() ||
13103      RHS.get()->getType()->isSveVLSBuiltinType())
13104    return CheckSizelessVectorCompareOperands(LHS, RHS, Loc, Opc);
13105
13106  diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc);
13107  diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
13108
13109  QualType LHSType = LHS.get()->getType();
13110  QualType RHSType = RHS.get()->getType();
13111  if ((LHSType->isArithmeticType() || LHSType->isEnumeralType()) &&
13112      (RHSType->isArithmeticType() || RHSType->isEnumeralType()))
13113    return checkArithmeticOrEnumeralCompare(*this, LHS, RHS, Loc, Opc);
13114
13115  if ((LHSType->isPointerType() &&
13116       LHSType->getPointeeType().isWebAssemblyReferenceType()) ||
13117      (RHSType->isPointerType() &&
13118       RHSType->getPointeeType().isWebAssemblyReferenceType()))
13119    return InvalidOperands(Loc, LHS, RHS);
13120
13121  const Expr::NullPointerConstantKind LHSNullKind =
13122      LHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
13123  const Expr::NullPointerConstantKind RHSNullKind =
13124      RHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
13125  bool LHSIsNull = LHSNullKind != Expr::NPCK_NotNull;
13126  bool RHSIsNull = RHSNullKind != Expr::NPCK_NotNull;
13127
13128  auto computeResultTy = [&]() {
13129    if (Opc != BO_Cmp)
13130      return Context.getLogicalOperationType();
13131    assert(getLangOpts().CPlusPlus);
13132    assert(Context.hasSameType(LHS.get()->getType(), RHS.get()->getType()));
13133
13134    QualType CompositeTy = LHS.get()->getType();
13135    assert(!CompositeTy->isReferenceType());
13136
13137    std::optional<ComparisonCategoryType> CCT =
13138        getComparisonCategoryForBuiltinCmp(CompositeTy);
13139    if (!CCT)
13140      return InvalidOperands(Loc, LHS, RHS);
13141
13142    if (CompositeTy->isPointerType() && LHSIsNull != RHSIsNull) {
13143      // P0946R0: Comparisons between a null pointer constant and an object
13144      // pointer result in std::strong_equality, which is ill-formed under
13145      // P1959R0.
13146      Diag(Loc, diag::err_typecheck_three_way_comparison_of_pointer_and_zero)
13147          << (LHSIsNull ? LHS.get()->getSourceRange()
13148                        : RHS.get()->getSourceRange());
13149      return QualType();
13150    }
13151
13152    return CheckComparisonCategoryType(
13153        *CCT, Loc, ComparisonCategoryUsage::OperatorInExpression);
13154  };
13155
13156  if (!IsOrdered && LHSIsNull != RHSIsNull) {
13157    bool IsEquality = Opc == BO_EQ;
13158    if (RHSIsNull)
13159      DiagnoseAlwaysNonNullPointer(LHS.get(), RHSNullKind, IsEquality,
13160                                   RHS.get()->getSourceRange());
13161    else
13162      DiagnoseAlwaysNonNullPointer(RHS.get(), LHSNullKind, IsEquality,
13163                                   LHS.get()->getSourceRange());
13164  }
13165
13166  if (IsOrdered && LHSType->isFunctionPointerType() &&
13167      RHSType->isFunctionPointerType()) {
13168    // Valid unless a relational comparison of function pointers
13169    bool IsError = Opc == BO_Cmp;
13170    auto DiagID =
13171        IsError ? diag::err_typecheck_ordered_comparison_of_function_pointers
13172        : getLangOpts().CPlusPlus
13173            ? diag::warn_typecheck_ordered_comparison_of_function_pointers
13174            : diag::ext_typecheck_ordered_comparison_of_function_pointers;
13175    Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange()
13176                      << RHS.get()->getSourceRange();
13177    if (IsError)
13178      return QualType();
13179  }
13180
13181  if ((LHSType->isIntegerType() && !LHSIsNull) ||
13182      (RHSType->isIntegerType() && !RHSIsNull)) {
13183    // Skip normal pointer conversion checks in this case; we have better
13184    // diagnostics for this below.
13185  } else if (getLangOpts().CPlusPlus) {
13186    // Equality comparison of a function pointer to a void pointer is invalid,
13187    // but we allow it as an extension.
13188    // FIXME: If we really want to allow this, should it be part of composite
13189    // pointer type computation so it works in conditionals too?
13190    if (!IsOrdered &&
13191        ((LHSType->isFunctionPointerType() && RHSType->isVoidPointerType()) ||
13192         (RHSType->isFunctionPointerType() && LHSType->isVoidPointerType()))) {
13193      // This is a gcc extension compatibility comparison.
13194      // In a SFINAE context, we treat this as a hard error to maintain
13195      // conformance with the C++ standard.
13196      diagnoseFunctionPointerToVoidComparison(
13197          *this, Loc, LHS, RHS, /*isError*/ (bool)isSFINAEContext());
13198
13199      if (isSFINAEContext())
13200        return QualType();
13201
13202      RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
13203      return computeResultTy();
13204    }
13205
13206    // C++ [expr.eq]p2:
13207    //   If at least one operand is a pointer [...] bring them to their
13208    //   composite pointer type.
13209    // C++ [expr.spaceship]p6
13210    //  If at least one of the operands is of pointer type, [...] bring them
13211    //  to their composite pointer type.
13212    // C++ [expr.rel]p2:
13213    //   If both operands are pointers, [...] bring them to their composite
13214    //   pointer type.
13215    // For <=>, the only valid non-pointer types are arrays and functions, and
13216    // we already decayed those, so this is really the same as the relational
13217    // comparison rule.
13218    if ((int)LHSType->isPointerType() + (int)RHSType->isPointerType() >=
13219            (IsOrdered ? 2 : 1) &&
13220        (!LangOpts.ObjCAutoRefCount || !(LHSType->isObjCObjectPointerType() ||
13221                                         RHSType->isObjCObjectPointerType()))) {
13222      if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
13223        return QualType();
13224      return computeResultTy();
13225    }
13226  } else if (LHSType->isPointerType() &&
13227             RHSType->isPointerType()) { // C99 6.5.8p2
13228    // All of the following pointer-related warnings are GCC extensions, except
13229    // when handling null pointer constants.
13230    QualType LCanPointeeTy =
13231      LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
13232    QualType RCanPointeeTy =
13233      RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
13234
13235    // C99 6.5.9p2 and C99 6.5.8p2
13236    if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
13237                                   RCanPointeeTy.getUnqualifiedType())) {
13238      if (IsRelational) {
13239        // Pointers both need to point to complete or incomplete types
13240        if ((LCanPointeeTy->isIncompleteType() !=
13241             RCanPointeeTy->isIncompleteType()) &&
13242            !getLangOpts().C11) {
13243          Diag(Loc, diag::ext_typecheck_compare_complete_incomplete_pointers)
13244              << LHS.get()->getSourceRange() << RHS.get()->getSourceRange()
13245              << LHSType << RHSType << LCanPointeeTy->isIncompleteType()
13246              << RCanPointeeTy->isIncompleteType();
13247        }
13248      }
13249    } else if (!IsRelational &&
13250               (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
13251      // Valid unless comparison between non-null pointer and function pointer
13252      if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
13253          && !LHSIsNull && !RHSIsNull)
13254        diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS,
13255                                                /*isError*/false);
13256    } else {
13257      // Invalid
13258      diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false);
13259    }
13260    if (LCanPointeeTy != RCanPointeeTy) {
13261      // Treat NULL constant as a special case in OpenCL.
13262      if (getLangOpts().OpenCL && !LHSIsNull && !RHSIsNull) {
13263        if (!LCanPointeeTy.isAddressSpaceOverlapping(RCanPointeeTy)) {
13264          Diag(Loc,
13265               diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
13266              << LHSType << RHSType << 0 /* comparison */
13267              << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
13268        }
13269      }
13270      LangAS AddrSpaceL = LCanPointeeTy.getAddressSpace();
13271      LangAS AddrSpaceR = RCanPointeeTy.getAddressSpace();
13272      CastKind Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion
13273                                               : CK_BitCast;
13274      if (LHSIsNull && !RHSIsNull)
13275        LHS = ImpCastExprToType(LHS.get(), RHSType, Kind);
13276      else
13277        RHS = ImpCastExprToType(RHS.get(), LHSType, Kind);
13278    }
13279    return computeResultTy();
13280  }
13281
13282
13283  // C++ [expr.eq]p4:
13284  //   Two operands of type std::nullptr_t or one operand of type
13285  //   std::nullptr_t and the other a null pointer constant compare
13286  //   equal.
13287  // C23 6.5.9p5:
13288  //   If both operands have type nullptr_t or one operand has type nullptr_t
13289  //   and the other is a null pointer constant, they compare equal if the
13290  //   former is a null pointer.
13291  if (!IsOrdered && LHSIsNull && RHSIsNull) {
13292    if (LHSType->isNullPtrType()) {
13293      RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
13294      return computeResultTy();
13295    }
13296    if (RHSType->isNullPtrType()) {
13297      LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
13298      return computeResultTy();
13299    }
13300  }
13301
13302  if (!getLangOpts().CPlusPlus && !IsOrdered && (LHSIsNull || RHSIsNull)) {
13303    // C23 6.5.9p6:
13304    //   Otherwise, at least one operand is a pointer. If one is a pointer and
13305    //   the other is a null pointer constant or has type nullptr_t, they
13306    //   compare equal
13307    if (LHSIsNull && RHSType->isPointerType()) {
13308      LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
13309      return computeResultTy();
13310    }
13311    if (RHSIsNull && LHSType->isPointerType()) {
13312      RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
13313      return computeResultTy();
13314    }
13315  }
13316
13317  // Comparison of Objective-C pointers and block pointers against nullptr_t.
13318  // These aren't covered by the composite pointer type rules.
13319  if (!IsOrdered && RHSType->isNullPtrType() &&
13320      (LHSType->isObjCObjectPointerType() || LHSType->isBlockPointerType())) {
13321    RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
13322    return computeResultTy();
13323  }
13324  if (!IsOrdered && LHSType->isNullPtrType() &&
13325      (RHSType->isObjCObjectPointerType() || RHSType->isBlockPointerType())) {
13326    LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
13327    return computeResultTy();
13328  }
13329
13330  if (getLangOpts().CPlusPlus) {
13331    if (IsRelational &&
13332        ((LHSType->isNullPtrType() && RHSType->isPointerType()) ||
13333         (RHSType->isNullPtrType() && LHSType->isPointerType()))) {
13334      // HACK: Relational comparison of nullptr_t against a pointer type is
13335      // invalid per DR583, but we allow it within std::less<> and friends,
13336      // since otherwise common uses of it break.
13337      // FIXME: Consider removing this hack once LWG fixes std::less<> and
13338      // friends to have std::nullptr_t overload candidates.
13339      DeclContext *DC = CurContext;
13340      if (isa<FunctionDecl>(DC))
13341        DC = DC->getParent();
13342      if (auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
13343        if (CTSD->isInStdNamespace() &&
13344            llvm::StringSwitch<bool>(CTSD->getName())
13345                .Cases("less", "less_equal", "greater", "greater_equal", true)
13346                .Default(false)) {
13347          if (RHSType->isNullPtrType())
13348            RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
13349          else
13350            LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
13351          return computeResultTy();
13352        }
13353      }
13354    }
13355
13356    // C++ [expr.eq]p2:
13357    //   If at least one operand is a pointer to member, [...] bring them to
13358    //   their composite pointer type.
13359    if (!IsOrdered &&
13360        (LHSType->isMemberPointerType() || RHSType->isMemberPointerType())) {
13361      if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
13362        return QualType();
13363      else
13364        return computeResultTy();
13365    }
13366  }
13367
13368  // Handle block pointer types.
13369  if (!IsOrdered && LHSType->isBlockPointerType() &&
13370      RHSType->isBlockPointerType()) {
13371    QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType();
13372    QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType();
13373
13374    if (!LHSIsNull && !RHSIsNull &&
13375        !Context.typesAreCompatible(lpointee, rpointee)) {
13376      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
13377        << LHSType << RHSType << LHS.get()->getSourceRange()
13378        << RHS.get()->getSourceRange();
13379    }
13380    RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
13381    return computeResultTy();
13382  }
13383
13384  // Allow block pointers to be compared with null pointer constants.
13385  if (!IsOrdered
13386      && ((LHSType->isBlockPointerType() && RHSType->isPointerType())
13387          || (LHSType->isPointerType() && RHSType->isBlockPointerType()))) {
13388    if (!LHSIsNull && !RHSIsNull) {
13389      if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>()
13390             ->getPointeeType()->isVoidType())
13391            || (LHSType->isPointerType() && LHSType->castAs<PointerType>()
13392                ->getPointeeType()->isVoidType())))
13393        Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
13394          << LHSType << RHSType << LHS.get()->getSourceRange()
13395          << RHS.get()->getSourceRange();
13396    }
13397    if (LHSIsNull && !RHSIsNull)
13398      LHS = ImpCastExprToType(LHS.get(), RHSType,
13399                              RHSType->isPointerType() ? CK_BitCast
13400                                : CK_AnyPointerToBlockPointerCast);
13401    else
13402      RHS = ImpCastExprToType(RHS.get(), LHSType,
13403                              LHSType->isPointerType() ? CK_BitCast
13404                                : CK_AnyPointerToBlockPointerCast);
13405    return computeResultTy();
13406  }
13407
13408  if (LHSType->isObjCObjectPointerType() ||
13409      RHSType->isObjCObjectPointerType()) {
13410    const PointerType *LPT = LHSType->getAs<PointerType>();
13411    const PointerType *RPT = RHSType->getAs<PointerType>();
13412    if (LPT || RPT) {
13413      bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
13414      bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
13415
13416      if (!LPtrToVoid && !RPtrToVoid &&
13417          !Context.typesAreCompatible(LHSType, RHSType)) {
13418        diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
13419                                          /*isError*/false);
13420      }
13421      // FIXME: If LPtrToVoid, we should presumably convert the LHS rather than
13422      // the RHS, but we have test coverage for this behavior.
13423      // FIXME: Consider using convertPointersToCompositeType in C++.
13424      if (LHSIsNull && !RHSIsNull) {
13425        Expr *E = LHS.get();
13426        if (getLangOpts().ObjCAutoRefCount)
13427          CheckObjCConversion(SourceRange(), RHSType, E,
13428                              CCK_ImplicitConversion);
13429        LHS = ImpCastExprToType(E, RHSType,
13430                                RPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
13431      }
13432      else {
13433        Expr *E = RHS.get();
13434        if (getLangOpts().ObjCAutoRefCount)
13435          CheckObjCConversion(SourceRange(), LHSType, E, CCK_ImplicitConversion,
13436                              /*Diagnose=*/true,
13437                              /*DiagnoseCFAudited=*/false, Opc);
13438        RHS = ImpCastExprToType(E, LHSType,
13439                                LPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
13440      }
13441      return computeResultTy();
13442    }
13443    if (LHSType->isObjCObjectPointerType() &&
13444        RHSType->isObjCObjectPointerType()) {
13445      if (!Context.areComparableObjCPointerTypes(LHSType, RHSType))
13446        diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
13447                                          /*isError*/false);
13448      if (isObjCObjectLiteral(LHS) || isObjCObjectLiteral(RHS))
13449        diagnoseObjCLiteralComparison(*this, Loc, LHS, RHS, Opc);
13450
13451      if (LHSIsNull && !RHSIsNull)
13452        LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
13453      else
13454        RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
13455      return computeResultTy();
13456    }
13457
13458    if (!IsOrdered && LHSType->isBlockPointerType() &&
13459        RHSType->isBlockCompatibleObjCPointerType(Context)) {
13460      LHS = ImpCastExprToType(LHS.get(), RHSType,
13461                              CK_BlockPointerToObjCPointerCast);
13462      return computeResultTy();
13463    } else if (!IsOrdered &&
13464               LHSType->isBlockCompatibleObjCPointerType(Context) &&
13465               RHSType->isBlockPointerType()) {
13466      RHS = ImpCastExprToType(RHS.get(), LHSType,
13467                              CK_BlockPointerToObjCPointerCast);
13468      return computeResultTy();
13469    }
13470  }
13471  if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) ||
13472      (LHSType->isIntegerType() && RHSType->isAnyPointerType())) {
13473    unsigned DiagID = 0;
13474    bool isError = false;
13475    if (LangOpts.DebuggerSupport) {
13476      // Under a debugger, allow the comparison of pointers to integers,
13477      // since users tend to want to compare addresses.
13478    } else if ((LHSIsNull && LHSType->isIntegerType()) ||
13479               (RHSIsNull && RHSType->isIntegerType())) {
13480      if (IsOrdered) {
13481        isError = getLangOpts().CPlusPlus;
13482        DiagID =
13483          isError ? diag::err_typecheck_ordered_comparison_of_pointer_and_zero
13484                  : diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
13485      }
13486    } else if (getLangOpts().CPlusPlus) {
13487      DiagID = diag::err_typecheck_comparison_of_pointer_integer;
13488      isError = true;
13489    } else if (IsOrdered)
13490      DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
13491    else
13492      DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
13493
13494    if (DiagID) {
13495      Diag(Loc, DiagID)
13496        << LHSType << RHSType << LHS.get()->getSourceRange()
13497        << RHS.get()->getSourceRange();
13498      if (isError)
13499        return QualType();
13500    }
13501
13502    if (LHSType->isIntegerType())
13503      LHS = ImpCastExprToType(LHS.get(), RHSType,
13504                        LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
13505    else
13506      RHS = ImpCastExprToType(RHS.get(), LHSType,
13507                        RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
13508    return computeResultTy();
13509  }
13510
13511  // Handle block pointers.
13512  if (!IsOrdered && RHSIsNull
13513      && LHSType->isBlockPointerType() && RHSType->isIntegerType()) {
13514    RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
13515    return computeResultTy();
13516  }
13517  if (!IsOrdered && LHSIsNull
13518      && LHSType->isIntegerType() && RHSType->isBlockPointerType()) {
13519    LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
13520    return computeResultTy();
13521  }
13522
13523  if (getLangOpts().getOpenCLCompatibleVersion() >= 200) {
13524    if (LHSType->isClkEventT() && RHSType->isClkEventT()) {
13525      return computeResultTy();
13526    }
13527
13528    if (LHSType->isQueueT() && RHSType->isQueueT()) {
13529      return computeResultTy();
13530    }
13531
13532    if (LHSIsNull && RHSType->isQueueT()) {
13533      LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
13534      return computeResultTy();
13535    }
13536
13537    if (LHSType->isQueueT() && RHSIsNull) {
13538      RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
13539      return computeResultTy();
13540    }
13541  }
13542
13543  return InvalidOperands(Loc, LHS, RHS);
13544}
13545
13546// Return a signed ext_vector_type that is of identical size and number of
13547// elements. For floating point vectors, return an integer type of identical
13548// size and number of elements. In the non ext_vector_type case, search from
13549// the largest type to the smallest type to avoid cases where long long == long,
13550// where long gets picked over long long.
13551QualType Sema::GetSignedVectorType(QualType V) {
13552  const VectorType *VTy = V->castAs<VectorType>();
13553  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
13554
13555  if (isa<ExtVectorType>(VTy)) {
13556    if (VTy->isExtVectorBoolType())
13557      return Context.getExtVectorType(Context.BoolTy, VTy->getNumElements());
13558    if (TypeSize == Context.getTypeSize(Context.CharTy))
13559      return Context.getExtVectorType(Context.CharTy, VTy->getNumElements());
13560    if (TypeSize == Context.getTypeSize(Context.ShortTy))
13561      return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements());
13562    if (TypeSize == Context.getTypeSize(Context.IntTy))
13563      return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
13564    if (TypeSize == Context.getTypeSize(Context.Int128Ty))
13565      return Context.getExtVectorType(Context.Int128Ty, VTy->getNumElements());
13566    if (TypeSize == Context.getTypeSize(Context.LongTy))
13567      return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
13568    assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
13569           "Unhandled vector element size in vector compare");
13570    return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
13571  }
13572
13573  if (TypeSize == Context.getTypeSize(Context.Int128Ty))
13574    return Context.getVectorType(Context.Int128Ty, VTy->getNumElements(),
13575                                 VectorKind::Generic);
13576  if (TypeSize == Context.getTypeSize(Context.LongLongTy))
13577    return Context.getVectorType(Context.LongLongTy, VTy->getNumElements(),
13578                                 VectorKind::Generic);
13579  if (TypeSize == Context.getTypeSize(Context.LongTy))
13580    return Context.getVectorType(Context.LongTy, VTy->getNumElements(),
13581                                 VectorKind::Generic);
13582  if (TypeSize == Context.getTypeSize(Context.IntTy))
13583    return Context.getVectorType(Context.IntTy, VTy->getNumElements(),
13584                                 VectorKind::Generic);
13585  if (TypeSize == Context.getTypeSize(Context.ShortTy))
13586    return Context.getVectorType(Context.ShortTy, VTy->getNumElements(),
13587                                 VectorKind::Generic);
13588  assert(TypeSize == Context.getTypeSize(Context.CharTy) &&
13589         "Unhandled vector element size in vector compare");
13590  return Context.getVectorType(Context.CharTy, VTy->getNumElements(),
13591                               VectorKind::Generic);
13592}
13593
13594QualType Sema::GetSignedSizelessVectorType(QualType V) {
13595  const BuiltinType *VTy = V->castAs<BuiltinType>();
13596  assert(VTy->isSizelessBuiltinType() && "expected sizeless type");
13597
13598  const QualType ETy = V->getSveEltType(Context);
13599  const auto TypeSize = Context.getTypeSize(ETy);
13600
13601  const QualType IntTy = Context.getIntTypeForBitwidth(TypeSize, true);
13602  const llvm::ElementCount VecSize = Context.getBuiltinVectorTypeInfo(VTy).EC;
13603  return Context.getScalableVectorType(IntTy, VecSize.getKnownMinValue());
13604}
13605
13606/// CheckVectorCompareOperands - vector comparisons are a clang extension that
13607/// operates on extended vector types.  Instead of producing an IntTy result,
13608/// like a scalar comparison, a vector comparison produces a vector of integer
13609/// types.
13610QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
13611                                          SourceLocation Loc,
13612                                          BinaryOperatorKind Opc) {
13613  if (Opc == BO_Cmp) {
13614    Diag(Loc, diag::err_three_way_vector_comparison);
13615    return QualType();
13616  }
13617
13618  // Check to make sure we're operating on vectors of the same type and width,
13619  // Allowing one side to be a scalar of element type.
13620  QualType vType =
13621      CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/ false,
13622                          /*AllowBothBool*/ true,
13623                          /*AllowBoolConversions*/ getLangOpts().ZVector,
13624                          /*AllowBooleanOperation*/ true,
13625                          /*ReportInvalid*/ true);
13626  if (vType.isNull())
13627    return vType;
13628
13629  QualType LHSType = LHS.get()->getType();
13630
13631  // Determine the return type of a vector compare. By default clang will return
13632  // a scalar for all vector compares except vector bool and vector pixel.
13633  // With the gcc compiler we will always return a vector type and with the xl
13634  // compiler we will always return a scalar type. This switch allows choosing
13635  // which behavior is prefered.
13636  if (getLangOpts().AltiVec) {
13637    switch (getLangOpts().getAltivecSrcCompat()) {
13638    case LangOptions::AltivecSrcCompatKind::Mixed:
13639      // If AltiVec, the comparison results in a numeric type, i.e.
13640      // bool for C++, int for C
13641      if (vType->castAs<VectorType>()->getVectorKind() ==
13642          VectorKind::AltiVecVector)
13643        return Context.getLogicalOperationType();
13644      else
13645        Diag(Loc, diag::warn_deprecated_altivec_src_compat);
13646      break;
13647    case LangOptions::AltivecSrcCompatKind::GCC:
13648      // For GCC we always return the vector type.
13649      break;
13650    case LangOptions::AltivecSrcCompatKind::XL:
13651      return Context.getLogicalOperationType();
13652      break;
13653    }
13654  }
13655
13656  // For non-floating point types, check for self-comparisons of the form
13657  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
13658  // often indicate logic errors in the program.
13659  diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
13660
13661  // Check for comparisons of floating point operands using != and ==.
13662  if (LHSType->hasFloatingRepresentation()) {
13663    assert(RHS.get()->getType()->hasFloatingRepresentation());
13664    CheckFloatComparison(Loc, LHS.get(), RHS.get(), Opc);
13665  }
13666
13667  // Return a signed type for the vector.
13668  return GetSignedVectorType(vType);
13669}
13670
13671QualType Sema::CheckSizelessVectorCompareOperands(ExprResult &LHS,
13672                                                  ExprResult &RHS,
13673                                                  SourceLocation Loc,
13674                                                  BinaryOperatorKind Opc) {
13675  if (Opc == BO_Cmp) {
13676    Diag(Loc, diag::err_three_way_vector_comparison);
13677    return QualType();
13678  }
13679
13680  // Check to make sure we're operating on vectors of the same type and width,
13681  // Allowing one side to be a scalar of element type.
13682  QualType vType = CheckSizelessVectorOperands(
13683      LHS, RHS, Loc, /*isCompAssign*/ false, ACK_Comparison);
13684
13685  if (vType.isNull())
13686    return vType;
13687
13688  QualType LHSType = LHS.get()->getType();
13689
13690  // For non-floating point types, check for self-comparisons of the form
13691  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
13692  // often indicate logic errors in the program.
13693  diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
13694
13695  // Check for comparisons of floating point operands using != and ==.
13696  if (LHSType->hasFloatingRepresentation()) {
13697    assert(RHS.get()->getType()->hasFloatingRepresentation());
13698    CheckFloatComparison(Loc, LHS.get(), RHS.get(), Opc);
13699  }
13700
13701  const BuiltinType *LHSBuiltinTy = LHSType->getAs<BuiltinType>();
13702  const BuiltinType *RHSBuiltinTy = RHS.get()->getType()->getAs<BuiltinType>();
13703
13704  if (LHSBuiltinTy && RHSBuiltinTy && LHSBuiltinTy->isSVEBool() &&
13705      RHSBuiltinTy->isSVEBool())
13706    return LHSType;
13707
13708  // Return a signed type for the vector.
13709  return GetSignedSizelessVectorType(vType);
13710}
13711
13712static void diagnoseXorMisusedAsPow(Sema &S, const ExprResult &XorLHS,
13713                                    const ExprResult &XorRHS,
13714                                    const SourceLocation Loc) {
13715  // Do not diagnose macros.
13716  if (Loc.isMacroID())
13717    return;
13718
13719  // Do not diagnose if both LHS and RHS are macros.
13720  if (XorLHS.get()->getExprLoc().isMacroID() &&
13721      XorRHS.get()->getExprLoc().isMacroID())
13722    return;
13723
13724  bool Negative = false;
13725  bool ExplicitPlus = false;
13726  const auto *LHSInt = dyn_cast<IntegerLiteral>(XorLHS.get());
13727  const auto *RHSInt = dyn_cast<IntegerLiteral>(XorRHS.get());
13728
13729  if (!LHSInt)
13730    return;
13731  if (!RHSInt) {
13732    // Check negative literals.
13733    if (const auto *UO = dyn_cast<UnaryOperator>(XorRHS.get())) {
13734      UnaryOperatorKind Opc = UO->getOpcode();
13735      if (Opc != UO_Minus && Opc != UO_Plus)
13736        return;
13737      RHSInt = dyn_cast<IntegerLiteral>(UO->getSubExpr());
13738      if (!RHSInt)
13739        return;
13740      Negative = (Opc == UO_Minus);
13741      ExplicitPlus = !Negative;
13742    } else {
13743      return;
13744    }
13745  }
13746
13747  const llvm::APInt &LeftSideValue = LHSInt->getValue();
13748  llvm::APInt RightSideValue = RHSInt->getValue();
13749  if (LeftSideValue != 2 && LeftSideValue != 10)
13750    return;
13751
13752  if (LeftSideValue.getBitWidth() != RightSideValue.getBitWidth())
13753    return;
13754
13755  CharSourceRange ExprRange = CharSourceRange::getCharRange(
13756      LHSInt->getBeginLoc(), S.getLocForEndOfToken(RHSInt->getLocation()));
13757  llvm::StringRef ExprStr =
13758      Lexer::getSourceText(ExprRange, S.getSourceManager(), S.getLangOpts());
13759
13760  CharSourceRange XorRange =
13761      CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc));
13762  llvm::StringRef XorStr =
13763      Lexer::getSourceText(XorRange, S.getSourceManager(), S.getLangOpts());
13764  // Do not diagnose if xor keyword/macro is used.
13765  if (XorStr == "xor")
13766    return;
13767
13768  std::string LHSStr = std::string(Lexer::getSourceText(
13769      CharSourceRange::getTokenRange(LHSInt->getSourceRange()),
13770      S.getSourceManager(), S.getLangOpts()));
13771  std::string RHSStr = std::string(Lexer::getSourceText(
13772      CharSourceRange::getTokenRange(RHSInt->getSourceRange()),
13773      S.getSourceManager(), S.getLangOpts()));
13774
13775  if (Negative) {
13776    RightSideValue = -RightSideValue;
13777    RHSStr = "-" + RHSStr;
13778  } else if (ExplicitPlus) {
13779    RHSStr = "+" + RHSStr;
13780  }
13781
13782  StringRef LHSStrRef = LHSStr;
13783  StringRef RHSStrRef = RHSStr;
13784  // Do not diagnose literals with digit separators, binary, hexadecimal, octal
13785  // literals.
13786  if (LHSStrRef.starts_with("0b") || LHSStrRef.starts_with("0B") ||
13787      RHSStrRef.starts_with("0b") || RHSStrRef.starts_with("0B") ||
13788      LHSStrRef.starts_with("0x") || LHSStrRef.starts_with("0X") ||
13789      RHSStrRef.starts_with("0x") || RHSStrRef.starts_with("0X") ||
13790      (LHSStrRef.size() > 1 && LHSStrRef.starts_with("0")) ||
13791      (RHSStrRef.size() > 1 && RHSStrRef.starts_with("0")) ||
13792      LHSStrRef.contains('\'') || RHSStrRef.contains('\''))
13793    return;
13794
13795  bool SuggestXor =
13796      S.getLangOpts().CPlusPlus || S.getPreprocessor().isMacroDefined("xor");
13797  const llvm::APInt XorValue = LeftSideValue ^ RightSideValue;
13798  int64_t RightSideIntValue = RightSideValue.getSExtValue();
13799  if (LeftSideValue == 2 && RightSideIntValue >= 0) {
13800    std::string SuggestedExpr = "1 << " + RHSStr;
13801    bool Overflow = false;
13802    llvm::APInt One = (LeftSideValue - 1);
13803    llvm::APInt PowValue = One.sshl_ov(RightSideValue, Overflow);
13804    if (Overflow) {
13805      if (RightSideIntValue < 64)
13806        S.Diag(Loc, diag::warn_xor_used_as_pow_base)
13807            << ExprStr << toString(XorValue, 10, true) << ("1LL << " + RHSStr)
13808            << FixItHint::CreateReplacement(ExprRange, "1LL << " + RHSStr);
13809      else if (RightSideIntValue == 64)
13810        S.Diag(Loc, diag::warn_xor_used_as_pow)
13811            << ExprStr << toString(XorValue, 10, true);
13812      else
13813        return;
13814    } else {
13815      S.Diag(Loc, diag::warn_xor_used_as_pow_base_extra)
13816          << ExprStr << toString(XorValue, 10, true) << SuggestedExpr
13817          << toString(PowValue, 10, true)
13818          << FixItHint::CreateReplacement(
13819                 ExprRange, (RightSideIntValue == 0) ? "1" : SuggestedExpr);
13820    }
13821
13822    S.Diag(Loc, diag::note_xor_used_as_pow_silence)
13823        << ("0x2 ^ " + RHSStr) << SuggestXor;
13824  } else if (LeftSideValue == 10) {
13825    std::string SuggestedValue = "1e" + std::to_string(RightSideIntValue);
13826    S.Diag(Loc, diag::warn_xor_used_as_pow_base)
13827        << ExprStr << toString(XorValue, 10, true) << SuggestedValue
13828        << FixItHint::CreateReplacement(ExprRange, SuggestedValue);
13829    S.Diag(Loc, diag::note_xor_used_as_pow_silence)
13830        << ("0xA ^ " + RHSStr) << SuggestXor;
13831  }
13832}
13833
13834QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
13835                                          SourceLocation Loc) {
13836  // Ensure that either both operands are of the same vector type, or
13837  // one operand is of a vector type and the other is of its element type.
13838  QualType vType = CheckVectorOperands(LHS, RHS, Loc, false,
13839                                       /*AllowBothBool*/ true,
13840                                       /*AllowBoolConversions*/ false,
13841                                       /*AllowBooleanOperation*/ false,
13842                                       /*ReportInvalid*/ false);
13843  if (vType.isNull())
13844    return InvalidOperands(Loc, LHS, RHS);
13845  if (getLangOpts().OpenCL &&
13846      getLangOpts().getOpenCLCompatibleVersion() < 120 &&
13847      vType->hasFloatingRepresentation())
13848    return InvalidOperands(Loc, LHS, RHS);
13849  // FIXME: The check for C++ here is for GCC compatibility. GCC rejects the
13850  //        usage of the logical operators && and || with vectors in C. This
13851  //        check could be notionally dropped.
13852  if (!getLangOpts().CPlusPlus &&
13853      !(isa<ExtVectorType>(vType->getAs<VectorType>())))
13854    return InvalidLogicalVectorOperands(Loc, LHS, RHS);
13855
13856  return GetSignedVectorType(LHS.get()->getType());
13857}
13858
13859QualType Sema::CheckMatrixElementwiseOperands(ExprResult &LHS, ExprResult &RHS,
13860                                              SourceLocation Loc,
13861                                              bool IsCompAssign) {
13862  if (!IsCompAssign) {
13863    LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
13864    if (LHS.isInvalid())
13865      return QualType();
13866  }
13867  RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
13868  if (RHS.isInvalid())
13869    return QualType();
13870
13871  // For conversion purposes, we ignore any qualifiers.
13872  // For example, "const float" and "float" are equivalent.
13873  QualType LHSType = LHS.get()->getType().getUnqualifiedType();
13874  QualType RHSType = RHS.get()->getType().getUnqualifiedType();
13875
13876  const MatrixType *LHSMatType = LHSType->getAs<MatrixType>();
13877  const MatrixType *RHSMatType = RHSType->getAs<MatrixType>();
13878  assert((LHSMatType || RHSMatType) && "At least one operand must be a matrix");
13879
13880  if (Context.hasSameType(LHSType, RHSType))
13881    return Context.getCommonSugaredType(LHSType, RHSType);
13882
13883  // Type conversion may change LHS/RHS. Keep copies to the original results, in
13884  // case we have to return InvalidOperands.
13885  ExprResult OriginalLHS = LHS;
13886  ExprResult OriginalRHS = RHS;
13887  if (LHSMatType && !RHSMatType) {
13888    RHS = tryConvertExprToType(RHS.get(), LHSMatType->getElementType());
13889    if (!RHS.isInvalid())
13890      return LHSType;
13891
13892    return InvalidOperands(Loc, OriginalLHS, OriginalRHS);
13893  }
13894
13895  if (!LHSMatType && RHSMatType) {
13896    LHS = tryConvertExprToType(LHS.get(), RHSMatType->getElementType());
13897    if (!LHS.isInvalid())
13898      return RHSType;
13899    return InvalidOperands(Loc, OriginalLHS, OriginalRHS);
13900  }
13901
13902  return InvalidOperands(Loc, LHS, RHS);
13903}
13904
13905QualType Sema::CheckMatrixMultiplyOperands(ExprResult &LHS, ExprResult &RHS,
13906                                           SourceLocation Loc,
13907                                           bool IsCompAssign) {
13908  if (!IsCompAssign) {
13909    LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
13910    if (LHS.isInvalid())
13911      return QualType();
13912  }
13913  RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
13914  if (RHS.isInvalid())
13915    return QualType();
13916
13917  auto *LHSMatType = LHS.get()->getType()->getAs<ConstantMatrixType>();
13918  auto *RHSMatType = RHS.get()->getType()->getAs<ConstantMatrixType>();
13919  assert((LHSMatType || RHSMatType) && "At least one operand must be a matrix");
13920
13921  if (LHSMatType && RHSMatType) {
13922    if (LHSMatType->getNumColumns() != RHSMatType->getNumRows())
13923      return InvalidOperands(Loc, LHS, RHS);
13924
13925    if (Context.hasSameType(LHSMatType, RHSMatType))
13926      return Context.getCommonSugaredType(
13927          LHS.get()->getType().getUnqualifiedType(),
13928          RHS.get()->getType().getUnqualifiedType());
13929
13930    QualType LHSELTy = LHSMatType->getElementType(),
13931             RHSELTy = RHSMatType->getElementType();
13932    if (!Context.hasSameType(LHSELTy, RHSELTy))
13933      return InvalidOperands(Loc, LHS, RHS);
13934
13935    return Context.getConstantMatrixType(
13936        Context.getCommonSugaredType(LHSELTy, RHSELTy),
13937        LHSMatType->getNumRows(), RHSMatType->getNumColumns());
13938  }
13939  return CheckMatrixElementwiseOperands(LHS, RHS, Loc, IsCompAssign);
13940}
13941
13942static bool isLegalBoolVectorBinaryOp(BinaryOperatorKind Opc) {
13943  switch (Opc) {
13944  default:
13945    return false;
13946  case BO_And:
13947  case BO_AndAssign:
13948  case BO_Or:
13949  case BO_OrAssign:
13950  case BO_Xor:
13951  case BO_XorAssign:
13952    return true;
13953  }
13954}
13955
13956inline QualType Sema::CheckBitwiseOperands(ExprResult &LHS, ExprResult &RHS,
13957                                           SourceLocation Loc,
13958                                           BinaryOperatorKind Opc) {
13959  checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
13960
13961  bool IsCompAssign =
13962      Opc == BO_AndAssign || Opc == BO_OrAssign || Opc == BO_XorAssign;
13963
13964  bool LegalBoolVecOperator = isLegalBoolVectorBinaryOp(Opc);
13965
13966  if (LHS.get()->getType()->isVectorType() ||
13967      RHS.get()->getType()->isVectorType()) {
13968    if (LHS.get()->getType()->hasIntegerRepresentation() &&
13969        RHS.get()->getType()->hasIntegerRepresentation())
13970      return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
13971                                 /*AllowBothBool*/ true,
13972                                 /*AllowBoolConversions*/ getLangOpts().ZVector,
13973                                 /*AllowBooleanOperation*/ LegalBoolVecOperator,
13974                                 /*ReportInvalid*/ true);
13975    return InvalidOperands(Loc, LHS, RHS);
13976  }
13977
13978  if (LHS.get()->getType()->isSveVLSBuiltinType() ||
13979      RHS.get()->getType()->isSveVLSBuiltinType()) {
13980    if (LHS.get()->getType()->hasIntegerRepresentation() &&
13981        RHS.get()->getType()->hasIntegerRepresentation())
13982      return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
13983                                         ACK_BitwiseOp);
13984    return InvalidOperands(Loc, LHS, RHS);
13985  }
13986
13987  if (LHS.get()->getType()->isSveVLSBuiltinType() ||
13988      RHS.get()->getType()->isSveVLSBuiltinType()) {
13989    if (LHS.get()->getType()->hasIntegerRepresentation() &&
13990        RHS.get()->getType()->hasIntegerRepresentation())
13991      return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
13992                                         ACK_BitwiseOp);
13993    return InvalidOperands(Loc, LHS, RHS);
13994  }
13995
13996  if (Opc == BO_And)
13997    diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc);
13998
13999  if (LHS.get()->getType()->hasFloatingRepresentation() ||
14000      RHS.get()->getType()->hasFloatingRepresentation())
14001    return InvalidOperands(Loc, LHS, RHS);
14002
14003  ExprResult LHSResult = LHS, RHSResult = RHS;
14004  QualType compType = UsualArithmeticConversions(
14005      LHSResult, RHSResult, Loc, IsCompAssign ? ACK_CompAssign : ACK_BitwiseOp);
14006  if (LHSResult.isInvalid() || RHSResult.isInvalid())
14007    return QualType();
14008  LHS = LHSResult.get();
14009  RHS = RHSResult.get();
14010
14011  if (Opc == BO_Xor)
14012    diagnoseXorMisusedAsPow(*this, LHS, RHS, Loc);
14013
14014  if (!compType.isNull() && compType->isIntegralOrUnscopedEnumerationType())
14015    return compType;
14016  return InvalidOperands(Loc, LHS, RHS);
14017}
14018
14019// C99 6.5.[13,14]
14020inline QualType Sema::CheckLogicalOperands(ExprResult &LHS, ExprResult &RHS,
14021                                           SourceLocation Loc,
14022                                           BinaryOperatorKind Opc) {
14023  // Check vector operands differently.
14024  if (LHS.get()->getType()->isVectorType() ||
14025      RHS.get()->getType()->isVectorType())
14026    return CheckVectorLogicalOperands(LHS, RHS, Loc);
14027
14028  bool EnumConstantInBoolContext = false;
14029  for (const ExprResult &HS : {LHS, RHS}) {
14030    if (const auto *DREHS = dyn_cast<DeclRefExpr>(HS.get())) {
14031      const auto *ECDHS = dyn_cast<EnumConstantDecl>(DREHS->getDecl());
14032      if (ECDHS && ECDHS->getInitVal() != 0 && ECDHS->getInitVal() != 1)
14033        EnumConstantInBoolContext = true;
14034    }
14035  }
14036
14037  if (EnumConstantInBoolContext)
14038    Diag(Loc, diag::warn_enum_constant_in_bool_context);
14039
14040  // WebAssembly tables can't be used with logical operators.
14041  QualType LHSTy = LHS.get()->getType();
14042  QualType RHSTy = RHS.get()->getType();
14043  const auto *LHSATy = dyn_cast<ArrayType>(LHSTy);
14044  const auto *RHSATy = dyn_cast<ArrayType>(RHSTy);
14045  if ((LHSATy && LHSATy->getElementType().isWebAssemblyReferenceType()) ||
14046      (RHSATy && RHSATy->getElementType().isWebAssemblyReferenceType())) {
14047    return InvalidOperands(Loc, LHS, RHS);
14048  }
14049
14050  // Diagnose cases where the user write a logical and/or but probably meant a
14051  // bitwise one.  We do this when the LHS is a non-bool integer and the RHS
14052  // is a constant.
14053  if (!EnumConstantInBoolContext && LHS.get()->getType()->isIntegerType() &&
14054      !LHS.get()->getType()->isBooleanType() &&
14055      RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() &&
14056      // Don't warn in macros or template instantiations.
14057      !Loc.isMacroID() && !inTemplateInstantiation()) {
14058    // If the RHS can be constant folded, and if it constant folds to something
14059    // that isn't 0 or 1 (which indicate a potential logical operation that
14060    // happened to fold to true/false) then warn.
14061    // Parens on the RHS are ignored.
14062    Expr::EvalResult EVResult;
14063    if (RHS.get()->EvaluateAsInt(EVResult, Context)) {
14064      llvm::APSInt Result = EVResult.Val.getInt();
14065      if ((getLangOpts().CPlusPlus && !RHS.get()->getType()->isBooleanType() &&
14066           !RHS.get()->getExprLoc().isMacroID()) ||
14067          (Result != 0 && Result != 1)) {
14068        Diag(Loc, diag::warn_logical_instead_of_bitwise)
14069            << RHS.get()->getSourceRange() << (Opc == BO_LAnd ? "&&" : "||");
14070        // Suggest replacing the logical operator with the bitwise version
14071        Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator)
14072            << (Opc == BO_LAnd ? "&" : "|")
14073            << FixItHint::CreateReplacement(
14074                   SourceRange(Loc, getLocForEndOfToken(Loc)),
14075                   Opc == BO_LAnd ? "&" : "|");
14076        if (Opc == BO_LAnd)
14077          // Suggest replacing "Foo() && kNonZero" with "Foo()"
14078          Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant)
14079              << FixItHint::CreateRemoval(
14080                     SourceRange(getLocForEndOfToken(LHS.get()->getEndLoc()),
14081                                 RHS.get()->getEndLoc()));
14082      }
14083    }
14084  }
14085
14086  if (!Context.getLangOpts().CPlusPlus) {
14087    // OpenCL v1.1 s6.3.g: The logical operators and (&&), or (||) do
14088    // not operate on the built-in scalar and vector float types.
14089    if (Context.getLangOpts().OpenCL &&
14090        Context.getLangOpts().OpenCLVersion < 120) {
14091      if (LHS.get()->getType()->isFloatingType() ||
14092          RHS.get()->getType()->isFloatingType())
14093        return InvalidOperands(Loc, LHS, RHS);
14094    }
14095
14096    LHS = UsualUnaryConversions(LHS.get());
14097    if (LHS.isInvalid())
14098      return QualType();
14099
14100    RHS = UsualUnaryConversions(RHS.get());
14101    if (RHS.isInvalid())
14102      return QualType();
14103
14104    if (!LHS.get()->getType()->isScalarType() ||
14105        !RHS.get()->getType()->isScalarType())
14106      return InvalidOperands(Loc, LHS, RHS);
14107
14108    return Context.IntTy;
14109  }
14110
14111  // The following is safe because we only use this method for
14112  // non-overloadable operands.
14113
14114  // C++ [expr.log.and]p1
14115  // C++ [expr.log.or]p1
14116  // The operands are both contextually converted to type bool.
14117  ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get());
14118  if (LHSRes.isInvalid())
14119    return InvalidOperands(Loc, LHS, RHS);
14120  LHS = LHSRes;
14121
14122  ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get());
14123  if (RHSRes.isInvalid())
14124    return InvalidOperands(Loc, LHS, RHS);
14125  RHS = RHSRes;
14126
14127  // C++ [expr.log.and]p2
14128  // C++ [expr.log.or]p2
14129  // The result is a bool.
14130  return Context.BoolTy;
14131}
14132
14133static bool IsReadonlyMessage(Expr *E, Sema &S) {
14134  const MemberExpr *ME = dyn_cast<MemberExpr>(E);
14135  if (!ME) return false;
14136  if (!isa<FieldDecl>(ME->getMemberDecl())) return false;
14137  ObjCMessageExpr *Base = dyn_cast<ObjCMessageExpr>(
14138      ME->getBase()->IgnoreImplicit()->IgnoreParenImpCasts());
14139  if (!Base) return false;
14140  return Base->getMethodDecl() != nullptr;
14141}
14142
14143/// Is the given expression (which must be 'const') a reference to a
14144/// variable which was originally non-const, but which has become
14145/// 'const' due to being captured within a block?
14146enum NonConstCaptureKind { NCCK_None, NCCK_Block, NCCK_Lambda };
14147static NonConstCaptureKind isReferenceToNonConstCapture(Sema &S, Expr *E) {
14148  assert(E->isLValue() && E->getType().isConstQualified());
14149  E = E->IgnoreParens();
14150
14151  // Must be a reference to a declaration from an enclosing scope.
14152  DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
14153  if (!DRE) return NCCK_None;
14154  if (!DRE->refersToEnclosingVariableOrCapture()) return NCCK_None;
14155
14156  // The declaration must be a variable which is not declared 'const'.
14157  VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
14158  if (!var) return NCCK_None;
14159  if (var->getType().isConstQualified()) return NCCK_None;
14160  assert(var->hasLocalStorage() && "capture added 'const' to non-local?");
14161
14162  // Decide whether the first capture was for a block or a lambda.
14163  DeclContext *DC = S.CurContext, *Prev = nullptr;
14164  // Decide whether the first capture was for a block or a lambda.
14165  while (DC) {
14166    // For init-capture, it is possible that the variable belongs to the
14167    // template pattern of the current context.
14168    if (auto *FD = dyn_cast<FunctionDecl>(DC))
14169      if (var->isInitCapture() &&
14170          FD->getTemplateInstantiationPattern() == var->getDeclContext())
14171        break;
14172    if (DC == var->getDeclContext())
14173      break;
14174    Prev = DC;
14175    DC = DC->getParent();
14176  }
14177  // Unless we have an init-capture, we've gone one step too far.
14178  if (!var->isInitCapture())
14179    DC = Prev;
14180  return (isa<BlockDecl>(DC) ? NCCK_Block : NCCK_Lambda);
14181}
14182
14183static bool IsTypeModifiable(QualType Ty, bool IsDereference) {
14184  Ty = Ty.getNonReferenceType();
14185  if (IsDereference && Ty->isPointerType())
14186    Ty = Ty->getPointeeType();
14187  return !Ty.isConstQualified();
14188}
14189
14190// Update err_typecheck_assign_const and note_typecheck_assign_const
14191// when this enum is changed.
14192enum {
14193  ConstFunction,
14194  ConstVariable,
14195  ConstMember,
14196  ConstMethod,
14197  NestedConstMember,
14198  ConstUnknown,  // Keep as last element
14199};
14200
14201/// Emit the "read-only variable not assignable" error and print notes to give
14202/// more information about why the variable is not assignable, such as pointing
14203/// to the declaration of a const variable, showing that a method is const, or
14204/// that the function is returning a const reference.
14205static void DiagnoseConstAssignment(Sema &S, const Expr *E,
14206                                    SourceLocation Loc) {
14207  SourceRange ExprRange = E->getSourceRange();
14208
14209  // Only emit one error on the first const found.  All other consts will emit
14210  // a note to the error.
14211  bool DiagnosticEmitted = false;
14212
14213  // Track if the current expression is the result of a dereference, and if the
14214  // next checked expression is the result of a dereference.
14215  bool IsDereference = false;
14216  bool NextIsDereference = false;
14217
14218  // Loop to process MemberExpr chains.
14219  while (true) {
14220    IsDereference = NextIsDereference;
14221
14222    E = E->IgnoreImplicit()->IgnoreParenImpCasts();
14223    if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
14224      NextIsDereference = ME->isArrow();
14225      const ValueDecl *VD = ME->getMemberDecl();
14226      if (const FieldDecl *Field = dyn_cast<FieldDecl>(VD)) {
14227        // Mutable fields can be modified even if the class is const.
14228        if (Field->isMutable()) {
14229          assert(DiagnosticEmitted && "Expected diagnostic not emitted.");
14230          break;
14231        }
14232
14233        if (!IsTypeModifiable(Field->getType(), IsDereference)) {
14234          if (!DiagnosticEmitted) {
14235            S.Diag(Loc, diag::err_typecheck_assign_const)
14236                << ExprRange << ConstMember << false /*static*/ << Field
14237                << Field->getType();
14238            DiagnosticEmitted = true;
14239          }
14240          S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
14241              << ConstMember << false /*static*/ << Field << Field->getType()
14242              << Field->getSourceRange();
14243        }
14244        E = ME->getBase();
14245        continue;
14246      } else if (const VarDecl *VDecl = dyn_cast<VarDecl>(VD)) {
14247        if (VDecl->getType().isConstQualified()) {
14248          if (!DiagnosticEmitted) {
14249            S.Diag(Loc, diag::err_typecheck_assign_const)
14250                << ExprRange << ConstMember << true /*static*/ << VDecl
14251                << VDecl->getType();
14252            DiagnosticEmitted = true;
14253          }
14254          S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
14255              << ConstMember << true /*static*/ << VDecl << VDecl->getType()
14256              << VDecl->getSourceRange();
14257        }
14258        // Static fields do not inherit constness from parents.
14259        break;
14260      }
14261      break; // End MemberExpr
14262    } else if (const ArraySubscriptExpr *ASE =
14263                   dyn_cast<ArraySubscriptExpr>(E)) {
14264      E = ASE->getBase()->IgnoreParenImpCasts();
14265      continue;
14266    } else if (const ExtVectorElementExpr *EVE =
14267                   dyn_cast<ExtVectorElementExpr>(E)) {
14268      E = EVE->getBase()->IgnoreParenImpCasts();
14269      continue;
14270    }
14271    break;
14272  }
14273
14274  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
14275    // Function calls
14276    const FunctionDecl *FD = CE->getDirectCallee();
14277    if (FD && !IsTypeModifiable(FD->getReturnType(), IsDereference)) {
14278      if (!DiagnosticEmitted) {
14279        S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
14280                                                      << ConstFunction << FD;
14281        DiagnosticEmitted = true;
14282      }
14283      S.Diag(FD->getReturnTypeSourceRange().getBegin(),
14284             diag::note_typecheck_assign_const)
14285          << ConstFunction << FD << FD->getReturnType()
14286          << FD->getReturnTypeSourceRange();
14287    }
14288  } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
14289    // Point to variable declaration.
14290    if (const ValueDecl *VD = DRE->getDecl()) {
14291      if (!IsTypeModifiable(VD->getType(), IsDereference)) {
14292        if (!DiagnosticEmitted) {
14293          S.Diag(Loc, diag::err_typecheck_assign_const)
14294              << ExprRange << ConstVariable << VD << VD->getType();
14295          DiagnosticEmitted = true;
14296        }
14297        S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
14298            << ConstVariable << VD << VD->getType() << VD->getSourceRange();
14299      }
14300    }
14301  } else if (isa<CXXThisExpr>(E)) {
14302    if (const DeclContext *DC = S.getFunctionLevelDeclContext()) {
14303      if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
14304        if (MD->isConst()) {
14305          if (!DiagnosticEmitted) {
14306            S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
14307                                                          << ConstMethod << MD;
14308            DiagnosticEmitted = true;
14309          }
14310          S.Diag(MD->getLocation(), diag::note_typecheck_assign_const)
14311              << ConstMethod << MD << MD->getSourceRange();
14312        }
14313      }
14314    }
14315  }
14316
14317  if (DiagnosticEmitted)
14318    return;
14319
14320  // Can't determine a more specific message, so display the generic error.
14321  S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange << ConstUnknown;
14322}
14323
14324enum OriginalExprKind {
14325  OEK_Variable,
14326  OEK_Member,
14327  OEK_LValue
14328};
14329
14330static void DiagnoseRecursiveConstFields(Sema &S, const ValueDecl *VD,
14331                                         const RecordType *Ty,
14332                                         SourceLocation Loc, SourceRange Range,
14333                                         OriginalExprKind OEK,
14334                                         bool &DiagnosticEmitted) {
14335  std::vector<const RecordType *> RecordTypeList;
14336  RecordTypeList.push_back(Ty);
14337  unsigned NextToCheckIndex = 0;
14338  // We walk the record hierarchy breadth-first to ensure that we print
14339  // diagnostics in field nesting order.
14340  while (RecordTypeList.size() > NextToCheckIndex) {
14341    bool IsNested = NextToCheckIndex > 0;
14342    for (const FieldDecl *Field :
14343         RecordTypeList[NextToCheckIndex]->getDecl()->fields()) {
14344      // First, check every field for constness.
14345      QualType FieldTy = Field->getType();
14346      if (FieldTy.isConstQualified()) {
14347        if (!DiagnosticEmitted) {
14348          S.Diag(Loc, diag::err_typecheck_assign_const)
14349              << Range << NestedConstMember << OEK << VD
14350              << IsNested << Field;
14351          DiagnosticEmitted = true;
14352        }
14353        S.Diag(Field->getLocation(), diag::note_typecheck_assign_const)
14354            << NestedConstMember << IsNested << Field
14355            << FieldTy << Field->getSourceRange();
14356      }
14357
14358      // Then we append it to the list to check next in order.
14359      FieldTy = FieldTy.getCanonicalType();
14360      if (const auto *FieldRecTy = FieldTy->getAs<RecordType>()) {
14361        if (!llvm::is_contained(RecordTypeList, FieldRecTy))
14362          RecordTypeList.push_back(FieldRecTy);
14363      }
14364    }
14365    ++NextToCheckIndex;
14366  }
14367}
14368
14369/// Emit an error for the case where a record we are trying to assign to has a
14370/// const-qualified field somewhere in its hierarchy.
14371static void DiagnoseRecursiveConstFields(Sema &S, const Expr *E,
14372                                         SourceLocation Loc) {
14373  QualType Ty = E->getType();
14374  assert(Ty->isRecordType() && "lvalue was not record?");
14375  SourceRange Range = E->getSourceRange();
14376  const RecordType *RTy = Ty.getCanonicalType()->getAs<RecordType>();
14377  bool DiagEmitted = false;
14378
14379  if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
14380    DiagnoseRecursiveConstFields(S, ME->getMemberDecl(), RTy, Loc,
14381            Range, OEK_Member, DiagEmitted);
14382  else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
14383    DiagnoseRecursiveConstFields(S, DRE->getDecl(), RTy, Loc,
14384            Range, OEK_Variable, DiagEmitted);
14385  else
14386    DiagnoseRecursiveConstFields(S, nullptr, RTy, Loc,
14387            Range, OEK_LValue, DiagEmitted);
14388  if (!DiagEmitted)
14389    DiagnoseConstAssignment(S, E, Loc);
14390}
14391
14392/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
14393/// emit an error and return true.  If so, return false.
14394static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
14395  assert(!E->hasPlaceholderType(BuiltinType::PseudoObject));
14396
14397  S.CheckShadowingDeclModification(E, Loc);
14398
14399  SourceLocation OrigLoc = Loc;
14400  Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
14401                                                              &Loc);
14402  if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
14403    IsLV = Expr::MLV_InvalidMessageExpression;
14404  if (IsLV == Expr::MLV_Valid)
14405    return false;
14406
14407  unsigned DiagID = 0;
14408  bool NeedType = false;
14409  switch (IsLV) { // C99 6.5.16p2
14410  case Expr::MLV_ConstQualified:
14411    // Use a specialized diagnostic when we're assigning to an object
14412    // from an enclosing function or block.
14413    if (NonConstCaptureKind NCCK = isReferenceToNonConstCapture(S, E)) {
14414      if (NCCK == NCCK_Block)
14415        DiagID = diag::err_block_decl_ref_not_modifiable_lvalue;
14416      else
14417        DiagID = diag::err_lambda_decl_ref_not_modifiable_lvalue;
14418      break;
14419    }
14420
14421    // In ARC, use some specialized diagnostics for occasions where we
14422    // infer 'const'.  These are always pseudo-strong variables.
14423    if (S.getLangOpts().ObjCAutoRefCount) {
14424      DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
14425      if (declRef && isa<VarDecl>(declRef->getDecl())) {
14426        VarDecl *var = cast<VarDecl>(declRef->getDecl());
14427
14428        // Use the normal diagnostic if it's pseudo-__strong but the
14429        // user actually wrote 'const'.
14430        if (var->isARCPseudoStrong() &&
14431            (!var->getTypeSourceInfo() ||
14432             !var->getTypeSourceInfo()->getType().isConstQualified())) {
14433          // There are three pseudo-strong cases:
14434          //  - self
14435          ObjCMethodDecl *method = S.getCurMethodDecl();
14436          if (method && var == method->getSelfDecl()) {
14437            DiagID = method->isClassMethod()
14438              ? diag::err_typecheck_arc_assign_self_class_method
14439              : diag::err_typecheck_arc_assign_self;
14440
14441          //  - Objective-C externally_retained attribute.
14442          } else if (var->hasAttr<ObjCExternallyRetainedAttr>() ||
14443                     isa<ParmVarDecl>(var)) {
14444            DiagID = diag::err_typecheck_arc_assign_externally_retained;
14445
14446          //  - fast enumeration variables
14447          } else {
14448            DiagID = diag::err_typecheck_arr_assign_enumeration;
14449          }
14450
14451          SourceRange Assign;
14452          if (Loc != OrigLoc)
14453            Assign = SourceRange(OrigLoc, OrigLoc);
14454          S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
14455          // We need to preserve the AST regardless, so migration tool
14456          // can do its job.
14457          return false;
14458        }
14459      }
14460    }
14461
14462    // If none of the special cases above are triggered, then this is a
14463    // simple const assignment.
14464    if (DiagID == 0) {
14465      DiagnoseConstAssignment(S, E, Loc);
14466      return true;
14467    }
14468
14469    break;
14470  case Expr::MLV_ConstAddrSpace:
14471    DiagnoseConstAssignment(S, E, Loc);
14472    return true;
14473  case Expr::MLV_ConstQualifiedField:
14474    DiagnoseRecursiveConstFields(S, E, Loc);
14475    return true;
14476  case Expr::MLV_ArrayType:
14477  case Expr::MLV_ArrayTemporary:
14478    DiagID = diag::err_typecheck_array_not_modifiable_lvalue;
14479    NeedType = true;
14480    break;
14481  case Expr::MLV_NotObjectType:
14482    DiagID = diag::err_typecheck_non_object_not_modifiable_lvalue;
14483    NeedType = true;
14484    break;
14485  case Expr::MLV_LValueCast:
14486    DiagID = diag::err_typecheck_lvalue_casts_not_supported;
14487    break;
14488  case Expr::MLV_Valid:
14489    llvm_unreachable("did not take early return for MLV_Valid");
14490  case Expr::MLV_InvalidExpression:
14491  case Expr::MLV_MemberFunction:
14492  case Expr::MLV_ClassTemporary:
14493    DiagID = diag::err_typecheck_expression_not_modifiable_lvalue;
14494    break;
14495  case Expr::MLV_IncompleteType:
14496  case Expr::MLV_IncompleteVoidType:
14497    return S.RequireCompleteType(Loc, E->getType(),
14498             diag::err_typecheck_incomplete_type_not_modifiable_lvalue, E);
14499  case Expr::MLV_DuplicateVectorComponents:
14500    DiagID = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
14501    break;
14502  case Expr::MLV_NoSetterProperty:
14503    llvm_unreachable("readonly properties should be processed differently");
14504  case Expr::MLV_InvalidMessageExpression:
14505    DiagID = diag::err_readonly_message_assignment;
14506    break;
14507  case Expr::MLV_SubObjCPropertySetting:
14508    DiagID = diag::err_no_subobject_property_setting;
14509    break;
14510  }
14511
14512  SourceRange Assign;
14513  if (Loc != OrigLoc)
14514    Assign = SourceRange(OrigLoc, OrigLoc);
14515  if (NeedType)
14516    S.Diag(Loc, DiagID) << E->getType() << E->getSourceRange() << Assign;
14517  else
14518    S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
14519  return true;
14520}
14521
14522static void CheckIdentityFieldAssignment(Expr *LHSExpr, Expr *RHSExpr,
14523                                         SourceLocation Loc,
14524                                         Sema &Sema) {
14525  if (Sema.inTemplateInstantiation())
14526    return;
14527  if (Sema.isUnevaluatedContext())
14528    return;
14529  if (Loc.isInvalid() || Loc.isMacroID())
14530    return;
14531  if (LHSExpr->getExprLoc().isMacroID() || RHSExpr->getExprLoc().isMacroID())
14532    return;
14533
14534  // C / C++ fields
14535  MemberExpr *ML = dyn_cast<MemberExpr>(LHSExpr);
14536  MemberExpr *MR = dyn_cast<MemberExpr>(RHSExpr);
14537  if (ML && MR) {
14538    if (!(isa<CXXThisExpr>(ML->getBase()) && isa<CXXThisExpr>(MR->getBase())))
14539      return;
14540    const ValueDecl *LHSDecl =
14541        cast<ValueDecl>(ML->getMemberDecl()->getCanonicalDecl());
14542    const ValueDecl *RHSDecl =
14543        cast<ValueDecl>(MR->getMemberDecl()->getCanonicalDecl());
14544    if (LHSDecl != RHSDecl)
14545      return;
14546    if (LHSDecl->getType().isVolatileQualified())
14547      return;
14548    if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
14549      if (RefTy->getPointeeType().isVolatileQualified())
14550        return;
14551
14552    Sema.Diag(Loc, diag::warn_identity_field_assign) << 0;
14553  }
14554
14555  // Objective-C instance variables
14556  ObjCIvarRefExpr *OL = dyn_cast<ObjCIvarRefExpr>(LHSExpr);
14557  ObjCIvarRefExpr *OR = dyn_cast<ObjCIvarRefExpr>(RHSExpr);
14558  if (OL && OR && OL->getDecl() == OR->getDecl()) {
14559    DeclRefExpr *RL = dyn_cast<DeclRefExpr>(OL->getBase()->IgnoreImpCasts());
14560    DeclRefExpr *RR = dyn_cast<DeclRefExpr>(OR->getBase()->IgnoreImpCasts());
14561    if (RL && RR && RL->getDecl() == RR->getDecl())
14562      Sema.Diag(Loc, diag::warn_identity_field_assign) << 1;
14563  }
14564}
14565
14566// C99 6.5.16.1
14567QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS,
14568                                       SourceLocation Loc,
14569                                       QualType CompoundType,
14570                                       BinaryOperatorKind Opc) {
14571  assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject));
14572
14573  // Verify that LHS is a modifiable lvalue, and emit error if not.
14574  if (CheckForModifiableLvalue(LHSExpr, Loc, *this))
14575    return QualType();
14576
14577  QualType LHSType = LHSExpr->getType();
14578  QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() :
14579                                             CompoundType;
14580  // OpenCL v1.2 s6.1.1.1 p2:
14581  // The half data type can only be used to declare a pointer to a buffer that
14582  // contains half values
14583  if (getLangOpts().OpenCL &&
14584      !getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()) &&
14585      LHSType->isHalfType()) {
14586    Diag(Loc, diag::err_opencl_half_load_store) << 1
14587        << LHSType.getUnqualifiedType();
14588    return QualType();
14589  }
14590
14591  // WebAssembly tables can't be used on RHS of an assignment expression.
14592  if (RHSType->isWebAssemblyTableType()) {
14593    Diag(Loc, diag::err_wasm_table_art) << 0;
14594    return QualType();
14595  }
14596
14597  AssignConvertType ConvTy;
14598  if (CompoundType.isNull()) {
14599    Expr *RHSCheck = RHS.get();
14600
14601    CheckIdentityFieldAssignment(LHSExpr, RHSCheck, Loc, *this);
14602
14603    QualType LHSTy(LHSType);
14604    ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
14605    if (RHS.isInvalid())
14606      return QualType();
14607    // Special case of NSObject attributes on c-style pointer types.
14608    if (ConvTy == IncompatiblePointer &&
14609        ((Context.isObjCNSObjectType(LHSType) &&
14610          RHSType->isObjCObjectPointerType()) ||
14611         (Context.isObjCNSObjectType(RHSType) &&
14612          LHSType->isObjCObjectPointerType())))
14613      ConvTy = Compatible;
14614
14615    if (ConvTy == Compatible &&
14616        LHSType->isObjCObjectType())
14617        Diag(Loc, diag::err_objc_object_assignment)
14618          << LHSType;
14619
14620    // If the RHS is a unary plus or minus, check to see if they = and + are
14621    // right next to each other.  If so, the user may have typo'd "x =+ 4"
14622    // instead of "x += 4".
14623    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
14624      RHSCheck = ICE->getSubExpr();
14625    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
14626      if ((UO->getOpcode() == UO_Plus || UO->getOpcode() == UO_Minus) &&
14627          Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
14628          // Only if the two operators are exactly adjacent.
14629          Loc.getLocWithOffset(1) == UO->getOperatorLoc() &&
14630          // And there is a space or other character before the subexpr of the
14631          // unary +/-.  We don't want to warn on "x=-1".
14632          Loc.getLocWithOffset(2) != UO->getSubExpr()->getBeginLoc() &&
14633          UO->getSubExpr()->getBeginLoc().isFileID()) {
14634        Diag(Loc, diag::warn_not_compound_assign)
14635          << (UO->getOpcode() == UO_Plus ? "+" : "-")
14636          << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
14637      }
14638    }
14639
14640    if (ConvTy == Compatible) {
14641      if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong) {
14642        // Warn about retain cycles where a block captures the LHS, but
14643        // not if the LHS is a simple variable into which the block is
14644        // being stored...unless that variable can be captured by reference!
14645        const Expr *InnerLHS = LHSExpr->IgnoreParenCasts();
14646        const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InnerLHS);
14647        if (!DRE || DRE->getDecl()->hasAttr<BlocksAttr>())
14648          checkRetainCycles(LHSExpr, RHS.get());
14649      }
14650
14651      if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong ||
14652          LHSType.isNonWeakInMRRWithObjCWeak(Context)) {
14653        // It is safe to assign a weak reference into a strong variable.
14654        // Although this code can still have problems:
14655        //   id x = self.weakProp;
14656        //   id y = self.weakProp;
14657        // we do not warn to warn spuriously when 'x' and 'y' are on separate
14658        // paths through the function. This should be revisited if
14659        // -Wrepeated-use-of-weak is made flow-sensitive.
14660        // For ObjCWeak only, we do not warn if the assign is to a non-weak
14661        // variable, which will be valid for the current autorelease scope.
14662        if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
14663                             RHS.get()->getBeginLoc()))
14664          getCurFunction()->markSafeWeakUse(RHS.get());
14665
14666      } else if (getLangOpts().ObjCAutoRefCount || getLangOpts().ObjCWeak) {
14667        checkUnsafeExprAssigns(Loc, LHSExpr, RHS.get());
14668      }
14669    }
14670  } else {
14671    // Compound assignment "x += y"
14672    ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
14673  }
14674
14675  if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
14676                               RHS.get(), AA_Assigning))
14677    return QualType();
14678
14679  CheckForNullPointerDereference(*this, LHSExpr);
14680
14681  if (getLangOpts().CPlusPlus20 && LHSType.isVolatileQualified()) {
14682    if (CompoundType.isNull()) {
14683      // C++2a [expr.ass]p5:
14684      //   A simple-assignment whose left operand is of a volatile-qualified
14685      //   type is deprecated unless the assignment is either a discarded-value
14686      //   expression or an unevaluated operand
14687      ExprEvalContexts.back().VolatileAssignmentLHSs.push_back(LHSExpr);
14688    }
14689  }
14690
14691  // C11 6.5.16p3: The type of an assignment expression is the type of the
14692  // left operand would have after lvalue conversion.
14693  // C11 6.3.2.1p2: ...this is called lvalue conversion. If the lvalue has
14694  // qualified type, the value has the unqualified version of the type of the
14695  // lvalue; additionally, if the lvalue has atomic type, the value has the
14696  // non-atomic version of the type of the lvalue.
14697  // C++ 5.17p1: the type of the assignment expression is that of its left
14698  // operand.
14699  return getLangOpts().CPlusPlus ? LHSType : LHSType.getAtomicUnqualifiedType();
14700}
14701
14702// Scenarios to ignore if expression E is:
14703// 1. an explicit cast expression into void
14704// 2. a function call expression that returns void
14705static bool IgnoreCommaOperand(const Expr *E, const ASTContext &Context) {
14706  E = E->IgnoreParens();
14707
14708  if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
14709    if (CE->getCastKind() == CK_ToVoid) {
14710      return true;
14711    }
14712
14713    // static_cast<void> on a dependent type will not show up as CK_ToVoid.
14714    if (CE->getCastKind() == CK_Dependent && E->getType()->isVoidType() &&
14715        CE->getSubExpr()->getType()->isDependentType()) {
14716      return true;
14717    }
14718  }
14719
14720  if (const auto *CE = dyn_cast<CallExpr>(E))
14721    return CE->getCallReturnType(Context)->isVoidType();
14722  return false;
14723}
14724
14725// Look for instances where it is likely the comma operator is confused with
14726// another operator.  There is an explicit list of acceptable expressions for
14727// the left hand side of the comma operator, otherwise emit a warning.
14728void Sema::DiagnoseCommaOperator(const Expr *LHS, SourceLocation Loc) {
14729  // No warnings in macros
14730  if (Loc.isMacroID())
14731    return;
14732
14733  // Don't warn in template instantiations.
14734  if (inTemplateInstantiation())
14735    return;
14736
14737  // Scope isn't fine-grained enough to explicitly list the specific cases, so
14738  // instead, skip more than needed, then call back into here with the
14739  // CommaVisitor in SemaStmt.cpp.
14740  // The listed locations are the initialization and increment portions
14741  // of a for loop.  The additional checks are on the condition of
14742  // if statements, do/while loops, and for loops.
14743  // Differences in scope flags for C89 mode requires the extra logic.
14744  const unsigned ForIncrementFlags =
14745      getLangOpts().C99 || getLangOpts().CPlusPlus
14746          ? Scope::ControlScope | Scope::ContinueScope | Scope::BreakScope
14747          : Scope::ContinueScope | Scope::BreakScope;
14748  const unsigned ForInitFlags = Scope::ControlScope | Scope::DeclScope;
14749  const unsigned ScopeFlags = getCurScope()->getFlags();
14750  if ((ScopeFlags & ForIncrementFlags) == ForIncrementFlags ||
14751      (ScopeFlags & ForInitFlags) == ForInitFlags)
14752    return;
14753
14754  // If there are multiple comma operators used together, get the RHS of the
14755  // of the comma operator as the LHS.
14756  while (const BinaryOperator *BO = dyn_cast<BinaryOperator>(LHS)) {
14757    if (BO->getOpcode() != BO_Comma)
14758      break;
14759    LHS = BO->getRHS();
14760  }
14761
14762  // Only allow some expressions on LHS to not warn.
14763  if (IgnoreCommaOperand(LHS, Context))
14764    return;
14765
14766  Diag(Loc, diag::warn_comma_operator);
14767  Diag(LHS->getBeginLoc(), diag::note_cast_to_void)
14768      << LHS->getSourceRange()
14769      << FixItHint::CreateInsertion(LHS->getBeginLoc(),
14770                                    LangOpts.CPlusPlus ? "static_cast<void>("
14771                                                       : "(void)(")
14772      << FixItHint::CreateInsertion(PP.getLocForEndOfToken(LHS->getEndLoc()),
14773                                    ")");
14774}
14775
14776// C99 6.5.17
14777static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
14778                                   SourceLocation Loc) {
14779  LHS = S.CheckPlaceholderExpr(LHS.get());
14780  RHS = S.CheckPlaceholderExpr(RHS.get());
14781  if (LHS.isInvalid() || RHS.isInvalid())
14782    return QualType();
14783
14784  // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
14785  // operands, but not unary promotions.
14786  // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
14787
14788  // So we treat the LHS as a ignored value, and in C++ we allow the
14789  // containing site to determine what should be done with the RHS.
14790  LHS = S.IgnoredValueConversions(LHS.get());
14791  if (LHS.isInvalid())
14792    return QualType();
14793
14794  S.DiagnoseUnusedExprResult(LHS.get(), diag::warn_unused_comma_left_operand);
14795
14796  if (!S.getLangOpts().CPlusPlus) {
14797    RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
14798    if (RHS.isInvalid())
14799      return QualType();
14800    if (!RHS.get()->getType()->isVoidType())
14801      S.RequireCompleteType(Loc, RHS.get()->getType(),
14802                            diag::err_incomplete_type);
14803  }
14804
14805  if (!S.getDiagnostics().isIgnored(diag::warn_comma_operator, Loc))
14806    S.DiagnoseCommaOperator(LHS.get(), Loc);
14807
14808  return RHS.get()->getType();
14809}
14810
14811/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
14812/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
14813static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
14814                                               ExprValueKind &VK,
14815                                               ExprObjectKind &OK,
14816                                               SourceLocation OpLoc,
14817                                               bool IsInc, bool IsPrefix) {
14818  if (Op->isTypeDependent())
14819    return S.Context.DependentTy;
14820
14821  QualType ResType = Op->getType();
14822  // Atomic types can be used for increment / decrement where the non-atomic
14823  // versions can, so ignore the _Atomic() specifier for the purpose of
14824  // checking.
14825  if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
14826    ResType = ResAtomicType->getValueType();
14827
14828  assert(!ResType.isNull() && "no type for increment/decrement expression");
14829
14830  if (S.getLangOpts().CPlusPlus && ResType->isBooleanType()) {
14831    // Decrement of bool is not allowed.
14832    if (!IsInc) {
14833      S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
14834      return QualType();
14835    }
14836    // Increment of bool sets it to true, but is deprecated.
14837    S.Diag(OpLoc, S.getLangOpts().CPlusPlus17 ? diag::ext_increment_bool
14838                                              : diag::warn_increment_bool)
14839      << Op->getSourceRange();
14840  } else if (S.getLangOpts().CPlusPlus && ResType->isEnumeralType()) {
14841    // Error on enum increments and decrements in C++ mode
14842    S.Diag(OpLoc, diag::err_increment_decrement_enum) << IsInc << ResType;
14843    return QualType();
14844  } else if (ResType->isRealType()) {
14845    // OK!
14846  } else if (ResType->isPointerType()) {
14847    // C99 6.5.2.4p2, 6.5.6p2
14848    if (!checkArithmeticOpPointerOperand(S, OpLoc, Op))
14849      return QualType();
14850  } else if (ResType->isObjCObjectPointerType()) {
14851    // On modern runtimes, ObjC pointer arithmetic is forbidden.
14852    // Otherwise, we just need a complete type.
14853    if (checkArithmeticIncompletePointerType(S, OpLoc, Op) ||
14854        checkArithmeticOnObjCPointer(S, OpLoc, Op))
14855      return QualType();
14856  } else if (ResType->isAnyComplexType()) {
14857    // C99 does not support ++/-- on complex types, we allow as an extension.
14858    S.Diag(OpLoc, diag::ext_integer_increment_complex)
14859      << ResType << Op->getSourceRange();
14860  } else if (ResType->isPlaceholderType()) {
14861    ExprResult PR = S.CheckPlaceholderExpr(Op);
14862    if (PR.isInvalid()) return QualType();
14863    return CheckIncrementDecrementOperand(S, PR.get(), VK, OK, OpLoc,
14864                                          IsInc, IsPrefix);
14865  } else if (S.getLangOpts().AltiVec && ResType->isVectorType()) {
14866    // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
14867  } else if (S.getLangOpts().ZVector && ResType->isVectorType() &&
14868             (ResType->castAs<VectorType>()->getVectorKind() !=
14869              VectorKind::AltiVecBool)) {
14870    // The z vector extensions allow ++ and -- for non-bool vectors.
14871  } else if (S.getLangOpts().OpenCL && ResType->isVectorType() &&
14872             ResType->castAs<VectorType>()->getElementType()->isIntegerType()) {
14873    // OpenCL V1.2 6.3 says dec/inc ops operate on integer vector types.
14874  } else {
14875    S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
14876      << ResType << int(IsInc) << Op->getSourceRange();
14877    return QualType();
14878  }
14879  // At this point, we know we have a real, complex or pointer type.
14880  // Now make sure the operand is a modifiable lvalue.
14881  if (CheckForModifiableLvalue(Op, OpLoc, S))
14882    return QualType();
14883  if (S.getLangOpts().CPlusPlus20 && ResType.isVolatileQualified()) {
14884    // C++2a [expr.pre.inc]p1, [expr.post.inc]p1:
14885    //   An operand with volatile-qualified type is deprecated
14886    S.Diag(OpLoc, diag::warn_deprecated_increment_decrement_volatile)
14887        << IsInc << ResType;
14888  }
14889  // In C++, a prefix increment is the same type as the operand. Otherwise
14890  // (in C or with postfix), the increment is the unqualified type of the
14891  // operand.
14892  if (IsPrefix && S.getLangOpts().CPlusPlus) {
14893    VK = VK_LValue;
14894    OK = Op->getObjectKind();
14895    return ResType;
14896  } else {
14897    VK = VK_PRValue;
14898    return ResType.getUnqualifiedType();
14899  }
14900}
14901
14902
14903/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
14904/// This routine allows us to typecheck complex/recursive expressions
14905/// where the declaration is needed for type checking. We only need to
14906/// handle cases when the expression references a function designator
14907/// or is an lvalue. Here are some examples:
14908///  - &(x) => x
14909///  - &*****f => f for f a function designator.
14910///  - &s.xx => s
14911///  - &s.zz[1].yy -> s, if zz is an array
14912///  - *(x + 1) -> x, if x is an array
14913///  - &"123"[2] -> 0
14914///  - & __real__ x -> x
14915///
14916/// FIXME: We don't recurse to the RHS of a comma, nor handle pointers to
14917/// members.
14918static ValueDecl *getPrimaryDecl(Expr *E) {
14919  switch (E->getStmtClass()) {
14920  case Stmt::DeclRefExprClass:
14921    return cast<DeclRefExpr>(E)->getDecl();
14922  case Stmt::MemberExprClass:
14923    // If this is an arrow operator, the address is an offset from
14924    // the base's value, so the object the base refers to is
14925    // irrelevant.
14926    if (cast<MemberExpr>(E)->isArrow())
14927      return nullptr;
14928    // Otherwise, the expression refers to a part of the base
14929    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
14930  case Stmt::ArraySubscriptExprClass: {
14931    // FIXME: This code shouldn't be necessary!  We should catch the implicit
14932    // promotion of register arrays earlier.
14933    Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
14934    if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
14935      if (ICE->getSubExpr()->getType()->isArrayType())
14936        return getPrimaryDecl(ICE->getSubExpr());
14937    }
14938    return nullptr;
14939  }
14940  case Stmt::UnaryOperatorClass: {
14941    UnaryOperator *UO = cast<UnaryOperator>(E);
14942
14943    switch(UO->getOpcode()) {
14944    case UO_Real:
14945    case UO_Imag:
14946    case UO_Extension:
14947      return getPrimaryDecl(UO->getSubExpr());
14948    default:
14949      return nullptr;
14950    }
14951  }
14952  case Stmt::ParenExprClass:
14953    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
14954  case Stmt::ImplicitCastExprClass:
14955    // If the result of an implicit cast is an l-value, we care about
14956    // the sub-expression; otherwise, the result here doesn't matter.
14957    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
14958  case Stmt::CXXUuidofExprClass:
14959    return cast<CXXUuidofExpr>(E)->getGuidDecl();
14960  default:
14961    return nullptr;
14962  }
14963}
14964
14965namespace {
14966enum {
14967  AO_Bit_Field = 0,
14968  AO_Vector_Element = 1,
14969  AO_Property_Expansion = 2,
14970  AO_Register_Variable = 3,
14971  AO_Matrix_Element = 4,
14972  AO_No_Error = 5
14973};
14974}
14975/// Diagnose invalid operand for address of operations.
14976///
14977/// \param Type The type of operand which cannot have its address taken.
14978static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc,
14979                                         Expr *E, unsigned Type) {
14980  S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange();
14981}
14982
14983bool Sema::CheckUseOfCXXMethodAsAddressOfOperand(SourceLocation OpLoc,
14984                                                 const Expr *Op,
14985                                                 const CXXMethodDecl *MD) {
14986  const auto *DRE = cast<DeclRefExpr>(Op->IgnoreParens());
14987
14988  if (Op != DRE)
14989    return Diag(OpLoc, diag::err_parens_pointer_member_function)
14990           << Op->getSourceRange();
14991
14992  // Taking the address of a dtor is illegal per C++ [class.dtor]p2.
14993  if (isa<CXXDestructorDecl>(MD))
14994    return Diag(OpLoc, diag::err_typecheck_addrof_dtor)
14995           << DRE->getSourceRange();
14996
14997  if (DRE->getQualifier())
14998    return false;
14999
15000  if (MD->getParent()->getName().empty())
15001    return Diag(OpLoc, diag::err_unqualified_pointer_member_function)
15002           << DRE->getSourceRange();
15003
15004  SmallString<32> Str;
15005  StringRef Qual = (MD->getParent()->getName() + "::").toStringRef(Str);
15006  return Diag(OpLoc, diag::err_unqualified_pointer_member_function)
15007         << DRE->getSourceRange()
15008         << FixItHint::CreateInsertion(DRE->getSourceRange().getBegin(), Qual);
15009}
15010
15011/// CheckAddressOfOperand - The operand of & must be either a function
15012/// designator or an lvalue designating an object. If it is an lvalue, the
15013/// object cannot be declared with storage class register or be a bit field.
15014/// Note: The usual conversions are *not* applied to the operand of the &
15015/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
15016/// In C++, the operand might be an overloaded function name, in which case
15017/// we allow the '&' but retain the overloaded-function type.
15018QualType Sema::CheckAddressOfOperand(ExprResult &OrigOp, SourceLocation OpLoc) {
15019  if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){
15020    if (PTy->getKind() == BuiltinType::Overload) {
15021      Expr *E = OrigOp.get()->IgnoreParens();
15022      if (!isa<OverloadExpr>(E)) {
15023        assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
15024        Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof_addrof_function)
15025          << OrigOp.get()->getSourceRange();
15026        return QualType();
15027      }
15028
15029      OverloadExpr *Ovl = cast<OverloadExpr>(E);
15030      if (isa<UnresolvedMemberExpr>(Ovl))
15031        if (!ResolveSingleFunctionTemplateSpecialization(Ovl)) {
15032          Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
15033            << OrigOp.get()->getSourceRange();
15034          return QualType();
15035        }
15036
15037      return Context.OverloadTy;
15038    }
15039
15040    if (PTy->getKind() == BuiltinType::UnknownAny)
15041      return Context.UnknownAnyTy;
15042
15043    if (PTy->getKind() == BuiltinType::BoundMember) {
15044      Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
15045        << OrigOp.get()->getSourceRange();
15046      return QualType();
15047    }
15048
15049    OrigOp = CheckPlaceholderExpr(OrigOp.get());
15050    if (OrigOp.isInvalid()) return QualType();
15051  }
15052
15053  if (OrigOp.get()->isTypeDependent())
15054    return Context.DependentTy;
15055
15056  assert(!OrigOp.get()->hasPlaceholderType());
15057
15058  // Make sure to ignore parentheses in subsequent checks
15059  Expr *op = OrigOp.get()->IgnoreParens();
15060
15061  // In OpenCL captures for blocks called as lambda functions
15062  // are located in the private address space. Blocks used in
15063  // enqueue_kernel can be located in a different address space
15064  // depending on a vendor implementation. Thus preventing
15065  // taking an address of the capture to avoid invalid AS casts.
15066  if (LangOpts.OpenCL) {
15067    auto* VarRef = dyn_cast<DeclRefExpr>(op);
15068    if (VarRef && VarRef->refersToEnclosingVariableOrCapture()) {
15069      Diag(op->getExprLoc(), diag::err_opencl_taking_address_capture);
15070      return QualType();
15071    }
15072  }
15073
15074  if (getLangOpts().C99) {
15075    // Implement C99-only parts of addressof rules.
15076    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
15077      if (uOp->getOpcode() == UO_Deref)
15078        // Per C99 6.5.3.2, the address of a deref always returns a valid result
15079        // (assuming the deref expression is valid).
15080        return uOp->getSubExpr()->getType();
15081    }
15082    // Technically, there should be a check for array subscript
15083    // expressions here, but the result of one is always an lvalue anyway.
15084  }
15085  ValueDecl *dcl = getPrimaryDecl(op);
15086
15087  if (auto *FD = dyn_cast_or_null<FunctionDecl>(dcl))
15088    if (!checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
15089                                           op->getBeginLoc()))
15090      return QualType();
15091
15092  Expr::LValueClassification lval = op->ClassifyLValue(Context);
15093  unsigned AddressOfError = AO_No_Error;
15094
15095  if (lval == Expr::LV_ClassTemporary || lval == Expr::LV_ArrayTemporary) {
15096    bool sfinae = (bool)isSFINAEContext();
15097    Diag(OpLoc, isSFINAEContext() ? diag::err_typecheck_addrof_temporary
15098                                  : diag::ext_typecheck_addrof_temporary)
15099      << op->getType() << op->getSourceRange();
15100    if (sfinae)
15101      return QualType();
15102    // Materialize the temporary as an lvalue so that we can take its address.
15103    OrigOp = op =
15104        CreateMaterializeTemporaryExpr(op->getType(), OrigOp.get(), true);
15105  } else if (isa<ObjCSelectorExpr>(op)) {
15106    return Context.getPointerType(op->getType());
15107  } else if (lval == Expr::LV_MemberFunction) {
15108    // If it's an instance method, make a member pointer.
15109    // The expression must have exactly the form &A::foo.
15110
15111    // If the underlying expression isn't a decl ref, give up.
15112    if (!isa<DeclRefExpr>(op)) {
15113      Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
15114        << OrigOp.get()->getSourceRange();
15115      return QualType();
15116    }
15117    DeclRefExpr *DRE = cast<DeclRefExpr>(op);
15118    CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
15119
15120    CheckUseOfCXXMethodAsAddressOfOperand(OpLoc, OrigOp.get(), MD);
15121
15122    QualType MPTy = Context.getMemberPointerType(
15123        op->getType(), Context.getTypeDeclType(MD->getParent()).getTypePtr());
15124    // Under the MS ABI, lock down the inheritance model now.
15125    if (Context.getTargetInfo().getCXXABI().isMicrosoft())
15126      (void)isCompleteType(OpLoc, MPTy);
15127    return MPTy;
15128  } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
15129    // C99 6.5.3.2p1
15130    // The operand must be either an l-value or a function designator
15131    if (!op->getType()->isFunctionType()) {
15132      // Use a special diagnostic for loads from property references.
15133      if (isa<PseudoObjectExpr>(op)) {
15134        AddressOfError = AO_Property_Expansion;
15135      } else {
15136        Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
15137          << op->getType() << op->getSourceRange();
15138        return QualType();
15139      }
15140    } else if (const auto *DRE = dyn_cast<DeclRefExpr>(op)) {
15141      if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(DRE->getDecl()))
15142        CheckUseOfCXXMethodAsAddressOfOperand(OpLoc, OrigOp.get(), MD);
15143    }
15144
15145  } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
15146    // The operand cannot be a bit-field
15147    AddressOfError = AO_Bit_Field;
15148  } else if (op->getObjectKind() == OK_VectorComponent) {
15149    // The operand cannot be an element of a vector
15150    AddressOfError = AO_Vector_Element;
15151  } else if (op->getObjectKind() == OK_MatrixComponent) {
15152    // The operand cannot be an element of a matrix.
15153    AddressOfError = AO_Matrix_Element;
15154  } else if (dcl) { // C99 6.5.3.2p1
15155    // We have an lvalue with a decl. Make sure the decl is not declared
15156    // with the register storage-class specifier.
15157    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
15158      // in C++ it is not error to take address of a register
15159      // variable (c++03 7.1.1P3)
15160      if (vd->getStorageClass() == SC_Register &&
15161          !getLangOpts().CPlusPlus) {
15162        AddressOfError = AO_Register_Variable;
15163      }
15164    } else if (isa<MSPropertyDecl>(dcl)) {
15165      AddressOfError = AO_Property_Expansion;
15166    } else if (isa<FunctionTemplateDecl>(dcl)) {
15167      return Context.OverloadTy;
15168    } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
15169      // Okay: we can take the address of a field.
15170      // Could be a pointer to member, though, if there is an explicit
15171      // scope qualifier for the class.
15172      if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
15173        DeclContext *Ctx = dcl->getDeclContext();
15174        if (Ctx && Ctx->isRecord()) {
15175          if (dcl->getType()->isReferenceType()) {
15176            Diag(OpLoc,
15177                 diag::err_cannot_form_pointer_to_member_of_reference_type)
15178              << dcl->getDeclName() << dcl->getType();
15179            return QualType();
15180          }
15181
15182          while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
15183            Ctx = Ctx->getParent();
15184
15185          QualType MPTy = Context.getMemberPointerType(
15186              op->getType(),
15187              Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
15188          // Under the MS ABI, lock down the inheritance model now.
15189          if (Context.getTargetInfo().getCXXABI().isMicrosoft())
15190            (void)isCompleteType(OpLoc, MPTy);
15191          return MPTy;
15192        }
15193      }
15194    } else if (!isa<FunctionDecl, NonTypeTemplateParmDecl, BindingDecl,
15195                    MSGuidDecl, UnnamedGlobalConstantDecl>(dcl))
15196      llvm_unreachable("Unknown/unexpected decl type");
15197  }
15198
15199  if (AddressOfError != AO_No_Error) {
15200    diagnoseAddressOfInvalidType(*this, OpLoc, op, AddressOfError);
15201    return QualType();
15202  }
15203
15204  if (lval == Expr::LV_IncompleteVoidType) {
15205    // Taking the address of a void variable is technically illegal, but we
15206    // allow it in cases which are otherwise valid.
15207    // Example: "extern void x; void* y = &x;".
15208    Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
15209  }
15210
15211  // If the operand has type "type", the result has type "pointer to type".
15212  if (op->getType()->isObjCObjectType())
15213    return Context.getObjCObjectPointerType(op->getType());
15214
15215  // Cannot take the address of WebAssembly references or tables.
15216  if (Context.getTargetInfo().getTriple().isWasm()) {
15217    QualType OpTy = op->getType();
15218    if (OpTy.isWebAssemblyReferenceType()) {
15219      Diag(OpLoc, diag::err_wasm_ca_reference)
15220          << 1 << OrigOp.get()->getSourceRange();
15221      return QualType();
15222    }
15223    if (OpTy->isWebAssemblyTableType()) {
15224      Diag(OpLoc, diag::err_wasm_table_pr)
15225          << 1 << OrigOp.get()->getSourceRange();
15226      return QualType();
15227    }
15228  }
15229
15230  CheckAddressOfPackedMember(op);
15231
15232  return Context.getPointerType(op->getType());
15233}
15234
15235static void RecordModifiableNonNullParam(Sema &S, const Expr *Exp) {
15236  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp);
15237  if (!DRE)
15238    return;
15239  const Decl *D = DRE->getDecl();
15240  if (!D)
15241    return;
15242  const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D);
15243  if (!Param)
15244    return;
15245  if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(Param->getDeclContext()))
15246    if (!FD->hasAttr<NonNullAttr>() && !Param->hasAttr<NonNullAttr>())
15247      return;
15248  if (FunctionScopeInfo *FD = S.getCurFunction())
15249    FD->ModifiedNonNullParams.insert(Param);
15250}
15251
15252/// CheckIndirectionOperand - Type check unary indirection (prefix '*').
15253static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
15254                                        SourceLocation OpLoc,
15255                                        bool IsAfterAmp = false) {
15256  if (Op->isTypeDependent())
15257    return S.Context.DependentTy;
15258
15259  ExprResult ConvResult = S.UsualUnaryConversions(Op);
15260  if (ConvResult.isInvalid())
15261    return QualType();
15262  Op = ConvResult.get();
15263  QualType OpTy = Op->getType();
15264  QualType Result;
15265
15266  if (isa<CXXReinterpretCastExpr>(Op)) {
15267    QualType OpOrigType = Op->IgnoreParenCasts()->getType();
15268    S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true,
15269                                     Op->getSourceRange());
15270  }
15271
15272  if (const PointerType *PT = OpTy->getAs<PointerType>())
15273  {
15274    Result = PT->getPointeeType();
15275  }
15276  else if (const ObjCObjectPointerType *OPT =
15277             OpTy->getAs<ObjCObjectPointerType>())
15278    Result = OPT->getPointeeType();
15279  else {
15280    ExprResult PR = S.CheckPlaceholderExpr(Op);
15281    if (PR.isInvalid()) return QualType();
15282    if (PR.get() != Op)
15283      return CheckIndirectionOperand(S, PR.get(), VK, OpLoc);
15284  }
15285
15286  if (Result.isNull()) {
15287    S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
15288      << OpTy << Op->getSourceRange();
15289    return QualType();
15290  }
15291
15292  if (Result->isVoidType()) {
15293    // C++ [expr.unary.op]p1:
15294    //   [...] the expression to which [the unary * operator] is applied shall
15295    //   be a pointer to an object type, or a pointer to a function type
15296    LangOptions LO = S.getLangOpts();
15297    if (LO.CPlusPlus)
15298      S.Diag(OpLoc, diag::err_typecheck_indirection_through_void_pointer_cpp)
15299          << OpTy << Op->getSourceRange();
15300    else if (!(LO.C99 && IsAfterAmp) && !S.isUnevaluatedContext())
15301      S.Diag(OpLoc, diag::ext_typecheck_indirection_through_void_pointer)
15302          << OpTy << Op->getSourceRange();
15303  }
15304
15305  // Dereferences are usually l-values...
15306  VK = VK_LValue;
15307
15308  // ...except that certain expressions are never l-values in C.
15309  if (!S.getLangOpts().CPlusPlus && Result.isCForbiddenLValueType())
15310    VK = VK_PRValue;
15311
15312  return Result;
15313}
15314
15315BinaryOperatorKind Sema::ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind) {
15316  BinaryOperatorKind Opc;
15317  switch (Kind) {
15318  default: llvm_unreachable("Unknown binop!");
15319  case tok::periodstar:           Opc = BO_PtrMemD; break;
15320  case tok::arrowstar:            Opc = BO_PtrMemI; break;
15321  case tok::star:                 Opc = BO_Mul; break;
15322  case tok::slash:                Opc = BO_Div; break;
15323  case tok::percent:              Opc = BO_Rem; break;
15324  case tok::plus:                 Opc = BO_Add; break;
15325  case tok::minus:                Opc = BO_Sub; break;
15326  case tok::lessless:             Opc = BO_Shl; break;
15327  case tok::greatergreater:       Opc = BO_Shr; break;
15328  case tok::lessequal:            Opc = BO_LE; break;
15329  case tok::less:                 Opc = BO_LT; break;
15330  case tok::greaterequal:         Opc = BO_GE; break;
15331  case tok::greater:              Opc = BO_GT; break;
15332  case tok::exclaimequal:         Opc = BO_NE; break;
15333  case tok::equalequal:           Opc = BO_EQ; break;
15334  case tok::spaceship:            Opc = BO_Cmp; break;
15335  case tok::amp:                  Opc = BO_And; break;
15336  case tok::caret:                Opc = BO_Xor; break;
15337  case tok::pipe:                 Opc = BO_Or; break;
15338  case tok::ampamp:               Opc = BO_LAnd; break;
15339  case tok::pipepipe:             Opc = BO_LOr; break;
15340  case tok::equal:                Opc = BO_Assign; break;
15341  case tok::starequal:            Opc = BO_MulAssign; break;
15342  case tok::slashequal:           Opc = BO_DivAssign; break;
15343  case tok::percentequal:         Opc = BO_RemAssign; break;
15344  case tok::plusequal:            Opc = BO_AddAssign; break;
15345  case tok::minusequal:           Opc = BO_SubAssign; break;
15346  case tok::lesslessequal:        Opc = BO_ShlAssign; break;
15347  case tok::greatergreaterequal:  Opc = BO_ShrAssign; break;
15348  case tok::ampequal:             Opc = BO_AndAssign; break;
15349  case tok::caretequal:           Opc = BO_XorAssign; break;
15350  case tok::pipeequal:            Opc = BO_OrAssign; break;
15351  case tok::comma:                Opc = BO_Comma; break;
15352  }
15353  return Opc;
15354}
15355
15356static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
15357  tok::TokenKind Kind) {
15358  UnaryOperatorKind Opc;
15359  switch (Kind) {
15360  default: llvm_unreachable("Unknown unary op!");
15361  case tok::plusplus:     Opc = UO_PreInc; break;
15362  case tok::minusminus:   Opc = UO_PreDec; break;
15363  case tok::amp:          Opc = UO_AddrOf; break;
15364  case tok::star:         Opc = UO_Deref; break;
15365  case tok::plus:         Opc = UO_Plus; break;
15366  case tok::minus:        Opc = UO_Minus; break;
15367  case tok::tilde:        Opc = UO_Not; break;
15368  case tok::exclaim:      Opc = UO_LNot; break;
15369  case tok::kw___real:    Opc = UO_Real; break;
15370  case tok::kw___imag:    Opc = UO_Imag; break;
15371  case tok::kw___extension__: Opc = UO_Extension; break;
15372  }
15373  return Opc;
15374}
15375
15376const FieldDecl *
15377Sema::getSelfAssignmentClassMemberCandidate(const ValueDecl *SelfAssigned) {
15378  // Explore the case for adding 'this->' to the LHS of a self assignment, very
15379  // common for setters.
15380  // struct A {
15381  // int X;
15382  // -void setX(int X) { X = X; }
15383  // +void setX(int X) { this->X = X; }
15384  // };
15385
15386  // Only consider parameters for self assignment fixes.
15387  if (!isa<ParmVarDecl>(SelfAssigned))
15388    return nullptr;
15389  const auto *Method =
15390      dyn_cast_or_null<CXXMethodDecl>(getCurFunctionDecl(true));
15391  if (!Method)
15392    return nullptr;
15393
15394  const CXXRecordDecl *Parent = Method->getParent();
15395  // In theory this is fixable if the lambda explicitly captures this, but
15396  // that's added complexity that's rarely going to be used.
15397  if (Parent->isLambda())
15398    return nullptr;
15399
15400  // FIXME: Use an actual Lookup operation instead of just traversing fields
15401  // in order to get base class fields.
15402  auto Field =
15403      llvm::find_if(Parent->fields(),
15404                    [Name(SelfAssigned->getDeclName())](const FieldDecl *F) {
15405                      return F->getDeclName() == Name;
15406                    });
15407  return (Field != Parent->field_end()) ? *Field : nullptr;
15408}
15409
15410/// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
15411/// This warning suppressed in the event of macro expansions.
15412static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr,
15413                                   SourceLocation OpLoc, bool IsBuiltin) {
15414  if (S.inTemplateInstantiation())
15415    return;
15416  if (S.isUnevaluatedContext())
15417    return;
15418  if (OpLoc.isInvalid() || OpLoc.isMacroID())
15419    return;
15420  LHSExpr = LHSExpr->IgnoreParenImpCasts();
15421  RHSExpr = RHSExpr->IgnoreParenImpCasts();
15422  const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
15423  const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
15424  if (!LHSDeclRef || !RHSDeclRef ||
15425      LHSDeclRef->getLocation().isMacroID() ||
15426      RHSDeclRef->getLocation().isMacroID())
15427    return;
15428  const ValueDecl *LHSDecl =
15429    cast<ValueDecl>(LHSDeclRef->getDecl()->getCanonicalDecl());
15430  const ValueDecl *RHSDecl =
15431    cast<ValueDecl>(RHSDeclRef->getDecl()->getCanonicalDecl());
15432  if (LHSDecl != RHSDecl)
15433    return;
15434  if (LHSDecl->getType().isVolatileQualified())
15435    return;
15436  if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
15437    if (RefTy->getPointeeType().isVolatileQualified())
15438      return;
15439
15440  auto Diag = S.Diag(OpLoc, IsBuiltin ? diag::warn_self_assignment_builtin
15441                                      : diag::warn_self_assignment_overloaded)
15442              << LHSDeclRef->getType() << LHSExpr->getSourceRange()
15443              << RHSExpr->getSourceRange();
15444  if (const FieldDecl *SelfAssignField =
15445          S.getSelfAssignmentClassMemberCandidate(RHSDecl))
15446    Diag << 1 << SelfAssignField
15447         << FixItHint::CreateInsertion(LHSDeclRef->getBeginLoc(), "this->");
15448  else
15449    Diag << 0;
15450}
15451
15452/// Check if a bitwise-& is performed on an Objective-C pointer.  This
15453/// is usually indicative of introspection within the Objective-C pointer.
15454static void checkObjCPointerIntrospection(Sema &S, ExprResult &L, ExprResult &R,
15455                                          SourceLocation OpLoc) {
15456  if (!S.getLangOpts().ObjC)
15457    return;
15458
15459  const Expr *ObjCPointerExpr = nullptr, *OtherExpr = nullptr;
15460  const Expr *LHS = L.get();
15461  const Expr *RHS = R.get();
15462
15463  if (LHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
15464    ObjCPointerExpr = LHS;
15465    OtherExpr = RHS;
15466  }
15467  else if (RHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
15468    ObjCPointerExpr = RHS;
15469    OtherExpr = LHS;
15470  }
15471
15472  // This warning is deliberately made very specific to reduce false
15473  // positives with logic that uses '&' for hashing.  This logic mainly
15474  // looks for code trying to introspect into tagged pointers, which
15475  // code should generally never do.
15476  if (ObjCPointerExpr && isa<IntegerLiteral>(OtherExpr->IgnoreParenCasts())) {
15477    unsigned Diag = diag::warn_objc_pointer_masking;
15478    // Determine if we are introspecting the result of performSelectorXXX.
15479    const Expr *Ex = ObjCPointerExpr->IgnoreParenCasts();
15480    // Special case messages to -performSelector and friends, which
15481    // can return non-pointer values boxed in a pointer value.
15482    // Some clients may wish to silence warnings in this subcase.
15483    if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(Ex)) {
15484      Selector S = ME->getSelector();
15485      StringRef SelArg0 = S.getNameForSlot(0);
15486      if (SelArg0.starts_with("performSelector"))
15487        Diag = diag::warn_objc_pointer_masking_performSelector;
15488    }
15489
15490    S.Diag(OpLoc, Diag)
15491      << ObjCPointerExpr->getSourceRange();
15492  }
15493}
15494
15495static NamedDecl *getDeclFromExpr(Expr *E) {
15496  if (!E)
15497    return nullptr;
15498  if (auto *DRE = dyn_cast<DeclRefExpr>(E))
15499    return DRE->getDecl();
15500  if (auto *ME = dyn_cast<MemberExpr>(E))
15501    return ME->getMemberDecl();
15502  if (auto *IRE = dyn_cast<ObjCIvarRefExpr>(E))
15503    return IRE->getDecl();
15504  return nullptr;
15505}
15506
15507// This helper function promotes a binary operator's operands (which are of a
15508// half vector type) to a vector of floats and then truncates the result to
15509// a vector of either half or short.
15510static ExprResult convertHalfVecBinOp(Sema &S, ExprResult LHS, ExprResult RHS,
15511                                      BinaryOperatorKind Opc, QualType ResultTy,
15512                                      ExprValueKind VK, ExprObjectKind OK,
15513                                      bool IsCompAssign, SourceLocation OpLoc,
15514                                      FPOptionsOverride FPFeatures) {
15515  auto &Context = S.getASTContext();
15516  assert((isVector(ResultTy, Context.HalfTy) ||
15517          isVector(ResultTy, Context.ShortTy)) &&
15518         "Result must be a vector of half or short");
15519  assert(isVector(LHS.get()->getType(), Context.HalfTy) &&
15520         isVector(RHS.get()->getType(), Context.HalfTy) &&
15521         "both operands expected to be a half vector");
15522
15523  RHS = convertVector(RHS.get(), Context.FloatTy, S);
15524  QualType BinOpResTy = RHS.get()->getType();
15525
15526  // If Opc is a comparison, ResultType is a vector of shorts. In that case,
15527  // change BinOpResTy to a vector of ints.
15528  if (isVector(ResultTy, Context.ShortTy))
15529    BinOpResTy = S.GetSignedVectorType(BinOpResTy);
15530
15531  if (IsCompAssign)
15532    return CompoundAssignOperator::Create(Context, LHS.get(), RHS.get(), Opc,
15533                                          ResultTy, VK, OK, OpLoc, FPFeatures,
15534                                          BinOpResTy, BinOpResTy);
15535
15536  LHS = convertVector(LHS.get(), Context.FloatTy, S);
15537  auto *BO = BinaryOperator::Create(Context, LHS.get(), RHS.get(), Opc,
15538                                    BinOpResTy, VK, OK, OpLoc, FPFeatures);
15539  return convertVector(BO, ResultTy->castAs<VectorType>()->getElementType(), S);
15540}
15541
15542static std::pair<ExprResult, ExprResult>
15543CorrectDelayedTyposInBinOp(Sema &S, BinaryOperatorKind Opc, Expr *LHSExpr,
15544                           Expr *RHSExpr) {
15545  ExprResult LHS = LHSExpr, RHS = RHSExpr;
15546  if (!S.Context.isDependenceAllowed()) {
15547    // C cannot handle TypoExpr nodes on either side of a binop because it
15548    // doesn't handle dependent types properly, so make sure any TypoExprs have
15549    // been dealt with before checking the operands.
15550    LHS = S.CorrectDelayedTyposInExpr(LHS);
15551    RHS = S.CorrectDelayedTyposInExpr(
15552        RHS, /*InitDecl=*/nullptr, /*RecoverUncorrectedTypos=*/false,
15553        [Opc, LHS](Expr *E) {
15554          if (Opc != BO_Assign)
15555            return ExprResult(E);
15556          // Avoid correcting the RHS to the same Expr as the LHS.
15557          Decl *D = getDeclFromExpr(E);
15558          return (D && D == getDeclFromExpr(LHS.get())) ? ExprError() : E;
15559        });
15560  }
15561  return std::make_pair(LHS, RHS);
15562}
15563
15564/// Returns true if conversion between vectors of halfs and vectors of floats
15565/// is needed.
15566static bool needsConversionOfHalfVec(bool OpRequiresConversion, ASTContext &Ctx,
15567                                     Expr *E0, Expr *E1 = nullptr) {
15568  if (!OpRequiresConversion || Ctx.getLangOpts().NativeHalfType ||
15569      Ctx.getTargetInfo().useFP16ConversionIntrinsics())
15570    return false;
15571
15572  auto HasVectorOfHalfType = [&Ctx](Expr *E) {
15573    QualType Ty = E->IgnoreImplicit()->getType();
15574
15575    // Don't promote half precision neon vectors like float16x4_t in arm_neon.h
15576    // to vectors of floats. Although the element type of the vectors is __fp16,
15577    // the vectors shouldn't be treated as storage-only types. See the
15578    // discussion here: https://reviews.llvm.org/rG825235c140e7
15579    if (const VectorType *VT = Ty->getAs<VectorType>()) {
15580      if (VT->getVectorKind() == VectorKind::Neon)
15581        return false;
15582      return VT->getElementType().getCanonicalType() == Ctx.HalfTy;
15583    }
15584    return false;
15585  };
15586
15587  return HasVectorOfHalfType(E0) && (!E1 || HasVectorOfHalfType(E1));
15588}
15589
15590/// CreateBuiltinBinOp - Creates a new built-in binary operation with
15591/// operator @p Opc at location @c TokLoc. This routine only supports
15592/// built-in operations; ActOnBinOp handles overloaded operators.
15593ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
15594                                    BinaryOperatorKind Opc,
15595                                    Expr *LHSExpr, Expr *RHSExpr) {
15596  if (getLangOpts().CPlusPlus11 && isa<InitListExpr>(RHSExpr)) {
15597    // The syntax only allows initializer lists on the RHS of assignment,
15598    // so we don't need to worry about accepting invalid code for
15599    // non-assignment operators.
15600    // C++11 5.17p9:
15601    //   The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning
15602    //   of x = {} is x = T().
15603    InitializationKind Kind = InitializationKind::CreateDirectList(
15604        RHSExpr->getBeginLoc(), RHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
15605    InitializedEntity Entity =
15606        InitializedEntity::InitializeTemporary(LHSExpr->getType());
15607    InitializationSequence InitSeq(*this, Entity, Kind, RHSExpr);
15608    ExprResult Init = InitSeq.Perform(*this, Entity, Kind, RHSExpr);
15609    if (Init.isInvalid())
15610      return Init;
15611    RHSExpr = Init.get();
15612  }
15613
15614  ExprResult LHS = LHSExpr, RHS = RHSExpr;
15615  QualType ResultTy;     // Result type of the binary operator.
15616  // The following two variables are used for compound assignment operators
15617  QualType CompLHSTy;    // Type of LHS after promotions for computation
15618  QualType CompResultTy; // Type of computation result
15619  ExprValueKind VK = VK_PRValue;
15620  ExprObjectKind OK = OK_Ordinary;
15621  bool ConvertHalfVec = false;
15622
15623  std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr);
15624  if (!LHS.isUsable() || !RHS.isUsable())
15625    return ExprError();
15626
15627  if (getLangOpts().OpenCL) {
15628    QualType LHSTy = LHSExpr->getType();
15629    QualType RHSTy = RHSExpr->getType();
15630    // OpenCLC v2.0 s6.13.11.1 allows atomic variables to be initialized by
15631    // the ATOMIC_VAR_INIT macro.
15632    if (LHSTy->isAtomicType() || RHSTy->isAtomicType()) {
15633      SourceRange SR(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
15634      if (BO_Assign == Opc)
15635        Diag(OpLoc, diag::err_opencl_atomic_init) << 0 << SR;
15636      else
15637        ResultTy = InvalidOperands(OpLoc, LHS, RHS);
15638      return ExprError();
15639    }
15640
15641    // OpenCL special types - image, sampler, pipe, and blocks are to be used
15642    // only with a builtin functions and therefore should be disallowed here.
15643    if (LHSTy->isImageType() || RHSTy->isImageType() ||
15644        LHSTy->isSamplerT() || RHSTy->isSamplerT() ||
15645        LHSTy->isPipeType() || RHSTy->isPipeType() ||
15646        LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
15647      ResultTy = InvalidOperands(OpLoc, LHS, RHS);
15648      return ExprError();
15649    }
15650  }
15651
15652  checkTypeSupport(LHSExpr->getType(), OpLoc, /*ValueDecl*/ nullptr);
15653  checkTypeSupport(RHSExpr->getType(), OpLoc, /*ValueDecl*/ nullptr);
15654
15655  switch (Opc) {
15656  case BO_Assign:
15657    ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, QualType(), Opc);
15658    if (getLangOpts().CPlusPlus &&
15659        LHS.get()->getObjectKind() != OK_ObjCProperty) {
15660      VK = LHS.get()->getValueKind();
15661      OK = LHS.get()->getObjectKind();
15662    }
15663    if (!ResultTy.isNull()) {
15664      DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true);
15665      DiagnoseSelfMove(LHS.get(), RHS.get(), OpLoc);
15666
15667      // Avoid copying a block to the heap if the block is assigned to a local
15668      // auto variable that is declared in the same scope as the block. This
15669      // optimization is unsafe if the local variable is declared in an outer
15670      // scope. For example:
15671      //
15672      // BlockTy b;
15673      // {
15674      //   b = ^{...};
15675      // }
15676      // // It is unsafe to invoke the block here if it wasn't copied to the
15677      // // heap.
15678      // b();
15679
15680      if (auto *BE = dyn_cast<BlockExpr>(RHS.get()->IgnoreParens()))
15681        if (auto *DRE = dyn_cast<DeclRefExpr>(LHS.get()->IgnoreParens()))
15682          if (auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
15683            if (VD->hasLocalStorage() && getCurScope()->isDeclScope(VD))
15684              BE->getBlockDecl()->setCanAvoidCopyToHeap();
15685
15686      if (LHS.get()->getType().hasNonTrivialToPrimitiveCopyCUnion())
15687        checkNonTrivialCUnion(LHS.get()->getType(), LHS.get()->getExprLoc(),
15688                              NTCUC_Assignment, NTCUK_Copy);
15689    }
15690    RecordModifiableNonNullParam(*this, LHS.get());
15691    break;
15692  case BO_PtrMemD:
15693  case BO_PtrMemI:
15694    ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc,
15695                                            Opc == BO_PtrMemI);
15696    break;
15697  case BO_Mul:
15698  case BO_Div:
15699    ConvertHalfVec = true;
15700    ResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, false,
15701                                           Opc == BO_Div);
15702    break;
15703  case BO_Rem:
15704    ResultTy = CheckRemainderOperands(LHS, RHS, OpLoc);
15705    break;
15706  case BO_Add:
15707    ConvertHalfVec = true;
15708    ResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc);
15709    break;
15710  case BO_Sub:
15711    ConvertHalfVec = true;
15712    ResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc);
15713    break;
15714  case BO_Shl:
15715  case BO_Shr:
15716    ResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc);
15717    break;
15718  case BO_LE:
15719  case BO_LT:
15720  case BO_GE:
15721  case BO_GT:
15722    ConvertHalfVec = true;
15723    ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
15724    break;
15725  case BO_EQ:
15726  case BO_NE:
15727    ConvertHalfVec = true;
15728    ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
15729    break;
15730  case BO_Cmp:
15731    ConvertHalfVec = true;
15732    ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
15733    assert(ResultTy.isNull() || ResultTy->getAsCXXRecordDecl());
15734    break;
15735  case BO_And:
15736    checkObjCPointerIntrospection(*this, LHS, RHS, OpLoc);
15737    [[fallthrough]];
15738  case BO_Xor:
15739  case BO_Or:
15740    ResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc);
15741    break;
15742  case BO_LAnd:
15743  case BO_LOr:
15744    ConvertHalfVec = true;
15745    ResultTy = CheckLogicalOperands(LHS, RHS, OpLoc, Opc);
15746    break;
15747  case BO_MulAssign:
15748  case BO_DivAssign:
15749    ConvertHalfVec = true;
15750    CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, true,
15751                                               Opc == BO_DivAssign);
15752    CompLHSTy = CompResultTy;
15753    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15754      ResultTy =
15755          CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
15756    break;
15757  case BO_RemAssign:
15758    CompResultTy = CheckRemainderOperands(LHS, RHS, OpLoc, true);
15759    CompLHSTy = CompResultTy;
15760    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15761      ResultTy =
15762          CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
15763    break;
15764  case BO_AddAssign:
15765    ConvertHalfVec = true;
15766    CompResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc, &CompLHSTy);
15767    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15768      ResultTy =
15769          CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
15770    break;
15771  case BO_SubAssign:
15772    ConvertHalfVec = true;
15773    CompResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc, &CompLHSTy);
15774    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15775      ResultTy =
15776          CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
15777    break;
15778  case BO_ShlAssign:
15779  case BO_ShrAssign:
15780    CompResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc, true);
15781    CompLHSTy = CompResultTy;
15782    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15783      ResultTy =
15784          CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
15785    break;
15786  case BO_AndAssign:
15787  case BO_OrAssign: // fallthrough
15788    DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true);
15789    [[fallthrough]];
15790  case BO_XorAssign:
15791    CompResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc);
15792    CompLHSTy = CompResultTy;
15793    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15794      ResultTy =
15795          CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
15796    break;
15797  case BO_Comma:
15798    ResultTy = CheckCommaOperands(*this, LHS, RHS, OpLoc);
15799    if (getLangOpts().CPlusPlus && !RHS.isInvalid()) {
15800      VK = RHS.get()->getValueKind();
15801      OK = RHS.get()->getObjectKind();
15802    }
15803    break;
15804  }
15805  if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid())
15806    return ExprError();
15807
15808  // Some of the binary operations require promoting operands of half vector to
15809  // float vectors and truncating the result back to half vector. For now, we do
15810  // this only when HalfArgsAndReturn is set (that is, when the target is arm or
15811  // arm64).
15812  assert(
15813      (Opc == BO_Comma || isVector(RHS.get()->getType(), Context.HalfTy) ==
15814                              isVector(LHS.get()->getType(), Context.HalfTy)) &&
15815      "both sides are half vectors or neither sides are");
15816  ConvertHalfVec =
15817      needsConversionOfHalfVec(ConvertHalfVec, Context, LHS.get(), RHS.get());
15818
15819  // Check for array bounds violations for both sides of the BinaryOperator
15820  CheckArrayAccess(LHS.get());
15821  CheckArrayAccess(RHS.get());
15822
15823  if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(LHS.get()->IgnoreParenCasts())) {
15824    NamedDecl *ObjectSetClass = LookupSingleName(TUScope,
15825                                                 &Context.Idents.get("object_setClass"),
15826                                                 SourceLocation(), LookupOrdinaryName);
15827    if (ObjectSetClass && isa<ObjCIsaExpr>(LHS.get())) {
15828      SourceLocation RHSLocEnd = getLocForEndOfToken(RHS.get()->getEndLoc());
15829      Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign)
15830          << FixItHint::CreateInsertion(LHS.get()->getBeginLoc(),
15831                                        "object_setClass(")
15832          << FixItHint::CreateReplacement(SourceRange(OISA->getOpLoc(), OpLoc),
15833                                          ",")
15834          << FixItHint::CreateInsertion(RHSLocEnd, ")");
15835    }
15836    else
15837      Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign);
15838  }
15839  else if (const ObjCIvarRefExpr *OIRE =
15840           dyn_cast<ObjCIvarRefExpr>(LHS.get()->IgnoreParenCasts()))
15841    DiagnoseDirectIsaAccess(*this, OIRE, OpLoc, RHS.get());
15842
15843  // Opc is not a compound assignment if CompResultTy is null.
15844  if (CompResultTy.isNull()) {
15845    if (ConvertHalfVec)
15846      return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, false,
15847                                 OpLoc, CurFPFeatureOverrides());
15848    return BinaryOperator::Create(Context, LHS.get(), RHS.get(), Opc, ResultTy,
15849                                  VK, OK, OpLoc, CurFPFeatureOverrides());
15850  }
15851
15852  // Handle compound assignments.
15853  if (getLangOpts().CPlusPlus && LHS.get()->getObjectKind() !=
15854      OK_ObjCProperty) {
15855    VK = VK_LValue;
15856    OK = LHS.get()->getObjectKind();
15857  }
15858
15859  // The LHS is not converted to the result type for fixed-point compound
15860  // assignment as the common type is computed on demand. Reset the CompLHSTy
15861  // to the LHS type we would have gotten after unary conversions.
15862  if (CompResultTy->isFixedPointType())
15863    CompLHSTy = UsualUnaryConversions(LHS.get()).get()->getType();
15864
15865  if (ConvertHalfVec)
15866    return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, true,
15867                               OpLoc, CurFPFeatureOverrides());
15868
15869  return CompoundAssignOperator::Create(
15870      Context, LHS.get(), RHS.get(), Opc, ResultTy, VK, OK, OpLoc,
15871      CurFPFeatureOverrides(), CompLHSTy, CompResultTy);
15872}
15873
15874/// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
15875/// operators are mixed in a way that suggests that the programmer forgot that
15876/// comparison operators have higher precedence. The most typical example of
15877/// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
15878static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
15879                                      SourceLocation OpLoc, Expr *LHSExpr,
15880                                      Expr *RHSExpr) {
15881  BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHSExpr);
15882  BinaryOperator *RHSBO = dyn_cast<BinaryOperator>(RHSExpr);
15883
15884  // Check that one of the sides is a comparison operator and the other isn't.
15885  bool isLeftComp = LHSBO && LHSBO->isComparisonOp();
15886  bool isRightComp = RHSBO && RHSBO->isComparisonOp();
15887  if (isLeftComp == isRightComp)
15888    return;
15889
15890  // Bitwise operations are sometimes used as eager logical ops.
15891  // Don't diagnose this.
15892  bool isLeftBitwise = LHSBO && LHSBO->isBitwiseOp();
15893  bool isRightBitwise = RHSBO && RHSBO->isBitwiseOp();
15894  if (isLeftBitwise || isRightBitwise)
15895    return;
15896
15897  SourceRange DiagRange = isLeftComp
15898                              ? SourceRange(LHSExpr->getBeginLoc(), OpLoc)
15899                              : SourceRange(OpLoc, RHSExpr->getEndLoc());
15900  StringRef OpStr = isLeftComp ? LHSBO->getOpcodeStr() : RHSBO->getOpcodeStr();
15901  SourceRange ParensRange =
15902      isLeftComp
15903          ? SourceRange(LHSBO->getRHS()->getBeginLoc(), RHSExpr->getEndLoc())
15904          : SourceRange(LHSExpr->getBeginLoc(), RHSBO->getLHS()->getEndLoc());
15905
15906  Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
15907    << DiagRange << BinaryOperator::getOpcodeStr(Opc) << OpStr;
15908  SuggestParentheses(Self, OpLoc,
15909    Self.PDiag(diag::note_precedence_silence) << OpStr,
15910    (isLeftComp ? LHSExpr : RHSExpr)->getSourceRange());
15911  SuggestParentheses(Self, OpLoc,
15912    Self.PDiag(diag::note_precedence_bitwise_first)
15913      << BinaryOperator::getOpcodeStr(Opc),
15914    ParensRange);
15915}
15916
15917/// It accepts a '&&' expr that is inside a '||' one.
15918/// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
15919/// in parentheses.
15920static void
15921EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
15922                                       BinaryOperator *Bop) {
15923  assert(Bop->getOpcode() == BO_LAnd);
15924  Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or)
15925      << Bop->getSourceRange() << OpLoc;
15926  SuggestParentheses(Self, Bop->getOperatorLoc(),
15927    Self.PDiag(diag::note_precedence_silence)
15928      << Bop->getOpcodeStr(),
15929    Bop->getSourceRange());
15930}
15931
15932/// Look for '&&' in the left hand of a '||' expr.
15933static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
15934                                             Expr *LHSExpr, Expr *RHSExpr) {
15935  if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(LHSExpr)) {
15936    if (Bop->getOpcode() == BO_LAnd) {
15937      // If it's "string_literal && a || b" don't warn since the precedence
15938      // doesn't matter.
15939      if (!isa<StringLiteral>(Bop->getLHS()->IgnoreParenImpCasts()))
15940        return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
15941    } else if (Bop->getOpcode() == BO_LOr) {
15942      if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
15943        // If it's "a || b && string_literal || c" we didn't warn earlier for
15944        // "a || b && string_literal", but warn now.
15945        if (RBop->getOpcode() == BO_LAnd &&
15946            isa<StringLiteral>(RBop->getRHS()->IgnoreParenImpCasts()))
15947          return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
15948      }
15949    }
15950  }
15951}
15952
15953/// Look for '&&' in the right hand of a '||' expr.
15954static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
15955                                             Expr *LHSExpr, Expr *RHSExpr) {
15956  if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(RHSExpr)) {
15957    if (Bop->getOpcode() == BO_LAnd) {
15958      // If it's "a || b && string_literal" don't warn since the precedence
15959      // doesn't matter.
15960      if (!isa<StringLiteral>(Bop->getRHS()->IgnoreParenImpCasts()))
15961        return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
15962    }
15963  }
15964}
15965
15966/// Look for bitwise op in the left or right hand of a bitwise op with
15967/// lower precedence and emit a diagnostic together with a fixit hint that wraps
15968/// the '&' expression in parentheses.
15969static void DiagnoseBitwiseOpInBitwiseOp(Sema &S, BinaryOperatorKind Opc,
15970                                         SourceLocation OpLoc, Expr *SubExpr) {
15971  if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
15972    if (Bop->isBitwiseOp() && Bop->getOpcode() < Opc) {
15973      S.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_op_in_bitwise_op)
15974        << Bop->getOpcodeStr() << BinaryOperator::getOpcodeStr(Opc)
15975        << Bop->getSourceRange() << OpLoc;
15976      SuggestParentheses(S, Bop->getOperatorLoc(),
15977        S.PDiag(diag::note_precedence_silence)
15978          << Bop->getOpcodeStr(),
15979        Bop->getSourceRange());
15980    }
15981  }
15982}
15983
15984static void DiagnoseAdditionInShift(Sema &S, SourceLocation OpLoc,
15985                                    Expr *SubExpr, StringRef Shift) {
15986  if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
15987    if (Bop->getOpcode() == BO_Add || Bop->getOpcode() == BO_Sub) {
15988      StringRef Op = Bop->getOpcodeStr();
15989      S.Diag(Bop->getOperatorLoc(), diag::warn_addition_in_bitshift)
15990          << Bop->getSourceRange() << OpLoc << Shift << Op;
15991      SuggestParentheses(S, Bop->getOperatorLoc(),
15992          S.PDiag(diag::note_precedence_silence) << Op,
15993          Bop->getSourceRange());
15994    }
15995  }
15996}
15997
15998static void DiagnoseShiftCompare(Sema &S, SourceLocation OpLoc,
15999                                 Expr *LHSExpr, Expr *RHSExpr) {
16000  CXXOperatorCallExpr *OCE = dyn_cast<CXXOperatorCallExpr>(LHSExpr);
16001  if (!OCE)
16002    return;
16003
16004  FunctionDecl *FD = OCE->getDirectCallee();
16005  if (!FD || !FD->isOverloadedOperator())
16006    return;
16007
16008  OverloadedOperatorKind Kind = FD->getOverloadedOperator();
16009  if (Kind != OO_LessLess && Kind != OO_GreaterGreater)
16010    return;
16011
16012  S.Diag(OpLoc, diag::warn_overloaded_shift_in_comparison)
16013      << LHSExpr->getSourceRange() << RHSExpr->getSourceRange()
16014      << (Kind == OO_LessLess);
16015  SuggestParentheses(S, OCE->getOperatorLoc(),
16016                     S.PDiag(diag::note_precedence_silence)
16017                         << (Kind == OO_LessLess ? "<<" : ">>"),
16018                     OCE->getSourceRange());
16019  SuggestParentheses(
16020      S, OpLoc, S.PDiag(diag::note_evaluate_comparison_first),
16021      SourceRange(OCE->getArg(1)->getBeginLoc(), RHSExpr->getEndLoc()));
16022}
16023
16024/// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
16025/// precedence.
16026static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
16027                                    SourceLocation OpLoc, Expr *LHSExpr,
16028                                    Expr *RHSExpr){
16029  // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
16030  if (BinaryOperator::isBitwiseOp(Opc))
16031    DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr);
16032
16033  // Diagnose "arg1 & arg2 | arg3"
16034  if ((Opc == BO_Or || Opc == BO_Xor) &&
16035      !OpLoc.isMacroID()/* Don't warn in macros. */) {
16036    DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, LHSExpr);
16037    DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, RHSExpr);
16038  }
16039
16040  // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
16041  // We don't warn for 'assert(a || b && "bad")' since this is safe.
16042  if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
16043    DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, LHSExpr, RHSExpr);
16044    DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, LHSExpr, RHSExpr);
16045  }
16046
16047  if ((Opc == BO_Shl && LHSExpr->getType()->isIntegralType(Self.getASTContext()))
16048      || Opc == BO_Shr) {
16049    StringRef Shift = BinaryOperator::getOpcodeStr(Opc);
16050    DiagnoseAdditionInShift(Self, OpLoc, LHSExpr, Shift);
16051    DiagnoseAdditionInShift(Self, OpLoc, RHSExpr, Shift);
16052  }
16053
16054  // Warn on overloaded shift operators and comparisons, such as:
16055  // cout << 5 == 4;
16056  if (BinaryOperator::isComparisonOp(Opc))
16057    DiagnoseShiftCompare(Self, OpLoc, LHSExpr, RHSExpr);
16058}
16059
16060// Binary Operators.  'Tok' is the token for the operator.
16061ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
16062                            tok::TokenKind Kind,
16063                            Expr *LHSExpr, Expr *RHSExpr) {
16064  BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
16065  assert(LHSExpr && "ActOnBinOp(): missing left expression");
16066  assert(RHSExpr && "ActOnBinOp(): missing right expression");
16067
16068  // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
16069  DiagnoseBinOpPrecedence(*this, Opc, TokLoc, LHSExpr, RHSExpr);
16070
16071  return BuildBinOp(S, TokLoc, Opc, LHSExpr, RHSExpr);
16072}
16073
16074void Sema::LookupBinOp(Scope *S, SourceLocation OpLoc, BinaryOperatorKind Opc,
16075                       UnresolvedSetImpl &Functions) {
16076  OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
16077  if (OverOp != OO_None && OverOp != OO_Equal)
16078    LookupOverloadedOperatorName(OverOp, S, Functions);
16079
16080  // In C++20 onwards, we may have a second operator to look up.
16081  if (getLangOpts().CPlusPlus20) {
16082    if (OverloadedOperatorKind ExtraOp = getRewrittenOverloadedOperator(OverOp))
16083      LookupOverloadedOperatorName(ExtraOp, S, Functions);
16084  }
16085}
16086
16087/// Build an overloaded binary operator expression in the given scope.
16088static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc,
16089                                       BinaryOperatorKind Opc,
16090                                       Expr *LHS, Expr *RHS) {
16091  switch (Opc) {
16092  case BO_Assign:
16093    // In the non-overloaded case, we warn about self-assignment (x = x) for
16094    // both simple assignment and certain compound assignments where algebra
16095    // tells us the operation yields a constant result.  When the operator is
16096    // overloaded, we can't do the latter because we don't want to assume that
16097    // those algebraic identities still apply; for example, a path-building
16098    // library might use operator/= to append paths.  But it's still reasonable
16099    // to assume that simple assignment is just moving/copying values around
16100    // and so self-assignment is likely a bug.
16101    DiagnoseSelfAssignment(S, LHS, RHS, OpLoc, false);
16102    [[fallthrough]];
16103  case BO_DivAssign:
16104  case BO_RemAssign:
16105  case BO_SubAssign:
16106  case BO_AndAssign:
16107  case BO_OrAssign:
16108  case BO_XorAssign:
16109    CheckIdentityFieldAssignment(LHS, RHS, OpLoc, S);
16110    break;
16111  default:
16112    break;
16113  }
16114
16115  // Find all of the overloaded operators visible from this point.
16116  UnresolvedSet<16> Functions;
16117  S.LookupBinOp(Sc, OpLoc, Opc, Functions);
16118
16119  // Build the (potentially-overloaded, potentially-dependent)
16120  // binary operation.
16121  return S.CreateOverloadedBinOp(OpLoc, Opc, Functions, LHS, RHS);
16122}
16123
16124ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
16125                            BinaryOperatorKind Opc,
16126                            Expr *LHSExpr, Expr *RHSExpr) {
16127  ExprResult LHS, RHS;
16128  std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr);
16129  if (!LHS.isUsable() || !RHS.isUsable())
16130    return ExprError();
16131  LHSExpr = LHS.get();
16132  RHSExpr = RHS.get();
16133
16134  // We want to end up calling one of checkPseudoObjectAssignment
16135  // (if the LHS is a pseudo-object), BuildOverloadedBinOp (if
16136  // both expressions are overloadable or either is type-dependent),
16137  // or CreateBuiltinBinOp (in any other case).  We also want to get
16138  // any placeholder types out of the way.
16139
16140  // Handle pseudo-objects in the LHS.
16141  if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) {
16142    // Assignments with a pseudo-object l-value need special analysis.
16143    if (pty->getKind() == BuiltinType::PseudoObject &&
16144        BinaryOperator::isAssignmentOp(Opc))
16145      return checkPseudoObjectAssignment(S, OpLoc, Opc, LHSExpr, RHSExpr);
16146
16147    // Don't resolve overloads if the other type is overloadable.
16148    if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload) {
16149      // We can't actually test that if we still have a placeholder,
16150      // though.  Fortunately, none of the exceptions we see in that
16151      // code below are valid when the LHS is an overload set.  Note
16152      // that an overload set can be dependently-typed, but it never
16153      // instantiates to having an overloadable type.
16154      ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
16155      if (resolvedRHS.isInvalid()) return ExprError();
16156      RHSExpr = resolvedRHS.get();
16157
16158      if (RHSExpr->isTypeDependent() ||
16159          RHSExpr->getType()->isOverloadableType())
16160        return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
16161    }
16162
16163    // If we're instantiating "a.x < b" or "A::x < b" and 'x' names a function
16164    // template, diagnose the missing 'template' keyword instead of diagnosing
16165    // an invalid use of a bound member function.
16166    //
16167    // Note that "A::x < b" might be valid if 'b' has an overloadable type due
16168    // to C++1z [over.over]/1.4, but we already checked for that case above.
16169    if (Opc == BO_LT && inTemplateInstantiation() &&
16170        (pty->getKind() == BuiltinType::BoundMember ||
16171         pty->getKind() == BuiltinType::Overload)) {
16172      auto *OE = dyn_cast<OverloadExpr>(LHSExpr);
16173      if (OE && !OE->hasTemplateKeyword() && !OE->hasExplicitTemplateArgs() &&
16174          llvm::any_of(OE->decls(), [](NamedDecl *ND) {
16175            return isa<FunctionTemplateDecl>(ND);
16176          })) {
16177        Diag(OE->getQualifier() ? OE->getQualifierLoc().getBeginLoc()
16178                                : OE->getNameLoc(),
16179             diag::err_template_kw_missing)
16180          << OE->getName().getAsString() << "";
16181        return ExprError();
16182      }
16183    }
16184
16185    ExprResult LHS = CheckPlaceholderExpr(LHSExpr);
16186    if (LHS.isInvalid()) return ExprError();
16187    LHSExpr = LHS.get();
16188  }
16189
16190  // Handle pseudo-objects in the RHS.
16191  if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) {
16192    // An overload in the RHS can potentially be resolved by the type
16193    // being assigned to.
16194    if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) {
16195      if (getLangOpts().CPlusPlus &&
16196          (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent() ||
16197           LHSExpr->getType()->isOverloadableType()))
16198        return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
16199
16200      return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
16201    }
16202
16203    // Don't resolve overloads if the other type is overloadable.
16204    if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload &&
16205        LHSExpr->getType()->isOverloadableType())
16206      return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
16207
16208    ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
16209    if (!resolvedRHS.isUsable()) return ExprError();
16210    RHSExpr = resolvedRHS.get();
16211  }
16212
16213  if (getLangOpts().CPlusPlus) {
16214    // If either expression is type-dependent, always build an
16215    // overloaded op.
16216    if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
16217      return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
16218
16219    // Otherwise, build an overloaded op if either expression has an
16220    // overloadable type.
16221    if (LHSExpr->getType()->isOverloadableType() ||
16222        RHSExpr->getType()->isOverloadableType())
16223      return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
16224  }
16225
16226  if (getLangOpts().RecoveryAST &&
16227      (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())) {
16228    assert(!getLangOpts().CPlusPlus);
16229    assert((LHSExpr->containsErrors() || RHSExpr->containsErrors()) &&
16230           "Should only occur in error-recovery path.");
16231    if (BinaryOperator::isCompoundAssignmentOp(Opc))
16232      // C [6.15.16] p3:
16233      // An assignment expression has the value of the left operand after the
16234      // assignment, but is not an lvalue.
16235      return CompoundAssignOperator::Create(
16236          Context, LHSExpr, RHSExpr, Opc,
16237          LHSExpr->getType().getUnqualifiedType(), VK_PRValue, OK_Ordinary,
16238          OpLoc, CurFPFeatureOverrides());
16239    QualType ResultType;
16240    switch (Opc) {
16241    case BO_Assign:
16242      ResultType = LHSExpr->getType().getUnqualifiedType();
16243      break;
16244    case BO_LT:
16245    case BO_GT:
16246    case BO_LE:
16247    case BO_GE:
16248    case BO_EQ:
16249    case BO_NE:
16250    case BO_LAnd:
16251    case BO_LOr:
16252      // These operators have a fixed result type regardless of operands.
16253      ResultType = Context.IntTy;
16254      break;
16255    case BO_Comma:
16256      ResultType = RHSExpr->getType();
16257      break;
16258    default:
16259      ResultType = Context.DependentTy;
16260      break;
16261    }
16262    return BinaryOperator::Create(Context, LHSExpr, RHSExpr, Opc, ResultType,
16263                                  VK_PRValue, OK_Ordinary, OpLoc,
16264                                  CurFPFeatureOverrides());
16265  }
16266
16267  // Build a built-in binary operation.
16268  return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
16269}
16270
16271static bool isOverflowingIntegerType(ASTContext &Ctx, QualType T) {
16272  if (T.isNull() || T->isDependentType())
16273    return false;
16274
16275  if (!Ctx.isPromotableIntegerType(T))
16276    return true;
16277
16278  return Ctx.getIntWidth(T) >= Ctx.getIntWidth(Ctx.IntTy);
16279}
16280
16281ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
16282                                      UnaryOperatorKind Opc, Expr *InputExpr,
16283                                      bool IsAfterAmp) {
16284  ExprResult Input = InputExpr;
16285  ExprValueKind VK = VK_PRValue;
16286  ExprObjectKind OK = OK_Ordinary;
16287  QualType resultType;
16288  bool CanOverflow = false;
16289
16290  bool ConvertHalfVec = false;
16291  if (getLangOpts().OpenCL) {
16292    QualType Ty = InputExpr->getType();
16293    // The only legal unary operation for atomics is '&'.
16294    if ((Opc != UO_AddrOf && Ty->isAtomicType()) ||
16295    // OpenCL special types - image, sampler, pipe, and blocks are to be used
16296    // only with a builtin functions and therefore should be disallowed here.
16297        (Ty->isImageType() || Ty->isSamplerT() || Ty->isPipeType()
16298        || Ty->isBlockPointerType())) {
16299      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
16300                       << InputExpr->getType()
16301                       << Input.get()->getSourceRange());
16302    }
16303  }
16304
16305  if (getLangOpts().HLSL && OpLoc.isValid()) {
16306    if (Opc == UO_AddrOf)
16307      return ExprError(Diag(OpLoc, diag::err_hlsl_operator_unsupported) << 0);
16308    if (Opc == UO_Deref)
16309      return ExprError(Diag(OpLoc, diag::err_hlsl_operator_unsupported) << 1);
16310  }
16311
16312  switch (Opc) {
16313  case UO_PreInc:
16314  case UO_PreDec:
16315  case UO_PostInc:
16316  case UO_PostDec:
16317    resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OK,
16318                                                OpLoc,
16319                                                Opc == UO_PreInc ||
16320                                                Opc == UO_PostInc,
16321                                                Opc == UO_PreInc ||
16322                                                Opc == UO_PreDec);
16323    CanOverflow = isOverflowingIntegerType(Context, resultType);
16324    break;
16325  case UO_AddrOf:
16326    resultType = CheckAddressOfOperand(Input, OpLoc);
16327    CheckAddressOfNoDeref(InputExpr);
16328    RecordModifiableNonNullParam(*this, InputExpr);
16329    break;
16330  case UO_Deref: {
16331    Input = DefaultFunctionArrayLvalueConversion(Input.get());
16332    if (Input.isInvalid()) return ExprError();
16333    resultType =
16334        CheckIndirectionOperand(*this, Input.get(), VK, OpLoc, IsAfterAmp);
16335    break;
16336  }
16337  case UO_Plus:
16338  case UO_Minus:
16339    CanOverflow = Opc == UO_Minus &&
16340                  isOverflowingIntegerType(Context, Input.get()->getType());
16341    Input = UsualUnaryConversions(Input.get());
16342    if (Input.isInvalid()) return ExprError();
16343    // Unary plus and minus require promoting an operand of half vector to a
16344    // float vector and truncating the result back to a half vector. For now, we
16345    // do this only when HalfArgsAndReturns is set (that is, when the target is
16346    // arm or arm64).
16347    ConvertHalfVec = needsConversionOfHalfVec(true, Context, Input.get());
16348
16349    // If the operand is a half vector, promote it to a float vector.
16350    if (ConvertHalfVec)
16351      Input = convertVector(Input.get(), Context.FloatTy, *this);
16352    resultType = Input.get()->getType();
16353    if (resultType->isDependentType())
16354      break;
16355    if (resultType->isArithmeticType()) // C99 6.5.3.3p1
16356      break;
16357    else if (resultType->isVectorType() &&
16358             // The z vector extensions don't allow + or - with bool vectors.
16359             (!Context.getLangOpts().ZVector ||
16360              resultType->castAs<VectorType>()->getVectorKind() !=
16361                  VectorKind::AltiVecBool))
16362      break;
16363    else if (resultType->isSveVLSBuiltinType()) // SVE vectors allow + and -
16364      break;
16365    else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6
16366             Opc == UO_Plus &&
16367             resultType->isPointerType())
16368      break;
16369
16370    return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
16371      << resultType << Input.get()->getSourceRange());
16372
16373  case UO_Not: // bitwise complement
16374    Input = UsualUnaryConversions(Input.get());
16375    if (Input.isInvalid())
16376      return ExprError();
16377    resultType = Input.get()->getType();
16378    if (resultType->isDependentType())
16379      break;
16380    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
16381    if (resultType->isComplexType() || resultType->isComplexIntegerType())
16382      // C99 does not support '~' for complex conjugation.
16383      Diag(OpLoc, diag::ext_integer_complement_complex)
16384          << resultType << Input.get()->getSourceRange();
16385    else if (resultType->hasIntegerRepresentation())
16386      break;
16387    else if (resultType->isExtVectorType() && Context.getLangOpts().OpenCL) {
16388      // OpenCL v1.1 s6.3.f: The bitwise operator not (~) does not operate
16389      // on vector float types.
16390      QualType T = resultType->castAs<ExtVectorType>()->getElementType();
16391      if (!T->isIntegerType())
16392        return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
16393                          << resultType << Input.get()->getSourceRange());
16394    } else {
16395      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
16396                       << resultType << Input.get()->getSourceRange());
16397    }
16398    break;
16399
16400  case UO_LNot: // logical negation
16401    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
16402    Input = DefaultFunctionArrayLvalueConversion(Input.get());
16403    if (Input.isInvalid()) return ExprError();
16404    resultType = Input.get()->getType();
16405
16406    // Though we still have to promote half FP to float...
16407    if (resultType->isHalfType() && !Context.getLangOpts().NativeHalfType) {
16408      Input = ImpCastExprToType(Input.get(), Context.FloatTy, CK_FloatingCast).get();
16409      resultType = Context.FloatTy;
16410    }
16411
16412    // WebAsembly tables can't be used in unary expressions.
16413    if (resultType->isPointerType() &&
16414        resultType->getPointeeType().isWebAssemblyReferenceType()) {
16415      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
16416                       << resultType << Input.get()->getSourceRange());
16417    }
16418
16419    if (resultType->isDependentType())
16420      break;
16421    if (resultType->isScalarType() && !isScopedEnumerationType(resultType)) {
16422      // C99 6.5.3.3p1: ok, fallthrough;
16423      if (Context.getLangOpts().CPlusPlus) {
16424        // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
16425        // operand contextually converted to bool.
16426        Input = ImpCastExprToType(Input.get(), Context.BoolTy,
16427                                  ScalarTypeToBooleanCastKind(resultType));
16428      } else if (Context.getLangOpts().OpenCL &&
16429                 Context.getLangOpts().OpenCLVersion < 120) {
16430        // OpenCL v1.1 6.3.h: The logical operator not (!) does not
16431        // operate on scalar float types.
16432        if (!resultType->isIntegerType() && !resultType->isPointerType())
16433          return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
16434                           << resultType << Input.get()->getSourceRange());
16435      }
16436    } else if (resultType->isExtVectorType()) {
16437      if (Context.getLangOpts().OpenCL &&
16438          Context.getLangOpts().getOpenCLCompatibleVersion() < 120) {
16439        // OpenCL v1.1 6.3.h: The logical operator not (!) does not
16440        // operate on vector float types.
16441        QualType T = resultType->castAs<ExtVectorType>()->getElementType();
16442        if (!T->isIntegerType())
16443          return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
16444                           << resultType << Input.get()->getSourceRange());
16445      }
16446      // Vector logical not returns the signed variant of the operand type.
16447      resultType = GetSignedVectorType(resultType);
16448      break;
16449    } else if (Context.getLangOpts().CPlusPlus && resultType->isVectorType()) {
16450      const VectorType *VTy = resultType->castAs<VectorType>();
16451      if (VTy->getVectorKind() != VectorKind::Generic)
16452        return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
16453                         << resultType << Input.get()->getSourceRange());
16454
16455      // Vector logical not returns the signed variant of the operand type.
16456      resultType = GetSignedVectorType(resultType);
16457      break;
16458    } else {
16459      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
16460        << resultType << Input.get()->getSourceRange());
16461    }
16462
16463    // LNot always has type int. C99 6.5.3.3p5.
16464    // In C++, it's bool. C++ 5.3.1p8
16465    resultType = Context.getLogicalOperationType();
16466    break;
16467  case UO_Real:
16468  case UO_Imag:
16469    resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
16470    // _Real maps ordinary l-values into ordinary l-values. _Imag maps ordinary
16471    // complex l-values to ordinary l-values and all other values to r-values.
16472    if (Input.isInvalid()) return ExprError();
16473    if (Opc == UO_Real || Input.get()->getType()->isAnyComplexType()) {
16474      if (Input.get()->isGLValue() &&
16475          Input.get()->getObjectKind() == OK_Ordinary)
16476        VK = Input.get()->getValueKind();
16477    } else if (!getLangOpts().CPlusPlus) {
16478      // In C, a volatile scalar is read by __imag. In C++, it is not.
16479      Input = DefaultLvalueConversion(Input.get());
16480    }
16481    break;
16482  case UO_Extension:
16483    resultType = Input.get()->getType();
16484    VK = Input.get()->getValueKind();
16485    OK = Input.get()->getObjectKind();
16486    break;
16487  case UO_Coawait:
16488    // It's unnecessary to represent the pass-through operator co_await in the
16489    // AST; just return the input expression instead.
16490    assert(!Input.get()->getType()->isDependentType() &&
16491                   "the co_await expression must be non-dependant before "
16492                   "building operator co_await");
16493    return Input;
16494  }
16495  if (resultType.isNull() || Input.isInvalid())
16496    return ExprError();
16497
16498  // Check for array bounds violations in the operand of the UnaryOperator,
16499  // except for the '*' and '&' operators that have to be handled specially
16500  // by CheckArrayAccess (as there are special cases like &array[arraysize]
16501  // that are explicitly defined as valid by the standard).
16502  if (Opc != UO_AddrOf && Opc != UO_Deref)
16503    CheckArrayAccess(Input.get());
16504
16505  auto *UO =
16506      UnaryOperator::Create(Context, Input.get(), Opc, resultType, VK, OK,
16507                            OpLoc, CanOverflow, CurFPFeatureOverrides());
16508
16509  if (Opc == UO_Deref && UO->getType()->hasAttr(attr::NoDeref) &&
16510      !isa<ArrayType>(UO->getType().getDesugaredType(Context)) &&
16511      !isUnevaluatedContext())
16512    ExprEvalContexts.back().PossibleDerefs.insert(UO);
16513
16514  // Convert the result back to a half vector.
16515  if (ConvertHalfVec)
16516    return convertVector(UO, Context.HalfTy, *this);
16517  return UO;
16518}
16519
16520/// Determine whether the given expression is a qualified member
16521/// access expression, of a form that could be turned into a pointer to member
16522/// with the address-of operator.
16523bool Sema::isQualifiedMemberAccess(Expr *E) {
16524  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
16525    if (!DRE->getQualifier())
16526      return false;
16527
16528    ValueDecl *VD = DRE->getDecl();
16529    if (!VD->isCXXClassMember())
16530      return false;
16531
16532    if (isa<FieldDecl>(VD) || isa<IndirectFieldDecl>(VD))
16533      return true;
16534    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(VD))
16535      return Method->isImplicitObjectMemberFunction();
16536
16537    return false;
16538  }
16539
16540  if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
16541    if (!ULE->getQualifier())
16542      return false;
16543
16544    for (NamedDecl *D : ULE->decls()) {
16545      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
16546        if (Method->isImplicitObjectMemberFunction())
16547          return true;
16548      } else {
16549        // Overload set does not contain methods.
16550        break;
16551      }
16552    }
16553
16554    return false;
16555  }
16556
16557  return false;
16558}
16559
16560ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
16561                              UnaryOperatorKind Opc, Expr *Input,
16562                              bool IsAfterAmp) {
16563  // First things first: handle placeholders so that the
16564  // overloaded-operator check considers the right type.
16565  if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) {
16566    // Increment and decrement of pseudo-object references.
16567    if (pty->getKind() == BuiltinType::PseudoObject &&
16568        UnaryOperator::isIncrementDecrementOp(Opc))
16569      return checkPseudoObjectIncDec(S, OpLoc, Opc, Input);
16570
16571    // extension is always a builtin operator.
16572    if (Opc == UO_Extension)
16573      return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
16574
16575    // & gets special logic for several kinds of placeholder.
16576    // The builtin code knows what to do.
16577    if (Opc == UO_AddrOf &&
16578        (pty->getKind() == BuiltinType::Overload ||
16579         pty->getKind() == BuiltinType::UnknownAny ||
16580         pty->getKind() == BuiltinType::BoundMember))
16581      return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
16582
16583    // Anything else needs to be handled now.
16584    ExprResult Result = CheckPlaceholderExpr(Input);
16585    if (Result.isInvalid()) return ExprError();
16586    Input = Result.get();
16587  }
16588
16589  if (getLangOpts().CPlusPlus && Input->getType()->isOverloadableType() &&
16590      UnaryOperator::getOverloadedOperator(Opc) != OO_None &&
16591      !(Opc == UO_AddrOf && isQualifiedMemberAccess(Input))) {
16592    // Find all of the overloaded operators visible from this point.
16593    UnresolvedSet<16> Functions;
16594    OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
16595    if (S && OverOp != OO_None)
16596      LookupOverloadedOperatorName(OverOp, S, Functions);
16597
16598    return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
16599  }
16600
16601  return CreateBuiltinUnaryOp(OpLoc, Opc, Input, IsAfterAmp);
16602}
16603
16604// Unary Operators.  'Tok' is the token for the operator.
16605ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc, tok::TokenKind Op,
16606                              Expr *Input, bool IsAfterAmp) {
16607  return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input,
16608                      IsAfterAmp);
16609}
16610
16611/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
16612ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
16613                                LabelDecl *TheDecl) {
16614  TheDecl->markUsed(Context);
16615  // Create the AST node.  The address of a label always has type 'void*'.
16616  auto *Res = new (Context) AddrLabelExpr(
16617      OpLoc, LabLoc, TheDecl, Context.getPointerType(Context.VoidTy));
16618
16619  if (getCurFunction())
16620    getCurFunction()->AddrLabels.push_back(Res);
16621
16622  return Res;
16623}
16624
16625void Sema::ActOnStartStmtExpr() {
16626  PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
16627  // Make sure we diagnose jumping into a statement expression.
16628  setFunctionHasBranchProtectedScope();
16629}
16630
16631void Sema::ActOnStmtExprError() {
16632  // Note that function is also called by TreeTransform when leaving a
16633  // StmtExpr scope without rebuilding anything.
16634
16635  DiscardCleanupsInEvaluationContext();
16636  PopExpressionEvaluationContext();
16637}
16638
16639ExprResult Sema::ActOnStmtExpr(Scope *S, SourceLocation LPLoc, Stmt *SubStmt,
16640                               SourceLocation RPLoc) {
16641  return BuildStmtExpr(LPLoc, SubStmt, RPLoc, getTemplateDepth(S));
16642}
16643
16644ExprResult Sema::BuildStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
16645                               SourceLocation RPLoc, unsigned TemplateDepth) {
16646  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
16647  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
16648
16649  if (hasAnyUnrecoverableErrorsInThisFunction())
16650    DiscardCleanupsInEvaluationContext();
16651  assert(!Cleanup.exprNeedsCleanups() &&
16652         "cleanups within StmtExpr not correctly bound!");
16653  PopExpressionEvaluationContext();
16654
16655  // FIXME: there are a variety of strange constraints to enforce here, for
16656  // example, it is not possible to goto into a stmt expression apparently.
16657  // More semantic analysis is needed.
16658
16659  // If there are sub-stmts in the compound stmt, take the type of the last one
16660  // as the type of the stmtexpr.
16661  QualType Ty = Context.VoidTy;
16662  bool StmtExprMayBindToTemp = false;
16663  if (!Compound->body_empty()) {
16664    // For GCC compatibility we get the last Stmt excluding trailing NullStmts.
16665    if (const auto *LastStmt =
16666            dyn_cast<ValueStmt>(Compound->getStmtExprResult())) {
16667      if (const Expr *Value = LastStmt->getExprStmt()) {
16668        StmtExprMayBindToTemp = true;
16669        Ty = Value->getType();
16670      }
16671    }
16672  }
16673
16674  // FIXME: Check that expression type is complete/non-abstract; statement
16675  // expressions are not lvalues.
16676  Expr *ResStmtExpr =
16677      new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc, TemplateDepth);
16678  if (StmtExprMayBindToTemp)
16679    return MaybeBindToTemporary(ResStmtExpr);
16680  return ResStmtExpr;
16681}
16682
16683ExprResult Sema::ActOnStmtExprResult(ExprResult ER) {
16684  if (ER.isInvalid())
16685    return ExprError();
16686
16687  // Do function/array conversion on the last expression, but not
16688  // lvalue-to-rvalue.  However, initialize an unqualified type.
16689  ER = DefaultFunctionArrayConversion(ER.get());
16690  if (ER.isInvalid())
16691    return ExprError();
16692  Expr *E = ER.get();
16693
16694  if (E->isTypeDependent())
16695    return E;
16696
16697  // In ARC, if the final expression ends in a consume, splice
16698  // the consume out and bind it later.  In the alternate case
16699  // (when dealing with a retainable type), the result
16700  // initialization will create a produce.  In both cases the
16701  // result will be +1, and we'll need to balance that out with
16702  // a bind.
16703  auto *Cast = dyn_cast<ImplicitCastExpr>(E);
16704  if (Cast && Cast->getCastKind() == CK_ARCConsumeObject)
16705    return Cast->getSubExpr();
16706
16707  // FIXME: Provide a better location for the initialization.
16708  return PerformCopyInitialization(
16709      InitializedEntity::InitializeStmtExprResult(
16710          E->getBeginLoc(), E->getType().getUnqualifiedType()),
16711      SourceLocation(), E);
16712}
16713
16714ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
16715                                      TypeSourceInfo *TInfo,
16716                                      ArrayRef<OffsetOfComponent> Components,
16717                                      SourceLocation RParenLoc) {
16718  QualType ArgTy = TInfo->getType();
16719  bool Dependent = ArgTy->isDependentType();
16720  SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
16721
16722  // We must have at least one component that refers to the type, and the first
16723  // one is known to be a field designator.  Verify that the ArgTy represents
16724  // a struct/union/class.
16725  if (!Dependent && !ArgTy->isRecordType())
16726    return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
16727                       << ArgTy << TypeRange);
16728
16729  // Type must be complete per C99 7.17p3 because a declaring a variable
16730  // with an incomplete type would be ill-formed.
16731  if (!Dependent
16732      && RequireCompleteType(BuiltinLoc, ArgTy,
16733                             diag::err_offsetof_incomplete_type, TypeRange))
16734    return ExprError();
16735
16736  bool DidWarnAboutNonPOD = false;
16737  QualType CurrentType = ArgTy;
16738  SmallVector<OffsetOfNode, 4> Comps;
16739  SmallVector<Expr*, 4> Exprs;
16740  for (const OffsetOfComponent &OC : Components) {
16741    if (OC.isBrackets) {
16742      // Offset of an array sub-field.  TODO: Should we allow vector elements?
16743      if (!CurrentType->isDependentType()) {
16744        const ArrayType *AT = Context.getAsArrayType(CurrentType);
16745        if(!AT)
16746          return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
16747                           << CurrentType);
16748        CurrentType = AT->getElementType();
16749      } else
16750        CurrentType = Context.DependentTy;
16751
16752      ExprResult IdxRval = DefaultLvalueConversion(static_cast<Expr*>(OC.U.E));
16753      if (IdxRval.isInvalid())
16754        return ExprError();
16755      Expr *Idx = IdxRval.get();
16756
16757      // The expression must be an integral expression.
16758      // FIXME: An integral constant expression?
16759      if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
16760          !Idx->getType()->isIntegerType())
16761        return ExprError(
16762            Diag(Idx->getBeginLoc(), diag::err_typecheck_subscript_not_integer)
16763            << Idx->getSourceRange());
16764
16765      // Record this array index.
16766      Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
16767      Exprs.push_back(Idx);
16768      continue;
16769    }
16770
16771    // Offset of a field.
16772    if (CurrentType->isDependentType()) {
16773      // We have the offset of a field, but we can't look into the dependent
16774      // type. Just record the identifier of the field.
16775      Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
16776      CurrentType = Context.DependentTy;
16777      continue;
16778    }
16779
16780    // We need to have a complete type to look into.
16781    if (RequireCompleteType(OC.LocStart, CurrentType,
16782                            diag::err_offsetof_incomplete_type))
16783      return ExprError();
16784
16785    // Look for the designated field.
16786    const RecordType *RC = CurrentType->getAs<RecordType>();
16787    if (!RC)
16788      return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
16789                       << CurrentType);
16790    RecordDecl *RD = RC->getDecl();
16791
16792    // C++ [lib.support.types]p5:
16793    //   The macro offsetof accepts a restricted set of type arguments in this
16794    //   International Standard. type shall be a POD structure or a POD union
16795    //   (clause 9).
16796    // C++11 [support.types]p4:
16797    //   If type is not a standard-layout class (Clause 9), the results are
16798    //   undefined.
16799    if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
16800      bool IsSafe = LangOpts.CPlusPlus11? CRD->isStandardLayout() : CRD->isPOD();
16801      unsigned DiagID =
16802        LangOpts.CPlusPlus11? diag::ext_offsetof_non_standardlayout_type
16803                            : diag::ext_offsetof_non_pod_type;
16804
16805      if (!IsSafe && !DidWarnAboutNonPOD && !isUnevaluatedContext()) {
16806        Diag(BuiltinLoc, DiagID)
16807            << SourceRange(Components[0].LocStart, OC.LocEnd) << CurrentType;
16808        DidWarnAboutNonPOD = true;
16809      }
16810    }
16811
16812    // Look for the field.
16813    LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
16814    LookupQualifiedName(R, RD);
16815    FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
16816    IndirectFieldDecl *IndirectMemberDecl = nullptr;
16817    if (!MemberDecl) {
16818      if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
16819        MemberDecl = IndirectMemberDecl->getAnonField();
16820    }
16821
16822    if (!MemberDecl) {
16823      // Lookup could be ambiguous when looking up a placeholder variable
16824      // __builtin_offsetof(S, _).
16825      // In that case we would already have emitted a diagnostic
16826      if (!R.isAmbiguous())
16827        Diag(BuiltinLoc, diag::err_no_member)
16828            << OC.U.IdentInfo << RD << SourceRange(OC.LocStart, OC.LocEnd);
16829      return ExprError();
16830    }
16831
16832    // C99 7.17p3:
16833    //   (If the specified member is a bit-field, the behavior is undefined.)
16834    //
16835    // We diagnose this as an error.
16836    if (MemberDecl->isBitField()) {
16837      Diag(OC.LocEnd, diag::err_offsetof_bitfield)
16838        << MemberDecl->getDeclName()
16839        << SourceRange(BuiltinLoc, RParenLoc);
16840      Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
16841      return ExprError();
16842    }
16843
16844    RecordDecl *Parent = MemberDecl->getParent();
16845    if (IndirectMemberDecl)
16846      Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
16847
16848    // If the member was found in a base class, introduce OffsetOfNodes for
16849    // the base class indirections.
16850    CXXBasePaths Paths;
16851    if (IsDerivedFrom(OC.LocStart, CurrentType, Context.getTypeDeclType(Parent),
16852                      Paths)) {
16853      if (Paths.getDetectedVirtual()) {
16854        Diag(OC.LocEnd, diag::err_offsetof_field_of_virtual_base)
16855          << MemberDecl->getDeclName()
16856          << SourceRange(BuiltinLoc, RParenLoc);
16857        return ExprError();
16858      }
16859
16860      CXXBasePath &Path = Paths.front();
16861      for (const CXXBasePathElement &B : Path)
16862        Comps.push_back(OffsetOfNode(B.Base));
16863    }
16864
16865    if (IndirectMemberDecl) {
16866      for (auto *FI : IndirectMemberDecl->chain()) {
16867        assert(isa<FieldDecl>(FI));
16868        Comps.push_back(OffsetOfNode(OC.LocStart,
16869                                     cast<FieldDecl>(FI), OC.LocEnd));
16870      }
16871    } else
16872      Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
16873
16874    CurrentType = MemberDecl->getType().getNonReferenceType();
16875  }
16876
16877  return OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc, TInfo,
16878                              Comps, Exprs, RParenLoc);
16879}
16880
16881ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
16882                                      SourceLocation BuiltinLoc,
16883                                      SourceLocation TypeLoc,
16884                                      ParsedType ParsedArgTy,
16885                                      ArrayRef<OffsetOfComponent> Components,
16886                                      SourceLocation RParenLoc) {
16887
16888  TypeSourceInfo *ArgTInfo;
16889  QualType ArgTy = GetTypeFromParser(ParsedArgTy, &ArgTInfo);
16890  if (ArgTy.isNull())
16891    return ExprError();
16892
16893  if (!ArgTInfo)
16894    ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
16895
16896  return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, Components, RParenLoc);
16897}
16898
16899
16900ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
16901                                 Expr *CondExpr,
16902                                 Expr *LHSExpr, Expr *RHSExpr,
16903                                 SourceLocation RPLoc) {
16904  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
16905
16906  ExprValueKind VK = VK_PRValue;
16907  ExprObjectKind OK = OK_Ordinary;
16908  QualType resType;
16909  bool CondIsTrue = false;
16910  if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
16911    resType = Context.DependentTy;
16912  } else {
16913    // The conditional expression is required to be a constant expression.
16914    llvm::APSInt condEval(32);
16915    ExprResult CondICE = VerifyIntegerConstantExpression(
16916        CondExpr, &condEval, diag::err_typecheck_choose_expr_requires_constant);
16917    if (CondICE.isInvalid())
16918      return ExprError();
16919    CondExpr = CondICE.get();
16920    CondIsTrue = condEval.getZExtValue();
16921
16922    // If the condition is > zero, then the AST type is the same as the LHSExpr.
16923    Expr *ActiveExpr = CondIsTrue ? LHSExpr : RHSExpr;
16924
16925    resType = ActiveExpr->getType();
16926    VK = ActiveExpr->getValueKind();
16927    OK = ActiveExpr->getObjectKind();
16928  }
16929
16930  return new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
16931                                  resType, VK, OK, RPLoc, CondIsTrue);
16932}
16933
16934//===----------------------------------------------------------------------===//
16935// Clang Extensions.
16936//===----------------------------------------------------------------------===//
16937
16938/// ActOnBlockStart - This callback is invoked when a block literal is started.
16939void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) {
16940  BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
16941
16942  if (LangOpts.CPlusPlus) {
16943    MangleNumberingContext *MCtx;
16944    Decl *ManglingContextDecl;
16945    std::tie(MCtx, ManglingContextDecl) =
16946        getCurrentMangleNumberContext(Block->getDeclContext());
16947    if (MCtx) {
16948      unsigned ManglingNumber = MCtx->getManglingNumber(Block);
16949      Block->setBlockMangling(ManglingNumber, ManglingContextDecl);
16950    }
16951  }
16952
16953  PushBlockScope(CurScope, Block);
16954  CurContext->addDecl(Block);
16955  if (CurScope)
16956    PushDeclContext(CurScope, Block);
16957  else
16958    CurContext = Block;
16959
16960  getCurBlock()->HasImplicitReturnType = true;
16961
16962  // Enter a new evaluation context to insulate the block from any
16963  // cleanups from the enclosing full-expression.
16964  PushExpressionEvaluationContext(
16965      ExpressionEvaluationContext::PotentiallyEvaluated);
16966}
16967
16968void Sema::ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo,
16969                               Scope *CurScope) {
16970  assert(ParamInfo.getIdentifier() == nullptr &&
16971         "block-id should have no identifier!");
16972  assert(ParamInfo.getContext() == DeclaratorContext::BlockLiteral);
16973  BlockScopeInfo *CurBlock = getCurBlock();
16974
16975  TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo);
16976  QualType T = Sig->getType();
16977
16978  // FIXME: We should allow unexpanded parameter packs here, but that would,
16979  // in turn, make the block expression contain unexpanded parameter packs.
16980  if (DiagnoseUnexpandedParameterPack(CaretLoc, Sig, UPPC_Block)) {
16981    // Drop the parameters.
16982    FunctionProtoType::ExtProtoInfo EPI;
16983    EPI.HasTrailingReturn = false;
16984    EPI.TypeQuals.addConst();
16985    T = Context.getFunctionType(Context.DependentTy, std::nullopt, EPI);
16986    Sig = Context.getTrivialTypeSourceInfo(T);
16987  }
16988
16989  // GetTypeForDeclarator always produces a function type for a block
16990  // literal signature.  Furthermore, it is always a FunctionProtoType
16991  // unless the function was written with a typedef.
16992  assert(T->isFunctionType() &&
16993         "GetTypeForDeclarator made a non-function block signature");
16994
16995  // Look for an explicit signature in that function type.
16996  FunctionProtoTypeLoc ExplicitSignature;
16997
16998  if ((ExplicitSignature = Sig->getTypeLoc()
16999                               .getAsAdjusted<FunctionProtoTypeLoc>())) {
17000
17001    // Check whether that explicit signature was synthesized by
17002    // GetTypeForDeclarator.  If so, don't save that as part of the
17003    // written signature.
17004    if (ExplicitSignature.getLocalRangeBegin() ==
17005        ExplicitSignature.getLocalRangeEnd()) {
17006      // This would be much cheaper if we stored TypeLocs instead of
17007      // TypeSourceInfos.
17008      TypeLoc Result = ExplicitSignature.getReturnLoc();
17009      unsigned Size = Result.getFullDataSize();
17010      Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
17011      Sig->getTypeLoc().initializeFullCopy(Result, Size);
17012
17013      ExplicitSignature = FunctionProtoTypeLoc();
17014    }
17015  }
17016
17017  CurBlock->TheDecl->setSignatureAsWritten(Sig);
17018  CurBlock->FunctionType = T;
17019
17020  const auto *Fn = T->castAs<FunctionType>();
17021  QualType RetTy = Fn->getReturnType();
17022  bool isVariadic =
17023      (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
17024
17025  CurBlock->TheDecl->setIsVariadic(isVariadic);
17026
17027  // Context.DependentTy is used as a placeholder for a missing block
17028  // return type.  TODO:  what should we do with declarators like:
17029  //   ^ * { ... }
17030  // If the answer is "apply template argument deduction"....
17031  if (RetTy != Context.DependentTy) {
17032    CurBlock->ReturnType = RetTy;
17033    CurBlock->TheDecl->setBlockMissingReturnType(false);
17034    CurBlock->HasImplicitReturnType = false;
17035  }
17036
17037  // Push block parameters from the declarator if we had them.
17038  SmallVector<ParmVarDecl*, 8> Params;
17039  if (ExplicitSignature) {
17040    for (unsigned I = 0, E = ExplicitSignature.getNumParams(); I != E; ++I) {
17041      ParmVarDecl *Param = ExplicitSignature.getParam(I);
17042      if (Param->getIdentifier() == nullptr && !Param->isImplicit() &&
17043          !Param->isInvalidDecl() && !getLangOpts().CPlusPlus) {
17044        // Diagnose this as an extension in C17 and earlier.
17045        if (!getLangOpts().C23)
17046          Diag(Param->getLocation(), diag::ext_parameter_name_omitted_c23);
17047      }
17048      Params.push_back(Param);
17049    }
17050
17051  // Fake up parameter variables if we have a typedef, like
17052  //   ^ fntype { ... }
17053  } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
17054    for (const auto &I : Fn->param_types()) {
17055      ParmVarDecl *Param = BuildParmVarDeclForTypedef(
17056          CurBlock->TheDecl, ParamInfo.getBeginLoc(), I);
17057      Params.push_back(Param);
17058    }
17059  }
17060
17061  // Set the parameters on the block decl.
17062  if (!Params.empty()) {
17063    CurBlock->TheDecl->setParams(Params);
17064    CheckParmsForFunctionDef(CurBlock->TheDecl->parameters(),
17065                             /*CheckParameterNames=*/false);
17066  }
17067
17068  // Finally we can process decl attributes.
17069  ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
17070
17071  // Put the parameter variables in scope.
17072  for (auto *AI : CurBlock->TheDecl->parameters()) {
17073    AI->setOwningFunction(CurBlock->TheDecl);
17074
17075    // If this has an identifier, add it to the scope stack.
17076    if (AI->getIdentifier()) {
17077      CheckShadow(CurBlock->TheScope, AI);
17078
17079      PushOnScopeChains(AI, CurBlock->TheScope);
17080    }
17081
17082    if (AI->isInvalidDecl())
17083      CurBlock->TheDecl->setInvalidDecl();
17084  }
17085}
17086
17087/// ActOnBlockError - If there is an error parsing a block, this callback
17088/// is invoked to pop the information about the block from the action impl.
17089void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
17090  // Leave the expression-evaluation context.
17091  DiscardCleanupsInEvaluationContext();
17092  PopExpressionEvaluationContext();
17093
17094  // Pop off CurBlock, handle nested blocks.
17095  PopDeclContext();
17096  PopFunctionScopeInfo();
17097}
17098
17099/// ActOnBlockStmtExpr - This is called when the body of a block statement
17100/// literal was successfully completed.  ^(int x){...}
17101ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
17102                                    Stmt *Body, Scope *CurScope) {
17103  // If blocks are disabled, emit an error.
17104  if (!LangOpts.Blocks)
17105    Diag(CaretLoc, diag::err_blocks_disable) << LangOpts.OpenCL;
17106
17107  // Leave the expression-evaluation context.
17108  if (hasAnyUnrecoverableErrorsInThisFunction())
17109    DiscardCleanupsInEvaluationContext();
17110  assert(!Cleanup.exprNeedsCleanups() &&
17111         "cleanups within block not correctly bound!");
17112  PopExpressionEvaluationContext();
17113
17114  BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
17115  BlockDecl *BD = BSI->TheDecl;
17116
17117  if (BSI->HasImplicitReturnType)
17118    deduceClosureReturnType(*BSI);
17119
17120  QualType RetTy = Context.VoidTy;
17121  if (!BSI->ReturnType.isNull())
17122    RetTy = BSI->ReturnType;
17123
17124  bool NoReturn = BD->hasAttr<NoReturnAttr>();
17125  QualType BlockTy;
17126
17127  // If the user wrote a function type in some form, try to use that.
17128  if (!BSI->FunctionType.isNull()) {
17129    const FunctionType *FTy = BSI->FunctionType->castAs<FunctionType>();
17130
17131    FunctionType::ExtInfo Ext = FTy->getExtInfo();
17132    if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
17133
17134    // Turn protoless block types into nullary block types.
17135    if (isa<FunctionNoProtoType>(FTy)) {
17136      FunctionProtoType::ExtProtoInfo EPI;
17137      EPI.ExtInfo = Ext;
17138      BlockTy = Context.getFunctionType(RetTy, std::nullopt, EPI);
17139
17140      // Otherwise, if we don't need to change anything about the function type,
17141      // preserve its sugar structure.
17142    } else if (FTy->getReturnType() == RetTy &&
17143               (!NoReturn || FTy->getNoReturnAttr())) {
17144      BlockTy = BSI->FunctionType;
17145
17146    // Otherwise, make the minimal modifications to the function type.
17147    } else {
17148      const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
17149      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
17150      EPI.TypeQuals = Qualifiers();
17151      EPI.ExtInfo = Ext;
17152      BlockTy = Context.getFunctionType(RetTy, FPT->getParamTypes(), EPI);
17153    }
17154
17155  // If we don't have a function type, just build one from nothing.
17156  } else {
17157    FunctionProtoType::ExtProtoInfo EPI;
17158    EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn);
17159    BlockTy = Context.getFunctionType(RetTy, std::nullopt, EPI);
17160  }
17161
17162  DiagnoseUnusedParameters(BD->parameters());
17163  BlockTy = Context.getBlockPointerType(BlockTy);
17164
17165  // If needed, diagnose invalid gotos and switches in the block.
17166  if (getCurFunction()->NeedsScopeChecking() &&
17167      !PP.isCodeCompletionEnabled())
17168    DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
17169
17170  BD->setBody(cast<CompoundStmt>(Body));
17171
17172  if (Body && getCurFunction()->HasPotentialAvailabilityViolations)
17173    DiagnoseUnguardedAvailabilityViolations(BD);
17174
17175  // Try to apply the named return value optimization. We have to check again
17176  // if we can do this, though, because blocks keep return statements around
17177  // to deduce an implicit return type.
17178  if (getLangOpts().CPlusPlus && RetTy->isRecordType() &&
17179      !BD->isDependentContext())
17180    computeNRVO(Body, BSI);
17181
17182  if (RetTy.hasNonTrivialToPrimitiveDestructCUnion() ||
17183      RetTy.hasNonTrivialToPrimitiveCopyCUnion())
17184    checkNonTrivialCUnion(RetTy, BD->getCaretLocation(), NTCUC_FunctionReturn,
17185                          NTCUK_Destruct|NTCUK_Copy);
17186
17187  PopDeclContext();
17188
17189  // Set the captured variables on the block.
17190  SmallVector<BlockDecl::Capture, 4> Captures;
17191  for (Capture &Cap : BSI->Captures) {
17192    if (Cap.isInvalid() || Cap.isThisCapture())
17193      continue;
17194    // Cap.getVariable() is always a VarDecl because
17195    // blocks cannot capture structured bindings or other ValueDecl kinds.
17196    auto *Var = cast<VarDecl>(Cap.getVariable());
17197    Expr *CopyExpr = nullptr;
17198    if (getLangOpts().CPlusPlus && Cap.isCopyCapture()) {
17199      if (const RecordType *Record =
17200              Cap.getCaptureType()->getAs<RecordType>()) {
17201        // The capture logic needs the destructor, so make sure we mark it.
17202        // Usually this is unnecessary because most local variables have
17203        // their destructors marked at declaration time, but parameters are
17204        // an exception because it's technically only the call site that
17205        // actually requires the destructor.
17206        if (isa<ParmVarDecl>(Var))
17207          FinalizeVarWithDestructor(Var, Record);
17208
17209        // Enter a separate potentially-evaluated context while building block
17210        // initializers to isolate their cleanups from those of the block
17211        // itself.
17212        // FIXME: Is this appropriate even when the block itself occurs in an
17213        // unevaluated operand?
17214        EnterExpressionEvaluationContext EvalContext(
17215            *this, ExpressionEvaluationContext::PotentiallyEvaluated);
17216
17217        SourceLocation Loc = Cap.getLocation();
17218
17219        ExprResult Result = BuildDeclarationNameExpr(
17220            CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var);
17221
17222        // According to the blocks spec, the capture of a variable from
17223        // the stack requires a const copy constructor.  This is not true
17224        // of the copy/move done to move a __block variable to the heap.
17225        if (!Result.isInvalid() &&
17226            !Result.get()->getType().isConstQualified()) {
17227          Result = ImpCastExprToType(Result.get(),
17228                                     Result.get()->getType().withConst(),
17229                                     CK_NoOp, VK_LValue);
17230        }
17231
17232        if (!Result.isInvalid()) {
17233          Result = PerformCopyInitialization(
17234              InitializedEntity::InitializeBlock(Var->getLocation(),
17235                                                 Cap.getCaptureType()),
17236              Loc, Result.get());
17237        }
17238
17239        // Build a full-expression copy expression if initialization
17240        // succeeded and used a non-trivial constructor.  Recover from
17241        // errors by pretending that the copy isn't necessary.
17242        if (!Result.isInvalid() &&
17243            !cast<CXXConstructExpr>(Result.get())->getConstructor()
17244                ->isTrivial()) {
17245          Result = MaybeCreateExprWithCleanups(Result);
17246          CopyExpr = Result.get();
17247        }
17248      }
17249    }
17250
17251    BlockDecl::Capture NewCap(Var, Cap.isBlockCapture(), Cap.isNested(),
17252                              CopyExpr);
17253    Captures.push_back(NewCap);
17254  }
17255  BD->setCaptures(Context, Captures, BSI->CXXThisCaptureIndex != 0);
17256
17257  // Pop the block scope now but keep it alive to the end of this function.
17258  AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
17259  PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo(&WP, BD, BlockTy);
17260
17261  BlockExpr *Result = new (Context) BlockExpr(BD, BlockTy);
17262
17263  // If the block isn't obviously global, i.e. it captures anything at
17264  // all, then we need to do a few things in the surrounding context:
17265  if (Result->getBlockDecl()->hasCaptures()) {
17266    // First, this expression has a new cleanup object.
17267    ExprCleanupObjects.push_back(Result->getBlockDecl());
17268    Cleanup.setExprNeedsCleanups(true);
17269
17270    // It also gets a branch-protected scope if any of the captured
17271    // variables needs destruction.
17272    for (const auto &CI : Result->getBlockDecl()->captures()) {
17273      const VarDecl *var = CI.getVariable();
17274      if (var->getType().isDestructedType() != QualType::DK_none) {
17275        setFunctionHasBranchProtectedScope();
17276        break;
17277      }
17278    }
17279  }
17280
17281  if (getCurFunction())
17282    getCurFunction()->addBlock(BD);
17283
17284  if (BD->isInvalidDecl())
17285    return CreateRecoveryExpr(Result->getBeginLoc(), Result->getEndLoc(),
17286                              {Result}, Result->getType());
17287  return Result;
17288}
17289
17290ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc, Expr *E, ParsedType Ty,
17291                            SourceLocation RPLoc) {
17292  TypeSourceInfo *TInfo;
17293  GetTypeFromParser(Ty, &TInfo);
17294  return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc);
17295}
17296
17297ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
17298                                Expr *E, TypeSourceInfo *TInfo,
17299                                SourceLocation RPLoc) {
17300  Expr *OrigExpr = E;
17301  bool IsMS = false;
17302
17303  // CUDA device code does not support varargs.
17304  if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
17305    if (const FunctionDecl *F = dyn_cast<FunctionDecl>(CurContext)) {
17306      CUDAFunctionTarget T = IdentifyCUDATarget(F);
17307      if (T == CFT_Global || T == CFT_Device || T == CFT_HostDevice)
17308        return ExprError(Diag(E->getBeginLoc(), diag::err_va_arg_in_device));
17309    }
17310  }
17311
17312  // NVPTX does not support va_arg expression.
17313  if (getLangOpts().OpenMP && getLangOpts().OpenMPIsTargetDevice &&
17314      Context.getTargetInfo().getTriple().isNVPTX())
17315    targetDiag(E->getBeginLoc(), diag::err_va_arg_in_device);
17316
17317  // It might be a __builtin_ms_va_list. (But don't ever mark a va_arg()
17318  // as Microsoft ABI on an actual Microsoft platform, where
17319  // __builtin_ms_va_list and __builtin_va_list are the same.)
17320  if (!E->isTypeDependent() && Context.getTargetInfo().hasBuiltinMSVaList() &&
17321      Context.getTargetInfo().getBuiltinVaListKind() != TargetInfo::CharPtrBuiltinVaList) {
17322    QualType MSVaListType = Context.getBuiltinMSVaListType();
17323    if (Context.hasSameType(MSVaListType, E->getType())) {
17324      if (CheckForModifiableLvalue(E, BuiltinLoc, *this))
17325        return ExprError();
17326      IsMS = true;
17327    }
17328  }
17329
17330  // Get the va_list type
17331  QualType VaListType = Context.getBuiltinVaListType();
17332  if (!IsMS) {
17333    if (VaListType->isArrayType()) {
17334      // Deal with implicit array decay; for example, on x86-64,
17335      // va_list is an array, but it's supposed to decay to
17336      // a pointer for va_arg.
17337      VaListType = Context.getArrayDecayedType(VaListType);
17338      // Make sure the input expression also decays appropriately.
17339      ExprResult Result = UsualUnaryConversions(E);
17340      if (Result.isInvalid())
17341        return ExprError();
17342      E = Result.get();
17343    } else if (VaListType->isRecordType() && getLangOpts().CPlusPlus) {
17344      // If va_list is a record type and we are compiling in C++ mode,
17345      // check the argument using reference binding.
17346      InitializedEntity Entity = InitializedEntity::InitializeParameter(
17347          Context, Context.getLValueReferenceType(VaListType), false);
17348      ExprResult Init = PerformCopyInitialization(Entity, SourceLocation(), E);
17349      if (Init.isInvalid())
17350        return ExprError();
17351      E = Init.getAs<Expr>();
17352    } else {
17353      // Otherwise, the va_list argument must be an l-value because
17354      // it is modified by va_arg.
17355      if (!E->isTypeDependent() &&
17356          CheckForModifiableLvalue(E, BuiltinLoc, *this))
17357        return ExprError();
17358    }
17359  }
17360
17361  if (!IsMS && !E->isTypeDependent() &&
17362      !Context.hasSameType(VaListType, E->getType()))
17363    return ExprError(
17364        Diag(E->getBeginLoc(),
17365             diag::err_first_argument_to_va_arg_not_of_type_va_list)
17366        << OrigExpr->getType() << E->getSourceRange());
17367
17368  if (!TInfo->getType()->isDependentType()) {
17369    if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(),
17370                            diag::err_second_parameter_to_va_arg_incomplete,
17371                            TInfo->getTypeLoc()))
17372      return ExprError();
17373
17374    if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(),
17375                               TInfo->getType(),
17376                               diag::err_second_parameter_to_va_arg_abstract,
17377                               TInfo->getTypeLoc()))
17378      return ExprError();
17379
17380    if (!TInfo->getType().isPODType(Context)) {
17381      Diag(TInfo->getTypeLoc().getBeginLoc(),
17382           TInfo->getType()->isObjCLifetimeType()
17383             ? diag::warn_second_parameter_to_va_arg_ownership_qualified
17384             : diag::warn_second_parameter_to_va_arg_not_pod)
17385        << TInfo->getType()
17386        << TInfo->getTypeLoc().getSourceRange();
17387    }
17388
17389    // Check for va_arg where arguments of the given type will be promoted
17390    // (i.e. this va_arg is guaranteed to have undefined behavior).
17391    QualType PromoteType;
17392    if (Context.isPromotableIntegerType(TInfo->getType())) {
17393      PromoteType = Context.getPromotedIntegerType(TInfo->getType());
17394      // [cstdarg.syn]p1 defers the C++ behavior to what the C standard says,
17395      // and C23 7.16.1.1p2 says, in part:
17396      //   If type is not compatible with the type of the actual next argument
17397      //   (as promoted according to the default argument promotions), the
17398      //   behavior is undefined, except for the following cases:
17399      //     - both types are pointers to qualified or unqualified versions of
17400      //       compatible types;
17401      //     - one type is compatible with a signed integer type, the other
17402      //       type is compatible with the corresponding unsigned integer type,
17403      //       and the value is representable in both types;
17404      //     - one type is pointer to qualified or unqualified void and the
17405      //       other is a pointer to a qualified or unqualified character type;
17406      //     - or, the type of the next argument is nullptr_t and type is a
17407      //       pointer type that has the same representation and alignment
17408      //       requirements as a pointer to a character type.
17409      // Given that type compatibility is the primary requirement (ignoring
17410      // qualifications), you would think we could call typesAreCompatible()
17411      // directly to test this. However, in C++, that checks for *same type*,
17412      // which causes false positives when passing an enumeration type to
17413      // va_arg. Instead, get the underlying type of the enumeration and pass
17414      // that.
17415      QualType UnderlyingType = TInfo->getType();
17416      if (const auto *ET = UnderlyingType->getAs<EnumType>())
17417        UnderlyingType = ET->getDecl()->getIntegerType();
17418      if (Context.typesAreCompatible(PromoteType, UnderlyingType,
17419                                     /*CompareUnqualified*/ true))
17420        PromoteType = QualType();
17421
17422      // If the types are still not compatible, we need to test whether the
17423      // promoted type and the underlying type are the same except for
17424      // signedness. Ask the AST for the correctly corresponding type and see
17425      // if that's compatible.
17426      if (!PromoteType.isNull() && !UnderlyingType->isBooleanType() &&
17427          PromoteType->isUnsignedIntegerType() !=
17428              UnderlyingType->isUnsignedIntegerType()) {
17429        UnderlyingType =
17430            UnderlyingType->isUnsignedIntegerType()
17431                ? Context.getCorrespondingSignedType(UnderlyingType)
17432                : Context.getCorrespondingUnsignedType(UnderlyingType);
17433        if (Context.typesAreCompatible(PromoteType, UnderlyingType,
17434                                       /*CompareUnqualified*/ true))
17435          PromoteType = QualType();
17436      }
17437    }
17438    if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float))
17439      PromoteType = Context.DoubleTy;
17440    if (!PromoteType.isNull())
17441      DiagRuntimeBehavior(TInfo->getTypeLoc().getBeginLoc(), E,
17442                  PDiag(diag::warn_second_parameter_to_va_arg_never_compatible)
17443                          << TInfo->getType()
17444                          << PromoteType
17445                          << TInfo->getTypeLoc().getSourceRange());
17446  }
17447
17448  QualType T = TInfo->getType().getNonLValueExprType(Context);
17449  return new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T, IsMS);
17450}
17451
17452ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
17453  // The type of __null will be int or long, depending on the size of
17454  // pointers on the target.
17455  QualType Ty;
17456  unsigned pw = Context.getTargetInfo().getPointerWidth(LangAS::Default);
17457  if (pw == Context.getTargetInfo().getIntWidth())
17458    Ty = Context.IntTy;
17459  else if (pw == Context.getTargetInfo().getLongWidth())
17460    Ty = Context.LongTy;
17461  else if (pw == Context.getTargetInfo().getLongLongWidth())
17462    Ty = Context.LongLongTy;
17463  else {
17464    llvm_unreachable("I don't know size of pointer!");
17465  }
17466
17467  return new (Context) GNUNullExpr(Ty, TokenLoc);
17468}
17469
17470static CXXRecordDecl *LookupStdSourceLocationImpl(Sema &S, SourceLocation Loc) {
17471  CXXRecordDecl *ImplDecl = nullptr;
17472
17473  // Fetch the std::source_location::__impl decl.
17474  if (NamespaceDecl *Std = S.getStdNamespace()) {
17475    LookupResult ResultSL(S, &S.PP.getIdentifierTable().get("source_location"),
17476                          Loc, Sema::LookupOrdinaryName);
17477    if (S.LookupQualifiedName(ResultSL, Std)) {
17478      if (auto *SLDecl = ResultSL.getAsSingle<RecordDecl>()) {
17479        LookupResult ResultImpl(S, &S.PP.getIdentifierTable().get("__impl"),
17480                                Loc, Sema::LookupOrdinaryName);
17481        if ((SLDecl->isCompleteDefinition() || SLDecl->isBeingDefined()) &&
17482            S.LookupQualifiedName(ResultImpl, SLDecl)) {
17483          ImplDecl = ResultImpl.getAsSingle<CXXRecordDecl>();
17484        }
17485      }
17486    }
17487  }
17488
17489  if (!ImplDecl || !ImplDecl->isCompleteDefinition()) {
17490    S.Diag(Loc, diag::err_std_source_location_impl_not_found);
17491    return nullptr;
17492  }
17493
17494  // Verify that __impl is a trivial struct type, with no base classes, and with
17495  // only the four expected fields.
17496  if (ImplDecl->isUnion() || !ImplDecl->isStandardLayout() ||
17497      ImplDecl->getNumBases() != 0) {
17498    S.Diag(Loc, diag::err_std_source_location_impl_malformed);
17499    return nullptr;
17500  }
17501
17502  unsigned Count = 0;
17503  for (FieldDecl *F : ImplDecl->fields()) {
17504    StringRef Name = F->getName();
17505
17506    if (Name == "_M_file_name") {
17507      if (F->getType() !=
17508          S.Context.getPointerType(S.Context.CharTy.withConst()))
17509        break;
17510      Count++;
17511    } else if (Name == "_M_function_name") {
17512      if (F->getType() !=
17513          S.Context.getPointerType(S.Context.CharTy.withConst()))
17514        break;
17515      Count++;
17516    } else if (Name == "_M_line") {
17517      if (!F->getType()->isIntegerType())
17518        break;
17519      Count++;
17520    } else if (Name == "_M_column") {
17521      if (!F->getType()->isIntegerType())
17522        break;
17523      Count++;
17524    } else {
17525      Count = 100; // invalid
17526      break;
17527    }
17528  }
17529  if (Count != 4) {
17530    S.Diag(Loc, diag::err_std_source_location_impl_malformed);
17531    return nullptr;
17532  }
17533
17534  return ImplDecl;
17535}
17536
17537ExprResult Sema::ActOnSourceLocExpr(SourceLocIdentKind Kind,
17538                                    SourceLocation BuiltinLoc,
17539                                    SourceLocation RPLoc) {
17540  QualType ResultTy;
17541  switch (Kind) {
17542  case SourceLocIdentKind::File:
17543  case SourceLocIdentKind::FileName:
17544  case SourceLocIdentKind::Function:
17545  case SourceLocIdentKind::FuncSig: {
17546    QualType ArrTy = Context.getStringLiteralArrayType(Context.CharTy, 0);
17547    ResultTy =
17548        Context.getPointerType(ArrTy->getAsArrayTypeUnsafe()->getElementType());
17549    break;
17550  }
17551  case SourceLocIdentKind::Line:
17552  case SourceLocIdentKind::Column:
17553    ResultTy = Context.UnsignedIntTy;
17554    break;
17555  case SourceLocIdentKind::SourceLocStruct:
17556    if (!StdSourceLocationImplDecl) {
17557      StdSourceLocationImplDecl =
17558          LookupStdSourceLocationImpl(*this, BuiltinLoc);
17559      if (!StdSourceLocationImplDecl)
17560        return ExprError();
17561    }
17562    ResultTy = Context.getPointerType(
17563        Context.getRecordType(StdSourceLocationImplDecl).withConst());
17564    break;
17565  }
17566
17567  return BuildSourceLocExpr(Kind, ResultTy, BuiltinLoc, RPLoc, CurContext);
17568}
17569
17570ExprResult Sema::BuildSourceLocExpr(SourceLocIdentKind Kind, QualType ResultTy,
17571                                    SourceLocation BuiltinLoc,
17572                                    SourceLocation RPLoc,
17573                                    DeclContext *ParentContext) {
17574  return new (Context)
17575      SourceLocExpr(Context, Kind, ResultTy, BuiltinLoc, RPLoc, ParentContext);
17576}
17577
17578bool Sema::CheckConversionToObjCLiteral(QualType DstType, Expr *&Exp,
17579                                        bool Diagnose) {
17580  if (!getLangOpts().ObjC)
17581    return false;
17582
17583  const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
17584  if (!PT)
17585    return false;
17586  const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
17587
17588  // Ignore any parens, implicit casts (should only be
17589  // array-to-pointer decays), and not-so-opaque values.  The last is
17590  // important for making this trigger for property assignments.
17591  Expr *SrcExpr = Exp->IgnoreParenImpCasts();
17592  if (OpaqueValueExpr *OV = dyn_cast<OpaqueValueExpr>(SrcExpr))
17593    if (OV->getSourceExpr())
17594      SrcExpr = OV->getSourceExpr()->IgnoreParenImpCasts();
17595
17596  if (auto *SL = dyn_cast<StringLiteral>(SrcExpr)) {
17597    if (!PT->isObjCIdType() &&
17598        !(ID && ID->getIdentifier()->isStr("NSString")))
17599      return false;
17600    if (!SL->isOrdinary())
17601      return false;
17602
17603    if (Diagnose) {
17604      Diag(SL->getBeginLoc(), diag::err_missing_atsign_prefix)
17605          << /*string*/0 << FixItHint::CreateInsertion(SL->getBeginLoc(), "@");
17606      Exp = BuildObjCStringLiteral(SL->getBeginLoc(), SL).get();
17607    }
17608    return true;
17609  }
17610
17611  if ((isa<IntegerLiteral>(SrcExpr) || isa<CharacterLiteral>(SrcExpr) ||
17612      isa<FloatingLiteral>(SrcExpr) || isa<ObjCBoolLiteralExpr>(SrcExpr) ||
17613      isa<CXXBoolLiteralExpr>(SrcExpr)) &&
17614      !SrcExpr->isNullPointerConstant(
17615          getASTContext(), Expr::NPC_NeverValueDependent)) {
17616    if (!ID || !ID->getIdentifier()->isStr("NSNumber"))
17617      return false;
17618    if (Diagnose) {
17619      Diag(SrcExpr->getBeginLoc(), diag::err_missing_atsign_prefix)
17620          << /*number*/1
17621          << FixItHint::CreateInsertion(SrcExpr->getBeginLoc(), "@");
17622      Expr *NumLit =
17623          BuildObjCNumericLiteral(SrcExpr->getBeginLoc(), SrcExpr).get();
17624      if (NumLit)
17625        Exp = NumLit;
17626    }
17627    return true;
17628  }
17629
17630  return false;
17631}
17632
17633static bool maybeDiagnoseAssignmentToFunction(Sema &S, QualType DstType,
17634                                              const Expr *SrcExpr) {
17635  if (!DstType->isFunctionPointerType() ||
17636      !SrcExpr->getType()->isFunctionType())
17637    return false;
17638
17639  auto *DRE = dyn_cast<DeclRefExpr>(SrcExpr->IgnoreParenImpCasts());
17640  if (!DRE)
17641    return false;
17642
17643  auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl());
17644  if (!FD)
17645    return false;
17646
17647  return !S.checkAddressOfFunctionIsAvailable(FD,
17648                                              /*Complain=*/true,
17649                                              SrcExpr->getBeginLoc());
17650}
17651
17652bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
17653                                    SourceLocation Loc,
17654                                    QualType DstType, QualType SrcType,
17655                                    Expr *SrcExpr, AssignmentAction Action,
17656                                    bool *Complained) {
17657  if (Complained)
17658    *Complained = false;
17659
17660  // Decode the result (notice that AST's are still created for extensions).
17661  bool CheckInferredResultType = false;
17662  bool isInvalid = false;
17663  unsigned DiagKind = 0;
17664  ConversionFixItGenerator ConvHints;
17665  bool MayHaveConvFixit = false;
17666  bool MayHaveFunctionDiff = false;
17667  const ObjCInterfaceDecl *IFace = nullptr;
17668  const ObjCProtocolDecl *PDecl = nullptr;
17669
17670  switch (ConvTy) {
17671  case Compatible:
17672      DiagnoseAssignmentEnum(DstType, SrcType, SrcExpr);
17673      return false;
17674
17675  case PointerToInt:
17676    if (getLangOpts().CPlusPlus) {
17677      DiagKind = diag::err_typecheck_convert_pointer_int;
17678      isInvalid = true;
17679    } else {
17680      DiagKind = diag::ext_typecheck_convert_pointer_int;
17681    }
17682    ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
17683    MayHaveConvFixit = true;
17684    break;
17685  case IntToPointer:
17686    if (getLangOpts().CPlusPlus) {
17687      DiagKind = diag::err_typecheck_convert_int_pointer;
17688      isInvalid = true;
17689    } else {
17690      DiagKind = diag::ext_typecheck_convert_int_pointer;
17691    }
17692    ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
17693    MayHaveConvFixit = true;
17694    break;
17695  case IncompatibleFunctionPointerStrict:
17696    DiagKind =
17697        diag::warn_typecheck_convert_incompatible_function_pointer_strict;
17698    ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
17699    MayHaveConvFixit = true;
17700    break;
17701  case IncompatibleFunctionPointer:
17702    if (getLangOpts().CPlusPlus) {
17703      DiagKind = diag::err_typecheck_convert_incompatible_function_pointer;
17704      isInvalid = true;
17705    } else {
17706      DiagKind = diag::ext_typecheck_convert_incompatible_function_pointer;
17707    }
17708    ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
17709    MayHaveConvFixit = true;
17710    break;
17711  case IncompatiblePointer:
17712    if (Action == AA_Passing_CFAudited) {
17713      DiagKind = diag::err_arc_typecheck_convert_incompatible_pointer;
17714    } else if (getLangOpts().CPlusPlus) {
17715      DiagKind = diag::err_typecheck_convert_incompatible_pointer;
17716      isInvalid = true;
17717    } else {
17718      DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
17719    }
17720    CheckInferredResultType = DstType->isObjCObjectPointerType() &&
17721      SrcType->isObjCObjectPointerType();
17722    if (!CheckInferredResultType) {
17723      ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
17724    } else if (CheckInferredResultType) {
17725      SrcType = SrcType.getUnqualifiedType();
17726      DstType = DstType.getUnqualifiedType();
17727    }
17728    MayHaveConvFixit = true;
17729    break;
17730  case IncompatiblePointerSign:
17731    if (getLangOpts().CPlusPlus) {
17732      DiagKind = diag::err_typecheck_convert_incompatible_pointer_sign;
17733      isInvalid = true;
17734    } else {
17735      DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
17736    }
17737    break;
17738  case FunctionVoidPointer:
17739    if (getLangOpts().CPlusPlus) {
17740      DiagKind = diag::err_typecheck_convert_pointer_void_func;
17741      isInvalid = true;
17742    } else {
17743      DiagKind = diag::ext_typecheck_convert_pointer_void_func;
17744    }
17745    break;
17746  case IncompatiblePointerDiscardsQualifiers: {
17747    // Perform array-to-pointer decay if necessary.
17748    if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
17749
17750    isInvalid = true;
17751
17752    Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
17753    Qualifiers rhq = DstType->getPointeeType().getQualifiers();
17754    if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
17755      DiagKind = diag::err_typecheck_incompatible_address_space;
17756      break;
17757
17758    } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) {
17759      DiagKind = diag::err_typecheck_incompatible_ownership;
17760      break;
17761    }
17762
17763    llvm_unreachable("unknown error case for discarding qualifiers!");
17764    // fallthrough
17765  }
17766  case CompatiblePointerDiscardsQualifiers:
17767    // If the qualifiers lost were because we were applying the
17768    // (deprecated) C++ conversion from a string literal to a char*
17769    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
17770    // Ideally, this check would be performed in
17771    // checkPointerTypesForAssignment. However, that would require a
17772    // bit of refactoring (so that the second argument is an
17773    // expression, rather than a type), which should be done as part
17774    // of a larger effort to fix checkPointerTypesForAssignment for
17775    // C++ semantics.
17776    if (getLangOpts().CPlusPlus &&
17777        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
17778      return false;
17779    if (getLangOpts().CPlusPlus) {
17780      DiagKind =  diag::err_typecheck_convert_discards_qualifiers;
17781      isInvalid = true;
17782    } else {
17783      DiagKind =  diag::ext_typecheck_convert_discards_qualifiers;
17784    }
17785
17786    break;
17787  case IncompatibleNestedPointerQualifiers:
17788    if (getLangOpts().CPlusPlus) {
17789      isInvalid = true;
17790      DiagKind = diag::err_nested_pointer_qualifier_mismatch;
17791    } else {
17792      DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
17793    }
17794    break;
17795  case IncompatibleNestedPointerAddressSpaceMismatch:
17796    DiagKind = diag::err_typecheck_incompatible_nested_address_space;
17797    isInvalid = true;
17798    break;
17799  case IntToBlockPointer:
17800    DiagKind = diag::err_int_to_block_pointer;
17801    isInvalid = true;
17802    break;
17803  case IncompatibleBlockPointer:
17804    DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
17805    isInvalid = true;
17806    break;
17807  case IncompatibleObjCQualifiedId: {
17808    if (SrcType->isObjCQualifiedIdType()) {
17809      const ObjCObjectPointerType *srcOPT =
17810                SrcType->castAs<ObjCObjectPointerType>();
17811      for (auto *srcProto : srcOPT->quals()) {
17812        PDecl = srcProto;
17813        break;
17814      }
17815      if (const ObjCInterfaceType *IFaceT =
17816            DstType->castAs<ObjCObjectPointerType>()->getInterfaceType())
17817        IFace = IFaceT->getDecl();
17818    }
17819    else if (DstType->isObjCQualifiedIdType()) {
17820      const ObjCObjectPointerType *dstOPT =
17821        DstType->castAs<ObjCObjectPointerType>();
17822      for (auto *dstProto : dstOPT->quals()) {
17823        PDecl = dstProto;
17824        break;
17825      }
17826      if (const ObjCInterfaceType *IFaceT =
17827            SrcType->castAs<ObjCObjectPointerType>()->getInterfaceType())
17828        IFace = IFaceT->getDecl();
17829    }
17830    if (getLangOpts().CPlusPlus) {
17831      DiagKind = diag::err_incompatible_qualified_id;
17832      isInvalid = true;
17833    } else {
17834      DiagKind = diag::warn_incompatible_qualified_id;
17835    }
17836    break;
17837  }
17838  case IncompatibleVectors:
17839    if (getLangOpts().CPlusPlus) {
17840      DiagKind = diag::err_incompatible_vectors;
17841      isInvalid = true;
17842    } else {
17843      DiagKind = diag::warn_incompatible_vectors;
17844    }
17845    break;
17846  case IncompatibleObjCWeakRef:
17847    DiagKind = diag::err_arc_weak_unavailable_assign;
17848    isInvalid = true;
17849    break;
17850  case Incompatible:
17851    if (maybeDiagnoseAssignmentToFunction(*this, DstType, SrcExpr)) {
17852      if (Complained)
17853        *Complained = true;
17854      return true;
17855    }
17856
17857    DiagKind = diag::err_typecheck_convert_incompatible;
17858    ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
17859    MayHaveConvFixit = true;
17860    isInvalid = true;
17861    MayHaveFunctionDiff = true;
17862    break;
17863  }
17864
17865  QualType FirstType, SecondType;
17866  switch (Action) {
17867  case AA_Assigning:
17868  case AA_Initializing:
17869    // The destination type comes first.
17870    FirstType = DstType;
17871    SecondType = SrcType;
17872    break;
17873
17874  case AA_Returning:
17875  case AA_Passing:
17876  case AA_Passing_CFAudited:
17877  case AA_Converting:
17878  case AA_Sending:
17879  case AA_Casting:
17880    // The source type comes first.
17881    FirstType = SrcType;
17882    SecondType = DstType;
17883    break;
17884  }
17885
17886  PartialDiagnostic FDiag = PDiag(DiagKind);
17887  AssignmentAction ActionForDiag = Action;
17888  if (Action == AA_Passing_CFAudited)
17889    ActionForDiag = AA_Passing;
17890
17891  FDiag << FirstType << SecondType << ActionForDiag
17892        << SrcExpr->getSourceRange();
17893
17894  if (DiagKind == diag::ext_typecheck_convert_incompatible_pointer_sign ||
17895      DiagKind == diag::err_typecheck_convert_incompatible_pointer_sign) {
17896    auto isPlainChar = [](const clang::Type *Type) {
17897      return Type->isSpecificBuiltinType(BuiltinType::Char_S) ||
17898             Type->isSpecificBuiltinType(BuiltinType::Char_U);
17899    };
17900    FDiag << (isPlainChar(FirstType->getPointeeOrArrayElementType()) ||
17901              isPlainChar(SecondType->getPointeeOrArrayElementType()));
17902  }
17903
17904  // If we can fix the conversion, suggest the FixIts.
17905  if (!ConvHints.isNull()) {
17906    for (FixItHint &H : ConvHints.Hints)
17907      FDiag << H;
17908  }
17909
17910  if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); }
17911
17912  if (MayHaveFunctionDiff)
17913    HandleFunctionTypeMismatch(FDiag, SecondType, FirstType);
17914
17915  Diag(Loc, FDiag);
17916  if ((DiagKind == diag::warn_incompatible_qualified_id ||
17917       DiagKind == diag::err_incompatible_qualified_id) &&
17918      PDecl && IFace && !IFace->hasDefinition())
17919    Diag(IFace->getLocation(), diag::note_incomplete_class_and_qualified_id)
17920        << IFace << PDecl;
17921
17922  if (SecondType == Context.OverloadTy)
17923    NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr).Expression,
17924                              FirstType, /*TakingAddress=*/true);
17925
17926  if (CheckInferredResultType)
17927    EmitRelatedResultTypeNote(SrcExpr);
17928
17929  if (Action == AA_Returning && ConvTy == IncompatiblePointer)
17930    EmitRelatedResultTypeNoteForReturn(DstType);
17931
17932  if (Complained)
17933    *Complained = true;
17934  return isInvalid;
17935}
17936
17937ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
17938                                                 llvm::APSInt *Result,
17939                                                 AllowFoldKind CanFold) {
17940  class SimpleICEDiagnoser : public VerifyICEDiagnoser {
17941  public:
17942    SemaDiagnosticBuilder diagnoseNotICEType(Sema &S, SourceLocation Loc,
17943                                             QualType T) override {
17944      return S.Diag(Loc, diag::err_ice_not_integral)
17945             << T << S.LangOpts.CPlusPlus;
17946    }
17947    SemaDiagnosticBuilder diagnoseNotICE(Sema &S, SourceLocation Loc) override {
17948      return S.Diag(Loc, diag::err_expr_not_ice) << S.LangOpts.CPlusPlus;
17949    }
17950  } Diagnoser;
17951
17952  return VerifyIntegerConstantExpression(E, Result, Diagnoser, CanFold);
17953}
17954
17955ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
17956                                                 llvm::APSInt *Result,
17957                                                 unsigned DiagID,
17958                                                 AllowFoldKind CanFold) {
17959  class IDDiagnoser : public VerifyICEDiagnoser {
17960    unsigned DiagID;
17961
17962  public:
17963    IDDiagnoser(unsigned DiagID)
17964      : VerifyICEDiagnoser(DiagID == 0), DiagID(DiagID) { }
17965
17966    SemaDiagnosticBuilder diagnoseNotICE(Sema &S, SourceLocation Loc) override {
17967      return S.Diag(Loc, DiagID);
17968    }
17969  } Diagnoser(DiagID);
17970
17971  return VerifyIntegerConstantExpression(E, Result, Diagnoser, CanFold);
17972}
17973
17974Sema::SemaDiagnosticBuilder
17975Sema::VerifyICEDiagnoser::diagnoseNotICEType(Sema &S, SourceLocation Loc,
17976                                             QualType T) {
17977  return diagnoseNotICE(S, Loc);
17978}
17979
17980Sema::SemaDiagnosticBuilder
17981Sema::VerifyICEDiagnoser::diagnoseFold(Sema &S, SourceLocation Loc) {
17982  return S.Diag(Loc, diag::ext_expr_not_ice) << S.LangOpts.CPlusPlus;
17983}
17984
17985ExprResult
17986Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
17987                                      VerifyICEDiagnoser &Diagnoser,
17988                                      AllowFoldKind CanFold) {
17989  SourceLocation DiagLoc = E->getBeginLoc();
17990
17991  if (getLangOpts().CPlusPlus11) {
17992    // C++11 [expr.const]p5:
17993    //   If an expression of literal class type is used in a context where an
17994    //   integral constant expression is required, then that class type shall
17995    //   have a single non-explicit conversion function to an integral or
17996    //   unscoped enumeration type
17997    ExprResult Converted;
17998    class CXX11ConvertDiagnoser : public ICEConvertDiagnoser {
17999      VerifyICEDiagnoser &BaseDiagnoser;
18000    public:
18001      CXX11ConvertDiagnoser(VerifyICEDiagnoser &BaseDiagnoser)
18002          : ICEConvertDiagnoser(/*AllowScopedEnumerations*/ false,
18003                                BaseDiagnoser.Suppress, true),
18004            BaseDiagnoser(BaseDiagnoser) {}
18005
18006      SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
18007                                           QualType T) override {
18008        return BaseDiagnoser.diagnoseNotICEType(S, Loc, T);
18009      }
18010
18011      SemaDiagnosticBuilder diagnoseIncomplete(
18012          Sema &S, SourceLocation Loc, QualType T) override {
18013        return S.Diag(Loc, diag::err_ice_incomplete_type) << T;
18014      }
18015
18016      SemaDiagnosticBuilder diagnoseExplicitConv(
18017          Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
18018        return S.Diag(Loc, diag::err_ice_explicit_conversion) << T << ConvTy;
18019      }
18020
18021      SemaDiagnosticBuilder noteExplicitConv(
18022          Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
18023        return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
18024                 << ConvTy->isEnumeralType() << ConvTy;
18025      }
18026
18027      SemaDiagnosticBuilder diagnoseAmbiguous(
18028          Sema &S, SourceLocation Loc, QualType T) override {
18029        return S.Diag(Loc, diag::err_ice_ambiguous_conversion) << T;
18030      }
18031
18032      SemaDiagnosticBuilder noteAmbiguous(
18033          Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
18034        return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
18035                 << ConvTy->isEnumeralType() << ConvTy;
18036      }
18037
18038      SemaDiagnosticBuilder diagnoseConversion(
18039          Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
18040        llvm_unreachable("conversion functions are permitted");
18041      }
18042    } ConvertDiagnoser(Diagnoser);
18043
18044    Converted = PerformContextualImplicitConversion(DiagLoc, E,
18045                                                    ConvertDiagnoser);
18046    if (Converted.isInvalid())
18047      return Converted;
18048    E = Converted.get();
18049    if (!E->getType()->isIntegralOrUnscopedEnumerationType())
18050      return ExprError();
18051  } else if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
18052    // An ICE must be of integral or unscoped enumeration type.
18053    if (!Diagnoser.Suppress)
18054      Diagnoser.diagnoseNotICEType(*this, DiagLoc, E->getType())
18055          << E->getSourceRange();
18056    return ExprError();
18057  }
18058
18059  ExprResult RValueExpr = DefaultLvalueConversion(E);
18060  if (RValueExpr.isInvalid())
18061    return ExprError();
18062
18063  E = RValueExpr.get();
18064
18065  // Circumvent ICE checking in C++11 to avoid evaluating the expression twice
18066  // in the non-ICE case.
18067  if (!getLangOpts().CPlusPlus11 && E->isIntegerConstantExpr(Context)) {
18068    if (Result)
18069      *Result = E->EvaluateKnownConstIntCheckOverflow(Context);
18070    if (!isa<ConstantExpr>(E))
18071      E = Result ? ConstantExpr::Create(Context, E, APValue(*Result))
18072                 : ConstantExpr::Create(Context, E);
18073    return E;
18074  }
18075
18076  Expr::EvalResult EvalResult;
18077  SmallVector<PartialDiagnosticAt, 8> Notes;
18078  EvalResult.Diag = &Notes;
18079
18080  // Try to evaluate the expression, and produce diagnostics explaining why it's
18081  // not a constant expression as a side-effect.
18082  bool Folded =
18083      E->EvaluateAsRValue(EvalResult, Context, /*isConstantContext*/ true) &&
18084      EvalResult.Val.isInt() && !EvalResult.HasSideEffects;
18085
18086  if (!isa<ConstantExpr>(E))
18087    E = ConstantExpr::Create(Context, E, EvalResult.Val);
18088
18089  // In C++11, we can rely on diagnostics being produced for any expression
18090  // which is not a constant expression. If no diagnostics were produced, then
18091  // this is a constant expression.
18092  if (Folded && getLangOpts().CPlusPlus11 && Notes.empty()) {
18093    if (Result)
18094      *Result = EvalResult.Val.getInt();
18095    return E;
18096  }
18097
18098  // If our only note is the usual "invalid subexpression" note, just point
18099  // the caret at its location rather than producing an essentially
18100  // redundant note.
18101  if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
18102        diag::note_invalid_subexpr_in_const_expr) {
18103    DiagLoc = Notes[0].first;
18104    Notes.clear();
18105  }
18106
18107  if (!Folded || !CanFold) {
18108    if (!Diagnoser.Suppress) {
18109      Diagnoser.diagnoseNotICE(*this, DiagLoc) << E->getSourceRange();
18110      for (const PartialDiagnosticAt &Note : Notes)
18111        Diag(Note.first, Note.second);
18112    }
18113
18114    return ExprError();
18115  }
18116
18117  Diagnoser.diagnoseFold(*this, DiagLoc) << E->getSourceRange();
18118  for (const PartialDiagnosticAt &Note : Notes)
18119    Diag(Note.first, Note.second);
18120
18121  if (Result)
18122    *Result = EvalResult.Val.getInt();
18123  return E;
18124}
18125
18126namespace {
18127  // Handle the case where we conclude a expression which we speculatively
18128  // considered to be unevaluated is actually evaluated.
18129  class TransformToPE : public TreeTransform<TransformToPE> {
18130    typedef TreeTransform<TransformToPE> BaseTransform;
18131
18132  public:
18133    TransformToPE(Sema &SemaRef) : BaseTransform(SemaRef) { }
18134
18135    // Make sure we redo semantic analysis
18136    bool AlwaysRebuild() { return true; }
18137    bool ReplacingOriginal() { return true; }
18138
18139    // We need to special-case DeclRefExprs referring to FieldDecls which
18140    // are not part of a member pointer formation; normal TreeTransforming
18141    // doesn't catch this case because of the way we represent them in the AST.
18142    // FIXME: This is a bit ugly; is it really the best way to handle this
18143    // case?
18144    //
18145    // Error on DeclRefExprs referring to FieldDecls.
18146    ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
18147      if (isa<FieldDecl>(E->getDecl()) &&
18148          !SemaRef.isUnevaluatedContext())
18149        return SemaRef.Diag(E->getLocation(),
18150                            diag::err_invalid_non_static_member_use)
18151            << E->getDecl() << E->getSourceRange();
18152
18153      return BaseTransform::TransformDeclRefExpr(E);
18154    }
18155
18156    // Exception: filter out member pointer formation
18157    ExprResult TransformUnaryOperator(UnaryOperator *E) {
18158      if (E->getOpcode() == UO_AddrOf && E->getType()->isMemberPointerType())
18159        return E;
18160
18161      return BaseTransform::TransformUnaryOperator(E);
18162    }
18163
18164    // The body of a lambda-expression is in a separate expression evaluation
18165    // context so never needs to be transformed.
18166    // FIXME: Ideally we wouldn't transform the closure type either, and would
18167    // just recreate the capture expressions and lambda expression.
18168    StmtResult TransformLambdaBody(LambdaExpr *E, Stmt *Body) {
18169      return SkipLambdaBody(E, Body);
18170    }
18171  };
18172}
18173
18174ExprResult Sema::TransformToPotentiallyEvaluated(Expr *E) {
18175  assert(isUnevaluatedContext() &&
18176         "Should only transform unevaluated expressions");
18177  ExprEvalContexts.back().Context =
18178      ExprEvalContexts[ExprEvalContexts.size()-2].Context;
18179  if (isUnevaluatedContext())
18180    return E;
18181  return TransformToPE(*this).TransformExpr(E);
18182}
18183
18184TypeSourceInfo *Sema::TransformToPotentiallyEvaluated(TypeSourceInfo *TInfo) {
18185  assert(isUnevaluatedContext() &&
18186         "Should only transform unevaluated expressions");
18187  ExprEvalContexts.back().Context =
18188      ExprEvalContexts[ExprEvalContexts.size() - 2].Context;
18189  if (isUnevaluatedContext())
18190    return TInfo;
18191  return TransformToPE(*this).TransformType(TInfo);
18192}
18193
18194void
18195Sema::PushExpressionEvaluationContext(
18196    ExpressionEvaluationContext NewContext, Decl *LambdaContextDecl,
18197    ExpressionEvaluationContextRecord::ExpressionKind ExprContext) {
18198  ExprEvalContexts.emplace_back(NewContext, ExprCleanupObjects.size(), Cleanup,
18199                                LambdaContextDecl, ExprContext);
18200
18201  // Discarded statements and immediate contexts nested in other
18202  // discarded statements or immediate context are themselves
18203  // a discarded statement or an immediate context, respectively.
18204  ExprEvalContexts.back().InDiscardedStatement =
18205      ExprEvalContexts[ExprEvalContexts.size() - 2]
18206          .isDiscardedStatementContext();
18207
18208  // C++23 [expr.const]/p15
18209  // An expression or conversion is in an immediate function context if [...]
18210  // it is a subexpression of a manifestly constant-evaluated expression or
18211  // conversion.
18212  const auto &Prev = ExprEvalContexts[ExprEvalContexts.size() - 2];
18213  ExprEvalContexts.back().InImmediateFunctionContext =
18214      Prev.isImmediateFunctionContext() || Prev.isConstantEvaluated();
18215
18216  ExprEvalContexts.back().InImmediateEscalatingFunctionContext =
18217      Prev.InImmediateEscalatingFunctionContext;
18218
18219  Cleanup.reset();
18220  if (!MaybeODRUseExprs.empty())
18221    std::swap(MaybeODRUseExprs, ExprEvalContexts.back().SavedMaybeODRUseExprs);
18222}
18223
18224void
18225Sema::PushExpressionEvaluationContext(
18226    ExpressionEvaluationContext NewContext, ReuseLambdaContextDecl_t,
18227    ExpressionEvaluationContextRecord::ExpressionKind ExprContext) {
18228  Decl *ClosureContextDecl = ExprEvalContexts.back().ManglingContextDecl;
18229  PushExpressionEvaluationContext(NewContext, ClosureContextDecl, ExprContext);
18230}
18231
18232namespace {
18233
18234const DeclRefExpr *CheckPossibleDeref(Sema &S, const Expr *PossibleDeref) {
18235  PossibleDeref = PossibleDeref->IgnoreParenImpCasts();
18236  if (const auto *E = dyn_cast<UnaryOperator>(PossibleDeref)) {
18237    if (E->getOpcode() == UO_Deref)
18238      return CheckPossibleDeref(S, E->getSubExpr());
18239  } else if (const auto *E = dyn_cast<ArraySubscriptExpr>(PossibleDeref)) {
18240    return CheckPossibleDeref(S, E->getBase());
18241  } else if (const auto *E = dyn_cast<MemberExpr>(PossibleDeref)) {
18242    return CheckPossibleDeref(S, E->getBase());
18243  } else if (const auto E = dyn_cast<DeclRefExpr>(PossibleDeref)) {
18244    QualType Inner;
18245    QualType Ty = E->getType();
18246    if (const auto *Ptr = Ty->getAs<PointerType>())
18247      Inner = Ptr->getPointeeType();
18248    else if (const auto *Arr = S.Context.getAsArrayType(Ty))
18249      Inner = Arr->getElementType();
18250    else
18251      return nullptr;
18252
18253    if (Inner->hasAttr(attr::NoDeref))
18254      return E;
18255  }
18256  return nullptr;
18257}
18258
18259} // namespace
18260
18261void Sema::WarnOnPendingNoDerefs(ExpressionEvaluationContextRecord &Rec) {
18262  for (const Expr *E : Rec.PossibleDerefs) {
18263    const DeclRefExpr *DeclRef = CheckPossibleDeref(*this, E);
18264    if (DeclRef) {
18265      const ValueDecl *Decl = DeclRef->getDecl();
18266      Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type)
18267          << Decl->getName() << E->getSourceRange();
18268      Diag(Decl->getLocation(), diag::note_previous_decl) << Decl->getName();
18269    } else {
18270      Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type_no_decl)
18271          << E->getSourceRange();
18272    }
18273  }
18274  Rec.PossibleDerefs.clear();
18275}
18276
18277/// Check whether E, which is either a discarded-value expression or an
18278/// unevaluated operand, is a simple-assignment to a volatlie-qualified lvalue,
18279/// and if so, remove it from the list of volatile-qualified assignments that
18280/// we are going to warn are deprecated.
18281void Sema::CheckUnusedVolatileAssignment(Expr *E) {
18282  if (!E->getType().isVolatileQualified() || !getLangOpts().CPlusPlus20)
18283    return;
18284
18285  // Note: ignoring parens here is not justified by the standard rules, but
18286  // ignoring parentheses seems like a more reasonable approach, and this only
18287  // drives a deprecation warning so doesn't affect conformance.
18288  if (auto *BO = dyn_cast<BinaryOperator>(E->IgnoreParenImpCasts())) {
18289    if (BO->getOpcode() == BO_Assign) {
18290      auto &LHSs = ExprEvalContexts.back().VolatileAssignmentLHSs;
18291      llvm::erase(LHSs, BO->getLHS());
18292    }
18293  }
18294}
18295
18296void Sema::MarkExpressionAsImmediateEscalating(Expr *E) {
18297  assert(getLangOpts().CPlusPlus20 &&
18298         ExprEvalContexts.back().InImmediateEscalatingFunctionContext &&
18299         "Cannot mark an immediate escalating expression outside of an "
18300         "immediate escalating context");
18301  if (auto *Call = dyn_cast<CallExpr>(E->IgnoreImplicit());
18302      Call && Call->getCallee()) {
18303    if (auto *DeclRef =
18304            dyn_cast<DeclRefExpr>(Call->getCallee()->IgnoreImplicit()))
18305      DeclRef->setIsImmediateEscalating(true);
18306  } else if (auto *Ctr = dyn_cast<CXXConstructExpr>(E->IgnoreImplicit())) {
18307    Ctr->setIsImmediateEscalating(true);
18308  } else if (auto *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreImplicit())) {
18309    DeclRef->setIsImmediateEscalating(true);
18310  } else {
18311    assert(false && "expected an immediately escalating expression");
18312  }
18313  if (FunctionScopeInfo *FI = getCurFunction())
18314    FI->FoundImmediateEscalatingExpression = true;
18315}
18316
18317ExprResult Sema::CheckForImmediateInvocation(ExprResult E, FunctionDecl *Decl) {
18318  if (isUnevaluatedContext() || !E.isUsable() || !Decl ||
18319      !Decl->isImmediateFunction() || isAlwaysConstantEvaluatedContext() ||
18320      isCheckingDefaultArgumentOrInitializer() ||
18321      RebuildingImmediateInvocation || isImmediateFunctionContext())
18322    return E;
18323
18324  /// Opportunistically remove the callee from ReferencesToConsteval if we can.
18325  /// It's OK if this fails; we'll also remove this in
18326  /// HandleImmediateInvocations, but catching it here allows us to avoid
18327  /// walking the AST looking for it in simple cases.
18328  if (auto *Call = dyn_cast<CallExpr>(E.get()->IgnoreImplicit()))
18329    if (auto *DeclRef =
18330            dyn_cast<DeclRefExpr>(Call->getCallee()->IgnoreImplicit()))
18331      ExprEvalContexts.back().ReferenceToConsteval.erase(DeclRef);
18332
18333  // C++23 [expr.const]/p16
18334  // An expression or conversion is immediate-escalating if it is not initially
18335  // in an immediate function context and it is [...] an immediate invocation
18336  // that is not a constant expression and is not a subexpression of an
18337  // immediate invocation.
18338  APValue Cached;
18339  auto CheckConstantExpressionAndKeepResult = [&]() {
18340    llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
18341    Expr::EvalResult Eval;
18342    Eval.Diag = &Notes;
18343    bool Res = E.get()->EvaluateAsConstantExpr(
18344        Eval, getASTContext(), ConstantExprKind::ImmediateInvocation);
18345    if (Res && Notes.empty()) {
18346      Cached = std::move(Eval.Val);
18347      return true;
18348    }
18349    return false;
18350  };
18351
18352  if (!E.get()->isValueDependent() &&
18353      ExprEvalContexts.back().InImmediateEscalatingFunctionContext &&
18354      !CheckConstantExpressionAndKeepResult()) {
18355    MarkExpressionAsImmediateEscalating(E.get());
18356    return E;
18357  }
18358
18359  if (Cleanup.exprNeedsCleanups()) {
18360    // Since an immediate invocation is a full expression itself - it requires
18361    // an additional ExprWithCleanups node, but it can participate to a bigger
18362    // full expression which actually requires cleanups to be run after so
18363    // create ExprWithCleanups without using MaybeCreateExprWithCleanups as it
18364    // may discard cleanups for outer expression too early.
18365
18366    // Note that ExprWithCleanups created here must always have empty cleanup
18367    // objects:
18368    // - compound literals do not create cleanup objects in C++ and immediate
18369    // invocations are C++-only.
18370    // - blocks are not allowed inside constant expressions and compiler will
18371    // issue an error if they appear there.
18372    //
18373    // Hence, in correct code any cleanup objects created inside current
18374    // evaluation context must be outside the immediate invocation.
18375    E = ExprWithCleanups::Create(getASTContext(), E.get(),
18376                                 Cleanup.cleanupsHaveSideEffects(), {});
18377  }
18378
18379  ConstantExpr *Res = ConstantExpr::Create(
18380      getASTContext(), E.get(),
18381      ConstantExpr::getStorageKind(Decl->getReturnType().getTypePtr(),
18382                                   getASTContext()),
18383      /*IsImmediateInvocation*/ true);
18384  if (Cached.hasValue())
18385    Res->MoveIntoResult(Cached, getASTContext());
18386  /// Value-dependent constant expressions should not be immediately
18387  /// evaluated until they are instantiated.
18388  if (!Res->isValueDependent())
18389    ExprEvalContexts.back().ImmediateInvocationCandidates.emplace_back(Res, 0);
18390  return Res;
18391}
18392
18393static void EvaluateAndDiagnoseImmediateInvocation(
18394    Sema &SemaRef, Sema::ImmediateInvocationCandidate Candidate) {
18395  llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
18396  Expr::EvalResult Eval;
18397  Eval.Diag = &Notes;
18398  ConstantExpr *CE = Candidate.getPointer();
18399  bool Result = CE->EvaluateAsConstantExpr(
18400      Eval, SemaRef.getASTContext(), ConstantExprKind::ImmediateInvocation);
18401  if (!Result || !Notes.empty()) {
18402    SemaRef.FailedImmediateInvocations.insert(CE);
18403    Expr *InnerExpr = CE->getSubExpr()->IgnoreImplicit();
18404    if (auto *FunctionalCast = dyn_cast<CXXFunctionalCastExpr>(InnerExpr))
18405      InnerExpr = FunctionalCast->getSubExpr()->IgnoreImplicit();
18406    FunctionDecl *FD = nullptr;
18407    if (auto *Call = dyn_cast<CallExpr>(InnerExpr))
18408      FD = cast<FunctionDecl>(Call->getCalleeDecl());
18409    else if (auto *Call = dyn_cast<CXXConstructExpr>(InnerExpr))
18410      FD = Call->getConstructor();
18411    else if (auto *Cast = dyn_cast<CastExpr>(InnerExpr))
18412      FD = dyn_cast_or_null<FunctionDecl>(Cast->getConversionFunction());
18413
18414    assert(FD && FD->isImmediateFunction() &&
18415           "could not find an immediate function in this expression");
18416    if (FD->isInvalidDecl())
18417      return;
18418    SemaRef.Diag(CE->getBeginLoc(), diag::err_invalid_consteval_call)
18419        << FD << FD->isConsteval();
18420    if (auto Context =
18421            SemaRef.InnermostDeclarationWithDelayedImmediateInvocations()) {
18422      SemaRef.Diag(Context->Loc, diag::note_invalid_consteval_initializer)
18423          << Context->Decl;
18424      SemaRef.Diag(Context->Decl->getBeginLoc(), diag::note_declared_at);
18425    }
18426    if (!FD->isConsteval())
18427      SemaRef.DiagnoseImmediateEscalatingReason(FD);
18428    for (auto &Note : Notes)
18429      SemaRef.Diag(Note.first, Note.second);
18430    return;
18431  }
18432  CE->MoveIntoResult(Eval.Val, SemaRef.getASTContext());
18433}
18434
18435static void RemoveNestedImmediateInvocation(
18436    Sema &SemaRef, Sema::ExpressionEvaluationContextRecord &Rec,
18437    SmallVector<Sema::ImmediateInvocationCandidate, 4>::reverse_iterator It) {
18438  struct ComplexRemove : TreeTransform<ComplexRemove> {
18439    using Base = TreeTransform<ComplexRemove>;
18440    llvm::SmallPtrSetImpl<DeclRefExpr *> &DRSet;
18441    SmallVector<Sema::ImmediateInvocationCandidate, 4> &IISet;
18442    SmallVector<Sema::ImmediateInvocationCandidate, 4>::reverse_iterator
18443        CurrentII;
18444    ComplexRemove(Sema &SemaRef, llvm::SmallPtrSetImpl<DeclRefExpr *> &DR,
18445                  SmallVector<Sema::ImmediateInvocationCandidate, 4> &II,
18446                  SmallVector<Sema::ImmediateInvocationCandidate,
18447                              4>::reverse_iterator Current)
18448        : Base(SemaRef), DRSet(DR), IISet(II), CurrentII(Current) {}
18449    void RemoveImmediateInvocation(ConstantExpr* E) {
18450      auto It = std::find_if(CurrentII, IISet.rend(),
18451                             [E](Sema::ImmediateInvocationCandidate Elem) {
18452                               return Elem.getPointer() == E;
18453                             });
18454      // It is possible that some subexpression of the current immediate
18455      // invocation was handled from another expression evaluation context. Do
18456      // not handle the current immediate invocation if some of its
18457      // subexpressions failed before.
18458      if (It == IISet.rend()) {
18459        if (SemaRef.FailedImmediateInvocations.contains(E))
18460          CurrentII->setInt(1);
18461      } else {
18462        It->setInt(1); // Mark as deleted
18463      }
18464    }
18465    ExprResult TransformConstantExpr(ConstantExpr *E) {
18466      if (!E->isImmediateInvocation())
18467        return Base::TransformConstantExpr(E);
18468      RemoveImmediateInvocation(E);
18469      return Base::TransformExpr(E->getSubExpr());
18470    }
18471    /// Base::TransfromCXXOperatorCallExpr doesn't traverse the callee so
18472    /// we need to remove its DeclRefExpr from the DRSet.
18473    ExprResult TransformCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
18474      DRSet.erase(cast<DeclRefExpr>(E->getCallee()->IgnoreImplicit()));
18475      return Base::TransformCXXOperatorCallExpr(E);
18476    }
18477    /// Base::TransformUserDefinedLiteral doesn't preserve the
18478    /// UserDefinedLiteral node.
18479    ExprResult TransformUserDefinedLiteral(UserDefinedLiteral *E) { return E; }
18480    /// Base::TransformInitializer skips ConstantExpr so we need to visit them
18481    /// here.
18482    ExprResult TransformInitializer(Expr *Init, bool NotCopyInit) {
18483      if (!Init)
18484        return Init;
18485      /// ConstantExpr are the first layer of implicit node to be removed so if
18486      /// Init isn't a ConstantExpr, no ConstantExpr will be skipped.
18487      if (auto *CE = dyn_cast<ConstantExpr>(Init))
18488        if (CE->isImmediateInvocation())
18489          RemoveImmediateInvocation(CE);
18490      return Base::TransformInitializer(Init, NotCopyInit);
18491    }
18492    ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
18493      DRSet.erase(E);
18494      return E;
18495    }
18496    ExprResult TransformLambdaExpr(LambdaExpr *E) {
18497      // Do not rebuild lambdas to avoid creating a new type.
18498      // Lambdas have already been processed inside their eval context.
18499      return E;
18500    }
18501    bool AlwaysRebuild() { return false; }
18502    bool ReplacingOriginal() { return true; }
18503    bool AllowSkippingCXXConstructExpr() {
18504      bool Res = AllowSkippingFirstCXXConstructExpr;
18505      AllowSkippingFirstCXXConstructExpr = true;
18506      return Res;
18507    }
18508    bool AllowSkippingFirstCXXConstructExpr = true;
18509  } Transformer(SemaRef, Rec.ReferenceToConsteval,
18510                Rec.ImmediateInvocationCandidates, It);
18511
18512  /// CXXConstructExpr with a single argument are getting skipped by
18513  /// TreeTransform in some situtation because they could be implicit. This
18514  /// can only occur for the top-level CXXConstructExpr because it is used
18515  /// nowhere in the expression being transformed therefore will not be rebuilt.
18516  /// Setting AllowSkippingFirstCXXConstructExpr to false will prevent from
18517  /// skipping the first CXXConstructExpr.
18518  if (isa<CXXConstructExpr>(It->getPointer()->IgnoreImplicit()))
18519    Transformer.AllowSkippingFirstCXXConstructExpr = false;
18520
18521  ExprResult Res = Transformer.TransformExpr(It->getPointer()->getSubExpr());
18522  // The result may not be usable in case of previous compilation errors.
18523  // In this case evaluation of the expression may result in crash so just
18524  // don't do anything further with the result.
18525  if (Res.isUsable()) {
18526    Res = SemaRef.MaybeCreateExprWithCleanups(Res);
18527    It->getPointer()->setSubExpr(Res.get());
18528  }
18529}
18530
18531static void
18532HandleImmediateInvocations(Sema &SemaRef,
18533                           Sema::ExpressionEvaluationContextRecord &Rec) {
18534  if ((Rec.ImmediateInvocationCandidates.size() == 0 &&
18535       Rec.ReferenceToConsteval.size() == 0) ||
18536      SemaRef.RebuildingImmediateInvocation)
18537    return;
18538
18539  /// When we have more than 1 ImmediateInvocationCandidates or previously
18540  /// failed immediate invocations, we need to check for nested
18541  /// ImmediateInvocationCandidates in order to avoid duplicate diagnostics.
18542  /// Otherwise we only need to remove ReferenceToConsteval in the immediate
18543  /// invocation.
18544  if (Rec.ImmediateInvocationCandidates.size() > 1 ||
18545      !SemaRef.FailedImmediateInvocations.empty()) {
18546
18547    /// Prevent sema calls during the tree transform from adding pointers that
18548    /// are already in the sets.
18549    llvm::SaveAndRestore DisableIITracking(
18550        SemaRef.RebuildingImmediateInvocation, true);
18551
18552    /// Prevent diagnostic during tree transfrom as they are duplicates
18553    Sema::TentativeAnalysisScope DisableDiag(SemaRef);
18554
18555    for (auto It = Rec.ImmediateInvocationCandidates.rbegin();
18556         It != Rec.ImmediateInvocationCandidates.rend(); It++)
18557      if (!It->getInt())
18558        RemoveNestedImmediateInvocation(SemaRef, Rec, It);
18559  } else if (Rec.ImmediateInvocationCandidates.size() == 1 &&
18560             Rec.ReferenceToConsteval.size()) {
18561    struct SimpleRemove : RecursiveASTVisitor<SimpleRemove> {
18562      llvm::SmallPtrSetImpl<DeclRefExpr *> &DRSet;
18563      SimpleRemove(llvm::SmallPtrSetImpl<DeclRefExpr *> &S) : DRSet(S) {}
18564      bool VisitDeclRefExpr(DeclRefExpr *E) {
18565        DRSet.erase(E);
18566        return DRSet.size();
18567      }
18568    } Visitor(Rec.ReferenceToConsteval);
18569    Visitor.TraverseStmt(
18570        Rec.ImmediateInvocationCandidates.front().getPointer()->getSubExpr());
18571  }
18572  for (auto CE : Rec.ImmediateInvocationCandidates)
18573    if (!CE.getInt())
18574      EvaluateAndDiagnoseImmediateInvocation(SemaRef, CE);
18575  for (auto *DR : Rec.ReferenceToConsteval) {
18576    // If the expression is immediate escalating, it is not an error;
18577    // The outer context itself becomes immediate and further errors,
18578    // if any, will be handled by DiagnoseImmediateEscalatingReason.
18579    if (DR->isImmediateEscalating())
18580      continue;
18581    auto *FD = cast<FunctionDecl>(DR->getDecl());
18582    const NamedDecl *ND = FD;
18583    if (const auto *MD = dyn_cast<CXXMethodDecl>(ND);
18584        MD && (MD->isLambdaStaticInvoker() || isLambdaCallOperator(MD)))
18585      ND = MD->getParent();
18586
18587    // C++23 [expr.const]/p16
18588    // An expression or conversion is immediate-escalating if it is not
18589    // initially in an immediate function context and it is [...] a
18590    // potentially-evaluated id-expression that denotes an immediate function
18591    // that is not a subexpression of an immediate invocation.
18592    bool ImmediateEscalating = false;
18593    bool IsPotentiallyEvaluated =
18594        Rec.Context ==
18595            Sema::ExpressionEvaluationContext::PotentiallyEvaluated ||
18596        Rec.Context ==
18597            Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed;
18598    if (SemaRef.inTemplateInstantiation() && IsPotentiallyEvaluated)
18599      ImmediateEscalating = Rec.InImmediateEscalatingFunctionContext;
18600
18601    if (!Rec.InImmediateEscalatingFunctionContext ||
18602        (SemaRef.inTemplateInstantiation() && !ImmediateEscalating)) {
18603      SemaRef.Diag(DR->getBeginLoc(), diag::err_invalid_consteval_take_address)
18604          << ND << isa<CXXRecordDecl>(ND) << FD->isConsteval();
18605      SemaRef.Diag(ND->getLocation(), diag::note_declared_at);
18606      if (auto Context =
18607              SemaRef.InnermostDeclarationWithDelayedImmediateInvocations()) {
18608        SemaRef.Diag(Context->Loc, diag::note_invalid_consteval_initializer)
18609            << Context->Decl;
18610        SemaRef.Diag(Context->Decl->getBeginLoc(), diag::note_declared_at);
18611      }
18612      if (FD->isImmediateEscalating() && !FD->isConsteval())
18613        SemaRef.DiagnoseImmediateEscalatingReason(FD);
18614
18615    } else {
18616      SemaRef.MarkExpressionAsImmediateEscalating(DR);
18617    }
18618  }
18619}
18620
18621void Sema::PopExpressionEvaluationContext() {
18622  ExpressionEvaluationContextRecord& Rec = ExprEvalContexts.back();
18623  unsigned NumTypos = Rec.NumTypos;
18624
18625  if (!Rec.Lambdas.empty()) {
18626    using ExpressionKind = ExpressionEvaluationContextRecord::ExpressionKind;
18627    if (!getLangOpts().CPlusPlus20 &&
18628        (Rec.ExprContext == ExpressionKind::EK_TemplateArgument ||
18629         Rec.isUnevaluated() ||
18630         (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17))) {
18631      unsigned D;
18632      if (Rec.isUnevaluated()) {
18633        // C++11 [expr.prim.lambda]p2:
18634        //   A lambda-expression shall not appear in an unevaluated operand
18635        //   (Clause 5).
18636        D = diag::err_lambda_unevaluated_operand;
18637      } else if (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17) {
18638        // C++1y [expr.const]p2:
18639        //   A conditional-expression e is a core constant expression unless the
18640        //   evaluation of e, following the rules of the abstract machine, would
18641        //   evaluate [...] a lambda-expression.
18642        D = diag::err_lambda_in_constant_expression;
18643      } else if (Rec.ExprContext == ExpressionKind::EK_TemplateArgument) {
18644        // C++17 [expr.prim.lamda]p2:
18645        // A lambda-expression shall not appear [...] in a template-argument.
18646        D = diag::err_lambda_in_invalid_context;
18647      } else
18648        llvm_unreachable("Couldn't infer lambda error message.");
18649
18650      for (const auto *L : Rec.Lambdas)
18651        Diag(L->getBeginLoc(), D);
18652    }
18653  }
18654
18655  WarnOnPendingNoDerefs(Rec);
18656  HandleImmediateInvocations(*this, Rec);
18657
18658  // Warn on any volatile-qualified simple-assignments that are not discarded-
18659  // value expressions nor unevaluated operands (those cases get removed from
18660  // this list by CheckUnusedVolatileAssignment).
18661  for (auto *BO : Rec.VolatileAssignmentLHSs)
18662    Diag(BO->getBeginLoc(), diag::warn_deprecated_simple_assign_volatile)
18663        << BO->getType();
18664
18665  // When are coming out of an unevaluated context, clear out any
18666  // temporaries that we may have created as part of the evaluation of
18667  // the expression in that context: they aren't relevant because they
18668  // will never be constructed.
18669  if (Rec.isUnevaluated() || Rec.isConstantEvaluated()) {
18670    ExprCleanupObjects.erase(ExprCleanupObjects.begin() + Rec.NumCleanupObjects,
18671                             ExprCleanupObjects.end());
18672    Cleanup = Rec.ParentCleanup;
18673    CleanupVarDeclMarking();
18674    std::swap(MaybeODRUseExprs, Rec.SavedMaybeODRUseExprs);
18675  // Otherwise, merge the contexts together.
18676  } else {
18677    Cleanup.mergeFrom(Rec.ParentCleanup);
18678    MaybeODRUseExprs.insert(Rec.SavedMaybeODRUseExprs.begin(),
18679                            Rec.SavedMaybeODRUseExprs.end());
18680  }
18681
18682  // Pop the current expression evaluation context off the stack.
18683  ExprEvalContexts.pop_back();
18684
18685  // The global expression evaluation context record is never popped.
18686  ExprEvalContexts.back().NumTypos += NumTypos;
18687}
18688
18689void Sema::DiscardCleanupsInEvaluationContext() {
18690  ExprCleanupObjects.erase(
18691         ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects,
18692         ExprCleanupObjects.end());
18693  Cleanup.reset();
18694  MaybeODRUseExprs.clear();
18695}
18696
18697ExprResult Sema::HandleExprEvaluationContextForTypeof(Expr *E) {
18698  ExprResult Result = CheckPlaceholderExpr(E);
18699  if (Result.isInvalid())
18700    return ExprError();
18701  E = Result.get();
18702  if (!E->getType()->isVariablyModifiedType())
18703    return E;
18704  return TransformToPotentiallyEvaluated(E);
18705}
18706
18707/// Are we in a context that is potentially constant evaluated per C++20
18708/// [expr.const]p12?
18709static bool isPotentiallyConstantEvaluatedContext(Sema &SemaRef) {
18710  /// C++2a [expr.const]p12:
18711  //   An expression or conversion is potentially constant evaluated if it is
18712  switch (SemaRef.ExprEvalContexts.back().Context) {
18713    case Sema::ExpressionEvaluationContext::ConstantEvaluated:
18714    case Sema::ExpressionEvaluationContext::ImmediateFunctionContext:
18715
18716      // -- a manifestly constant-evaluated expression,
18717    case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
18718    case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
18719    case Sema::ExpressionEvaluationContext::DiscardedStatement:
18720      // -- a potentially-evaluated expression,
18721    case Sema::ExpressionEvaluationContext::UnevaluatedList:
18722      // -- an immediate subexpression of a braced-init-list,
18723
18724      // -- [FIXME] an expression of the form & cast-expression that occurs
18725      //    within a templated entity
18726      // -- a subexpression of one of the above that is not a subexpression of
18727      // a nested unevaluated operand.
18728      return true;
18729
18730    case Sema::ExpressionEvaluationContext::Unevaluated:
18731    case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
18732      // Expressions in this context are never evaluated.
18733      return false;
18734  }
18735  llvm_unreachable("Invalid context");
18736}
18737
18738/// Return true if this function has a calling convention that requires mangling
18739/// in the size of the parameter pack.
18740static bool funcHasParameterSizeMangling(Sema &S, FunctionDecl *FD) {
18741  // These manglings don't do anything on non-Windows or non-x86 platforms, so
18742  // we don't need parameter type sizes.
18743  const llvm::Triple &TT = S.Context.getTargetInfo().getTriple();
18744  if (!TT.isOSWindows() || !TT.isX86())
18745    return false;
18746
18747  // If this is C++ and this isn't an extern "C" function, parameters do not
18748  // need to be complete. In this case, C++ mangling will apply, which doesn't
18749  // use the size of the parameters.
18750  if (S.getLangOpts().CPlusPlus && !FD->isExternC())
18751    return false;
18752
18753  // Stdcall, fastcall, and vectorcall need this special treatment.
18754  CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv();
18755  switch (CC) {
18756  case CC_X86StdCall:
18757  case CC_X86FastCall:
18758  case CC_X86VectorCall:
18759    return true;
18760  default:
18761    break;
18762  }
18763  return false;
18764}
18765
18766/// Require that all of the parameter types of function be complete. Normally,
18767/// parameter types are only required to be complete when a function is called
18768/// or defined, but to mangle functions with certain calling conventions, the
18769/// mangler needs to know the size of the parameter list. In this situation,
18770/// MSVC doesn't emit an error or instantiate templates. Instead, MSVC mangles
18771/// the function as _foo@0, i.e. zero bytes of parameters, which will usually
18772/// result in a linker error. Clang doesn't implement this behavior, and instead
18773/// attempts to error at compile time.
18774static void CheckCompleteParameterTypesForMangler(Sema &S, FunctionDecl *FD,
18775                                                  SourceLocation Loc) {
18776  class ParamIncompleteTypeDiagnoser : public Sema::TypeDiagnoser {
18777    FunctionDecl *FD;
18778    ParmVarDecl *Param;
18779
18780  public:
18781    ParamIncompleteTypeDiagnoser(FunctionDecl *FD, ParmVarDecl *Param)
18782        : FD(FD), Param(Param) {}
18783
18784    void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
18785      CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv();
18786      StringRef CCName;
18787      switch (CC) {
18788      case CC_X86StdCall:
18789        CCName = "stdcall";
18790        break;
18791      case CC_X86FastCall:
18792        CCName = "fastcall";
18793        break;
18794      case CC_X86VectorCall:
18795        CCName = "vectorcall";
18796        break;
18797      default:
18798        llvm_unreachable("CC does not need mangling");
18799      }
18800
18801      S.Diag(Loc, diag::err_cconv_incomplete_param_type)
18802          << Param->getDeclName() << FD->getDeclName() << CCName;
18803    }
18804  };
18805
18806  for (ParmVarDecl *Param : FD->parameters()) {
18807    ParamIncompleteTypeDiagnoser Diagnoser(FD, Param);
18808    S.RequireCompleteType(Loc, Param->getType(), Diagnoser);
18809  }
18810}
18811
18812namespace {
18813enum class OdrUseContext {
18814  /// Declarations in this context are not odr-used.
18815  None,
18816  /// Declarations in this context are formally odr-used, but this is a
18817  /// dependent context.
18818  Dependent,
18819  /// Declarations in this context are odr-used but not actually used (yet).
18820  FormallyOdrUsed,
18821  /// Declarations in this context are used.
18822  Used
18823};
18824}
18825
18826/// Are we within a context in which references to resolved functions or to
18827/// variables result in odr-use?
18828static OdrUseContext isOdrUseContext(Sema &SemaRef) {
18829  OdrUseContext Result;
18830
18831  switch (SemaRef.ExprEvalContexts.back().Context) {
18832    case Sema::ExpressionEvaluationContext::Unevaluated:
18833    case Sema::ExpressionEvaluationContext::UnevaluatedList:
18834    case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
18835      return OdrUseContext::None;
18836
18837    case Sema::ExpressionEvaluationContext::ConstantEvaluated:
18838    case Sema::ExpressionEvaluationContext::ImmediateFunctionContext:
18839    case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
18840      Result = OdrUseContext::Used;
18841      break;
18842
18843    case Sema::ExpressionEvaluationContext::DiscardedStatement:
18844      Result = OdrUseContext::FormallyOdrUsed;
18845      break;
18846
18847    case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
18848      // A default argument formally results in odr-use, but doesn't actually
18849      // result in a use in any real sense until it itself is used.
18850      Result = OdrUseContext::FormallyOdrUsed;
18851      break;
18852  }
18853
18854  if (SemaRef.CurContext->isDependentContext())
18855    return OdrUseContext::Dependent;
18856
18857  return Result;
18858}
18859
18860static bool isImplicitlyDefinableConstexprFunction(FunctionDecl *Func) {
18861  if (!Func->isConstexpr())
18862    return false;
18863
18864  if (Func->isImplicitlyInstantiable() || !Func->isUserProvided())
18865    return true;
18866  auto *CCD = dyn_cast<CXXConstructorDecl>(Func);
18867  return CCD && CCD->getInheritedConstructor();
18868}
18869
18870/// Mark a function referenced, and check whether it is odr-used
18871/// (C++ [basic.def.odr]p2, C99 6.9p3)
18872void Sema::MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func,
18873                                  bool MightBeOdrUse) {
18874  assert(Func && "No function?");
18875
18876  Func->setReferenced();
18877
18878  // Recursive functions aren't really used until they're used from some other
18879  // context.
18880  bool IsRecursiveCall = CurContext == Func;
18881
18882  // C++11 [basic.def.odr]p3:
18883  //   A function whose name appears as a potentially-evaluated expression is
18884  //   odr-used if it is the unique lookup result or the selected member of a
18885  //   set of overloaded functions [...].
18886  //
18887  // We (incorrectly) mark overload resolution as an unevaluated context, so we
18888  // can just check that here.
18889  OdrUseContext OdrUse =
18890      MightBeOdrUse ? isOdrUseContext(*this) : OdrUseContext::None;
18891  if (IsRecursiveCall && OdrUse == OdrUseContext::Used)
18892    OdrUse = OdrUseContext::FormallyOdrUsed;
18893
18894  // Trivial default constructors and destructors are never actually used.
18895  // FIXME: What about other special members?
18896  if (Func->isTrivial() && !Func->hasAttr<DLLExportAttr>() &&
18897      OdrUse == OdrUseContext::Used) {
18898    if (auto *Constructor = dyn_cast<CXXConstructorDecl>(Func))
18899      if (Constructor->isDefaultConstructor())
18900        OdrUse = OdrUseContext::FormallyOdrUsed;
18901    if (isa<CXXDestructorDecl>(Func))
18902      OdrUse = OdrUseContext::FormallyOdrUsed;
18903  }
18904
18905  // C++20 [expr.const]p12:
18906  //   A function [...] is needed for constant evaluation if it is [...] a
18907  //   constexpr function that is named by an expression that is potentially
18908  //   constant evaluated
18909  bool NeededForConstantEvaluation =
18910      isPotentiallyConstantEvaluatedContext(*this) &&
18911      isImplicitlyDefinableConstexprFunction(Func);
18912
18913  // Determine whether we require a function definition to exist, per
18914  // C++11 [temp.inst]p3:
18915  //   Unless a function template specialization has been explicitly
18916  //   instantiated or explicitly specialized, the function template
18917  //   specialization is implicitly instantiated when the specialization is
18918  //   referenced in a context that requires a function definition to exist.
18919  // C++20 [temp.inst]p7:
18920  //   The existence of a definition of a [...] function is considered to
18921  //   affect the semantics of the program if the [...] function is needed for
18922  //   constant evaluation by an expression
18923  // C++20 [basic.def.odr]p10:
18924  //   Every program shall contain exactly one definition of every non-inline
18925  //   function or variable that is odr-used in that program outside of a
18926  //   discarded statement
18927  // C++20 [special]p1:
18928  //   The implementation will implicitly define [defaulted special members]
18929  //   if they are odr-used or needed for constant evaluation.
18930  //
18931  // Note that we skip the implicit instantiation of templates that are only
18932  // used in unused default arguments or by recursive calls to themselves.
18933  // This is formally non-conforming, but seems reasonable in practice.
18934  bool NeedDefinition = !IsRecursiveCall && (OdrUse == OdrUseContext::Used ||
18935                                             NeededForConstantEvaluation);
18936
18937  // C++14 [temp.expl.spec]p6:
18938  //   If a template [...] is explicitly specialized then that specialization
18939  //   shall be declared before the first use of that specialization that would
18940  //   cause an implicit instantiation to take place, in every translation unit
18941  //   in which such a use occurs
18942  if (NeedDefinition &&
18943      (Func->getTemplateSpecializationKind() != TSK_Undeclared ||
18944       Func->getMemberSpecializationInfo()))
18945    checkSpecializationReachability(Loc, Func);
18946
18947  if (getLangOpts().CUDA)
18948    CheckCUDACall(Loc, Func);
18949
18950  // If we need a definition, try to create one.
18951  if (NeedDefinition && !Func->getBody()) {
18952    runWithSufficientStackSpace(Loc, [&] {
18953      if (CXXConstructorDecl *Constructor =
18954              dyn_cast<CXXConstructorDecl>(Func)) {
18955        Constructor = cast<CXXConstructorDecl>(Constructor->getFirstDecl());
18956        if (Constructor->isDefaulted() && !Constructor->isDeleted()) {
18957          if (Constructor->isDefaultConstructor()) {
18958            if (Constructor->isTrivial() &&
18959                !Constructor->hasAttr<DLLExportAttr>())
18960              return;
18961            DefineImplicitDefaultConstructor(Loc, Constructor);
18962          } else if (Constructor->isCopyConstructor()) {
18963            DefineImplicitCopyConstructor(Loc, Constructor);
18964          } else if (Constructor->isMoveConstructor()) {
18965            DefineImplicitMoveConstructor(Loc, Constructor);
18966          }
18967        } else if (Constructor->getInheritedConstructor()) {
18968          DefineInheritingConstructor(Loc, Constructor);
18969        }
18970      } else if (CXXDestructorDecl *Destructor =
18971                     dyn_cast<CXXDestructorDecl>(Func)) {
18972        Destructor = cast<CXXDestructorDecl>(Destructor->getFirstDecl());
18973        if (Destructor->isDefaulted() && !Destructor->isDeleted()) {
18974          if (Destructor->isTrivial() && !Destructor->hasAttr<DLLExportAttr>())
18975            return;
18976          DefineImplicitDestructor(Loc, Destructor);
18977        }
18978        if (Destructor->isVirtual() && getLangOpts().AppleKext)
18979          MarkVTableUsed(Loc, Destructor->getParent());
18980      } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Func)) {
18981        if (MethodDecl->isOverloadedOperator() &&
18982            MethodDecl->getOverloadedOperator() == OO_Equal) {
18983          MethodDecl = cast<CXXMethodDecl>(MethodDecl->getFirstDecl());
18984          if (MethodDecl->isDefaulted() && !MethodDecl->isDeleted()) {
18985            if (MethodDecl->isCopyAssignmentOperator())
18986              DefineImplicitCopyAssignment(Loc, MethodDecl);
18987            else if (MethodDecl->isMoveAssignmentOperator())
18988              DefineImplicitMoveAssignment(Loc, MethodDecl);
18989          }
18990        } else if (isa<CXXConversionDecl>(MethodDecl) &&
18991                   MethodDecl->getParent()->isLambda()) {
18992          CXXConversionDecl *Conversion =
18993              cast<CXXConversionDecl>(MethodDecl->getFirstDecl());
18994          if (Conversion->isLambdaToBlockPointerConversion())
18995            DefineImplicitLambdaToBlockPointerConversion(Loc, Conversion);
18996          else
18997            DefineImplicitLambdaToFunctionPointerConversion(Loc, Conversion);
18998        } else if (MethodDecl->isVirtual() && getLangOpts().AppleKext)
18999          MarkVTableUsed(Loc, MethodDecl->getParent());
19000      }
19001
19002      if (Func->isDefaulted() && !Func->isDeleted()) {
19003        DefaultedComparisonKind DCK = getDefaultedComparisonKind(Func);
19004        if (DCK != DefaultedComparisonKind::None)
19005          DefineDefaultedComparison(Loc, Func, DCK);
19006      }
19007
19008      // Implicit instantiation of function templates and member functions of
19009      // class templates.
19010      if (Func->isImplicitlyInstantiable()) {
19011        TemplateSpecializationKind TSK =
19012            Func->getTemplateSpecializationKindForInstantiation();
19013        SourceLocation PointOfInstantiation = Func->getPointOfInstantiation();
19014        bool FirstInstantiation = PointOfInstantiation.isInvalid();
19015        if (FirstInstantiation) {
19016          PointOfInstantiation = Loc;
19017          if (auto *MSI = Func->getMemberSpecializationInfo())
19018            MSI->setPointOfInstantiation(Loc);
19019            // FIXME: Notify listener.
19020          else
19021            Func->setTemplateSpecializationKind(TSK, PointOfInstantiation);
19022        } else if (TSK != TSK_ImplicitInstantiation) {
19023          // Use the point of use as the point of instantiation, instead of the
19024          // point of explicit instantiation (which we track as the actual point
19025          // of instantiation). This gives better backtraces in diagnostics.
19026          PointOfInstantiation = Loc;
19027        }
19028
19029        if (FirstInstantiation || TSK != TSK_ImplicitInstantiation ||
19030            Func->isConstexpr()) {
19031          if (isa<CXXRecordDecl>(Func->getDeclContext()) &&
19032              cast<CXXRecordDecl>(Func->getDeclContext())->isLocalClass() &&
19033              CodeSynthesisContexts.size())
19034            PendingLocalImplicitInstantiations.push_back(
19035                std::make_pair(Func, PointOfInstantiation));
19036          else if (Func->isConstexpr())
19037            // Do not defer instantiations of constexpr functions, to avoid the
19038            // expression evaluator needing to call back into Sema if it sees a
19039            // call to such a function.
19040            InstantiateFunctionDefinition(PointOfInstantiation, Func);
19041          else {
19042            Func->setInstantiationIsPending(true);
19043            PendingInstantiations.push_back(
19044                std::make_pair(Func, PointOfInstantiation));
19045            // Notify the consumer that a function was implicitly instantiated.
19046            Consumer.HandleCXXImplicitFunctionInstantiation(Func);
19047          }
19048        }
19049      } else {
19050        // Walk redefinitions, as some of them may be instantiable.
19051        for (auto *i : Func->redecls()) {
19052          if (!i->isUsed(false) && i->isImplicitlyInstantiable())
19053            MarkFunctionReferenced(Loc, i, MightBeOdrUse);
19054        }
19055      }
19056    });
19057  }
19058
19059  // If a constructor was defined in the context of a default parameter
19060  // or of another default member initializer (ie a PotentiallyEvaluatedIfUsed
19061  // context), its initializers may not be referenced yet.
19062  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Func)) {
19063    EnterExpressionEvaluationContext EvalContext(
19064        *this,
19065        Constructor->isImmediateFunction()
19066            ? ExpressionEvaluationContext::ImmediateFunctionContext
19067            : ExpressionEvaluationContext::PotentiallyEvaluated,
19068        Constructor);
19069    for (CXXCtorInitializer *Init : Constructor->inits()) {
19070      if (Init->isInClassMemberInitializer())
19071        runWithSufficientStackSpace(Init->getSourceLocation(), [&]() {
19072          MarkDeclarationsReferencedInExpr(Init->getInit());
19073        });
19074    }
19075  }
19076
19077  // C++14 [except.spec]p17:
19078  //   An exception-specification is considered to be needed when:
19079  //   - the function is odr-used or, if it appears in an unevaluated operand,
19080  //     would be odr-used if the expression were potentially-evaluated;
19081  //
19082  // Note, we do this even if MightBeOdrUse is false. That indicates that the
19083  // function is a pure virtual function we're calling, and in that case the
19084  // function was selected by overload resolution and we need to resolve its
19085  // exception specification for a different reason.
19086  const FunctionProtoType *FPT = Func->getType()->getAs<FunctionProtoType>();
19087  if (FPT && isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
19088    ResolveExceptionSpec(Loc, FPT);
19089
19090  // A callee could be called by a host function then by a device function.
19091  // If we only try recording once, we will miss recording the use on device
19092  // side. Therefore keep trying until it is recorded.
19093  if (LangOpts.OffloadImplicitHostDeviceTemplates && LangOpts.CUDAIsDevice &&
19094      !getASTContext().CUDAImplicitHostDeviceFunUsedByDevice.count(Func))
19095    CUDARecordImplicitHostDeviceFuncUsedByDevice(Func);
19096
19097  // If this is the first "real" use, act on that.
19098  if (OdrUse == OdrUseContext::Used && !Func->isUsed(/*CheckUsedAttr=*/false)) {
19099    // Keep track of used but undefined functions.
19100    if (!Func->isDefined()) {
19101      if (mightHaveNonExternalLinkage(Func))
19102        UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
19103      else if (Func->getMostRecentDecl()->isInlined() &&
19104               !LangOpts.GNUInline &&
19105               !Func->getMostRecentDecl()->hasAttr<GNUInlineAttr>())
19106        UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
19107      else if (isExternalWithNoLinkageType(Func))
19108        UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
19109    }
19110
19111    // Some x86 Windows calling conventions mangle the size of the parameter
19112    // pack into the name. Computing the size of the parameters requires the
19113    // parameter types to be complete. Check that now.
19114    if (funcHasParameterSizeMangling(*this, Func))
19115      CheckCompleteParameterTypesForMangler(*this, Func, Loc);
19116
19117    // In the MS C++ ABI, the compiler emits destructor variants where they are
19118    // used. If the destructor is used here but defined elsewhere, mark the
19119    // virtual base destructors referenced. If those virtual base destructors
19120    // are inline, this will ensure they are defined when emitting the complete
19121    // destructor variant. This checking may be redundant if the destructor is
19122    // provided later in this TU.
19123    if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
19124      if (auto *Dtor = dyn_cast<CXXDestructorDecl>(Func)) {
19125        CXXRecordDecl *Parent = Dtor->getParent();
19126        if (Parent->getNumVBases() > 0 && !Dtor->getBody())
19127          CheckCompleteDestructorVariant(Loc, Dtor);
19128      }
19129    }
19130
19131    Func->markUsed(Context);
19132  }
19133}
19134
19135/// Directly mark a variable odr-used. Given a choice, prefer to use
19136/// MarkVariableReferenced since it does additional checks and then
19137/// calls MarkVarDeclODRUsed.
19138/// If the variable must be captured:
19139///  - if FunctionScopeIndexToStopAt is null, capture it in the CurContext
19140///  - else capture it in the DeclContext that maps to the
19141///    *FunctionScopeIndexToStopAt on the FunctionScopeInfo stack.
19142static void
19143MarkVarDeclODRUsed(ValueDecl *V, SourceLocation Loc, Sema &SemaRef,
19144                   const unsigned *const FunctionScopeIndexToStopAt = nullptr) {
19145  // Keep track of used but undefined variables.
19146  // FIXME: We shouldn't suppress this warning for static data members.
19147  VarDecl *Var = V->getPotentiallyDecomposedVarDecl();
19148  assert(Var && "expected a capturable variable");
19149
19150  if (Var->hasDefinition(SemaRef.Context) == VarDecl::DeclarationOnly &&
19151      (!Var->isExternallyVisible() || Var->isInline() ||
19152       SemaRef.isExternalWithNoLinkageType(Var)) &&
19153      !(Var->isStaticDataMember() && Var->hasInit())) {
19154    SourceLocation &old = SemaRef.UndefinedButUsed[Var->getCanonicalDecl()];
19155    if (old.isInvalid())
19156      old = Loc;
19157  }
19158  QualType CaptureType, DeclRefType;
19159  if (SemaRef.LangOpts.OpenMP)
19160    SemaRef.tryCaptureOpenMPLambdas(V);
19161  SemaRef.tryCaptureVariable(V, Loc, Sema::TryCapture_Implicit,
19162                             /*EllipsisLoc*/ SourceLocation(),
19163                             /*BuildAndDiagnose*/ true, CaptureType,
19164                             DeclRefType, FunctionScopeIndexToStopAt);
19165
19166  if (SemaRef.LangOpts.CUDA && Var->hasGlobalStorage()) {
19167    auto *FD = dyn_cast_or_null<FunctionDecl>(SemaRef.CurContext);
19168    auto VarTarget = SemaRef.IdentifyCUDATarget(Var);
19169    auto UserTarget = SemaRef.IdentifyCUDATarget(FD);
19170    if (VarTarget == Sema::CVT_Host &&
19171        (UserTarget == Sema::CFT_Device || UserTarget == Sema::CFT_HostDevice ||
19172         UserTarget == Sema::CFT_Global)) {
19173      // Diagnose ODR-use of host global variables in device functions.
19174      // Reference of device global variables in host functions is allowed
19175      // through shadow variables therefore it is not diagnosed.
19176      if (SemaRef.LangOpts.CUDAIsDevice && !SemaRef.LangOpts.HIPStdPar) {
19177        SemaRef.targetDiag(Loc, diag::err_ref_bad_target)
19178            << /*host*/ 2 << /*variable*/ 1 << Var << UserTarget;
19179        SemaRef.targetDiag(Var->getLocation(),
19180                           Var->getType().isConstQualified()
19181                               ? diag::note_cuda_const_var_unpromoted
19182                               : diag::note_cuda_host_var);
19183      }
19184    } else if (VarTarget == Sema::CVT_Device &&
19185               !Var->hasAttr<CUDASharedAttr>() &&
19186               (UserTarget == Sema::CFT_Host ||
19187                UserTarget == Sema::CFT_HostDevice)) {
19188      // Record a CUDA/HIP device side variable if it is ODR-used
19189      // by host code. This is done conservatively, when the variable is
19190      // referenced in any of the following contexts:
19191      //   - a non-function context
19192      //   - a host function
19193      //   - a host device function
19194      // This makes the ODR-use of the device side variable by host code to
19195      // be visible in the device compilation for the compiler to be able to
19196      // emit template variables instantiated by host code only and to
19197      // externalize the static device side variable ODR-used by host code.
19198      if (!Var->hasExternalStorage())
19199        SemaRef.getASTContext().CUDADeviceVarODRUsedByHost.insert(Var);
19200      else if (SemaRef.LangOpts.GPURelocatableDeviceCode)
19201        SemaRef.getASTContext().CUDAExternalDeviceDeclODRUsedByHost.insert(Var);
19202    }
19203  }
19204
19205  V->markUsed(SemaRef.Context);
19206}
19207
19208void Sema::MarkCaptureUsedInEnclosingContext(ValueDecl *Capture,
19209                                             SourceLocation Loc,
19210                                             unsigned CapturingScopeIndex) {
19211  MarkVarDeclODRUsed(Capture, Loc, *this, &CapturingScopeIndex);
19212}
19213
19214void diagnoseUncapturableValueReferenceOrBinding(Sema &S, SourceLocation loc,
19215                                                 ValueDecl *var) {
19216  DeclContext *VarDC = var->getDeclContext();
19217
19218  //  If the parameter still belongs to the translation unit, then
19219  //  we're actually just using one parameter in the declaration of
19220  //  the next.
19221  if (isa<ParmVarDecl>(var) &&
19222      isa<TranslationUnitDecl>(VarDC))
19223    return;
19224
19225  // For C code, don't diagnose about capture if we're not actually in code
19226  // right now; it's impossible to write a non-constant expression outside of
19227  // function context, so we'll get other (more useful) diagnostics later.
19228  //
19229  // For C++, things get a bit more nasty... it would be nice to suppress this
19230  // diagnostic for certain cases like using a local variable in an array bound
19231  // for a member of a local class, but the correct predicate is not obvious.
19232  if (!S.getLangOpts().CPlusPlus && !S.CurContext->isFunctionOrMethod())
19233    return;
19234
19235  unsigned ValueKind = isa<BindingDecl>(var) ? 1 : 0;
19236  unsigned ContextKind = 3; // unknown
19237  if (isa<CXXMethodDecl>(VarDC) &&
19238      cast<CXXRecordDecl>(VarDC->getParent())->isLambda()) {
19239    ContextKind = 2;
19240  } else if (isa<FunctionDecl>(VarDC)) {
19241    ContextKind = 0;
19242  } else if (isa<BlockDecl>(VarDC)) {
19243    ContextKind = 1;
19244  }
19245
19246  S.Diag(loc, diag::err_reference_to_local_in_enclosing_context)
19247    << var << ValueKind << ContextKind << VarDC;
19248  S.Diag(var->getLocation(), diag::note_entity_declared_at)
19249      << var;
19250
19251  // FIXME: Add additional diagnostic info about class etc. which prevents
19252  // capture.
19253}
19254
19255static bool isVariableAlreadyCapturedInScopeInfo(CapturingScopeInfo *CSI,
19256                                                 ValueDecl *Var,
19257                                                 bool &SubCapturesAreNested,
19258                                                 QualType &CaptureType,
19259                                                 QualType &DeclRefType) {
19260  // Check whether we've already captured it.
19261  if (CSI->CaptureMap.count(Var)) {
19262    // If we found a capture, any subcaptures are nested.
19263    SubCapturesAreNested = true;
19264
19265    // Retrieve the capture type for this variable.
19266    CaptureType = CSI->getCapture(Var).getCaptureType();
19267
19268    // Compute the type of an expression that refers to this variable.
19269    DeclRefType = CaptureType.getNonReferenceType();
19270
19271    // Similarly to mutable captures in lambda, all the OpenMP captures by copy
19272    // are mutable in the sense that user can change their value - they are
19273    // private instances of the captured declarations.
19274    const Capture &Cap = CSI->getCapture(Var);
19275    if (Cap.isCopyCapture() &&
19276        !(isa<LambdaScopeInfo>(CSI) &&
19277          !cast<LambdaScopeInfo>(CSI)->lambdaCaptureShouldBeConst()) &&
19278        !(isa<CapturedRegionScopeInfo>(CSI) &&
19279          cast<CapturedRegionScopeInfo>(CSI)->CapRegionKind == CR_OpenMP))
19280      DeclRefType.addConst();
19281    return true;
19282  }
19283  return false;
19284}
19285
19286// Only block literals, captured statements, and lambda expressions can
19287// capture; other scopes don't work.
19288static DeclContext *getParentOfCapturingContextOrNull(DeclContext *DC,
19289                                                      ValueDecl *Var,
19290                                                      SourceLocation Loc,
19291                                                      const bool Diagnose,
19292                                                      Sema &S) {
19293  if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC) || isLambdaCallOperator(DC))
19294    return getLambdaAwareParentOfDeclContext(DC);
19295
19296  VarDecl *Underlying = Var->getPotentiallyDecomposedVarDecl();
19297  if (Underlying) {
19298    if (Underlying->hasLocalStorage() && Diagnose)
19299      diagnoseUncapturableValueReferenceOrBinding(S, Loc, Var);
19300  }
19301  return nullptr;
19302}
19303
19304// Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
19305// certain types of variables (unnamed, variably modified types etc.)
19306// so check for eligibility.
19307static bool isVariableCapturable(CapturingScopeInfo *CSI, ValueDecl *Var,
19308                                 SourceLocation Loc, const bool Diagnose,
19309                                 Sema &S) {
19310
19311  assert((isa<VarDecl, BindingDecl>(Var)) &&
19312         "Only variables and structured bindings can be captured");
19313
19314  bool IsBlock = isa<BlockScopeInfo>(CSI);
19315  bool IsLambda = isa<LambdaScopeInfo>(CSI);
19316
19317  // Lambdas are not allowed to capture unnamed variables
19318  // (e.g. anonymous unions).
19319  // FIXME: The C++11 rule don't actually state this explicitly, but I'm
19320  // assuming that's the intent.
19321  if (IsLambda && !Var->getDeclName()) {
19322    if (Diagnose) {
19323      S.Diag(Loc, diag::err_lambda_capture_anonymous_var);
19324      S.Diag(Var->getLocation(), diag::note_declared_at);
19325    }
19326    return false;
19327  }
19328
19329  // Prohibit variably-modified types in blocks; they're difficult to deal with.
19330  if (Var->getType()->isVariablyModifiedType() && IsBlock) {
19331    if (Diagnose) {
19332      S.Diag(Loc, diag::err_ref_vm_type);
19333      S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
19334    }
19335    return false;
19336  }
19337  // Prohibit structs with flexible array members too.
19338  // We cannot capture what is in the tail end of the struct.
19339  if (const RecordType *VTTy = Var->getType()->getAs<RecordType>()) {
19340    if (VTTy->getDecl()->hasFlexibleArrayMember()) {
19341      if (Diagnose) {
19342        if (IsBlock)
19343          S.Diag(Loc, diag::err_ref_flexarray_type);
19344        else
19345          S.Diag(Loc, diag::err_lambda_capture_flexarray_type) << Var;
19346        S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
19347      }
19348      return false;
19349    }
19350  }
19351  const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
19352  // Lambdas and captured statements are not allowed to capture __block
19353  // variables; they don't support the expected semantics.
19354  if (HasBlocksAttr && (IsLambda || isa<CapturedRegionScopeInfo>(CSI))) {
19355    if (Diagnose) {
19356      S.Diag(Loc, diag::err_capture_block_variable) << Var << !IsLambda;
19357      S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
19358    }
19359    return false;
19360  }
19361  // OpenCL v2.0 s6.12.5: Blocks cannot reference/capture other blocks
19362  if (S.getLangOpts().OpenCL && IsBlock &&
19363      Var->getType()->isBlockPointerType()) {
19364    if (Diagnose)
19365      S.Diag(Loc, diag::err_opencl_block_ref_block);
19366    return false;
19367  }
19368
19369  if (isa<BindingDecl>(Var)) {
19370    if (!IsLambda || !S.getLangOpts().CPlusPlus) {
19371      if (Diagnose)
19372        diagnoseUncapturableValueReferenceOrBinding(S, Loc, Var);
19373      return false;
19374    } else if (Diagnose && S.getLangOpts().CPlusPlus) {
19375      S.Diag(Loc, S.LangOpts.CPlusPlus20
19376                      ? diag::warn_cxx17_compat_capture_binding
19377                      : diag::ext_capture_binding)
19378          << Var;
19379      S.Diag(Var->getLocation(), diag::note_entity_declared_at) << Var;
19380    }
19381  }
19382
19383  return true;
19384}
19385
19386// Returns true if the capture by block was successful.
19387static bool captureInBlock(BlockScopeInfo *BSI, ValueDecl *Var,
19388                           SourceLocation Loc, const bool BuildAndDiagnose,
19389                           QualType &CaptureType, QualType &DeclRefType,
19390                           const bool Nested, Sema &S, bool Invalid) {
19391  bool ByRef = false;
19392
19393  // Blocks are not allowed to capture arrays, excepting OpenCL.
19394  // OpenCL v2.0 s1.12.5 (revision 40): arrays are captured by reference
19395  // (decayed to pointers).
19396  if (!Invalid && !S.getLangOpts().OpenCL && CaptureType->isArrayType()) {
19397    if (BuildAndDiagnose) {
19398      S.Diag(Loc, diag::err_ref_array_type);
19399      S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
19400      Invalid = true;
19401    } else {
19402      return false;
19403    }
19404  }
19405
19406  // Forbid the block-capture of autoreleasing variables.
19407  if (!Invalid &&
19408      CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
19409    if (BuildAndDiagnose) {
19410      S.Diag(Loc, diag::err_arc_autoreleasing_capture)
19411        << /*block*/ 0;
19412      S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
19413      Invalid = true;
19414    } else {
19415      return false;
19416    }
19417  }
19418
19419  // Warn about implicitly autoreleasing indirect parameters captured by blocks.
19420  if (const auto *PT = CaptureType->getAs<PointerType>()) {
19421    QualType PointeeTy = PT->getPointeeType();
19422
19423    if (!Invalid && PointeeTy->getAs<ObjCObjectPointerType>() &&
19424        PointeeTy.getObjCLifetime() == Qualifiers::OCL_Autoreleasing &&
19425        !S.Context.hasDirectOwnershipQualifier(PointeeTy)) {
19426      if (BuildAndDiagnose) {
19427        SourceLocation VarLoc = Var->getLocation();
19428        S.Diag(Loc, diag::warn_block_capture_autoreleasing);
19429        S.Diag(VarLoc, diag::note_declare_parameter_strong);
19430      }
19431    }
19432  }
19433
19434  const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
19435  if (HasBlocksAttr || CaptureType->isReferenceType() ||
19436      (S.getLangOpts().OpenMP && S.isOpenMPCapturedDecl(Var))) {
19437    // Block capture by reference does not change the capture or
19438    // declaration reference types.
19439    ByRef = true;
19440  } else {
19441    // Block capture by copy introduces 'const'.
19442    CaptureType = CaptureType.getNonReferenceType().withConst();
19443    DeclRefType = CaptureType;
19444  }
19445
19446  // Actually capture the variable.
19447  if (BuildAndDiagnose)
19448    BSI->addCapture(Var, HasBlocksAttr, ByRef, Nested, Loc, SourceLocation(),
19449                    CaptureType, Invalid);
19450
19451  return !Invalid;
19452}
19453
19454/// Capture the given variable in the captured region.
19455static bool captureInCapturedRegion(
19456    CapturedRegionScopeInfo *RSI, ValueDecl *Var, SourceLocation Loc,
19457    const bool BuildAndDiagnose, QualType &CaptureType, QualType &DeclRefType,
19458    const bool RefersToCapturedVariable, Sema::TryCaptureKind Kind,
19459    bool IsTopScope, Sema &S, bool Invalid) {
19460  // By default, capture variables by reference.
19461  bool ByRef = true;
19462  if (IsTopScope && Kind != Sema::TryCapture_Implicit) {
19463    ByRef = (Kind == Sema::TryCapture_ExplicitByRef);
19464  } else if (S.getLangOpts().OpenMP && RSI->CapRegionKind == CR_OpenMP) {
19465    // Using an LValue reference type is consistent with Lambdas (see below).
19466    if (S.isOpenMPCapturedDecl(Var)) {
19467      bool HasConst = DeclRefType.isConstQualified();
19468      DeclRefType = DeclRefType.getUnqualifiedType();
19469      // Don't lose diagnostics about assignments to const.
19470      if (HasConst)
19471        DeclRefType.addConst();
19472    }
19473    // Do not capture firstprivates in tasks.
19474    if (S.isOpenMPPrivateDecl(Var, RSI->OpenMPLevel, RSI->OpenMPCaptureLevel) !=
19475        OMPC_unknown)
19476      return true;
19477    ByRef = S.isOpenMPCapturedByRef(Var, RSI->OpenMPLevel,
19478                                    RSI->OpenMPCaptureLevel);
19479  }
19480
19481  if (ByRef)
19482    CaptureType = S.Context.getLValueReferenceType(DeclRefType);
19483  else
19484    CaptureType = DeclRefType;
19485
19486  // Actually capture the variable.
19487  if (BuildAndDiagnose)
19488    RSI->addCapture(Var, /*isBlock*/ false, ByRef, RefersToCapturedVariable,
19489                    Loc, SourceLocation(), CaptureType, Invalid);
19490
19491  return !Invalid;
19492}
19493
19494/// Capture the given variable in the lambda.
19495static bool captureInLambda(LambdaScopeInfo *LSI, ValueDecl *Var,
19496                            SourceLocation Loc, const bool BuildAndDiagnose,
19497                            QualType &CaptureType, QualType &DeclRefType,
19498                            const bool RefersToCapturedVariable,
19499                            const Sema::TryCaptureKind Kind,
19500                            SourceLocation EllipsisLoc, const bool IsTopScope,
19501                            Sema &S, bool Invalid) {
19502  // Determine whether we are capturing by reference or by value.
19503  bool ByRef = false;
19504  if (IsTopScope && Kind != Sema::TryCapture_Implicit) {
19505    ByRef = (Kind == Sema::TryCapture_ExplicitByRef);
19506  } else {
19507    ByRef = (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByref);
19508  }
19509
19510  BindingDecl *BD = dyn_cast<BindingDecl>(Var);
19511  // FIXME: We should support capturing structured bindings in OpenMP.
19512  if (!Invalid && BD && S.LangOpts.OpenMP) {
19513    if (BuildAndDiagnose) {
19514      S.Diag(Loc, diag::err_capture_binding_openmp) << Var;
19515      S.Diag(Var->getLocation(), diag::note_entity_declared_at) << Var;
19516    }
19517    Invalid = true;
19518  }
19519
19520  if (BuildAndDiagnose && S.Context.getTargetInfo().getTriple().isWasm() &&
19521      CaptureType.getNonReferenceType().isWebAssemblyReferenceType()) {
19522    S.Diag(Loc, diag::err_wasm_ca_reference) << 0;
19523    Invalid = true;
19524  }
19525
19526  // Compute the type of the field that will capture this variable.
19527  if (ByRef) {
19528    // C++11 [expr.prim.lambda]p15:
19529    //   An entity is captured by reference if it is implicitly or
19530    //   explicitly captured but not captured by copy. It is
19531    //   unspecified whether additional unnamed non-static data
19532    //   members are declared in the closure type for entities
19533    //   captured by reference.
19534    //
19535    // FIXME: It is not clear whether we want to build an lvalue reference
19536    // to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears
19537    // to do the former, while EDG does the latter. Core issue 1249 will
19538    // clarify, but for now we follow GCC because it's a more permissive and
19539    // easily defensible position.
19540    CaptureType = S.Context.getLValueReferenceType(DeclRefType);
19541  } else {
19542    // C++11 [expr.prim.lambda]p14:
19543    //   For each entity captured by copy, an unnamed non-static
19544    //   data member is declared in the closure type. The
19545    //   declaration order of these members is unspecified. The type
19546    //   of such a data member is the type of the corresponding
19547    //   captured entity if the entity is not a reference to an
19548    //   object, or the referenced type otherwise. [Note: If the
19549    //   captured entity is a reference to a function, the
19550    //   corresponding data member is also a reference to a
19551    //   function. - end note ]
19552    if (const ReferenceType *RefType = CaptureType->getAs<ReferenceType>()){
19553      if (!RefType->getPointeeType()->isFunctionType())
19554        CaptureType = RefType->getPointeeType();
19555    }
19556
19557    // Forbid the lambda copy-capture of autoreleasing variables.
19558    if (!Invalid &&
19559        CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
19560      if (BuildAndDiagnose) {
19561        S.Diag(Loc, diag::err_arc_autoreleasing_capture) << /*lambda*/ 1;
19562        S.Diag(Var->getLocation(), diag::note_previous_decl)
19563          << Var->getDeclName();
19564        Invalid = true;
19565      } else {
19566        return false;
19567      }
19568    }
19569
19570    // Make sure that by-copy captures are of a complete and non-abstract type.
19571    if (!Invalid && BuildAndDiagnose) {
19572      if (!CaptureType->isDependentType() &&
19573          S.RequireCompleteSizedType(
19574              Loc, CaptureType,
19575              diag::err_capture_of_incomplete_or_sizeless_type,
19576              Var->getDeclName()))
19577        Invalid = true;
19578      else if (S.RequireNonAbstractType(Loc, CaptureType,
19579                                        diag::err_capture_of_abstract_type))
19580        Invalid = true;
19581    }
19582  }
19583
19584  // Compute the type of a reference to this captured variable.
19585  if (ByRef)
19586    DeclRefType = CaptureType.getNonReferenceType();
19587  else {
19588    // C++ [expr.prim.lambda]p5:
19589    //   The closure type for a lambda-expression has a public inline
19590    //   function call operator [...]. This function call operator is
19591    //   declared const (9.3.1) if and only if the lambda-expression's
19592    //   parameter-declaration-clause is not followed by mutable.
19593    DeclRefType = CaptureType.getNonReferenceType();
19594    bool Const = LSI->lambdaCaptureShouldBeConst();
19595    if (Const && !CaptureType->isReferenceType())
19596      DeclRefType.addConst();
19597  }
19598
19599  // Add the capture.
19600  if (BuildAndDiagnose)
19601    LSI->addCapture(Var, /*isBlock=*/false, ByRef, RefersToCapturedVariable,
19602                    Loc, EllipsisLoc, CaptureType, Invalid);
19603
19604  return !Invalid;
19605}
19606
19607static bool canCaptureVariableByCopy(ValueDecl *Var,
19608                                     const ASTContext &Context) {
19609  // Offer a Copy fix even if the type is dependent.
19610  if (Var->getType()->isDependentType())
19611    return true;
19612  QualType T = Var->getType().getNonReferenceType();
19613  if (T.isTriviallyCopyableType(Context))
19614    return true;
19615  if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
19616
19617    if (!(RD = RD->getDefinition()))
19618      return false;
19619    if (RD->hasSimpleCopyConstructor())
19620      return true;
19621    if (RD->hasUserDeclaredCopyConstructor())
19622      for (CXXConstructorDecl *Ctor : RD->ctors())
19623        if (Ctor->isCopyConstructor())
19624          return !Ctor->isDeleted();
19625  }
19626  return false;
19627}
19628
19629/// Create up to 4 fix-its for explicit reference and value capture of \p Var or
19630/// default capture. Fixes may be omitted if they aren't allowed by the
19631/// standard, for example we can't emit a default copy capture fix-it if we
19632/// already explicitly copy capture capture another variable.
19633static void buildLambdaCaptureFixit(Sema &Sema, LambdaScopeInfo *LSI,
19634                                    ValueDecl *Var) {
19635  assert(LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None);
19636  // Don't offer Capture by copy of default capture by copy fixes if Var is
19637  // known not to be copy constructible.
19638  bool ShouldOfferCopyFix = canCaptureVariableByCopy(Var, Sema.getASTContext());
19639
19640  SmallString<32> FixBuffer;
19641  StringRef Separator = LSI->NumExplicitCaptures > 0 ? ", " : "";
19642  if (Var->getDeclName().isIdentifier() && !Var->getName().empty()) {
19643    SourceLocation VarInsertLoc = LSI->IntroducerRange.getEnd();
19644    if (ShouldOfferCopyFix) {
19645      // Offer fixes to insert an explicit capture for the variable.
19646      // [] -> [VarName]
19647      // [OtherCapture] -> [OtherCapture, VarName]
19648      FixBuffer.assign({Separator, Var->getName()});
19649      Sema.Diag(VarInsertLoc, diag::note_lambda_variable_capture_fixit)
19650          << Var << /*value*/ 0
19651          << FixItHint::CreateInsertion(VarInsertLoc, FixBuffer);
19652    }
19653    // As above but capture by reference.
19654    FixBuffer.assign({Separator, "&", Var->getName()});
19655    Sema.Diag(VarInsertLoc, diag::note_lambda_variable_capture_fixit)
19656        << Var << /*reference*/ 1
19657        << FixItHint::CreateInsertion(VarInsertLoc, FixBuffer);
19658  }
19659
19660  // Only try to offer default capture if there are no captures excluding this
19661  // and init captures.
19662  // [this]: OK.
19663  // [X = Y]: OK.
19664  // [&A, &B]: Don't offer.
19665  // [A, B]: Don't offer.
19666  if (llvm::any_of(LSI->Captures, [](Capture &C) {
19667        return !C.isThisCapture() && !C.isInitCapture();
19668      }))
19669    return;
19670
19671  // The default capture specifiers, '=' or '&', must appear first in the
19672  // capture body.
19673  SourceLocation DefaultInsertLoc =
19674      LSI->IntroducerRange.getBegin().getLocWithOffset(1);
19675
19676  if (ShouldOfferCopyFix) {
19677    bool CanDefaultCopyCapture = true;
19678    // [=, *this] OK since c++17
19679    // [=, this] OK since c++20
19680    if (LSI->isCXXThisCaptured() && !Sema.getLangOpts().CPlusPlus20)
19681      CanDefaultCopyCapture = Sema.getLangOpts().CPlusPlus17
19682                                  ? LSI->getCXXThisCapture().isCopyCapture()
19683                                  : false;
19684    // We can't use default capture by copy if any captures already specified
19685    // capture by copy.
19686    if (CanDefaultCopyCapture && llvm::none_of(LSI->Captures, [](Capture &C) {
19687          return !C.isThisCapture() && !C.isInitCapture() && C.isCopyCapture();
19688        })) {
19689      FixBuffer.assign({"=", Separator});
19690      Sema.Diag(DefaultInsertLoc, diag::note_lambda_default_capture_fixit)
19691          << /*value*/ 0
19692          << FixItHint::CreateInsertion(DefaultInsertLoc, FixBuffer);
19693    }
19694  }
19695
19696  // We can't use default capture by reference if any captures already specified
19697  // capture by reference.
19698  if (llvm::none_of(LSI->Captures, [](Capture &C) {
19699        return !C.isInitCapture() && C.isReferenceCapture() &&
19700               !C.isThisCapture();
19701      })) {
19702    FixBuffer.assign({"&", Separator});
19703    Sema.Diag(DefaultInsertLoc, diag::note_lambda_default_capture_fixit)
19704        << /*reference*/ 1
19705        << FixItHint::CreateInsertion(DefaultInsertLoc, FixBuffer);
19706  }
19707}
19708
19709bool Sema::tryCaptureVariable(
19710    ValueDecl *Var, SourceLocation ExprLoc, TryCaptureKind Kind,
19711    SourceLocation EllipsisLoc, bool BuildAndDiagnose, QualType &CaptureType,
19712    QualType &DeclRefType, const unsigned *const FunctionScopeIndexToStopAt) {
19713  // An init-capture is notionally from the context surrounding its
19714  // declaration, but its parent DC is the lambda class.
19715  DeclContext *VarDC = Var->getDeclContext();
19716  DeclContext *DC = CurContext;
19717
19718  // tryCaptureVariable is called every time a DeclRef is formed,
19719  // it can therefore have non-negigible impact on performances.
19720  // For local variables and when there is no capturing scope,
19721  // we can bailout early.
19722  if (CapturingFunctionScopes == 0 && (!BuildAndDiagnose || VarDC == DC))
19723    return true;
19724
19725  const auto *VD = dyn_cast<VarDecl>(Var);
19726  if (VD) {
19727    if (VD->isInitCapture())
19728      VarDC = VarDC->getParent();
19729  } else {
19730    VD = Var->getPotentiallyDecomposedVarDecl();
19731  }
19732  assert(VD && "Cannot capture a null variable");
19733
19734  const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
19735      ? *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1;
19736  // We need to sync up the Declaration Context with the
19737  // FunctionScopeIndexToStopAt
19738  if (FunctionScopeIndexToStopAt) {
19739    unsigned FSIndex = FunctionScopes.size() - 1;
19740    while (FSIndex != MaxFunctionScopesIndex) {
19741      DC = getLambdaAwareParentOfDeclContext(DC);
19742      --FSIndex;
19743    }
19744  }
19745
19746  // Capture global variables if it is required to use private copy of this
19747  // variable.
19748  bool IsGlobal = !VD->hasLocalStorage();
19749  if (IsGlobal &&
19750      !(LangOpts.OpenMP && isOpenMPCapturedDecl(Var, /*CheckScopeInfo=*/true,
19751                                                MaxFunctionScopesIndex)))
19752    return true;
19753
19754  if (isa<VarDecl>(Var))
19755    Var = cast<VarDecl>(Var->getCanonicalDecl());
19756
19757  // Walk up the stack to determine whether we can capture the variable,
19758  // performing the "simple" checks that don't depend on type. We stop when
19759  // we've either hit the declared scope of the variable or find an existing
19760  // capture of that variable.  We start from the innermost capturing-entity
19761  // (the DC) and ensure that all intervening capturing-entities
19762  // (blocks/lambdas etc.) between the innermost capturer and the variable`s
19763  // declcontext can either capture the variable or have already captured
19764  // the variable.
19765  CaptureType = Var->getType();
19766  DeclRefType = CaptureType.getNonReferenceType();
19767  bool Nested = false;
19768  bool Explicit = (Kind != TryCapture_Implicit);
19769  unsigned FunctionScopesIndex = MaxFunctionScopesIndex;
19770  do {
19771
19772    LambdaScopeInfo *LSI = nullptr;
19773    if (!FunctionScopes.empty())
19774      LSI = dyn_cast_or_null<LambdaScopeInfo>(
19775          FunctionScopes[FunctionScopesIndex]);
19776
19777    bool IsInScopeDeclarationContext =
19778        !LSI || LSI->AfterParameterList || CurContext == LSI->CallOperator;
19779
19780    if (LSI && !LSI->AfterParameterList) {
19781      // This allows capturing parameters from a default value which does not
19782      // seems correct
19783      if (isa<ParmVarDecl>(Var) && !Var->getDeclContext()->isFunctionOrMethod())
19784        return true;
19785    }
19786    // If the variable is declared in the current context, there is no need to
19787    // capture it.
19788    if (IsInScopeDeclarationContext &&
19789        FunctionScopesIndex == MaxFunctionScopesIndex && VarDC == DC)
19790      return true;
19791
19792    // Only block literals, captured statements, and lambda expressions can
19793    // capture; other scopes don't work.
19794    DeclContext *ParentDC =
19795        !IsInScopeDeclarationContext
19796            ? DC->getParent()
19797            : getParentOfCapturingContextOrNull(DC, Var, ExprLoc,
19798                                                BuildAndDiagnose, *this);
19799    // We need to check for the parent *first* because, if we *have*
19800    // private-captured a global variable, we need to recursively capture it in
19801    // intermediate blocks, lambdas, etc.
19802    if (!ParentDC) {
19803      if (IsGlobal) {
19804        FunctionScopesIndex = MaxFunctionScopesIndex - 1;
19805        break;
19806      }
19807      return true;
19808    }
19809
19810    FunctionScopeInfo  *FSI = FunctionScopes[FunctionScopesIndex];
19811    CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FSI);
19812
19813    // Check whether we've already captured it.
19814    if (isVariableAlreadyCapturedInScopeInfo(CSI, Var, Nested, CaptureType,
19815                                             DeclRefType)) {
19816      CSI->getCapture(Var).markUsed(BuildAndDiagnose);
19817      break;
19818    }
19819
19820    // When evaluating some attributes (like enable_if) we might refer to a
19821    // function parameter appertaining to the same declaration as that
19822    // attribute.
19823    if (const auto *Parm = dyn_cast<ParmVarDecl>(Var);
19824        Parm && Parm->getDeclContext() == DC)
19825      return true;
19826
19827    // If we are instantiating a generic lambda call operator body,
19828    // we do not want to capture new variables.  What was captured
19829    // during either a lambdas transformation or initial parsing
19830    // should be used.
19831    if (isGenericLambdaCallOperatorSpecialization(DC)) {
19832      if (BuildAndDiagnose) {
19833        LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
19834        if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None) {
19835          Diag(ExprLoc, diag::err_lambda_impcap) << Var;
19836          Diag(Var->getLocation(), diag::note_previous_decl) << Var;
19837          Diag(LSI->Lambda->getBeginLoc(), diag::note_lambda_decl);
19838          buildLambdaCaptureFixit(*this, LSI, Var);
19839        } else
19840          diagnoseUncapturableValueReferenceOrBinding(*this, ExprLoc, Var);
19841      }
19842      return true;
19843    }
19844
19845    // Try to capture variable-length arrays types.
19846    if (Var->getType()->isVariablyModifiedType()) {
19847      // We're going to walk down into the type and look for VLA
19848      // expressions.
19849      QualType QTy = Var->getType();
19850      if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var))
19851        QTy = PVD->getOriginalType();
19852      captureVariablyModifiedType(Context, QTy, CSI);
19853    }
19854
19855    if (getLangOpts().OpenMP) {
19856      if (auto *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
19857        // OpenMP private variables should not be captured in outer scope, so
19858        // just break here. Similarly, global variables that are captured in a
19859        // target region should not be captured outside the scope of the region.
19860        if (RSI->CapRegionKind == CR_OpenMP) {
19861          OpenMPClauseKind IsOpenMPPrivateDecl = isOpenMPPrivateDecl(
19862              Var, RSI->OpenMPLevel, RSI->OpenMPCaptureLevel);
19863          // If the variable is private (i.e. not captured) and has variably
19864          // modified type, we still need to capture the type for correct
19865          // codegen in all regions, associated with the construct. Currently,
19866          // it is captured in the innermost captured region only.
19867          if (IsOpenMPPrivateDecl != OMPC_unknown &&
19868              Var->getType()->isVariablyModifiedType()) {
19869            QualType QTy = Var->getType();
19870            if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var))
19871              QTy = PVD->getOriginalType();
19872            for (int I = 1, E = getNumberOfConstructScopes(RSI->OpenMPLevel);
19873                 I < E; ++I) {
19874              auto *OuterRSI = cast<CapturedRegionScopeInfo>(
19875                  FunctionScopes[FunctionScopesIndex - I]);
19876              assert(RSI->OpenMPLevel == OuterRSI->OpenMPLevel &&
19877                     "Wrong number of captured regions associated with the "
19878                     "OpenMP construct.");
19879              captureVariablyModifiedType(Context, QTy, OuterRSI);
19880            }
19881          }
19882          bool IsTargetCap =
19883              IsOpenMPPrivateDecl != OMPC_private &&
19884              isOpenMPTargetCapturedDecl(Var, RSI->OpenMPLevel,
19885                                         RSI->OpenMPCaptureLevel);
19886          // Do not capture global if it is not privatized in outer regions.
19887          bool IsGlobalCap =
19888              IsGlobal && isOpenMPGlobalCapturedDecl(Var, RSI->OpenMPLevel,
19889                                                     RSI->OpenMPCaptureLevel);
19890
19891          // When we detect target captures we are looking from inside the
19892          // target region, therefore we need to propagate the capture from the
19893          // enclosing region. Therefore, the capture is not initially nested.
19894          if (IsTargetCap)
19895            adjustOpenMPTargetScopeIndex(FunctionScopesIndex, RSI->OpenMPLevel);
19896
19897          if (IsTargetCap || IsOpenMPPrivateDecl == OMPC_private ||
19898              (IsGlobal && !IsGlobalCap)) {
19899            Nested = !IsTargetCap;
19900            bool HasConst = DeclRefType.isConstQualified();
19901            DeclRefType = DeclRefType.getUnqualifiedType();
19902            // Don't lose diagnostics about assignments to const.
19903            if (HasConst)
19904              DeclRefType.addConst();
19905            CaptureType = Context.getLValueReferenceType(DeclRefType);
19906            break;
19907          }
19908        }
19909      }
19910    }
19911    if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None && !Explicit) {
19912      // No capture-default, and this is not an explicit capture
19913      // so cannot capture this variable.
19914      if (BuildAndDiagnose) {
19915        Diag(ExprLoc, diag::err_lambda_impcap) << Var;
19916        Diag(Var->getLocation(), diag::note_previous_decl) << Var;
19917        auto *LSI = cast<LambdaScopeInfo>(CSI);
19918        if (LSI->Lambda) {
19919          Diag(LSI->Lambda->getBeginLoc(), diag::note_lambda_decl);
19920          buildLambdaCaptureFixit(*this, LSI, Var);
19921        }
19922        // FIXME: If we error out because an outer lambda can not implicitly
19923        // capture a variable that an inner lambda explicitly captures, we
19924        // should have the inner lambda do the explicit capture - because
19925        // it makes for cleaner diagnostics later.  This would purely be done
19926        // so that the diagnostic does not misleadingly claim that a variable
19927        // can not be captured by a lambda implicitly even though it is captured
19928        // explicitly.  Suggestion:
19929        //  - create const bool VariableCaptureWasInitiallyExplicit = Explicit
19930        //    at the function head
19931        //  - cache the StartingDeclContext - this must be a lambda
19932        //  - captureInLambda in the innermost lambda the variable.
19933      }
19934      return true;
19935    }
19936    Explicit = false;
19937    FunctionScopesIndex--;
19938    if (IsInScopeDeclarationContext)
19939      DC = ParentDC;
19940  } while (!VarDC->Equals(DC));
19941
19942  // Walk back down the scope stack, (e.g. from outer lambda to inner lambda)
19943  // computing the type of the capture at each step, checking type-specific
19944  // requirements, and adding captures if requested.
19945  // If the variable had already been captured previously, we start capturing
19946  // at the lambda nested within that one.
19947  bool Invalid = false;
19948  for (unsigned I = ++FunctionScopesIndex, N = MaxFunctionScopesIndex + 1; I != N;
19949       ++I) {
19950    CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[I]);
19951
19952    // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
19953    // certain types of variables (unnamed, variably modified types etc.)
19954    // so check for eligibility.
19955    if (!Invalid)
19956      Invalid =
19957          !isVariableCapturable(CSI, Var, ExprLoc, BuildAndDiagnose, *this);
19958
19959    // After encountering an error, if we're actually supposed to capture, keep
19960    // capturing in nested contexts to suppress any follow-on diagnostics.
19961    if (Invalid && !BuildAndDiagnose)
19962      return true;
19963
19964    if (BlockScopeInfo *BSI = dyn_cast<BlockScopeInfo>(CSI)) {
19965      Invalid = !captureInBlock(BSI, Var, ExprLoc, BuildAndDiagnose, CaptureType,
19966                               DeclRefType, Nested, *this, Invalid);
19967      Nested = true;
19968    } else if (CapturedRegionScopeInfo *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
19969      Invalid = !captureInCapturedRegion(
19970          RSI, Var, ExprLoc, BuildAndDiagnose, CaptureType, DeclRefType, Nested,
19971          Kind, /*IsTopScope*/ I == N - 1, *this, Invalid);
19972      Nested = true;
19973    } else {
19974      LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
19975      Invalid =
19976          !captureInLambda(LSI, Var, ExprLoc, BuildAndDiagnose, CaptureType,
19977                           DeclRefType, Nested, Kind, EllipsisLoc,
19978                           /*IsTopScope*/ I == N - 1, *this, Invalid);
19979      Nested = true;
19980    }
19981
19982    if (Invalid && !BuildAndDiagnose)
19983      return true;
19984  }
19985  return Invalid;
19986}
19987
19988bool Sema::tryCaptureVariable(ValueDecl *Var, SourceLocation Loc,
19989                              TryCaptureKind Kind, SourceLocation EllipsisLoc) {
19990  QualType CaptureType;
19991  QualType DeclRefType;
19992  return tryCaptureVariable(Var, Loc, Kind, EllipsisLoc,
19993                            /*BuildAndDiagnose=*/true, CaptureType,
19994                            DeclRefType, nullptr);
19995}
19996
19997bool Sema::NeedToCaptureVariable(ValueDecl *Var, SourceLocation Loc) {
19998  QualType CaptureType;
19999  QualType DeclRefType;
20000  return !tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
20001                             /*BuildAndDiagnose=*/false, CaptureType,
20002                             DeclRefType, nullptr);
20003}
20004
20005QualType Sema::getCapturedDeclRefType(ValueDecl *Var, SourceLocation Loc) {
20006  QualType CaptureType;
20007  QualType DeclRefType;
20008
20009  // Determine whether we can capture this variable.
20010  if (tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
20011                         /*BuildAndDiagnose=*/false, CaptureType,
20012                         DeclRefType, nullptr))
20013    return QualType();
20014
20015  return DeclRefType;
20016}
20017
20018namespace {
20019// Helper to copy the template arguments from a DeclRefExpr or MemberExpr.
20020// The produced TemplateArgumentListInfo* points to data stored within this
20021// object, so should only be used in contexts where the pointer will not be
20022// used after the CopiedTemplateArgs object is destroyed.
20023class CopiedTemplateArgs {
20024  bool HasArgs;
20025  TemplateArgumentListInfo TemplateArgStorage;
20026public:
20027  template<typename RefExpr>
20028  CopiedTemplateArgs(RefExpr *E) : HasArgs(E->hasExplicitTemplateArgs()) {
20029    if (HasArgs)
20030      E->copyTemplateArgumentsInto(TemplateArgStorage);
20031  }
20032  operator TemplateArgumentListInfo*()
20033#ifdef __has_cpp_attribute
20034#if __has_cpp_attribute(clang::lifetimebound)
20035  [[clang::lifetimebound]]
20036#endif
20037#endif
20038  {
20039    return HasArgs ? &TemplateArgStorage : nullptr;
20040  }
20041};
20042}
20043
20044/// Walk the set of potential results of an expression and mark them all as
20045/// non-odr-uses if they satisfy the side-conditions of the NonOdrUseReason.
20046///
20047/// \return A new expression if we found any potential results, ExprEmpty() if
20048///         not, and ExprError() if we diagnosed an error.
20049static ExprResult rebuildPotentialResultsAsNonOdrUsed(Sema &S, Expr *E,
20050                                                      NonOdrUseReason NOUR) {
20051  // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
20052  // an object that satisfies the requirements for appearing in a
20053  // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
20054  // is immediately applied."  This function handles the lvalue-to-rvalue
20055  // conversion part.
20056  //
20057  // If we encounter a node that claims to be an odr-use but shouldn't be, we
20058  // transform it into the relevant kind of non-odr-use node and rebuild the
20059  // tree of nodes leading to it.
20060  //
20061  // This is a mini-TreeTransform that only transforms a restricted subset of
20062  // nodes (and only certain operands of them).
20063
20064  // Rebuild a subexpression.
20065  auto Rebuild = [&](Expr *Sub) {
20066    return rebuildPotentialResultsAsNonOdrUsed(S, Sub, NOUR);
20067  };
20068
20069  // Check whether a potential result satisfies the requirements of NOUR.
20070  auto IsPotentialResultOdrUsed = [&](NamedDecl *D) {
20071    // Any entity other than a VarDecl is always odr-used whenever it's named
20072    // in a potentially-evaluated expression.
20073    auto *VD = dyn_cast<VarDecl>(D);
20074    if (!VD)
20075      return true;
20076
20077    // C++2a [basic.def.odr]p4:
20078    //   A variable x whose name appears as a potentially-evalauted expression
20079    //   e is odr-used by e unless
20080    //   -- x is a reference that is usable in constant expressions, or
20081    //   -- x is a variable of non-reference type that is usable in constant
20082    //      expressions and has no mutable subobjects, and e is an element of
20083    //      the set of potential results of an expression of
20084    //      non-volatile-qualified non-class type to which the lvalue-to-rvalue
20085    //      conversion is applied, or
20086    //   -- x is a variable of non-reference type, and e is an element of the
20087    //      set of potential results of a discarded-value expression to which
20088    //      the lvalue-to-rvalue conversion is not applied
20089    //
20090    // We check the first bullet and the "potentially-evaluated" condition in
20091    // BuildDeclRefExpr. We check the type requirements in the second bullet
20092    // in CheckLValueToRValueConversionOperand below.
20093    switch (NOUR) {
20094    case NOUR_None:
20095    case NOUR_Unevaluated:
20096      llvm_unreachable("unexpected non-odr-use-reason");
20097
20098    case NOUR_Constant:
20099      // Constant references were handled when they were built.
20100      if (VD->getType()->isReferenceType())
20101        return true;
20102      if (auto *RD = VD->getType()->getAsCXXRecordDecl())
20103        if (RD->hasMutableFields())
20104          return true;
20105      if (!VD->isUsableInConstantExpressions(S.Context))
20106        return true;
20107      break;
20108
20109    case NOUR_Discarded:
20110      if (VD->getType()->isReferenceType())
20111        return true;
20112      break;
20113    }
20114    return false;
20115  };
20116
20117  // Mark that this expression does not constitute an odr-use.
20118  auto MarkNotOdrUsed = [&] {
20119    S.MaybeODRUseExprs.remove(E);
20120    if (LambdaScopeInfo *LSI = S.getCurLambda())
20121      LSI->markVariableExprAsNonODRUsed(E);
20122  };
20123
20124  // C++2a [basic.def.odr]p2:
20125  //   The set of potential results of an expression e is defined as follows:
20126  switch (E->getStmtClass()) {
20127  //   -- If e is an id-expression, ...
20128  case Expr::DeclRefExprClass: {
20129    auto *DRE = cast<DeclRefExpr>(E);
20130    if (DRE->isNonOdrUse() || IsPotentialResultOdrUsed(DRE->getDecl()))
20131      break;
20132
20133    // Rebuild as a non-odr-use DeclRefExpr.
20134    MarkNotOdrUsed();
20135    return DeclRefExpr::Create(
20136        S.Context, DRE->getQualifierLoc(), DRE->getTemplateKeywordLoc(),
20137        DRE->getDecl(), DRE->refersToEnclosingVariableOrCapture(),
20138        DRE->getNameInfo(), DRE->getType(), DRE->getValueKind(),
20139        DRE->getFoundDecl(), CopiedTemplateArgs(DRE), NOUR);
20140  }
20141
20142  case Expr::FunctionParmPackExprClass: {
20143    auto *FPPE = cast<FunctionParmPackExpr>(E);
20144    // If any of the declarations in the pack is odr-used, then the expression
20145    // as a whole constitutes an odr-use.
20146    for (VarDecl *D : *FPPE)
20147      if (IsPotentialResultOdrUsed(D))
20148        return ExprEmpty();
20149
20150    // FIXME: Rebuild as a non-odr-use FunctionParmPackExpr? In practice,
20151    // nothing cares about whether we marked this as an odr-use, but it might
20152    // be useful for non-compiler tools.
20153    MarkNotOdrUsed();
20154    break;
20155  }
20156
20157  //   -- If e is a subscripting operation with an array operand...
20158  case Expr::ArraySubscriptExprClass: {
20159    auto *ASE = cast<ArraySubscriptExpr>(E);
20160    Expr *OldBase = ASE->getBase()->IgnoreImplicit();
20161    if (!OldBase->getType()->isArrayType())
20162      break;
20163    ExprResult Base = Rebuild(OldBase);
20164    if (!Base.isUsable())
20165      return Base;
20166    Expr *LHS = ASE->getBase() == ASE->getLHS() ? Base.get() : ASE->getLHS();
20167    Expr *RHS = ASE->getBase() == ASE->getRHS() ? Base.get() : ASE->getRHS();
20168    SourceLocation LBracketLoc = ASE->getBeginLoc(); // FIXME: Not stored.
20169    return S.ActOnArraySubscriptExpr(nullptr, LHS, LBracketLoc, RHS,
20170                                     ASE->getRBracketLoc());
20171  }
20172
20173  case Expr::MemberExprClass: {
20174    auto *ME = cast<MemberExpr>(E);
20175    // -- If e is a class member access expression [...] naming a non-static
20176    //    data member...
20177    if (isa<FieldDecl>(ME->getMemberDecl())) {
20178      ExprResult Base = Rebuild(ME->getBase());
20179      if (!Base.isUsable())
20180        return Base;
20181      return MemberExpr::Create(
20182          S.Context, Base.get(), ME->isArrow(), ME->getOperatorLoc(),
20183          ME->getQualifierLoc(), ME->getTemplateKeywordLoc(),
20184          ME->getMemberDecl(), ME->getFoundDecl(), ME->getMemberNameInfo(),
20185          CopiedTemplateArgs(ME), ME->getType(), ME->getValueKind(),
20186          ME->getObjectKind(), ME->isNonOdrUse());
20187    }
20188
20189    if (ME->getMemberDecl()->isCXXInstanceMember())
20190      break;
20191
20192    // -- If e is a class member access expression naming a static data member,
20193    //    ...
20194    if (ME->isNonOdrUse() || IsPotentialResultOdrUsed(ME->getMemberDecl()))
20195      break;
20196
20197    // Rebuild as a non-odr-use MemberExpr.
20198    MarkNotOdrUsed();
20199    return MemberExpr::Create(
20200        S.Context, ME->getBase(), ME->isArrow(), ME->getOperatorLoc(),
20201        ME->getQualifierLoc(), ME->getTemplateKeywordLoc(), ME->getMemberDecl(),
20202        ME->getFoundDecl(), ME->getMemberNameInfo(), CopiedTemplateArgs(ME),
20203        ME->getType(), ME->getValueKind(), ME->getObjectKind(), NOUR);
20204  }
20205
20206  case Expr::BinaryOperatorClass: {
20207    auto *BO = cast<BinaryOperator>(E);
20208    Expr *LHS = BO->getLHS();
20209    Expr *RHS = BO->getRHS();
20210    // -- If e is a pointer-to-member expression of the form e1 .* e2 ...
20211    if (BO->getOpcode() == BO_PtrMemD) {
20212      ExprResult Sub = Rebuild(LHS);
20213      if (!Sub.isUsable())
20214        return Sub;
20215      LHS = Sub.get();
20216    //   -- If e is a comma expression, ...
20217    } else if (BO->getOpcode() == BO_Comma) {
20218      ExprResult Sub = Rebuild(RHS);
20219      if (!Sub.isUsable())
20220        return Sub;
20221      RHS = Sub.get();
20222    } else {
20223      break;
20224    }
20225    return S.BuildBinOp(nullptr, BO->getOperatorLoc(), BO->getOpcode(),
20226                        LHS, RHS);
20227  }
20228
20229  //   -- If e has the form (e1)...
20230  case Expr::ParenExprClass: {
20231    auto *PE = cast<ParenExpr>(E);
20232    ExprResult Sub = Rebuild(PE->getSubExpr());
20233    if (!Sub.isUsable())
20234      return Sub;
20235    return S.ActOnParenExpr(PE->getLParen(), PE->getRParen(), Sub.get());
20236  }
20237
20238  //   -- If e is a glvalue conditional expression, ...
20239  // We don't apply this to a binary conditional operator. FIXME: Should we?
20240  case Expr::ConditionalOperatorClass: {
20241    auto *CO = cast<ConditionalOperator>(E);
20242    ExprResult LHS = Rebuild(CO->getLHS());
20243    if (LHS.isInvalid())
20244      return ExprError();
20245    ExprResult RHS = Rebuild(CO->getRHS());
20246    if (RHS.isInvalid())
20247      return ExprError();
20248    if (!LHS.isUsable() && !RHS.isUsable())
20249      return ExprEmpty();
20250    if (!LHS.isUsable())
20251      LHS = CO->getLHS();
20252    if (!RHS.isUsable())
20253      RHS = CO->getRHS();
20254    return S.ActOnConditionalOp(CO->getQuestionLoc(), CO->getColonLoc(),
20255                                CO->getCond(), LHS.get(), RHS.get());
20256  }
20257
20258  // [Clang extension]
20259  //   -- If e has the form __extension__ e1...
20260  case Expr::UnaryOperatorClass: {
20261    auto *UO = cast<UnaryOperator>(E);
20262    if (UO->getOpcode() != UO_Extension)
20263      break;
20264    ExprResult Sub = Rebuild(UO->getSubExpr());
20265    if (!Sub.isUsable())
20266      return Sub;
20267    return S.BuildUnaryOp(nullptr, UO->getOperatorLoc(), UO_Extension,
20268                          Sub.get());
20269  }
20270
20271  // [Clang extension]
20272  //   -- If e has the form _Generic(...), the set of potential results is the
20273  //      union of the sets of potential results of the associated expressions.
20274  case Expr::GenericSelectionExprClass: {
20275    auto *GSE = cast<GenericSelectionExpr>(E);
20276
20277    SmallVector<Expr *, 4> AssocExprs;
20278    bool AnyChanged = false;
20279    for (Expr *OrigAssocExpr : GSE->getAssocExprs()) {
20280      ExprResult AssocExpr = Rebuild(OrigAssocExpr);
20281      if (AssocExpr.isInvalid())
20282        return ExprError();
20283      if (AssocExpr.isUsable()) {
20284        AssocExprs.push_back(AssocExpr.get());
20285        AnyChanged = true;
20286      } else {
20287        AssocExprs.push_back(OrigAssocExpr);
20288      }
20289    }
20290
20291    void *ExOrTy = nullptr;
20292    bool IsExpr = GSE->isExprPredicate();
20293    if (IsExpr)
20294      ExOrTy = GSE->getControllingExpr();
20295    else
20296      ExOrTy = GSE->getControllingType();
20297    return AnyChanged ? S.CreateGenericSelectionExpr(
20298                            GSE->getGenericLoc(), GSE->getDefaultLoc(),
20299                            GSE->getRParenLoc(), IsExpr, ExOrTy,
20300                            GSE->getAssocTypeSourceInfos(), AssocExprs)
20301                      : ExprEmpty();
20302  }
20303
20304  // [Clang extension]
20305  //   -- If e has the form __builtin_choose_expr(...), the set of potential
20306  //      results is the union of the sets of potential results of the
20307  //      second and third subexpressions.
20308  case Expr::ChooseExprClass: {
20309    auto *CE = cast<ChooseExpr>(E);
20310
20311    ExprResult LHS = Rebuild(CE->getLHS());
20312    if (LHS.isInvalid())
20313      return ExprError();
20314
20315    ExprResult RHS = Rebuild(CE->getLHS());
20316    if (RHS.isInvalid())
20317      return ExprError();
20318
20319    if (!LHS.get() && !RHS.get())
20320      return ExprEmpty();
20321    if (!LHS.isUsable())
20322      LHS = CE->getLHS();
20323    if (!RHS.isUsable())
20324      RHS = CE->getRHS();
20325
20326    return S.ActOnChooseExpr(CE->getBuiltinLoc(), CE->getCond(), LHS.get(),
20327                             RHS.get(), CE->getRParenLoc());
20328  }
20329
20330  // Step through non-syntactic nodes.
20331  case Expr::ConstantExprClass: {
20332    auto *CE = cast<ConstantExpr>(E);
20333    ExprResult Sub = Rebuild(CE->getSubExpr());
20334    if (!Sub.isUsable())
20335      return Sub;
20336    return ConstantExpr::Create(S.Context, Sub.get());
20337  }
20338
20339  // We could mostly rely on the recursive rebuilding to rebuild implicit
20340  // casts, but not at the top level, so rebuild them here.
20341  case Expr::ImplicitCastExprClass: {
20342    auto *ICE = cast<ImplicitCastExpr>(E);
20343    // Only step through the narrow set of cast kinds we expect to encounter.
20344    // Anything else suggests we've left the region in which potential results
20345    // can be found.
20346    switch (ICE->getCastKind()) {
20347    case CK_NoOp:
20348    case CK_DerivedToBase:
20349    case CK_UncheckedDerivedToBase: {
20350      ExprResult Sub = Rebuild(ICE->getSubExpr());
20351      if (!Sub.isUsable())
20352        return Sub;
20353      CXXCastPath Path(ICE->path());
20354      return S.ImpCastExprToType(Sub.get(), ICE->getType(), ICE->getCastKind(),
20355                                 ICE->getValueKind(), &Path);
20356    }
20357
20358    default:
20359      break;
20360    }
20361    break;
20362  }
20363
20364  default:
20365    break;
20366  }
20367
20368  // Can't traverse through this node. Nothing to do.
20369  return ExprEmpty();
20370}
20371
20372ExprResult Sema::CheckLValueToRValueConversionOperand(Expr *E) {
20373  // Check whether the operand is or contains an object of non-trivial C union
20374  // type.
20375  if (E->getType().isVolatileQualified() &&
20376      (E->getType().hasNonTrivialToPrimitiveDestructCUnion() ||
20377       E->getType().hasNonTrivialToPrimitiveCopyCUnion()))
20378    checkNonTrivialCUnion(E->getType(), E->getExprLoc(),
20379                          Sema::NTCUC_LValueToRValueVolatile,
20380                          NTCUK_Destruct|NTCUK_Copy);
20381
20382  // C++2a [basic.def.odr]p4:
20383  //   [...] an expression of non-volatile-qualified non-class type to which
20384  //   the lvalue-to-rvalue conversion is applied [...]
20385  if (E->getType().isVolatileQualified() || E->getType()->getAs<RecordType>())
20386    return E;
20387
20388  ExprResult Result =
20389      rebuildPotentialResultsAsNonOdrUsed(*this, E, NOUR_Constant);
20390  if (Result.isInvalid())
20391    return ExprError();
20392  return Result.get() ? Result : E;
20393}
20394
20395ExprResult Sema::ActOnConstantExpression(ExprResult Res) {
20396  Res = CorrectDelayedTyposInExpr(Res);
20397
20398  if (!Res.isUsable())
20399    return Res;
20400
20401  // If a constant-expression is a reference to a variable where we delay
20402  // deciding whether it is an odr-use, just assume we will apply the
20403  // lvalue-to-rvalue conversion.  In the one case where this doesn't happen
20404  // (a non-type template argument), we have special handling anyway.
20405  return CheckLValueToRValueConversionOperand(Res.get());
20406}
20407
20408void Sema::CleanupVarDeclMarking() {
20409  // Iterate through a local copy in case MarkVarDeclODRUsed makes a recursive
20410  // call.
20411  MaybeODRUseExprSet LocalMaybeODRUseExprs;
20412  std::swap(LocalMaybeODRUseExprs, MaybeODRUseExprs);
20413
20414  for (Expr *E : LocalMaybeODRUseExprs) {
20415    if (auto *DRE = dyn_cast<DeclRefExpr>(E)) {
20416      MarkVarDeclODRUsed(cast<VarDecl>(DRE->getDecl()),
20417                         DRE->getLocation(), *this);
20418    } else if (auto *ME = dyn_cast<MemberExpr>(E)) {
20419      MarkVarDeclODRUsed(cast<VarDecl>(ME->getMemberDecl()), ME->getMemberLoc(),
20420                         *this);
20421    } else if (auto *FP = dyn_cast<FunctionParmPackExpr>(E)) {
20422      for (VarDecl *VD : *FP)
20423        MarkVarDeclODRUsed(VD, FP->getParameterPackLocation(), *this);
20424    } else {
20425      llvm_unreachable("Unexpected expression");
20426    }
20427  }
20428
20429  assert(MaybeODRUseExprs.empty() &&
20430         "MarkVarDeclODRUsed failed to cleanup MaybeODRUseExprs?");
20431}
20432
20433static void DoMarkPotentialCapture(Sema &SemaRef, SourceLocation Loc,
20434                                   ValueDecl *Var, Expr *E) {
20435  VarDecl *VD = Var->getPotentiallyDecomposedVarDecl();
20436  if (!VD)
20437    return;
20438
20439  const bool RefersToEnclosingScope =
20440      (SemaRef.CurContext != VD->getDeclContext() &&
20441       VD->getDeclContext()->isFunctionOrMethod() && VD->hasLocalStorage());
20442  if (RefersToEnclosingScope) {
20443    LambdaScopeInfo *const LSI =
20444        SemaRef.getCurLambda(/*IgnoreNonLambdaCapturingScope=*/true);
20445    if (LSI && (!LSI->CallOperator ||
20446                !LSI->CallOperator->Encloses(Var->getDeclContext()))) {
20447      // If a variable could potentially be odr-used, defer marking it so
20448      // until we finish analyzing the full expression for any
20449      // lvalue-to-rvalue
20450      // or discarded value conversions that would obviate odr-use.
20451      // Add it to the list of potential captures that will be analyzed
20452      // later (ActOnFinishFullExpr) for eventual capture and odr-use marking
20453      // unless the variable is a reference that was initialized by a constant
20454      // expression (this will never need to be captured or odr-used).
20455      //
20456      // FIXME: We can simplify this a lot after implementing P0588R1.
20457      assert(E && "Capture variable should be used in an expression.");
20458      if (!Var->getType()->isReferenceType() ||
20459          !VD->isUsableInConstantExpressions(SemaRef.Context))
20460        LSI->addPotentialCapture(E->IgnoreParens());
20461    }
20462  }
20463}
20464
20465static void DoMarkVarDeclReferenced(
20466    Sema &SemaRef, SourceLocation Loc, VarDecl *Var, Expr *E,
20467    llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) {
20468  assert((!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E) ||
20469          isa<FunctionParmPackExpr>(E)) &&
20470         "Invalid Expr argument to DoMarkVarDeclReferenced");
20471  Var->setReferenced();
20472
20473  if (Var->isInvalidDecl())
20474    return;
20475
20476  auto *MSI = Var->getMemberSpecializationInfo();
20477  TemplateSpecializationKind TSK = MSI ? MSI->getTemplateSpecializationKind()
20478                                       : Var->getTemplateSpecializationKind();
20479
20480  OdrUseContext OdrUse = isOdrUseContext(SemaRef);
20481  bool UsableInConstantExpr =
20482      Var->mightBeUsableInConstantExpressions(SemaRef.Context);
20483
20484  if (Var->isLocalVarDeclOrParm() && !Var->hasExternalStorage()) {
20485    RefsMinusAssignments.insert({Var, 0}).first->getSecond()++;
20486  }
20487
20488  // C++20 [expr.const]p12:
20489  //   A variable [...] is needed for constant evaluation if it is [...] a
20490  //   variable whose name appears as a potentially constant evaluated
20491  //   expression that is either a contexpr variable or is of non-volatile
20492  //   const-qualified integral type or of reference type
20493  bool NeededForConstantEvaluation =
20494      isPotentiallyConstantEvaluatedContext(SemaRef) && UsableInConstantExpr;
20495
20496  bool NeedDefinition =
20497      OdrUse == OdrUseContext::Used || NeededForConstantEvaluation;
20498
20499  assert(!isa<VarTemplatePartialSpecializationDecl>(Var) &&
20500         "Can't instantiate a partial template specialization.");
20501
20502  // If this might be a member specialization of a static data member, check
20503  // the specialization is visible. We already did the checks for variable
20504  // template specializations when we created them.
20505  if (NeedDefinition && TSK != TSK_Undeclared &&
20506      !isa<VarTemplateSpecializationDecl>(Var))
20507    SemaRef.checkSpecializationVisibility(Loc, Var);
20508
20509  // Perform implicit instantiation of static data members, static data member
20510  // templates of class templates, and variable template specializations. Delay
20511  // instantiations of variable templates, except for those that could be used
20512  // in a constant expression.
20513  if (NeedDefinition && isTemplateInstantiation(TSK)) {
20514    // Per C++17 [temp.explicit]p10, we may instantiate despite an explicit
20515    // instantiation declaration if a variable is usable in a constant
20516    // expression (among other cases).
20517    bool TryInstantiating =
20518        TSK == TSK_ImplicitInstantiation ||
20519        (TSK == TSK_ExplicitInstantiationDeclaration && UsableInConstantExpr);
20520
20521    if (TryInstantiating) {
20522      SourceLocation PointOfInstantiation =
20523          MSI ? MSI->getPointOfInstantiation() : Var->getPointOfInstantiation();
20524      bool FirstInstantiation = PointOfInstantiation.isInvalid();
20525      if (FirstInstantiation) {
20526        PointOfInstantiation = Loc;
20527        if (MSI)
20528          MSI->setPointOfInstantiation(PointOfInstantiation);
20529          // FIXME: Notify listener.
20530        else
20531          Var->setTemplateSpecializationKind(TSK, PointOfInstantiation);
20532      }
20533
20534      if (UsableInConstantExpr) {
20535        // Do not defer instantiations of variables that could be used in a
20536        // constant expression.
20537        SemaRef.runWithSufficientStackSpace(PointOfInstantiation, [&] {
20538          SemaRef.InstantiateVariableDefinition(PointOfInstantiation, Var);
20539        });
20540
20541        // Re-set the member to trigger a recomputation of the dependence bits
20542        // for the expression.
20543        if (auto *DRE = dyn_cast_or_null<DeclRefExpr>(E))
20544          DRE->setDecl(DRE->getDecl());
20545        else if (auto *ME = dyn_cast_or_null<MemberExpr>(E))
20546          ME->setMemberDecl(ME->getMemberDecl());
20547      } else if (FirstInstantiation) {
20548        SemaRef.PendingInstantiations
20549            .push_back(std::make_pair(Var, PointOfInstantiation));
20550      } else {
20551        bool Inserted = false;
20552        for (auto &I : SemaRef.SavedPendingInstantiations) {
20553          auto Iter = llvm::find_if(
20554              I, [Var](const Sema::PendingImplicitInstantiation &P) {
20555                return P.first == Var;
20556              });
20557          if (Iter != I.end()) {
20558            SemaRef.PendingInstantiations.push_back(*Iter);
20559            I.erase(Iter);
20560            Inserted = true;
20561            break;
20562          }
20563        }
20564
20565        // FIXME: For a specialization of a variable template, we don't
20566        // distinguish between "declaration and type implicitly instantiated"
20567        // and "implicit instantiation of definition requested", so we have
20568        // no direct way to avoid enqueueing the pending instantiation
20569        // multiple times.
20570        if (isa<VarTemplateSpecializationDecl>(Var) && !Inserted)
20571          SemaRef.PendingInstantiations
20572            .push_back(std::make_pair(Var, PointOfInstantiation));
20573      }
20574    }
20575  }
20576
20577  // C++2a [basic.def.odr]p4:
20578  //   A variable x whose name appears as a potentially-evaluated expression e
20579  //   is odr-used by e unless
20580  //   -- x is a reference that is usable in constant expressions
20581  //   -- x is a variable of non-reference type that is usable in constant
20582  //      expressions and has no mutable subobjects [FIXME], and e is an
20583  //      element of the set of potential results of an expression of
20584  //      non-volatile-qualified non-class type to which the lvalue-to-rvalue
20585  //      conversion is applied
20586  //   -- x is a variable of non-reference type, and e is an element of the set
20587  //      of potential results of a discarded-value expression to which the
20588  //      lvalue-to-rvalue conversion is not applied [FIXME]
20589  //
20590  // We check the first part of the second bullet here, and
20591  // Sema::CheckLValueToRValueConversionOperand deals with the second part.
20592  // FIXME: To get the third bullet right, we need to delay this even for
20593  // variables that are not usable in constant expressions.
20594
20595  // If we already know this isn't an odr-use, there's nothing more to do.
20596  if (DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(E))
20597    if (DRE->isNonOdrUse())
20598      return;
20599  if (MemberExpr *ME = dyn_cast_or_null<MemberExpr>(E))
20600    if (ME->isNonOdrUse())
20601      return;
20602
20603  switch (OdrUse) {
20604  case OdrUseContext::None:
20605    // In some cases, a variable may not have been marked unevaluated, if it
20606    // appears in a defaukt initializer.
20607    assert((!E || isa<FunctionParmPackExpr>(E) ||
20608            SemaRef.isUnevaluatedContext()) &&
20609           "missing non-odr-use marking for unevaluated decl ref");
20610    break;
20611
20612  case OdrUseContext::FormallyOdrUsed:
20613    // FIXME: Ignoring formal odr-uses results in incorrect lambda capture
20614    // behavior.
20615    break;
20616
20617  case OdrUseContext::Used:
20618    // If we might later find that this expression isn't actually an odr-use,
20619    // delay the marking.
20620    if (E && Var->isUsableInConstantExpressions(SemaRef.Context))
20621      SemaRef.MaybeODRUseExprs.insert(E);
20622    else
20623      MarkVarDeclODRUsed(Var, Loc, SemaRef);
20624    break;
20625
20626  case OdrUseContext::Dependent:
20627    // If this is a dependent context, we don't need to mark variables as
20628    // odr-used, but we may still need to track them for lambda capture.
20629    // FIXME: Do we also need to do this inside dependent typeid expressions
20630    // (which are modeled as unevaluated at this point)?
20631    DoMarkPotentialCapture(SemaRef, Loc, Var, E);
20632    break;
20633  }
20634}
20635
20636static void DoMarkBindingDeclReferenced(Sema &SemaRef, SourceLocation Loc,
20637                                        BindingDecl *BD, Expr *E) {
20638  BD->setReferenced();
20639
20640  if (BD->isInvalidDecl())
20641    return;
20642
20643  OdrUseContext OdrUse = isOdrUseContext(SemaRef);
20644  if (OdrUse == OdrUseContext::Used) {
20645    QualType CaptureType, DeclRefType;
20646    SemaRef.tryCaptureVariable(BD, Loc, Sema::TryCapture_Implicit,
20647                               /*EllipsisLoc*/ SourceLocation(),
20648                               /*BuildAndDiagnose*/ true, CaptureType,
20649                               DeclRefType,
20650                               /*FunctionScopeIndexToStopAt*/ nullptr);
20651  } else if (OdrUse == OdrUseContext::Dependent) {
20652    DoMarkPotentialCapture(SemaRef, Loc, BD, E);
20653  }
20654}
20655
20656/// Mark a variable referenced, and check whether it is odr-used
20657/// (C++ [basic.def.odr]p2, C99 6.9p3).  Note that this should not be
20658/// used directly for normal expressions referring to VarDecl.
20659void Sema::MarkVariableReferenced(SourceLocation Loc, VarDecl *Var) {
20660  DoMarkVarDeclReferenced(*this, Loc, Var, nullptr, RefsMinusAssignments);
20661}
20662
20663// C++ [temp.dep.expr]p3:
20664//   An id-expression is type-dependent if it contains:
20665//     - an identifier associated by name lookup with an entity captured by copy
20666//       in a lambda-expression that has an explicit object parameter whose type
20667//       is dependent ([dcl.fct]),
20668static void FixDependencyOfIdExpressionsInLambdaWithDependentObjectParameter(
20669    Sema &SemaRef, ValueDecl *D, Expr *E) {
20670  auto *ID = dyn_cast<DeclRefExpr>(E);
20671  if (!ID || ID->isTypeDependent())
20672    return;
20673
20674  auto IsDependent = [&]() {
20675    const LambdaScopeInfo *LSI = SemaRef.getCurLambda();
20676    if (!LSI)
20677      return false;
20678    if (!LSI->ExplicitObjectParameter ||
20679        !LSI->ExplicitObjectParameter->getType()->isDependentType())
20680      return false;
20681    if (!LSI->CaptureMap.count(D))
20682      return false;
20683    const Capture &Cap = LSI->getCapture(D);
20684    return !Cap.isCopyCapture();
20685  }();
20686
20687  ID->setCapturedByCopyInLambdaWithExplicitObjectParameter(
20688      IsDependent, SemaRef.getASTContext());
20689}
20690
20691static void
20692MarkExprReferenced(Sema &SemaRef, SourceLocation Loc, Decl *D, Expr *E,
20693                   bool MightBeOdrUse,
20694                   llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) {
20695  if (SemaRef.isInOpenMPDeclareTargetContext())
20696    SemaRef.checkDeclIsAllowedInOpenMPTarget(E, D);
20697
20698  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
20699    DoMarkVarDeclReferenced(SemaRef, Loc, Var, E, RefsMinusAssignments);
20700    if (SemaRef.getLangOpts().CPlusPlus)
20701      FixDependencyOfIdExpressionsInLambdaWithDependentObjectParameter(SemaRef,
20702                                                                       Var, E);
20703    return;
20704  }
20705
20706  if (BindingDecl *Decl = dyn_cast<BindingDecl>(D)) {
20707    DoMarkBindingDeclReferenced(SemaRef, Loc, Decl, E);
20708    if (SemaRef.getLangOpts().CPlusPlus)
20709      FixDependencyOfIdExpressionsInLambdaWithDependentObjectParameter(SemaRef,
20710                                                                       Decl, E);
20711    return;
20712  }
20713  SemaRef.MarkAnyDeclReferenced(Loc, D, MightBeOdrUse);
20714
20715  // If this is a call to a method via a cast, also mark the method in the
20716  // derived class used in case codegen can devirtualize the call.
20717  const MemberExpr *ME = dyn_cast<MemberExpr>(E);
20718  if (!ME)
20719    return;
20720  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
20721  if (!MD)
20722    return;
20723  // Only attempt to devirtualize if this is truly a virtual call.
20724  bool IsVirtualCall = MD->isVirtual() &&
20725                          ME->performsVirtualDispatch(SemaRef.getLangOpts());
20726  if (!IsVirtualCall)
20727    return;
20728
20729  // If it's possible to devirtualize the call, mark the called function
20730  // referenced.
20731  CXXMethodDecl *DM = MD->getDevirtualizedMethod(
20732      ME->getBase(), SemaRef.getLangOpts().AppleKext);
20733  if (DM)
20734    SemaRef.MarkAnyDeclReferenced(Loc, DM, MightBeOdrUse);
20735}
20736
20737/// Perform reference-marking and odr-use handling for a DeclRefExpr.
20738///
20739/// Note, this may change the dependence of the DeclRefExpr, and so needs to be
20740/// handled with care if the DeclRefExpr is not newly-created.
20741void Sema::MarkDeclRefReferenced(DeclRefExpr *E, const Expr *Base) {
20742  // TODO: update this with DR# once a defect report is filed.
20743  // C++11 defect. The address of a pure member should not be an ODR use, even
20744  // if it's a qualified reference.
20745  bool OdrUse = true;
20746  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getDecl()))
20747    if (Method->isVirtual() &&
20748        !Method->getDevirtualizedMethod(Base, getLangOpts().AppleKext))
20749      OdrUse = false;
20750
20751  if (auto *FD = dyn_cast<FunctionDecl>(E->getDecl())) {
20752    if (!isUnevaluatedContext() && !isConstantEvaluatedContext() &&
20753        !isImmediateFunctionContext() &&
20754        !isCheckingDefaultArgumentOrInitializer() &&
20755        FD->isImmediateFunction() && !RebuildingImmediateInvocation &&
20756        !FD->isDependentContext())
20757      ExprEvalContexts.back().ReferenceToConsteval.insert(E);
20758  }
20759  MarkExprReferenced(*this, E->getLocation(), E->getDecl(), E, OdrUse,
20760                     RefsMinusAssignments);
20761}
20762
20763/// Perform reference-marking and odr-use handling for a MemberExpr.
20764void Sema::MarkMemberReferenced(MemberExpr *E) {
20765  // C++11 [basic.def.odr]p2:
20766  //   A non-overloaded function whose name appears as a potentially-evaluated
20767  //   expression or a member of a set of candidate functions, if selected by
20768  //   overload resolution when referred to from a potentially-evaluated
20769  //   expression, is odr-used, unless it is a pure virtual function and its
20770  //   name is not explicitly qualified.
20771  bool MightBeOdrUse = true;
20772  if (E->performsVirtualDispatch(getLangOpts())) {
20773    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getMemberDecl()))
20774      if (Method->isPureVirtual())
20775        MightBeOdrUse = false;
20776  }
20777  SourceLocation Loc =
20778      E->getMemberLoc().isValid() ? E->getMemberLoc() : E->getBeginLoc();
20779  MarkExprReferenced(*this, Loc, E->getMemberDecl(), E, MightBeOdrUse,
20780                     RefsMinusAssignments);
20781}
20782
20783/// Perform reference-marking and odr-use handling for a FunctionParmPackExpr.
20784void Sema::MarkFunctionParmPackReferenced(FunctionParmPackExpr *E) {
20785  for (VarDecl *VD : *E)
20786    MarkExprReferenced(*this, E->getParameterPackLocation(), VD, E, true,
20787                       RefsMinusAssignments);
20788}
20789
20790/// Perform marking for a reference to an arbitrary declaration.  It
20791/// marks the declaration referenced, and performs odr-use checking for
20792/// functions and variables. This method should not be used when building a
20793/// normal expression which refers to a variable.
20794void Sema::MarkAnyDeclReferenced(SourceLocation Loc, Decl *D,
20795                                 bool MightBeOdrUse) {
20796  if (MightBeOdrUse) {
20797    if (auto *VD = dyn_cast<VarDecl>(D)) {
20798      MarkVariableReferenced(Loc, VD);
20799      return;
20800    }
20801  }
20802  if (auto *FD = dyn_cast<FunctionDecl>(D)) {
20803    MarkFunctionReferenced(Loc, FD, MightBeOdrUse);
20804    return;
20805  }
20806  D->setReferenced();
20807}
20808
20809namespace {
20810  // Mark all of the declarations used by a type as referenced.
20811  // FIXME: Not fully implemented yet! We need to have a better understanding
20812  // of when we're entering a context we should not recurse into.
20813  // FIXME: This is and EvaluatedExprMarker are more-or-less equivalent to
20814  // TreeTransforms rebuilding the type in a new context. Rather than
20815  // duplicating the TreeTransform logic, we should consider reusing it here.
20816  // Currently that causes problems when rebuilding LambdaExprs.
20817  class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
20818    Sema &S;
20819    SourceLocation Loc;
20820
20821  public:
20822    typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
20823
20824    MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
20825
20826    bool TraverseTemplateArgument(const TemplateArgument &Arg);
20827  };
20828}
20829
20830bool MarkReferencedDecls::TraverseTemplateArgument(
20831    const TemplateArgument &Arg) {
20832  {
20833    // A non-type template argument is a constant-evaluated context.
20834    EnterExpressionEvaluationContext Evaluated(
20835        S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
20836    if (Arg.getKind() == TemplateArgument::Declaration) {
20837      if (Decl *D = Arg.getAsDecl())
20838        S.MarkAnyDeclReferenced(Loc, D, true);
20839    } else if (Arg.getKind() == TemplateArgument::Expression) {
20840      S.MarkDeclarationsReferencedInExpr(Arg.getAsExpr(), false);
20841    }
20842  }
20843
20844  return Inherited::TraverseTemplateArgument(Arg);
20845}
20846
20847void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
20848  MarkReferencedDecls Marker(*this, Loc);
20849  Marker.TraverseType(T);
20850}
20851
20852namespace {
20853/// Helper class that marks all of the declarations referenced by
20854/// potentially-evaluated subexpressions as "referenced".
20855class EvaluatedExprMarker : public UsedDeclVisitor<EvaluatedExprMarker> {
20856public:
20857  typedef UsedDeclVisitor<EvaluatedExprMarker> Inherited;
20858  bool SkipLocalVariables;
20859  ArrayRef<const Expr *> StopAt;
20860
20861  EvaluatedExprMarker(Sema &S, bool SkipLocalVariables,
20862                      ArrayRef<const Expr *> StopAt)
20863      : Inherited(S), SkipLocalVariables(SkipLocalVariables), StopAt(StopAt) {}
20864
20865  void visitUsedDecl(SourceLocation Loc, Decl *D) {
20866    S.MarkFunctionReferenced(Loc, cast<FunctionDecl>(D));
20867  }
20868
20869  void Visit(Expr *E) {
20870    if (llvm::is_contained(StopAt, E))
20871      return;
20872    Inherited::Visit(E);
20873  }
20874
20875  void VisitConstantExpr(ConstantExpr *E) {
20876    // Don't mark declarations within a ConstantExpression, as this expression
20877    // will be evaluated and folded to a value.
20878  }
20879
20880  void VisitDeclRefExpr(DeclRefExpr *E) {
20881    // If we were asked not to visit local variables, don't.
20882    if (SkipLocalVariables) {
20883      if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
20884        if (VD->hasLocalStorage())
20885          return;
20886    }
20887
20888    // FIXME: This can trigger the instantiation of the initializer of a
20889    // variable, which can cause the expression to become value-dependent
20890    // or error-dependent. Do we need to propagate the new dependence bits?
20891    S.MarkDeclRefReferenced(E);
20892  }
20893
20894  void VisitMemberExpr(MemberExpr *E) {
20895    S.MarkMemberReferenced(E);
20896    Visit(E->getBase());
20897  }
20898};
20899} // namespace
20900
20901/// Mark any declarations that appear within this expression or any
20902/// potentially-evaluated subexpressions as "referenced".
20903///
20904/// \param SkipLocalVariables If true, don't mark local variables as
20905/// 'referenced'.
20906/// \param StopAt Subexpressions that we shouldn't recurse into.
20907void Sema::MarkDeclarationsReferencedInExpr(Expr *E,
20908                                            bool SkipLocalVariables,
20909                                            ArrayRef<const Expr*> StopAt) {
20910  EvaluatedExprMarker(*this, SkipLocalVariables, StopAt).Visit(E);
20911}
20912
20913/// Emit a diagnostic when statements are reachable.
20914/// FIXME: check for reachability even in expressions for which we don't build a
20915///        CFG (eg, in the initializer of a global or in a constant expression).
20916///        For example,
20917///        namespace { auto *p = new double[3][false ? (1, 2) : 3]; }
20918bool Sema::DiagIfReachable(SourceLocation Loc, ArrayRef<const Stmt *> Stmts,
20919                           const PartialDiagnostic &PD) {
20920  if (!Stmts.empty() && getCurFunctionOrMethodDecl()) {
20921    if (!FunctionScopes.empty())
20922      FunctionScopes.back()->PossiblyUnreachableDiags.push_back(
20923          sema::PossiblyUnreachableDiag(PD, Loc, Stmts));
20924    return true;
20925  }
20926
20927  // The initializer of a constexpr variable or of the first declaration of a
20928  // static data member is not syntactically a constant evaluated constant,
20929  // but nonetheless is always required to be a constant expression, so we
20930  // can skip diagnosing.
20931  // FIXME: Using the mangling context here is a hack.
20932  if (auto *VD = dyn_cast_or_null<VarDecl>(
20933          ExprEvalContexts.back().ManglingContextDecl)) {
20934    if (VD->isConstexpr() ||
20935        (VD->isStaticDataMember() && VD->isFirstDecl() && !VD->isInline()))
20936      return false;
20937    // FIXME: For any other kind of variable, we should build a CFG for its
20938    // initializer and check whether the context in question is reachable.
20939  }
20940
20941  Diag(Loc, PD);
20942  return true;
20943}
20944
20945/// Emit a diagnostic that describes an effect on the run-time behavior
20946/// of the program being compiled.
20947///
20948/// This routine emits the given diagnostic when the code currently being
20949/// type-checked is "potentially evaluated", meaning that there is a
20950/// possibility that the code will actually be executable. Code in sizeof()
20951/// expressions, code used only during overload resolution, etc., are not
20952/// potentially evaluated. This routine will suppress such diagnostics or,
20953/// in the absolutely nutty case of potentially potentially evaluated
20954/// expressions (C++ typeid), queue the diagnostic to potentially emit it
20955/// later.
20956///
20957/// This routine should be used for all diagnostics that describe the run-time
20958/// behavior of a program, such as passing a non-POD value through an ellipsis.
20959/// Failure to do so will likely result in spurious diagnostics or failures
20960/// during overload resolution or within sizeof/alignof/typeof/typeid.
20961bool Sema::DiagRuntimeBehavior(SourceLocation Loc, ArrayRef<const Stmt*> Stmts,
20962                               const PartialDiagnostic &PD) {
20963
20964  if (ExprEvalContexts.back().isDiscardedStatementContext())
20965    return false;
20966
20967  switch (ExprEvalContexts.back().Context) {
20968  case ExpressionEvaluationContext::Unevaluated:
20969  case ExpressionEvaluationContext::UnevaluatedList:
20970  case ExpressionEvaluationContext::UnevaluatedAbstract:
20971  case ExpressionEvaluationContext::DiscardedStatement:
20972    // The argument will never be evaluated, so don't complain.
20973    break;
20974
20975  case ExpressionEvaluationContext::ConstantEvaluated:
20976  case ExpressionEvaluationContext::ImmediateFunctionContext:
20977    // Relevant diagnostics should be produced by constant evaluation.
20978    break;
20979
20980  case ExpressionEvaluationContext::PotentiallyEvaluated:
20981  case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
20982    return DiagIfReachable(Loc, Stmts, PD);
20983  }
20984
20985  return false;
20986}
20987
20988bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
20989                               const PartialDiagnostic &PD) {
20990  return DiagRuntimeBehavior(
20991      Loc, Statement ? llvm::ArrayRef(Statement) : std::nullopt, PD);
20992}
20993
20994bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
20995                               CallExpr *CE, FunctionDecl *FD) {
20996  if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
20997    return false;
20998
20999  // If we're inside a decltype's expression, don't check for a valid return
21000  // type or construct temporaries until we know whether this is the last call.
21001  if (ExprEvalContexts.back().ExprContext ==
21002      ExpressionEvaluationContextRecord::EK_Decltype) {
21003    ExprEvalContexts.back().DelayedDecltypeCalls.push_back(CE);
21004    return false;
21005  }
21006
21007  class CallReturnIncompleteDiagnoser : public TypeDiagnoser {
21008    FunctionDecl *FD;
21009    CallExpr *CE;
21010
21011  public:
21012    CallReturnIncompleteDiagnoser(FunctionDecl *FD, CallExpr *CE)
21013      : FD(FD), CE(CE) { }
21014
21015    void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
21016      if (!FD) {
21017        S.Diag(Loc, diag::err_call_incomplete_return)
21018          << T << CE->getSourceRange();
21019        return;
21020      }
21021
21022      S.Diag(Loc, diag::err_call_function_incomplete_return)
21023          << CE->getSourceRange() << FD << T;
21024      S.Diag(FD->getLocation(), diag::note_entity_declared_at)
21025          << FD->getDeclName();
21026    }
21027  } Diagnoser(FD, CE);
21028
21029  if (RequireCompleteType(Loc, ReturnType, Diagnoser))
21030    return true;
21031
21032  return false;
21033}
21034
21035// Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
21036// will prevent this condition from triggering, which is what we want.
21037void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
21038  SourceLocation Loc;
21039
21040  unsigned diagnostic = diag::warn_condition_is_assignment;
21041  bool IsOrAssign = false;
21042
21043  if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
21044    if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
21045      return;
21046
21047    IsOrAssign = Op->getOpcode() == BO_OrAssign;
21048
21049    // Greylist some idioms by putting them into a warning subcategory.
21050    if (ObjCMessageExpr *ME
21051          = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
21052      Selector Sel = ME->getSelector();
21053
21054      // self = [<foo> init...]
21055      if (isSelfExpr(Op->getLHS()) && ME->getMethodFamily() == OMF_init)
21056        diagnostic = diag::warn_condition_is_idiomatic_assignment;
21057
21058      // <foo> = [<bar> nextObject]
21059      else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
21060        diagnostic = diag::warn_condition_is_idiomatic_assignment;
21061    }
21062
21063    Loc = Op->getOperatorLoc();
21064  } else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
21065    if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
21066      return;
21067
21068    IsOrAssign = Op->getOperator() == OO_PipeEqual;
21069    Loc = Op->getOperatorLoc();
21070  } else if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E))
21071    return DiagnoseAssignmentAsCondition(POE->getSyntacticForm());
21072  else {
21073    // Not an assignment.
21074    return;
21075  }
21076
21077  Diag(Loc, diagnostic) << E->getSourceRange();
21078
21079  SourceLocation Open = E->getBeginLoc();
21080  SourceLocation Close = getLocForEndOfToken(E->getSourceRange().getEnd());
21081  Diag(Loc, diag::note_condition_assign_silence)
21082        << FixItHint::CreateInsertion(Open, "(")
21083        << FixItHint::CreateInsertion(Close, ")");
21084
21085  if (IsOrAssign)
21086    Diag(Loc, diag::note_condition_or_assign_to_comparison)
21087      << FixItHint::CreateReplacement(Loc, "!=");
21088  else
21089    Diag(Loc, diag::note_condition_assign_to_comparison)
21090      << FixItHint::CreateReplacement(Loc, "==");
21091}
21092
21093/// Redundant parentheses over an equality comparison can indicate
21094/// that the user intended an assignment used as condition.
21095void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) {
21096  // Don't warn if the parens came from a macro.
21097  SourceLocation parenLoc = ParenE->getBeginLoc();
21098  if (parenLoc.isInvalid() || parenLoc.isMacroID())
21099    return;
21100  // Don't warn for dependent expressions.
21101  if (ParenE->isTypeDependent())
21102    return;
21103
21104  Expr *E = ParenE->IgnoreParens();
21105
21106  if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
21107    if (opE->getOpcode() == BO_EQ &&
21108        opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
21109                                                           == Expr::MLV_Valid) {
21110      SourceLocation Loc = opE->getOperatorLoc();
21111
21112      Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
21113      SourceRange ParenERange = ParenE->getSourceRange();
21114      Diag(Loc, diag::note_equality_comparison_silence)
21115        << FixItHint::CreateRemoval(ParenERange.getBegin())
21116        << FixItHint::CreateRemoval(ParenERange.getEnd());
21117      Diag(Loc, diag::note_equality_comparison_to_assign)
21118        << FixItHint::CreateReplacement(Loc, "=");
21119    }
21120}
21121
21122ExprResult Sema::CheckBooleanCondition(SourceLocation Loc, Expr *E,
21123                                       bool IsConstexpr) {
21124  DiagnoseAssignmentAsCondition(E);
21125  if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
21126    DiagnoseEqualityWithExtraParens(parenE);
21127
21128  ExprResult result = CheckPlaceholderExpr(E);
21129  if (result.isInvalid()) return ExprError();
21130  E = result.get();
21131
21132  if (!E->isTypeDependent()) {
21133    if (getLangOpts().CPlusPlus)
21134      return CheckCXXBooleanCondition(E, IsConstexpr); // C++ 6.4p4
21135
21136    ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
21137    if (ERes.isInvalid())
21138      return ExprError();
21139    E = ERes.get();
21140
21141    QualType T = E->getType();
21142    if (!T->isScalarType()) { // C99 6.8.4.1p1
21143      Diag(Loc, diag::err_typecheck_statement_requires_scalar)
21144        << T << E->getSourceRange();
21145      return ExprError();
21146    }
21147    CheckBoolLikeConversion(E, Loc);
21148  }
21149
21150  return E;
21151}
21152
21153Sema::ConditionResult Sema::ActOnCondition(Scope *S, SourceLocation Loc,
21154                                           Expr *SubExpr, ConditionKind CK,
21155                                           bool MissingOK) {
21156  // MissingOK indicates whether having no condition expression is valid
21157  // (for loop) or invalid (e.g. while loop).
21158  if (!SubExpr)
21159    return MissingOK ? ConditionResult() : ConditionError();
21160
21161  ExprResult Cond;
21162  switch (CK) {
21163  case ConditionKind::Boolean:
21164    Cond = CheckBooleanCondition(Loc, SubExpr);
21165    break;
21166
21167  case ConditionKind::ConstexprIf:
21168    Cond = CheckBooleanCondition(Loc, SubExpr, true);
21169    break;
21170
21171  case ConditionKind::Switch:
21172    Cond = CheckSwitchCondition(Loc, SubExpr);
21173    break;
21174  }
21175  if (Cond.isInvalid()) {
21176    Cond = CreateRecoveryExpr(SubExpr->getBeginLoc(), SubExpr->getEndLoc(),
21177                              {SubExpr}, PreferredConditionType(CK));
21178    if (!Cond.get())
21179      return ConditionError();
21180  }
21181  // FIXME: FullExprArg doesn't have an invalid bit, so check nullness instead.
21182  FullExprArg FullExpr = MakeFullExpr(Cond.get(), Loc);
21183  if (!FullExpr.get())
21184    return ConditionError();
21185
21186  return ConditionResult(*this, nullptr, FullExpr,
21187                         CK == ConditionKind::ConstexprIf);
21188}
21189
21190namespace {
21191  /// A visitor for rebuilding a call to an __unknown_any expression
21192  /// to have an appropriate type.
21193  struct RebuildUnknownAnyFunction
21194    : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
21195
21196    Sema &S;
21197
21198    RebuildUnknownAnyFunction(Sema &S) : S(S) {}
21199
21200    ExprResult VisitStmt(Stmt *S) {
21201      llvm_unreachable("unexpected statement!");
21202    }
21203
21204    ExprResult VisitExpr(Expr *E) {
21205      S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call)
21206        << E->getSourceRange();
21207      return ExprError();
21208    }
21209
21210    /// Rebuild an expression which simply semantically wraps another
21211    /// expression which it shares the type and value kind of.
21212    template <class T> ExprResult rebuildSugarExpr(T *E) {
21213      ExprResult SubResult = Visit(E->getSubExpr());
21214      if (SubResult.isInvalid()) return ExprError();
21215
21216      Expr *SubExpr = SubResult.get();
21217      E->setSubExpr(SubExpr);
21218      E->setType(SubExpr->getType());
21219      E->setValueKind(SubExpr->getValueKind());
21220      assert(E->getObjectKind() == OK_Ordinary);
21221      return E;
21222    }
21223
21224    ExprResult VisitParenExpr(ParenExpr *E) {
21225      return rebuildSugarExpr(E);
21226    }
21227
21228    ExprResult VisitUnaryExtension(UnaryOperator *E) {
21229      return rebuildSugarExpr(E);
21230    }
21231
21232    ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
21233      ExprResult SubResult = Visit(E->getSubExpr());
21234      if (SubResult.isInvalid()) return ExprError();
21235
21236      Expr *SubExpr = SubResult.get();
21237      E->setSubExpr(SubExpr);
21238      E->setType(S.Context.getPointerType(SubExpr->getType()));
21239      assert(E->isPRValue());
21240      assert(E->getObjectKind() == OK_Ordinary);
21241      return E;
21242    }
21243
21244    ExprResult resolveDecl(Expr *E, ValueDecl *VD) {
21245      if (!isa<FunctionDecl>(VD)) return VisitExpr(E);
21246
21247      E->setType(VD->getType());
21248
21249      assert(E->isPRValue());
21250      if (S.getLangOpts().CPlusPlus &&
21251          !(isa<CXXMethodDecl>(VD) &&
21252            cast<CXXMethodDecl>(VD)->isInstance()))
21253        E->setValueKind(VK_LValue);
21254
21255      return E;
21256    }
21257
21258    ExprResult VisitMemberExpr(MemberExpr *E) {
21259      return resolveDecl(E, E->getMemberDecl());
21260    }
21261
21262    ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
21263      return resolveDecl(E, E->getDecl());
21264    }
21265  };
21266}
21267
21268/// Given a function expression of unknown-any type, try to rebuild it
21269/// to have a function type.
21270static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) {
21271  ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr);
21272  if (Result.isInvalid()) return ExprError();
21273  return S.DefaultFunctionArrayConversion(Result.get());
21274}
21275
21276namespace {
21277  /// A visitor for rebuilding an expression of type __unknown_anytype
21278  /// into one which resolves the type directly on the referring
21279  /// expression.  Strict preservation of the original source
21280  /// structure is not a goal.
21281  struct RebuildUnknownAnyExpr
21282    : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
21283
21284    Sema &S;
21285
21286    /// The current destination type.
21287    QualType DestType;
21288
21289    RebuildUnknownAnyExpr(Sema &S, QualType CastType)
21290      : S(S), DestType(CastType) {}
21291
21292    ExprResult VisitStmt(Stmt *S) {
21293      llvm_unreachable("unexpected statement!");
21294    }
21295
21296    ExprResult VisitExpr(Expr *E) {
21297      S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
21298        << E->getSourceRange();
21299      return ExprError();
21300    }
21301
21302    ExprResult VisitCallExpr(CallExpr *E);
21303    ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E);
21304
21305    /// Rebuild an expression which simply semantically wraps another
21306    /// expression which it shares the type and value kind of.
21307    template <class T> ExprResult rebuildSugarExpr(T *E) {
21308      ExprResult SubResult = Visit(E->getSubExpr());
21309      if (SubResult.isInvalid()) return ExprError();
21310      Expr *SubExpr = SubResult.get();
21311      E->setSubExpr(SubExpr);
21312      E->setType(SubExpr->getType());
21313      E->setValueKind(SubExpr->getValueKind());
21314      assert(E->getObjectKind() == OK_Ordinary);
21315      return E;
21316    }
21317
21318    ExprResult VisitParenExpr(ParenExpr *E) {
21319      return rebuildSugarExpr(E);
21320    }
21321
21322    ExprResult VisitUnaryExtension(UnaryOperator *E) {
21323      return rebuildSugarExpr(E);
21324    }
21325
21326    ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
21327      const PointerType *Ptr = DestType->getAs<PointerType>();
21328      if (!Ptr) {
21329        S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof)
21330          << E->getSourceRange();
21331        return ExprError();
21332      }
21333
21334      if (isa<CallExpr>(E->getSubExpr())) {
21335        S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof_call)
21336          << E->getSourceRange();
21337        return ExprError();
21338      }
21339
21340      assert(E->isPRValue());
21341      assert(E->getObjectKind() == OK_Ordinary);
21342      E->setType(DestType);
21343
21344      // Build the sub-expression as if it were an object of the pointee type.
21345      DestType = Ptr->getPointeeType();
21346      ExprResult SubResult = Visit(E->getSubExpr());
21347      if (SubResult.isInvalid()) return ExprError();
21348      E->setSubExpr(SubResult.get());
21349      return E;
21350    }
21351
21352    ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E);
21353
21354    ExprResult resolveDecl(Expr *E, ValueDecl *VD);
21355
21356    ExprResult VisitMemberExpr(MemberExpr *E) {
21357      return resolveDecl(E, E->getMemberDecl());
21358    }
21359
21360    ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
21361      return resolveDecl(E, E->getDecl());
21362    }
21363  };
21364}
21365
21366/// Rebuilds a call expression which yielded __unknown_anytype.
21367ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) {
21368  Expr *CalleeExpr = E->getCallee();
21369
21370  enum FnKind {
21371    FK_MemberFunction,
21372    FK_FunctionPointer,
21373    FK_BlockPointer
21374  };
21375
21376  FnKind Kind;
21377  QualType CalleeType = CalleeExpr->getType();
21378  if (CalleeType == S.Context.BoundMemberTy) {
21379    assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E));
21380    Kind = FK_MemberFunction;
21381    CalleeType = Expr::findBoundMemberType(CalleeExpr);
21382  } else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) {
21383    CalleeType = Ptr->getPointeeType();
21384    Kind = FK_FunctionPointer;
21385  } else {
21386    CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType();
21387    Kind = FK_BlockPointer;
21388  }
21389  const FunctionType *FnType = CalleeType->castAs<FunctionType>();
21390
21391  // Verify that this is a legal result type of a function.
21392  if (DestType->isArrayType() || DestType->isFunctionType()) {
21393    unsigned diagID = diag::err_func_returning_array_function;
21394    if (Kind == FK_BlockPointer)
21395      diagID = diag::err_block_returning_array_function;
21396
21397    S.Diag(E->getExprLoc(), diagID)
21398      << DestType->isFunctionType() << DestType;
21399    return ExprError();
21400  }
21401
21402  // Otherwise, go ahead and set DestType as the call's result.
21403  E->setType(DestType.getNonLValueExprType(S.Context));
21404  E->setValueKind(Expr::getValueKindForType(DestType));
21405  assert(E->getObjectKind() == OK_Ordinary);
21406
21407  // Rebuild the function type, replacing the result type with DestType.
21408  const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType);
21409  if (Proto) {
21410    // __unknown_anytype(...) is a special case used by the debugger when
21411    // it has no idea what a function's signature is.
21412    //
21413    // We want to build this call essentially under the K&R
21414    // unprototyped rules, but making a FunctionNoProtoType in C++
21415    // would foul up all sorts of assumptions.  However, we cannot
21416    // simply pass all arguments as variadic arguments, nor can we
21417    // portably just call the function under a non-variadic type; see
21418    // the comment on IR-gen's TargetInfo::isNoProtoCallVariadic.
21419    // However, it turns out that in practice it is generally safe to
21420    // call a function declared as "A foo(B,C,D);" under the prototype
21421    // "A foo(B,C,D,...);".  The only known exception is with the
21422    // Windows ABI, where any variadic function is implicitly cdecl
21423    // regardless of its normal CC.  Therefore we change the parameter
21424    // types to match the types of the arguments.
21425    //
21426    // This is a hack, but it is far superior to moving the
21427    // corresponding target-specific code from IR-gen to Sema/AST.
21428
21429    ArrayRef<QualType> ParamTypes = Proto->getParamTypes();
21430    SmallVector<QualType, 8> ArgTypes;
21431    if (ParamTypes.empty() && Proto->isVariadic()) { // the special case
21432      ArgTypes.reserve(E->getNumArgs());
21433      for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
21434        ArgTypes.push_back(S.Context.getReferenceQualifiedType(E->getArg(i)));
21435      }
21436      ParamTypes = ArgTypes;
21437    }
21438    DestType = S.Context.getFunctionType(DestType, ParamTypes,
21439                                         Proto->getExtProtoInfo());
21440  } else {
21441    DestType = S.Context.getFunctionNoProtoType(DestType,
21442                                                FnType->getExtInfo());
21443  }
21444
21445  // Rebuild the appropriate pointer-to-function type.
21446  switch (Kind) {
21447  case FK_MemberFunction:
21448    // Nothing to do.
21449    break;
21450
21451  case FK_FunctionPointer:
21452    DestType = S.Context.getPointerType(DestType);
21453    break;
21454
21455  case FK_BlockPointer:
21456    DestType = S.Context.getBlockPointerType(DestType);
21457    break;
21458  }
21459
21460  // Finally, we can recurse.
21461  ExprResult CalleeResult = Visit(CalleeExpr);
21462  if (!CalleeResult.isUsable()) return ExprError();
21463  E->setCallee(CalleeResult.get());
21464
21465  // Bind a temporary if necessary.
21466  return S.MaybeBindToTemporary(E);
21467}
21468
21469ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) {
21470  // Verify that this is a legal result type of a call.
21471  if (DestType->isArrayType() || DestType->isFunctionType()) {
21472    S.Diag(E->getExprLoc(), diag::err_func_returning_array_function)
21473      << DestType->isFunctionType() << DestType;
21474    return ExprError();
21475  }
21476
21477  // Rewrite the method result type if available.
21478  if (ObjCMethodDecl *Method = E->getMethodDecl()) {
21479    assert(Method->getReturnType() == S.Context.UnknownAnyTy);
21480    Method->setReturnType(DestType);
21481  }
21482
21483  // Change the type of the message.
21484  E->setType(DestType.getNonReferenceType());
21485  E->setValueKind(Expr::getValueKindForType(DestType));
21486
21487  return S.MaybeBindToTemporary(E);
21488}
21489
21490ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) {
21491  // The only case we should ever see here is a function-to-pointer decay.
21492  if (E->getCastKind() == CK_FunctionToPointerDecay) {
21493    assert(E->isPRValue());
21494    assert(E->getObjectKind() == OK_Ordinary);
21495
21496    E->setType(DestType);
21497
21498    // Rebuild the sub-expression as the pointee (function) type.
21499    DestType = DestType->castAs<PointerType>()->getPointeeType();
21500
21501    ExprResult Result = Visit(E->getSubExpr());
21502    if (!Result.isUsable()) return ExprError();
21503
21504    E->setSubExpr(Result.get());
21505    return E;
21506  } else if (E->getCastKind() == CK_LValueToRValue) {
21507    assert(E->isPRValue());
21508    assert(E->getObjectKind() == OK_Ordinary);
21509
21510    assert(isa<BlockPointerType>(E->getType()));
21511
21512    E->setType(DestType);
21513
21514    // The sub-expression has to be a lvalue reference, so rebuild it as such.
21515    DestType = S.Context.getLValueReferenceType(DestType);
21516
21517    ExprResult Result = Visit(E->getSubExpr());
21518    if (!Result.isUsable()) return ExprError();
21519
21520    E->setSubExpr(Result.get());
21521    return E;
21522  } else {
21523    llvm_unreachable("Unhandled cast type!");
21524  }
21525}
21526
21527ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) {
21528  ExprValueKind ValueKind = VK_LValue;
21529  QualType Type = DestType;
21530
21531  // We know how to make this work for certain kinds of decls:
21532
21533  //  - functions
21534  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(VD)) {
21535    if (const PointerType *Ptr = Type->getAs<PointerType>()) {
21536      DestType = Ptr->getPointeeType();
21537      ExprResult Result = resolveDecl(E, VD);
21538      if (Result.isInvalid()) return ExprError();
21539      return S.ImpCastExprToType(Result.get(), Type, CK_FunctionToPointerDecay,
21540                                 VK_PRValue);
21541    }
21542
21543    if (!Type->isFunctionType()) {
21544      S.Diag(E->getExprLoc(), diag::err_unknown_any_function)
21545        << VD << E->getSourceRange();
21546      return ExprError();
21547    }
21548    if (const FunctionProtoType *FT = Type->getAs<FunctionProtoType>()) {
21549      // We must match the FunctionDecl's type to the hack introduced in
21550      // RebuildUnknownAnyExpr::VisitCallExpr to vararg functions of unknown
21551      // type. See the lengthy commentary in that routine.
21552      QualType FDT = FD->getType();
21553      const FunctionType *FnType = FDT->castAs<FunctionType>();
21554      const FunctionProtoType *Proto = dyn_cast_or_null<FunctionProtoType>(FnType);
21555      DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
21556      if (DRE && Proto && Proto->getParamTypes().empty() && Proto->isVariadic()) {
21557        SourceLocation Loc = FD->getLocation();
21558        FunctionDecl *NewFD = FunctionDecl::Create(
21559            S.Context, FD->getDeclContext(), Loc, Loc,
21560            FD->getNameInfo().getName(), DestType, FD->getTypeSourceInfo(),
21561            SC_None, S.getCurFPFeatures().isFPConstrained(),
21562            false /*isInlineSpecified*/, FD->hasPrototype(),
21563            /*ConstexprKind*/ ConstexprSpecKind::Unspecified);
21564
21565        if (FD->getQualifier())
21566          NewFD->setQualifierInfo(FD->getQualifierLoc());
21567
21568        SmallVector<ParmVarDecl*, 16> Params;
21569        for (const auto &AI : FT->param_types()) {
21570          ParmVarDecl *Param =
21571            S.BuildParmVarDeclForTypedef(FD, Loc, AI);
21572          Param->setScopeInfo(0, Params.size());
21573          Params.push_back(Param);
21574        }
21575        NewFD->setParams(Params);
21576        DRE->setDecl(NewFD);
21577        VD = DRE->getDecl();
21578      }
21579    }
21580
21581    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
21582      if (MD->isInstance()) {
21583        ValueKind = VK_PRValue;
21584        Type = S.Context.BoundMemberTy;
21585      }
21586
21587    // Function references aren't l-values in C.
21588    if (!S.getLangOpts().CPlusPlus)
21589      ValueKind = VK_PRValue;
21590
21591  //  - variables
21592  } else if (isa<VarDecl>(VD)) {
21593    if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) {
21594      Type = RefTy->getPointeeType();
21595    } else if (Type->isFunctionType()) {
21596      S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type)
21597        << VD << E->getSourceRange();
21598      return ExprError();
21599    }
21600
21601  //  - nothing else
21602  } else {
21603    S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl)
21604      << VD << E->getSourceRange();
21605    return ExprError();
21606  }
21607
21608  // Modifying the declaration like this is friendly to IR-gen but
21609  // also really dangerous.
21610  VD->setType(DestType);
21611  E->setType(Type);
21612  E->setValueKind(ValueKind);
21613  return E;
21614}
21615
21616/// Check a cast of an unknown-any type.  We intentionally only
21617/// trigger this for C-style casts.
21618ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
21619                                     Expr *CastExpr, CastKind &CastKind,
21620                                     ExprValueKind &VK, CXXCastPath &Path) {
21621  // The type we're casting to must be either void or complete.
21622  if (!CastType->isVoidType() &&
21623      RequireCompleteType(TypeRange.getBegin(), CastType,
21624                          diag::err_typecheck_cast_to_incomplete))
21625    return ExprError();
21626
21627  // Rewrite the casted expression from scratch.
21628  ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr);
21629  if (!result.isUsable()) return ExprError();
21630
21631  CastExpr = result.get();
21632  VK = CastExpr->getValueKind();
21633  CastKind = CK_NoOp;
21634
21635  return CastExpr;
21636}
21637
21638ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) {
21639  return RebuildUnknownAnyExpr(*this, ToType).Visit(E);
21640}
21641
21642ExprResult Sema::checkUnknownAnyArg(SourceLocation callLoc,
21643                                    Expr *arg, QualType &paramType) {
21644  // If the syntactic form of the argument is not an explicit cast of
21645  // any sort, just do default argument promotion.
21646  ExplicitCastExpr *castArg = dyn_cast<ExplicitCastExpr>(arg->IgnoreParens());
21647  if (!castArg) {
21648    ExprResult result = DefaultArgumentPromotion(arg);
21649    if (result.isInvalid()) return ExprError();
21650    paramType = result.get()->getType();
21651    return result;
21652  }
21653
21654  // Otherwise, use the type that was written in the explicit cast.
21655  assert(!arg->hasPlaceholderType());
21656  paramType = castArg->getTypeAsWritten();
21657
21658  // Copy-initialize a parameter of that type.
21659  InitializedEntity entity =
21660    InitializedEntity::InitializeParameter(Context, paramType,
21661                                           /*consumed*/ false);
21662  return PerformCopyInitialization(entity, callLoc, arg);
21663}
21664
21665static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) {
21666  Expr *orig = E;
21667  unsigned diagID = diag::err_uncasted_use_of_unknown_any;
21668  while (true) {
21669    E = E->IgnoreParenImpCasts();
21670    if (CallExpr *call = dyn_cast<CallExpr>(E)) {
21671      E = call->getCallee();
21672      diagID = diag::err_uncasted_call_of_unknown_any;
21673    } else {
21674      break;
21675    }
21676  }
21677
21678  SourceLocation loc;
21679  NamedDecl *d;
21680  if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(E)) {
21681    loc = ref->getLocation();
21682    d = ref->getDecl();
21683  } else if (MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
21684    loc = mem->getMemberLoc();
21685    d = mem->getMemberDecl();
21686  } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(E)) {
21687    diagID = diag::err_uncasted_call_of_unknown_any;
21688    loc = msg->getSelectorStartLoc();
21689    d = msg->getMethodDecl();
21690    if (!d) {
21691      S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method)
21692        << static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector()
21693        << orig->getSourceRange();
21694      return ExprError();
21695    }
21696  } else {
21697    S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
21698      << E->getSourceRange();
21699    return ExprError();
21700  }
21701
21702  S.Diag(loc, diagID) << d << orig->getSourceRange();
21703
21704  // Never recoverable.
21705  return ExprError();
21706}
21707
21708/// Check for operands with placeholder types and complain if found.
21709/// Returns ExprError() if there was an error and no recovery was possible.
21710ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
21711  if (!Context.isDependenceAllowed()) {
21712    // C cannot handle TypoExpr nodes on either side of a binop because it
21713    // doesn't handle dependent types properly, so make sure any TypoExprs have
21714    // been dealt with before checking the operands.
21715    ExprResult Result = CorrectDelayedTyposInExpr(E);
21716    if (!Result.isUsable()) return ExprError();
21717    E = Result.get();
21718  }
21719
21720  const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType();
21721  if (!placeholderType) return E;
21722
21723  switch (placeholderType->getKind()) {
21724
21725  // Overloaded expressions.
21726  case BuiltinType::Overload: {
21727    // Try to resolve a single function template specialization.
21728    // This is obligatory.
21729    ExprResult Result = E;
21730    if (ResolveAndFixSingleFunctionTemplateSpecialization(Result, false))
21731      return Result;
21732
21733    // No guarantees that ResolveAndFixSingleFunctionTemplateSpecialization
21734    // leaves Result unchanged on failure.
21735    Result = E;
21736    if (resolveAndFixAddressOfSingleOverloadCandidate(Result))
21737      return Result;
21738
21739    // If that failed, try to recover with a call.
21740    tryToRecoverWithCall(Result, PDiag(diag::err_ovl_unresolvable),
21741                         /*complain*/ true);
21742    return Result;
21743  }
21744
21745  // Bound member functions.
21746  case BuiltinType::BoundMember: {
21747    ExprResult result = E;
21748    const Expr *BME = E->IgnoreParens();
21749    PartialDiagnostic PD = PDiag(diag::err_bound_member_function);
21750    // Try to give a nicer diagnostic if it is a bound member that we recognize.
21751    if (isa<CXXPseudoDestructorExpr>(BME)) {
21752      PD = PDiag(diag::err_dtor_expr_without_call) << /*pseudo-destructor*/ 1;
21753    } else if (const auto *ME = dyn_cast<MemberExpr>(BME)) {
21754      if (ME->getMemberNameInfo().getName().getNameKind() ==
21755          DeclarationName::CXXDestructorName)
21756        PD = PDiag(diag::err_dtor_expr_without_call) << /*destructor*/ 0;
21757    }
21758    tryToRecoverWithCall(result, PD,
21759                         /*complain*/ true);
21760    return result;
21761  }
21762
21763  // ARC unbridged casts.
21764  case BuiltinType::ARCUnbridgedCast: {
21765    Expr *realCast = stripARCUnbridgedCast(E);
21766    diagnoseARCUnbridgedCast(realCast);
21767    return realCast;
21768  }
21769
21770  // Expressions of unknown type.
21771  case BuiltinType::UnknownAny:
21772    return diagnoseUnknownAnyExpr(*this, E);
21773
21774  // Pseudo-objects.
21775  case BuiltinType::PseudoObject:
21776    return checkPseudoObjectRValue(E);
21777
21778  case BuiltinType::BuiltinFn: {
21779    // Accept __noop without parens by implicitly converting it to a call expr.
21780    auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
21781    if (DRE) {
21782      auto *FD = cast<FunctionDecl>(DRE->getDecl());
21783      unsigned BuiltinID = FD->getBuiltinID();
21784      if (BuiltinID == Builtin::BI__noop) {
21785        E = ImpCastExprToType(E, Context.getPointerType(FD->getType()),
21786                              CK_BuiltinFnToFnPtr)
21787                .get();
21788        return CallExpr::Create(Context, E, /*Args=*/{}, Context.IntTy,
21789                                VK_PRValue, SourceLocation(),
21790                                FPOptionsOverride());
21791      }
21792
21793      if (Context.BuiltinInfo.isInStdNamespace(BuiltinID)) {
21794        // Any use of these other than a direct call is ill-formed as of C++20,
21795        // because they are not addressable functions. In earlier language
21796        // modes, warn and force an instantiation of the real body.
21797        Diag(E->getBeginLoc(),
21798             getLangOpts().CPlusPlus20
21799                 ? diag::err_use_of_unaddressable_function
21800                 : diag::warn_cxx20_compat_use_of_unaddressable_function);
21801        if (FD->isImplicitlyInstantiable()) {
21802          // Require a definition here because a normal attempt at
21803          // instantiation for a builtin will be ignored, and we won't try
21804          // again later. We assume that the definition of the template
21805          // precedes this use.
21806          InstantiateFunctionDefinition(E->getBeginLoc(), FD,
21807                                        /*Recursive=*/false,
21808                                        /*DefinitionRequired=*/true,
21809                                        /*AtEndOfTU=*/false);
21810        }
21811        // Produce a properly-typed reference to the function.
21812        CXXScopeSpec SS;
21813        SS.Adopt(DRE->getQualifierLoc());
21814        TemplateArgumentListInfo TemplateArgs;
21815        DRE->copyTemplateArgumentsInto(TemplateArgs);
21816        return BuildDeclRefExpr(
21817            FD, FD->getType(), VK_LValue, DRE->getNameInfo(),
21818            DRE->hasQualifier() ? &SS : nullptr, DRE->getFoundDecl(),
21819            DRE->getTemplateKeywordLoc(),
21820            DRE->hasExplicitTemplateArgs() ? &TemplateArgs : nullptr);
21821      }
21822    }
21823
21824    Diag(E->getBeginLoc(), diag::err_builtin_fn_use);
21825    return ExprError();
21826  }
21827
21828  case BuiltinType::IncompleteMatrixIdx:
21829    Diag(cast<MatrixSubscriptExpr>(E->IgnoreParens())
21830             ->getRowIdx()
21831             ->getBeginLoc(),
21832         diag::err_matrix_incomplete_index);
21833    return ExprError();
21834
21835  // Expressions of unknown type.
21836  case BuiltinType::OMPArraySection:
21837    Diag(E->getBeginLoc(), diag::err_omp_array_section_use);
21838    return ExprError();
21839
21840  // Expressions of unknown type.
21841  case BuiltinType::OMPArrayShaping:
21842    return ExprError(Diag(E->getBeginLoc(), diag::err_omp_array_shaping_use));
21843
21844  case BuiltinType::OMPIterator:
21845    return ExprError(Diag(E->getBeginLoc(), diag::err_omp_iterator_use));
21846
21847  // Everything else should be impossible.
21848#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
21849  case BuiltinType::Id:
21850#include "clang/Basic/OpenCLImageTypes.def"
21851#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
21852  case BuiltinType::Id:
21853#include "clang/Basic/OpenCLExtensionTypes.def"
21854#define SVE_TYPE(Name, Id, SingletonId) \
21855  case BuiltinType::Id:
21856#include "clang/Basic/AArch64SVEACLETypes.def"
21857#define PPC_VECTOR_TYPE(Name, Id, Size) \
21858  case BuiltinType::Id:
21859#include "clang/Basic/PPCTypes.def"
21860#define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
21861#include "clang/Basic/RISCVVTypes.def"
21862#define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
21863#include "clang/Basic/WebAssemblyReferenceTypes.def"
21864#define BUILTIN_TYPE(Id, SingletonId) case BuiltinType::Id:
21865#define PLACEHOLDER_TYPE(Id, SingletonId)
21866#include "clang/AST/BuiltinTypes.def"
21867    break;
21868  }
21869
21870  llvm_unreachable("invalid placeholder type!");
21871}
21872
21873bool Sema::CheckCaseExpression(Expr *E) {
21874  if (E->isTypeDependent())
21875    return true;
21876  if (E->isValueDependent() || E->isIntegerConstantExpr(Context))
21877    return E->getType()->isIntegralOrEnumerationType();
21878  return false;
21879}
21880
21881/// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals.
21882ExprResult
21883Sema::ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
21884  assert((Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) &&
21885         "Unknown Objective-C Boolean value!");
21886  QualType BoolT = Context.ObjCBuiltinBoolTy;
21887  if (!Context.getBOOLDecl()) {
21888    LookupResult Result(*this, &Context.Idents.get("BOOL"), OpLoc,
21889                        Sema::LookupOrdinaryName);
21890    if (LookupName(Result, getCurScope()) && Result.isSingleResult()) {
21891      NamedDecl *ND = Result.getFoundDecl();
21892      if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
21893        Context.setBOOLDecl(TD);
21894    }
21895  }
21896  if (Context.getBOOLDecl())
21897    BoolT = Context.getBOOLType();
21898  return new (Context)
21899      ObjCBoolLiteralExpr(Kind == tok::kw___objc_yes, BoolT, OpLoc);
21900}
21901
21902ExprResult Sema::ActOnObjCAvailabilityCheckExpr(
21903    llvm::ArrayRef<AvailabilitySpec> AvailSpecs, SourceLocation AtLoc,
21904    SourceLocation RParen) {
21905  auto FindSpecVersion =
21906      [&](StringRef Platform) -> std::optional<VersionTuple> {
21907    auto Spec = llvm::find_if(AvailSpecs, [&](const AvailabilitySpec &Spec) {
21908      return Spec.getPlatform() == Platform;
21909    });
21910    // Transcribe the "ios" availability check to "maccatalyst" when compiling
21911    // for "maccatalyst" if "maccatalyst" is not specified.
21912    if (Spec == AvailSpecs.end() && Platform == "maccatalyst") {
21913      Spec = llvm::find_if(AvailSpecs, [&](const AvailabilitySpec &Spec) {
21914        return Spec.getPlatform() == "ios";
21915      });
21916    }
21917    if (Spec == AvailSpecs.end())
21918      return std::nullopt;
21919    return Spec->getVersion();
21920  };
21921
21922  VersionTuple Version;
21923  if (auto MaybeVersion =
21924          FindSpecVersion(Context.getTargetInfo().getPlatformName()))
21925    Version = *MaybeVersion;
21926
21927  // The use of `@available` in the enclosing context should be analyzed to
21928  // warn when it's used inappropriately (i.e. not if(@available)).
21929  if (FunctionScopeInfo *Context = getCurFunctionAvailabilityContext())
21930    Context->HasPotentialAvailabilityViolations = true;
21931
21932  return new (Context)
21933      ObjCAvailabilityCheckExpr(Version, AtLoc, RParen, Context.BoolTy);
21934}
21935
21936ExprResult Sema::CreateRecoveryExpr(SourceLocation Begin, SourceLocation End,
21937                                    ArrayRef<Expr *> SubExprs, QualType T) {
21938  if (!Context.getLangOpts().RecoveryAST)
21939    return ExprError();
21940
21941  if (isSFINAEContext())
21942    return ExprError();
21943
21944  if (T.isNull() || T->isUndeducedType() ||
21945      !Context.getLangOpts().RecoveryASTType)
21946    // We don't know the concrete type, fallback to dependent type.
21947    T = Context.DependentTy;
21948
21949  return RecoveryExpr::Create(Context, T, Begin, End, SubExprs);
21950}
21951